xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 9adbb5cb3a56f77bc3739da10cacafca36d5bedf)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 
139 #define DEBUG_TYPE "scalar-evolution"
140 
141 STATISTIC(NumArrayLenItCounts,
142           "Number of trip counts computed with array length");
143 STATISTIC(NumTripCountsComputed,
144           "Number of loops with predictable loop counts");
145 STATISTIC(NumTripCountsNotComputed,
146           "Number of loops without predictable loop counts");
147 STATISTIC(NumBruteForceTripCountsComputed,
148           "Number of loops with trip counts computed by force");
149 
150 static cl::opt<unsigned>
151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152                         cl::ZeroOrMore,
153                         cl::desc("Maximum number of iterations SCEV will "
154                                  "symbolically execute a constant "
155                                  "derived loop"),
156                         cl::init(100));
157 
158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
159 static cl::opt<bool> VerifySCEV(
160     "verify-scev", cl::Hidden,
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166     VerifySCEVMap("verify-scev-maps", cl::Hidden,
167                   cl::desc("Verify no dangling value in ScalarEvolution's "
168                            "ExprValueMap (slow)"));
169 
170 static cl::opt<bool> VerifyIR(
171     "scev-verify-ir", cl::Hidden,
172     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173     cl::init(false));
174 
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176     "scev-mulops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178     cl::init(32));
179 
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181     "scev-addops-inline-threshold", cl::Hidden,
182     cl::desc("Threshold for inlining addition operands into a SCEV"),
183     cl::init(500));
184 
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188     cl::init(32));
189 
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193     cl::init(2));
194 
195 static cl::opt<unsigned> MaxValueCompareDepth(
196     "scalar-evolution-max-value-compare-depth", cl::Hidden,
197     cl::desc("Maximum depth of recursive value complexity comparisons"),
198     cl::init(2));
199 
200 static cl::opt<unsigned>
201     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202                   cl::desc("Maximum depth of recursive arithmetics"),
203                   cl::init(32));
204 
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208 
209 static cl::opt<unsigned>
210     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212                  cl::init(8));
213 
214 static cl::opt<unsigned>
215     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216                   cl::desc("Max coefficients in AddRec during evolving"),
217                   cl::init(8));
218 
219 static cl::opt<unsigned>
220     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221                   cl::desc("Size of the expression which is considered huge"),
222                   cl::init(4096));
223 
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226     cl::Hidden, cl::init(true),
227     cl::desc("When printing analysis, include information on every instruction"));
228 
229 
230 //===----------------------------------------------------------------------===//
231 //                           SCEV class definitions
232 //===----------------------------------------------------------------------===//
233 
234 //===----------------------------------------------------------------------===//
235 // Implementation of the SCEV class.
236 //
237 
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239 LLVM_DUMP_METHOD void SCEV::dump() const {
240   print(dbgs());
241   dbgs() << '\n';
242 }
243 #endif
244 
245 void SCEV::print(raw_ostream &OS) const {
246   switch (static_cast<SCEVTypes>(getSCEVType())) {
247   case scConstant:
248     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
249     return;
250   case scTruncate: {
251     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
252     const SCEV *Op = Trunc->getOperand();
253     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
254        << *Trunc->getType() << ")";
255     return;
256   }
257   case scZeroExtend: {
258     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
259     const SCEV *Op = ZExt->getOperand();
260     OS << "(zext " << *Op->getType() << " " << *Op << " to "
261        << *ZExt->getType() << ")";
262     return;
263   }
264   case scSignExtend: {
265     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
266     const SCEV *Op = SExt->getOperand();
267     OS << "(sext " << *Op->getType() << " " << *Op << " to "
268        << *SExt->getType() << ")";
269     return;
270   }
271   case scAddRecExpr: {
272     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
273     OS << "{" << *AR->getOperand(0);
274     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
275       OS << ",+," << *AR->getOperand(i);
276     OS << "}<";
277     if (AR->hasNoUnsignedWrap())
278       OS << "nuw><";
279     if (AR->hasNoSignedWrap())
280       OS << "nsw><";
281     if (AR->hasNoSelfWrap() &&
282         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
283       OS << "nw><";
284     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
285     OS << ">";
286     return;
287   }
288   case scAddExpr:
289   case scMulExpr:
290   case scUMaxExpr:
291   case scSMaxExpr:
292   case scUMinExpr:
293   case scSMinExpr: {
294     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
295     const char *OpStr = nullptr;
296     switch (NAry->getSCEVType()) {
297     case scAddExpr: OpStr = " + "; break;
298     case scMulExpr: OpStr = " * "; break;
299     case scUMaxExpr: OpStr = " umax "; break;
300     case scSMaxExpr: OpStr = " smax "; break;
301     case scUMinExpr:
302       OpStr = " umin ";
303       break;
304     case scSMinExpr:
305       OpStr = " smin ";
306       break;
307     }
308     OS << "(";
309     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
310          I != E; ++I) {
311       OS << **I;
312       if (std::next(I) != E)
313         OS << OpStr;
314     }
315     OS << ")";
316     switch (NAry->getSCEVType()) {
317     case scAddExpr:
318     case scMulExpr:
319       if (NAry->hasNoUnsignedWrap())
320         OS << "<nuw>";
321       if (NAry->hasNoSignedWrap())
322         OS << "<nsw>";
323     }
324     return;
325   }
326   case scUDivExpr: {
327     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
328     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
329     return;
330   }
331   case scUnknown: {
332     const SCEVUnknown *U = cast<SCEVUnknown>(this);
333     Type *AllocTy;
334     if (U->isSizeOf(AllocTy)) {
335       OS << "sizeof(" << *AllocTy << ")";
336       return;
337     }
338     if (U->isAlignOf(AllocTy)) {
339       OS << "alignof(" << *AllocTy << ")";
340       return;
341     }
342 
343     Type *CTy;
344     Constant *FieldNo;
345     if (U->isOffsetOf(CTy, FieldNo)) {
346       OS << "offsetof(" << *CTy << ", ";
347       FieldNo->printAsOperand(OS, false);
348       OS << ")";
349       return;
350     }
351 
352     // Otherwise just print it normally.
353     U->getValue()->printAsOperand(OS, false);
354     return;
355   }
356   case scCouldNotCompute:
357     OS << "***COULDNOTCOMPUTE***";
358     return;
359   }
360   llvm_unreachable("Unknown SCEV kind!");
361 }
362 
363 Type *SCEV::getType() const {
364   switch (static_cast<SCEVTypes>(getSCEVType())) {
365   case scConstant:
366     return cast<SCEVConstant>(this)->getType();
367   case scTruncate:
368   case scZeroExtend:
369   case scSignExtend:
370     return cast<SCEVCastExpr>(this)->getType();
371   case scAddRecExpr:
372   case scMulExpr:
373   case scUMaxExpr:
374   case scSMaxExpr:
375   case scUMinExpr:
376   case scSMinExpr:
377     return cast<SCEVNAryExpr>(this)->getType();
378   case scAddExpr:
379     return cast<SCEVAddExpr>(this)->getType();
380   case scUDivExpr:
381     return cast<SCEVUDivExpr>(this)->getType();
382   case scUnknown:
383     return cast<SCEVUnknown>(this)->getType();
384   case scCouldNotCompute:
385     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
386   }
387   llvm_unreachable("Unknown SCEV kind!");
388 }
389 
390 bool SCEV::isZero() const {
391   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
392     return SC->getValue()->isZero();
393   return false;
394 }
395 
396 bool SCEV::isOne() const {
397   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
398     return SC->getValue()->isOne();
399   return false;
400 }
401 
402 bool SCEV::isAllOnesValue() const {
403   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
404     return SC->getValue()->isMinusOne();
405   return false;
406 }
407 
408 bool SCEV::isNonConstantNegative() const {
409   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
410   if (!Mul) return false;
411 
412   // If there is a constant factor, it will be first.
413   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
414   if (!SC) return false;
415 
416   // Return true if the value is negative, this matches things like (-42 * V).
417   return SC->getAPInt().isNegative();
418 }
419 
420 SCEVCouldNotCompute::SCEVCouldNotCompute() :
421   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
422 
423 bool SCEVCouldNotCompute::classof(const SCEV *S) {
424   return S->getSCEVType() == scCouldNotCompute;
425 }
426 
427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
428   FoldingSetNodeID ID;
429   ID.AddInteger(scConstant);
430   ID.AddPointer(V);
431   void *IP = nullptr;
432   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
433   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
434   UniqueSCEVs.InsertNode(S, IP);
435   return S;
436 }
437 
438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
439   return getConstant(ConstantInt::get(getContext(), Val));
440 }
441 
442 const SCEV *
443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
444   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
445   return getConstant(ConstantInt::get(ITy, V, isSigned));
446 }
447 
448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
449                            unsigned SCEVTy, const SCEV *op, Type *ty)
450   : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
451 
452 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
453                                    const SCEV *op, Type *ty)
454   : SCEVCastExpr(ID, scTruncate, op, ty) {
455   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
456          "Cannot truncate non-integer value!");
457 }
458 
459 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
460                                        const SCEV *op, Type *ty)
461   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
462   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
463          "Cannot zero extend non-integer value!");
464 }
465 
466 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
467                                        const SCEV *op, Type *ty)
468   : SCEVCastExpr(ID, scSignExtend, op, ty) {
469   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
470          "Cannot sign extend non-integer value!");
471 }
472 
473 void SCEVUnknown::deleted() {
474   // Clear this SCEVUnknown from various maps.
475   SE->forgetMemoizedResults(this);
476 
477   // Remove this SCEVUnknown from the uniquing map.
478   SE->UniqueSCEVs.RemoveNode(this);
479 
480   // Release the value.
481   setValPtr(nullptr);
482 }
483 
484 void SCEVUnknown::allUsesReplacedWith(Value *New) {
485   // Remove this SCEVUnknown from the uniquing map.
486   SE->UniqueSCEVs.RemoveNode(this);
487 
488   // Update this SCEVUnknown to point to the new value. This is needed
489   // because there may still be outstanding SCEVs which still point to
490   // this SCEVUnknown.
491   setValPtr(New);
492 }
493 
494 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
495   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
496     if (VCE->getOpcode() == Instruction::PtrToInt)
497       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
498         if (CE->getOpcode() == Instruction::GetElementPtr &&
499             CE->getOperand(0)->isNullValue() &&
500             CE->getNumOperands() == 2)
501           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
502             if (CI->isOne()) {
503               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
504                                  ->getElementType();
505               return true;
506             }
507 
508   return false;
509 }
510 
511 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
512   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
513     if (VCE->getOpcode() == Instruction::PtrToInt)
514       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
515         if (CE->getOpcode() == Instruction::GetElementPtr &&
516             CE->getOperand(0)->isNullValue()) {
517           Type *Ty =
518             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
519           if (StructType *STy = dyn_cast<StructType>(Ty))
520             if (!STy->isPacked() &&
521                 CE->getNumOperands() == 3 &&
522                 CE->getOperand(1)->isNullValue()) {
523               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
524                 if (CI->isOne() &&
525                     STy->getNumElements() == 2 &&
526                     STy->getElementType(0)->isIntegerTy(1)) {
527                   AllocTy = STy->getElementType(1);
528                   return true;
529                 }
530             }
531         }
532 
533   return false;
534 }
535 
536 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
537   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
538     if (VCE->getOpcode() == Instruction::PtrToInt)
539       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
540         if (CE->getOpcode() == Instruction::GetElementPtr &&
541             CE->getNumOperands() == 3 &&
542             CE->getOperand(0)->isNullValue() &&
543             CE->getOperand(1)->isNullValue()) {
544           Type *Ty =
545             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
546           // Ignore vector types here so that ScalarEvolutionExpander doesn't
547           // emit getelementptrs that index into vectors.
548           if (Ty->isStructTy() || Ty->isArrayTy()) {
549             CTy = Ty;
550             FieldNo = CE->getOperand(2);
551             return true;
552           }
553         }
554 
555   return false;
556 }
557 
558 //===----------------------------------------------------------------------===//
559 //                               SCEV Utilities
560 //===----------------------------------------------------------------------===//
561 
562 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
563 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
564 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
565 /// have been previously deemed to be "equally complex" by this routine.  It is
566 /// intended to avoid exponential time complexity in cases like:
567 ///
568 ///   %a = f(%x, %y)
569 ///   %b = f(%a, %a)
570 ///   %c = f(%b, %b)
571 ///
572 ///   %d = f(%x, %y)
573 ///   %e = f(%d, %d)
574 ///   %f = f(%e, %e)
575 ///
576 ///   CompareValueComplexity(%f, %c)
577 ///
578 /// Since we do not continue running this routine on expression trees once we
579 /// have seen unequal values, there is no need to track them in the cache.
580 static int
581 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
582                        const LoopInfo *const LI, Value *LV, Value *RV,
583                        unsigned Depth) {
584   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
585     return 0;
586 
587   // Order pointer values after integer values. This helps SCEVExpander form
588   // GEPs.
589   bool LIsPointer = LV->getType()->isPointerTy(),
590        RIsPointer = RV->getType()->isPointerTy();
591   if (LIsPointer != RIsPointer)
592     return (int)LIsPointer - (int)RIsPointer;
593 
594   // Compare getValueID values.
595   unsigned LID = LV->getValueID(), RID = RV->getValueID();
596   if (LID != RID)
597     return (int)LID - (int)RID;
598 
599   // Sort arguments by their position.
600   if (const auto *LA = dyn_cast<Argument>(LV)) {
601     const auto *RA = cast<Argument>(RV);
602     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
603     return (int)LArgNo - (int)RArgNo;
604   }
605 
606   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
607     const auto *RGV = cast<GlobalValue>(RV);
608 
609     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
610       auto LT = GV->getLinkage();
611       return !(GlobalValue::isPrivateLinkage(LT) ||
612                GlobalValue::isInternalLinkage(LT));
613     };
614 
615     // Use the names to distinguish the two values, but only if the
616     // names are semantically important.
617     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
618       return LGV->getName().compare(RGV->getName());
619   }
620 
621   // For instructions, compare their loop depth, and their operand count.  This
622   // is pretty loose.
623   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
624     const auto *RInst = cast<Instruction>(RV);
625 
626     // Compare loop depths.
627     const BasicBlock *LParent = LInst->getParent(),
628                      *RParent = RInst->getParent();
629     if (LParent != RParent) {
630       unsigned LDepth = LI->getLoopDepth(LParent),
631                RDepth = LI->getLoopDepth(RParent);
632       if (LDepth != RDepth)
633         return (int)LDepth - (int)RDepth;
634     }
635 
636     // Compare the number of operands.
637     unsigned LNumOps = LInst->getNumOperands(),
638              RNumOps = RInst->getNumOperands();
639     if (LNumOps != RNumOps)
640       return (int)LNumOps - (int)RNumOps;
641 
642     for (unsigned Idx : seq(0u, LNumOps)) {
643       int Result =
644           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
645                                  RInst->getOperand(Idx), Depth + 1);
646       if (Result != 0)
647         return Result;
648     }
649   }
650 
651   EqCacheValue.unionSets(LV, RV);
652   return 0;
653 }
654 
655 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
656 // than RHS, respectively. A three-way result allows recursive comparisons to be
657 // more efficient.
658 static int CompareSCEVComplexity(
659     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
660     EquivalenceClasses<const Value *> &EqCacheValue,
661     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
662     DominatorTree &DT, unsigned Depth = 0) {
663   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
664   if (LHS == RHS)
665     return 0;
666 
667   // Primarily, sort the SCEVs by their getSCEVType().
668   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
669   if (LType != RType)
670     return (int)LType - (int)RType;
671 
672   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
673     return 0;
674   // Aside from the getSCEVType() ordering, the particular ordering
675   // isn't very important except that it's beneficial to be consistent,
676   // so that (a + b) and (b + a) don't end up as different expressions.
677   switch (static_cast<SCEVTypes>(LType)) {
678   case scUnknown: {
679     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
680     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
681 
682     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
683                                    RU->getValue(), Depth + 1);
684     if (X == 0)
685       EqCacheSCEV.unionSets(LHS, RHS);
686     return X;
687   }
688 
689   case scConstant: {
690     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
691     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
692 
693     // Compare constant values.
694     const APInt &LA = LC->getAPInt();
695     const APInt &RA = RC->getAPInt();
696     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
697     if (LBitWidth != RBitWidth)
698       return (int)LBitWidth - (int)RBitWidth;
699     return LA.ult(RA) ? -1 : 1;
700   }
701 
702   case scAddRecExpr: {
703     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
704     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
705 
706     // There is always a dominance between two recs that are used by one SCEV,
707     // so we can safely sort recs by loop header dominance. We require such
708     // order in getAddExpr.
709     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
710     if (LLoop != RLoop) {
711       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
712       assert(LHead != RHead && "Two loops share the same header?");
713       if (DT.dominates(LHead, RHead))
714         return 1;
715       else
716         assert(DT.dominates(RHead, LHead) &&
717                "No dominance between recurrences used by one SCEV?");
718       return -1;
719     }
720 
721     // Addrec complexity grows with operand count.
722     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
723     if (LNumOps != RNumOps)
724       return (int)LNumOps - (int)RNumOps;
725 
726     // Lexicographically compare.
727     for (unsigned i = 0; i != LNumOps; ++i) {
728       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
729                                     LA->getOperand(i), RA->getOperand(i), DT,
730                                     Depth + 1);
731       if (X != 0)
732         return X;
733     }
734     EqCacheSCEV.unionSets(LHS, RHS);
735     return 0;
736   }
737 
738   case scAddExpr:
739   case scMulExpr:
740   case scSMaxExpr:
741   case scUMaxExpr:
742   case scSMinExpr:
743   case scUMinExpr: {
744     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
745     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
746 
747     // Lexicographically compare n-ary expressions.
748     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
749     if (LNumOps != RNumOps)
750       return (int)LNumOps - (int)RNumOps;
751 
752     for (unsigned i = 0; i != LNumOps; ++i) {
753       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
754                                     LC->getOperand(i), RC->getOperand(i), DT,
755                                     Depth + 1);
756       if (X != 0)
757         return X;
758     }
759     EqCacheSCEV.unionSets(LHS, RHS);
760     return 0;
761   }
762 
763   case scUDivExpr: {
764     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
765     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
766 
767     // Lexicographically compare udiv expressions.
768     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
769                                   RC->getLHS(), DT, Depth + 1);
770     if (X != 0)
771       return X;
772     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
773                               RC->getRHS(), DT, Depth + 1);
774     if (X == 0)
775       EqCacheSCEV.unionSets(LHS, RHS);
776     return X;
777   }
778 
779   case scTruncate:
780   case scZeroExtend:
781   case scSignExtend: {
782     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
783     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
784 
785     // Compare cast expressions by operand.
786     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
787                                   LC->getOperand(), RC->getOperand(), DT,
788                                   Depth + 1);
789     if (X == 0)
790       EqCacheSCEV.unionSets(LHS, RHS);
791     return X;
792   }
793 
794   case scCouldNotCompute:
795     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
796   }
797   llvm_unreachable("Unknown SCEV kind!");
798 }
799 
800 /// Given a list of SCEV objects, order them by their complexity, and group
801 /// objects of the same complexity together by value.  When this routine is
802 /// finished, we know that any duplicates in the vector are consecutive and that
803 /// complexity is monotonically increasing.
804 ///
805 /// Note that we go take special precautions to ensure that we get deterministic
806 /// results from this routine.  In other words, we don't want the results of
807 /// this to depend on where the addresses of various SCEV objects happened to
808 /// land in memory.
809 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
810                               LoopInfo *LI, DominatorTree &DT) {
811   if (Ops.size() < 2) return;  // Noop
812 
813   EquivalenceClasses<const SCEV *> EqCacheSCEV;
814   EquivalenceClasses<const Value *> EqCacheValue;
815   if (Ops.size() == 2) {
816     // This is the common case, which also happens to be trivially simple.
817     // Special case it.
818     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
819     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
820       std::swap(LHS, RHS);
821     return;
822   }
823 
824   // Do the rough sort by complexity.
825   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
826     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
827            0;
828   });
829 
830   // Now that we are sorted by complexity, group elements of the same
831   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
832   // be extremely short in practice.  Note that we take this approach because we
833   // do not want to depend on the addresses of the objects we are grouping.
834   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
835     const SCEV *S = Ops[i];
836     unsigned Complexity = S->getSCEVType();
837 
838     // If there are any objects of the same complexity and same value as this
839     // one, group them.
840     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
841       if (Ops[j] == S) { // Found a duplicate.
842         // Move it to immediately after i'th element.
843         std::swap(Ops[i+1], Ops[j]);
844         ++i;   // no need to rescan it.
845         if (i == e-2) return;  // Done!
846       }
847     }
848   }
849 }
850 
851 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
852 /// least HugeExprThreshold nodes).
853 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
854   return any_of(Ops, [](const SCEV *S) {
855     return S->getExpressionSize() >= HugeExprThreshold;
856   });
857 }
858 
859 //===----------------------------------------------------------------------===//
860 //                      Simple SCEV method implementations
861 //===----------------------------------------------------------------------===//
862 
863 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
864 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
865                                        ScalarEvolution &SE,
866                                        Type *ResultTy) {
867   // Handle the simplest case efficiently.
868   if (K == 1)
869     return SE.getTruncateOrZeroExtend(It, ResultTy);
870 
871   // We are using the following formula for BC(It, K):
872   //
873   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
874   //
875   // Suppose, W is the bitwidth of the return value.  We must be prepared for
876   // overflow.  Hence, we must assure that the result of our computation is
877   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
878   // safe in modular arithmetic.
879   //
880   // However, this code doesn't use exactly that formula; the formula it uses
881   // is something like the following, where T is the number of factors of 2 in
882   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
883   // exponentiation:
884   //
885   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
886   //
887   // This formula is trivially equivalent to the previous formula.  However,
888   // this formula can be implemented much more efficiently.  The trick is that
889   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
890   // arithmetic.  To do exact division in modular arithmetic, all we have
891   // to do is multiply by the inverse.  Therefore, this step can be done at
892   // width W.
893   //
894   // The next issue is how to safely do the division by 2^T.  The way this
895   // is done is by doing the multiplication step at a width of at least W + T
896   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
897   // when we perform the division by 2^T (which is equivalent to a right shift
898   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
899   // truncated out after the division by 2^T.
900   //
901   // In comparison to just directly using the first formula, this technique
902   // is much more efficient; using the first formula requires W * K bits,
903   // but this formula less than W + K bits. Also, the first formula requires
904   // a division step, whereas this formula only requires multiplies and shifts.
905   //
906   // It doesn't matter whether the subtraction step is done in the calculation
907   // width or the input iteration count's width; if the subtraction overflows,
908   // the result must be zero anyway.  We prefer here to do it in the width of
909   // the induction variable because it helps a lot for certain cases; CodeGen
910   // isn't smart enough to ignore the overflow, which leads to much less
911   // efficient code if the width of the subtraction is wider than the native
912   // register width.
913   //
914   // (It's possible to not widen at all by pulling out factors of 2 before
915   // the multiplication; for example, K=2 can be calculated as
916   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
917   // extra arithmetic, so it's not an obvious win, and it gets
918   // much more complicated for K > 3.)
919 
920   // Protection from insane SCEVs; this bound is conservative,
921   // but it probably doesn't matter.
922   if (K > 1000)
923     return SE.getCouldNotCompute();
924 
925   unsigned W = SE.getTypeSizeInBits(ResultTy);
926 
927   // Calculate K! / 2^T and T; we divide out the factors of two before
928   // multiplying for calculating K! / 2^T to avoid overflow.
929   // Other overflow doesn't matter because we only care about the bottom
930   // W bits of the result.
931   APInt OddFactorial(W, 1);
932   unsigned T = 1;
933   for (unsigned i = 3; i <= K; ++i) {
934     APInt Mult(W, i);
935     unsigned TwoFactors = Mult.countTrailingZeros();
936     T += TwoFactors;
937     Mult.lshrInPlace(TwoFactors);
938     OddFactorial *= Mult;
939   }
940 
941   // We need at least W + T bits for the multiplication step
942   unsigned CalculationBits = W + T;
943 
944   // Calculate 2^T, at width T+W.
945   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
946 
947   // Calculate the multiplicative inverse of K! / 2^T;
948   // this multiplication factor will perform the exact division by
949   // K! / 2^T.
950   APInt Mod = APInt::getSignedMinValue(W+1);
951   APInt MultiplyFactor = OddFactorial.zext(W+1);
952   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
953   MultiplyFactor = MultiplyFactor.trunc(W);
954 
955   // Calculate the product, at width T+W
956   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
957                                                       CalculationBits);
958   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
959   for (unsigned i = 1; i != K; ++i) {
960     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
961     Dividend = SE.getMulExpr(Dividend,
962                              SE.getTruncateOrZeroExtend(S, CalculationTy));
963   }
964 
965   // Divide by 2^T
966   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
967 
968   // Truncate the result, and divide by K! / 2^T.
969 
970   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
971                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
972 }
973 
974 /// Return the value of this chain of recurrences at the specified iteration
975 /// number.  We can evaluate this recurrence by multiplying each element in the
976 /// chain by the binomial coefficient corresponding to it.  In other words, we
977 /// can evaluate {A,+,B,+,C,+,D} as:
978 ///
979 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
980 ///
981 /// where BC(It, k) stands for binomial coefficient.
982 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
983                                                 ScalarEvolution &SE) const {
984   const SCEV *Result = getStart();
985   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
986     // The computation is correct in the face of overflow provided that the
987     // multiplication is performed _after_ the evaluation of the binomial
988     // coefficient.
989     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
990     if (isa<SCEVCouldNotCompute>(Coeff))
991       return Coeff;
992 
993     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
994   }
995   return Result;
996 }
997 
998 //===----------------------------------------------------------------------===//
999 //                    SCEV Expression folder implementations
1000 //===----------------------------------------------------------------------===//
1001 
1002 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1003                                              unsigned Depth) {
1004   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1005          "This is not a truncating conversion!");
1006   assert(isSCEVable(Ty) &&
1007          "This is not a conversion to a SCEVable type!");
1008   Ty = getEffectiveSCEVType(Ty);
1009 
1010   FoldingSetNodeID ID;
1011   ID.AddInteger(scTruncate);
1012   ID.AddPointer(Op);
1013   ID.AddPointer(Ty);
1014   void *IP = nullptr;
1015   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1016 
1017   // Fold if the operand is constant.
1018   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1019     return getConstant(
1020       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1021 
1022   // trunc(trunc(x)) --> trunc(x)
1023   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1024     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1025 
1026   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1027   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1028     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1029 
1030   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1031   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1032     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1033 
1034   if (Depth > MaxCastDepth) {
1035     SCEV *S =
1036         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1037     UniqueSCEVs.InsertNode(S, IP);
1038     addToLoopUseLists(S);
1039     return S;
1040   }
1041 
1042   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1043   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1044   // if after transforming we have at most one truncate, not counting truncates
1045   // that replace other casts.
1046   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1047     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1048     SmallVector<const SCEV *, 4> Operands;
1049     unsigned numTruncs = 0;
1050     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1051          ++i) {
1052       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1053       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1054         numTruncs++;
1055       Operands.push_back(S);
1056     }
1057     if (numTruncs < 2) {
1058       if (isa<SCEVAddExpr>(Op))
1059         return getAddExpr(Operands);
1060       else if (isa<SCEVMulExpr>(Op))
1061         return getMulExpr(Operands);
1062       else
1063         llvm_unreachable("Unexpected SCEV type for Op.");
1064     }
1065     // Although we checked in the beginning that ID is not in the cache, it is
1066     // possible that during recursion and different modification ID was inserted
1067     // into the cache. So if we find it, just return it.
1068     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1069       return S;
1070   }
1071 
1072   // If the input value is a chrec scev, truncate the chrec's operands.
1073   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1074     SmallVector<const SCEV *, 4> Operands;
1075     for (const SCEV *Op : AddRec->operands())
1076       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1077     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1078   }
1079 
1080   // The cast wasn't folded; create an explicit cast node. We can reuse
1081   // the existing insert position since if we get here, we won't have
1082   // made any changes which would invalidate it.
1083   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1084                                                  Op, Ty);
1085   UniqueSCEVs.InsertNode(S, IP);
1086   addToLoopUseLists(S);
1087   return S;
1088 }
1089 
1090 // Get the limit of a recurrence such that incrementing by Step cannot cause
1091 // signed overflow as long as the value of the recurrence within the
1092 // loop does not exceed this limit before incrementing.
1093 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1094                                                  ICmpInst::Predicate *Pred,
1095                                                  ScalarEvolution *SE) {
1096   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1097   if (SE->isKnownPositive(Step)) {
1098     *Pred = ICmpInst::ICMP_SLT;
1099     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1100                            SE->getSignedRangeMax(Step));
1101   }
1102   if (SE->isKnownNegative(Step)) {
1103     *Pred = ICmpInst::ICMP_SGT;
1104     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1105                            SE->getSignedRangeMin(Step));
1106   }
1107   return nullptr;
1108 }
1109 
1110 // Get the limit of a recurrence such that incrementing by Step cannot cause
1111 // unsigned overflow as long as the value of the recurrence within the loop does
1112 // not exceed this limit before incrementing.
1113 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1114                                                    ICmpInst::Predicate *Pred,
1115                                                    ScalarEvolution *SE) {
1116   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1117   *Pred = ICmpInst::ICMP_ULT;
1118 
1119   return SE->getConstant(APInt::getMinValue(BitWidth) -
1120                          SE->getUnsignedRangeMax(Step));
1121 }
1122 
1123 namespace {
1124 
1125 struct ExtendOpTraitsBase {
1126   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1127                                                           unsigned);
1128 };
1129 
1130 // Used to make code generic over signed and unsigned overflow.
1131 template <typename ExtendOp> struct ExtendOpTraits {
1132   // Members present:
1133   //
1134   // static const SCEV::NoWrapFlags WrapType;
1135   //
1136   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1137   //
1138   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1139   //                                           ICmpInst::Predicate *Pred,
1140   //                                           ScalarEvolution *SE);
1141 };
1142 
1143 template <>
1144 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1145   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1146 
1147   static const GetExtendExprTy GetExtendExpr;
1148 
1149   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1150                                              ICmpInst::Predicate *Pred,
1151                                              ScalarEvolution *SE) {
1152     return getSignedOverflowLimitForStep(Step, Pred, SE);
1153   }
1154 };
1155 
1156 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1157     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1158 
1159 template <>
1160 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1161   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1162 
1163   static const GetExtendExprTy GetExtendExpr;
1164 
1165   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1166                                              ICmpInst::Predicate *Pred,
1167                                              ScalarEvolution *SE) {
1168     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1169   }
1170 };
1171 
1172 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1173     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1174 
1175 } // end anonymous namespace
1176 
1177 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1178 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1179 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1180 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1181 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1182 // expression "Step + sext/zext(PreIncAR)" is congruent with
1183 // "sext/zext(PostIncAR)"
1184 template <typename ExtendOpTy>
1185 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1186                                         ScalarEvolution *SE, unsigned Depth) {
1187   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1188   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1189 
1190   const Loop *L = AR->getLoop();
1191   const SCEV *Start = AR->getStart();
1192   const SCEV *Step = AR->getStepRecurrence(*SE);
1193 
1194   // Check for a simple looking step prior to loop entry.
1195   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1196   if (!SA)
1197     return nullptr;
1198 
1199   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1200   // subtraction is expensive. For this purpose, perform a quick and dirty
1201   // difference, by checking for Step in the operand list.
1202   SmallVector<const SCEV *, 4> DiffOps;
1203   for (const SCEV *Op : SA->operands())
1204     if (Op != Step)
1205       DiffOps.push_back(Op);
1206 
1207   if (DiffOps.size() == SA->getNumOperands())
1208     return nullptr;
1209 
1210   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1211   // `Step`:
1212 
1213   // 1. NSW/NUW flags on the step increment.
1214   auto PreStartFlags =
1215     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1216   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1217   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1218       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1219 
1220   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1221   // "S+X does not sign/unsign-overflow".
1222   //
1223 
1224   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1225   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1226       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1227     return PreStart;
1228 
1229   // 2. Direct overflow check on the step operation's expression.
1230   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1231   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1232   const SCEV *OperandExtendedStart =
1233       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1234                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1235   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1236     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1237       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1238       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1239       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1240       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1241     }
1242     return PreStart;
1243   }
1244 
1245   // 3. Loop precondition.
1246   ICmpInst::Predicate Pred;
1247   const SCEV *OverflowLimit =
1248       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1249 
1250   if (OverflowLimit &&
1251       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1252     return PreStart;
1253 
1254   return nullptr;
1255 }
1256 
1257 // Get the normalized zero or sign extended expression for this AddRec's Start.
1258 template <typename ExtendOpTy>
1259 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1260                                         ScalarEvolution *SE,
1261                                         unsigned Depth) {
1262   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1263 
1264   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1265   if (!PreStart)
1266     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1267 
1268   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1269                                              Depth),
1270                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1271 }
1272 
1273 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1274 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1275 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1276 //
1277 // Formally:
1278 //
1279 //     {S,+,X} == {S-T,+,X} + T
1280 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1281 //
1282 // If ({S-T,+,X} + T) does not overflow  ... (1)
1283 //
1284 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1285 //
1286 // If {S-T,+,X} does not overflow  ... (2)
1287 //
1288 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1289 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1290 //
1291 // If (S-T)+T does not overflow  ... (3)
1292 //
1293 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1294 //      == {Ext(S),+,Ext(X)} == LHS
1295 //
1296 // Thus, if (1), (2) and (3) are true for some T, then
1297 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1298 //
1299 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1300 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1301 // to check for (1) and (2).
1302 //
1303 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1304 // is `Delta` (defined below).
1305 template <typename ExtendOpTy>
1306 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1307                                                 const SCEV *Step,
1308                                                 const Loop *L) {
1309   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1310 
1311   // We restrict `Start` to a constant to prevent SCEV from spending too much
1312   // time here.  It is correct (but more expensive) to continue with a
1313   // non-constant `Start` and do a general SCEV subtraction to compute
1314   // `PreStart` below.
1315   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1316   if (!StartC)
1317     return false;
1318 
1319   APInt StartAI = StartC->getAPInt();
1320 
1321   for (unsigned Delta : {-2, -1, 1, 2}) {
1322     const SCEV *PreStart = getConstant(StartAI - Delta);
1323 
1324     FoldingSetNodeID ID;
1325     ID.AddInteger(scAddRecExpr);
1326     ID.AddPointer(PreStart);
1327     ID.AddPointer(Step);
1328     ID.AddPointer(L);
1329     void *IP = nullptr;
1330     const auto *PreAR =
1331       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1332 
1333     // Give up if we don't already have the add recurrence we need because
1334     // actually constructing an add recurrence is relatively expensive.
1335     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1336       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1337       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1338       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1339           DeltaS, &Pred, this);
1340       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1341         return true;
1342     }
1343   }
1344 
1345   return false;
1346 }
1347 
1348 // Finds an integer D for an expression (C + x + y + ...) such that the top
1349 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1350 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1351 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1352 // the (C + x + y + ...) expression is \p WholeAddExpr.
1353 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1354                                             const SCEVConstant *ConstantTerm,
1355                                             const SCEVAddExpr *WholeAddExpr) {
1356   const APInt &C = ConstantTerm->getAPInt();
1357   const unsigned BitWidth = C.getBitWidth();
1358   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1359   uint32_t TZ = BitWidth;
1360   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1361     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1362   if (TZ) {
1363     // Set D to be as many least significant bits of C as possible while still
1364     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1365     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1366   }
1367   return APInt(BitWidth, 0);
1368 }
1369 
1370 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1371 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1372 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1373 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1374 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1375                                             const APInt &ConstantStart,
1376                                             const SCEV *Step) {
1377   const unsigned BitWidth = ConstantStart.getBitWidth();
1378   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1379   if (TZ)
1380     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1381                          : ConstantStart;
1382   return APInt(BitWidth, 0);
1383 }
1384 
1385 const SCEV *
1386 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1387   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1388          "This is not an extending conversion!");
1389   assert(isSCEVable(Ty) &&
1390          "This is not a conversion to a SCEVable type!");
1391   Ty = getEffectiveSCEVType(Ty);
1392 
1393   // Fold if the operand is constant.
1394   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1395     return getConstant(
1396       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1397 
1398   // zext(zext(x)) --> zext(x)
1399   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1400     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1401 
1402   // Before doing any expensive analysis, check to see if we've already
1403   // computed a SCEV for this Op and Ty.
1404   FoldingSetNodeID ID;
1405   ID.AddInteger(scZeroExtend);
1406   ID.AddPointer(Op);
1407   ID.AddPointer(Ty);
1408   void *IP = nullptr;
1409   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1410   if (Depth > MaxCastDepth) {
1411     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1412                                                      Op, Ty);
1413     UniqueSCEVs.InsertNode(S, IP);
1414     addToLoopUseLists(S);
1415     return S;
1416   }
1417 
1418   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1419   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1420     // It's possible the bits taken off by the truncate were all zero bits. If
1421     // so, we should be able to simplify this further.
1422     const SCEV *X = ST->getOperand();
1423     ConstantRange CR = getUnsignedRange(X);
1424     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1425     unsigned NewBits = getTypeSizeInBits(Ty);
1426     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1427             CR.zextOrTrunc(NewBits)))
1428       return getTruncateOrZeroExtend(X, Ty, Depth);
1429   }
1430 
1431   // If the input value is a chrec scev, and we can prove that the value
1432   // did not overflow the old, smaller, value, we can zero extend all of the
1433   // operands (often constants).  This allows analysis of something like
1434   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1435   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1436     if (AR->isAffine()) {
1437       const SCEV *Start = AR->getStart();
1438       const SCEV *Step = AR->getStepRecurrence(*this);
1439       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1440       const Loop *L = AR->getLoop();
1441 
1442       if (!AR->hasNoUnsignedWrap()) {
1443         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1444         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1445       }
1446 
1447       // If we have special knowledge that this addrec won't overflow,
1448       // we don't need to do any further analysis.
1449       if (AR->hasNoUnsignedWrap())
1450         return getAddRecExpr(
1451             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1452             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1453 
1454       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1455       // Note that this serves two purposes: It filters out loops that are
1456       // simply not analyzable, and it covers the case where this code is
1457       // being called from within backedge-taken count analysis, such that
1458       // attempting to ask for the backedge-taken count would likely result
1459       // in infinite recursion. In the later case, the analysis code will
1460       // cope with a conservative value, and it will take care to purge
1461       // that value once it has finished.
1462       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1463       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1464         // Manually compute the final value for AR, checking for
1465         // overflow.
1466 
1467         // Check whether the backedge-taken count can be losslessly casted to
1468         // the addrec's type. The count is always unsigned.
1469         const SCEV *CastedMaxBECount =
1470             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1471         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1472             CastedMaxBECount, MaxBECount->getType(), Depth);
1473         if (MaxBECount == RecastedMaxBECount) {
1474           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1475           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1476           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1477                                         SCEV::FlagAnyWrap, Depth + 1);
1478           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1479                                                           SCEV::FlagAnyWrap,
1480                                                           Depth + 1),
1481                                                WideTy, Depth + 1);
1482           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1483           const SCEV *WideMaxBECount =
1484             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1485           const SCEV *OperandExtendedAdd =
1486             getAddExpr(WideStart,
1487                        getMulExpr(WideMaxBECount,
1488                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1489                                   SCEV::FlagAnyWrap, Depth + 1),
1490                        SCEV::FlagAnyWrap, Depth + 1);
1491           if (ZAdd == OperandExtendedAdd) {
1492             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1493             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1494             // Return the expression with the addrec on the outside.
1495             return getAddRecExpr(
1496                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1497                                                          Depth + 1),
1498                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1499                 AR->getNoWrapFlags());
1500           }
1501           // Similar to above, only this time treat the step value as signed.
1502           // This covers loops that count down.
1503           OperandExtendedAdd =
1504             getAddExpr(WideStart,
1505                        getMulExpr(WideMaxBECount,
1506                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1507                                   SCEV::FlagAnyWrap, Depth + 1),
1508                        SCEV::FlagAnyWrap, Depth + 1);
1509           if (ZAdd == OperandExtendedAdd) {
1510             // Cache knowledge of AR NW, which is propagated to this AddRec.
1511             // Negative step causes unsigned wrap, but it still can't self-wrap.
1512             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1513             // Return the expression with the addrec on the outside.
1514             return getAddRecExpr(
1515                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1516                                                          Depth + 1),
1517                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1518                 AR->getNoWrapFlags());
1519           }
1520         }
1521       }
1522 
1523       // Normally, in the cases we can prove no-overflow via a
1524       // backedge guarding condition, we can also compute a backedge
1525       // taken count for the loop.  The exceptions are assumptions and
1526       // guards present in the loop -- SCEV is not great at exploiting
1527       // these to compute max backedge taken counts, but can still use
1528       // these to prove lack of overflow.  Use this fact to avoid
1529       // doing extra work that may not pay off.
1530       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1531           !AC.assumptions().empty()) {
1532         // If the backedge is guarded by a comparison with the pre-inc
1533         // value the addrec is safe. Also, if the entry is guarded by
1534         // a comparison with the start value and the backedge is
1535         // guarded by a comparison with the post-inc value, the addrec
1536         // is safe.
1537         if (isKnownPositive(Step)) {
1538           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1539                                       getUnsignedRangeMax(Step));
1540           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1541               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1542             // Cache knowledge of AR NUW, which is propagated to this
1543             // AddRec.
1544             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1545             // Return the expression with the addrec on the outside.
1546             return getAddRecExpr(
1547                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1548                                                          Depth + 1),
1549                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1550                 AR->getNoWrapFlags());
1551           }
1552         } else if (isKnownNegative(Step)) {
1553           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1554                                       getSignedRangeMin(Step));
1555           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1556               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1557             // Cache knowledge of AR NW, which is propagated to this
1558             // AddRec.  Negative step causes unsigned wrap, but it
1559             // still can't self-wrap.
1560             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1561             // Return the expression with the addrec on the outside.
1562             return getAddRecExpr(
1563                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1564                                                          Depth + 1),
1565                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1566                 AR->getNoWrapFlags());
1567           }
1568         }
1569       }
1570 
1571       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1572       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1573       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1574       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1575         const APInt &C = SC->getAPInt();
1576         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1577         if (D != 0) {
1578           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1579           const SCEV *SResidual =
1580               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1581           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1582           return getAddExpr(SZExtD, SZExtR,
1583                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1584                             Depth + 1);
1585         }
1586       }
1587 
1588       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1589         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1590         return getAddRecExpr(
1591             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1592             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1593       }
1594     }
1595 
1596   // zext(A % B) --> zext(A) % zext(B)
1597   {
1598     const SCEV *LHS;
1599     const SCEV *RHS;
1600     if (matchURem(Op, LHS, RHS))
1601       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1602                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1603   }
1604 
1605   // zext(A / B) --> zext(A) / zext(B).
1606   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1607     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1608                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1609 
1610   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1611     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1612     if (SA->hasNoUnsignedWrap()) {
1613       // If the addition does not unsign overflow then we can, by definition,
1614       // commute the zero extension with the addition operation.
1615       SmallVector<const SCEV *, 4> Ops;
1616       for (const auto *Op : SA->operands())
1617         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1618       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1619     }
1620 
1621     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1622     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1623     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1624     //
1625     // Often address arithmetics contain expressions like
1626     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1627     // This transformation is useful while proving that such expressions are
1628     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1629     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1630       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1631       if (D != 0) {
1632         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1633         const SCEV *SResidual =
1634             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1635         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1636         return getAddExpr(SZExtD, SZExtR,
1637                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1638                           Depth + 1);
1639       }
1640     }
1641   }
1642 
1643   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1644     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1645     if (SM->hasNoUnsignedWrap()) {
1646       // If the multiply does not unsign overflow then we can, by definition,
1647       // commute the zero extension with the multiply operation.
1648       SmallVector<const SCEV *, 4> Ops;
1649       for (const auto *Op : SM->operands())
1650         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1651       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1652     }
1653 
1654     // zext(2^K * (trunc X to iN)) to iM ->
1655     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1656     //
1657     // Proof:
1658     //
1659     //     zext(2^K * (trunc X to iN)) to iM
1660     //   = zext((trunc X to iN) << K) to iM
1661     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1662     //     (because shl removes the top K bits)
1663     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1664     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1665     //
1666     if (SM->getNumOperands() == 2)
1667       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1668         if (MulLHS->getAPInt().isPowerOf2())
1669           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1670             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1671                                MulLHS->getAPInt().logBase2();
1672             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1673             return getMulExpr(
1674                 getZeroExtendExpr(MulLHS, Ty),
1675                 getZeroExtendExpr(
1676                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1677                 SCEV::FlagNUW, Depth + 1);
1678           }
1679   }
1680 
1681   // The cast wasn't folded; create an explicit cast node.
1682   // Recompute the insert position, as it may have been invalidated.
1683   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1684   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1685                                                    Op, Ty);
1686   UniqueSCEVs.InsertNode(S, IP);
1687   addToLoopUseLists(S);
1688   return S;
1689 }
1690 
1691 const SCEV *
1692 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1693   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1694          "This is not an extending conversion!");
1695   assert(isSCEVable(Ty) &&
1696          "This is not a conversion to a SCEVable type!");
1697   Ty = getEffectiveSCEVType(Ty);
1698 
1699   // Fold if the operand is constant.
1700   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1701     return getConstant(
1702       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1703 
1704   // sext(sext(x)) --> sext(x)
1705   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1706     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1707 
1708   // sext(zext(x)) --> zext(x)
1709   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1710     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1711 
1712   // Before doing any expensive analysis, check to see if we've already
1713   // computed a SCEV for this Op and Ty.
1714   FoldingSetNodeID ID;
1715   ID.AddInteger(scSignExtend);
1716   ID.AddPointer(Op);
1717   ID.AddPointer(Ty);
1718   void *IP = nullptr;
1719   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1720   // Limit recursion depth.
1721   if (Depth > MaxCastDepth) {
1722     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1723                                                      Op, Ty);
1724     UniqueSCEVs.InsertNode(S, IP);
1725     addToLoopUseLists(S);
1726     return S;
1727   }
1728 
1729   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1730   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1731     // It's possible the bits taken off by the truncate were all sign bits. If
1732     // so, we should be able to simplify this further.
1733     const SCEV *X = ST->getOperand();
1734     ConstantRange CR = getSignedRange(X);
1735     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1736     unsigned NewBits = getTypeSizeInBits(Ty);
1737     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1738             CR.sextOrTrunc(NewBits)))
1739       return getTruncateOrSignExtend(X, Ty, Depth);
1740   }
1741 
1742   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1743     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1744     if (SA->hasNoSignedWrap()) {
1745       // If the addition does not sign overflow then we can, by definition,
1746       // commute the sign extension with the addition operation.
1747       SmallVector<const SCEV *, 4> Ops;
1748       for (const auto *Op : SA->operands())
1749         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1750       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1751     }
1752 
1753     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1754     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1755     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1756     //
1757     // For instance, this will bring two seemingly different expressions:
1758     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1759     //         sext(6 + 20 * %x + 24 * %y)
1760     // to the same form:
1761     //     2 + sext(4 + 20 * %x + 24 * %y)
1762     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1763       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1764       if (D != 0) {
1765         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1766         const SCEV *SResidual =
1767             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1768         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1769         return getAddExpr(SSExtD, SSExtR,
1770                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1771                           Depth + 1);
1772       }
1773     }
1774   }
1775   // If the input value is a chrec scev, and we can prove that the value
1776   // did not overflow the old, smaller, value, we can sign extend all of the
1777   // operands (often constants).  This allows analysis of something like
1778   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1779   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1780     if (AR->isAffine()) {
1781       const SCEV *Start = AR->getStart();
1782       const SCEV *Step = AR->getStepRecurrence(*this);
1783       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1784       const Loop *L = AR->getLoop();
1785 
1786       if (!AR->hasNoSignedWrap()) {
1787         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1788         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1789       }
1790 
1791       // If we have special knowledge that this addrec won't overflow,
1792       // we don't need to do any further analysis.
1793       if (AR->hasNoSignedWrap())
1794         return getAddRecExpr(
1795             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1796             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1797 
1798       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1799       // Note that this serves two purposes: It filters out loops that are
1800       // simply not analyzable, and it covers the case where this code is
1801       // being called from within backedge-taken count analysis, such that
1802       // attempting to ask for the backedge-taken count would likely result
1803       // in infinite recursion. In the later case, the analysis code will
1804       // cope with a conservative value, and it will take care to purge
1805       // that value once it has finished.
1806       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1807       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1808         // Manually compute the final value for AR, checking for
1809         // overflow.
1810 
1811         // Check whether the backedge-taken count can be losslessly casted to
1812         // the addrec's type. The count is always unsigned.
1813         const SCEV *CastedMaxBECount =
1814             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1815         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1816             CastedMaxBECount, MaxBECount->getType(), Depth);
1817         if (MaxBECount == RecastedMaxBECount) {
1818           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1819           // Check whether Start+Step*MaxBECount has no signed overflow.
1820           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1821                                         SCEV::FlagAnyWrap, Depth + 1);
1822           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1823                                                           SCEV::FlagAnyWrap,
1824                                                           Depth + 1),
1825                                                WideTy, Depth + 1);
1826           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1827           const SCEV *WideMaxBECount =
1828             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1829           const SCEV *OperandExtendedAdd =
1830             getAddExpr(WideStart,
1831                        getMulExpr(WideMaxBECount,
1832                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1833                                   SCEV::FlagAnyWrap, Depth + 1),
1834                        SCEV::FlagAnyWrap, Depth + 1);
1835           if (SAdd == OperandExtendedAdd) {
1836             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1837             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1838             // Return the expression with the addrec on the outside.
1839             return getAddRecExpr(
1840                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1841                                                          Depth + 1),
1842                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1843                 AR->getNoWrapFlags());
1844           }
1845           // Similar to above, only this time treat the step value as unsigned.
1846           // This covers loops that count up with an unsigned step.
1847           OperandExtendedAdd =
1848             getAddExpr(WideStart,
1849                        getMulExpr(WideMaxBECount,
1850                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1851                                   SCEV::FlagAnyWrap, Depth + 1),
1852                        SCEV::FlagAnyWrap, Depth + 1);
1853           if (SAdd == OperandExtendedAdd) {
1854             // If AR wraps around then
1855             //
1856             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1857             // => SAdd != OperandExtendedAdd
1858             //
1859             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1860             // (SAdd == OperandExtendedAdd => AR is NW)
1861 
1862             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1863 
1864             // Return the expression with the addrec on the outside.
1865             return getAddRecExpr(
1866                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1867                                                          Depth + 1),
1868                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1869                 AR->getNoWrapFlags());
1870           }
1871         }
1872       }
1873 
1874       // Normally, in the cases we can prove no-overflow via a
1875       // backedge guarding condition, we can also compute a backedge
1876       // taken count for the loop.  The exceptions are assumptions and
1877       // guards present in the loop -- SCEV is not great at exploiting
1878       // these to compute max backedge taken counts, but can still use
1879       // these to prove lack of overflow.  Use this fact to avoid
1880       // doing extra work that may not pay off.
1881 
1882       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1883           !AC.assumptions().empty()) {
1884         // If the backedge is guarded by a comparison with the pre-inc
1885         // value the addrec is safe. Also, if the entry is guarded by
1886         // a comparison with the start value and the backedge is
1887         // guarded by a comparison with the post-inc value, the addrec
1888         // is safe.
1889         ICmpInst::Predicate Pred;
1890         const SCEV *OverflowLimit =
1891             getSignedOverflowLimitForStep(Step, &Pred, this);
1892         if (OverflowLimit &&
1893             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1894              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
1895           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1896           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1897           return getAddRecExpr(
1898               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1899               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1900         }
1901       }
1902 
1903       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
1904       // if D + (C - D + Step * n) could be proven to not signed wrap
1905       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1906       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1907         const APInt &C = SC->getAPInt();
1908         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1909         if (D != 0) {
1910           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1911           const SCEV *SResidual =
1912               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1913           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1914           return getAddExpr(SSExtD, SSExtR,
1915                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1916                             Depth + 1);
1917         }
1918       }
1919 
1920       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1921         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1922         return getAddRecExpr(
1923             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1924             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1925       }
1926     }
1927 
1928   // If the input value is provably positive and we could not simplify
1929   // away the sext build a zext instead.
1930   if (isKnownNonNegative(Op))
1931     return getZeroExtendExpr(Op, Ty, Depth + 1);
1932 
1933   // The cast wasn't folded; create an explicit cast node.
1934   // Recompute the insert position, as it may have been invalidated.
1935   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1936   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1937                                                    Op, Ty);
1938   UniqueSCEVs.InsertNode(S, IP);
1939   addToLoopUseLists(S);
1940   return S;
1941 }
1942 
1943 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1944 /// unspecified bits out to the given type.
1945 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1946                                               Type *Ty) {
1947   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1948          "This is not an extending conversion!");
1949   assert(isSCEVable(Ty) &&
1950          "This is not a conversion to a SCEVable type!");
1951   Ty = getEffectiveSCEVType(Ty);
1952 
1953   // Sign-extend negative constants.
1954   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1955     if (SC->getAPInt().isNegative())
1956       return getSignExtendExpr(Op, Ty);
1957 
1958   // Peel off a truncate cast.
1959   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1960     const SCEV *NewOp = T->getOperand();
1961     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1962       return getAnyExtendExpr(NewOp, Ty);
1963     return getTruncateOrNoop(NewOp, Ty);
1964   }
1965 
1966   // Next try a zext cast. If the cast is folded, use it.
1967   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1968   if (!isa<SCEVZeroExtendExpr>(ZExt))
1969     return ZExt;
1970 
1971   // Next try a sext cast. If the cast is folded, use it.
1972   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1973   if (!isa<SCEVSignExtendExpr>(SExt))
1974     return SExt;
1975 
1976   // Force the cast to be folded into the operands of an addrec.
1977   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1978     SmallVector<const SCEV *, 4> Ops;
1979     for (const SCEV *Op : AR->operands())
1980       Ops.push_back(getAnyExtendExpr(Op, Ty));
1981     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1982   }
1983 
1984   // If the expression is obviously signed, use the sext cast value.
1985   if (isa<SCEVSMaxExpr>(Op))
1986     return SExt;
1987 
1988   // Absent any other information, use the zext cast value.
1989   return ZExt;
1990 }
1991 
1992 /// Process the given Ops list, which is a list of operands to be added under
1993 /// the given scale, update the given map. This is a helper function for
1994 /// getAddRecExpr. As an example of what it does, given a sequence of operands
1995 /// that would form an add expression like this:
1996 ///
1997 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1998 ///
1999 /// where A and B are constants, update the map with these values:
2000 ///
2001 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2002 ///
2003 /// and add 13 + A*B*29 to AccumulatedConstant.
2004 /// This will allow getAddRecExpr to produce this:
2005 ///
2006 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2007 ///
2008 /// This form often exposes folding opportunities that are hidden in
2009 /// the original operand list.
2010 ///
2011 /// Return true iff it appears that any interesting folding opportunities
2012 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2013 /// the common case where no interesting opportunities are present, and
2014 /// is also used as a check to avoid infinite recursion.
2015 static bool
2016 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2017                              SmallVectorImpl<const SCEV *> &NewOps,
2018                              APInt &AccumulatedConstant,
2019                              const SCEV *const *Ops, size_t NumOperands,
2020                              const APInt &Scale,
2021                              ScalarEvolution &SE) {
2022   bool Interesting = false;
2023 
2024   // Iterate over the add operands. They are sorted, with constants first.
2025   unsigned i = 0;
2026   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2027     ++i;
2028     // Pull a buried constant out to the outside.
2029     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2030       Interesting = true;
2031     AccumulatedConstant += Scale * C->getAPInt();
2032   }
2033 
2034   // Next comes everything else. We're especially interested in multiplies
2035   // here, but they're in the middle, so just visit the rest with one loop.
2036   for (; i != NumOperands; ++i) {
2037     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2038     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2039       APInt NewScale =
2040           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2041       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2042         // A multiplication of a constant with another add; recurse.
2043         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2044         Interesting |=
2045           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2046                                        Add->op_begin(), Add->getNumOperands(),
2047                                        NewScale, SE);
2048       } else {
2049         // A multiplication of a constant with some other value. Update
2050         // the map.
2051         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2052         const SCEV *Key = SE.getMulExpr(MulOps);
2053         auto Pair = M.insert({Key, NewScale});
2054         if (Pair.second) {
2055           NewOps.push_back(Pair.first->first);
2056         } else {
2057           Pair.first->second += NewScale;
2058           // The map already had an entry for this value, which may indicate
2059           // a folding opportunity.
2060           Interesting = true;
2061         }
2062       }
2063     } else {
2064       // An ordinary operand. Update the map.
2065       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2066           M.insert({Ops[i], Scale});
2067       if (Pair.second) {
2068         NewOps.push_back(Pair.first->first);
2069       } else {
2070         Pair.first->second += Scale;
2071         // The map already had an entry for this value, which may indicate
2072         // a folding opportunity.
2073         Interesting = true;
2074       }
2075     }
2076   }
2077 
2078   return Interesting;
2079 }
2080 
2081 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2082 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2083 // can't-overflow flags for the operation if possible.
2084 static SCEV::NoWrapFlags
2085 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2086                       const ArrayRef<const SCEV *> Ops,
2087                       SCEV::NoWrapFlags Flags) {
2088   using namespace std::placeholders;
2089 
2090   using OBO = OverflowingBinaryOperator;
2091 
2092   bool CanAnalyze =
2093       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2094   (void)CanAnalyze;
2095   assert(CanAnalyze && "don't call from other places!");
2096 
2097   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2098   SCEV::NoWrapFlags SignOrUnsignWrap =
2099       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2100 
2101   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2102   auto IsKnownNonNegative = [&](const SCEV *S) {
2103     return SE->isKnownNonNegative(S);
2104   };
2105 
2106   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2107     Flags =
2108         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2109 
2110   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2111 
2112   if (SignOrUnsignWrap != SignOrUnsignMask &&
2113       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2114       isa<SCEVConstant>(Ops[0])) {
2115 
2116     auto Opcode = [&] {
2117       switch (Type) {
2118       case scAddExpr:
2119         return Instruction::Add;
2120       case scMulExpr:
2121         return Instruction::Mul;
2122       default:
2123         llvm_unreachable("Unexpected SCEV op.");
2124       }
2125     }();
2126 
2127     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2128 
2129     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2130     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2131       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2132           Opcode, C, OBO::NoSignedWrap);
2133       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2134         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2135     }
2136 
2137     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2138     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2139       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2140           Opcode, C, OBO::NoUnsignedWrap);
2141       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2142         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2143     }
2144   }
2145 
2146   return Flags;
2147 }
2148 
2149 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2150   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2151 }
2152 
2153 /// Get a canonical add expression, or something simpler if possible.
2154 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2155                                         SCEV::NoWrapFlags Flags,
2156                                         unsigned Depth) {
2157   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2158          "only nuw or nsw allowed");
2159   assert(!Ops.empty() && "Cannot get empty add!");
2160   if (Ops.size() == 1) return Ops[0];
2161 #ifndef NDEBUG
2162   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2163   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2164     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2165            "SCEVAddExpr operand types don't match!");
2166 #endif
2167 
2168   // Sort by complexity, this groups all similar expression types together.
2169   GroupByComplexity(Ops, &LI, DT);
2170 
2171   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2172 
2173   // If there are any constants, fold them together.
2174   unsigned Idx = 0;
2175   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2176     ++Idx;
2177     assert(Idx < Ops.size());
2178     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2179       // We found two constants, fold them together!
2180       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2181       if (Ops.size() == 2) return Ops[0];
2182       Ops.erase(Ops.begin()+1);  // Erase the folded element
2183       LHSC = cast<SCEVConstant>(Ops[0]);
2184     }
2185 
2186     // If we are left with a constant zero being added, strip it off.
2187     if (LHSC->getValue()->isZero()) {
2188       Ops.erase(Ops.begin());
2189       --Idx;
2190     }
2191 
2192     if (Ops.size() == 1) return Ops[0];
2193   }
2194 
2195   // Limit recursion calls depth.
2196   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2197     return getOrCreateAddExpr(Ops, Flags);
2198 
2199   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2200     static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags);
2201     return S;
2202   }
2203 
2204   // Okay, check to see if the same value occurs in the operand list more than
2205   // once.  If so, merge them together into an multiply expression.  Since we
2206   // sorted the list, these values are required to be adjacent.
2207   Type *Ty = Ops[0]->getType();
2208   bool FoundMatch = false;
2209   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2210     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2211       // Scan ahead to count how many equal operands there are.
2212       unsigned Count = 2;
2213       while (i+Count != e && Ops[i+Count] == Ops[i])
2214         ++Count;
2215       // Merge the values into a multiply.
2216       const SCEV *Scale = getConstant(Ty, Count);
2217       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2218       if (Ops.size() == Count)
2219         return Mul;
2220       Ops[i] = Mul;
2221       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2222       --i; e -= Count - 1;
2223       FoundMatch = true;
2224     }
2225   if (FoundMatch)
2226     return getAddExpr(Ops, Flags, Depth + 1);
2227 
2228   // Check for truncates. If all the operands are truncated from the same
2229   // type, see if factoring out the truncate would permit the result to be
2230   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2231   // if the contents of the resulting outer trunc fold to something simple.
2232   auto FindTruncSrcType = [&]() -> Type * {
2233     // We're ultimately looking to fold an addrec of truncs and muls of only
2234     // constants and truncs, so if we find any other types of SCEV
2235     // as operands of the addrec then we bail and return nullptr here.
2236     // Otherwise, we return the type of the operand of a trunc that we find.
2237     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2238       return T->getOperand()->getType();
2239     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2240       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2241       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2242         return T->getOperand()->getType();
2243     }
2244     return nullptr;
2245   };
2246   if (auto *SrcType = FindTruncSrcType()) {
2247     SmallVector<const SCEV *, 8> LargeOps;
2248     bool Ok = true;
2249     // Check all the operands to see if they can be represented in the
2250     // source type of the truncate.
2251     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2252       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2253         if (T->getOperand()->getType() != SrcType) {
2254           Ok = false;
2255           break;
2256         }
2257         LargeOps.push_back(T->getOperand());
2258       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2259         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2260       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2261         SmallVector<const SCEV *, 8> LargeMulOps;
2262         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2263           if (const SCEVTruncateExpr *T =
2264                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2265             if (T->getOperand()->getType() != SrcType) {
2266               Ok = false;
2267               break;
2268             }
2269             LargeMulOps.push_back(T->getOperand());
2270           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2271             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2272           } else {
2273             Ok = false;
2274             break;
2275           }
2276         }
2277         if (Ok)
2278           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2279       } else {
2280         Ok = false;
2281         break;
2282       }
2283     }
2284     if (Ok) {
2285       // Evaluate the expression in the larger type.
2286       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2287       // If it folds to something simple, use it. Otherwise, don't.
2288       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2289         return getTruncateExpr(Fold, Ty);
2290     }
2291   }
2292 
2293   // Skip past any other cast SCEVs.
2294   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2295     ++Idx;
2296 
2297   // If there are add operands they would be next.
2298   if (Idx < Ops.size()) {
2299     bool DeletedAdd = false;
2300     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2301       if (Ops.size() > AddOpsInlineThreshold ||
2302           Add->getNumOperands() > AddOpsInlineThreshold)
2303         break;
2304       // If we have an add, expand the add operands onto the end of the operands
2305       // list.
2306       Ops.erase(Ops.begin()+Idx);
2307       Ops.append(Add->op_begin(), Add->op_end());
2308       DeletedAdd = true;
2309     }
2310 
2311     // If we deleted at least one add, we added operands to the end of the list,
2312     // and they are not necessarily sorted.  Recurse to resort and resimplify
2313     // any operands we just acquired.
2314     if (DeletedAdd)
2315       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2316   }
2317 
2318   // Skip over the add expression until we get to a multiply.
2319   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2320     ++Idx;
2321 
2322   // Check to see if there are any folding opportunities present with
2323   // operands multiplied by constant values.
2324   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2325     uint64_t BitWidth = getTypeSizeInBits(Ty);
2326     DenseMap<const SCEV *, APInt> M;
2327     SmallVector<const SCEV *, 8> NewOps;
2328     APInt AccumulatedConstant(BitWidth, 0);
2329     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2330                                      Ops.data(), Ops.size(),
2331                                      APInt(BitWidth, 1), *this)) {
2332       struct APIntCompare {
2333         bool operator()(const APInt &LHS, const APInt &RHS) const {
2334           return LHS.ult(RHS);
2335         }
2336       };
2337 
2338       // Some interesting folding opportunity is present, so its worthwhile to
2339       // re-generate the operands list. Group the operands by constant scale,
2340       // to avoid multiplying by the same constant scale multiple times.
2341       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2342       for (const SCEV *NewOp : NewOps)
2343         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2344       // Re-generate the operands list.
2345       Ops.clear();
2346       if (AccumulatedConstant != 0)
2347         Ops.push_back(getConstant(AccumulatedConstant));
2348       for (auto &MulOp : MulOpLists)
2349         if (MulOp.first != 0)
2350           Ops.push_back(getMulExpr(
2351               getConstant(MulOp.first),
2352               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2353               SCEV::FlagAnyWrap, Depth + 1));
2354       if (Ops.empty())
2355         return getZero(Ty);
2356       if (Ops.size() == 1)
2357         return Ops[0];
2358       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2359     }
2360   }
2361 
2362   // If we are adding something to a multiply expression, make sure the
2363   // something is not already an operand of the multiply.  If so, merge it into
2364   // the multiply.
2365   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2366     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2367     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2368       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2369       if (isa<SCEVConstant>(MulOpSCEV))
2370         continue;
2371       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2372         if (MulOpSCEV == Ops[AddOp]) {
2373           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2374           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2375           if (Mul->getNumOperands() != 2) {
2376             // If the multiply has more than two operands, we must get the
2377             // Y*Z term.
2378             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2379                                                 Mul->op_begin()+MulOp);
2380             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2381             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2382           }
2383           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2384           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2385           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2386                                             SCEV::FlagAnyWrap, Depth + 1);
2387           if (Ops.size() == 2) return OuterMul;
2388           if (AddOp < Idx) {
2389             Ops.erase(Ops.begin()+AddOp);
2390             Ops.erase(Ops.begin()+Idx-1);
2391           } else {
2392             Ops.erase(Ops.begin()+Idx);
2393             Ops.erase(Ops.begin()+AddOp-1);
2394           }
2395           Ops.push_back(OuterMul);
2396           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2397         }
2398 
2399       // Check this multiply against other multiplies being added together.
2400       for (unsigned OtherMulIdx = Idx+1;
2401            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2402            ++OtherMulIdx) {
2403         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2404         // If MulOp occurs in OtherMul, we can fold the two multiplies
2405         // together.
2406         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2407              OMulOp != e; ++OMulOp)
2408           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2409             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2410             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2411             if (Mul->getNumOperands() != 2) {
2412               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2413                                                   Mul->op_begin()+MulOp);
2414               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2415               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2416             }
2417             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2418             if (OtherMul->getNumOperands() != 2) {
2419               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2420                                                   OtherMul->op_begin()+OMulOp);
2421               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2422               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2423             }
2424             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2425             const SCEV *InnerMulSum =
2426                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2427             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2428                                               SCEV::FlagAnyWrap, Depth + 1);
2429             if (Ops.size() == 2) return OuterMul;
2430             Ops.erase(Ops.begin()+Idx);
2431             Ops.erase(Ops.begin()+OtherMulIdx-1);
2432             Ops.push_back(OuterMul);
2433             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2434           }
2435       }
2436     }
2437   }
2438 
2439   // If there are any add recurrences in the operands list, see if any other
2440   // added values are loop invariant.  If so, we can fold them into the
2441   // recurrence.
2442   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2443     ++Idx;
2444 
2445   // Scan over all recurrences, trying to fold loop invariants into them.
2446   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2447     // Scan all of the other operands to this add and add them to the vector if
2448     // they are loop invariant w.r.t. the recurrence.
2449     SmallVector<const SCEV *, 8> LIOps;
2450     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2451     const Loop *AddRecLoop = AddRec->getLoop();
2452     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2453       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2454         LIOps.push_back(Ops[i]);
2455         Ops.erase(Ops.begin()+i);
2456         --i; --e;
2457       }
2458 
2459     // If we found some loop invariants, fold them into the recurrence.
2460     if (!LIOps.empty()) {
2461       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2462       LIOps.push_back(AddRec->getStart());
2463 
2464       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2465                                              AddRec->op_end());
2466       // This follows from the fact that the no-wrap flags on the outer add
2467       // expression are applicable on the 0th iteration, when the add recurrence
2468       // will be equal to its start value.
2469       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2470 
2471       // Build the new addrec. Propagate the NUW and NSW flags if both the
2472       // outer add and the inner addrec are guaranteed to have no overflow.
2473       // Always propagate NW.
2474       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2475       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2476 
2477       // If all of the other operands were loop invariant, we are done.
2478       if (Ops.size() == 1) return NewRec;
2479 
2480       // Otherwise, add the folded AddRec by the non-invariant parts.
2481       for (unsigned i = 0;; ++i)
2482         if (Ops[i] == AddRec) {
2483           Ops[i] = NewRec;
2484           break;
2485         }
2486       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2487     }
2488 
2489     // Okay, if there weren't any loop invariants to be folded, check to see if
2490     // there are multiple AddRec's with the same loop induction variable being
2491     // added together.  If so, we can fold them.
2492     for (unsigned OtherIdx = Idx+1;
2493          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2494          ++OtherIdx) {
2495       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2496       // so that the 1st found AddRecExpr is dominated by all others.
2497       assert(DT.dominates(
2498            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2499            AddRec->getLoop()->getHeader()) &&
2500         "AddRecExprs are not sorted in reverse dominance order?");
2501       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2502         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2503         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2504                                                AddRec->op_end());
2505         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2506              ++OtherIdx) {
2507           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2508           if (OtherAddRec->getLoop() == AddRecLoop) {
2509             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2510                  i != e; ++i) {
2511               if (i >= AddRecOps.size()) {
2512                 AddRecOps.append(OtherAddRec->op_begin()+i,
2513                                  OtherAddRec->op_end());
2514                 break;
2515               }
2516               SmallVector<const SCEV *, 2> TwoOps = {
2517                   AddRecOps[i], OtherAddRec->getOperand(i)};
2518               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2519             }
2520             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2521           }
2522         }
2523         // Step size has changed, so we cannot guarantee no self-wraparound.
2524         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2525         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2526       }
2527     }
2528 
2529     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2530     // next one.
2531   }
2532 
2533   // Okay, it looks like we really DO need an add expr.  Check to see if we
2534   // already have one, otherwise create a new one.
2535   return getOrCreateAddExpr(Ops, Flags);
2536 }
2537 
2538 const SCEV *
2539 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2540                                     SCEV::NoWrapFlags Flags) {
2541   FoldingSetNodeID ID;
2542   ID.AddInteger(scAddExpr);
2543   for (const SCEV *Op : Ops)
2544     ID.AddPointer(Op);
2545   void *IP = nullptr;
2546   SCEVAddExpr *S =
2547       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2548   if (!S) {
2549     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2550     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2551     S = new (SCEVAllocator)
2552         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2553     UniqueSCEVs.InsertNode(S, IP);
2554     addToLoopUseLists(S);
2555   }
2556   S->setNoWrapFlags(Flags);
2557   return S;
2558 }
2559 
2560 const SCEV *
2561 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2562                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2563   FoldingSetNodeID ID;
2564   ID.AddInteger(scAddRecExpr);
2565   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2566     ID.AddPointer(Ops[i]);
2567   ID.AddPointer(L);
2568   void *IP = nullptr;
2569   SCEVAddRecExpr *S =
2570       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2571   if (!S) {
2572     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2573     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2574     S = new (SCEVAllocator)
2575         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2576     UniqueSCEVs.InsertNode(S, IP);
2577     addToLoopUseLists(S);
2578   }
2579   S->setNoWrapFlags(Flags);
2580   return S;
2581 }
2582 
2583 const SCEV *
2584 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2585                                     SCEV::NoWrapFlags Flags) {
2586   FoldingSetNodeID ID;
2587   ID.AddInteger(scMulExpr);
2588   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2589     ID.AddPointer(Ops[i]);
2590   void *IP = nullptr;
2591   SCEVMulExpr *S =
2592     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2593   if (!S) {
2594     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2595     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2596     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2597                                         O, Ops.size());
2598     UniqueSCEVs.InsertNode(S, IP);
2599     addToLoopUseLists(S);
2600   }
2601   S->setNoWrapFlags(Flags);
2602   return S;
2603 }
2604 
2605 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2606   uint64_t k = i*j;
2607   if (j > 1 && k / j != i) Overflow = true;
2608   return k;
2609 }
2610 
2611 /// Compute the result of "n choose k", the binomial coefficient.  If an
2612 /// intermediate computation overflows, Overflow will be set and the return will
2613 /// be garbage. Overflow is not cleared on absence of overflow.
2614 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2615   // We use the multiplicative formula:
2616   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2617   // At each iteration, we take the n-th term of the numeral and divide by the
2618   // (k-n)th term of the denominator.  This division will always produce an
2619   // integral result, and helps reduce the chance of overflow in the
2620   // intermediate computations. However, we can still overflow even when the
2621   // final result would fit.
2622 
2623   if (n == 0 || n == k) return 1;
2624   if (k > n) return 0;
2625 
2626   if (k > n/2)
2627     k = n-k;
2628 
2629   uint64_t r = 1;
2630   for (uint64_t i = 1; i <= k; ++i) {
2631     r = umul_ov(r, n-(i-1), Overflow);
2632     r /= i;
2633   }
2634   return r;
2635 }
2636 
2637 /// Determine if any of the operands in this SCEV are a constant or if
2638 /// any of the add or multiply expressions in this SCEV contain a constant.
2639 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2640   struct FindConstantInAddMulChain {
2641     bool FoundConstant = false;
2642 
2643     bool follow(const SCEV *S) {
2644       FoundConstant |= isa<SCEVConstant>(S);
2645       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2646     }
2647 
2648     bool isDone() const {
2649       return FoundConstant;
2650     }
2651   };
2652 
2653   FindConstantInAddMulChain F;
2654   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2655   ST.visitAll(StartExpr);
2656   return F.FoundConstant;
2657 }
2658 
2659 /// Get a canonical multiply expression, or something simpler if possible.
2660 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2661                                         SCEV::NoWrapFlags Flags,
2662                                         unsigned Depth) {
2663   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2664          "only nuw or nsw allowed");
2665   assert(!Ops.empty() && "Cannot get empty mul!");
2666   if (Ops.size() == 1) return Ops[0];
2667 #ifndef NDEBUG
2668   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2669   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2670     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2671            "SCEVMulExpr operand types don't match!");
2672 #endif
2673 
2674   // Sort by complexity, this groups all similar expression types together.
2675   GroupByComplexity(Ops, &LI, DT);
2676 
2677   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2678 
2679   // Limit recursion calls depth, but fold all-constant expressions.
2680   // `Ops` is sorted, so it's enough to check just last one.
2681   if ((Depth > MaxArithDepth || hasHugeExpression(Ops)) &&
2682       !isa<SCEVConstant>(Ops.back()))
2683     return getOrCreateMulExpr(Ops, Flags);
2684 
2685   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2686     static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags);
2687     return S;
2688   }
2689 
2690   // If there are any constants, fold them together.
2691   unsigned Idx = 0;
2692   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2693 
2694     if (Ops.size() == 2)
2695       // C1*(C2+V) -> C1*C2 + C1*V
2696       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2697         // If any of Add's ops are Adds or Muls with a constant, apply this
2698         // transformation as well.
2699         //
2700         // TODO: There are some cases where this transformation is not
2701         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2702         // this transformation should be narrowed down.
2703         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2704           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2705                                        SCEV::FlagAnyWrap, Depth + 1),
2706                             getMulExpr(LHSC, Add->getOperand(1),
2707                                        SCEV::FlagAnyWrap, Depth + 1),
2708                             SCEV::FlagAnyWrap, Depth + 1);
2709 
2710     ++Idx;
2711     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2712       // We found two constants, fold them together!
2713       ConstantInt *Fold =
2714           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2715       Ops[0] = getConstant(Fold);
2716       Ops.erase(Ops.begin()+1);  // Erase the folded element
2717       if (Ops.size() == 1) return Ops[0];
2718       LHSC = cast<SCEVConstant>(Ops[0]);
2719     }
2720 
2721     // If we are left with a constant one being multiplied, strip it off.
2722     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2723       Ops.erase(Ops.begin());
2724       --Idx;
2725     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2726       // If we have a multiply of zero, it will always be zero.
2727       return Ops[0];
2728     } else if (Ops[0]->isAllOnesValue()) {
2729       // If we have a mul by -1 of an add, try distributing the -1 among the
2730       // add operands.
2731       if (Ops.size() == 2) {
2732         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2733           SmallVector<const SCEV *, 4> NewOps;
2734           bool AnyFolded = false;
2735           for (const SCEV *AddOp : Add->operands()) {
2736             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2737                                          Depth + 1);
2738             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2739             NewOps.push_back(Mul);
2740           }
2741           if (AnyFolded)
2742             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2743         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2744           // Negation preserves a recurrence's no self-wrap property.
2745           SmallVector<const SCEV *, 4> Operands;
2746           for (const SCEV *AddRecOp : AddRec->operands())
2747             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2748                                           Depth + 1));
2749 
2750           return getAddRecExpr(Operands, AddRec->getLoop(),
2751                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2752         }
2753       }
2754     }
2755 
2756     if (Ops.size() == 1)
2757       return Ops[0];
2758   }
2759 
2760   // Skip over the add expression until we get to a multiply.
2761   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2762     ++Idx;
2763 
2764   // If there are mul operands inline them all into this expression.
2765   if (Idx < Ops.size()) {
2766     bool DeletedMul = false;
2767     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2768       if (Ops.size() > MulOpsInlineThreshold)
2769         break;
2770       // If we have an mul, expand the mul operands onto the end of the
2771       // operands list.
2772       Ops.erase(Ops.begin()+Idx);
2773       Ops.append(Mul->op_begin(), Mul->op_end());
2774       DeletedMul = true;
2775     }
2776 
2777     // If we deleted at least one mul, we added operands to the end of the
2778     // list, and they are not necessarily sorted.  Recurse to resort and
2779     // resimplify any operands we just acquired.
2780     if (DeletedMul)
2781       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2782   }
2783 
2784   // If there are any add recurrences in the operands list, see if any other
2785   // added values are loop invariant.  If so, we can fold them into the
2786   // recurrence.
2787   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2788     ++Idx;
2789 
2790   // Scan over all recurrences, trying to fold loop invariants into them.
2791   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2792     // Scan all of the other operands to this mul and add them to the vector
2793     // if they are loop invariant w.r.t. the recurrence.
2794     SmallVector<const SCEV *, 8> LIOps;
2795     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2796     const Loop *AddRecLoop = AddRec->getLoop();
2797     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2798       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2799         LIOps.push_back(Ops[i]);
2800         Ops.erase(Ops.begin()+i);
2801         --i; --e;
2802       }
2803 
2804     // If we found some loop invariants, fold them into the recurrence.
2805     if (!LIOps.empty()) {
2806       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2807       SmallVector<const SCEV *, 4> NewOps;
2808       NewOps.reserve(AddRec->getNumOperands());
2809       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2810       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2811         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2812                                     SCEV::FlagAnyWrap, Depth + 1));
2813 
2814       // Build the new addrec. Propagate the NUW and NSW flags if both the
2815       // outer mul and the inner addrec are guaranteed to have no overflow.
2816       //
2817       // No self-wrap cannot be guaranteed after changing the step size, but
2818       // will be inferred if either NUW or NSW is true.
2819       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2820       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2821 
2822       // If all of the other operands were loop invariant, we are done.
2823       if (Ops.size() == 1) return NewRec;
2824 
2825       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2826       for (unsigned i = 0;; ++i)
2827         if (Ops[i] == AddRec) {
2828           Ops[i] = NewRec;
2829           break;
2830         }
2831       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2832     }
2833 
2834     // Okay, if there weren't any loop invariants to be folded, check to see
2835     // if there are multiple AddRec's with the same loop induction variable
2836     // being multiplied together.  If so, we can fold them.
2837 
2838     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2839     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2840     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2841     //   ]]],+,...up to x=2n}.
2842     // Note that the arguments to choose() are always integers with values
2843     // known at compile time, never SCEV objects.
2844     //
2845     // The implementation avoids pointless extra computations when the two
2846     // addrec's are of different length (mathematically, it's equivalent to
2847     // an infinite stream of zeros on the right).
2848     bool OpsModified = false;
2849     for (unsigned OtherIdx = Idx+1;
2850          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2851          ++OtherIdx) {
2852       const SCEVAddRecExpr *OtherAddRec =
2853         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2854       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2855         continue;
2856 
2857       // Limit max number of arguments to avoid creation of unreasonably big
2858       // SCEVAddRecs with very complex operands.
2859       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
2860           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
2861         continue;
2862 
2863       bool Overflow = false;
2864       Type *Ty = AddRec->getType();
2865       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2866       SmallVector<const SCEV*, 7> AddRecOps;
2867       for (int x = 0, xe = AddRec->getNumOperands() +
2868              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2869         SmallVector <const SCEV *, 7> SumOps;
2870         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2871           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2872           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2873                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2874                z < ze && !Overflow; ++z) {
2875             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2876             uint64_t Coeff;
2877             if (LargerThan64Bits)
2878               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2879             else
2880               Coeff = Coeff1*Coeff2;
2881             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2882             const SCEV *Term1 = AddRec->getOperand(y-z);
2883             const SCEV *Term2 = OtherAddRec->getOperand(z);
2884             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
2885                                         SCEV::FlagAnyWrap, Depth + 1));
2886           }
2887         }
2888         if (SumOps.empty())
2889           SumOps.push_back(getZero(Ty));
2890         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
2891       }
2892       if (!Overflow) {
2893         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
2894                                               SCEV::FlagAnyWrap);
2895         if (Ops.size() == 2) return NewAddRec;
2896         Ops[Idx] = NewAddRec;
2897         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2898         OpsModified = true;
2899         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2900         if (!AddRec)
2901           break;
2902       }
2903     }
2904     if (OpsModified)
2905       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2906 
2907     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2908     // next one.
2909   }
2910 
2911   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2912   // already have one, otherwise create a new one.
2913   return getOrCreateMulExpr(Ops, Flags);
2914 }
2915 
2916 /// Represents an unsigned remainder expression based on unsigned division.
2917 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
2918                                          const SCEV *RHS) {
2919   assert(getEffectiveSCEVType(LHS->getType()) ==
2920          getEffectiveSCEVType(RHS->getType()) &&
2921          "SCEVURemExpr operand types don't match!");
2922 
2923   // Short-circuit easy cases
2924   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2925     // If constant is one, the result is trivial
2926     if (RHSC->getValue()->isOne())
2927       return getZero(LHS->getType()); // X urem 1 --> 0
2928 
2929     // If constant is a power of two, fold into a zext(trunc(LHS)).
2930     if (RHSC->getAPInt().isPowerOf2()) {
2931       Type *FullTy = LHS->getType();
2932       Type *TruncTy =
2933           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
2934       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
2935     }
2936   }
2937 
2938   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
2939   const SCEV *UDiv = getUDivExpr(LHS, RHS);
2940   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
2941   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
2942 }
2943 
2944 /// Get a canonical unsigned division expression, or something simpler if
2945 /// possible.
2946 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2947                                          const SCEV *RHS) {
2948   assert(getEffectiveSCEVType(LHS->getType()) ==
2949          getEffectiveSCEVType(RHS->getType()) &&
2950          "SCEVUDivExpr operand types don't match!");
2951 
2952   FoldingSetNodeID ID;
2953   ID.AddInteger(scUDivExpr);
2954   ID.AddPointer(LHS);
2955   ID.AddPointer(RHS);
2956   void *IP = nullptr;
2957   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
2958     return S;
2959 
2960   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2961     if (RHSC->getValue()->isOne())
2962       return LHS;                               // X udiv 1 --> x
2963     // If the denominator is zero, the result of the udiv is undefined. Don't
2964     // try to analyze it, because the resolution chosen here may differ from
2965     // the resolution chosen in other parts of the compiler.
2966     if (!RHSC->getValue()->isZero()) {
2967       // Determine if the division can be folded into the operands of
2968       // its operands.
2969       // TODO: Generalize this to non-constants by using known-bits information.
2970       Type *Ty = LHS->getType();
2971       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2972       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2973       // For non-power-of-two values, effectively round the value up to the
2974       // nearest power of two.
2975       if (!RHSC->getAPInt().isPowerOf2())
2976         ++MaxShiftAmt;
2977       IntegerType *ExtTy =
2978         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2979       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2980         if (const SCEVConstant *Step =
2981             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2982           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2983           const APInt &StepInt = Step->getAPInt();
2984           const APInt &DivInt = RHSC->getAPInt();
2985           if (!StepInt.urem(DivInt) &&
2986               getZeroExtendExpr(AR, ExtTy) ==
2987               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2988                             getZeroExtendExpr(Step, ExtTy),
2989                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2990             SmallVector<const SCEV *, 4> Operands;
2991             for (const SCEV *Op : AR->operands())
2992               Operands.push_back(getUDivExpr(Op, RHS));
2993             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2994           }
2995           /// Get a canonical UDivExpr for a recurrence.
2996           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2997           // We can currently only fold X%N if X is constant.
2998           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2999           if (StartC && !DivInt.urem(StepInt) &&
3000               getZeroExtendExpr(AR, ExtTy) ==
3001               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3002                             getZeroExtendExpr(Step, ExtTy),
3003                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3004             const APInt &StartInt = StartC->getAPInt();
3005             const APInt &StartRem = StartInt.urem(StepInt);
3006             if (StartRem != 0) {
3007               const SCEV *NewLHS =
3008                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3009                                 AR->getLoop(), SCEV::FlagNW);
3010               if (LHS != NewLHS) {
3011                 LHS = NewLHS;
3012 
3013                 // Reset the ID to include the new LHS, and check if it is
3014                 // already cached.
3015                 ID.clear();
3016                 ID.AddInteger(scUDivExpr);
3017                 ID.AddPointer(LHS);
3018                 ID.AddPointer(RHS);
3019                 IP = nullptr;
3020                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3021                   return S;
3022               }
3023             }
3024           }
3025         }
3026       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3027       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3028         SmallVector<const SCEV *, 4> Operands;
3029         for (const SCEV *Op : M->operands())
3030           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3031         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3032           // Find an operand that's safely divisible.
3033           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3034             const SCEV *Op = M->getOperand(i);
3035             const SCEV *Div = getUDivExpr(Op, RHSC);
3036             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3037               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3038                                                       M->op_end());
3039               Operands[i] = Div;
3040               return getMulExpr(Operands);
3041             }
3042           }
3043       }
3044 
3045       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3046       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3047         if (auto *DivisorConstant =
3048                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3049           bool Overflow = false;
3050           APInt NewRHS =
3051               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3052           if (Overflow) {
3053             return getConstant(RHSC->getType(), 0, false);
3054           }
3055           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3056         }
3057       }
3058 
3059       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3060       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3061         SmallVector<const SCEV *, 4> Operands;
3062         for (const SCEV *Op : A->operands())
3063           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3064         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3065           Operands.clear();
3066           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3067             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3068             if (isa<SCEVUDivExpr>(Op) ||
3069                 getMulExpr(Op, RHS) != A->getOperand(i))
3070               break;
3071             Operands.push_back(Op);
3072           }
3073           if (Operands.size() == A->getNumOperands())
3074             return getAddExpr(Operands);
3075         }
3076       }
3077 
3078       // Fold if both operands are constant.
3079       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3080         Constant *LHSCV = LHSC->getValue();
3081         Constant *RHSCV = RHSC->getValue();
3082         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3083                                                                    RHSCV)));
3084       }
3085     }
3086   }
3087 
3088   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3089   // changes). Make sure we get a new one.
3090   IP = nullptr;
3091   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3092   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3093                                              LHS, RHS);
3094   UniqueSCEVs.InsertNode(S, IP);
3095   addToLoopUseLists(S);
3096   return S;
3097 }
3098 
3099 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3100   APInt A = C1->getAPInt().abs();
3101   APInt B = C2->getAPInt().abs();
3102   uint32_t ABW = A.getBitWidth();
3103   uint32_t BBW = B.getBitWidth();
3104 
3105   if (ABW > BBW)
3106     B = B.zext(ABW);
3107   else if (ABW < BBW)
3108     A = A.zext(BBW);
3109 
3110   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3111 }
3112 
3113 /// Get a canonical unsigned division expression, or something simpler if
3114 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3115 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3116 /// it's not exact because the udiv may be clearing bits.
3117 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3118                                               const SCEV *RHS) {
3119   // TODO: we could try to find factors in all sorts of things, but for now we
3120   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3121   // end of this file for inspiration.
3122 
3123   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3124   if (!Mul || !Mul->hasNoUnsignedWrap())
3125     return getUDivExpr(LHS, RHS);
3126 
3127   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3128     // If the mulexpr multiplies by a constant, then that constant must be the
3129     // first element of the mulexpr.
3130     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3131       if (LHSCst == RHSCst) {
3132         SmallVector<const SCEV *, 2> Operands;
3133         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3134         return getMulExpr(Operands);
3135       }
3136 
3137       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3138       // that there's a factor provided by one of the other terms. We need to
3139       // check.
3140       APInt Factor = gcd(LHSCst, RHSCst);
3141       if (!Factor.isIntN(1)) {
3142         LHSCst =
3143             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3144         RHSCst =
3145             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3146         SmallVector<const SCEV *, 2> Operands;
3147         Operands.push_back(LHSCst);
3148         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3149         LHS = getMulExpr(Operands);
3150         RHS = RHSCst;
3151         Mul = dyn_cast<SCEVMulExpr>(LHS);
3152         if (!Mul)
3153           return getUDivExactExpr(LHS, RHS);
3154       }
3155     }
3156   }
3157 
3158   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3159     if (Mul->getOperand(i) == RHS) {
3160       SmallVector<const SCEV *, 2> Operands;
3161       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3162       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3163       return getMulExpr(Operands);
3164     }
3165   }
3166 
3167   return getUDivExpr(LHS, RHS);
3168 }
3169 
3170 /// Get an add recurrence expression for the specified loop.  Simplify the
3171 /// expression as much as possible.
3172 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3173                                            const Loop *L,
3174                                            SCEV::NoWrapFlags Flags) {
3175   SmallVector<const SCEV *, 4> Operands;
3176   Operands.push_back(Start);
3177   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3178     if (StepChrec->getLoop() == L) {
3179       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3180       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3181     }
3182 
3183   Operands.push_back(Step);
3184   return getAddRecExpr(Operands, L, Flags);
3185 }
3186 
3187 /// Get an add recurrence expression for the specified loop.  Simplify the
3188 /// expression as much as possible.
3189 const SCEV *
3190 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3191                                const Loop *L, SCEV::NoWrapFlags Flags) {
3192   if (Operands.size() == 1) return Operands[0];
3193 #ifndef NDEBUG
3194   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3195   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3196     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3197            "SCEVAddRecExpr operand types don't match!");
3198   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3199     assert(isLoopInvariant(Operands[i], L) &&
3200            "SCEVAddRecExpr operand is not loop-invariant!");
3201 #endif
3202 
3203   if (Operands.back()->isZero()) {
3204     Operands.pop_back();
3205     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3206   }
3207 
3208   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3209   // use that information to infer NUW and NSW flags. However, computing a
3210   // BE count requires calling getAddRecExpr, so we may not yet have a
3211   // meaningful BE count at this point (and if we don't, we'd be stuck
3212   // with a SCEVCouldNotCompute as the cached BE count).
3213 
3214   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3215 
3216   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3217   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3218     const Loop *NestedLoop = NestedAR->getLoop();
3219     if (L->contains(NestedLoop)
3220             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3221             : (!NestedLoop->contains(L) &&
3222                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3223       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3224                                                   NestedAR->op_end());
3225       Operands[0] = NestedAR->getStart();
3226       // AddRecs require their operands be loop-invariant with respect to their
3227       // loops. Don't perform this transformation if it would break this
3228       // requirement.
3229       bool AllInvariant = all_of(
3230           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3231 
3232       if (AllInvariant) {
3233         // Create a recurrence for the outer loop with the same step size.
3234         //
3235         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3236         // inner recurrence has the same property.
3237         SCEV::NoWrapFlags OuterFlags =
3238           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3239 
3240         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3241         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3242           return isLoopInvariant(Op, NestedLoop);
3243         });
3244 
3245         if (AllInvariant) {
3246           // Ok, both add recurrences are valid after the transformation.
3247           //
3248           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3249           // the outer recurrence has the same property.
3250           SCEV::NoWrapFlags InnerFlags =
3251             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3252           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3253         }
3254       }
3255       // Reset Operands to its original state.
3256       Operands[0] = NestedAR;
3257     }
3258   }
3259 
3260   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3261   // already have one, otherwise create a new one.
3262   return getOrCreateAddRecExpr(Operands, L, Flags);
3263 }
3264 
3265 const SCEV *
3266 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3267                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3268   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3269   // getSCEV(Base)->getType() has the same address space as Base->getType()
3270   // because SCEV::getType() preserves the address space.
3271   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3272   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3273   // instruction to its SCEV, because the Instruction may be guarded by control
3274   // flow and the no-overflow bits may not be valid for the expression in any
3275   // context. This can be fixed similarly to how these flags are handled for
3276   // adds.
3277   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3278                                              : SCEV::FlagAnyWrap;
3279 
3280   const SCEV *TotalOffset = getZero(IntIdxTy);
3281   Type *CurTy = GEP->getType();
3282   bool FirstIter = true;
3283   for (const SCEV *IndexExpr : IndexExprs) {
3284     // Compute the (potentially symbolic) offset in bytes for this index.
3285     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3286       // For a struct, add the member offset.
3287       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3288       unsigned FieldNo = Index->getZExtValue();
3289       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3290 
3291       // Add the field offset to the running total offset.
3292       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3293 
3294       // Update CurTy to the type of the field at Index.
3295       CurTy = STy->getTypeAtIndex(Index);
3296     } else {
3297       // Update CurTy to its element type.
3298       if (FirstIter) {
3299         assert(isa<PointerType>(CurTy) &&
3300                "The first index of a GEP indexes a pointer");
3301         CurTy = GEP->getSourceElementType();
3302         FirstIter = false;
3303       } else {
3304         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3305       }
3306       // For an array, add the element offset, explicitly scaled.
3307       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3308       // Getelementptr indices are signed.
3309       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3310 
3311       // Multiply the index by the element size to compute the element offset.
3312       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3313 
3314       // Add the element offset to the running total offset.
3315       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3316     }
3317   }
3318 
3319   // Add the total offset from all the GEP indices to the base.
3320   auto *GEPExpr = getAddExpr(BaseExpr, TotalOffset, Wrap);
3321   assert(BaseExpr->getType() == GEPExpr->getType() &&
3322          "GEP should not change type mid-flight.");
3323   return GEPExpr;
3324 }
3325 
3326 std::tuple<SCEV *, FoldingSetNodeID, void *>
3327 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3328                                          ArrayRef<const SCEV *> Ops) {
3329   FoldingSetNodeID ID;
3330   void *IP = nullptr;
3331   ID.AddInteger(SCEVType);
3332   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3333     ID.AddPointer(Ops[i]);
3334   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3335       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3336 }
3337 
3338 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
3339                                            SmallVectorImpl<const SCEV *> &Ops) {
3340   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3341   if (Ops.size() == 1) return Ops[0];
3342 #ifndef NDEBUG
3343   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3344   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3345     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3346            "Operand types don't match!");
3347 #endif
3348 
3349   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3350   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3351 
3352   // Sort by complexity, this groups all similar expression types together.
3353   GroupByComplexity(Ops, &LI, DT);
3354 
3355   // Check if we have created the same expression before.
3356   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3357     return S;
3358   }
3359 
3360   // If there are any constants, fold them together.
3361   unsigned Idx = 0;
3362   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3363     ++Idx;
3364     assert(Idx < Ops.size());
3365     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3366       if (Kind == scSMaxExpr)
3367         return APIntOps::smax(LHS, RHS);
3368       else if (Kind == scSMinExpr)
3369         return APIntOps::smin(LHS, RHS);
3370       else if (Kind == scUMaxExpr)
3371         return APIntOps::umax(LHS, RHS);
3372       else if (Kind == scUMinExpr)
3373         return APIntOps::umin(LHS, RHS);
3374       llvm_unreachable("Unknown SCEV min/max opcode");
3375     };
3376 
3377     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3378       // We found two constants, fold them together!
3379       ConstantInt *Fold = ConstantInt::get(
3380           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3381       Ops[0] = getConstant(Fold);
3382       Ops.erase(Ops.begin()+1);  // Erase the folded element
3383       if (Ops.size() == 1) return Ops[0];
3384       LHSC = cast<SCEVConstant>(Ops[0]);
3385     }
3386 
3387     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3388     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3389 
3390     if (IsMax ? IsMinV : IsMaxV) {
3391       // If we are left with a constant minimum(/maximum)-int, strip it off.
3392       Ops.erase(Ops.begin());
3393       --Idx;
3394     } else if (IsMax ? IsMaxV : IsMinV) {
3395       // If we have a max(/min) with a constant maximum(/minimum)-int,
3396       // it will always be the extremum.
3397       return LHSC;
3398     }
3399 
3400     if (Ops.size() == 1) return Ops[0];
3401   }
3402 
3403   // Find the first operation of the same kind
3404   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3405     ++Idx;
3406 
3407   // Check to see if one of the operands is of the same kind. If so, expand its
3408   // operands onto our operand list, and recurse to simplify.
3409   if (Idx < Ops.size()) {
3410     bool DeletedAny = false;
3411     while (Ops[Idx]->getSCEVType() == Kind) {
3412       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3413       Ops.erase(Ops.begin()+Idx);
3414       Ops.append(SMME->op_begin(), SMME->op_end());
3415       DeletedAny = true;
3416     }
3417 
3418     if (DeletedAny)
3419       return getMinMaxExpr(Kind, Ops);
3420   }
3421 
3422   // Okay, check to see if the same value occurs in the operand list twice.  If
3423   // so, delete one.  Since we sorted the list, these values are required to
3424   // be adjacent.
3425   llvm::CmpInst::Predicate GEPred =
3426       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3427   llvm::CmpInst::Predicate LEPred =
3428       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3429   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3430   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3431   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3432     if (Ops[i] == Ops[i + 1] ||
3433         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3434       //  X op Y op Y  -->  X op Y
3435       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3436       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3437       --i;
3438       --e;
3439     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3440                                                Ops[i + 1])) {
3441       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3442       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3443       --i;
3444       --e;
3445     }
3446   }
3447 
3448   if (Ops.size() == 1) return Ops[0];
3449 
3450   assert(!Ops.empty() && "Reduced smax down to nothing!");
3451 
3452   // Okay, it looks like we really DO need an expr.  Check to see if we
3453   // already have one, otherwise create a new one.
3454   const SCEV *ExistingSCEV;
3455   FoldingSetNodeID ID;
3456   void *IP;
3457   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3458   if (ExistingSCEV)
3459     return ExistingSCEV;
3460   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3461   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3462   SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
3463       ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
3464 
3465   UniqueSCEVs.InsertNode(S, IP);
3466   addToLoopUseLists(S);
3467   return S;
3468 }
3469 
3470 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3471   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3472   return getSMaxExpr(Ops);
3473 }
3474 
3475 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3476   return getMinMaxExpr(scSMaxExpr, Ops);
3477 }
3478 
3479 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3480   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3481   return getUMaxExpr(Ops);
3482 }
3483 
3484 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3485   return getMinMaxExpr(scUMaxExpr, Ops);
3486 }
3487 
3488 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3489                                          const SCEV *RHS) {
3490   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3491   return getSMinExpr(Ops);
3492 }
3493 
3494 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3495   return getMinMaxExpr(scSMinExpr, Ops);
3496 }
3497 
3498 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3499                                          const SCEV *RHS) {
3500   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3501   return getUMinExpr(Ops);
3502 }
3503 
3504 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3505   return getMinMaxExpr(scUMinExpr, Ops);
3506 }
3507 
3508 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3509   // We can bypass creating a target-independent
3510   // constant expression and then folding it back into a ConstantInt.
3511   // This is just a compile-time optimization.
3512   if (isa<ScalableVectorType>(AllocTy)) {
3513     Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo());
3514     Constant *One = ConstantInt::get(IntTy, 1);
3515     Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One);
3516     return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy));
3517   }
3518   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3519 }
3520 
3521 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3522                                              StructType *STy,
3523                                              unsigned FieldNo) {
3524   // We can bypass creating a target-independent
3525   // constant expression and then folding it back into a ConstantInt.
3526   // This is just a compile-time optimization.
3527   return getConstant(
3528       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3529 }
3530 
3531 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3532   // Don't attempt to do anything other than create a SCEVUnknown object
3533   // here.  createSCEV only calls getUnknown after checking for all other
3534   // interesting possibilities, and any other code that calls getUnknown
3535   // is doing so in order to hide a value from SCEV canonicalization.
3536 
3537   FoldingSetNodeID ID;
3538   ID.AddInteger(scUnknown);
3539   ID.AddPointer(V);
3540   void *IP = nullptr;
3541   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3542     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3543            "Stale SCEVUnknown in uniquing map!");
3544     return S;
3545   }
3546   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3547                                             FirstUnknown);
3548   FirstUnknown = cast<SCEVUnknown>(S);
3549   UniqueSCEVs.InsertNode(S, IP);
3550   return S;
3551 }
3552 
3553 //===----------------------------------------------------------------------===//
3554 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3555 //
3556 
3557 /// Test if values of the given type are analyzable within the SCEV
3558 /// framework. This primarily includes integer types, and it can optionally
3559 /// include pointer types if the ScalarEvolution class has access to
3560 /// target-specific information.
3561 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3562   // Integers and pointers are always SCEVable.
3563   return Ty->isIntOrPtrTy();
3564 }
3565 
3566 /// Return the size in bits of the specified type, for which isSCEVable must
3567 /// return true.
3568 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3569   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3570   if (Ty->isPointerTy())
3571     return getDataLayout().getIndexTypeSizeInBits(Ty);
3572   return getDataLayout().getTypeSizeInBits(Ty);
3573 }
3574 
3575 /// Return a type with the same bitwidth as the given type and which represents
3576 /// how SCEV will treat the given type, for which isSCEVable must return
3577 /// true. For pointer types, this is the pointer index sized integer type.
3578 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3579   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3580 
3581   if (Ty->isIntegerTy())
3582     return Ty;
3583 
3584   // The only other support type is pointer.
3585   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3586   return getDataLayout().getIndexType(Ty);
3587 }
3588 
3589 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3590   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3591 }
3592 
3593 const SCEV *ScalarEvolution::getCouldNotCompute() {
3594   return CouldNotCompute.get();
3595 }
3596 
3597 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3598   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3599     auto *SU = dyn_cast<SCEVUnknown>(S);
3600     return SU && SU->getValue() == nullptr;
3601   });
3602 
3603   return !ContainsNulls;
3604 }
3605 
3606 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3607   HasRecMapType::iterator I = HasRecMap.find(S);
3608   if (I != HasRecMap.end())
3609     return I->second;
3610 
3611   bool FoundAddRec =
3612       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3613   HasRecMap.insert({S, FoundAddRec});
3614   return FoundAddRec;
3615 }
3616 
3617 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3618 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3619 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3620 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3621   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3622   if (!Add)
3623     return {S, nullptr};
3624 
3625   if (Add->getNumOperands() != 2)
3626     return {S, nullptr};
3627 
3628   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3629   if (!ConstOp)
3630     return {S, nullptr};
3631 
3632   return {Add->getOperand(1), ConstOp->getValue()};
3633 }
3634 
3635 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3636 /// by the value and offset from any ValueOffsetPair in the set.
3637 SetVector<ScalarEvolution::ValueOffsetPair> *
3638 ScalarEvolution::getSCEVValues(const SCEV *S) {
3639   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3640   if (SI == ExprValueMap.end())
3641     return nullptr;
3642 #ifndef NDEBUG
3643   if (VerifySCEVMap) {
3644     // Check there is no dangling Value in the set returned.
3645     for (const auto &VE : SI->second)
3646       assert(ValueExprMap.count(VE.first));
3647   }
3648 #endif
3649   return &SI->second;
3650 }
3651 
3652 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3653 /// cannot be used separately. eraseValueFromMap should be used to remove
3654 /// V from ValueExprMap and ExprValueMap at the same time.
3655 void ScalarEvolution::eraseValueFromMap(Value *V) {
3656   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3657   if (I != ValueExprMap.end()) {
3658     const SCEV *S = I->second;
3659     // Remove {V, 0} from the set of ExprValueMap[S]
3660     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3661       SV->remove({V, nullptr});
3662 
3663     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3664     const SCEV *Stripped;
3665     ConstantInt *Offset;
3666     std::tie(Stripped, Offset) = splitAddExpr(S);
3667     if (Offset != nullptr) {
3668       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3669         SV->remove({V, Offset});
3670     }
3671     ValueExprMap.erase(V);
3672   }
3673 }
3674 
3675 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3676 /// TODO: In reality it is better to check the poison recursively
3677 /// but this is better than nothing.
3678 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3679   if (auto *I = dyn_cast<Instruction>(V)) {
3680     if (isa<OverflowingBinaryOperator>(I)) {
3681       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3682         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3683           return true;
3684         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3685           return true;
3686       }
3687     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3688       return true;
3689   }
3690   return false;
3691 }
3692 
3693 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3694 /// create a new one.
3695 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3696   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3697 
3698   const SCEV *S = getExistingSCEV(V);
3699   if (S == nullptr) {
3700     S = createSCEV(V);
3701     // During PHI resolution, it is possible to create two SCEVs for the same
3702     // V, so it is needed to double check whether V->S is inserted into
3703     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3704     std::pair<ValueExprMapType::iterator, bool> Pair =
3705         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3706     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3707       ExprValueMap[S].insert({V, nullptr});
3708 
3709       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3710       // ExprValueMap.
3711       const SCEV *Stripped = S;
3712       ConstantInt *Offset = nullptr;
3713       std::tie(Stripped, Offset) = splitAddExpr(S);
3714       // If stripped is SCEVUnknown, don't bother to save
3715       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3716       // increase the complexity of the expansion code.
3717       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3718       // because it may generate add/sub instead of GEP in SCEV expansion.
3719       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3720           !isa<GetElementPtrInst>(V))
3721         ExprValueMap[Stripped].insert({V, Offset});
3722     }
3723   }
3724   return S;
3725 }
3726 
3727 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3728   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3729 
3730   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3731   if (I != ValueExprMap.end()) {
3732     const SCEV *S = I->second;
3733     if (checkValidity(S))
3734       return S;
3735     eraseValueFromMap(V);
3736     forgetMemoizedResults(S);
3737   }
3738   return nullptr;
3739 }
3740 
3741 /// Return a SCEV corresponding to -V = -1*V
3742 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3743                                              SCEV::NoWrapFlags Flags) {
3744   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3745     return getConstant(
3746                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3747 
3748   Type *Ty = V->getType();
3749   Ty = getEffectiveSCEVType(Ty);
3750   return getMulExpr(
3751       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3752 }
3753 
3754 /// If Expr computes ~A, return A else return nullptr
3755 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3756   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3757   if (!Add || Add->getNumOperands() != 2 ||
3758       !Add->getOperand(0)->isAllOnesValue())
3759     return nullptr;
3760 
3761   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3762   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3763       !AddRHS->getOperand(0)->isAllOnesValue())
3764     return nullptr;
3765 
3766   return AddRHS->getOperand(1);
3767 }
3768 
3769 /// Return a SCEV corresponding to ~V = -1-V
3770 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3771   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3772     return getConstant(
3773                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3774 
3775   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3776   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3777     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3778       SmallVector<const SCEV *, 2> MatchedOperands;
3779       for (const SCEV *Operand : MME->operands()) {
3780         const SCEV *Matched = MatchNotExpr(Operand);
3781         if (!Matched)
3782           return (const SCEV *)nullptr;
3783         MatchedOperands.push_back(Matched);
3784       }
3785       return getMinMaxExpr(
3786           SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
3787           MatchedOperands);
3788     };
3789     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3790       return Replaced;
3791   }
3792 
3793   Type *Ty = V->getType();
3794   Ty = getEffectiveSCEVType(Ty);
3795   const SCEV *AllOnes =
3796                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3797   return getMinusSCEV(AllOnes, V);
3798 }
3799 
3800 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3801                                           SCEV::NoWrapFlags Flags,
3802                                           unsigned Depth) {
3803   // Fast path: X - X --> 0.
3804   if (LHS == RHS)
3805     return getZero(LHS->getType());
3806 
3807   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3808   // makes it so that we cannot make much use of NUW.
3809   auto AddFlags = SCEV::FlagAnyWrap;
3810   const bool RHSIsNotMinSigned =
3811       !getSignedRangeMin(RHS).isMinSignedValue();
3812   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3813     // Let M be the minimum representable signed value. Then (-1)*RHS
3814     // signed-wraps if and only if RHS is M. That can happen even for
3815     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3816     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3817     // (-1)*RHS, we need to prove that RHS != M.
3818     //
3819     // If LHS is non-negative and we know that LHS - RHS does not
3820     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3821     // either by proving that RHS > M or that LHS >= 0.
3822     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3823       AddFlags = SCEV::FlagNSW;
3824     }
3825   }
3826 
3827   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3828   // RHS is NSW and LHS >= 0.
3829   //
3830   // The difficulty here is that the NSW flag may have been proven
3831   // relative to a loop that is to be found in a recurrence in LHS and
3832   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3833   // larger scope than intended.
3834   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3835 
3836   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
3837 }
3838 
3839 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
3840                                                      unsigned Depth) {
3841   Type *SrcTy = V->getType();
3842   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3843          "Cannot truncate or zero extend with non-integer arguments!");
3844   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3845     return V;  // No conversion
3846   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3847     return getTruncateExpr(V, Ty, Depth);
3848   return getZeroExtendExpr(V, Ty, Depth);
3849 }
3850 
3851 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
3852                                                      unsigned Depth) {
3853   Type *SrcTy = V->getType();
3854   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3855          "Cannot truncate or zero extend with non-integer arguments!");
3856   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3857     return V;  // No conversion
3858   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3859     return getTruncateExpr(V, Ty, Depth);
3860   return getSignExtendExpr(V, Ty, Depth);
3861 }
3862 
3863 const SCEV *
3864 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3865   Type *SrcTy = V->getType();
3866   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3867          "Cannot noop or zero extend with non-integer arguments!");
3868   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3869          "getNoopOrZeroExtend cannot truncate!");
3870   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3871     return V;  // No conversion
3872   return getZeroExtendExpr(V, Ty);
3873 }
3874 
3875 const SCEV *
3876 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3877   Type *SrcTy = V->getType();
3878   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3879          "Cannot noop or sign extend with non-integer arguments!");
3880   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3881          "getNoopOrSignExtend cannot truncate!");
3882   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3883     return V;  // No conversion
3884   return getSignExtendExpr(V, Ty);
3885 }
3886 
3887 const SCEV *
3888 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3889   Type *SrcTy = V->getType();
3890   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3891          "Cannot noop or any extend with non-integer arguments!");
3892   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3893          "getNoopOrAnyExtend cannot truncate!");
3894   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3895     return V;  // No conversion
3896   return getAnyExtendExpr(V, Ty);
3897 }
3898 
3899 const SCEV *
3900 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3901   Type *SrcTy = V->getType();
3902   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3903          "Cannot truncate or noop with non-integer arguments!");
3904   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3905          "getTruncateOrNoop cannot extend!");
3906   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3907     return V;  // No conversion
3908   return getTruncateExpr(V, Ty);
3909 }
3910 
3911 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3912                                                         const SCEV *RHS) {
3913   const SCEV *PromotedLHS = LHS;
3914   const SCEV *PromotedRHS = RHS;
3915 
3916   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3917     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3918   else
3919     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3920 
3921   return getUMaxExpr(PromotedLHS, PromotedRHS);
3922 }
3923 
3924 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3925                                                         const SCEV *RHS) {
3926   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3927   return getUMinFromMismatchedTypes(Ops);
3928 }
3929 
3930 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
3931     SmallVectorImpl<const SCEV *> &Ops) {
3932   assert(!Ops.empty() && "At least one operand must be!");
3933   // Trivial case.
3934   if (Ops.size() == 1)
3935     return Ops[0];
3936 
3937   // Find the max type first.
3938   Type *MaxType = nullptr;
3939   for (auto *S : Ops)
3940     if (MaxType)
3941       MaxType = getWiderType(MaxType, S->getType());
3942     else
3943       MaxType = S->getType();
3944 
3945   // Extend all ops to max type.
3946   SmallVector<const SCEV *, 2> PromotedOps;
3947   for (auto *S : Ops)
3948     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
3949 
3950   // Generate umin.
3951   return getUMinExpr(PromotedOps);
3952 }
3953 
3954 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3955   // A pointer operand may evaluate to a nonpointer expression, such as null.
3956   if (!V->getType()->isPointerTy())
3957     return V;
3958 
3959   while (true) {
3960     if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3961       V = Cast->getOperand();
3962     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3963       const SCEV *PtrOp = nullptr;
3964       for (const SCEV *NAryOp : NAry->operands()) {
3965         if (NAryOp->getType()->isPointerTy()) {
3966           // Cannot find the base of an expression with multiple pointer ops.
3967           if (PtrOp)
3968             return V;
3969           PtrOp = NAryOp;
3970         }
3971       }
3972       if (!PtrOp) // All operands were non-pointer.
3973         return V;
3974       V = PtrOp;
3975     } else // Not something we can look further into.
3976       return V;
3977   }
3978 }
3979 
3980 /// Push users of the given Instruction onto the given Worklist.
3981 static void
3982 PushDefUseChildren(Instruction *I,
3983                    SmallVectorImpl<Instruction *> &Worklist) {
3984   // Push the def-use children onto the Worklist stack.
3985   for (User *U : I->users())
3986     Worklist.push_back(cast<Instruction>(U));
3987 }
3988 
3989 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3990   SmallVector<Instruction *, 16> Worklist;
3991   PushDefUseChildren(PN, Worklist);
3992 
3993   SmallPtrSet<Instruction *, 8> Visited;
3994   Visited.insert(PN);
3995   while (!Worklist.empty()) {
3996     Instruction *I = Worklist.pop_back_val();
3997     if (!Visited.insert(I).second)
3998       continue;
3999 
4000     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4001     if (It != ValueExprMap.end()) {
4002       const SCEV *Old = It->second;
4003 
4004       // Short-circuit the def-use traversal if the symbolic name
4005       // ceases to appear in expressions.
4006       if (Old != SymName && !hasOperand(Old, SymName))
4007         continue;
4008 
4009       // SCEVUnknown for a PHI either means that it has an unrecognized
4010       // structure, it's a PHI that's in the progress of being computed
4011       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4012       // additional loop trip count information isn't going to change anything.
4013       // In the second case, createNodeForPHI will perform the necessary
4014       // updates on its own when it gets to that point. In the third, we do
4015       // want to forget the SCEVUnknown.
4016       if (!isa<PHINode>(I) ||
4017           !isa<SCEVUnknown>(Old) ||
4018           (I != PN && Old == SymName)) {
4019         eraseValueFromMap(It->first);
4020         forgetMemoizedResults(Old);
4021       }
4022     }
4023 
4024     PushDefUseChildren(I, Worklist);
4025   }
4026 }
4027 
4028 namespace {
4029 
4030 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4031 /// expression in case its Loop is L. If it is not L then
4032 /// if IgnoreOtherLoops is true then use AddRec itself
4033 /// otherwise rewrite cannot be done.
4034 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4035 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4036 public:
4037   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4038                              bool IgnoreOtherLoops = true) {
4039     SCEVInitRewriter Rewriter(L, SE);
4040     const SCEV *Result = Rewriter.visit(S);
4041     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4042       return SE.getCouldNotCompute();
4043     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4044                ? SE.getCouldNotCompute()
4045                : Result;
4046   }
4047 
4048   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4049     if (!SE.isLoopInvariant(Expr, L))
4050       SeenLoopVariantSCEVUnknown = true;
4051     return Expr;
4052   }
4053 
4054   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4055     // Only re-write AddRecExprs for this loop.
4056     if (Expr->getLoop() == L)
4057       return Expr->getStart();
4058     SeenOtherLoops = true;
4059     return Expr;
4060   }
4061 
4062   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4063 
4064   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4065 
4066 private:
4067   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4068       : SCEVRewriteVisitor(SE), L(L) {}
4069 
4070   const Loop *L;
4071   bool SeenLoopVariantSCEVUnknown = false;
4072   bool SeenOtherLoops = false;
4073 };
4074 
4075 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4076 /// increment expression in case its Loop is L. If it is not L then
4077 /// use AddRec itself.
4078 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4079 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4080 public:
4081   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4082     SCEVPostIncRewriter Rewriter(L, SE);
4083     const SCEV *Result = Rewriter.visit(S);
4084     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4085         ? SE.getCouldNotCompute()
4086         : Result;
4087   }
4088 
4089   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4090     if (!SE.isLoopInvariant(Expr, L))
4091       SeenLoopVariantSCEVUnknown = true;
4092     return Expr;
4093   }
4094 
4095   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4096     // Only re-write AddRecExprs for this loop.
4097     if (Expr->getLoop() == L)
4098       return Expr->getPostIncExpr(SE);
4099     SeenOtherLoops = true;
4100     return Expr;
4101   }
4102 
4103   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4104 
4105   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4106 
4107 private:
4108   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4109       : SCEVRewriteVisitor(SE), L(L) {}
4110 
4111   const Loop *L;
4112   bool SeenLoopVariantSCEVUnknown = false;
4113   bool SeenOtherLoops = false;
4114 };
4115 
4116 /// This class evaluates the compare condition by matching it against the
4117 /// condition of loop latch. If there is a match we assume a true value
4118 /// for the condition while building SCEV nodes.
4119 class SCEVBackedgeConditionFolder
4120     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4121 public:
4122   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4123                              ScalarEvolution &SE) {
4124     bool IsPosBECond = false;
4125     Value *BECond = nullptr;
4126     if (BasicBlock *Latch = L->getLoopLatch()) {
4127       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4128       if (BI && BI->isConditional()) {
4129         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4130                "Both outgoing branches should not target same header!");
4131         BECond = BI->getCondition();
4132         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4133       } else {
4134         return S;
4135       }
4136     }
4137     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4138     return Rewriter.visit(S);
4139   }
4140 
4141   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4142     const SCEV *Result = Expr;
4143     bool InvariantF = SE.isLoopInvariant(Expr, L);
4144 
4145     if (!InvariantF) {
4146       Instruction *I = cast<Instruction>(Expr->getValue());
4147       switch (I->getOpcode()) {
4148       case Instruction::Select: {
4149         SelectInst *SI = cast<SelectInst>(I);
4150         Optional<const SCEV *> Res =
4151             compareWithBackedgeCondition(SI->getCondition());
4152         if (Res.hasValue()) {
4153           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4154           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4155         }
4156         break;
4157       }
4158       default: {
4159         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4160         if (Res.hasValue())
4161           Result = Res.getValue();
4162         break;
4163       }
4164       }
4165     }
4166     return Result;
4167   }
4168 
4169 private:
4170   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4171                                        bool IsPosBECond, ScalarEvolution &SE)
4172       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4173         IsPositiveBECond(IsPosBECond) {}
4174 
4175   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4176 
4177   const Loop *L;
4178   /// Loop back condition.
4179   Value *BackedgeCond = nullptr;
4180   /// Set to true if loop back is on positive branch condition.
4181   bool IsPositiveBECond;
4182 };
4183 
4184 Optional<const SCEV *>
4185 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4186 
4187   // If value matches the backedge condition for loop latch,
4188   // then return a constant evolution node based on loopback
4189   // branch taken.
4190   if (BackedgeCond == IC)
4191     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4192                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4193   return None;
4194 }
4195 
4196 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4197 public:
4198   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4199                              ScalarEvolution &SE) {
4200     SCEVShiftRewriter Rewriter(L, SE);
4201     const SCEV *Result = Rewriter.visit(S);
4202     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4203   }
4204 
4205   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4206     // Only allow AddRecExprs for this loop.
4207     if (!SE.isLoopInvariant(Expr, L))
4208       Valid = false;
4209     return Expr;
4210   }
4211 
4212   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4213     if (Expr->getLoop() == L && Expr->isAffine())
4214       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4215     Valid = false;
4216     return Expr;
4217   }
4218 
4219   bool isValid() { return Valid; }
4220 
4221 private:
4222   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4223       : SCEVRewriteVisitor(SE), L(L) {}
4224 
4225   const Loop *L;
4226   bool Valid = true;
4227 };
4228 
4229 } // end anonymous namespace
4230 
4231 SCEV::NoWrapFlags
4232 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4233   if (!AR->isAffine())
4234     return SCEV::FlagAnyWrap;
4235 
4236   using OBO = OverflowingBinaryOperator;
4237 
4238   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4239 
4240   if (!AR->hasNoSignedWrap()) {
4241     ConstantRange AddRecRange = getSignedRange(AR);
4242     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4243 
4244     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4245         Instruction::Add, IncRange, OBO::NoSignedWrap);
4246     if (NSWRegion.contains(AddRecRange))
4247       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4248   }
4249 
4250   if (!AR->hasNoUnsignedWrap()) {
4251     ConstantRange AddRecRange = getUnsignedRange(AR);
4252     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4253 
4254     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4255         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4256     if (NUWRegion.contains(AddRecRange))
4257       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4258   }
4259 
4260   return Result;
4261 }
4262 
4263 namespace {
4264 
4265 /// Represents an abstract binary operation.  This may exist as a
4266 /// normal instruction or constant expression, or may have been
4267 /// derived from an expression tree.
4268 struct BinaryOp {
4269   unsigned Opcode;
4270   Value *LHS;
4271   Value *RHS;
4272   bool IsNSW = false;
4273   bool IsNUW = false;
4274 
4275   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4276   /// constant expression.
4277   Operator *Op = nullptr;
4278 
4279   explicit BinaryOp(Operator *Op)
4280       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4281         Op(Op) {
4282     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4283       IsNSW = OBO->hasNoSignedWrap();
4284       IsNUW = OBO->hasNoUnsignedWrap();
4285     }
4286   }
4287 
4288   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4289                     bool IsNUW = false)
4290       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4291 };
4292 
4293 } // end anonymous namespace
4294 
4295 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4296 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4297   auto *Op = dyn_cast<Operator>(V);
4298   if (!Op)
4299     return None;
4300 
4301   // Implementation detail: all the cleverness here should happen without
4302   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4303   // SCEV expressions when possible, and we should not break that.
4304 
4305   switch (Op->getOpcode()) {
4306   case Instruction::Add:
4307   case Instruction::Sub:
4308   case Instruction::Mul:
4309   case Instruction::UDiv:
4310   case Instruction::URem:
4311   case Instruction::And:
4312   case Instruction::Or:
4313   case Instruction::AShr:
4314   case Instruction::Shl:
4315     return BinaryOp(Op);
4316 
4317   case Instruction::Xor:
4318     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4319       // If the RHS of the xor is a signmask, then this is just an add.
4320       // Instcombine turns add of signmask into xor as a strength reduction step.
4321       if (RHSC->getValue().isSignMask())
4322         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4323     return BinaryOp(Op);
4324 
4325   case Instruction::LShr:
4326     // Turn logical shift right of a constant into a unsigned divide.
4327     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4328       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4329 
4330       // If the shift count is not less than the bitwidth, the result of
4331       // the shift is undefined. Don't try to analyze it, because the
4332       // resolution chosen here may differ from the resolution chosen in
4333       // other parts of the compiler.
4334       if (SA->getValue().ult(BitWidth)) {
4335         Constant *X =
4336             ConstantInt::get(SA->getContext(),
4337                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4338         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4339       }
4340     }
4341     return BinaryOp(Op);
4342 
4343   case Instruction::ExtractValue: {
4344     auto *EVI = cast<ExtractValueInst>(Op);
4345     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4346       break;
4347 
4348     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4349     if (!WO)
4350       break;
4351 
4352     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4353     bool Signed = WO->isSigned();
4354     // TODO: Should add nuw/nsw flags for mul as well.
4355     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4356       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4357 
4358     // Now that we know that all uses of the arithmetic-result component of
4359     // CI are guarded by the overflow check, we can go ahead and pretend
4360     // that the arithmetic is non-overflowing.
4361     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4362                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4363   }
4364 
4365   default:
4366     break;
4367   }
4368 
4369   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4370   // semantics as a Sub, return a binary sub expression.
4371   if (auto *II = dyn_cast<IntrinsicInst>(V))
4372     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4373       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4374 
4375   return None;
4376 }
4377 
4378 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4379 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4380 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4381 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4382 /// follows one of the following patterns:
4383 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4384 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4385 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4386 /// we return the type of the truncation operation, and indicate whether the
4387 /// truncated type should be treated as signed/unsigned by setting
4388 /// \p Signed to true/false, respectively.
4389 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4390                                bool &Signed, ScalarEvolution &SE) {
4391   // The case where Op == SymbolicPHI (that is, with no type conversions on
4392   // the way) is handled by the regular add recurrence creating logic and
4393   // would have already been triggered in createAddRecForPHI. Reaching it here
4394   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4395   // because one of the other operands of the SCEVAddExpr updating this PHI is
4396   // not invariant).
4397   //
4398   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4399   // this case predicates that allow us to prove that Op == SymbolicPHI will
4400   // be added.
4401   if (Op == SymbolicPHI)
4402     return nullptr;
4403 
4404   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4405   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4406   if (SourceBits != NewBits)
4407     return nullptr;
4408 
4409   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4410   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4411   if (!SExt && !ZExt)
4412     return nullptr;
4413   const SCEVTruncateExpr *Trunc =
4414       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4415            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4416   if (!Trunc)
4417     return nullptr;
4418   const SCEV *X = Trunc->getOperand();
4419   if (X != SymbolicPHI)
4420     return nullptr;
4421   Signed = SExt != nullptr;
4422   return Trunc->getType();
4423 }
4424 
4425 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4426   if (!PN->getType()->isIntegerTy())
4427     return nullptr;
4428   const Loop *L = LI.getLoopFor(PN->getParent());
4429   if (!L || L->getHeader() != PN->getParent())
4430     return nullptr;
4431   return L;
4432 }
4433 
4434 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4435 // computation that updates the phi follows the following pattern:
4436 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4437 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4438 // If so, try to see if it can be rewritten as an AddRecExpr under some
4439 // Predicates. If successful, return them as a pair. Also cache the results
4440 // of the analysis.
4441 //
4442 // Example usage scenario:
4443 //    Say the Rewriter is called for the following SCEV:
4444 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4445 //    where:
4446 //         %X = phi i64 (%Start, %BEValue)
4447 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4448 //    and call this function with %SymbolicPHI = %X.
4449 //
4450 //    The analysis will find that the value coming around the backedge has
4451 //    the following SCEV:
4452 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4453 //    Upon concluding that this matches the desired pattern, the function
4454 //    will return the pair {NewAddRec, SmallPredsVec} where:
4455 //         NewAddRec = {%Start,+,%Step}
4456 //         SmallPredsVec = {P1, P2, P3} as follows:
4457 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4458 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4459 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4460 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4461 //    under the predicates {P1,P2,P3}.
4462 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4463 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4464 //
4465 // TODO's:
4466 //
4467 // 1) Extend the Induction descriptor to also support inductions that involve
4468 //    casts: When needed (namely, when we are called in the context of the
4469 //    vectorizer induction analysis), a Set of cast instructions will be
4470 //    populated by this method, and provided back to isInductionPHI. This is
4471 //    needed to allow the vectorizer to properly record them to be ignored by
4472 //    the cost model and to avoid vectorizing them (otherwise these casts,
4473 //    which are redundant under the runtime overflow checks, will be
4474 //    vectorized, which can be costly).
4475 //
4476 // 2) Support additional induction/PHISCEV patterns: We also want to support
4477 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4478 //    after the induction update operation (the induction increment):
4479 //
4480 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4481 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4482 //
4483 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4484 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4485 //
4486 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4487 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4488 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4489   SmallVector<const SCEVPredicate *, 3> Predicates;
4490 
4491   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4492   // return an AddRec expression under some predicate.
4493 
4494   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4495   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4496   assert(L && "Expecting an integer loop header phi");
4497 
4498   // The loop may have multiple entrances or multiple exits; we can analyze
4499   // this phi as an addrec if it has a unique entry value and a unique
4500   // backedge value.
4501   Value *BEValueV = nullptr, *StartValueV = nullptr;
4502   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4503     Value *V = PN->getIncomingValue(i);
4504     if (L->contains(PN->getIncomingBlock(i))) {
4505       if (!BEValueV) {
4506         BEValueV = V;
4507       } else if (BEValueV != V) {
4508         BEValueV = nullptr;
4509         break;
4510       }
4511     } else if (!StartValueV) {
4512       StartValueV = V;
4513     } else if (StartValueV != V) {
4514       StartValueV = nullptr;
4515       break;
4516     }
4517   }
4518   if (!BEValueV || !StartValueV)
4519     return None;
4520 
4521   const SCEV *BEValue = getSCEV(BEValueV);
4522 
4523   // If the value coming around the backedge is an add with the symbolic
4524   // value we just inserted, possibly with casts that we can ignore under
4525   // an appropriate runtime guard, then we found a simple induction variable!
4526   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4527   if (!Add)
4528     return None;
4529 
4530   // If there is a single occurrence of the symbolic value, possibly
4531   // casted, replace it with a recurrence.
4532   unsigned FoundIndex = Add->getNumOperands();
4533   Type *TruncTy = nullptr;
4534   bool Signed;
4535   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4536     if ((TruncTy =
4537              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4538       if (FoundIndex == e) {
4539         FoundIndex = i;
4540         break;
4541       }
4542 
4543   if (FoundIndex == Add->getNumOperands())
4544     return None;
4545 
4546   // Create an add with everything but the specified operand.
4547   SmallVector<const SCEV *, 8> Ops;
4548   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4549     if (i != FoundIndex)
4550       Ops.push_back(Add->getOperand(i));
4551   const SCEV *Accum = getAddExpr(Ops);
4552 
4553   // The runtime checks will not be valid if the step amount is
4554   // varying inside the loop.
4555   if (!isLoopInvariant(Accum, L))
4556     return None;
4557 
4558   // *** Part2: Create the predicates
4559 
4560   // Analysis was successful: we have a phi-with-cast pattern for which we
4561   // can return an AddRec expression under the following predicates:
4562   //
4563   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4564   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4565   // P2: An Equal predicate that guarantees that
4566   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4567   // P3: An Equal predicate that guarantees that
4568   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4569   //
4570   // As we next prove, the above predicates guarantee that:
4571   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4572   //
4573   //
4574   // More formally, we want to prove that:
4575   //     Expr(i+1) = Start + (i+1) * Accum
4576   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4577   //
4578   // Given that:
4579   // 1) Expr(0) = Start
4580   // 2) Expr(1) = Start + Accum
4581   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4582   // 3) Induction hypothesis (step i):
4583   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4584   //
4585   // Proof:
4586   //  Expr(i+1) =
4587   //   = Start + (i+1)*Accum
4588   //   = (Start + i*Accum) + Accum
4589   //   = Expr(i) + Accum
4590   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4591   //                                                             :: from step i
4592   //
4593   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4594   //
4595   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4596   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4597   //     + Accum                                                     :: from P3
4598   //
4599   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4600   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4601   //
4602   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4603   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4604   //
4605   // By induction, the same applies to all iterations 1<=i<n:
4606   //
4607 
4608   // Create a truncated addrec for which we will add a no overflow check (P1).
4609   const SCEV *StartVal = getSCEV(StartValueV);
4610   const SCEV *PHISCEV =
4611       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4612                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4613 
4614   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4615   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4616   // will be constant.
4617   //
4618   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4619   // add P1.
4620   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4621     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4622         Signed ? SCEVWrapPredicate::IncrementNSSW
4623                : SCEVWrapPredicate::IncrementNUSW;
4624     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4625     Predicates.push_back(AddRecPred);
4626   }
4627 
4628   // Create the Equal Predicates P2,P3:
4629 
4630   // It is possible that the predicates P2 and/or P3 are computable at
4631   // compile time due to StartVal and/or Accum being constants.
4632   // If either one is, then we can check that now and escape if either P2
4633   // or P3 is false.
4634 
4635   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4636   // for each of StartVal and Accum
4637   auto getExtendedExpr = [&](const SCEV *Expr,
4638                              bool CreateSignExtend) -> const SCEV * {
4639     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4640     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4641     const SCEV *ExtendedExpr =
4642         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4643                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4644     return ExtendedExpr;
4645   };
4646 
4647   // Given:
4648   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4649   //               = getExtendedExpr(Expr)
4650   // Determine whether the predicate P: Expr == ExtendedExpr
4651   // is known to be false at compile time
4652   auto PredIsKnownFalse = [&](const SCEV *Expr,
4653                               const SCEV *ExtendedExpr) -> bool {
4654     return Expr != ExtendedExpr &&
4655            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4656   };
4657 
4658   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4659   if (PredIsKnownFalse(StartVal, StartExtended)) {
4660     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4661     return None;
4662   }
4663 
4664   // The Step is always Signed (because the overflow checks are either
4665   // NSSW or NUSW)
4666   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4667   if (PredIsKnownFalse(Accum, AccumExtended)) {
4668     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4669     return None;
4670   }
4671 
4672   auto AppendPredicate = [&](const SCEV *Expr,
4673                              const SCEV *ExtendedExpr) -> void {
4674     if (Expr != ExtendedExpr &&
4675         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4676       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4677       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4678       Predicates.push_back(Pred);
4679     }
4680   };
4681 
4682   AppendPredicate(StartVal, StartExtended);
4683   AppendPredicate(Accum, AccumExtended);
4684 
4685   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4686   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4687   // into NewAR if it will also add the runtime overflow checks specified in
4688   // Predicates.
4689   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4690 
4691   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4692       std::make_pair(NewAR, Predicates);
4693   // Remember the result of the analysis for this SCEV at this locayyytion.
4694   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4695   return PredRewrite;
4696 }
4697 
4698 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4699 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4700   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4701   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4702   if (!L)
4703     return None;
4704 
4705   // Check to see if we already analyzed this PHI.
4706   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4707   if (I != PredicatedSCEVRewrites.end()) {
4708     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4709         I->second;
4710     // Analysis was done before and failed to create an AddRec:
4711     if (Rewrite.first == SymbolicPHI)
4712       return None;
4713     // Analysis was done before and succeeded to create an AddRec under
4714     // a predicate:
4715     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4716     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4717     return Rewrite;
4718   }
4719 
4720   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4721     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4722 
4723   // Record in the cache that the analysis failed
4724   if (!Rewrite) {
4725     SmallVector<const SCEVPredicate *, 3> Predicates;
4726     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4727     return None;
4728   }
4729 
4730   return Rewrite;
4731 }
4732 
4733 // FIXME: This utility is currently required because the Rewriter currently
4734 // does not rewrite this expression:
4735 // {0, +, (sext ix (trunc iy to ix) to iy)}
4736 // into {0, +, %step},
4737 // even when the following Equal predicate exists:
4738 // "%step == (sext ix (trunc iy to ix) to iy)".
4739 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4740     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4741   if (AR1 == AR2)
4742     return true;
4743 
4744   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4745     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4746         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4747       return false;
4748     return true;
4749   };
4750 
4751   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4752       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4753     return false;
4754   return true;
4755 }
4756 
4757 /// A helper function for createAddRecFromPHI to handle simple cases.
4758 ///
4759 /// This function tries to find an AddRec expression for the simplest (yet most
4760 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4761 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4762 /// technique for finding the AddRec expression.
4763 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4764                                                       Value *BEValueV,
4765                                                       Value *StartValueV) {
4766   const Loop *L = LI.getLoopFor(PN->getParent());
4767   assert(L && L->getHeader() == PN->getParent());
4768   assert(BEValueV && StartValueV);
4769 
4770   auto BO = MatchBinaryOp(BEValueV, DT);
4771   if (!BO)
4772     return nullptr;
4773 
4774   if (BO->Opcode != Instruction::Add)
4775     return nullptr;
4776 
4777   const SCEV *Accum = nullptr;
4778   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4779     Accum = getSCEV(BO->RHS);
4780   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4781     Accum = getSCEV(BO->LHS);
4782 
4783   if (!Accum)
4784     return nullptr;
4785 
4786   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4787   if (BO->IsNUW)
4788     Flags = setFlags(Flags, SCEV::FlagNUW);
4789   if (BO->IsNSW)
4790     Flags = setFlags(Flags, SCEV::FlagNSW);
4791 
4792   const SCEV *StartVal = getSCEV(StartValueV);
4793   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4794 
4795   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4796 
4797   // We can add Flags to the post-inc expression only if we
4798   // know that it is *undefined behavior* for BEValueV to
4799   // overflow.
4800   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4801     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4802       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4803 
4804   return PHISCEV;
4805 }
4806 
4807 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
4808   const Loop *L = LI.getLoopFor(PN->getParent());
4809   if (!L || L->getHeader() != PN->getParent())
4810     return nullptr;
4811 
4812   // The loop may have multiple entrances or multiple exits; we can analyze
4813   // this phi as an addrec if it has a unique entry value and a unique
4814   // backedge value.
4815   Value *BEValueV = nullptr, *StartValueV = nullptr;
4816   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4817     Value *V = PN->getIncomingValue(i);
4818     if (L->contains(PN->getIncomingBlock(i))) {
4819       if (!BEValueV) {
4820         BEValueV = V;
4821       } else if (BEValueV != V) {
4822         BEValueV = nullptr;
4823         break;
4824       }
4825     } else if (!StartValueV) {
4826       StartValueV = V;
4827     } else if (StartValueV != V) {
4828       StartValueV = nullptr;
4829       break;
4830     }
4831   }
4832   if (!BEValueV || !StartValueV)
4833     return nullptr;
4834 
4835   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
4836          "PHI node already processed?");
4837 
4838   // First, try to find AddRec expression without creating a fictituos symbolic
4839   // value for PN.
4840   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
4841     return S;
4842 
4843   // Handle PHI node value symbolically.
4844   const SCEV *SymbolicName = getUnknown(PN);
4845   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
4846 
4847   // Using this symbolic name for the PHI, analyze the value coming around
4848   // the back-edge.
4849   const SCEV *BEValue = getSCEV(BEValueV);
4850 
4851   // NOTE: If BEValue is loop invariant, we know that the PHI node just
4852   // has a special value for the first iteration of the loop.
4853 
4854   // If the value coming around the backedge is an add with the symbolic
4855   // value we just inserted, then we found a simple induction variable!
4856   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4857     // If there is a single occurrence of the symbolic value, replace it
4858     // with a recurrence.
4859     unsigned FoundIndex = Add->getNumOperands();
4860     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4861       if (Add->getOperand(i) == SymbolicName)
4862         if (FoundIndex == e) {
4863           FoundIndex = i;
4864           break;
4865         }
4866 
4867     if (FoundIndex != Add->getNumOperands()) {
4868       // Create an add with everything but the specified operand.
4869       SmallVector<const SCEV *, 8> Ops;
4870       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4871         if (i != FoundIndex)
4872           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
4873                                                              L, *this));
4874       const SCEV *Accum = getAddExpr(Ops);
4875 
4876       // This is not a valid addrec if the step amount is varying each
4877       // loop iteration, but is not itself an addrec in this loop.
4878       if (isLoopInvariant(Accum, L) ||
4879           (isa<SCEVAddRecExpr>(Accum) &&
4880            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4881         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4882 
4883         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4884           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4885             if (BO->IsNUW)
4886               Flags = setFlags(Flags, SCEV::FlagNUW);
4887             if (BO->IsNSW)
4888               Flags = setFlags(Flags, SCEV::FlagNSW);
4889           }
4890         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4891           // If the increment is an inbounds GEP, then we know the address
4892           // space cannot be wrapped around. We cannot make any guarantee
4893           // about signed or unsigned overflow because pointers are
4894           // unsigned but we may have a negative index from the base
4895           // pointer. We can guarantee that no unsigned wrap occurs if the
4896           // indices form a positive value.
4897           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4898             Flags = setFlags(Flags, SCEV::FlagNW);
4899 
4900             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4901             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4902               Flags = setFlags(Flags, SCEV::FlagNUW);
4903           }
4904 
4905           // We cannot transfer nuw and nsw flags from subtraction
4906           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4907           // for instance.
4908         }
4909 
4910         const SCEV *StartVal = getSCEV(StartValueV);
4911         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4912 
4913         // Okay, for the entire analysis of this edge we assumed the PHI
4914         // to be symbolic.  We now need to go back and purge all of the
4915         // entries for the scalars that use the symbolic expression.
4916         forgetSymbolicName(PN, SymbolicName);
4917         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4918 
4919         // We can add Flags to the post-inc expression only if we
4920         // know that it is *undefined behavior* for BEValueV to
4921         // overflow.
4922         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4923           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4924             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4925 
4926         return PHISCEV;
4927       }
4928     }
4929   } else {
4930     // Otherwise, this could be a loop like this:
4931     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4932     // In this case, j = {1,+,1}  and BEValue is j.
4933     // Because the other in-value of i (0) fits the evolution of BEValue
4934     // i really is an addrec evolution.
4935     //
4936     // We can generalize this saying that i is the shifted value of BEValue
4937     // by one iteration:
4938     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4939     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4940     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
4941     if (Shifted != getCouldNotCompute() &&
4942         Start != getCouldNotCompute()) {
4943       const SCEV *StartVal = getSCEV(StartValueV);
4944       if (Start == StartVal) {
4945         // Okay, for the entire analysis of this edge we assumed the PHI
4946         // to be symbolic.  We now need to go back and purge all of the
4947         // entries for the scalars that use the symbolic expression.
4948         forgetSymbolicName(PN, SymbolicName);
4949         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4950         return Shifted;
4951       }
4952     }
4953   }
4954 
4955   // Remove the temporary PHI node SCEV that has been inserted while intending
4956   // to create an AddRecExpr for this PHI node. We can not keep this temporary
4957   // as it will prevent later (possibly simpler) SCEV expressions to be added
4958   // to the ValueExprMap.
4959   eraseValueFromMap(PN);
4960 
4961   return nullptr;
4962 }
4963 
4964 // Checks if the SCEV S is available at BB.  S is considered available at BB
4965 // if S can be materialized at BB without introducing a fault.
4966 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4967                                BasicBlock *BB) {
4968   struct CheckAvailable {
4969     bool TraversalDone = false;
4970     bool Available = true;
4971 
4972     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4973     BasicBlock *BB = nullptr;
4974     DominatorTree &DT;
4975 
4976     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4977       : L(L), BB(BB), DT(DT) {}
4978 
4979     bool setUnavailable() {
4980       TraversalDone = true;
4981       Available = false;
4982       return false;
4983     }
4984 
4985     bool follow(const SCEV *S) {
4986       switch (S->getSCEVType()) {
4987       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4988       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4989       case scUMinExpr:
4990       case scSMinExpr:
4991         // These expressions are available if their operand(s) is/are.
4992         return true;
4993 
4994       case scAddRecExpr: {
4995         // We allow add recurrences that are on the loop BB is in, or some
4996         // outer loop.  This guarantees availability because the value of the
4997         // add recurrence at BB is simply the "current" value of the induction
4998         // variable.  We can relax this in the future; for instance an add
4999         // recurrence on a sibling dominating loop is also available at BB.
5000         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5001         if (L && (ARLoop == L || ARLoop->contains(L)))
5002           return true;
5003 
5004         return setUnavailable();
5005       }
5006 
5007       case scUnknown: {
5008         // For SCEVUnknown, we check for simple dominance.
5009         const auto *SU = cast<SCEVUnknown>(S);
5010         Value *V = SU->getValue();
5011 
5012         if (isa<Argument>(V))
5013           return false;
5014 
5015         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5016           return false;
5017 
5018         return setUnavailable();
5019       }
5020 
5021       case scUDivExpr:
5022       case scCouldNotCompute:
5023         // We do not try to smart about these at all.
5024         return setUnavailable();
5025       }
5026       llvm_unreachable("switch should be fully covered!");
5027     }
5028 
5029     bool isDone() { return TraversalDone; }
5030   };
5031 
5032   CheckAvailable CA(L, BB, DT);
5033   SCEVTraversal<CheckAvailable> ST(CA);
5034 
5035   ST.visitAll(S);
5036   return CA.Available;
5037 }
5038 
5039 // Try to match a control flow sequence that branches out at BI and merges back
5040 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5041 // match.
5042 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5043                           Value *&C, Value *&LHS, Value *&RHS) {
5044   C = BI->getCondition();
5045 
5046   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5047   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5048 
5049   if (!LeftEdge.isSingleEdge())
5050     return false;
5051 
5052   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5053 
5054   Use &LeftUse = Merge->getOperandUse(0);
5055   Use &RightUse = Merge->getOperandUse(1);
5056 
5057   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5058     LHS = LeftUse;
5059     RHS = RightUse;
5060     return true;
5061   }
5062 
5063   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5064     LHS = RightUse;
5065     RHS = LeftUse;
5066     return true;
5067   }
5068 
5069   return false;
5070 }
5071 
5072 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5073   auto IsReachable =
5074       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5075   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5076     const Loop *L = LI.getLoopFor(PN->getParent());
5077 
5078     // We don't want to break LCSSA, even in a SCEV expression tree.
5079     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5080       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5081         return nullptr;
5082 
5083     // Try to match
5084     //
5085     //  br %cond, label %left, label %right
5086     // left:
5087     //  br label %merge
5088     // right:
5089     //  br label %merge
5090     // merge:
5091     //  V = phi [ %x, %left ], [ %y, %right ]
5092     //
5093     // as "select %cond, %x, %y"
5094 
5095     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5096     assert(IDom && "At least the entry block should dominate PN");
5097 
5098     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5099     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5100 
5101     if (BI && BI->isConditional() &&
5102         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5103         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5104         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5105       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5106   }
5107 
5108   return nullptr;
5109 }
5110 
5111 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5112   if (const SCEV *S = createAddRecFromPHI(PN))
5113     return S;
5114 
5115   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5116     return S;
5117 
5118   // If the PHI has a single incoming value, follow that value, unless the
5119   // PHI's incoming blocks are in a different loop, in which case doing so
5120   // risks breaking LCSSA form. Instcombine would normally zap these, but
5121   // it doesn't have DominatorTree information, so it may miss cases.
5122   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5123     if (LI.replacementPreservesLCSSAForm(PN, V))
5124       return getSCEV(V);
5125 
5126   // If it's not a loop phi, we can't handle it yet.
5127   return getUnknown(PN);
5128 }
5129 
5130 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5131                                                       Value *Cond,
5132                                                       Value *TrueVal,
5133                                                       Value *FalseVal) {
5134   // Handle "constant" branch or select. This can occur for instance when a
5135   // loop pass transforms an inner loop and moves on to process the outer loop.
5136   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5137     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5138 
5139   // Try to match some simple smax or umax patterns.
5140   auto *ICI = dyn_cast<ICmpInst>(Cond);
5141   if (!ICI)
5142     return getUnknown(I);
5143 
5144   Value *LHS = ICI->getOperand(0);
5145   Value *RHS = ICI->getOperand(1);
5146 
5147   switch (ICI->getPredicate()) {
5148   case ICmpInst::ICMP_SLT:
5149   case ICmpInst::ICMP_SLE:
5150     std::swap(LHS, RHS);
5151     LLVM_FALLTHROUGH;
5152   case ICmpInst::ICMP_SGT:
5153   case ICmpInst::ICMP_SGE:
5154     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5155     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5156     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5157       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5158       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5159       const SCEV *LA = getSCEV(TrueVal);
5160       const SCEV *RA = getSCEV(FalseVal);
5161       const SCEV *LDiff = getMinusSCEV(LA, LS);
5162       const SCEV *RDiff = getMinusSCEV(RA, RS);
5163       if (LDiff == RDiff)
5164         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5165       LDiff = getMinusSCEV(LA, RS);
5166       RDiff = getMinusSCEV(RA, LS);
5167       if (LDiff == RDiff)
5168         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5169     }
5170     break;
5171   case ICmpInst::ICMP_ULT:
5172   case ICmpInst::ICMP_ULE:
5173     std::swap(LHS, RHS);
5174     LLVM_FALLTHROUGH;
5175   case ICmpInst::ICMP_UGT:
5176   case ICmpInst::ICMP_UGE:
5177     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5178     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5179     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5180       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5181       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5182       const SCEV *LA = getSCEV(TrueVal);
5183       const SCEV *RA = getSCEV(FalseVal);
5184       const SCEV *LDiff = getMinusSCEV(LA, LS);
5185       const SCEV *RDiff = getMinusSCEV(RA, RS);
5186       if (LDiff == RDiff)
5187         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5188       LDiff = getMinusSCEV(LA, RS);
5189       RDiff = getMinusSCEV(RA, LS);
5190       if (LDiff == RDiff)
5191         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5192     }
5193     break;
5194   case ICmpInst::ICMP_NE:
5195     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5196     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5197         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5198       const SCEV *One = getOne(I->getType());
5199       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5200       const SCEV *LA = getSCEV(TrueVal);
5201       const SCEV *RA = getSCEV(FalseVal);
5202       const SCEV *LDiff = getMinusSCEV(LA, LS);
5203       const SCEV *RDiff = getMinusSCEV(RA, One);
5204       if (LDiff == RDiff)
5205         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5206     }
5207     break;
5208   case ICmpInst::ICMP_EQ:
5209     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5210     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5211         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5212       const SCEV *One = getOne(I->getType());
5213       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5214       const SCEV *LA = getSCEV(TrueVal);
5215       const SCEV *RA = getSCEV(FalseVal);
5216       const SCEV *LDiff = getMinusSCEV(LA, One);
5217       const SCEV *RDiff = getMinusSCEV(RA, LS);
5218       if (LDiff == RDiff)
5219         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5220     }
5221     break;
5222   default:
5223     break;
5224   }
5225 
5226   return getUnknown(I);
5227 }
5228 
5229 /// Expand GEP instructions into add and multiply operations. This allows them
5230 /// to be analyzed by regular SCEV code.
5231 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5232   // Don't attempt to analyze GEPs over unsized objects.
5233   if (!GEP->getSourceElementType()->isSized())
5234     return getUnknown(GEP);
5235 
5236   SmallVector<const SCEV *, 4> IndexExprs;
5237   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5238     IndexExprs.push_back(getSCEV(*Index));
5239   return getGEPExpr(GEP, IndexExprs);
5240 }
5241 
5242 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5243   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5244     return C->getAPInt().countTrailingZeros();
5245 
5246   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5247     return std::min(GetMinTrailingZeros(T->getOperand()),
5248                     (uint32_t)getTypeSizeInBits(T->getType()));
5249 
5250   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5251     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5252     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5253                ? getTypeSizeInBits(E->getType())
5254                : OpRes;
5255   }
5256 
5257   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5258     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5259     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5260                ? getTypeSizeInBits(E->getType())
5261                : OpRes;
5262   }
5263 
5264   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5265     // The result is the min of all operands results.
5266     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5267     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5268       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5269     return MinOpRes;
5270   }
5271 
5272   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5273     // The result is the sum of all operands results.
5274     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5275     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5276     for (unsigned i = 1, e = M->getNumOperands();
5277          SumOpRes != BitWidth && i != e; ++i)
5278       SumOpRes =
5279           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5280     return SumOpRes;
5281   }
5282 
5283   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5284     // The result is the min of all operands results.
5285     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5286     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5287       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5288     return MinOpRes;
5289   }
5290 
5291   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5292     // The result is the min of all operands results.
5293     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5294     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5295       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5296     return MinOpRes;
5297   }
5298 
5299   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5300     // The result is the min of all operands results.
5301     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5302     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5303       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5304     return MinOpRes;
5305   }
5306 
5307   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5308     // For a SCEVUnknown, ask ValueTracking.
5309     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5310     return Known.countMinTrailingZeros();
5311   }
5312 
5313   // SCEVUDivExpr
5314   return 0;
5315 }
5316 
5317 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5318   auto I = MinTrailingZerosCache.find(S);
5319   if (I != MinTrailingZerosCache.end())
5320     return I->second;
5321 
5322   uint32_t Result = GetMinTrailingZerosImpl(S);
5323   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5324   assert(InsertPair.second && "Should insert a new key");
5325   return InsertPair.first->second;
5326 }
5327 
5328 /// Helper method to assign a range to V from metadata present in the IR.
5329 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5330   if (Instruction *I = dyn_cast<Instruction>(V))
5331     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5332       return getConstantRangeFromMetadata(*MD);
5333 
5334   return None;
5335 }
5336 
5337 /// Determine the range for a particular SCEV.  If SignHint is
5338 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5339 /// with a "cleaner" unsigned (resp. signed) representation.
5340 const ConstantRange &
5341 ScalarEvolution::getRangeRef(const SCEV *S,
5342                              ScalarEvolution::RangeSignHint SignHint) {
5343   DenseMap<const SCEV *, ConstantRange> &Cache =
5344       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5345                                                        : SignedRanges;
5346   ConstantRange::PreferredRangeType RangeType =
5347       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5348           ? ConstantRange::Unsigned : ConstantRange::Signed;
5349 
5350   // See if we've computed this range already.
5351   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5352   if (I != Cache.end())
5353     return I->second;
5354 
5355   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5356     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5357 
5358   unsigned BitWidth = getTypeSizeInBits(S->getType());
5359   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5360   using OBO = OverflowingBinaryOperator;
5361 
5362   // If the value has known zeros, the maximum value will have those known zeros
5363   // as well.
5364   uint32_t TZ = GetMinTrailingZeros(S);
5365   if (TZ != 0) {
5366     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5367       ConservativeResult =
5368           ConstantRange(APInt::getMinValue(BitWidth),
5369                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5370     else
5371       ConservativeResult = ConstantRange(
5372           APInt::getSignedMinValue(BitWidth),
5373           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5374   }
5375 
5376   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5377     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5378     unsigned WrapType = OBO::AnyWrap;
5379     if (Add->hasNoSignedWrap())
5380       WrapType |= OBO::NoSignedWrap;
5381     if (Add->hasNoUnsignedWrap())
5382       WrapType |= OBO::NoUnsignedWrap;
5383     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5384       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5385                           WrapType, RangeType);
5386     return setRange(Add, SignHint,
5387                     ConservativeResult.intersectWith(X, RangeType));
5388   }
5389 
5390   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5391     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5392     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5393       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5394     return setRange(Mul, SignHint,
5395                     ConservativeResult.intersectWith(X, RangeType));
5396   }
5397 
5398   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5399     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5400     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5401       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5402     return setRange(SMax, SignHint,
5403                     ConservativeResult.intersectWith(X, RangeType));
5404   }
5405 
5406   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5407     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5408     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5409       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5410     return setRange(UMax, SignHint,
5411                     ConservativeResult.intersectWith(X, RangeType));
5412   }
5413 
5414   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5415     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5416     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5417       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5418     return setRange(SMin, SignHint,
5419                     ConservativeResult.intersectWith(X, RangeType));
5420   }
5421 
5422   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5423     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5424     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5425       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5426     return setRange(UMin, SignHint,
5427                     ConservativeResult.intersectWith(X, RangeType));
5428   }
5429 
5430   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5431     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5432     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5433     return setRange(UDiv, SignHint,
5434                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5435   }
5436 
5437   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5438     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5439     return setRange(ZExt, SignHint,
5440                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5441                                                      RangeType));
5442   }
5443 
5444   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5445     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5446     return setRange(SExt, SignHint,
5447                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5448                                                      RangeType));
5449   }
5450 
5451   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5452     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5453     return setRange(Trunc, SignHint,
5454                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5455                                                      RangeType));
5456   }
5457 
5458   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5459     // If there's no unsigned wrap, the value will never be less than its
5460     // initial value.
5461     if (AddRec->hasNoUnsignedWrap()) {
5462       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5463       if (!UnsignedMinValue.isNullValue())
5464         ConservativeResult = ConservativeResult.intersectWith(
5465             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5466     }
5467 
5468     // If there's no signed wrap, and all the operands except initial value have
5469     // the same sign or zero, the value won't ever be:
5470     // 1: smaller than initial value if operands are non negative,
5471     // 2: bigger than initial value if operands are non positive.
5472     // For both cases, value can not cross signed min/max boundary.
5473     if (AddRec->hasNoSignedWrap()) {
5474       bool AllNonNeg = true;
5475       bool AllNonPos = true;
5476       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5477         if (!isKnownNonNegative(AddRec->getOperand(i)))
5478           AllNonNeg = false;
5479         if (!isKnownNonPositive(AddRec->getOperand(i)))
5480           AllNonPos = false;
5481       }
5482       if (AllNonNeg)
5483         ConservativeResult = ConservativeResult.intersectWith(
5484             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5485                                        APInt::getSignedMinValue(BitWidth)),
5486             RangeType);
5487       else if (AllNonPos)
5488         ConservativeResult = ConservativeResult.intersectWith(
5489             ConstantRange::getNonEmpty(
5490                 APInt::getSignedMinValue(BitWidth),
5491                 getSignedRangeMax(AddRec->getStart()) + 1),
5492             RangeType);
5493     }
5494 
5495     // TODO: non-affine addrec
5496     if (AddRec->isAffine()) {
5497       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5498       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5499           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5500         auto RangeFromAffine = getRangeForAffineAR(
5501             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5502             BitWidth);
5503         if (!RangeFromAffine.isFullSet())
5504           ConservativeResult =
5505               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5506 
5507         auto RangeFromFactoring = getRangeViaFactoring(
5508             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5509             BitWidth);
5510         if (!RangeFromFactoring.isFullSet())
5511           ConservativeResult =
5512               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5513       }
5514     }
5515 
5516     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5517   }
5518 
5519   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5520     // Check if the IR explicitly contains !range metadata.
5521     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5522     if (MDRange.hasValue())
5523       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5524                                                             RangeType);
5525 
5526     // Split here to avoid paying the compile-time cost of calling both
5527     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5528     // if needed.
5529     const DataLayout &DL = getDataLayout();
5530     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5531       // For a SCEVUnknown, ask ValueTracking.
5532       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5533       if (Known.getBitWidth() != BitWidth)
5534         Known = Known.zextOrTrunc(BitWidth);
5535       // If Known does not result in full-set, intersect with it.
5536       if (Known.getMinValue() != Known.getMaxValue() + 1)
5537         ConservativeResult = ConservativeResult.intersectWith(
5538             ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5539             RangeType);
5540     } else {
5541       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5542              "generalize as needed!");
5543       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5544       // If the pointer size is larger than the index size type, this can cause
5545       // NS to be larger than BitWidth. So compensate for this.
5546       if (U->getType()->isPointerTy()) {
5547         unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5548         int ptrIdxDiff = ptrSize - BitWidth;
5549         if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5550           NS -= ptrIdxDiff;
5551       }
5552 
5553       if (NS > 1)
5554         ConservativeResult = ConservativeResult.intersectWith(
5555             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5556                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5557             RangeType);
5558     }
5559 
5560     // A range of Phi is a subset of union of all ranges of its input.
5561     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5562       // Make sure that we do not run over cycled Phis.
5563       if (PendingPhiRanges.insert(Phi).second) {
5564         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5565         for (auto &Op : Phi->operands()) {
5566           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5567           RangeFromOps = RangeFromOps.unionWith(OpRange);
5568           // No point to continue if we already have a full set.
5569           if (RangeFromOps.isFullSet())
5570             break;
5571         }
5572         ConservativeResult =
5573             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5574         bool Erased = PendingPhiRanges.erase(Phi);
5575         assert(Erased && "Failed to erase Phi properly?");
5576         (void) Erased;
5577       }
5578     }
5579 
5580     return setRange(U, SignHint, std::move(ConservativeResult));
5581   }
5582 
5583   return setRange(S, SignHint, std::move(ConservativeResult));
5584 }
5585 
5586 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5587 // values that the expression can take. Initially, the expression has a value
5588 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5589 // argument defines if we treat Step as signed or unsigned.
5590 static ConstantRange getRangeForAffineARHelper(APInt Step,
5591                                                const ConstantRange &StartRange,
5592                                                const APInt &MaxBECount,
5593                                                unsigned BitWidth, bool Signed) {
5594   // If either Step or MaxBECount is 0, then the expression won't change, and we
5595   // just need to return the initial range.
5596   if (Step == 0 || MaxBECount == 0)
5597     return StartRange;
5598 
5599   // If we don't know anything about the initial value (i.e. StartRange is
5600   // FullRange), then we don't know anything about the final range either.
5601   // Return FullRange.
5602   if (StartRange.isFullSet())
5603     return ConstantRange::getFull(BitWidth);
5604 
5605   // If Step is signed and negative, then we use its absolute value, but we also
5606   // note that we're moving in the opposite direction.
5607   bool Descending = Signed && Step.isNegative();
5608 
5609   if (Signed)
5610     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5611     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5612     // This equations hold true due to the well-defined wrap-around behavior of
5613     // APInt.
5614     Step = Step.abs();
5615 
5616   // Check if Offset is more than full span of BitWidth. If it is, the
5617   // expression is guaranteed to overflow.
5618   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5619     return ConstantRange::getFull(BitWidth);
5620 
5621   // Offset is by how much the expression can change. Checks above guarantee no
5622   // overflow here.
5623   APInt Offset = Step * MaxBECount;
5624 
5625   // Minimum value of the final range will match the minimal value of StartRange
5626   // if the expression is increasing and will be decreased by Offset otherwise.
5627   // Maximum value of the final range will match the maximal value of StartRange
5628   // if the expression is decreasing and will be increased by Offset otherwise.
5629   APInt StartLower = StartRange.getLower();
5630   APInt StartUpper = StartRange.getUpper() - 1;
5631   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5632                                    : (StartUpper + std::move(Offset));
5633 
5634   // It's possible that the new minimum/maximum value will fall into the initial
5635   // range (due to wrap around). This means that the expression can take any
5636   // value in this bitwidth, and we have to return full range.
5637   if (StartRange.contains(MovedBoundary))
5638     return ConstantRange::getFull(BitWidth);
5639 
5640   APInt NewLower =
5641       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5642   APInt NewUpper =
5643       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5644   NewUpper += 1;
5645 
5646   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5647   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5648 }
5649 
5650 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5651                                                    const SCEV *Step,
5652                                                    const SCEV *MaxBECount,
5653                                                    unsigned BitWidth) {
5654   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5655          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5656          "Precondition!");
5657 
5658   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5659   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5660 
5661   // First, consider step signed.
5662   ConstantRange StartSRange = getSignedRange(Start);
5663   ConstantRange StepSRange = getSignedRange(Step);
5664 
5665   // If Step can be both positive and negative, we need to find ranges for the
5666   // maximum absolute step values in both directions and union them.
5667   ConstantRange SR =
5668       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5669                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5670   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5671                                               StartSRange, MaxBECountValue,
5672                                               BitWidth, /* Signed = */ true));
5673 
5674   // Next, consider step unsigned.
5675   ConstantRange UR = getRangeForAffineARHelper(
5676       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5677       MaxBECountValue, BitWidth, /* Signed = */ false);
5678 
5679   // Finally, intersect signed and unsigned ranges.
5680   return SR.intersectWith(UR, ConstantRange::Smallest);
5681 }
5682 
5683 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5684                                                     const SCEV *Step,
5685                                                     const SCEV *MaxBECount,
5686                                                     unsigned BitWidth) {
5687   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5688   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5689 
5690   struct SelectPattern {
5691     Value *Condition = nullptr;
5692     APInt TrueValue;
5693     APInt FalseValue;
5694 
5695     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5696                            const SCEV *S) {
5697       Optional<unsigned> CastOp;
5698       APInt Offset(BitWidth, 0);
5699 
5700       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5701              "Should be!");
5702 
5703       // Peel off a constant offset:
5704       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5705         // In the future we could consider being smarter here and handle
5706         // {Start+Step,+,Step} too.
5707         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5708           return;
5709 
5710         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5711         S = SA->getOperand(1);
5712       }
5713 
5714       // Peel off a cast operation
5715       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5716         CastOp = SCast->getSCEVType();
5717         S = SCast->getOperand();
5718       }
5719 
5720       using namespace llvm::PatternMatch;
5721 
5722       auto *SU = dyn_cast<SCEVUnknown>(S);
5723       const APInt *TrueVal, *FalseVal;
5724       if (!SU ||
5725           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5726                                           m_APInt(FalseVal)))) {
5727         Condition = nullptr;
5728         return;
5729       }
5730 
5731       TrueValue = *TrueVal;
5732       FalseValue = *FalseVal;
5733 
5734       // Re-apply the cast we peeled off earlier
5735       if (CastOp.hasValue())
5736         switch (*CastOp) {
5737         default:
5738           llvm_unreachable("Unknown SCEV cast type!");
5739 
5740         case scTruncate:
5741           TrueValue = TrueValue.trunc(BitWidth);
5742           FalseValue = FalseValue.trunc(BitWidth);
5743           break;
5744         case scZeroExtend:
5745           TrueValue = TrueValue.zext(BitWidth);
5746           FalseValue = FalseValue.zext(BitWidth);
5747           break;
5748         case scSignExtend:
5749           TrueValue = TrueValue.sext(BitWidth);
5750           FalseValue = FalseValue.sext(BitWidth);
5751           break;
5752         }
5753 
5754       // Re-apply the constant offset we peeled off earlier
5755       TrueValue += Offset;
5756       FalseValue += Offset;
5757     }
5758 
5759     bool isRecognized() { return Condition != nullptr; }
5760   };
5761 
5762   SelectPattern StartPattern(*this, BitWidth, Start);
5763   if (!StartPattern.isRecognized())
5764     return ConstantRange::getFull(BitWidth);
5765 
5766   SelectPattern StepPattern(*this, BitWidth, Step);
5767   if (!StepPattern.isRecognized())
5768     return ConstantRange::getFull(BitWidth);
5769 
5770   if (StartPattern.Condition != StepPattern.Condition) {
5771     // We don't handle this case today; but we could, by considering four
5772     // possibilities below instead of two. I'm not sure if there are cases where
5773     // that will help over what getRange already does, though.
5774     return ConstantRange::getFull(BitWidth);
5775   }
5776 
5777   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5778   // construct arbitrary general SCEV expressions here.  This function is called
5779   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5780   // say) can end up caching a suboptimal value.
5781 
5782   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5783   // C2352 and C2512 (otherwise it isn't needed).
5784 
5785   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5786   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5787   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5788   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5789 
5790   ConstantRange TrueRange =
5791       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5792   ConstantRange FalseRange =
5793       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5794 
5795   return TrueRange.unionWith(FalseRange);
5796 }
5797 
5798 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5799   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5800   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5801 
5802   // Return early if there are no flags to propagate to the SCEV.
5803   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5804   if (BinOp->hasNoUnsignedWrap())
5805     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5806   if (BinOp->hasNoSignedWrap())
5807     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5808   if (Flags == SCEV::FlagAnyWrap)
5809     return SCEV::FlagAnyWrap;
5810 
5811   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5812 }
5813 
5814 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5815   // Here we check that I is in the header of the innermost loop containing I,
5816   // since we only deal with instructions in the loop header. The actual loop we
5817   // need to check later will come from an add recurrence, but getting that
5818   // requires computing the SCEV of the operands, which can be expensive. This
5819   // check we can do cheaply to rule out some cases early.
5820   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5821   if (InnermostContainingLoop == nullptr ||
5822       InnermostContainingLoop->getHeader() != I->getParent())
5823     return false;
5824 
5825   // Only proceed if we can prove that I does not yield poison.
5826   if (!programUndefinedIfPoison(I))
5827     return false;
5828 
5829   // At this point we know that if I is executed, then it does not wrap
5830   // according to at least one of NSW or NUW. If I is not executed, then we do
5831   // not know if the calculation that I represents would wrap. Multiple
5832   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5833   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5834   // derived from other instructions that map to the same SCEV. We cannot make
5835   // that guarantee for cases where I is not executed. So we need to find the
5836   // loop that I is considered in relation to and prove that I is executed for
5837   // every iteration of that loop. That implies that the value that I
5838   // calculates does not wrap anywhere in the loop, so then we can apply the
5839   // flags to the SCEV.
5840   //
5841   // We check isLoopInvariant to disambiguate in case we are adding recurrences
5842   // from different loops, so that we know which loop to prove that I is
5843   // executed in.
5844   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5845     // I could be an extractvalue from a call to an overflow intrinsic.
5846     // TODO: We can do better here in some cases.
5847     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5848       return false;
5849     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5850     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5851       bool AllOtherOpsLoopInvariant = true;
5852       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
5853            ++OtherOpIndex) {
5854         if (OtherOpIndex != OpIndex) {
5855           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
5856           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
5857             AllOtherOpsLoopInvariant = false;
5858             break;
5859           }
5860         }
5861       }
5862       if (AllOtherOpsLoopInvariant &&
5863           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
5864         return true;
5865     }
5866   }
5867   return false;
5868 }
5869 
5870 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
5871   // If we know that \c I can never be poison period, then that's enough.
5872   if (isSCEVExprNeverPoison(I))
5873     return true;
5874 
5875   // For an add recurrence specifically, we assume that infinite loops without
5876   // side effects are undefined behavior, and then reason as follows:
5877   //
5878   // If the add recurrence is poison in any iteration, it is poison on all
5879   // future iterations (since incrementing poison yields poison). If the result
5880   // of the add recurrence is fed into the loop latch condition and the loop
5881   // does not contain any throws or exiting blocks other than the latch, we now
5882   // have the ability to "choose" whether the backedge is taken or not (by
5883   // choosing a sufficiently evil value for the poison feeding into the branch)
5884   // for every iteration including and after the one in which \p I first became
5885   // poison.  There are two possibilities (let's call the iteration in which \p
5886   // I first became poison as K):
5887   //
5888   //  1. In the set of iterations including and after K, the loop body executes
5889   //     no side effects.  In this case executing the backege an infinte number
5890   //     of times will yield undefined behavior.
5891   //
5892   //  2. In the set of iterations including and after K, the loop body executes
5893   //     at least one side effect.  In this case, that specific instance of side
5894   //     effect is control dependent on poison, which also yields undefined
5895   //     behavior.
5896 
5897   auto *ExitingBB = L->getExitingBlock();
5898   auto *LatchBB = L->getLoopLatch();
5899   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
5900     return false;
5901 
5902   SmallPtrSet<const Instruction *, 16> Pushed;
5903   SmallVector<const Instruction *, 8> PoisonStack;
5904 
5905   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
5906   // things that are known to be poison under that assumption go on the
5907   // PoisonStack.
5908   Pushed.insert(I);
5909   PoisonStack.push_back(I);
5910 
5911   bool LatchControlDependentOnPoison = false;
5912   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
5913     const Instruction *Poison = PoisonStack.pop_back_val();
5914 
5915     for (auto *PoisonUser : Poison->users()) {
5916       if (propagatesPoison(cast<Instruction>(PoisonUser))) {
5917         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
5918           PoisonStack.push_back(cast<Instruction>(PoisonUser));
5919       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
5920         assert(BI->isConditional() && "Only possibility!");
5921         if (BI->getParent() == LatchBB) {
5922           LatchControlDependentOnPoison = true;
5923           break;
5924         }
5925       }
5926     }
5927   }
5928 
5929   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
5930 }
5931 
5932 ScalarEvolution::LoopProperties
5933 ScalarEvolution::getLoopProperties(const Loop *L) {
5934   using LoopProperties = ScalarEvolution::LoopProperties;
5935 
5936   auto Itr = LoopPropertiesCache.find(L);
5937   if (Itr == LoopPropertiesCache.end()) {
5938     auto HasSideEffects = [](Instruction *I) {
5939       if (auto *SI = dyn_cast<StoreInst>(I))
5940         return !SI->isSimple();
5941 
5942       return I->mayHaveSideEffects();
5943     };
5944 
5945     LoopProperties LP = {/* HasNoAbnormalExits */ true,
5946                          /*HasNoSideEffects*/ true};
5947 
5948     for (auto *BB : L->getBlocks())
5949       for (auto &I : *BB) {
5950         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5951           LP.HasNoAbnormalExits = false;
5952         if (HasSideEffects(&I))
5953           LP.HasNoSideEffects = false;
5954         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
5955           break; // We're already as pessimistic as we can get.
5956       }
5957 
5958     auto InsertPair = LoopPropertiesCache.insert({L, LP});
5959     assert(InsertPair.second && "We just checked!");
5960     Itr = InsertPair.first;
5961   }
5962 
5963   return Itr->second;
5964 }
5965 
5966 const SCEV *ScalarEvolution::createSCEV(Value *V) {
5967   if (!isSCEVable(V->getType()))
5968     return getUnknown(V);
5969 
5970   if (Instruction *I = dyn_cast<Instruction>(V)) {
5971     // Don't attempt to analyze instructions in blocks that aren't
5972     // reachable. Such instructions don't matter, and they aren't required
5973     // to obey basic rules for definitions dominating uses which this
5974     // analysis depends on.
5975     if (!DT.isReachableFromEntry(I->getParent()))
5976       return getUnknown(UndefValue::get(V->getType()));
5977   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
5978     return getConstant(CI);
5979   else if (isa<ConstantPointerNull>(V))
5980     return getZero(V->getType());
5981   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5982     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5983   else if (!isa<ConstantExpr>(V))
5984     return getUnknown(V);
5985 
5986   Operator *U = cast<Operator>(V);
5987   if (auto BO = MatchBinaryOp(U, DT)) {
5988     switch (BO->Opcode) {
5989     case Instruction::Add: {
5990       // The simple thing to do would be to just call getSCEV on both operands
5991       // and call getAddExpr with the result. However if we're looking at a
5992       // bunch of things all added together, this can be quite inefficient,
5993       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5994       // Instead, gather up all the operands and make a single getAddExpr call.
5995       // LLVM IR canonical form means we need only traverse the left operands.
5996       SmallVector<const SCEV *, 4> AddOps;
5997       do {
5998         if (BO->Op) {
5999           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6000             AddOps.push_back(OpSCEV);
6001             break;
6002           }
6003 
6004           // If a NUW or NSW flag can be applied to the SCEV for this
6005           // addition, then compute the SCEV for this addition by itself
6006           // with a separate call to getAddExpr. We need to do that
6007           // instead of pushing the operands of the addition onto AddOps,
6008           // since the flags are only known to apply to this particular
6009           // addition - they may not apply to other additions that can be
6010           // formed with operands from AddOps.
6011           const SCEV *RHS = getSCEV(BO->RHS);
6012           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6013           if (Flags != SCEV::FlagAnyWrap) {
6014             const SCEV *LHS = getSCEV(BO->LHS);
6015             if (BO->Opcode == Instruction::Sub)
6016               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6017             else
6018               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6019             break;
6020           }
6021         }
6022 
6023         if (BO->Opcode == Instruction::Sub)
6024           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6025         else
6026           AddOps.push_back(getSCEV(BO->RHS));
6027 
6028         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6029         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6030                        NewBO->Opcode != Instruction::Sub)) {
6031           AddOps.push_back(getSCEV(BO->LHS));
6032           break;
6033         }
6034         BO = NewBO;
6035       } while (true);
6036 
6037       return getAddExpr(AddOps);
6038     }
6039 
6040     case Instruction::Mul: {
6041       SmallVector<const SCEV *, 4> MulOps;
6042       do {
6043         if (BO->Op) {
6044           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6045             MulOps.push_back(OpSCEV);
6046             break;
6047           }
6048 
6049           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6050           if (Flags != SCEV::FlagAnyWrap) {
6051             MulOps.push_back(
6052                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6053             break;
6054           }
6055         }
6056 
6057         MulOps.push_back(getSCEV(BO->RHS));
6058         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6059         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6060           MulOps.push_back(getSCEV(BO->LHS));
6061           break;
6062         }
6063         BO = NewBO;
6064       } while (true);
6065 
6066       return getMulExpr(MulOps);
6067     }
6068     case Instruction::UDiv:
6069       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6070     case Instruction::URem:
6071       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6072     case Instruction::Sub: {
6073       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6074       if (BO->Op)
6075         Flags = getNoWrapFlagsFromUB(BO->Op);
6076       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6077     }
6078     case Instruction::And:
6079       // For an expression like x&255 that merely masks off the high bits,
6080       // use zext(trunc(x)) as the SCEV expression.
6081       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6082         if (CI->isZero())
6083           return getSCEV(BO->RHS);
6084         if (CI->isMinusOne())
6085           return getSCEV(BO->LHS);
6086         const APInt &A = CI->getValue();
6087 
6088         // Instcombine's ShrinkDemandedConstant may strip bits out of
6089         // constants, obscuring what would otherwise be a low-bits mask.
6090         // Use computeKnownBits to compute what ShrinkDemandedConstant
6091         // knew about to reconstruct a low-bits mask value.
6092         unsigned LZ = A.countLeadingZeros();
6093         unsigned TZ = A.countTrailingZeros();
6094         unsigned BitWidth = A.getBitWidth();
6095         KnownBits Known(BitWidth);
6096         computeKnownBits(BO->LHS, Known, getDataLayout(),
6097                          0, &AC, nullptr, &DT);
6098 
6099         APInt EffectiveMask =
6100             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6101         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6102           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6103           const SCEV *LHS = getSCEV(BO->LHS);
6104           const SCEV *ShiftedLHS = nullptr;
6105           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6106             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6107               // For an expression like (x * 8) & 8, simplify the multiply.
6108               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6109               unsigned GCD = std::min(MulZeros, TZ);
6110               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6111               SmallVector<const SCEV*, 4> MulOps;
6112               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6113               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6114               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6115               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6116             }
6117           }
6118           if (!ShiftedLHS)
6119             ShiftedLHS = getUDivExpr(LHS, MulCount);
6120           return getMulExpr(
6121               getZeroExtendExpr(
6122                   getTruncateExpr(ShiftedLHS,
6123                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6124                   BO->LHS->getType()),
6125               MulCount);
6126         }
6127       }
6128       break;
6129 
6130     case Instruction::Or:
6131       // If the RHS of the Or is a constant, we may have something like:
6132       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6133       // optimizations will transparently handle this case.
6134       //
6135       // In order for this transformation to be safe, the LHS must be of the
6136       // form X*(2^n) and the Or constant must be less than 2^n.
6137       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6138         const SCEV *LHS = getSCEV(BO->LHS);
6139         const APInt &CIVal = CI->getValue();
6140         if (GetMinTrailingZeros(LHS) >=
6141             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6142           // Build a plain add SCEV.
6143           return getAddExpr(LHS, getSCEV(CI),
6144                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6145         }
6146       }
6147       break;
6148 
6149     case Instruction::Xor:
6150       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6151         // If the RHS of xor is -1, then this is a not operation.
6152         if (CI->isMinusOne())
6153           return getNotSCEV(getSCEV(BO->LHS));
6154 
6155         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6156         // This is a variant of the check for xor with -1, and it handles
6157         // the case where instcombine has trimmed non-demanded bits out
6158         // of an xor with -1.
6159         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6160           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6161             if (LBO->getOpcode() == Instruction::And &&
6162                 LCI->getValue() == CI->getValue())
6163               if (const SCEVZeroExtendExpr *Z =
6164                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6165                 Type *UTy = BO->LHS->getType();
6166                 const SCEV *Z0 = Z->getOperand();
6167                 Type *Z0Ty = Z0->getType();
6168                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6169 
6170                 // If C is a low-bits mask, the zero extend is serving to
6171                 // mask off the high bits. Complement the operand and
6172                 // re-apply the zext.
6173                 if (CI->getValue().isMask(Z0TySize))
6174                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6175 
6176                 // If C is a single bit, it may be in the sign-bit position
6177                 // before the zero-extend. In this case, represent the xor
6178                 // using an add, which is equivalent, and re-apply the zext.
6179                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6180                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6181                     Trunc.isSignMask())
6182                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6183                                            UTy);
6184               }
6185       }
6186       break;
6187 
6188     case Instruction::Shl:
6189       // Turn shift left of a constant amount into a multiply.
6190       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6191         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6192 
6193         // If the shift count is not less than the bitwidth, the result of
6194         // the shift is undefined. Don't try to analyze it, because the
6195         // resolution chosen here may differ from the resolution chosen in
6196         // other parts of the compiler.
6197         if (SA->getValue().uge(BitWidth))
6198           break;
6199 
6200         // We can safely preserve the nuw flag in all cases. It's also safe to
6201         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6202         // requires special handling. It can be preserved as long as we're not
6203         // left shifting by bitwidth - 1.
6204         auto Flags = SCEV::FlagAnyWrap;
6205         if (BO->Op) {
6206           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6207           if ((MulFlags & SCEV::FlagNSW) &&
6208               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6209             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6210           if (MulFlags & SCEV::FlagNUW)
6211             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6212         }
6213 
6214         Constant *X = ConstantInt::get(
6215             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6216         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6217       }
6218       break;
6219 
6220     case Instruction::AShr: {
6221       // AShr X, C, where C is a constant.
6222       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6223       if (!CI)
6224         break;
6225 
6226       Type *OuterTy = BO->LHS->getType();
6227       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6228       // If the shift count is not less than the bitwidth, the result of
6229       // the shift is undefined. Don't try to analyze it, because the
6230       // resolution chosen here may differ from the resolution chosen in
6231       // other parts of the compiler.
6232       if (CI->getValue().uge(BitWidth))
6233         break;
6234 
6235       if (CI->isZero())
6236         return getSCEV(BO->LHS); // shift by zero --> noop
6237 
6238       uint64_t AShrAmt = CI->getZExtValue();
6239       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6240 
6241       Operator *L = dyn_cast<Operator>(BO->LHS);
6242       if (L && L->getOpcode() == Instruction::Shl) {
6243         // X = Shl A, n
6244         // Y = AShr X, m
6245         // Both n and m are constant.
6246 
6247         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6248         if (L->getOperand(1) == BO->RHS)
6249           // For a two-shift sext-inreg, i.e. n = m,
6250           // use sext(trunc(x)) as the SCEV expression.
6251           return getSignExtendExpr(
6252               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6253 
6254         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6255         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6256           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6257           if (ShlAmt > AShrAmt) {
6258             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6259             // expression. We already checked that ShlAmt < BitWidth, so
6260             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6261             // ShlAmt - AShrAmt < Amt.
6262             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6263                                             ShlAmt - AShrAmt);
6264             return getSignExtendExpr(
6265                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6266                 getConstant(Mul)), OuterTy);
6267           }
6268         }
6269       }
6270       break;
6271     }
6272     }
6273   }
6274 
6275   switch (U->getOpcode()) {
6276   case Instruction::Trunc:
6277     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6278 
6279   case Instruction::ZExt:
6280     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6281 
6282   case Instruction::SExt:
6283     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6284       // The NSW flag of a subtract does not always survive the conversion to
6285       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6286       // more likely to preserve NSW and allow later AddRec optimisations.
6287       //
6288       // NOTE: This is effectively duplicating this logic from getSignExtend:
6289       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6290       // but by that point the NSW information has potentially been lost.
6291       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6292         Type *Ty = U->getType();
6293         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6294         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6295         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6296       }
6297     }
6298     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6299 
6300   case Instruction::BitCast:
6301     // BitCasts are no-op casts so we just eliminate the cast.
6302     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6303       return getSCEV(U->getOperand(0));
6304     break;
6305 
6306   case Instruction::SDiv:
6307     // If both operands are non-negative, this is just an udiv.
6308     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6309         isKnownNonNegative(getSCEV(U->getOperand(1))))
6310       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6311     break;
6312 
6313   case Instruction::SRem:
6314     // If both operands are non-negative, this is just an urem.
6315     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6316         isKnownNonNegative(getSCEV(U->getOperand(1))))
6317       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6318     break;
6319 
6320   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6321   // lead to pointer expressions which cannot safely be expanded to GEPs,
6322   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6323   // simplifying integer expressions.
6324 
6325   case Instruction::GetElementPtr:
6326     return createNodeForGEP(cast<GEPOperator>(U));
6327 
6328   case Instruction::PHI:
6329     return createNodeForPHI(cast<PHINode>(U));
6330 
6331   case Instruction::Select:
6332     // U can also be a select constant expr, which let fall through.  Since
6333     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6334     // constant expressions cannot have instructions as operands, we'd have
6335     // returned getUnknown for a select constant expressions anyway.
6336     if (isa<Instruction>(U))
6337       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6338                                       U->getOperand(1), U->getOperand(2));
6339     break;
6340 
6341   case Instruction::Call:
6342   case Instruction::Invoke:
6343     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6344       return getSCEV(RV);
6345     break;
6346   }
6347 
6348   return getUnknown(V);
6349 }
6350 
6351 //===----------------------------------------------------------------------===//
6352 //                   Iteration Count Computation Code
6353 //
6354 
6355 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6356   if (!ExitCount)
6357     return 0;
6358 
6359   ConstantInt *ExitConst = ExitCount->getValue();
6360 
6361   // Guard against huge trip counts.
6362   if (ExitConst->getValue().getActiveBits() > 32)
6363     return 0;
6364 
6365   // In case of integer overflow, this returns 0, which is correct.
6366   return ((unsigned)ExitConst->getZExtValue()) + 1;
6367 }
6368 
6369 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6370   if (BasicBlock *ExitingBB = L->getExitingBlock())
6371     return getSmallConstantTripCount(L, ExitingBB);
6372 
6373   // No trip count information for multiple exits.
6374   return 0;
6375 }
6376 
6377 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6378                                                     BasicBlock *ExitingBlock) {
6379   assert(ExitingBlock && "Must pass a non-null exiting block!");
6380   assert(L->isLoopExiting(ExitingBlock) &&
6381          "Exiting block must actually branch out of the loop!");
6382   const SCEVConstant *ExitCount =
6383       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6384   return getConstantTripCount(ExitCount);
6385 }
6386 
6387 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6388   const auto *MaxExitCount =
6389       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6390   return getConstantTripCount(MaxExitCount);
6391 }
6392 
6393 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6394   if (BasicBlock *ExitingBB = L->getExitingBlock())
6395     return getSmallConstantTripMultiple(L, ExitingBB);
6396 
6397   // No trip multiple information for multiple exits.
6398   return 0;
6399 }
6400 
6401 /// Returns the largest constant divisor of the trip count of this loop as a
6402 /// normal unsigned value, if possible. This means that the actual trip count is
6403 /// always a multiple of the returned value (don't forget the trip count could
6404 /// very well be zero as well!).
6405 ///
6406 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6407 /// multiple of a constant (which is also the case if the trip count is simply
6408 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6409 /// if the trip count is very large (>= 2^32).
6410 ///
6411 /// As explained in the comments for getSmallConstantTripCount, this assumes
6412 /// that control exits the loop via ExitingBlock.
6413 unsigned
6414 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6415                                               BasicBlock *ExitingBlock) {
6416   assert(ExitingBlock && "Must pass a non-null exiting block!");
6417   assert(L->isLoopExiting(ExitingBlock) &&
6418          "Exiting block must actually branch out of the loop!");
6419   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6420   if (ExitCount == getCouldNotCompute())
6421     return 1;
6422 
6423   // Get the trip count from the BE count by adding 1.
6424   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6425 
6426   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6427   if (!TC)
6428     // Attempt to factor more general cases. Returns the greatest power of
6429     // two divisor. If overflow happens, the trip count expression is still
6430     // divisible by the greatest power of 2 divisor returned.
6431     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6432 
6433   ConstantInt *Result = TC->getValue();
6434 
6435   // Guard against huge trip counts (this requires checking
6436   // for zero to handle the case where the trip count == -1 and the
6437   // addition wraps).
6438   if (!Result || Result->getValue().getActiveBits() > 32 ||
6439       Result->getValue().getActiveBits() == 0)
6440     return 1;
6441 
6442   return (unsigned)Result->getZExtValue();
6443 }
6444 
6445 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6446                                           BasicBlock *ExitingBlock,
6447                                           ExitCountKind Kind) {
6448   switch (Kind) {
6449   case Exact:
6450     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6451   case ConstantMaximum:
6452     return getBackedgeTakenInfo(L).getMax(ExitingBlock, this);
6453   };
6454   llvm_unreachable("Invalid ExitCountKind!");
6455 }
6456 
6457 const SCEV *
6458 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6459                                                  SCEVUnionPredicate &Preds) {
6460   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6461 }
6462 
6463 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6464                                                    ExitCountKind Kind) {
6465   switch (Kind) {
6466   case Exact:
6467     return getBackedgeTakenInfo(L).getExact(L, this);
6468   case ConstantMaximum:
6469     return getBackedgeTakenInfo(L).getMax(this);
6470   };
6471   llvm_unreachable("Invalid ExitCountKind!");
6472 }
6473 
6474 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6475   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6476 }
6477 
6478 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6479 static void
6480 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6481   BasicBlock *Header = L->getHeader();
6482 
6483   // Push all Loop-header PHIs onto the Worklist stack.
6484   for (PHINode &PN : Header->phis())
6485     Worklist.push_back(&PN);
6486 }
6487 
6488 const ScalarEvolution::BackedgeTakenInfo &
6489 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6490   auto &BTI = getBackedgeTakenInfo(L);
6491   if (BTI.hasFullInfo())
6492     return BTI;
6493 
6494   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6495 
6496   if (!Pair.second)
6497     return Pair.first->second;
6498 
6499   BackedgeTakenInfo Result =
6500       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6501 
6502   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6503 }
6504 
6505 const ScalarEvolution::BackedgeTakenInfo &
6506 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6507   // Initially insert an invalid entry for this loop. If the insertion
6508   // succeeds, proceed to actually compute a backedge-taken count and
6509   // update the value. The temporary CouldNotCompute value tells SCEV
6510   // code elsewhere that it shouldn't attempt to request a new
6511   // backedge-taken count, which could result in infinite recursion.
6512   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6513       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6514   if (!Pair.second)
6515     return Pair.first->second;
6516 
6517   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6518   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6519   // must be cleared in this scope.
6520   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6521 
6522   // In product build, there are no usage of statistic.
6523   (void)NumTripCountsComputed;
6524   (void)NumTripCountsNotComputed;
6525 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6526   const SCEV *BEExact = Result.getExact(L, this);
6527   if (BEExact != getCouldNotCompute()) {
6528     assert(isLoopInvariant(BEExact, L) &&
6529            isLoopInvariant(Result.getMax(this), L) &&
6530            "Computed backedge-taken count isn't loop invariant for loop!");
6531     ++NumTripCountsComputed;
6532   }
6533   else if (Result.getMax(this) == getCouldNotCompute() &&
6534            isa<PHINode>(L->getHeader()->begin())) {
6535     // Only count loops that have phi nodes as not being computable.
6536     ++NumTripCountsNotComputed;
6537   }
6538 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6539 
6540   // Now that we know more about the trip count for this loop, forget any
6541   // existing SCEV values for PHI nodes in this loop since they are only
6542   // conservative estimates made without the benefit of trip count
6543   // information. This is similar to the code in forgetLoop, except that
6544   // it handles SCEVUnknown PHI nodes specially.
6545   if (Result.hasAnyInfo()) {
6546     SmallVector<Instruction *, 16> Worklist;
6547     PushLoopPHIs(L, Worklist);
6548 
6549     SmallPtrSet<Instruction *, 8> Discovered;
6550     while (!Worklist.empty()) {
6551       Instruction *I = Worklist.pop_back_val();
6552 
6553       ValueExprMapType::iterator It =
6554         ValueExprMap.find_as(static_cast<Value *>(I));
6555       if (It != ValueExprMap.end()) {
6556         const SCEV *Old = It->second;
6557 
6558         // SCEVUnknown for a PHI either means that it has an unrecognized
6559         // structure, or it's a PHI that's in the progress of being computed
6560         // by createNodeForPHI.  In the former case, additional loop trip
6561         // count information isn't going to change anything. In the later
6562         // case, createNodeForPHI will perform the necessary updates on its
6563         // own when it gets to that point.
6564         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6565           eraseValueFromMap(It->first);
6566           forgetMemoizedResults(Old);
6567         }
6568         if (PHINode *PN = dyn_cast<PHINode>(I))
6569           ConstantEvolutionLoopExitValue.erase(PN);
6570       }
6571 
6572       // Since we don't need to invalidate anything for correctness and we're
6573       // only invalidating to make SCEV's results more precise, we get to stop
6574       // early to avoid invalidating too much.  This is especially important in
6575       // cases like:
6576       //
6577       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6578       // loop0:
6579       //   %pn0 = phi
6580       //   ...
6581       // loop1:
6582       //   %pn1 = phi
6583       //   ...
6584       //
6585       // where both loop0 and loop1's backedge taken count uses the SCEV
6586       // expression for %v.  If we don't have the early stop below then in cases
6587       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6588       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6589       // count for loop1, effectively nullifying SCEV's trip count cache.
6590       for (auto *U : I->users())
6591         if (auto *I = dyn_cast<Instruction>(U)) {
6592           auto *LoopForUser = LI.getLoopFor(I->getParent());
6593           if (LoopForUser && L->contains(LoopForUser) &&
6594               Discovered.insert(I).second)
6595             Worklist.push_back(I);
6596         }
6597     }
6598   }
6599 
6600   // Re-lookup the insert position, since the call to
6601   // computeBackedgeTakenCount above could result in a
6602   // recusive call to getBackedgeTakenInfo (on a different
6603   // loop), which would invalidate the iterator computed
6604   // earlier.
6605   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6606 }
6607 
6608 void ScalarEvolution::forgetAllLoops() {
6609   // This method is intended to forget all info about loops. It should
6610   // invalidate caches as if the following happened:
6611   // - The trip counts of all loops have changed arbitrarily
6612   // - Every llvm::Value has been updated in place to produce a different
6613   // result.
6614   BackedgeTakenCounts.clear();
6615   PredicatedBackedgeTakenCounts.clear();
6616   LoopPropertiesCache.clear();
6617   ConstantEvolutionLoopExitValue.clear();
6618   ValueExprMap.clear();
6619   ValuesAtScopes.clear();
6620   LoopDispositions.clear();
6621   BlockDispositions.clear();
6622   UnsignedRanges.clear();
6623   SignedRanges.clear();
6624   ExprValueMap.clear();
6625   HasRecMap.clear();
6626   MinTrailingZerosCache.clear();
6627   PredicatedSCEVRewrites.clear();
6628 }
6629 
6630 void ScalarEvolution::forgetLoop(const Loop *L) {
6631   // Drop any stored trip count value.
6632   auto RemoveLoopFromBackedgeMap =
6633       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6634         auto BTCPos = Map.find(L);
6635         if (BTCPos != Map.end()) {
6636           BTCPos->second.clear();
6637           Map.erase(BTCPos);
6638         }
6639       };
6640 
6641   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6642   SmallVector<Instruction *, 32> Worklist;
6643   SmallPtrSet<Instruction *, 16> Visited;
6644 
6645   // Iterate over all the loops and sub-loops to drop SCEV information.
6646   while (!LoopWorklist.empty()) {
6647     auto *CurrL = LoopWorklist.pop_back_val();
6648 
6649     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6650     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6651 
6652     // Drop information about predicated SCEV rewrites for this loop.
6653     for (auto I = PredicatedSCEVRewrites.begin();
6654          I != PredicatedSCEVRewrites.end();) {
6655       std::pair<const SCEV *, const Loop *> Entry = I->first;
6656       if (Entry.second == CurrL)
6657         PredicatedSCEVRewrites.erase(I++);
6658       else
6659         ++I;
6660     }
6661 
6662     auto LoopUsersItr = LoopUsers.find(CurrL);
6663     if (LoopUsersItr != LoopUsers.end()) {
6664       for (auto *S : LoopUsersItr->second)
6665         forgetMemoizedResults(S);
6666       LoopUsers.erase(LoopUsersItr);
6667     }
6668 
6669     // Drop information about expressions based on loop-header PHIs.
6670     PushLoopPHIs(CurrL, Worklist);
6671 
6672     while (!Worklist.empty()) {
6673       Instruction *I = Worklist.pop_back_val();
6674       if (!Visited.insert(I).second)
6675         continue;
6676 
6677       ValueExprMapType::iterator It =
6678           ValueExprMap.find_as(static_cast<Value *>(I));
6679       if (It != ValueExprMap.end()) {
6680         eraseValueFromMap(It->first);
6681         forgetMemoizedResults(It->second);
6682         if (PHINode *PN = dyn_cast<PHINode>(I))
6683           ConstantEvolutionLoopExitValue.erase(PN);
6684       }
6685 
6686       PushDefUseChildren(I, Worklist);
6687     }
6688 
6689     LoopPropertiesCache.erase(CurrL);
6690     // Forget all contained loops too, to avoid dangling entries in the
6691     // ValuesAtScopes map.
6692     LoopWorklist.append(CurrL->begin(), CurrL->end());
6693   }
6694 }
6695 
6696 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6697   while (Loop *Parent = L->getParentLoop())
6698     L = Parent;
6699   forgetLoop(L);
6700 }
6701 
6702 void ScalarEvolution::forgetValue(Value *V) {
6703   Instruction *I = dyn_cast<Instruction>(V);
6704   if (!I) return;
6705 
6706   // Drop information about expressions based on loop-header PHIs.
6707   SmallVector<Instruction *, 16> Worklist;
6708   Worklist.push_back(I);
6709 
6710   SmallPtrSet<Instruction *, 8> Visited;
6711   while (!Worklist.empty()) {
6712     I = Worklist.pop_back_val();
6713     if (!Visited.insert(I).second)
6714       continue;
6715 
6716     ValueExprMapType::iterator It =
6717       ValueExprMap.find_as(static_cast<Value *>(I));
6718     if (It != ValueExprMap.end()) {
6719       eraseValueFromMap(It->first);
6720       forgetMemoizedResults(It->second);
6721       if (PHINode *PN = dyn_cast<PHINode>(I))
6722         ConstantEvolutionLoopExitValue.erase(PN);
6723     }
6724 
6725     PushDefUseChildren(I, Worklist);
6726   }
6727 }
6728 
6729 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
6730   LoopDispositions.clear();
6731 }
6732 
6733 /// Get the exact loop backedge taken count considering all loop exits. A
6734 /// computable result can only be returned for loops with all exiting blocks
6735 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6736 /// is never skipped. This is a valid assumption as long as the loop exits via
6737 /// that test. For precise results, it is the caller's responsibility to specify
6738 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6739 const SCEV *
6740 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6741                                              SCEVUnionPredicate *Preds) const {
6742   // If any exits were not computable, the loop is not computable.
6743   if (!isComplete() || ExitNotTaken.empty())
6744     return SE->getCouldNotCompute();
6745 
6746   const BasicBlock *Latch = L->getLoopLatch();
6747   // All exiting blocks we have collected must dominate the only backedge.
6748   if (!Latch)
6749     return SE->getCouldNotCompute();
6750 
6751   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6752   // count is simply a minimum out of all these calculated exit counts.
6753   SmallVector<const SCEV *, 2> Ops;
6754   for (auto &ENT : ExitNotTaken) {
6755     const SCEV *BECount = ENT.ExactNotTaken;
6756     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6757     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6758            "We should only have known counts for exiting blocks that dominate "
6759            "latch!");
6760 
6761     Ops.push_back(BECount);
6762 
6763     if (Preds && !ENT.hasAlwaysTruePredicate())
6764       Preds->add(ENT.Predicate.get());
6765 
6766     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6767            "Predicate should be always true!");
6768   }
6769 
6770   return SE->getUMinFromMismatchedTypes(Ops);
6771 }
6772 
6773 /// Get the exact not taken count for this loop exit.
6774 const SCEV *
6775 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6776                                              ScalarEvolution *SE) const {
6777   for (auto &ENT : ExitNotTaken)
6778     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6779       return ENT.ExactNotTaken;
6780 
6781   return SE->getCouldNotCompute();
6782 }
6783 
6784 const SCEV *
6785 ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock,
6786                                            ScalarEvolution *SE) const {
6787   for (auto &ENT : ExitNotTaken)
6788     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6789       return ENT.MaxNotTaken;
6790 
6791   return SE->getCouldNotCompute();
6792 }
6793 
6794 /// getMax - Get the max backedge taken count for the loop.
6795 const SCEV *
6796 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6797   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6798     return !ENT.hasAlwaysTruePredicate();
6799   };
6800 
6801   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6802     return SE->getCouldNotCompute();
6803 
6804   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6805          "No point in having a non-constant max backedge taken count!");
6806   return getMax();
6807 }
6808 
6809 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6810   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6811     return !ENT.hasAlwaysTruePredicate();
6812   };
6813   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6814 }
6815 
6816 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6817                                                     ScalarEvolution *SE) const {
6818   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6819       SE->hasOperand(getMax(), S))
6820     return true;
6821 
6822   for (auto &ENT : ExitNotTaken)
6823     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6824         SE->hasOperand(ENT.ExactNotTaken, S))
6825       return true;
6826 
6827   return false;
6828 }
6829 
6830 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6831     : ExactNotTaken(E), MaxNotTaken(E) {
6832   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6833           isa<SCEVConstant>(MaxNotTaken)) &&
6834          "No point in having a non-constant max backedge taken count!");
6835 }
6836 
6837 ScalarEvolution::ExitLimit::ExitLimit(
6838     const SCEV *E, const SCEV *M, bool MaxOrZero,
6839     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6840     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6841   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6842           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6843          "Exact is not allowed to be less precise than Max");
6844   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6845           isa<SCEVConstant>(MaxNotTaken)) &&
6846          "No point in having a non-constant max backedge taken count!");
6847   for (auto *PredSet : PredSetList)
6848     for (auto *P : *PredSet)
6849       addPredicate(P);
6850 }
6851 
6852 ScalarEvolution::ExitLimit::ExitLimit(
6853     const SCEV *E, const SCEV *M, bool MaxOrZero,
6854     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6855     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6856   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6857           isa<SCEVConstant>(MaxNotTaken)) &&
6858          "No point in having a non-constant max backedge taken count!");
6859 }
6860 
6861 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6862                                       bool MaxOrZero)
6863     : ExitLimit(E, M, MaxOrZero, None) {
6864   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6865           isa<SCEVConstant>(MaxNotTaken)) &&
6866          "No point in having a non-constant max backedge taken count!");
6867 }
6868 
6869 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6870 /// computable exit into a persistent ExitNotTakenInfo array.
6871 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6872     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6873         ExitCounts,
6874     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6875     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6876   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6877 
6878   ExitNotTaken.reserve(ExitCounts.size());
6879   std::transform(
6880       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6881       [&](const EdgeExitInfo &EEI) {
6882         BasicBlock *ExitBB = EEI.first;
6883         const ExitLimit &EL = EEI.second;
6884         if (EL.Predicates.empty())
6885           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
6886                                   nullptr);
6887 
6888         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6889         for (auto *Pred : EL.Predicates)
6890           Predicate->add(Pred);
6891 
6892         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
6893                                 std::move(Predicate));
6894       });
6895   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6896          "No point in having a non-constant max backedge taken count!");
6897 }
6898 
6899 /// Invalidate this result and free the ExitNotTakenInfo array.
6900 void ScalarEvolution::BackedgeTakenInfo::clear() {
6901   ExitNotTaken.clear();
6902 }
6903 
6904 /// Compute the number of times the backedge of the specified loop will execute.
6905 ScalarEvolution::BackedgeTakenInfo
6906 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
6907                                            bool AllowPredicates) {
6908   SmallVector<BasicBlock *, 8> ExitingBlocks;
6909   L->getExitingBlocks(ExitingBlocks);
6910 
6911   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6912 
6913   SmallVector<EdgeExitInfo, 4> ExitCounts;
6914   bool CouldComputeBECount = true;
6915   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
6916   const SCEV *MustExitMaxBECount = nullptr;
6917   const SCEV *MayExitMaxBECount = nullptr;
6918   bool MustExitMaxOrZero = false;
6919 
6920   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
6921   // and compute maxBECount.
6922   // Do a union of all the predicates here.
6923   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
6924     BasicBlock *ExitBB = ExitingBlocks[i];
6925 
6926     // We canonicalize untaken exits to br (constant), ignore them so that
6927     // proving an exit untaken doesn't negatively impact our ability to reason
6928     // about the loop as whole.
6929     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
6930       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
6931         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
6932         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
6933           continue;
6934       }
6935 
6936     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
6937 
6938     assert((AllowPredicates || EL.Predicates.empty()) &&
6939            "Predicated exit limit when predicates are not allowed!");
6940 
6941     // 1. For each exit that can be computed, add an entry to ExitCounts.
6942     // CouldComputeBECount is true only if all exits can be computed.
6943     if (EL.ExactNotTaken == getCouldNotCompute())
6944       // We couldn't compute an exact value for this exit, so
6945       // we won't be able to compute an exact value for the loop.
6946       CouldComputeBECount = false;
6947     else
6948       ExitCounts.emplace_back(ExitBB, EL);
6949 
6950     // 2. Derive the loop's MaxBECount from each exit's max number of
6951     // non-exiting iterations. Partition the loop exits into two kinds:
6952     // LoopMustExits and LoopMayExits.
6953     //
6954     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
6955     // is a LoopMayExit.  If any computable LoopMustExit is found, then
6956     // MaxBECount is the minimum EL.MaxNotTaken of computable
6957     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
6958     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
6959     // computable EL.MaxNotTaken.
6960     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
6961         DT.dominates(ExitBB, Latch)) {
6962       if (!MustExitMaxBECount) {
6963         MustExitMaxBECount = EL.MaxNotTaken;
6964         MustExitMaxOrZero = EL.MaxOrZero;
6965       } else {
6966         MustExitMaxBECount =
6967             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
6968       }
6969     } else if (MayExitMaxBECount != getCouldNotCompute()) {
6970       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
6971         MayExitMaxBECount = EL.MaxNotTaken;
6972       else {
6973         MayExitMaxBECount =
6974             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
6975       }
6976     }
6977   }
6978   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
6979     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
6980   // The loop backedge will be taken the maximum or zero times if there's
6981   // a single exit that must be taken the maximum or zero times.
6982   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
6983   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
6984                            MaxBECount, MaxOrZero);
6985 }
6986 
6987 ScalarEvolution::ExitLimit
6988 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
6989                                       bool AllowPredicates) {
6990   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
6991   // If our exiting block does not dominate the latch, then its connection with
6992   // loop's exit limit may be far from trivial.
6993   const BasicBlock *Latch = L->getLoopLatch();
6994   if (!Latch || !DT.dominates(ExitingBlock, Latch))
6995     return getCouldNotCompute();
6996 
6997   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
6998   Instruction *Term = ExitingBlock->getTerminator();
6999   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7000     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7001     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7002     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7003            "It should have one successor in loop and one exit block!");
7004     // Proceed to the next level to examine the exit condition expression.
7005     return computeExitLimitFromCond(
7006         L, BI->getCondition(), ExitIfTrue,
7007         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7008   }
7009 
7010   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7011     // For switch, make sure that there is a single exit from the loop.
7012     BasicBlock *Exit = nullptr;
7013     for (auto *SBB : successors(ExitingBlock))
7014       if (!L->contains(SBB)) {
7015         if (Exit) // Multiple exit successors.
7016           return getCouldNotCompute();
7017         Exit = SBB;
7018       }
7019     assert(Exit && "Exiting block must have at least one exit");
7020     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7021                                                 /*ControlsExit=*/IsOnlyExit);
7022   }
7023 
7024   return getCouldNotCompute();
7025 }
7026 
7027 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7028     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7029     bool ControlsExit, bool AllowPredicates) {
7030   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7031   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7032                                         ControlsExit, AllowPredicates);
7033 }
7034 
7035 Optional<ScalarEvolution::ExitLimit>
7036 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7037                                       bool ExitIfTrue, bool ControlsExit,
7038                                       bool AllowPredicates) {
7039   (void)this->L;
7040   (void)this->ExitIfTrue;
7041   (void)this->AllowPredicates;
7042 
7043   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7044          this->AllowPredicates == AllowPredicates &&
7045          "Variance in assumed invariant key components!");
7046   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7047   if (Itr == TripCountMap.end())
7048     return None;
7049   return Itr->second;
7050 }
7051 
7052 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7053                                              bool ExitIfTrue,
7054                                              bool ControlsExit,
7055                                              bool AllowPredicates,
7056                                              const ExitLimit &EL) {
7057   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7058          this->AllowPredicates == AllowPredicates &&
7059          "Variance in assumed invariant key components!");
7060 
7061   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7062   assert(InsertResult.second && "Expected successful insertion!");
7063   (void)InsertResult;
7064   (void)ExitIfTrue;
7065 }
7066 
7067 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7068     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7069     bool ControlsExit, bool AllowPredicates) {
7070 
7071   if (auto MaybeEL =
7072           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7073     return *MaybeEL;
7074 
7075   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7076                                               ControlsExit, AllowPredicates);
7077   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7078   return EL;
7079 }
7080 
7081 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7082     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7083     bool ControlsExit, bool AllowPredicates) {
7084   // Check if the controlling expression for this loop is an And or Or.
7085   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7086     if (BO->getOpcode() == Instruction::And) {
7087       // Recurse on the operands of the and.
7088       bool EitherMayExit = !ExitIfTrue;
7089       ExitLimit EL0 = computeExitLimitFromCondCached(
7090           Cache, L, BO->getOperand(0), ExitIfTrue,
7091           ControlsExit && !EitherMayExit, AllowPredicates);
7092       ExitLimit EL1 = computeExitLimitFromCondCached(
7093           Cache, L, BO->getOperand(1), ExitIfTrue,
7094           ControlsExit && !EitherMayExit, AllowPredicates);
7095       // Be robust against unsimplified IR for the form "and i1 X, true"
7096       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7097         return CI->isOne() ? EL0 : EL1;
7098       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7099         return CI->isOne() ? EL1 : EL0;
7100       const SCEV *BECount = getCouldNotCompute();
7101       const SCEV *MaxBECount = getCouldNotCompute();
7102       if (EitherMayExit) {
7103         // Both conditions must be true for the loop to continue executing.
7104         // Choose the less conservative count.
7105         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7106             EL1.ExactNotTaken == getCouldNotCompute())
7107           BECount = getCouldNotCompute();
7108         else
7109           BECount =
7110               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7111         if (EL0.MaxNotTaken == getCouldNotCompute())
7112           MaxBECount = EL1.MaxNotTaken;
7113         else if (EL1.MaxNotTaken == getCouldNotCompute())
7114           MaxBECount = EL0.MaxNotTaken;
7115         else
7116           MaxBECount =
7117               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7118       } else {
7119         // Both conditions must be true at the same time for the loop to exit.
7120         // For now, be conservative.
7121         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7122           MaxBECount = EL0.MaxNotTaken;
7123         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7124           BECount = EL0.ExactNotTaken;
7125       }
7126 
7127       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7128       // to be more aggressive when computing BECount than when computing
7129       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7130       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7131       // to not.
7132       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7133           !isa<SCEVCouldNotCompute>(BECount))
7134         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7135 
7136       return ExitLimit(BECount, MaxBECount, false,
7137                        {&EL0.Predicates, &EL1.Predicates});
7138     }
7139     if (BO->getOpcode() == Instruction::Or) {
7140       // Recurse on the operands of the or.
7141       bool EitherMayExit = ExitIfTrue;
7142       ExitLimit EL0 = computeExitLimitFromCondCached(
7143           Cache, L, BO->getOperand(0), ExitIfTrue,
7144           ControlsExit && !EitherMayExit, AllowPredicates);
7145       ExitLimit EL1 = computeExitLimitFromCondCached(
7146           Cache, L, BO->getOperand(1), ExitIfTrue,
7147           ControlsExit && !EitherMayExit, AllowPredicates);
7148       // Be robust against unsimplified IR for the form "or i1 X, true"
7149       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7150         return CI->isZero() ? EL0 : EL1;
7151       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7152         return CI->isZero() ? EL1 : EL0;
7153       const SCEV *BECount = getCouldNotCompute();
7154       const SCEV *MaxBECount = getCouldNotCompute();
7155       if (EitherMayExit) {
7156         // Both conditions must be false for the loop to continue executing.
7157         // Choose the less conservative count.
7158         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7159             EL1.ExactNotTaken == getCouldNotCompute())
7160           BECount = getCouldNotCompute();
7161         else
7162           BECount =
7163               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7164         if (EL0.MaxNotTaken == getCouldNotCompute())
7165           MaxBECount = EL1.MaxNotTaken;
7166         else if (EL1.MaxNotTaken == getCouldNotCompute())
7167           MaxBECount = EL0.MaxNotTaken;
7168         else
7169           MaxBECount =
7170               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7171       } else {
7172         // Both conditions must be false at the same time for the loop to exit.
7173         // For now, be conservative.
7174         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7175           MaxBECount = EL0.MaxNotTaken;
7176         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7177           BECount = EL0.ExactNotTaken;
7178       }
7179       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7180       // to be more aggressive when computing BECount than when computing
7181       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7182       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7183       // to not.
7184       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7185           !isa<SCEVCouldNotCompute>(BECount))
7186         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7187 
7188       return ExitLimit(BECount, MaxBECount, false,
7189                        {&EL0.Predicates, &EL1.Predicates});
7190     }
7191   }
7192 
7193   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7194   // Proceed to the next level to examine the icmp.
7195   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7196     ExitLimit EL =
7197         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7198     if (EL.hasFullInfo() || !AllowPredicates)
7199       return EL;
7200 
7201     // Try again, but use SCEV predicates this time.
7202     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7203                                     /*AllowPredicates=*/true);
7204   }
7205 
7206   // Check for a constant condition. These are normally stripped out by
7207   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7208   // preserve the CFG and is temporarily leaving constant conditions
7209   // in place.
7210   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7211     if (ExitIfTrue == !CI->getZExtValue())
7212       // The backedge is always taken.
7213       return getCouldNotCompute();
7214     else
7215       // The backedge is never taken.
7216       return getZero(CI->getType());
7217   }
7218 
7219   // If it's not an integer or pointer comparison then compute it the hard way.
7220   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7221 }
7222 
7223 ScalarEvolution::ExitLimit
7224 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7225                                           ICmpInst *ExitCond,
7226                                           bool ExitIfTrue,
7227                                           bool ControlsExit,
7228                                           bool AllowPredicates) {
7229   // If the condition was exit on true, convert the condition to exit on false
7230   ICmpInst::Predicate Pred;
7231   if (!ExitIfTrue)
7232     Pred = ExitCond->getPredicate();
7233   else
7234     Pred = ExitCond->getInversePredicate();
7235   const ICmpInst::Predicate OriginalPred = Pred;
7236 
7237   // Handle common loops like: for (X = "string"; *X; ++X)
7238   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7239     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7240       ExitLimit ItCnt =
7241         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7242       if (ItCnt.hasAnyInfo())
7243         return ItCnt;
7244     }
7245 
7246   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7247   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7248 
7249   // Try to evaluate any dependencies out of the loop.
7250   LHS = getSCEVAtScope(LHS, L);
7251   RHS = getSCEVAtScope(RHS, L);
7252 
7253   // At this point, we would like to compute how many iterations of the
7254   // loop the predicate will return true for these inputs.
7255   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7256     // If there is a loop-invariant, force it into the RHS.
7257     std::swap(LHS, RHS);
7258     Pred = ICmpInst::getSwappedPredicate(Pred);
7259   }
7260 
7261   // Simplify the operands before analyzing them.
7262   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7263 
7264   // If we have a comparison of a chrec against a constant, try to use value
7265   // ranges to answer this query.
7266   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7267     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7268       if (AddRec->getLoop() == L) {
7269         // Form the constant range.
7270         ConstantRange CompRange =
7271             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7272 
7273         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7274         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7275       }
7276 
7277   switch (Pred) {
7278   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7279     // Convert to: while (X-Y != 0)
7280     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7281                                 AllowPredicates);
7282     if (EL.hasAnyInfo()) return EL;
7283     break;
7284   }
7285   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7286     // Convert to: while (X-Y == 0)
7287     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7288     if (EL.hasAnyInfo()) return EL;
7289     break;
7290   }
7291   case ICmpInst::ICMP_SLT:
7292   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7293     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7294     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7295                                     AllowPredicates);
7296     if (EL.hasAnyInfo()) return EL;
7297     break;
7298   }
7299   case ICmpInst::ICMP_SGT:
7300   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7301     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7302     ExitLimit EL =
7303         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7304                             AllowPredicates);
7305     if (EL.hasAnyInfo()) return EL;
7306     break;
7307   }
7308   default:
7309     break;
7310   }
7311 
7312   auto *ExhaustiveCount =
7313       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7314 
7315   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7316     return ExhaustiveCount;
7317 
7318   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7319                                       ExitCond->getOperand(1), L, OriginalPred);
7320 }
7321 
7322 ScalarEvolution::ExitLimit
7323 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7324                                                       SwitchInst *Switch,
7325                                                       BasicBlock *ExitingBlock,
7326                                                       bool ControlsExit) {
7327   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7328 
7329   // Give up if the exit is the default dest of a switch.
7330   if (Switch->getDefaultDest() == ExitingBlock)
7331     return getCouldNotCompute();
7332 
7333   assert(L->contains(Switch->getDefaultDest()) &&
7334          "Default case must not exit the loop!");
7335   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7336   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7337 
7338   // while (X != Y) --> while (X-Y != 0)
7339   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7340   if (EL.hasAnyInfo())
7341     return EL;
7342 
7343   return getCouldNotCompute();
7344 }
7345 
7346 static ConstantInt *
7347 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7348                                 ScalarEvolution &SE) {
7349   const SCEV *InVal = SE.getConstant(C);
7350   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7351   assert(isa<SCEVConstant>(Val) &&
7352          "Evaluation of SCEV at constant didn't fold correctly?");
7353   return cast<SCEVConstant>(Val)->getValue();
7354 }
7355 
7356 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7357 /// compute the backedge execution count.
7358 ScalarEvolution::ExitLimit
7359 ScalarEvolution::computeLoadConstantCompareExitLimit(
7360   LoadInst *LI,
7361   Constant *RHS,
7362   const Loop *L,
7363   ICmpInst::Predicate predicate) {
7364   if (LI->isVolatile()) return getCouldNotCompute();
7365 
7366   // Check to see if the loaded pointer is a getelementptr of a global.
7367   // TODO: Use SCEV instead of manually grubbing with GEPs.
7368   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7369   if (!GEP) return getCouldNotCompute();
7370 
7371   // Make sure that it is really a constant global we are gepping, with an
7372   // initializer, and make sure the first IDX is really 0.
7373   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7374   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7375       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7376       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7377     return getCouldNotCompute();
7378 
7379   // Okay, we allow one non-constant index into the GEP instruction.
7380   Value *VarIdx = nullptr;
7381   std::vector<Constant*> Indexes;
7382   unsigned VarIdxNum = 0;
7383   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7384     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7385       Indexes.push_back(CI);
7386     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7387       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7388       VarIdx = GEP->getOperand(i);
7389       VarIdxNum = i-2;
7390       Indexes.push_back(nullptr);
7391     }
7392 
7393   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7394   if (!VarIdx)
7395     return getCouldNotCompute();
7396 
7397   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7398   // Check to see if X is a loop variant variable value now.
7399   const SCEV *Idx = getSCEV(VarIdx);
7400   Idx = getSCEVAtScope(Idx, L);
7401 
7402   // We can only recognize very limited forms of loop index expressions, in
7403   // particular, only affine AddRec's like {C1,+,C2}.
7404   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7405   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7406       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7407       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7408     return getCouldNotCompute();
7409 
7410   unsigned MaxSteps = MaxBruteForceIterations;
7411   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7412     ConstantInt *ItCst = ConstantInt::get(
7413                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7414     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7415 
7416     // Form the GEP offset.
7417     Indexes[VarIdxNum] = Val;
7418 
7419     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7420                                                          Indexes);
7421     if (!Result) break;  // Cannot compute!
7422 
7423     // Evaluate the condition for this iteration.
7424     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7425     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7426     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7427       ++NumArrayLenItCounts;
7428       return getConstant(ItCst);   // Found terminating iteration!
7429     }
7430   }
7431   return getCouldNotCompute();
7432 }
7433 
7434 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7435     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7436   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7437   if (!RHS)
7438     return getCouldNotCompute();
7439 
7440   const BasicBlock *Latch = L->getLoopLatch();
7441   if (!Latch)
7442     return getCouldNotCompute();
7443 
7444   const BasicBlock *Predecessor = L->getLoopPredecessor();
7445   if (!Predecessor)
7446     return getCouldNotCompute();
7447 
7448   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7449   // Return LHS in OutLHS and shift_opt in OutOpCode.
7450   auto MatchPositiveShift =
7451       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7452 
7453     using namespace PatternMatch;
7454 
7455     ConstantInt *ShiftAmt;
7456     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7457       OutOpCode = Instruction::LShr;
7458     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7459       OutOpCode = Instruction::AShr;
7460     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7461       OutOpCode = Instruction::Shl;
7462     else
7463       return false;
7464 
7465     return ShiftAmt->getValue().isStrictlyPositive();
7466   };
7467 
7468   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7469   //
7470   // loop:
7471   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7472   //   %iv.shifted = lshr i32 %iv, <positive constant>
7473   //
7474   // Return true on a successful match.  Return the corresponding PHI node (%iv
7475   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7476   auto MatchShiftRecurrence =
7477       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7478     Optional<Instruction::BinaryOps> PostShiftOpCode;
7479 
7480     {
7481       Instruction::BinaryOps OpC;
7482       Value *V;
7483 
7484       // If we encounter a shift instruction, "peel off" the shift operation,
7485       // and remember that we did so.  Later when we inspect %iv's backedge
7486       // value, we will make sure that the backedge value uses the same
7487       // operation.
7488       //
7489       // Note: the peeled shift operation does not have to be the same
7490       // instruction as the one feeding into the PHI's backedge value.  We only
7491       // really care about it being the same *kind* of shift instruction --
7492       // that's all that is required for our later inferences to hold.
7493       if (MatchPositiveShift(LHS, V, OpC)) {
7494         PostShiftOpCode = OpC;
7495         LHS = V;
7496       }
7497     }
7498 
7499     PNOut = dyn_cast<PHINode>(LHS);
7500     if (!PNOut || PNOut->getParent() != L->getHeader())
7501       return false;
7502 
7503     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7504     Value *OpLHS;
7505 
7506     return
7507         // The backedge value for the PHI node must be a shift by a positive
7508         // amount
7509         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7510 
7511         // of the PHI node itself
7512         OpLHS == PNOut &&
7513 
7514         // and the kind of shift should be match the kind of shift we peeled
7515         // off, if any.
7516         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7517   };
7518 
7519   PHINode *PN;
7520   Instruction::BinaryOps OpCode;
7521   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7522     return getCouldNotCompute();
7523 
7524   const DataLayout &DL = getDataLayout();
7525 
7526   // The key rationale for this optimization is that for some kinds of shift
7527   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7528   // within a finite number of iterations.  If the condition guarding the
7529   // backedge (in the sense that the backedge is taken if the condition is true)
7530   // is false for the value the shift recurrence stabilizes to, then we know
7531   // that the backedge is taken only a finite number of times.
7532 
7533   ConstantInt *StableValue = nullptr;
7534   switch (OpCode) {
7535   default:
7536     llvm_unreachable("Impossible case!");
7537 
7538   case Instruction::AShr: {
7539     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7540     // bitwidth(K) iterations.
7541     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7542     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7543                                        Predecessor->getTerminator(), &DT);
7544     auto *Ty = cast<IntegerType>(RHS->getType());
7545     if (Known.isNonNegative())
7546       StableValue = ConstantInt::get(Ty, 0);
7547     else if (Known.isNegative())
7548       StableValue = ConstantInt::get(Ty, -1, true);
7549     else
7550       return getCouldNotCompute();
7551 
7552     break;
7553   }
7554   case Instruction::LShr:
7555   case Instruction::Shl:
7556     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7557     // stabilize to 0 in at most bitwidth(K) iterations.
7558     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7559     break;
7560   }
7561 
7562   auto *Result =
7563       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7564   assert(Result->getType()->isIntegerTy(1) &&
7565          "Otherwise cannot be an operand to a branch instruction");
7566 
7567   if (Result->isZeroValue()) {
7568     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7569     const SCEV *UpperBound =
7570         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7571     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7572   }
7573 
7574   return getCouldNotCompute();
7575 }
7576 
7577 /// Return true if we can constant fold an instruction of the specified type,
7578 /// assuming that all operands were constants.
7579 static bool CanConstantFold(const Instruction *I) {
7580   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7581       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7582       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7583     return true;
7584 
7585   if (const CallInst *CI = dyn_cast<CallInst>(I))
7586     if (const Function *F = CI->getCalledFunction())
7587       return canConstantFoldCallTo(CI, F);
7588   return false;
7589 }
7590 
7591 /// Determine whether this instruction can constant evolve within this loop
7592 /// assuming its operands can all constant evolve.
7593 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7594   // An instruction outside of the loop can't be derived from a loop PHI.
7595   if (!L->contains(I)) return false;
7596 
7597   if (isa<PHINode>(I)) {
7598     // We don't currently keep track of the control flow needed to evaluate
7599     // PHIs, so we cannot handle PHIs inside of loops.
7600     return L->getHeader() == I->getParent();
7601   }
7602 
7603   // If we won't be able to constant fold this expression even if the operands
7604   // are constants, bail early.
7605   return CanConstantFold(I);
7606 }
7607 
7608 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7609 /// recursing through each instruction operand until reaching a loop header phi.
7610 static PHINode *
7611 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7612                                DenseMap<Instruction *, PHINode *> &PHIMap,
7613                                unsigned Depth) {
7614   if (Depth > MaxConstantEvolvingDepth)
7615     return nullptr;
7616 
7617   // Otherwise, we can evaluate this instruction if all of its operands are
7618   // constant or derived from a PHI node themselves.
7619   PHINode *PHI = nullptr;
7620   for (Value *Op : UseInst->operands()) {
7621     if (isa<Constant>(Op)) continue;
7622 
7623     Instruction *OpInst = dyn_cast<Instruction>(Op);
7624     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7625 
7626     PHINode *P = dyn_cast<PHINode>(OpInst);
7627     if (!P)
7628       // If this operand is already visited, reuse the prior result.
7629       // We may have P != PHI if this is the deepest point at which the
7630       // inconsistent paths meet.
7631       P = PHIMap.lookup(OpInst);
7632     if (!P) {
7633       // Recurse and memoize the results, whether a phi is found or not.
7634       // This recursive call invalidates pointers into PHIMap.
7635       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7636       PHIMap[OpInst] = P;
7637     }
7638     if (!P)
7639       return nullptr;  // Not evolving from PHI
7640     if (PHI && PHI != P)
7641       return nullptr;  // Evolving from multiple different PHIs.
7642     PHI = P;
7643   }
7644   // This is a expression evolving from a constant PHI!
7645   return PHI;
7646 }
7647 
7648 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7649 /// in the loop that V is derived from.  We allow arbitrary operations along the
7650 /// way, but the operands of an operation must either be constants or a value
7651 /// derived from a constant PHI.  If this expression does not fit with these
7652 /// constraints, return null.
7653 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7654   Instruction *I = dyn_cast<Instruction>(V);
7655   if (!I || !canConstantEvolve(I, L)) return nullptr;
7656 
7657   if (PHINode *PN = dyn_cast<PHINode>(I))
7658     return PN;
7659 
7660   // Record non-constant instructions contained by the loop.
7661   DenseMap<Instruction *, PHINode *> PHIMap;
7662   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7663 }
7664 
7665 /// EvaluateExpression - Given an expression that passes the
7666 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7667 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7668 /// reason, return null.
7669 static Constant *EvaluateExpression(Value *V, const Loop *L,
7670                                     DenseMap<Instruction *, Constant *> &Vals,
7671                                     const DataLayout &DL,
7672                                     const TargetLibraryInfo *TLI) {
7673   // Convenient constant check, but redundant for recursive calls.
7674   if (Constant *C = dyn_cast<Constant>(V)) return C;
7675   Instruction *I = dyn_cast<Instruction>(V);
7676   if (!I) return nullptr;
7677 
7678   if (Constant *C = Vals.lookup(I)) return C;
7679 
7680   // An instruction inside the loop depends on a value outside the loop that we
7681   // weren't given a mapping for, or a value such as a call inside the loop.
7682   if (!canConstantEvolve(I, L)) return nullptr;
7683 
7684   // An unmapped PHI can be due to a branch or another loop inside this loop,
7685   // or due to this not being the initial iteration through a loop where we
7686   // couldn't compute the evolution of this particular PHI last time.
7687   if (isa<PHINode>(I)) return nullptr;
7688 
7689   std::vector<Constant*> Operands(I->getNumOperands());
7690 
7691   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7692     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7693     if (!Operand) {
7694       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7695       if (!Operands[i]) return nullptr;
7696       continue;
7697     }
7698     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7699     Vals[Operand] = C;
7700     if (!C) return nullptr;
7701     Operands[i] = C;
7702   }
7703 
7704   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7705     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7706                                            Operands[1], DL, TLI);
7707   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7708     if (!LI->isVolatile())
7709       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7710   }
7711   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7712 }
7713 
7714 
7715 // If every incoming value to PN except the one for BB is a specific Constant,
7716 // return that, else return nullptr.
7717 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7718   Constant *IncomingVal = nullptr;
7719 
7720   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7721     if (PN->getIncomingBlock(i) == BB)
7722       continue;
7723 
7724     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7725     if (!CurrentVal)
7726       return nullptr;
7727 
7728     if (IncomingVal != CurrentVal) {
7729       if (IncomingVal)
7730         return nullptr;
7731       IncomingVal = CurrentVal;
7732     }
7733   }
7734 
7735   return IncomingVal;
7736 }
7737 
7738 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7739 /// in the header of its containing loop, we know the loop executes a
7740 /// constant number of times, and the PHI node is just a recurrence
7741 /// involving constants, fold it.
7742 Constant *
7743 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7744                                                    const APInt &BEs,
7745                                                    const Loop *L) {
7746   auto I = ConstantEvolutionLoopExitValue.find(PN);
7747   if (I != ConstantEvolutionLoopExitValue.end())
7748     return I->second;
7749 
7750   if (BEs.ugt(MaxBruteForceIterations))
7751     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7752 
7753   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7754 
7755   DenseMap<Instruction *, Constant *> CurrentIterVals;
7756   BasicBlock *Header = L->getHeader();
7757   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7758 
7759   BasicBlock *Latch = L->getLoopLatch();
7760   if (!Latch)
7761     return nullptr;
7762 
7763   for (PHINode &PHI : Header->phis()) {
7764     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7765       CurrentIterVals[&PHI] = StartCST;
7766   }
7767   if (!CurrentIterVals.count(PN))
7768     return RetVal = nullptr;
7769 
7770   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7771 
7772   // Execute the loop symbolically to determine the exit value.
7773   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7774          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7775 
7776   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7777   unsigned IterationNum = 0;
7778   const DataLayout &DL = getDataLayout();
7779   for (; ; ++IterationNum) {
7780     if (IterationNum == NumIterations)
7781       return RetVal = CurrentIterVals[PN];  // Got exit value!
7782 
7783     // Compute the value of the PHIs for the next iteration.
7784     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7785     DenseMap<Instruction *, Constant *> NextIterVals;
7786     Constant *NextPHI =
7787         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7788     if (!NextPHI)
7789       return nullptr;        // Couldn't evaluate!
7790     NextIterVals[PN] = NextPHI;
7791 
7792     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7793 
7794     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7795     // cease to be able to evaluate one of them or if they stop evolving,
7796     // because that doesn't necessarily prevent us from computing PN.
7797     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7798     for (const auto &I : CurrentIterVals) {
7799       PHINode *PHI = dyn_cast<PHINode>(I.first);
7800       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7801       PHIsToCompute.emplace_back(PHI, I.second);
7802     }
7803     // We use two distinct loops because EvaluateExpression may invalidate any
7804     // iterators into CurrentIterVals.
7805     for (const auto &I : PHIsToCompute) {
7806       PHINode *PHI = I.first;
7807       Constant *&NextPHI = NextIterVals[PHI];
7808       if (!NextPHI) {   // Not already computed.
7809         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7810         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7811       }
7812       if (NextPHI != I.second)
7813         StoppedEvolving = false;
7814     }
7815 
7816     // If all entries in CurrentIterVals == NextIterVals then we can stop
7817     // iterating, the loop can't continue to change.
7818     if (StoppedEvolving)
7819       return RetVal = CurrentIterVals[PN];
7820 
7821     CurrentIterVals.swap(NextIterVals);
7822   }
7823 }
7824 
7825 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7826                                                           Value *Cond,
7827                                                           bool ExitWhen) {
7828   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7829   if (!PN) return getCouldNotCompute();
7830 
7831   // If the loop is canonicalized, the PHI will have exactly two entries.
7832   // That's the only form we support here.
7833   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7834 
7835   DenseMap<Instruction *, Constant *> CurrentIterVals;
7836   BasicBlock *Header = L->getHeader();
7837   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7838 
7839   BasicBlock *Latch = L->getLoopLatch();
7840   assert(Latch && "Should follow from NumIncomingValues == 2!");
7841 
7842   for (PHINode &PHI : Header->phis()) {
7843     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7844       CurrentIterVals[&PHI] = StartCST;
7845   }
7846   if (!CurrentIterVals.count(PN))
7847     return getCouldNotCompute();
7848 
7849   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7850   // the loop symbolically to determine when the condition gets a value of
7851   // "ExitWhen".
7852   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7853   const DataLayout &DL = getDataLayout();
7854   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7855     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7856         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7857 
7858     // Couldn't symbolically evaluate.
7859     if (!CondVal) return getCouldNotCompute();
7860 
7861     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7862       ++NumBruteForceTripCountsComputed;
7863       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7864     }
7865 
7866     // Update all the PHI nodes for the next iteration.
7867     DenseMap<Instruction *, Constant *> NextIterVals;
7868 
7869     // Create a list of which PHIs we need to compute. We want to do this before
7870     // calling EvaluateExpression on them because that may invalidate iterators
7871     // into CurrentIterVals.
7872     SmallVector<PHINode *, 8> PHIsToCompute;
7873     for (const auto &I : CurrentIterVals) {
7874       PHINode *PHI = dyn_cast<PHINode>(I.first);
7875       if (!PHI || PHI->getParent() != Header) continue;
7876       PHIsToCompute.push_back(PHI);
7877     }
7878     for (PHINode *PHI : PHIsToCompute) {
7879       Constant *&NextPHI = NextIterVals[PHI];
7880       if (NextPHI) continue;    // Already computed!
7881 
7882       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7883       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7884     }
7885     CurrentIterVals.swap(NextIterVals);
7886   }
7887 
7888   // Too many iterations were needed to evaluate.
7889   return getCouldNotCompute();
7890 }
7891 
7892 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7893   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7894       ValuesAtScopes[V];
7895   // Check to see if we've folded this expression at this loop before.
7896   for (auto &LS : Values)
7897     if (LS.first == L)
7898       return LS.second ? LS.second : V;
7899 
7900   Values.emplace_back(L, nullptr);
7901 
7902   // Otherwise compute it.
7903   const SCEV *C = computeSCEVAtScope(V, L);
7904   for (auto &LS : reverse(ValuesAtScopes[V]))
7905     if (LS.first == L) {
7906       LS.second = C;
7907       break;
7908     }
7909   return C;
7910 }
7911 
7912 /// This builds up a Constant using the ConstantExpr interface.  That way, we
7913 /// will return Constants for objects which aren't represented by a
7914 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7915 /// Returns NULL if the SCEV isn't representable as a Constant.
7916 static Constant *BuildConstantFromSCEV(const SCEV *V) {
7917   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
7918     case scCouldNotCompute:
7919     case scAddRecExpr:
7920       break;
7921     case scConstant:
7922       return cast<SCEVConstant>(V)->getValue();
7923     case scUnknown:
7924       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7925     case scSignExtend: {
7926       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7927       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
7928         return ConstantExpr::getSExt(CastOp, SS->getType());
7929       break;
7930     }
7931     case scZeroExtend: {
7932       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
7933       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
7934         return ConstantExpr::getZExt(CastOp, SZ->getType());
7935       break;
7936     }
7937     case scTruncate: {
7938       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
7939       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
7940         return ConstantExpr::getTrunc(CastOp, ST->getType());
7941       break;
7942     }
7943     case scAddExpr: {
7944       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
7945       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
7946         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7947           unsigned AS = PTy->getAddressSpace();
7948           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7949           C = ConstantExpr::getBitCast(C, DestPtrTy);
7950         }
7951         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
7952           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
7953           if (!C2) return nullptr;
7954 
7955           // First pointer!
7956           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
7957             unsigned AS = C2->getType()->getPointerAddressSpace();
7958             std::swap(C, C2);
7959             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7960             // The offsets have been converted to bytes.  We can add bytes to an
7961             // i8* by GEP with the byte count in the first index.
7962             C = ConstantExpr::getBitCast(C, DestPtrTy);
7963           }
7964 
7965           // Don't bother trying to sum two pointers. We probably can't
7966           // statically compute a load that results from it anyway.
7967           if (C2->getType()->isPointerTy())
7968             return nullptr;
7969 
7970           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7971             if (PTy->getElementType()->isStructTy())
7972               C2 = ConstantExpr::getIntegerCast(
7973                   C2, Type::getInt32Ty(C->getContext()), true);
7974             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
7975           } else
7976             C = ConstantExpr::getAdd(C, C2);
7977         }
7978         return C;
7979       }
7980       break;
7981     }
7982     case scMulExpr: {
7983       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
7984       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
7985         // Don't bother with pointers at all.
7986         if (C->getType()->isPointerTy()) return nullptr;
7987         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
7988           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
7989           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
7990           C = ConstantExpr::getMul(C, C2);
7991         }
7992         return C;
7993       }
7994       break;
7995     }
7996     case scUDivExpr: {
7997       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
7998       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
7999         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8000           if (LHS->getType() == RHS->getType())
8001             return ConstantExpr::getUDiv(LHS, RHS);
8002       break;
8003     }
8004     case scSMaxExpr:
8005     case scUMaxExpr:
8006     case scSMinExpr:
8007     case scUMinExpr:
8008       break; // TODO: smax, umax, smin, umax.
8009   }
8010   return nullptr;
8011 }
8012 
8013 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8014   if (isa<SCEVConstant>(V)) return V;
8015 
8016   // If this instruction is evolved from a constant-evolving PHI, compute the
8017   // exit value from the loop without using SCEVs.
8018   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8019     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8020       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8021         const Loop *LI = this->LI[I->getParent()];
8022         // Looking for loop exit value.
8023         if (LI && LI->getParentLoop() == L &&
8024             PN->getParent() == LI->getHeader()) {
8025           // Okay, there is no closed form solution for the PHI node.  Check
8026           // to see if the loop that contains it has a known backedge-taken
8027           // count.  If so, we may be able to force computation of the exit
8028           // value.
8029           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8030           // This trivial case can show up in some degenerate cases where
8031           // the incoming IR has not yet been fully simplified.
8032           if (BackedgeTakenCount->isZero()) {
8033             Value *InitValue = nullptr;
8034             bool MultipleInitValues = false;
8035             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8036               if (!LI->contains(PN->getIncomingBlock(i))) {
8037                 if (!InitValue)
8038                   InitValue = PN->getIncomingValue(i);
8039                 else if (InitValue != PN->getIncomingValue(i)) {
8040                   MultipleInitValues = true;
8041                   break;
8042                 }
8043               }
8044             }
8045             if (!MultipleInitValues && InitValue)
8046               return getSCEV(InitValue);
8047           }
8048           // Do we have a loop invariant value flowing around the backedge
8049           // for a loop which must execute the backedge?
8050           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8051               isKnownPositive(BackedgeTakenCount) &&
8052               PN->getNumIncomingValues() == 2) {
8053 
8054             unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8055             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8056             if (LI->isLoopInvariant(BackedgeVal))
8057               return getSCEV(BackedgeVal);
8058           }
8059           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8060             // Okay, we know how many times the containing loop executes.  If
8061             // this is a constant evolving PHI node, get the final value at
8062             // the specified iteration number.
8063             Constant *RV =
8064                 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8065             if (RV) return getSCEV(RV);
8066           }
8067         }
8068 
8069         // If there is a single-input Phi, evaluate it at our scope. If we can
8070         // prove that this replacement does not break LCSSA form, use new value.
8071         if (PN->getNumOperands() == 1) {
8072           const SCEV *Input = getSCEV(PN->getOperand(0));
8073           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8074           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8075           // for the simplest case just support constants.
8076           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8077         }
8078       }
8079 
8080       // Okay, this is an expression that we cannot symbolically evaluate
8081       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8082       // the arguments into constants, and if so, try to constant propagate the
8083       // result.  This is particularly useful for computing loop exit values.
8084       if (CanConstantFold(I)) {
8085         SmallVector<Constant *, 4> Operands;
8086         bool MadeImprovement = false;
8087         for (Value *Op : I->operands()) {
8088           if (Constant *C = dyn_cast<Constant>(Op)) {
8089             Operands.push_back(C);
8090             continue;
8091           }
8092 
8093           // If any of the operands is non-constant and if they are
8094           // non-integer and non-pointer, don't even try to analyze them
8095           // with scev techniques.
8096           if (!isSCEVable(Op->getType()))
8097             return V;
8098 
8099           const SCEV *OrigV = getSCEV(Op);
8100           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8101           MadeImprovement |= OrigV != OpV;
8102 
8103           Constant *C = BuildConstantFromSCEV(OpV);
8104           if (!C) return V;
8105           if (C->getType() != Op->getType())
8106             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8107                                                               Op->getType(),
8108                                                               false),
8109                                       C, Op->getType());
8110           Operands.push_back(C);
8111         }
8112 
8113         // Check to see if getSCEVAtScope actually made an improvement.
8114         if (MadeImprovement) {
8115           Constant *C = nullptr;
8116           const DataLayout &DL = getDataLayout();
8117           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8118             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8119                                                 Operands[1], DL, &TLI);
8120           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8121             if (!LI->isVolatile())
8122               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8123           } else
8124             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8125           if (!C) return V;
8126           return getSCEV(C);
8127         }
8128       }
8129     }
8130 
8131     // This is some other type of SCEVUnknown, just return it.
8132     return V;
8133   }
8134 
8135   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8136     // Avoid performing the look-up in the common case where the specified
8137     // expression has no loop-variant portions.
8138     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8139       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8140       if (OpAtScope != Comm->getOperand(i)) {
8141         // Okay, at least one of these operands is loop variant but might be
8142         // foldable.  Build a new instance of the folded commutative expression.
8143         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8144                                             Comm->op_begin()+i);
8145         NewOps.push_back(OpAtScope);
8146 
8147         for (++i; i != e; ++i) {
8148           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8149           NewOps.push_back(OpAtScope);
8150         }
8151         if (isa<SCEVAddExpr>(Comm))
8152           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8153         if (isa<SCEVMulExpr>(Comm))
8154           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8155         if (isa<SCEVMinMaxExpr>(Comm))
8156           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8157         llvm_unreachable("Unknown commutative SCEV type!");
8158       }
8159     }
8160     // If we got here, all operands are loop invariant.
8161     return Comm;
8162   }
8163 
8164   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8165     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8166     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8167     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8168       return Div;   // must be loop invariant
8169     return getUDivExpr(LHS, RHS);
8170   }
8171 
8172   // If this is a loop recurrence for a loop that does not contain L, then we
8173   // are dealing with the final value computed by the loop.
8174   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8175     // First, attempt to evaluate each operand.
8176     // Avoid performing the look-up in the common case where the specified
8177     // expression has no loop-variant portions.
8178     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8179       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8180       if (OpAtScope == AddRec->getOperand(i))
8181         continue;
8182 
8183       // Okay, at least one of these operands is loop variant but might be
8184       // foldable.  Build a new instance of the folded commutative expression.
8185       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8186                                           AddRec->op_begin()+i);
8187       NewOps.push_back(OpAtScope);
8188       for (++i; i != e; ++i)
8189         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8190 
8191       const SCEV *FoldedRec =
8192         getAddRecExpr(NewOps, AddRec->getLoop(),
8193                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8194       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8195       // The addrec may be folded to a nonrecurrence, for example, if the
8196       // induction variable is multiplied by zero after constant folding. Go
8197       // ahead and return the folded value.
8198       if (!AddRec)
8199         return FoldedRec;
8200       break;
8201     }
8202 
8203     // If the scope is outside the addrec's loop, evaluate it by using the
8204     // loop exit value of the addrec.
8205     if (!AddRec->getLoop()->contains(L)) {
8206       // To evaluate this recurrence, we need to know how many times the AddRec
8207       // loop iterates.  Compute this now.
8208       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8209       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8210 
8211       // Then, evaluate the AddRec.
8212       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8213     }
8214 
8215     return AddRec;
8216   }
8217 
8218   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8219     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8220     if (Op == Cast->getOperand())
8221       return Cast;  // must be loop invariant
8222     return getZeroExtendExpr(Op, Cast->getType());
8223   }
8224 
8225   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8226     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8227     if (Op == Cast->getOperand())
8228       return Cast;  // must be loop invariant
8229     return getSignExtendExpr(Op, Cast->getType());
8230   }
8231 
8232   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8233     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8234     if (Op == Cast->getOperand())
8235       return Cast;  // must be loop invariant
8236     return getTruncateExpr(Op, Cast->getType());
8237   }
8238 
8239   llvm_unreachable("Unknown SCEV type!");
8240 }
8241 
8242 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8243   return getSCEVAtScope(getSCEV(V), L);
8244 }
8245 
8246 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8247   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8248     return stripInjectiveFunctions(ZExt->getOperand());
8249   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8250     return stripInjectiveFunctions(SExt->getOperand());
8251   return S;
8252 }
8253 
8254 /// Finds the minimum unsigned root of the following equation:
8255 ///
8256 ///     A * X = B (mod N)
8257 ///
8258 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8259 /// A and B isn't important.
8260 ///
8261 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8262 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8263                                                ScalarEvolution &SE) {
8264   uint32_t BW = A.getBitWidth();
8265   assert(BW == SE.getTypeSizeInBits(B->getType()));
8266   assert(A != 0 && "A must be non-zero.");
8267 
8268   // 1. D = gcd(A, N)
8269   //
8270   // The gcd of A and N may have only one prime factor: 2. The number of
8271   // trailing zeros in A is its multiplicity
8272   uint32_t Mult2 = A.countTrailingZeros();
8273   // D = 2^Mult2
8274 
8275   // 2. Check if B is divisible by D.
8276   //
8277   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8278   // is not less than multiplicity of this prime factor for D.
8279   if (SE.GetMinTrailingZeros(B) < Mult2)
8280     return SE.getCouldNotCompute();
8281 
8282   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8283   // modulo (N / D).
8284   //
8285   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8286   // (N / D) in general. The inverse itself always fits into BW bits, though,
8287   // so we immediately truncate it.
8288   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8289   APInt Mod(BW + 1, 0);
8290   Mod.setBit(BW - Mult2);  // Mod = N / D
8291   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8292 
8293   // 4. Compute the minimum unsigned root of the equation:
8294   // I * (B / D) mod (N / D)
8295   // To simplify the computation, we factor out the divide by D:
8296   // (I * B mod N) / D
8297   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8298   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8299 }
8300 
8301 /// For a given quadratic addrec, generate coefficients of the corresponding
8302 /// quadratic equation, multiplied by a common value to ensure that they are
8303 /// integers.
8304 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8305 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8306 /// were multiplied by, and BitWidth is the bit width of the original addrec
8307 /// coefficients.
8308 /// This function returns None if the addrec coefficients are not compile-
8309 /// time constants.
8310 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8311 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8312   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8313   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8314   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8315   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8316   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8317                     << *AddRec << '\n');
8318 
8319   // We currently can only solve this if the coefficients are constants.
8320   if (!LC || !MC || !NC) {
8321     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8322     return None;
8323   }
8324 
8325   APInt L = LC->getAPInt();
8326   APInt M = MC->getAPInt();
8327   APInt N = NC->getAPInt();
8328   assert(!N.isNullValue() && "This is not a quadratic addrec");
8329 
8330   unsigned BitWidth = LC->getAPInt().getBitWidth();
8331   unsigned NewWidth = BitWidth + 1;
8332   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8333                     << BitWidth << '\n');
8334   // The sign-extension (as opposed to a zero-extension) here matches the
8335   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8336   N = N.sext(NewWidth);
8337   M = M.sext(NewWidth);
8338   L = L.sext(NewWidth);
8339 
8340   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8341   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8342   //   L+M, L+2M+N, L+3M+3N, ...
8343   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8344   //
8345   // The equation Acc = 0 is then
8346   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8347   // In a quadratic form it becomes:
8348   //   N n^2 + (2M-N) n + 2L = 0.
8349 
8350   APInt A = N;
8351   APInt B = 2 * M - A;
8352   APInt C = 2 * L;
8353   APInt T = APInt(NewWidth, 2);
8354   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8355                     << "x + " << C << ", coeff bw: " << NewWidth
8356                     << ", multiplied by " << T << '\n');
8357   return std::make_tuple(A, B, C, T, BitWidth);
8358 }
8359 
8360 /// Helper function to compare optional APInts:
8361 /// (a) if X and Y both exist, return min(X, Y),
8362 /// (b) if neither X nor Y exist, return None,
8363 /// (c) if exactly one of X and Y exists, return that value.
8364 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8365   if (X.hasValue() && Y.hasValue()) {
8366     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8367     APInt XW = X->sextOrSelf(W);
8368     APInt YW = Y->sextOrSelf(W);
8369     return XW.slt(YW) ? *X : *Y;
8370   }
8371   if (!X.hasValue() && !Y.hasValue())
8372     return None;
8373   return X.hasValue() ? *X : *Y;
8374 }
8375 
8376 /// Helper function to truncate an optional APInt to a given BitWidth.
8377 /// When solving addrec-related equations, it is preferable to return a value
8378 /// that has the same bit width as the original addrec's coefficients. If the
8379 /// solution fits in the original bit width, truncate it (except for i1).
8380 /// Returning a value of a different bit width may inhibit some optimizations.
8381 ///
8382 /// In general, a solution to a quadratic equation generated from an addrec
8383 /// may require BW+1 bits, where BW is the bit width of the addrec's
8384 /// coefficients. The reason is that the coefficients of the quadratic
8385 /// equation are BW+1 bits wide (to avoid truncation when converting from
8386 /// the addrec to the equation).
8387 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8388   if (!X.hasValue())
8389     return None;
8390   unsigned W = X->getBitWidth();
8391   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8392     return X->trunc(BitWidth);
8393   return X;
8394 }
8395 
8396 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8397 /// iterations. The values L, M, N are assumed to be signed, and they
8398 /// should all have the same bit widths.
8399 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8400 /// where BW is the bit width of the addrec's coefficients.
8401 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8402 /// returned as such, otherwise the bit width of the returned value may
8403 /// be greater than BW.
8404 ///
8405 /// This function returns None if
8406 /// (a) the addrec coefficients are not constant, or
8407 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8408 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8409 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8410 static Optional<APInt>
8411 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8412   APInt A, B, C, M;
8413   unsigned BitWidth;
8414   auto T = GetQuadraticEquation(AddRec);
8415   if (!T.hasValue())
8416     return None;
8417 
8418   std::tie(A, B, C, M, BitWidth) = *T;
8419   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8420   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8421   if (!X.hasValue())
8422     return None;
8423 
8424   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8425   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8426   if (!V->isZero())
8427     return None;
8428 
8429   return TruncIfPossible(X, BitWidth);
8430 }
8431 
8432 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8433 /// iterations. The values M, N are assumed to be signed, and they
8434 /// should all have the same bit widths.
8435 /// Find the least n such that c(n) does not belong to the given range,
8436 /// while c(n-1) does.
8437 ///
8438 /// This function returns None if
8439 /// (a) the addrec coefficients are not constant, or
8440 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8441 ///     bounds of the range.
8442 static Optional<APInt>
8443 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8444                           const ConstantRange &Range, ScalarEvolution &SE) {
8445   assert(AddRec->getOperand(0)->isZero() &&
8446          "Starting value of addrec should be 0");
8447   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8448                     << Range << ", addrec " << *AddRec << '\n');
8449   // This case is handled in getNumIterationsInRange. Here we can assume that
8450   // we start in the range.
8451   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8452          "Addrec's initial value should be in range");
8453 
8454   APInt A, B, C, M;
8455   unsigned BitWidth;
8456   auto T = GetQuadraticEquation(AddRec);
8457   if (!T.hasValue())
8458     return None;
8459 
8460   // Be careful about the return value: there can be two reasons for not
8461   // returning an actual number. First, if no solutions to the equations
8462   // were found, and second, if the solutions don't leave the given range.
8463   // The first case means that the actual solution is "unknown", the second
8464   // means that it's known, but not valid. If the solution is unknown, we
8465   // cannot make any conclusions.
8466   // Return a pair: the optional solution and a flag indicating if the
8467   // solution was found.
8468   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8469     // Solve for signed overflow and unsigned overflow, pick the lower
8470     // solution.
8471     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8472                       << Bound << " (before multiplying by " << M << ")\n");
8473     Bound *= M; // The quadratic equation multiplier.
8474 
8475     Optional<APInt> SO = None;
8476     if (BitWidth > 1) {
8477       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8478                            "signed overflow\n");
8479       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8480     }
8481     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8482                          "unsigned overflow\n");
8483     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8484                                                               BitWidth+1);
8485 
8486     auto LeavesRange = [&] (const APInt &X) {
8487       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8488       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8489       if (Range.contains(V0->getValue()))
8490         return false;
8491       // X should be at least 1, so X-1 is non-negative.
8492       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8493       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8494       if (Range.contains(V1->getValue()))
8495         return true;
8496       return false;
8497     };
8498 
8499     // If SolveQuadraticEquationWrap returns None, it means that there can
8500     // be a solution, but the function failed to find it. We cannot treat it
8501     // as "no solution".
8502     if (!SO.hasValue() || !UO.hasValue())
8503       return { None, false };
8504 
8505     // Check the smaller value first to see if it leaves the range.
8506     // At this point, both SO and UO must have values.
8507     Optional<APInt> Min = MinOptional(SO, UO);
8508     if (LeavesRange(*Min))
8509       return { Min, true };
8510     Optional<APInt> Max = Min == SO ? UO : SO;
8511     if (LeavesRange(*Max))
8512       return { Max, true };
8513 
8514     // Solutions were found, but were eliminated, hence the "true".
8515     return { None, true };
8516   };
8517 
8518   std::tie(A, B, C, M, BitWidth) = *T;
8519   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8520   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8521   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8522   auto SL = SolveForBoundary(Lower);
8523   auto SU = SolveForBoundary(Upper);
8524   // If any of the solutions was unknown, no meaninigful conclusions can
8525   // be made.
8526   if (!SL.second || !SU.second)
8527     return None;
8528 
8529   // Claim: The correct solution is not some value between Min and Max.
8530   //
8531   // Justification: Assuming that Min and Max are different values, one of
8532   // them is when the first signed overflow happens, the other is when the
8533   // first unsigned overflow happens. Crossing the range boundary is only
8534   // possible via an overflow (treating 0 as a special case of it, modeling
8535   // an overflow as crossing k*2^W for some k).
8536   //
8537   // The interesting case here is when Min was eliminated as an invalid
8538   // solution, but Max was not. The argument is that if there was another
8539   // overflow between Min and Max, it would also have been eliminated if
8540   // it was considered.
8541   //
8542   // For a given boundary, it is possible to have two overflows of the same
8543   // type (signed/unsigned) without having the other type in between: this
8544   // can happen when the vertex of the parabola is between the iterations
8545   // corresponding to the overflows. This is only possible when the two
8546   // overflows cross k*2^W for the same k. In such case, if the second one
8547   // left the range (and was the first one to do so), the first overflow
8548   // would have to enter the range, which would mean that either we had left
8549   // the range before or that we started outside of it. Both of these cases
8550   // are contradictions.
8551   //
8552   // Claim: In the case where SolveForBoundary returns None, the correct
8553   // solution is not some value between the Max for this boundary and the
8554   // Min of the other boundary.
8555   //
8556   // Justification: Assume that we had such Max_A and Min_B corresponding
8557   // to range boundaries A and B and such that Max_A < Min_B. If there was
8558   // a solution between Max_A and Min_B, it would have to be caused by an
8559   // overflow corresponding to either A or B. It cannot correspond to B,
8560   // since Min_B is the first occurrence of such an overflow. If it
8561   // corresponded to A, it would have to be either a signed or an unsigned
8562   // overflow that is larger than both eliminated overflows for A. But
8563   // between the eliminated overflows and this overflow, the values would
8564   // cover the entire value space, thus crossing the other boundary, which
8565   // is a contradiction.
8566 
8567   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8568 }
8569 
8570 ScalarEvolution::ExitLimit
8571 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8572                               bool AllowPredicates) {
8573 
8574   // This is only used for loops with a "x != y" exit test. The exit condition
8575   // is now expressed as a single expression, V = x-y. So the exit test is
8576   // effectively V != 0.  We know and take advantage of the fact that this
8577   // expression only being used in a comparison by zero context.
8578 
8579   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8580   // If the value is a constant
8581   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8582     // If the value is already zero, the branch will execute zero times.
8583     if (C->getValue()->isZero()) return C;
8584     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8585   }
8586 
8587   const SCEVAddRecExpr *AddRec =
8588       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8589 
8590   if (!AddRec && AllowPredicates)
8591     // Try to make this an AddRec using runtime tests, in the first X
8592     // iterations of this loop, where X is the SCEV expression found by the
8593     // algorithm below.
8594     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8595 
8596   if (!AddRec || AddRec->getLoop() != L)
8597     return getCouldNotCompute();
8598 
8599   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8600   // the quadratic equation to solve it.
8601   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8602     // We can only use this value if the chrec ends up with an exact zero
8603     // value at this index.  When solving for "X*X != 5", for example, we
8604     // should not accept a root of 2.
8605     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8606       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8607       return ExitLimit(R, R, false, Predicates);
8608     }
8609     return getCouldNotCompute();
8610   }
8611 
8612   // Otherwise we can only handle this if it is affine.
8613   if (!AddRec->isAffine())
8614     return getCouldNotCompute();
8615 
8616   // If this is an affine expression, the execution count of this branch is
8617   // the minimum unsigned root of the following equation:
8618   //
8619   //     Start + Step*N = 0 (mod 2^BW)
8620   //
8621   // equivalent to:
8622   //
8623   //             Step*N = -Start (mod 2^BW)
8624   //
8625   // where BW is the common bit width of Start and Step.
8626 
8627   // Get the initial value for the loop.
8628   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8629   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8630 
8631   // For now we handle only constant steps.
8632   //
8633   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8634   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8635   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8636   // We have not yet seen any such cases.
8637   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8638   if (!StepC || StepC->getValue()->isZero())
8639     return getCouldNotCompute();
8640 
8641   // For positive steps (counting up until unsigned overflow):
8642   //   N = -Start/Step (as unsigned)
8643   // For negative steps (counting down to zero):
8644   //   N = Start/-Step
8645   // First compute the unsigned distance from zero in the direction of Step.
8646   bool CountDown = StepC->getAPInt().isNegative();
8647   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8648 
8649   // Handle unitary steps, which cannot wraparound.
8650   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8651   //   N = Distance (as unsigned)
8652   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8653     APInt MaxBECount = getUnsignedRangeMax(Distance);
8654 
8655     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8656     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8657     // case, and see if we can improve the bound.
8658     //
8659     // Explicitly handling this here is necessary because getUnsignedRange
8660     // isn't context-sensitive; it doesn't know that we only care about the
8661     // range inside the loop.
8662     const SCEV *Zero = getZero(Distance->getType());
8663     const SCEV *One = getOne(Distance->getType());
8664     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8665     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8666       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8667       // as "unsigned_max(Distance + 1) - 1".
8668       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8669       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8670     }
8671     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8672   }
8673 
8674   // If the condition controls loop exit (the loop exits only if the expression
8675   // is true) and the addition is no-wrap we can use unsigned divide to
8676   // compute the backedge count.  In this case, the step may not divide the
8677   // distance, but we don't care because if the condition is "missed" the loop
8678   // will have undefined behavior due to wrapping.
8679   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8680       loopHasNoAbnormalExits(AddRec->getLoop())) {
8681     const SCEV *Exact =
8682         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8683     const SCEV *Max =
8684         Exact == getCouldNotCompute()
8685             ? Exact
8686             : getConstant(getUnsignedRangeMax(Exact));
8687     return ExitLimit(Exact, Max, false, Predicates);
8688   }
8689 
8690   // Solve the general equation.
8691   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8692                                                getNegativeSCEV(Start), *this);
8693   const SCEV *M = E == getCouldNotCompute()
8694                       ? E
8695                       : getConstant(getUnsignedRangeMax(E));
8696   return ExitLimit(E, M, false, Predicates);
8697 }
8698 
8699 ScalarEvolution::ExitLimit
8700 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8701   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8702   // handle them yet except for the trivial case.  This could be expanded in the
8703   // future as needed.
8704 
8705   // If the value is a constant, check to see if it is known to be non-zero
8706   // already.  If so, the backedge will execute zero times.
8707   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8708     if (!C->getValue()->isZero())
8709       return getZero(C->getType());
8710     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8711   }
8712 
8713   // We could implement others, but I really doubt anyone writes loops like
8714   // this, and if they did, they would already be constant folded.
8715   return getCouldNotCompute();
8716 }
8717 
8718 std::pair<BasicBlock *, BasicBlock *>
8719 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8720   // If the block has a unique predecessor, then there is no path from the
8721   // predecessor to the block that does not go through the direct edge
8722   // from the predecessor to the block.
8723   if (BasicBlock *Pred = BB->getSinglePredecessor())
8724     return {Pred, BB};
8725 
8726   // A loop's header is defined to be a block that dominates the loop.
8727   // If the header has a unique predecessor outside the loop, it must be
8728   // a block that has exactly one successor that can reach the loop.
8729   if (Loop *L = LI.getLoopFor(BB))
8730     return {L->getLoopPredecessor(), L->getHeader()};
8731 
8732   return {nullptr, nullptr};
8733 }
8734 
8735 /// SCEV structural equivalence is usually sufficient for testing whether two
8736 /// expressions are equal, however for the purposes of looking for a condition
8737 /// guarding a loop, it can be useful to be a little more general, since a
8738 /// front-end may have replicated the controlling expression.
8739 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8740   // Quick check to see if they are the same SCEV.
8741   if (A == B) return true;
8742 
8743   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8744     // Not all instructions that are "identical" compute the same value.  For
8745     // instance, two distinct alloca instructions allocating the same type are
8746     // identical and do not read memory; but compute distinct values.
8747     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8748   };
8749 
8750   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8751   // two different instructions with the same value. Check for this case.
8752   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8753     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8754       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8755         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8756           if (ComputesEqualValues(AI, BI))
8757             return true;
8758 
8759   // Otherwise assume they may have a different value.
8760   return false;
8761 }
8762 
8763 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8764                                            const SCEV *&LHS, const SCEV *&RHS,
8765                                            unsigned Depth) {
8766   bool Changed = false;
8767   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8768   // '0 != 0'.
8769   auto TrivialCase = [&](bool TriviallyTrue) {
8770     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8771     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8772     return true;
8773   };
8774   // If we hit the max recursion limit bail out.
8775   if (Depth >= 3)
8776     return false;
8777 
8778   // Canonicalize a constant to the right side.
8779   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8780     // Check for both operands constant.
8781     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8782       if (ConstantExpr::getICmp(Pred,
8783                                 LHSC->getValue(),
8784                                 RHSC->getValue())->isNullValue())
8785         return TrivialCase(false);
8786       else
8787         return TrivialCase(true);
8788     }
8789     // Otherwise swap the operands to put the constant on the right.
8790     std::swap(LHS, RHS);
8791     Pred = ICmpInst::getSwappedPredicate(Pred);
8792     Changed = true;
8793   }
8794 
8795   // If we're comparing an addrec with a value which is loop-invariant in the
8796   // addrec's loop, put the addrec on the left. Also make a dominance check,
8797   // as both operands could be addrecs loop-invariant in each other's loop.
8798   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8799     const Loop *L = AR->getLoop();
8800     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8801       std::swap(LHS, RHS);
8802       Pred = ICmpInst::getSwappedPredicate(Pred);
8803       Changed = true;
8804     }
8805   }
8806 
8807   // If there's a constant operand, canonicalize comparisons with boundary
8808   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8809   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8810     const APInt &RA = RC->getAPInt();
8811 
8812     bool SimplifiedByConstantRange = false;
8813 
8814     if (!ICmpInst::isEquality(Pred)) {
8815       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8816       if (ExactCR.isFullSet())
8817         return TrivialCase(true);
8818       else if (ExactCR.isEmptySet())
8819         return TrivialCase(false);
8820 
8821       APInt NewRHS;
8822       CmpInst::Predicate NewPred;
8823       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8824           ICmpInst::isEquality(NewPred)) {
8825         // We were able to convert an inequality to an equality.
8826         Pred = NewPred;
8827         RHS = getConstant(NewRHS);
8828         Changed = SimplifiedByConstantRange = true;
8829       }
8830     }
8831 
8832     if (!SimplifiedByConstantRange) {
8833       switch (Pred) {
8834       default:
8835         break;
8836       case ICmpInst::ICMP_EQ:
8837       case ICmpInst::ICMP_NE:
8838         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8839         if (!RA)
8840           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8841             if (const SCEVMulExpr *ME =
8842                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8843               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8844                   ME->getOperand(0)->isAllOnesValue()) {
8845                 RHS = AE->getOperand(1);
8846                 LHS = ME->getOperand(1);
8847                 Changed = true;
8848               }
8849         break;
8850 
8851 
8852         // The "Should have been caught earlier!" messages refer to the fact
8853         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8854         // should have fired on the corresponding cases, and canonicalized the
8855         // check to trivial case.
8856 
8857       case ICmpInst::ICMP_UGE:
8858         assert(!RA.isMinValue() && "Should have been caught earlier!");
8859         Pred = ICmpInst::ICMP_UGT;
8860         RHS = getConstant(RA - 1);
8861         Changed = true;
8862         break;
8863       case ICmpInst::ICMP_ULE:
8864         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8865         Pred = ICmpInst::ICMP_ULT;
8866         RHS = getConstant(RA + 1);
8867         Changed = true;
8868         break;
8869       case ICmpInst::ICMP_SGE:
8870         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8871         Pred = ICmpInst::ICMP_SGT;
8872         RHS = getConstant(RA - 1);
8873         Changed = true;
8874         break;
8875       case ICmpInst::ICMP_SLE:
8876         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8877         Pred = ICmpInst::ICMP_SLT;
8878         RHS = getConstant(RA + 1);
8879         Changed = true;
8880         break;
8881       }
8882     }
8883   }
8884 
8885   // Check for obvious equality.
8886   if (HasSameValue(LHS, RHS)) {
8887     if (ICmpInst::isTrueWhenEqual(Pred))
8888       return TrivialCase(true);
8889     if (ICmpInst::isFalseWhenEqual(Pred))
8890       return TrivialCase(false);
8891   }
8892 
8893   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8894   // adding or subtracting 1 from one of the operands.
8895   switch (Pred) {
8896   case ICmpInst::ICMP_SLE:
8897     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8898       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8899                        SCEV::FlagNSW);
8900       Pred = ICmpInst::ICMP_SLT;
8901       Changed = true;
8902     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8903       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8904                        SCEV::FlagNSW);
8905       Pred = ICmpInst::ICMP_SLT;
8906       Changed = true;
8907     }
8908     break;
8909   case ICmpInst::ICMP_SGE:
8910     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8911       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8912                        SCEV::FlagNSW);
8913       Pred = ICmpInst::ICMP_SGT;
8914       Changed = true;
8915     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
8916       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8917                        SCEV::FlagNSW);
8918       Pred = ICmpInst::ICMP_SGT;
8919       Changed = true;
8920     }
8921     break;
8922   case ICmpInst::ICMP_ULE:
8923     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
8924       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8925                        SCEV::FlagNUW);
8926       Pred = ICmpInst::ICMP_ULT;
8927       Changed = true;
8928     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
8929       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
8930       Pred = ICmpInst::ICMP_ULT;
8931       Changed = true;
8932     }
8933     break;
8934   case ICmpInst::ICMP_UGE:
8935     if (!getUnsignedRangeMin(RHS).isMinValue()) {
8936       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
8937       Pred = ICmpInst::ICMP_UGT;
8938       Changed = true;
8939     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
8940       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8941                        SCEV::FlagNUW);
8942       Pred = ICmpInst::ICMP_UGT;
8943       Changed = true;
8944     }
8945     break;
8946   default:
8947     break;
8948   }
8949 
8950   // TODO: More simplifications are possible here.
8951 
8952   // Recursively simplify until we either hit a recursion limit or nothing
8953   // changes.
8954   if (Changed)
8955     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
8956 
8957   return Changed;
8958 }
8959 
8960 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
8961   return getSignedRangeMax(S).isNegative();
8962 }
8963 
8964 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
8965   return getSignedRangeMin(S).isStrictlyPositive();
8966 }
8967 
8968 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
8969   return !getSignedRangeMin(S).isNegative();
8970 }
8971 
8972 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
8973   return !getSignedRangeMax(S).isStrictlyPositive();
8974 }
8975 
8976 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
8977   return isKnownNegative(S) || isKnownPositive(S);
8978 }
8979 
8980 std::pair<const SCEV *, const SCEV *>
8981 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
8982   // Compute SCEV on entry of loop L.
8983   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
8984   if (Start == getCouldNotCompute())
8985     return { Start, Start };
8986   // Compute post increment SCEV for loop L.
8987   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
8988   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
8989   return { Start, PostInc };
8990 }
8991 
8992 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
8993                                           const SCEV *LHS, const SCEV *RHS) {
8994   // First collect all loops.
8995   SmallPtrSet<const Loop *, 8> LoopsUsed;
8996   getUsedLoops(LHS, LoopsUsed);
8997   getUsedLoops(RHS, LoopsUsed);
8998 
8999   if (LoopsUsed.empty())
9000     return false;
9001 
9002   // Domination relationship must be a linear order on collected loops.
9003 #ifndef NDEBUG
9004   for (auto *L1 : LoopsUsed)
9005     for (auto *L2 : LoopsUsed)
9006       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9007               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9008              "Domination relationship is not a linear order");
9009 #endif
9010 
9011   const Loop *MDL =
9012       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9013                         [&](const Loop *L1, const Loop *L2) {
9014          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9015        });
9016 
9017   // Get init and post increment value for LHS.
9018   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9019   // if LHS contains unknown non-invariant SCEV then bail out.
9020   if (SplitLHS.first == getCouldNotCompute())
9021     return false;
9022   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9023   // Get init and post increment value for RHS.
9024   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9025   // if RHS contains unknown non-invariant SCEV then bail out.
9026   if (SplitRHS.first == getCouldNotCompute())
9027     return false;
9028   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9029   // It is possible that init SCEV contains an invariant load but it does
9030   // not dominate MDL and is not available at MDL loop entry, so we should
9031   // check it here.
9032   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9033       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9034     return false;
9035 
9036   // It seems backedge guard check is faster than entry one so in some cases
9037   // it can speed up whole estimation by short circuit
9038   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9039                                      SplitRHS.second) &&
9040          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9041 }
9042 
9043 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9044                                        const SCEV *LHS, const SCEV *RHS) {
9045   // Canonicalize the inputs first.
9046   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9047 
9048   if (isKnownViaInduction(Pred, LHS, RHS))
9049     return true;
9050 
9051   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9052     return true;
9053 
9054   // Otherwise see what can be done with some simple reasoning.
9055   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9056 }
9057 
9058 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9059                                               const SCEVAddRecExpr *LHS,
9060                                               const SCEV *RHS) {
9061   const Loop *L = LHS->getLoop();
9062   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9063          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9064 }
9065 
9066 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9067                                            ICmpInst::Predicate Pred,
9068                                            bool &Increasing) {
9069   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9070 
9071 #ifndef NDEBUG
9072   // Verify an invariant: inverting the predicate should turn a monotonically
9073   // increasing change to a monotonically decreasing one, and vice versa.
9074   bool IncreasingSwapped;
9075   bool ResultSwapped = isMonotonicPredicateImpl(
9076       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9077 
9078   assert(Result == ResultSwapped && "should be able to analyze both!");
9079   if (ResultSwapped)
9080     assert(Increasing == !IncreasingSwapped &&
9081            "monotonicity should flip as we flip the predicate");
9082 #endif
9083 
9084   return Result;
9085 }
9086 
9087 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9088                                                ICmpInst::Predicate Pred,
9089                                                bool &Increasing) {
9090 
9091   // A zero step value for LHS means the induction variable is essentially a
9092   // loop invariant value. We don't really depend on the predicate actually
9093   // flipping from false to true (for increasing predicates, and the other way
9094   // around for decreasing predicates), all we care about is that *if* the
9095   // predicate changes then it only changes from false to true.
9096   //
9097   // A zero step value in itself is not very useful, but there may be places
9098   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9099   // as general as possible.
9100 
9101   switch (Pred) {
9102   default:
9103     return false; // Conservative answer
9104 
9105   case ICmpInst::ICMP_UGT:
9106   case ICmpInst::ICMP_UGE:
9107   case ICmpInst::ICMP_ULT:
9108   case ICmpInst::ICMP_ULE:
9109     if (!LHS->hasNoUnsignedWrap())
9110       return false;
9111 
9112     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9113     return true;
9114 
9115   case ICmpInst::ICMP_SGT:
9116   case ICmpInst::ICMP_SGE:
9117   case ICmpInst::ICMP_SLT:
9118   case ICmpInst::ICMP_SLE: {
9119     if (!LHS->hasNoSignedWrap())
9120       return false;
9121 
9122     const SCEV *Step = LHS->getStepRecurrence(*this);
9123 
9124     if (isKnownNonNegative(Step)) {
9125       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9126       return true;
9127     }
9128 
9129     if (isKnownNonPositive(Step)) {
9130       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9131       return true;
9132     }
9133 
9134     return false;
9135   }
9136 
9137   }
9138 
9139   llvm_unreachable("switch has default clause!");
9140 }
9141 
9142 bool ScalarEvolution::isLoopInvariantPredicate(
9143     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9144     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9145     const SCEV *&InvariantRHS) {
9146 
9147   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9148   if (!isLoopInvariant(RHS, L)) {
9149     if (!isLoopInvariant(LHS, L))
9150       return false;
9151 
9152     std::swap(LHS, RHS);
9153     Pred = ICmpInst::getSwappedPredicate(Pred);
9154   }
9155 
9156   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9157   if (!ArLHS || ArLHS->getLoop() != L)
9158     return false;
9159 
9160   bool Increasing;
9161   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9162     return false;
9163 
9164   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9165   // true as the loop iterates, and the backedge is control dependent on
9166   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9167   //
9168   //   * if the predicate was false in the first iteration then the predicate
9169   //     is never evaluated again, since the loop exits without taking the
9170   //     backedge.
9171   //   * if the predicate was true in the first iteration then it will
9172   //     continue to be true for all future iterations since it is
9173   //     monotonically increasing.
9174   //
9175   // For both the above possibilities, we can replace the loop varying
9176   // predicate with its value on the first iteration of the loop (which is
9177   // loop invariant).
9178   //
9179   // A similar reasoning applies for a monotonically decreasing predicate, by
9180   // replacing true with false and false with true in the above two bullets.
9181 
9182   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9183 
9184   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9185     return false;
9186 
9187   InvariantPred = Pred;
9188   InvariantLHS = ArLHS->getStart();
9189   InvariantRHS = RHS;
9190   return true;
9191 }
9192 
9193 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9194     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9195   if (HasSameValue(LHS, RHS))
9196     return ICmpInst::isTrueWhenEqual(Pred);
9197 
9198   // This code is split out from isKnownPredicate because it is called from
9199   // within isLoopEntryGuardedByCond.
9200 
9201   auto CheckRanges =
9202       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9203     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9204         .contains(RangeLHS);
9205   };
9206 
9207   // The check at the top of the function catches the case where the values are
9208   // known to be equal.
9209   if (Pred == CmpInst::ICMP_EQ)
9210     return false;
9211 
9212   if (Pred == CmpInst::ICMP_NE)
9213     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9214            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9215            isKnownNonZero(getMinusSCEV(LHS, RHS));
9216 
9217   if (CmpInst::isSigned(Pred))
9218     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9219 
9220   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9221 }
9222 
9223 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9224                                                     const SCEV *LHS,
9225                                                     const SCEV *RHS) {
9226   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9227   // Return Y via OutY.
9228   auto MatchBinaryAddToConst =
9229       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9230              SCEV::NoWrapFlags ExpectedFlags) {
9231     const SCEV *NonConstOp, *ConstOp;
9232     SCEV::NoWrapFlags FlagsPresent;
9233 
9234     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9235         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9236       return false;
9237 
9238     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9239     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9240   };
9241 
9242   APInt C;
9243 
9244   switch (Pred) {
9245   default:
9246     break;
9247 
9248   case ICmpInst::ICMP_SGE:
9249     std::swap(LHS, RHS);
9250     LLVM_FALLTHROUGH;
9251   case ICmpInst::ICMP_SLE:
9252     // X s<= (X + C)<nsw> if C >= 0
9253     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9254       return true;
9255 
9256     // (X + C)<nsw> s<= X if C <= 0
9257     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9258         !C.isStrictlyPositive())
9259       return true;
9260     break;
9261 
9262   case ICmpInst::ICMP_SGT:
9263     std::swap(LHS, RHS);
9264     LLVM_FALLTHROUGH;
9265   case ICmpInst::ICMP_SLT:
9266     // X s< (X + C)<nsw> if C > 0
9267     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9268         C.isStrictlyPositive())
9269       return true;
9270 
9271     // (X + C)<nsw> s< X if C < 0
9272     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9273       return true;
9274     break;
9275   }
9276 
9277   return false;
9278 }
9279 
9280 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9281                                                    const SCEV *LHS,
9282                                                    const SCEV *RHS) {
9283   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9284     return false;
9285 
9286   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9287   // the stack can result in exponential time complexity.
9288   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9289 
9290   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9291   //
9292   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9293   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9294   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9295   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9296   // use isKnownPredicate later if needed.
9297   return isKnownNonNegative(RHS) &&
9298          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9299          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9300 }
9301 
9302 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9303                                         ICmpInst::Predicate Pred,
9304                                         const SCEV *LHS, const SCEV *RHS) {
9305   // No need to even try if we know the module has no guards.
9306   if (!HasGuards)
9307     return false;
9308 
9309   return any_of(*BB, [&](Instruction &I) {
9310     using namespace llvm::PatternMatch;
9311 
9312     Value *Condition;
9313     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9314                          m_Value(Condition))) &&
9315            isImpliedCond(Pred, LHS, RHS, Condition, false);
9316   });
9317 }
9318 
9319 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9320 /// protected by a conditional between LHS and RHS.  This is used to
9321 /// to eliminate casts.
9322 bool
9323 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9324                                              ICmpInst::Predicate Pred,
9325                                              const SCEV *LHS, const SCEV *RHS) {
9326   // Interpret a null as meaning no loop, where there is obviously no guard
9327   // (interprocedural conditions notwithstanding).
9328   if (!L) return true;
9329 
9330   if (VerifyIR)
9331     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9332            "This cannot be done on broken IR!");
9333 
9334 
9335   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9336     return true;
9337 
9338   BasicBlock *Latch = L->getLoopLatch();
9339   if (!Latch)
9340     return false;
9341 
9342   BranchInst *LoopContinuePredicate =
9343     dyn_cast<BranchInst>(Latch->getTerminator());
9344   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9345       isImpliedCond(Pred, LHS, RHS,
9346                     LoopContinuePredicate->getCondition(),
9347                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9348     return true;
9349 
9350   // We don't want more than one activation of the following loops on the stack
9351   // -- that can lead to O(n!) time complexity.
9352   if (WalkingBEDominatingConds)
9353     return false;
9354 
9355   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9356 
9357   // See if we can exploit a trip count to prove the predicate.
9358   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9359   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9360   if (LatchBECount != getCouldNotCompute()) {
9361     // We know that Latch branches back to the loop header exactly
9362     // LatchBECount times.  This means the backdege condition at Latch is
9363     // equivalent to  "{0,+,1} u< LatchBECount".
9364     Type *Ty = LatchBECount->getType();
9365     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9366     const SCEV *LoopCounter =
9367       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9368     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9369                       LatchBECount))
9370       return true;
9371   }
9372 
9373   // Check conditions due to any @llvm.assume intrinsics.
9374   for (auto &AssumeVH : AC.assumptions()) {
9375     if (!AssumeVH)
9376       continue;
9377     auto *CI = cast<CallInst>(AssumeVH);
9378     if (!DT.dominates(CI, Latch->getTerminator()))
9379       continue;
9380 
9381     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9382       return true;
9383   }
9384 
9385   // If the loop is not reachable from the entry block, we risk running into an
9386   // infinite loop as we walk up into the dom tree.  These loops do not matter
9387   // anyway, so we just return a conservative answer when we see them.
9388   if (!DT.isReachableFromEntry(L->getHeader()))
9389     return false;
9390 
9391   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9392     return true;
9393 
9394   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9395        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9396     assert(DTN && "should reach the loop header before reaching the root!");
9397 
9398     BasicBlock *BB = DTN->getBlock();
9399     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9400       return true;
9401 
9402     BasicBlock *PBB = BB->getSinglePredecessor();
9403     if (!PBB)
9404       continue;
9405 
9406     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9407     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9408       continue;
9409 
9410     Value *Condition = ContinuePredicate->getCondition();
9411 
9412     // If we have an edge `E` within the loop body that dominates the only
9413     // latch, the condition guarding `E` also guards the backedge.  This
9414     // reasoning works only for loops with a single latch.
9415 
9416     BasicBlockEdge DominatingEdge(PBB, BB);
9417     if (DominatingEdge.isSingleEdge()) {
9418       // We're constructively (and conservatively) enumerating edges within the
9419       // loop body that dominate the latch.  The dominator tree better agree
9420       // with us on this:
9421       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9422 
9423       if (isImpliedCond(Pred, LHS, RHS, Condition,
9424                         BB != ContinuePredicate->getSuccessor(0)))
9425         return true;
9426     }
9427   }
9428 
9429   return false;
9430 }
9431 
9432 bool
9433 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9434                                           ICmpInst::Predicate Pred,
9435                                           const SCEV *LHS, const SCEV *RHS) {
9436   // Interpret a null as meaning no loop, where there is obviously no guard
9437   // (interprocedural conditions notwithstanding).
9438   if (!L) return false;
9439 
9440   if (VerifyIR)
9441     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9442            "This cannot be done on broken IR!");
9443 
9444   // Both LHS and RHS must be available at loop entry.
9445   assert(isAvailableAtLoopEntry(LHS, L) &&
9446          "LHS is not available at Loop Entry");
9447   assert(isAvailableAtLoopEntry(RHS, L) &&
9448          "RHS is not available at Loop Entry");
9449 
9450   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9451     return true;
9452 
9453   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9454   // the facts (a >= b && a != b) separately. A typical situation is when the
9455   // non-strict comparison is known from ranges and non-equality is known from
9456   // dominating predicates. If we are proving strict comparison, we always try
9457   // to prove non-equality and non-strict comparison separately.
9458   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9459   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9460   bool ProvedNonStrictComparison = false;
9461   bool ProvedNonEquality = false;
9462 
9463   if (ProvingStrictComparison) {
9464     ProvedNonStrictComparison =
9465         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9466     ProvedNonEquality =
9467         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9468     if (ProvedNonStrictComparison && ProvedNonEquality)
9469       return true;
9470   }
9471 
9472   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9473   auto ProveViaGuard = [&](BasicBlock *Block) {
9474     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9475       return true;
9476     if (ProvingStrictComparison) {
9477       if (!ProvedNonStrictComparison)
9478         ProvedNonStrictComparison =
9479             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9480       if (!ProvedNonEquality)
9481         ProvedNonEquality =
9482             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9483       if (ProvedNonStrictComparison && ProvedNonEquality)
9484         return true;
9485     }
9486     return false;
9487   };
9488 
9489   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9490   auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9491     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9492       return true;
9493     if (ProvingStrictComparison) {
9494       if (!ProvedNonStrictComparison)
9495         ProvedNonStrictComparison =
9496             isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9497       if (!ProvedNonEquality)
9498         ProvedNonEquality =
9499             isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9500       if (ProvedNonStrictComparison && ProvedNonEquality)
9501         return true;
9502     }
9503     return false;
9504   };
9505 
9506   // Starting at the loop predecessor, climb up the predecessor chain, as long
9507   // as there are predecessors that can be found that have unique successors
9508   // leading to the original header.
9509   for (std::pair<BasicBlock *, BasicBlock *>
9510          Pair(L->getLoopPredecessor(), L->getHeader());
9511        Pair.first;
9512        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9513 
9514     if (ProveViaGuard(Pair.first))
9515       return true;
9516 
9517     BranchInst *LoopEntryPredicate =
9518       dyn_cast<BranchInst>(Pair.first->getTerminator());
9519     if (!LoopEntryPredicate ||
9520         LoopEntryPredicate->isUnconditional())
9521       continue;
9522 
9523     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9524                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9525       return true;
9526   }
9527 
9528   // Check conditions due to any @llvm.assume intrinsics.
9529   for (auto &AssumeVH : AC.assumptions()) {
9530     if (!AssumeVH)
9531       continue;
9532     auto *CI = cast<CallInst>(AssumeVH);
9533     if (!DT.dominates(CI, L->getHeader()))
9534       continue;
9535 
9536     if (ProveViaCond(CI->getArgOperand(0), false))
9537       return true;
9538   }
9539 
9540   return false;
9541 }
9542 
9543 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9544                                     const SCEV *LHS, const SCEV *RHS,
9545                                     Value *FoundCondValue,
9546                                     bool Inverse) {
9547   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9548     return false;
9549 
9550   auto ClearOnExit =
9551       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9552 
9553   // Recursively handle And and Or conditions.
9554   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9555     if (BO->getOpcode() == Instruction::And) {
9556       if (!Inverse)
9557         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9558                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9559     } else if (BO->getOpcode() == Instruction::Or) {
9560       if (Inverse)
9561         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9562                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9563     }
9564   }
9565 
9566   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9567   if (!ICI) return false;
9568 
9569   // Now that we found a conditional branch that dominates the loop or controls
9570   // the loop latch. Check to see if it is the comparison we are looking for.
9571   ICmpInst::Predicate FoundPred;
9572   if (Inverse)
9573     FoundPred = ICI->getInversePredicate();
9574   else
9575     FoundPred = ICI->getPredicate();
9576 
9577   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9578   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9579 
9580   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9581 }
9582 
9583 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9584                                     const SCEV *RHS,
9585                                     ICmpInst::Predicate FoundPred,
9586                                     const SCEV *FoundLHS,
9587                                     const SCEV *FoundRHS) {
9588   // Balance the types.
9589   if (getTypeSizeInBits(LHS->getType()) <
9590       getTypeSizeInBits(FoundLHS->getType())) {
9591     if (CmpInst::isSigned(Pred)) {
9592       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9593       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9594     } else {
9595       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9596       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9597     }
9598   } else if (getTypeSizeInBits(LHS->getType()) >
9599       getTypeSizeInBits(FoundLHS->getType())) {
9600     if (CmpInst::isSigned(FoundPred)) {
9601       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9602       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9603     } else {
9604       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9605       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9606     }
9607   }
9608 
9609   // Canonicalize the query to match the way instcombine will have
9610   // canonicalized the comparison.
9611   if (SimplifyICmpOperands(Pred, LHS, RHS))
9612     if (LHS == RHS)
9613       return CmpInst::isTrueWhenEqual(Pred);
9614   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9615     if (FoundLHS == FoundRHS)
9616       return CmpInst::isFalseWhenEqual(FoundPred);
9617 
9618   // Check to see if we can make the LHS or RHS match.
9619   if (LHS == FoundRHS || RHS == FoundLHS) {
9620     if (isa<SCEVConstant>(RHS)) {
9621       std::swap(FoundLHS, FoundRHS);
9622       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9623     } else {
9624       std::swap(LHS, RHS);
9625       Pred = ICmpInst::getSwappedPredicate(Pred);
9626     }
9627   }
9628 
9629   // Check whether the found predicate is the same as the desired predicate.
9630   if (FoundPred == Pred)
9631     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9632 
9633   // Check whether swapping the found predicate makes it the same as the
9634   // desired predicate.
9635   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9636     if (isa<SCEVConstant>(RHS))
9637       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9638     else
9639       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9640                                    RHS, LHS, FoundLHS, FoundRHS);
9641   }
9642 
9643   // Unsigned comparison is the same as signed comparison when both the operands
9644   // are non-negative.
9645   if (CmpInst::isUnsigned(FoundPred) &&
9646       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9647       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9648     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9649 
9650   // Check if we can make progress by sharpening ranges.
9651   if (FoundPred == ICmpInst::ICMP_NE &&
9652       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9653 
9654     const SCEVConstant *C = nullptr;
9655     const SCEV *V = nullptr;
9656 
9657     if (isa<SCEVConstant>(FoundLHS)) {
9658       C = cast<SCEVConstant>(FoundLHS);
9659       V = FoundRHS;
9660     } else {
9661       C = cast<SCEVConstant>(FoundRHS);
9662       V = FoundLHS;
9663     }
9664 
9665     // The guarding predicate tells us that C != V. If the known range
9666     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9667     // range we consider has to correspond to same signedness as the
9668     // predicate we're interested in folding.
9669 
9670     APInt Min = ICmpInst::isSigned(Pred) ?
9671         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9672 
9673     if (Min == C->getAPInt()) {
9674       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9675       // This is true even if (Min + 1) wraps around -- in case of
9676       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9677 
9678       APInt SharperMin = Min + 1;
9679 
9680       switch (Pred) {
9681         case ICmpInst::ICMP_SGE:
9682         case ICmpInst::ICMP_UGE:
9683           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9684           // RHS, we're done.
9685           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9686                                     getConstant(SharperMin)))
9687             return true;
9688           LLVM_FALLTHROUGH;
9689 
9690         case ICmpInst::ICMP_SGT:
9691         case ICmpInst::ICMP_UGT:
9692           // We know from the range information that (V `Pred` Min ||
9693           // V == Min).  We know from the guarding condition that !(V
9694           // == Min).  This gives us
9695           //
9696           //       V `Pred` Min || V == Min && !(V == Min)
9697           //   =>  V `Pred` Min
9698           //
9699           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9700 
9701           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9702             return true;
9703           LLVM_FALLTHROUGH;
9704 
9705         default:
9706           // No change
9707           break;
9708       }
9709     }
9710   }
9711 
9712   // Check whether the actual condition is beyond sufficient.
9713   if (FoundPred == ICmpInst::ICMP_EQ)
9714     if (ICmpInst::isTrueWhenEqual(Pred))
9715       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9716         return true;
9717   if (Pred == ICmpInst::ICMP_NE)
9718     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9719       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9720         return true;
9721 
9722   // Otherwise assume the worst.
9723   return false;
9724 }
9725 
9726 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9727                                      const SCEV *&L, const SCEV *&R,
9728                                      SCEV::NoWrapFlags &Flags) {
9729   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9730   if (!AE || AE->getNumOperands() != 2)
9731     return false;
9732 
9733   L = AE->getOperand(0);
9734   R = AE->getOperand(1);
9735   Flags = AE->getNoWrapFlags();
9736   return true;
9737 }
9738 
9739 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9740                                                            const SCEV *Less) {
9741   // We avoid subtracting expressions here because this function is usually
9742   // fairly deep in the call stack (i.e. is called many times).
9743 
9744   // X - X = 0.
9745   if (More == Less)
9746     return APInt(getTypeSizeInBits(More->getType()), 0);
9747 
9748   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9749     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9750     const auto *MAR = cast<SCEVAddRecExpr>(More);
9751 
9752     if (LAR->getLoop() != MAR->getLoop())
9753       return None;
9754 
9755     // We look at affine expressions only; not for correctness but to keep
9756     // getStepRecurrence cheap.
9757     if (!LAR->isAffine() || !MAR->isAffine())
9758       return None;
9759 
9760     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9761       return None;
9762 
9763     Less = LAR->getStart();
9764     More = MAR->getStart();
9765 
9766     // fall through
9767   }
9768 
9769   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9770     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9771     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9772     return M - L;
9773   }
9774 
9775   SCEV::NoWrapFlags Flags;
9776   const SCEV *LLess = nullptr, *RLess = nullptr;
9777   const SCEV *LMore = nullptr, *RMore = nullptr;
9778   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9779   // Compare (X + C1) vs X.
9780   if (splitBinaryAdd(Less, LLess, RLess, Flags))
9781     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9782       if (RLess == More)
9783         return -(C1->getAPInt());
9784 
9785   // Compare X vs (X + C2).
9786   if (splitBinaryAdd(More, LMore, RMore, Flags))
9787     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9788       if (RMore == Less)
9789         return C2->getAPInt();
9790 
9791   // Compare (X + C1) vs (X + C2).
9792   if (C1 && C2 && RLess == RMore)
9793     return C2->getAPInt() - C1->getAPInt();
9794 
9795   return None;
9796 }
9797 
9798 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9799     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9800     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9801   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9802     return false;
9803 
9804   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9805   if (!AddRecLHS)
9806     return false;
9807 
9808   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9809   if (!AddRecFoundLHS)
9810     return false;
9811 
9812   // We'd like to let SCEV reason about control dependencies, so we constrain
9813   // both the inequalities to be about add recurrences on the same loop.  This
9814   // way we can use isLoopEntryGuardedByCond later.
9815 
9816   const Loop *L = AddRecFoundLHS->getLoop();
9817   if (L != AddRecLHS->getLoop())
9818     return false;
9819 
9820   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9821   //
9822   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9823   //                                                                  ... (2)
9824   //
9825   // Informal proof for (2), assuming (1) [*]:
9826   //
9827   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9828   //
9829   // Then
9830   //
9831   //       FoundLHS s< FoundRHS s< INT_MIN - C
9832   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9833   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9834   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9835   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9836   // <=>  FoundLHS + C s< FoundRHS + C
9837   //
9838   // [*]: (1) can be proved by ruling out overflow.
9839   //
9840   // [**]: This can be proved by analyzing all the four possibilities:
9841   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9842   //    (A s>= 0, B s>= 0).
9843   //
9844   // Note:
9845   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9846   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
9847   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
9848   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
9849   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9850   // C)".
9851 
9852   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9853   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9854   if (!LDiff || !RDiff || *LDiff != *RDiff)
9855     return false;
9856 
9857   if (LDiff->isMinValue())
9858     return true;
9859 
9860   APInt FoundRHSLimit;
9861 
9862   if (Pred == CmpInst::ICMP_ULT) {
9863     FoundRHSLimit = -(*RDiff);
9864   } else {
9865     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9866     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9867   }
9868 
9869   // Try to prove (1) or (2), as needed.
9870   return isAvailableAtLoopEntry(FoundRHS, L) &&
9871          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9872                                   getConstant(FoundRHSLimit));
9873 }
9874 
9875 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9876                                         const SCEV *LHS, const SCEV *RHS,
9877                                         const SCEV *FoundLHS,
9878                                         const SCEV *FoundRHS, unsigned Depth) {
9879   const PHINode *LPhi = nullptr, *RPhi = nullptr;
9880 
9881   auto ClearOnExit = make_scope_exit([&]() {
9882     if (LPhi) {
9883       bool Erased = PendingMerges.erase(LPhi);
9884       assert(Erased && "Failed to erase LPhi!");
9885       (void)Erased;
9886     }
9887     if (RPhi) {
9888       bool Erased = PendingMerges.erase(RPhi);
9889       assert(Erased && "Failed to erase RPhi!");
9890       (void)Erased;
9891     }
9892   });
9893 
9894   // Find respective Phis and check that they are not being pending.
9895   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9896     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9897       if (!PendingMerges.insert(Phi).second)
9898         return false;
9899       LPhi = Phi;
9900     }
9901   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
9902     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
9903       // If we detect a loop of Phi nodes being processed by this method, for
9904       // example:
9905       //
9906       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
9907       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
9908       //
9909       // we don't want to deal with a case that complex, so return conservative
9910       // answer false.
9911       if (!PendingMerges.insert(Phi).second)
9912         return false;
9913       RPhi = Phi;
9914     }
9915 
9916   // If none of LHS, RHS is a Phi, nothing to do here.
9917   if (!LPhi && !RPhi)
9918     return false;
9919 
9920   // If there is a SCEVUnknown Phi we are interested in, make it left.
9921   if (!LPhi) {
9922     std::swap(LHS, RHS);
9923     std::swap(FoundLHS, FoundRHS);
9924     std::swap(LPhi, RPhi);
9925     Pred = ICmpInst::getSwappedPredicate(Pred);
9926   }
9927 
9928   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
9929   const BasicBlock *LBB = LPhi->getParent();
9930   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
9931 
9932   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
9933     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
9934            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
9935            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
9936   };
9937 
9938   if (RPhi && RPhi->getParent() == LBB) {
9939     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
9940     // If we compare two Phis from the same block, and for each entry block
9941     // the predicate is true for incoming values from this block, then the
9942     // predicate is also true for the Phis.
9943     for (const BasicBlock *IncBB : predecessors(LBB)) {
9944       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
9945       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
9946       if (!ProvedEasily(L, R))
9947         return false;
9948     }
9949   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
9950     // Case two: RHS is also a Phi from the same basic block, and it is an
9951     // AddRec. It means that there is a loop which has both AddRec and Unknown
9952     // PHIs, for it we can compare incoming values of AddRec from above the loop
9953     // and latch with their respective incoming values of LPhi.
9954     // TODO: Generalize to handle loops with many inputs in a header.
9955     if (LPhi->getNumIncomingValues() != 2) return false;
9956 
9957     auto *RLoop = RAR->getLoop();
9958     auto *Predecessor = RLoop->getLoopPredecessor();
9959     assert(Predecessor && "Loop with AddRec with no predecessor?");
9960     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
9961     if (!ProvedEasily(L1, RAR->getStart()))
9962       return false;
9963     auto *Latch = RLoop->getLoopLatch();
9964     assert(Latch && "Loop with AddRec with no latch?");
9965     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
9966     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
9967       return false;
9968   } else {
9969     // In all other cases go over inputs of LHS and compare each of them to RHS,
9970     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
9971     // At this point RHS is either a non-Phi, or it is a Phi from some block
9972     // different from LBB.
9973     for (const BasicBlock *IncBB : predecessors(LBB)) {
9974       // Check that RHS is available in this block.
9975       if (!dominates(RHS, IncBB))
9976         return false;
9977       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
9978       if (!ProvedEasily(L, RHS))
9979         return false;
9980     }
9981   }
9982   return true;
9983 }
9984 
9985 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
9986                                             const SCEV *LHS, const SCEV *RHS,
9987                                             const SCEV *FoundLHS,
9988                                             const SCEV *FoundRHS) {
9989   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
9990     return true;
9991 
9992   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
9993     return true;
9994 
9995   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
9996                                      FoundLHS, FoundRHS) ||
9997          // ~x < ~y --> x > y
9998          isImpliedCondOperandsHelper(Pred, LHS, RHS,
9999                                      getNotSCEV(FoundRHS),
10000                                      getNotSCEV(FoundLHS));
10001 }
10002 
10003 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10004 template <typename MinMaxExprType>
10005 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10006                                  const SCEV *Candidate) {
10007   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10008   if (!MinMaxExpr)
10009     return false;
10010 
10011   return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10012 }
10013 
10014 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10015                                            ICmpInst::Predicate Pred,
10016                                            const SCEV *LHS, const SCEV *RHS) {
10017   // If both sides are affine addrecs for the same loop, with equal
10018   // steps, and we know the recurrences don't wrap, then we only
10019   // need to check the predicate on the starting values.
10020 
10021   if (!ICmpInst::isRelational(Pred))
10022     return false;
10023 
10024   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10025   if (!LAR)
10026     return false;
10027   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10028   if (!RAR)
10029     return false;
10030   if (LAR->getLoop() != RAR->getLoop())
10031     return false;
10032   if (!LAR->isAffine() || !RAR->isAffine())
10033     return false;
10034 
10035   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10036     return false;
10037 
10038   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10039                          SCEV::FlagNSW : SCEV::FlagNUW;
10040   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10041     return false;
10042 
10043   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10044 }
10045 
10046 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10047 /// expression?
10048 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10049                                         ICmpInst::Predicate Pred,
10050                                         const SCEV *LHS, const SCEV *RHS) {
10051   switch (Pred) {
10052   default:
10053     return false;
10054 
10055   case ICmpInst::ICMP_SGE:
10056     std::swap(LHS, RHS);
10057     LLVM_FALLTHROUGH;
10058   case ICmpInst::ICMP_SLE:
10059     return
10060         // min(A, ...) <= A
10061         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10062         // A <= max(A, ...)
10063         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10064 
10065   case ICmpInst::ICMP_UGE:
10066     std::swap(LHS, RHS);
10067     LLVM_FALLTHROUGH;
10068   case ICmpInst::ICMP_ULE:
10069     return
10070         // min(A, ...) <= A
10071         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10072         // A <= max(A, ...)
10073         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10074   }
10075 
10076   llvm_unreachable("covered switch fell through?!");
10077 }
10078 
10079 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10080                                              const SCEV *LHS, const SCEV *RHS,
10081                                              const SCEV *FoundLHS,
10082                                              const SCEV *FoundRHS,
10083                                              unsigned Depth) {
10084   assert(getTypeSizeInBits(LHS->getType()) ==
10085              getTypeSizeInBits(RHS->getType()) &&
10086          "LHS and RHS have different sizes?");
10087   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10088              getTypeSizeInBits(FoundRHS->getType()) &&
10089          "FoundLHS and FoundRHS have different sizes?");
10090   // We want to avoid hurting the compile time with analysis of too big trees.
10091   if (Depth > MaxSCEVOperationsImplicationDepth)
10092     return false;
10093   // We only want to work with ICMP_SGT comparison so far.
10094   // TODO: Extend to ICMP_UGT?
10095   if (Pred == ICmpInst::ICMP_SLT) {
10096     Pred = ICmpInst::ICMP_SGT;
10097     std::swap(LHS, RHS);
10098     std::swap(FoundLHS, FoundRHS);
10099   }
10100   if (Pred != ICmpInst::ICMP_SGT)
10101     return false;
10102 
10103   auto GetOpFromSExt = [&](const SCEV *S) {
10104     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10105       return Ext->getOperand();
10106     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10107     // the constant in some cases.
10108     return S;
10109   };
10110 
10111   // Acquire values from extensions.
10112   auto *OrigLHS = LHS;
10113   auto *OrigFoundLHS = FoundLHS;
10114   LHS = GetOpFromSExt(LHS);
10115   FoundLHS = GetOpFromSExt(FoundLHS);
10116 
10117   // Is the SGT predicate can be proved trivially or using the found context.
10118   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10119     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10120            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10121                                   FoundRHS, Depth + 1);
10122   };
10123 
10124   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10125     // We want to avoid creation of any new non-constant SCEV. Since we are
10126     // going to compare the operands to RHS, we should be certain that we don't
10127     // need any size extensions for this. So let's decline all cases when the
10128     // sizes of types of LHS and RHS do not match.
10129     // TODO: Maybe try to get RHS from sext to catch more cases?
10130     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10131       return false;
10132 
10133     // Should not overflow.
10134     if (!LHSAddExpr->hasNoSignedWrap())
10135       return false;
10136 
10137     auto *LL = LHSAddExpr->getOperand(0);
10138     auto *LR = LHSAddExpr->getOperand(1);
10139     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10140 
10141     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10142     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10143       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10144     };
10145     // Try to prove the following rule:
10146     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10147     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10148     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10149       return true;
10150   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10151     Value *LL, *LR;
10152     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10153 
10154     using namespace llvm::PatternMatch;
10155 
10156     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10157       // Rules for division.
10158       // We are going to perform some comparisons with Denominator and its
10159       // derivative expressions. In general case, creating a SCEV for it may
10160       // lead to a complex analysis of the entire graph, and in particular it
10161       // can request trip count recalculation for the same loop. This would
10162       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10163       // this, we only want to create SCEVs that are constants in this section.
10164       // So we bail if Denominator is not a constant.
10165       if (!isa<ConstantInt>(LR))
10166         return false;
10167 
10168       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10169 
10170       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10171       // then a SCEV for the numerator already exists and matches with FoundLHS.
10172       auto *Numerator = getExistingSCEV(LL);
10173       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10174         return false;
10175 
10176       // Make sure that the numerator matches with FoundLHS and the denominator
10177       // is positive.
10178       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10179         return false;
10180 
10181       auto *DTy = Denominator->getType();
10182       auto *FRHSTy = FoundRHS->getType();
10183       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10184         // One of types is a pointer and another one is not. We cannot extend
10185         // them properly to a wider type, so let us just reject this case.
10186         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10187         // to avoid this check.
10188         return false;
10189 
10190       // Given that:
10191       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10192       auto *WTy = getWiderType(DTy, FRHSTy);
10193       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10194       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10195 
10196       // Try to prove the following rule:
10197       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10198       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10199       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10200       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10201       if (isKnownNonPositive(RHS) &&
10202           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10203         return true;
10204 
10205       // Try to prove the following rule:
10206       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10207       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10208       // If we divide it by Denominator > 2, then:
10209       // 1. If FoundLHS is negative, then the result is 0.
10210       // 2. If FoundLHS is non-negative, then the result is non-negative.
10211       // Anyways, the result is non-negative.
10212       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10213       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10214       if (isKnownNegative(RHS) &&
10215           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10216         return true;
10217     }
10218   }
10219 
10220   // If our expression contained SCEVUnknown Phis, and we split it down and now
10221   // need to prove something for them, try to prove the predicate for every
10222   // possible incoming values of those Phis.
10223   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10224     return true;
10225 
10226   return false;
10227 }
10228 
10229 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10230                                         const SCEV *LHS, const SCEV *RHS) {
10231   // zext x u<= sext x, sext x s<= zext x
10232   switch (Pred) {
10233   case ICmpInst::ICMP_SGE:
10234     std::swap(LHS, RHS);
10235     LLVM_FALLTHROUGH;
10236   case ICmpInst::ICMP_SLE: {
10237     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10238     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10239     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10240     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10241       return true;
10242     break;
10243   }
10244   case ICmpInst::ICMP_UGE:
10245     std::swap(LHS, RHS);
10246     LLVM_FALLTHROUGH;
10247   case ICmpInst::ICMP_ULE: {
10248     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10249     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10250     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10251     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10252       return true;
10253     break;
10254   }
10255   default:
10256     break;
10257   };
10258   return false;
10259 }
10260 
10261 bool
10262 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10263                                            const SCEV *LHS, const SCEV *RHS) {
10264   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10265          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10266          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10267          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10268          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10269 }
10270 
10271 bool
10272 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10273                                              const SCEV *LHS, const SCEV *RHS,
10274                                              const SCEV *FoundLHS,
10275                                              const SCEV *FoundRHS) {
10276   switch (Pred) {
10277   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10278   case ICmpInst::ICMP_EQ:
10279   case ICmpInst::ICMP_NE:
10280     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10281       return true;
10282     break;
10283   case ICmpInst::ICMP_SLT:
10284   case ICmpInst::ICMP_SLE:
10285     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10286         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10287       return true;
10288     break;
10289   case ICmpInst::ICMP_SGT:
10290   case ICmpInst::ICMP_SGE:
10291     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10292         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10293       return true;
10294     break;
10295   case ICmpInst::ICMP_ULT:
10296   case ICmpInst::ICMP_ULE:
10297     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10298         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10299       return true;
10300     break;
10301   case ICmpInst::ICMP_UGT:
10302   case ICmpInst::ICMP_UGE:
10303     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10304         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10305       return true;
10306     break;
10307   }
10308 
10309   // Maybe it can be proved via operations?
10310   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10311     return true;
10312 
10313   return false;
10314 }
10315 
10316 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10317                                                      const SCEV *LHS,
10318                                                      const SCEV *RHS,
10319                                                      const SCEV *FoundLHS,
10320                                                      const SCEV *FoundRHS) {
10321   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10322     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10323     // reduce the compile time impact of this optimization.
10324     return false;
10325 
10326   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10327   if (!Addend)
10328     return false;
10329 
10330   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10331 
10332   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10333   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10334   ConstantRange FoundLHSRange =
10335       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10336 
10337   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10338   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10339 
10340   // We can also compute the range of values for `LHS` that satisfy the
10341   // consequent, "`LHS` `Pred` `RHS`":
10342   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10343   ConstantRange SatisfyingLHSRange =
10344       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10345 
10346   // The antecedent implies the consequent if every value of `LHS` that
10347   // satisfies the antecedent also satisfies the consequent.
10348   return SatisfyingLHSRange.contains(LHSRange);
10349 }
10350 
10351 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10352                                          bool IsSigned, bool NoWrap) {
10353   assert(isKnownPositive(Stride) && "Positive stride expected!");
10354 
10355   if (NoWrap) return false;
10356 
10357   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10358   const SCEV *One = getOne(Stride->getType());
10359 
10360   if (IsSigned) {
10361     APInt MaxRHS = getSignedRangeMax(RHS);
10362     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10363     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10364 
10365     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10366     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10367   }
10368 
10369   APInt MaxRHS = getUnsignedRangeMax(RHS);
10370   APInt MaxValue = APInt::getMaxValue(BitWidth);
10371   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10372 
10373   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10374   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10375 }
10376 
10377 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10378                                          bool IsSigned, bool NoWrap) {
10379   if (NoWrap) return false;
10380 
10381   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10382   const SCEV *One = getOne(Stride->getType());
10383 
10384   if (IsSigned) {
10385     APInt MinRHS = getSignedRangeMin(RHS);
10386     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10387     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10388 
10389     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10390     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10391   }
10392 
10393   APInt MinRHS = getUnsignedRangeMin(RHS);
10394   APInt MinValue = APInt::getMinValue(BitWidth);
10395   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10396 
10397   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10398   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10399 }
10400 
10401 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10402                                             bool Equality) {
10403   const SCEV *One = getOne(Step->getType());
10404   Delta = Equality ? getAddExpr(Delta, Step)
10405                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10406   return getUDivExpr(Delta, Step);
10407 }
10408 
10409 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10410                                                     const SCEV *Stride,
10411                                                     const SCEV *End,
10412                                                     unsigned BitWidth,
10413                                                     bool IsSigned) {
10414 
10415   assert(!isKnownNonPositive(Stride) &&
10416          "Stride is expected strictly positive!");
10417   // Calculate the maximum backedge count based on the range of values
10418   // permitted by Start, End, and Stride.
10419   const SCEV *MaxBECount;
10420   APInt MinStart =
10421       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10422 
10423   APInt StrideForMaxBECount =
10424       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10425 
10426   // We already know that the stride is positive, so we paper over conservatism
10427   // in our range computation by forcing StrideForMaxBECount to be at least one.
10428   // In theory this is unnecessary, but we expect MaxBECount to be a
10429   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10430   // is nothing to constant fold it to).
10431   APInt One(BitWidth, 1, IsSigned);
10432   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10433 
10434   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10435                             : APInt::getMaxValue(BitWidth);
10436   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10437 
10438   // Although End can be a MAX expression we estimate MaxEnd considering only
10439   // the case End = RHS of the loop termination condition. This is safe because
10440   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10441   // taken count.
10442   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10443                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10444 
10445   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10446                               getConstant(StrideForMaxBECount) /* Step */,
10447                               false /* Equality */);
10448 
10449   return MaxBECount;
10450 }
10451 
10452 ScalarEvolution::ExitLimit
10453 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10454                                   const Loop *L, bool IsSigned,
10455                                   bool ControlsExit, bool AllowPredicates) {
10456   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10457 
10458   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10459   bool PredicatedIV = false;
10460 
10461   if (!IV && AllowPredicates) {
10462     // Try to make this an AddRec using runtime tests, in the first X
10463     // iterations of this loop, where X is the SCEV expression found by the
10464     // algorithm below.
10465     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10466     PredicatedIV = true;
10467   }
10468 
10469   // Avoid weird loops
10470   if (!IV || IV->getLoop() != L || !IV->isAffine())
10471     return getCouldNotCompute();
10472 
10473   bool NoWrap = ControlsExit &&
10474                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10475 
10476   const SCEV *Stride = IV->getStepRecurrence(*this);
10477 
10478   bool PositiveStride = isKnownPositive(Stride);
10479 
10480   // Avoid negative or zero stride values.
10481   if (!PositiveStride) {
10482     // We can compute the correct backedge taken count for loops with unknown
10483     // strides if we can prove that the loop is not an infinite loop with side
10484     // effects. Here's the loop structure we are trying to handle -
10485     //
10486     // i = start
10487     // do {
10488     //   A[i] = i;
10489     //   i += s;
10490     // } while (i < end);
10491     //
10492     // The backedge taken count for such loops is evaluated as -
10493     // (max(end, start + stride) - start - 1) /u stride
10494     //
10495     // The additional preconditions that we need to check to prove correctness
10496     // of the above formula is as follows -
10497     //
10498     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10499     //    NoWrap flag).
10500     // b) loop is single exit with no side effects.
10501     //
10502     //
10503     // Precondition a) implies that if the stride is negative, this is a single
10504     // trip loop. The backedge taken count formula reduces to zero in this case.
10505     //
10506     // Precondition b) implies that the unknown stride cannot be zero otherwise
10507     // we have UB.
10508     //
10509     // The positive stride case is the same as isKnownPositive(Stride) returning
10510     // true (original behavior of the function).
10511     //
10512     // We want to make sure that the stride is truly unknown as there are edge
10513     // cases where ScalarEvolution propagates no wrap flags to the
10514     // post-increment/decrement IV even though the increment/decrement operation
10515     // itself is wrapping. The computed backedge taken count may be wrong in
10516     // such cases. This is prevented by checking that the stride is not known to
10517     // be either positive or non-positive. For example, no wrap flags are
10518     // propagated to the post-increment IV of this loop with a trip count of 2 -
10519     //
10520     // unsigned char i;
10521     // for(i=127; i<128; i+=129)
10522     //   A[i] = i;
10523     //
10524     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10525         !loopHasNoSideEffects(L))
10526       return getCouldNotCompute();
10527   } else if (!Stride->isOne() &&
10528              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10529     // Avoid proven overflow cases: this will ensure that the backedge taken
10530     // count will not generate any unsigned overflow. Relaxed no-overflow
10531     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10532     // undefined behaviors like the case of C language.
10533     return getCouldNotCompute();
10534 
10535   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10536                                       : ICmpInst::ICMP_ULT;
10537   const SCEV *Start = IV->getStart();
10538   const SCEV *End = RHS;
10539   // When the RHS is not invariant, we do not know the end bound of the loop and
10540   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10541   // calculate the MaxBECount, given the start, stride and max value for the end
10542   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10543   // checked above).
10544   if (!isLoopInvariant(RHS, L)) {
10545     const SCEV *MaxBECount = computeMaxBECountForLT(
10546         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10547     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10548                      false /*MaxOrZero*/, Predicates);
10549   }
10550   // If the backedge is taken at least once, then it will be taken
10551   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10552   // is the LHS value of the less-than comparison the first time it is evaluated
10553   // and End is the RHS.
10554   const SCEV *BECountIfBackedgeTaken =
10555     computeBECount(getMinusSCEV(End, Start), Stride, false);
10556   // If the loop entry is guarded by the result of the backedge test of the
10557   // first loop iteration, then we know the backedge will be taken at least
10558   // once and so the backedge taken count is as above. If not then we use the
10559   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10560   // as if the backedge is taken at least once max(End,Start) is End and so the
10561   // result is as above, and if not max(End,Start) is Start so we get a backedge
10562   // count of zero.
10563   const SCEV *BECount;
10564   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10565     BECount = BECountIfBackedgeTaken;
10566   else {
10567     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10568     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10569   }
10570 
10571   const SCEV *MaxBECount;
10572   bool MaxOrZero = false;
10573   if (isa<SCEVConstant>(BECount))
10574     MaxBECount = BECount;
10575   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10576     // If we know exactly how many times the backedge will be taken if it's
10577     // taken at least once, then the backedge count will either be that or
10578     // zero.
10579     MaxBECount = BECountIfBackedgeTaken;
10580     MaxOrZero = true;
10581   } else {
10582     MaxBECount = computeMaxBECountForLT(
10583         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10584   }
10585 
10586   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10587       !isa<SCEVCouldNotCompute>(BECount))
10588     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10589 
10590   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10591 }
10592 
10593 ScalarEvolution::ExitLimit
10594 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10595                                      const Loop *L, bool IsSigned,
10596                                      bool ControlsExit, bool AllowPredicates) {
10597   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10598   // We handle only IV > Invariant
10599   if (!isLoopInvariant(RHS, L))
10600     return getCouldNotCompute();
10601 
10602   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10603   if (!IV && AllowPredicates)
10604     // Try to make this an AddRec using runtime tests, in the first X
10605     // iterations of this loop, where X is the SCEV expression found by the
10606     // algorithm below.
10607     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10608 
10609   // Avoid weird loops
10610   if (!IV || IV->getLoop() != L || !IV->isAffine())
10611     return getCouldNotCompute();
10612 
10613   bool NoWrap = ControlsExit &&
10614                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10615 
10616   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10617 
10618   // Avoid negative or zero stride values
10619   if (!isKnownPositive(Stride))
10620     return getCouldNotCompute();
10621 
10622   // Avoid proven overflow cases: this will ensure that the backedge taken count
10623   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10624   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10625   // behaviors like the case of C language.
10626   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10627     return getCouldNotCompute();
10628 
10629   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10630                                       : ICmpInst::ICMP_UGT;
10631 
10632   const SCEV *Start = IV->getStart();
10633   const SCEV *End = RHS;
10634   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10635     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10636 
10637   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10638 
10639   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10640                             : getUnsignedRangeMax(Start);
10641 
10642   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10643                              : getUnsignedRangeMin(Stride);
10644 
10645   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10646   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10647                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10648 
10649   // Although End can be a MIN expression we estimate MinEnd considering only
10650   // the case End = RHS. This is safe because in the other case (Start - End)
10651   // is zero, leading to a zero maximum backedge taken count.
10652   APInt MinEnd =
10653     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10654              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10655 
10656   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10657                                ? BECount
10658                                : computeBECount(getConstant(MaxStart - MinEnd),
10659                                                 getConstant(MinStride), false);
10660 
10661   if (isa<SCEVCouldNotCompute>(MaxBECount))
10662     MaxBECount = BECount;
10663 
10664   return ExitLimit(BECount, MaxBECount, false, Predicates);
10665 }
10666 
10667 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10668                                                     ScalarEvolution &SE) const {
10669   if (Range.isFullSet())  // Infinite loop.
10670     return SE.getCouldNotCompute();
10671 
10672   // If the start is a non-zero constant, shift the range to simplify things.
10673   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10674     if (!SC->getValue()->isZero()) {
10675       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10676       Operands[0] = SE.getZero(SC->getType());
10677       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10678                                              getNoWrapFlags(FlagNW));
10679       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10680         return ShiftedAddRec->getNumIterationsInRange(
10681             Range.subtract(SC->getAPInt()), SE);
10682       // This is strange and shouldn't happen.
10683       return SE.getCouldNotCompute();
10684     }
10685 
10686   // The only time we can solve this is when we have all constant indices.
10687   // Otherwise, we cannot determine the overflow conditions.
10688   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10689     return SE.getCouldNotCompute();
10690 
10691   // Okay at this point we know that all elements of the chrec are constants and
10692   // that the start element is zero.
10693 
10694   // First check to see if the range contains zero.  If not, the first
10695   // iteration exits.
10696   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10697   if (!Range.contains(APInt(BitWidth, 0)))
10698     return SE.getZero(getType());
10699 
10700   if (isAffine()) {
10701     // If this is an affine expression then we have this situation:
10702     //   Solve {0,+,A} in Range  ===  Ax in Range
10703 
10704     // We know that zero is in the range.  If A is positive then we know that
10705     // the upper value of the range must be the first possible exit value.
10706     // If A is negative then the lower of the range is the last possible loop
10707     // value.  Also note that we already checked for a full range.
10708     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10709     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10710 
10711     // The exit value should be (End+A)/A.
10712     APInt ExitVal = (End + A).udiv(A);
10713     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10714 
10715     // Evaluate at the exit value.  If we really did fall out of the valid
10716     // range, then we computed our trip count, otherwise wrap around or other
10717     // things must have happened.
10718     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10719     if (Range.contains(Val->getValue()))
10720       return SE.getCouldNotCompute();  // Something strange happened
10721 
10722     // Ensure that the previous value is in the range.  This is a sanity check.
10723     assert(Range.contains(
10724            EvaluateConstantChrecAtConstant(this,
10725            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10726            "Linear scev computation is off in a bad way!");
10727     return SE.getConstant(ExitValue);
10728   }
10729 
10730   if (isQuadratic()) {
10731     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10732       return SE.getConstant(S.getValue());
10733   }
10734 
10735   return SE.getCouldNotCompute();
10736 }
10737 
10738 const SCEVAddRecExpr *
10739 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10740   assert(getNumOperands() > 1 && "AddRec with zero step?");
10741   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10742   // but in this case we cannot guarantee that the value returned will be an
10743   // AddRec because SCEV does not have a fixed point where it stops
10744   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10745   // may happen if we reach arithmetic depth limit while simplifying. So we
10746   // construct the returned value explicitly.
10747   SmallVector<const SCEV *, 3> Ops;
10748   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10749   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10750   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10751     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10752   // We know that the last operand is not a constant zero (otherwise it would
10753   // have been popped out earlier). This guarantees us that if the result has
10754   // the same last operand, then it will also not be popped out, meaning that
10755   // the returned value will be an AddRec.
10756   const SCEV *Last = getOperand(getNumOperands() - 1);
10757   assert(!Last->isZero() && "Recurrency with zero step?");
10758   Ops.push_back(Last);
10759   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10760                                                SCEV::FlagAnyWrap));
10761 }
10762 
10763 // Return true when S contains at least an undef value.
10764 static inline bool containsUndefs(const SCEV *S) {
10765   return SCEVExprContains(S, [](const SCEV *S) {
10766     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10767       return isa<UndefValue>(SU->getValue());
10768     return false;
10769   });
10770 }
10771 
10772 namespace {
10773 
10774 // Collect all steps of SCEV expressions.
10775 struct SCEVCollectStrides {
10776   ScalarEvolution &SE;
10777   SmallVectorImpl<const SCEV *> &Strides;
10778 
10779   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10780       : SE(SE), Strides(S) {}
10781 
10782   bool follow(const SCEV *S) {
10783     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10784       Strides.push_back(AR->getStepRecurrence(SE));
10785     return true;
10786   }
10787 
10788   bool isDone() const { return false; }
10789 };
10790 
10791 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10792 struct SCEVCollectTerms {
10793   SmallVectorImpl<const SCEV *> &Terms;
10794 
10795   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10796 
10797   bool follow(const SCEV *S) {
10798     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10799         isa<SCEVSignExtendExpr>(S)) {
10800       if (!containsUndefs(S))
10801         Terms.push_back(S);
10802 
10803       // Stop recursion: once we collected a term, do not walk its operands.
10804       return false;
10805     }
10806 
10807     // Keep looking.
10808     return true;
10809   }
10810 
10811   bool isDone() const { return false; }
10812 };
10813 
10814 // Check if a SCEV contains an AddRecExpr.
10815 struct SCEVHasAddRec {
10816   bool &ContainsAddRec;
10817 
10818   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10819     ContainsAddRec = false;
10820   }
10821 
10822   bool follow(const SCEV *S) {
10823     if (isa<SCEVAddRecExpr>(S)) {
10824       ContainsAddRec = true;
10825 
10826       // Stop recursion: once we collected a term, do not walk its operands.
10827       return false;
10828     }
10829 
10830     // Keep looking.
10831     return true;
10832   }
10833 
10834   bool isDone() const { return false; }
10835 };
10836 
10837 // Find factors that are multiplied with an expression that (possibly as a
10838 // subexpression) contains an AddRecExpr. In the expression:
10839 //
10840 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10841 //
10842 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10843 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10844 // parameters as they form a product with an induction variable.
10845 //
10846 // This collector expects all array size parameters to be in the same MulExpr.
10847 // It might be necessary to later add support for collecting parameters that are
10848 // spread over different nested MulExpr.
10849 struct SCEVCollectAddRecMultiplies {
10850   SmallVectorImpl<const SCEV *> &Terms;
10851   ScalarEvolution &SE;
10852 
10853   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10854       : Terms(T), SE(SE) {}
10855 
10856   bool follow(const SCEV *S) {
10857     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10858       bool HasAddRec = false;
10859       SmallVector<const SCEV *, 0> Operands;
10860       for (auto Op : Mul->operands()) {
10861         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10862         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10863           Operands.push_back(Op);
10864         } else if (Unknown) {
10865           HasAddRec = true;
10866         } else {
10867           bool ContainsAddRec = false;
10868           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10869           visitAll(Op, ContiansAddRec);
10870           HasAddRec |= ContainsAddRec;
10871         }
10872       }
10873       if (Operands.size() == 0)
10874         return true;
10875 
10876       if (!HasAddRec)
10877         return false;
10878 
10879       Terms.push_back(SE.getMulExpr(Operands));
10880       // Stop recursion: once we collected a term, do not walk its operands.
10881       return false;
10882     }
10883 
10884     // Keep looking.
10885     return true;
10886   }
10887 
10888   bool isDone() const { return false; }
10889 };
10890 
10891 } // end anonymous namespace
10892 
10893 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10894 /// two places:
10895 ///   1) The strides of AddRec expressions.
10896 ///   2) Unknowns that are multiplied with AddRec expressions.
10897 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10898     SmallVectorImpl<const SCEV *> &Terms) {
10899   SmallVector<const SCEV *, 4> Strides;
10900   SCEVCollectStrides StrideCollector(*this, Strides);
10901   visitAll(Expr, StrideCollector);
10902 
10903   LLVM_DEBUG({
10904     dbgs() << "Strides:\n";
10905     for (const SCEV *S : Strides)
10906       dbgs() << *S << "\n";
10907   });
10908 
10909   for (const SCEV *S : Strides) {
10910     SCEVCollectTerms TermCollector(Terms);
10911     visitAll(S, TermCollector);
10912   }
10913 
10914   LLVM_DEBUG({
10915     dbgs() << "Terms:\n";
10916     for (const SCEV *T : Terms)
10917       dbgs() << *T << "\n";
10918   });
10919 
10920   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10921   visitAll(Expr, MulCollector);
10922 }
10923 
10924 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10925                                    SmallVectorImpl<const SCEV *> &Terms,
10926                                    SmallVectorImpl<const SCEV *> &Sizes) {
10927   int Last = Terms.size() - 1;
10928   const SCEV *Step = Terms[Last];
10929 
10930   // End of recursion.
10931   if (Last == 0) {
10932     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
10933       SmallVector<const SCEV *, 2> Qs;
10934       for (const SCEV *Op : M->operands())
10935         if (!isa<SCEVConstant>(Op))
10936           Qs.push_back(Op);
10937 
10938       Step = SE.getMulExpr(Qs);
10939     }
10940 
10941     Sizes.push_back(Step);
10942     return true;
10943   }
10944 
10945   for (const SCEV *&Term : Terms) {
10946     // Normalize the terms before the next call to findArrayDimensionsRec.
10947     const SCEV *Q, *R;
10948     SCEVDivision::divide(SE, Term, Step, &Q, &R);
10949 
10950     // Bail out when GCD does not evenly divide one of the terms.
10951     if (!R->isZero())
10952       return false;
10953 
10954     Term = Q;
10955   }
10956 
10957   // Remove all SCEVConstants.
10958   Terms.erase(
10959       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
10960       Terms.end());
10961 
10962   if (Terms.size() > 0)
10963     if (!findArrayDimensionsRec(SE, Terms, Sizes))
10964       return false;
10965 
10966   Sizes.push_back(Step);
10967   return true;
10968 }
10969 
10970 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
10971 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
10972   for (const SCEV *T : Terms)
10973     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
10974       return true;
10975 
10976   return false;
10977 }
10978 
10979 // Return the number of product terms in S.
10980 static inline int numberOfTerms(const SCEV *S) {
10981   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
10982     return Expr->getNumOperands();
10983   return 1;
10984 }
10985 
10986 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
10987   if (isa<SCEVConstant>(T))
10988     return nullptr;
10989 
10990   if (isa<SCEVUnknown>(T))
10991     return T;
10992 
10993   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
10994     SmallVector<const SCEV *, 2> Factors;
10995     for (const SCEV *Op : M->operands())
10996       if (!isa<SCEVConstant>(Op))
10997         Factors.push_back(Op);
10998 
10999     return SE.getMulExpr(Factors);
11000   }
11001 
11002   return T;
11003 }
11004 
11005 /// Return the size of an element read or written by Inst.
11006 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11007   Type *Ty;
11008   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11009     Ty = Store->getValueOperand()->getType();
11010   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11011     Ty = Load->getType();
11012   else
11013     return nullptr;
11014 
11015   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11016   return getSizeOfExpr(ETy, Ty);
11017 }
11018 
11019 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11020                                           SmallVectorImpl<const SCEV *> &Sizes,
11021                                           const SCEV *ElementSize) {
11022   if (Terms.size() < 1 || !ElementSize)
11023     return;
11024 
11025   // Early return when Terms do not contain parameters: we do not delinearize
11026   // non parametric SCEVs.
11027   if (!containsParameters(Terms))
11028     return;
11029 
11030   LLVM_DEBUG({
11031     dbgs() << "Terms:\n";
11032     for (const SCEV *T : Terms)
11033       dbgs() << *T << "\n";
11034   });
11035 
11036   // Remove duplicates.
11037   array_pod_sort(Terms.begin(), Terms.end());
11038   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11039 
11040   // Put larger terms first.
11041   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11042     return numberOfTerms(LHS) > numberOfTerms(RHS);
11043   });
11044 
11045   // Try to divide all terms by the element size. If term is not divisible by
11046   // element size, proceed with the original term.
11047   for (const SCEV *&Term : Terms) {
11048     const SCEV *Q, *R;
11049     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11050     if (!Q->isZero())
11051       Term = Q;
11052   }
11053 
11054   SmallVector<const SCEV *, 4> NewTerms;
11055 
11056   // Remove constant factors.
11057   for (const SCEV *T : Terms)
11058     if (const SCEV *NewT = removeConstantFactors(*this, T))
11059       NewTerms.push_back(NewT);
11060 
11061   LLVM_DEBUG({
11062     dbgs() << "Terms after sorting:\n";
11063     for (const SCEV *T : NewTerms)
11064       dbgs() << *T << "\n";
11065   });
11066 
11067   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11068     Sizes.clear();
11069     return;
11070   }
11071 
11072   // The last element to be pushed into Sizes is the size of an element.
11073   Sizes.push_back(ElementSize);
11074 
11075   LLVM_DEBUG({
11076     dbgs() << "Sizes:\n";
11077     for (const SCEV *S : Sizes)
11078       dbgs() << *S << "\n";
11079   });
11080 }
11081 
11082 void ScalarEvolution::computeAccessFunctions(
11083     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11084     SmallVectorImpl<const SCEV *> &Sizes) {
11085   // Early exit in case this SCEV is not an affine multivariate function.
11086   if (Sizes.empty())
11087     return;
11088 
11089   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11090     if (!AR->isAffine())
11091       return;
11092 
11093   const SCEV *Res = Expr;
11094   int Last = Sizes.size() - 1;
11095   for (int i = Last; i >= 0; i--) {
11096     const SCEV *Q, *R;
11097     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11098 
11099     LLVM_DEBUG({
11100       dbgs() << "Res: " << *Res << "\n";
11101       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11102       dbgs() << "Res divided by Sizes[i]:\n";
11103       dbgs() << "Quotient: " << *Q << "\n";
11104       dbgs() << "Remainder: " << *R << "\n";
11105     });
11106 
11107     Res = Q;
11108 
11109     // Do not record the last subscript corresponding to the size of elements in
11110     // the array.
11111     if (i == Last) {
11112 
11113       // Bail out if the remainder is too complex.
11114       if (isa<SCEVAddRecExpr>(R)) {
11115         Subscripts.clear();
11116         Sizes.clear();
11117         return;
11118       }
11119 
11120       continue;
11121     }
11122 
11123     // Record the access function for the current subscript.
11124     Subscripts.push_back(R);
11125   }
11126 
11127   // Also push in last position the remainder of the last division: it will be
11128   // the access function of the innermost dimension.
11129   Subscripts.push_back(Res);
11130 
11131   std::reverse(Subscripts.begin(), Subscripts.end());
11132 
11133   LLVM_DEBUG({
11134     dbgs() << "Subscripts:\n";
11135     for (const SCEV *S : Subscripts)
11136       dbgs() << *S << "\n";
11137   });
11138 }
11139 
11140 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11141 /// sizes of an array access. Returns the remainder of the delinearization that
11142 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11143 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11144 /// expressions in the stride and base of a SCEV corresponding to the
11145 /// computation of a GCD (greatest common divisor) of base and stride.  When
11146 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11147 ///
11148 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11149 ///
11150 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11151 ///
11152 ///    for (long i = 0; i < n; i++)
11153 ///      for (long j = 0; j < m; j++)
11154 ///        for (long k = 0; k < o; k++)
11155 ///          A[i][j][k] = 1.0;
11156 ///  }
11157 ///
11158 /// the delinearization input is the following AddRec SCEV:
11159 ///
11160 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11161 ///
11162 /// From this SCEV, we are able to say that the base offset of the access is %A
11163 /// because it appears as an offset that does not divide any of the strides in
11164 /// the loops:
11165 ///
11166 ///  CHECK: Base offset: %A
11167 ///
11168 /// and then SCEV->delinearize determines the size of some of the dimensions of
11169 /// the array as these are the multiples by which the strides are happening:
11170 ///
11171 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11172 ///
11173 /// Note that the outermost dimension remains of UnknownSize because there are
11174 /// no strides that would help identifying the size of the last dimension: when
11175 /// the array has been statically allocated, one could compute the size of that
11176 /// dimension by dividing the overall size of the array by the size of the known
11177 /// dimensions: %m * %o * 8.
11178 ///
11179 /// Finally delinearize provides the access functions for the array reference
11180 /// that does correspond to A[i][j][k] of the above C testcase:
11181 ///
11182 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11183 ///
11184 /// The testcases are checking the output of a function pass:
11185 /// DelinearizationPass that walks through all loads and stores of a function
11186 /// asking for the SCEV of the memory access with respect to all enclosing
11187 /// loops, calling SCEV->delinearize on that and printing the results.
11188 void ScalarEvolution::delinearize(const SCEV *Expr,
11189                                  SmallVectorImpl<const SCEV *> &Subscripts,
11190                                  SmallVectorImpl<const SCEV *> &Sizes,
11191                                  const SCEV *ElementSize) {
11192   // First step: collect parametric terms.
11193   SmallVector<const SCEV *, 4> Terms;
11194   collectParametricTerms(Expr, Terms);
11195 
11196   if (Terms.empty())
11197     return;
11198 
11199   // Second step: find subscript sizes.
11200   findArrayDimensions(Terms, Sizes, ElementSize);
11201 
11202   if (Sizes.empty())
11203     return;
11204 
11205   // Third step: compute the access functions for each subscript.
11206   computeAccessFunctions(Expr, Subscripts, Sizes);
11207 
11208   if (Subscripts.empty())
11209     return;
11210 
11211   LLVM_DEBUG({
11212     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11213     dbgs() << "ArrayDecl[UnknownSize]";
11214     for (const SCEV *S : Sizes)
11215       dbgs() << "[" << *S << "]";
11216 
11217     dbgs() << "\nArrayRef";
11218     for (const SCEV *S : Subscripts)
11219       dbgs() << "[" << *S << "]";
11220     dbgs() << "\n";
11221   });
11222 }
11223 
11224 bool ScalarEvolution::getIndexExpressionsFromGEP(
11225     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11226     SmallVectorImpl<int> &Sizes) {
11227   assert(Subscripts.empty() && Sizes.empty() &&
11228          "Expected output lists to be empty on entry to this function.");
11229   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11230   Type *Ty = GEP->getPointerOperandType();
11231   bool DroppedFirstDim = false;
11232   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11233     const SCEV *Expr = getSCEV(GEP->getOperand(i));
11234     if (i == 1) {
11235       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11236         Ty = PtrTy->getElementType();
11237       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11238         Ty = ArrayTy->getElementType();
11239       } else {
11240         Subscripts.clear();
11241         Sizes.clear();
11242         return false;
11243       }
11244       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11245         if (Const->getValue()->isZero()) {
11246           DroppedFirstDim = true;
11247           continue;
11248         }
11249       Subscripts.push_back(Expr);
11250       continue;
11251     }
11252 
11253     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11254     if (!ArrayTy) {
11255       Subscripts.clear();
11256       Sizes.clear();
11257       return false;
11258     }
11259 
11260     Subscripts.push_back(Expr);
11261     if (!(DroppedFirstDim && i == 2))
11262       Sizes.push_back(ArrayTy->getNumElements());
11263 
11264     Ty = ArrayTy->getElementType();
11265   }
11266   return !Subscripts.empty();
11267 }
11268 
11269 //===----------------------------------------------------------------------===//
11270 //                   SCEVCallbackVH Class Implementation
11271 //===----------------------------------------------------------------------===//
11272 
11273 void ScalarEvolution::SCEVCallbackVH::deleted() {
11274   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11275   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11276     SE->ConstantEvolutionLoopExitValue.erase(PN);
11277   SE->eraseValueFromMap(getValPtr());
11278   // this now dangles!
11279 }
11280 
11281 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11282   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11283 
11284   // Forget all the expressions associated with users of the old value,
11285   // so that future queries will recompute the expressions using the new
11286   // value.
11287   Value *Old = getValPtr();
11288   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11289   SmallPtrSet<User *, 8> Visited;
11290   while (!Worklist.empty()) {
11291     User *U = Worklist.pop_back_val();
11292     // Deleting the Old value will cause this to dangle. Postpone
11293     // that until everything else is done.
11294     if (U == Old)
11295       continue;
11296     if (!Visited.insert(U).second)
11297       continue;
11298     if (PHINode *PN = dyn_cast<PHINode>(U))
11299       SE->ConstantEvolutionLoopExitValue.erase(PN);
11300     SE->eraseValueFromMap(U);
11301     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11302   }
11303   // Delete the Old value.
11304   if (PHINode *PN = dyn_cast<PHINode>(Old))
11305     SE->ConstantEvolutionLoopExitValue.erase(PN);
11306   SE->eraseValueFromMap(Old);
11307   // this now dangles!
11308 }
11309 
11310 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11311   : CallbackVH(V), SE(se) {}
11312 
11313 //===----------------------------------------------------------------------===//
11314 //                   ScalarEvolution Class Implementation
11315 //===----------------------------------------------------------------------===//
11316 
11317 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11318                                  AssumptionCache &AC, DominatorTree &DT,
11319                                  LoopInfo &LI)
11320     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11321       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11322       LoopDispositions(64), BlockDispositions(64) {
11323   // To use guards for proving predicates, we need to scan every instruction in
11324   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11325   // time if the IR does not actually contain any calls to
11326   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11327   //
11328   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11329   // to _add_ guards to the module when there weren't any before, and wants
11330   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11331   // efficient in lieu of being smart in that rather obscure case.
11332 
11333   auto *GuardDecl = F.getParent()->getFunction(
11334       Intrinsic::getName(Intrinsic::experimental_guard));
11335   HasGuards = GuardDecl && !GuardDecl->use_empty();
11336 }
11337 
11338 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11339     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11340       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11341       ValueExprMap(std::move(Arg.ValueExprMap)),
11342       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11343       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11344       PendingMerges(std::move(Arg.PendingMerges)),
11345       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11346       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11347       PredicatedBackedgeTakenCounts(
11348           std::move(Arg.PredicatedBackedgeTakenCounts)),
11349       ConstantEvolutionLoopExitValue(
11350           std::move(Arg.ConstantEvolutionLoopExitValue)),
11351       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11352       LoopDispositions(std::move(Arg.LoopDispositions)),
11353       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11354       BlockDispositions(std::move(Arg.BlockDispositions)),
11355       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11356       SignedRanges(std::move(Arg.SignedRanges)),
11357       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11358       UniquePreds(std::move(Arg.UniquePreds)),
11359       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11360       LoopUsers(std::move(Arg.LoopUsers)),
11361       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11362       FirstUnknown(Arg.FirstUnknown) {
11363   Arg.FirstUnknown = nullptr;
11364 }
11365 
11366 ScalarEvolution::~ScalarEvolution() {
11367   // Iterate through all the SCEVUnknown instances and call their
11368   // destructors, so that they release their references to their values.
11369   for (SCEVUnknown *U = FirstUnknown; U;) {
11370     SCEVUnknown *Tmp = U;
11371     U = U->Next;
11372     Tmp->~SCEVUnknown();
11373   }
11374   FirstUnknown = nullptr;
11375 
11376   ExprValueMap.clear();
11377   ValueExprMap.clear();
11378   HasRecMap.clear();
11379 
11380   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11381   // that a loop had multiple computable exits.
11382   for (auto &BTCI : BackedgeTakenCounts)
11383     BTCI.second.clear();
11384   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11385     BTCI.second.clear();
11386 
11387   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11388   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11389   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11390   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11391   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11392 }
11393 
11394 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11395   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11396 }
11397 
11398 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11399                           const Loop *L) {
11400   // Print all inner loops first
11401   for (Loop *I : *L)
11402     PrintLoopInfo(OS, SE, I);
11403 
11404   OS << "Loop ";
11405   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11406   OS << ": ";
11407 
11408   SmallVector<BasicBlock *, 8> ExitingBlocks;
11409   L->getExitingBlocks(ExitingBlocks);
11410   if (ExitingBlocks.size() != 1)
11411     OS << "<multiple exits> ";
11412 
11413   if (SE->hasLoopInvariantBackedgeTakenCount(L))
11414     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11415   else
11416     OS << "Unpredictable backedge-taken count.\n";
11417 
11418   if (ExitingBlocks.size() > 1)
11419     for (BasicBlock *ExitingBlock : ExitingBlocks) {
11420       OS << "  exit count for " << ExitingBlock->getName() << ": "
11421          << *SE->getExitCount(L, ExitingBlock) << "\n";
11422     }
11423 
11424   OS << "Loop ";
11425   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11426   OS << ": ";
11427 
11428   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
11429     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
11430     if (SE->isBackedgeTakenCountMaxOrZero(L))
11431       OS << ", actual taken count either this or zero.";
11432   } else {
11433     OS << "Unpredictable max backedge-taken count. ";
11434   }
11435 
11436   OS << "\n"
11437         "Loop ";
11438   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11439   OS << ": ";
11440 
11441   SCEVUnionPredicate Pred;
11442   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11443   if (!isa<SCEVCouldNotCompute>(PBT)) {
11444     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11445     OS << " Predicates:\n";
11446     Pred.print(OS, 4);
11447   } else {
11448     OS << "Unpredictable predicated backedge-taken count. ";
11449   }
11450   OS << "\n";
11451 
11452   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11453     OS << "Loop ";
11454     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11455     OS << ": ";
11456     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11457   }
11458 }
11459 
11460 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11461   switch (LD) {
11462   case ScalarEvolution::LoopVariant:
11463     return "Variant";
11464   case ScalarEvolution::LoopInvariant:
11465     return "Invariant";
11466   case ScalarEvolution::LoopComputable:
11467     return "Computable";
11468   }
11469   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11470 }
11471 
11472 void ScalarEvolution::print(raw_ostream &OS) const {
11473   // ScalarEvolution's implementation of the print method is to print
11474   // out SCEV values of all instructions that are interesting. Doing
11475   // this potentially causes it to create new SCEV objects though,
11476   // which technically conflicts with the const qualifier. This isn't
11477   // observable from outside the class though, so casting away the
11478   // const isn't dangerous.
11479   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11480 
11481   if (ClassifyExpressions) {
11482     OS << "Classifying expressions for: ";
11483     F.printAsOperand(OS, /*PrintType=*/false);
11484     OS << "\n";
11485     for (Instruction &I : instructions(F))
11486       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11487         OS << I << '\n';
11488         OS << "  -->  ";
11489         const SCEV *SV = SE.getSCEV(&I);
11490         SV->print(OS);
11491         if (!isa<SCEVCouldNotCompute>(SV)) {
11492           OS << " U: ";
11493           SE.getUnsignedRange(SV).print(OS);
11494           OS << " S: ";
11495           SE.getSignedRange(SV).print(OS);
11496         }
11497 
11498         const Loop *L = LI.getLoopFor(I.getParent());
11499 
11500         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11501         if (AtUse != SV) {
11502           OS << "  -->  ";
11503           AtUse->print(OS);
11504           if (!isa<SCEVCouldNotCompute>(AtUse)) {
11505             OS << " U: ";
11506             SE.getUnsignedRange(AtUse).print(OS);
11507             OS << " S: ";
11508             SE.getSignedRange(AtUse).print(OS);
11509           }
11510         }
11511 
11512         if (L) {
11513           OS << "\t\t" "Exits: ";
11514           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11515           if (!SE.isLoopInvariant(ExitValue, L)) {
11516             OS << "<<Unknown>>";
11517           } else {
11518             OS << *ExitValue;
11519           }
11520 
11521           bool First = true;
11522           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11523             if (First) {
11524               OS << "\t\t" "LoopDispositions: { ";
11525               First = false;
11526             } else {
11527               OS << ", ";
11528             }
11529 
11530             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11531             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11532           }
11533 
11534           for (auto *InnerL : depth_first(L)) {
11535             if (InnerL == L)
11536               continue;
11537             if (First) {
11538               OS << "\t\t" "LoopDispositions: { ";
11539               First = false;
11540             } else {
11541               OS << ", ";
11542             }
11543 
11544             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11545             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11546           }
11547 
11548           OS << " }";
11549         }
11550 
11551         OS << "\n";
11552       }
11553   }
11554 
11555   OS << "Determining loop execution counts for: ";
11556   F.printAsOperand(OS, /*PrintType=*/false);
11557   OS << "\n";
11558   for (Loop *I : LI)
11559     PrintLoopInfo(OS, &SE, I);
11560 }
11561 
11562 ScalarEvolution::LoopDisposition
11563 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11564   auto &Values = LoopDispositions[S];
11565   for (auto &V : Values) {
11566     if (V.getPointer() == L)
11567       return V.getInt();
11568   }
11569   Values.emplace_back(L, LoopVariant);
11570   LoopDisposition D = computeLoopDisposition(S, L);
11571   auto &Values2 = LoopDispositions[S];
11572   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11573     if (V.getPointer() == L) {
11574       V.setInt(D);
11575       break;
11576     }
11577   }
11578   return D;
11579 }
11580 
11581 ScalarEvolution::LoopDisposition
11582 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11583   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11584   case scConstant:
11585     return LoopInvariant;
11586   case scTruncate:
11587   case scZeroExtend:
11588   case scSignExtend:
11589     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11590   case scAddRecExpr: {
11591     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11592 
11593     // If L is the addrec's loop, it's computable.
11594     if (AR->getLoop() == L)
11595       return LoopComputable;
11596 
11597     // Add recurrences are never invariant in the function-body (null loop).
11598     if (!L)
11599       return LoopVariant;
11600 
11601     // Everything that is not defined at loop entry is variant.
11602     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11603       return LoopVariant;
11604     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11605            " dominate the contained loop's header?");
11606 
11607     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11608     if (AR->getLoop()->contains(L))
11609       return LoopInvariant;
11610 
11611     // This recurrence is variant w.r.t. L if any of its operands
11612     // are variant.
11613     for (auto *Op : AR->operands())
11614       if (!isLoopInvariant(Op, L))
11615         return LoopVariant;
11616 
11617     // Otherwise it's loop-invariant.
11618     return LoopInvariant;
11619   }
11620   case scAddExpr:
11621   case scMulExpr:
11622   case scUMaxExpr:
11623   case scSMaxExpr:
11624   case scUMinExpr:
11625   case scSMinExpr: {
11626     bool HasVarying = false;
11627     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11628       LoopDisposition D = getLoopDisposition(Op, L);
11629       if (D == LoopVariant)
11630         return LoopVariant;
11631       if (D == LoopComputable)
11632         HasVarying = true;
11633     }
11634     return HasVarying ? LoopComputable : LoopInvariant;
11635   }
11636   case scUDivExpr: {
11637     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11638     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11639     if (LD == LoopVariant)
11640       return LoopVariant;
11641     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11642     if (RD == LoopVariant)
11643       return LoopVariant;
11644     return (LD == LoopInvariant && RD == LoopInvariant) ?
11645            LoopInvariant : LoopComputable;
11646   }
11647   case scUnknown:
11648     // All non-instruction values are loop invariant.  All instructions are loop
11649     // invariant if they are not contained in the specified loop.
11650     // Instructions are never considered invariant in the function body
11651     // (null loop) because they are defined within the "loop".
11652     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11653       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11654     return LoopInvariant;
11655   case scCouldNotCompute:
11656     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11657   }
11658   llvm_unreachable("Unknown SCEV kind!");
11659 }
11660 
11661 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11662   return getLoopDisposition(S, L) == LoopInvariant;
11663 }
11664 
11665 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11666   return getLoopDisposition(S, L) == LoopComputable;
11667 }
11668 
11669 ScalarEvolution::BlockDisposition
11670 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11671   auto &Values = BlockDispositions[S];
11672   for (auto &V : Values) {
11673     if (V.getPointer() == BB)
11674       return V.getInt();
11675   }
11676   Values.emplace_back(BB, DoesNotDominateBlock);
11677   BlockDisposition D = computeBlockDisposition(S, BB);
11678   auto &Values2 = BlockDispositions[S];
11679   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11680     if (V.getPointer() == BB) {
11681       V.setInt(D);
11682       break;
11683     }
11684   }
11685   return D;
11686 }
11687 
11688 ScalarEvolution::BlockDisposition
11689 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11690   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11691   case scConstant:
11692     return ProperlyDominatesBlock;
11693   case scTruncate:
11694   case scZeroExtend:
11695   case scSignExtend:
11696     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11697   case scAddRecExpr: {
11698     // This uses a "dominates" query instead of "properly dominates" query
11699     // to test for proper dominance too, because the instruction which
11700     // produces the addrec's value is a PHI, and a PHI effectively properly
11701     // dominates its entire containing block.
11702     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11703     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11704       return DoesNotDominateBlock;
11705 
11706     // Fall through into SCEVNAryExpr handling.
11707     LLVM_FALLTHROUGH;
11708   }
11709   case scAddExpr:
11710   case scMulExpr:
11711   case scUMaxExpr:
11712   case scSMaxExpr:
11713   case scUMinExpr:
11714   case scSMinExpr: {
11715     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11716     bool Proper = true;
11717     for (const SCEV *NAryOp : NAry->operands()) {
11718       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11719       if (D == DoesNotDominateBlock)
11720         return DoesNotDominateBlock;
11721       if (D == DominatesBlock)
11722         Proper = false;
11723     }
11724     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11725   }
11726   case scUDivExpr: {
11727     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11728     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11729     BlockDisposition LD = getBlockDisposition(LHS, BB);
11730     if (LD == DoesNotDominateBlock)
11731       return DoesNotDominateBlock;
11732     BlockDisposition RD = getBlockDisposition(RHS, BB);
11733     if (RD == DoesNotDominateBlock)
11734       return DoesNotDominateBlock;
11735     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11736       ProperlyDominatesBlock : DominatesBlock;
11737   }
11738   case scUnknown:
11739     if (Instruction *I =
11740           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11741       if (I->getParent() == BB)
11742         return DominatesBlock;
11743       if (DT.properlyDominates(I->getParent(), BB))
11744         return ProperlyDominatesBlock;
11745       return DoesNotDominateBlock;
11746     }
11747     return ProperlyDominatesBlock;
11748   case scCouldNotCompute:
11749     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11750   }
11751   llvm_unreachable("Unknown SCEV kind!");
11752 }
11753 
11754 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11755   return getBlockDisposition(S, BB) >= DominatesBlock;
11756 }
11757 
11758 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11759   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11760 }
11761 
11762 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11763   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11764 }
11765 
11766 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11767   auto IsS = [&](const SCEV *X) { return S == X; };
11768   auto ContainsS = [&](const SCEV *X) {
11769     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11770   };
11771   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11772 }
11773 
11774 void
11775 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11776   ValuesAtScopes.erase(S);
11777   LoopDispositions.erase(S);
11778   BlockDispositions.erase(S);
11779   UnsignedRanges.erase(S);
11780   SignedRanges.erase(S);
11781   ExprValueMap.erase(S);
11782   HasRecMap.erase(S);
11783   MinTrailingZerosCache.erase(S);
11784 
11785   for (auto I = PredicatedSCEVRewrites.begin();
11786        I != PredicatedSCEVRewrites.end();) {
11787     std::pair<const SCEV *, const Loop *> Entry = I->first;
11788     if (Entry.first == S)
11789       PredicatedSCEVRewrites.erase(I++);
11790     else
11791       ++I;
11792   }
11793 
11794   auto RemoveSCEVFromBackedgeMap =
11795       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11796         for (auto I = Map.begin(), E = Map.end(); I != E;) {
11797           BackedgeTakenInfo &BEInfo = I->second;
11798           if (BEInfo.hasOperand(S, this)) {
11799             BEInfo.clear();
11800             Map.erase(I++);
11801           } else
11802             ++I;
11803         }
11804       };
11805 
11806   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11807   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11808 }
11809 
11810 void
11811 ScalarEvolution::getUsedLoops(const SCEV *S,
11812                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11813   struct FindUsedLoops {
11814     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11815         : LoopsUsed(LoopsUsed) {}
11816     SmallPtrSetImpl<const Loop *> &LoopsUsed;
11817     bool follow(const SCEV *S) {
11818       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11819         LoopsUsed.insert(AR->getLoop());
11820       return true;
11821     }
11822 
11823     bool isDone() const { return false; }
11824   };
11825 
11826   FindUsedLoops F(LoopsUsed);
11827   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11828 }
11829 
11830 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11831   SmallPtrSet<const Loop *, 8> LoopsUsed;
11832   getUsedLoops(S, LoopsUsed);
11833   for (auto *L : LoopsUsed)
11834     LoopUsers[L].push_back(S);
11835 }
11836 
11837 void ScalarEvolution::verify() const {
11838   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11839   ScalarEvolution SE2(F, TLI, AC, DT, LI);
11840 
11841   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11842 
11843   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11844   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11845     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11846 
11847     const SCEV *visitConstant(const SCEVConstant *Constant) {
11848       return SE.getConstant(Constant->getAPInt());
11849     }
11850 
11851     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11852       return SE.getUnknown(Expr->getValue());
11853     }
11854 
11855     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11856       return SE.getCouldNotCompute();
11857     }
11858   };
11859 
11860   SCEVMapper SCM(SE2);
11861 
11862   while (!LoopStack.empty()) {
11863     auto *L = LoopStack.pop_back_val();
11864     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11865 
11866     auto *CurBECount = SCM.visit(
11867         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11868     auto *NewBECount = SE2.getBackedgeTakenCount(L);
11869 
11870     if (CurBECount == SE2.getCouldNotCompute() ||
11871         NewBECount == SE2.getCouldNotCompute()) {
11872       // NB! This situation is legal, but is very suspicious -- whatever pass
11873       // change the loop to make a trip count go from could not compute to
11874       // computable or vice-versa *should have* invalidated SCEV.  However, we
11875       // choose not to assert here (for now) since we don't want false
11876       // positives.
11877       continue;
11878     }
11879 
11880     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11881       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11882       // not propagate undef aggressively).  This means we can (and do) fail
11883       // verification in cases where a transform makes the trip count of a loop
11884       // go from "undef" to "undef+1" (say).  The transform is fine, since in
11885       // both cases the loop iterates "undef" times, but SCEV thinks we
11886       // increased the trip count of the loop by 1 incorrectly.
11887       continue;
11888     }
11889 
11890     if (SE.getTypeSizeInBits(CurBECount->getType()) >
11891         SE.getTypeSizeInBits(NewBECount->getType()))
11892       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11893     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11894              SE.getTypeSizeInBits(NewBECount->getType()))
11895       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11896 
11897     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
11898 
11899     // Unless VerifySCEVStrict is set, we only compare constant deltas.
11900     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
11901       dbgs() << "Trip Count for " << *L << " Changed!\n";
11902       dbgs() << "Old: " << *CurBECount << "\n";
11903       dbgs() << "New: " << *NewBECount << "\n";
11904       dbgs() << "Delta: " << *Delta << "\n";
11905       std::abort();
11906     }
11907   }
11908 }
11909 
11910 bool ScalarEvolution::invalidate(
11911     Function &F, const PreservedAnalyses &PA,
11912     FunctionAnalysisManager::Invalidator &Inv) {
11913   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11914   // of its dependencies is invalidated.
11915   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11916   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11917          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11918          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11919          Inv.invalidate<LoopAnalysis>(F, PA);
11920 }
11921 
11922 AnalysisKey ScalarEvolutionAnalysis::Key;
11923 
11924 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11925                                              FunctionAnalysisManager &AM) {
11926   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11927                          AM.getResult<AssumptionAnalysis>(F),
11928                          AM.getResult<DominatorTreeAnalysis>(F),
11929                          AM.getResult<LoopAnalysis>(F));
11930 }
11931 
11932 PreservedAnalyses
11933 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
11934   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
11935   return PreservedAnalyses::all();
11936 }
11937 
11938 PreservedAnalyses
11939 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11940   // For compatibility with opt's -analyze feature under legacy pass manager
11941   // which was not ported to NPM. This keeps tests using
11942   // update_analyze_test_checks.py working.
11943   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
11944      << F.getName() << "':\n";
11945   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11946   return PreservedAnalyses::all();
11947 }
11948 
11949 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11950                       "Scalar Evolution Analysis", false, true)
11951 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11952 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11953 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11954 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11955 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11956                     "Scalar Evolution Analysis", false, true)
11957 
11958 char ScalarEvolutionWrapperPass::ID = 0;
11959 
11960 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11961   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11962 }
11963 
11964 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11965   SE.reset(new ScalarEvolution(
11966       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
11967       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11968       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11969       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11970   return false;
11971 }
11972 
11973 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11974 
11975 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11976   SE->print(OS);
11977 }
11978 
11979 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11980   if (!VerifySCEV)
11981     return;
11982 
11983   SE->verify();
11984 }
11985 
11986 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11987   AU.setPreservesAll();
11988   AU.addRequiredTransitive<AssumptionCacheTracker>();
11989   AU.addRequiredTransitive<LoopInfoWrapperPass>();
11990   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11991   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
11992 }
11993 
11994 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
11995                                                         const SCEV *RHS) {
11996   FoldingSetNodeID ID;
11997   assert(LHS->getType() == RHS->getType() &&
11998          "Type mismatch between LHS and RHS");
11999   // Unique this node based on the arguments
12000   ID.AddInteger(SCEVPredicate::P_Equal);
12001   ID.AddPointer(LHS);
12002   ID.AddPointer(RHS);
12003   void *IP = nullptr;
12004   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12005     return S;
12006   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12007       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12008   UniquePreds.InsertNode(Eq, IP);
12009   return Eq;
12010 }
12011 
12012 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12013     const SCEVAddRecExpr *AR,
12014     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12015   FoldingSetNodeID ID;
12016   // Unique this node based on the arguments
12017   ID.AddInteger(SCEVPredicate::P_Wrap);
12018   ID.AddPointer(AR);
12019   ID.AddInteger(AddedFlags);
12020   void *IP = nullptr;
12021   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12022     return S;
12023   auto *OF = new (SCEVAllocator)
12024       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12025   UniquePreds.InsertNode(OF, IP);
12026   return OF;
12027 }
12028 
12029 namespace {
12030 
12031 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12032 public:
12033 
12034   /// Rewrites \p S in the context of a loop L and the SCEV predication
12035   /// infrastructure.
12036   ///
12037   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12038   /// equivalences present in \p Pred.
12039   ///
12040   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12041   /// \p NewPreds such that the result will be an AddRecExpr.
12042   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12043                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12044                              SCEVUnionPredicate *Pred) {
12045     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12046     return Rewriter.visit(S);
12047   }
12048 
12049   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12050     if (Pred) {
12051       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12052       for (auto *Pred : ExprPreds)
12053         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12054           if (IPred->getLHS() == Expr)
12055             return IPred->getRHS();
12056     }
12057     return convertToAddRecWithPreds(Expr);
12058   }
12059 
12060   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12061     const SCEV *Operand = visit(Expr->getOperand());
12062     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12063     if (AR && AR->getLoop() == L && AR->isAffine()) {
12064       // This couldn't be folded because the operand didn't have the nuw
12065       // flag. Add the nusw flag as an assumption that we could make.
12066       const SCEV *Step = AR->getStepRecurrence(SE);
12067       Type *Ty = Expr->getType();
12068       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12069         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12070                                 SE.getSignExtendExpr(Step, Ty), L,
12071                                 AR->getNoWrapFlags());
12072     }
12073     return SE.getZeroExtendExpr(Operand, Expr->getType());
12074   }
12075 
12076   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12077     const SCEV *Operand = visit(Expr->getOperand());
12078     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12079     if (AR && AR->getLoop() == L && AR->isAffine()) {
12080       // This couldn't be folded because the operand didn't have the nsw
12081       // flag. Add the nssw flag as an assumption that we could make.
12082       const SCEV *Step = AR->getStepRecurrence(SE);
12083       Type *Ty = Expr->getType();
12084       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12085         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12086                                 SE.getSignExtendExpr(Step, Ty), L,
12087                                 AR->getNoWrapFlags());
12088     }
12089     return SE.getSignExtendExpr(Operand, Expr->getType());
12090   }
12091 
12092 private:
12093   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12094                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12095                         SCEVUnionPredicate *Pred)
12096       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12097 
12098   bool addOverflowAssumption(const SCEVPredicate *P) {
12099     if (!NewPreds) {
12100       // Check if we've already made this assumption.
12101       return Pred && Pred->implies(P);
12102     }
12103     NewPreds->insert(P);
12104     return true;
12105   }
12106 
12107   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12108                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12109     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12110     return addOverflowAssumption(A);
12111   }
12112 
12113   // If \p Expr represents a PHINode, we try to see if it can be represented
12114   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12115   // to add this predicate as a runtime overflow check, we return the AddRec.
12116   // If \p Expr does not meet these conditions (is not a PHI node, or we
12117   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12118   // return \p Expr.
12119   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12120     if (!isa<PHINode>(Expr->getValue()))
12121       return Expr;
12122     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12123     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12124     if (!PredicatedRewrite)
12125       return Expr;
12126     for (auto *P : PredicatedRewrite->second){
12127       // Wrap predicates from outer loops are not supported.
12128       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12129         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12130         if (L != AR->getLoop())
12131           return Expr;
12132       }
12133       if (!addOverflowAssumption(P))
12134         return Expr;
12135     }
12136     return PredicatedRewrite->first;
12137   }
12138 
12139   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12140   SCEVUnionPredicate *Pred;
12141   const Loop *L;
12142 };
12143 
12144 } // end anonymous namespace
12145 
12146 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12147                                                    SCEVUnionPredicate &Preds) {
12148   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12149 }
12150 
12151 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12152     const SCEV *S, const Loop *L,
12153     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12154   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12155   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12156   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12157 
12158   if (!AddRec)
12159     return nullptr;
12160 
12161   // Since the transformation was successful, we can now transfer the SCEV
12162   // predicates.
12163   for (auto *P : TransformPreds)
12164     Preds.insert(P);
12165 
12166   return AddRec;
12167 }
12168 
12169 /// SCEV predicates
12170 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12171                              SCEVPredicateKind Kind)
12172     : FastID(ID), Kind(Kind) {}
12173 
12174 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12175                                        const SCEV *LHS, const SCEV *RHS)
12176     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12177   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12178   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12179 }
12180 
12181 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12182   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12183 
12184   if (!Op)
12185     return false;
12186 
12187   return Op->LHS == LHS && Op->RHS == RHS;
12188 }
12189 
12190 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12191 
12192 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12193 
12194 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12195   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12196 }
12197 
12198 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12199                                      const SCEVAddRecExpr *AR,
12200                                      IncrementWrapFlags Flags)
12201     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12202 
12203 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12204 
12205 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12206   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12207 
12208   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12209 }
12210 
12211 bool SCEVWrapPredicate::isAlwaysTrue() const {
12212   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12213   IncrementWrapFlags IFlags = Flags;
12214 
12215   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12216     IFlags = clearFlags(IFlags, IncrementNSSW);
12217 
12218   return IFlags == IncrementAnyWrap;
12219 }
12220 
12221 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12222   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12223   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12224     OS << "<nusw>";
12225   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12226     OS << "<nssw>";
12227   OS << "\n";
12228 }
12229 
12230 SCEVWrapPredicate::IncrementWrapFlags
12231 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12232                                    ScalarEvolution &SE) {
12233   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12234   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12235 
12236   // We can safely transfer the NSW flag as NSSW.
12237   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12238     ImpliedFlags = IncrementNSSW;
12239 
12240   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12241     // If the increment is positive, the SCEV NUW flag will also imply the
12242     // WrapPredicate NUSW flag.
12243     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12244       if (Step->getValue()->getValue().isNonNegative())
12245         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12246   }
12247 
12248   return ImpliedFlags;
12249 }
12250 
12251 /// Union predicates don't get cached so create a dummy set ID for it.
12252 SCEVUnionPredicate::SCEVUnionPredicate()
12253     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12254 
12255 bool SCEVUnionPredicate::isAlwaysTrue() const {
12256   return all_of(Preds,
12257                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12258 }
12259 
12260 ArrayRef<const SCEVPredicate *>
12261 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12262   auto I = SCEVToPreds.find(Expr);
12263   if (I == SCEVToPreds.end())
12264     return ArrayRef<const SCEVPredicate *>();
12265   return I->second;
12266 }
12267 
12268 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12269   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12270     return all_of(Set->Preds,
12271                   [this](const SCEVPredicate *I) { return this->implies(I); });
12272 
12273   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12274   if (ScevPredsIt == SCEVToPreds.end())
12275     return false;
12276   auto &SCEVPreds = ScevPredsIt->second;
12277 
12278   return any_of(SCEVPreds,
12279                 [N](const SCEVPredicate *I) { return I->implies(N); });
12280 }
12281 
12282 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12283 
12284 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12285   for (auto Pred : Preds)
12286     Pred->print(OS, Depth);
12287 }
12288 
12289 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12290   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12291     for (auto Pred : Set->Preds)
12292       add(Pred);
12293     return;
12294   }
12295 
12296   if (implies(N))
12297     return;
12298 
12299   const SCEV *Key = N->getExpr();
12300   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12301                 " associated expression!");
12302 
12303   SCEVToPreds[Key].push_back(N);
12304   Preds.push_back(N);
12305 }
12306 
12307 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12308                                                      Loop &L)
12309     : SE(SE), L(L) {}
12310 
12311 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12312   const SCEV *Expr = SE.getSCEV(V);
12313   RewriteEntry &Entry = RewriteMap[Expr];
12314 
12315   // If we already have an entry and the version matches, return it.
12316   if (Entry.second && Generation == Entry.first)
12317     return Entry.second;
12318 
12319   // We found an entry but it's stale. Rewrite the stale entry
12320   // according to the current predicate.
12321   if (Entry.second)
12322     Expr = Entry.second;
12323 
12324   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12325   Entry = {Generation, NewSCEV};
12326 
12327   return NewSCEV;
12328 }
12329 
12330 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12331   if (!BackedgeCount) {
12332     SCEVUnionPredicate BackedgePred;
12333     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12334     addPredicate(BackedgePred);
12335   }
12336   return BackedgeCount;
12337 }
12338 
12339 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12340   if (Preds.implies(&Pred))
12341     return;
12342   Preds.add(&Pred);
12343   updateGeneration();
12344 }
12345 
12346 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12347   return Preds;
12348 }
12349 
12350 void PredicatedScalarEvolution::updateGeneration() {
12351   // If the generation number wrapped recompute everything.
12352   if (++Generation == 0) {
12353     for (auto &II : RewriteMap) {
12354       const SCEV *Rewritten = II.second.second;
12355       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12356     }
12357   }
12358 }
12359 
12360 void PredicatedScalarEvolution::setNoOverflow(
12361     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12362   const SCEV *Expr = getSCEV(V);
12363   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12364 
12365   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12366 
12367   // Clear the statically implied flags.
12368   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12369   addPredicate(*SE.getWrapPredicate(AR, Flags));
12370 
12371   auto II = FlagsMap.insert({V, Flags});
12372   if (!II.second)
12373     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12374 }
12375 
12376 bool PredicatedScalarEvolution::hasNoOverflow(
12377     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12378   const SCEV *Expr = getSCEV(V);
12379   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12380 
12381   Flags = SCEVWrapPredicate::clearFlags(
12382       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12383 
12384   auto II = FlagsMap.find(V);
12385 
12386   if (II != FlagsMap.end())
12387     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12388 
12389   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12390 }
12391 
12392 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12393   const SCEV *Expr = this->getSCEV(V);
12394   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12395   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12396 
12397   if (!New)
12398     return nullptr;
12399 
12400   for (auto *P : NewPreds)
12401     Preds.add(P);
12402 
12403   updateGeneration();
12404   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12405   return New;
12406 }
12407 
12408 PredicatedScalarEvolution::PredicatedScalarEvolution(
12409     const PredicatedScalarEvolution &Init)
12410     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12411       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12412   for (auto I : Init.FlagsMap)
12413     FlagsMap.insert(I);
12414 }
12415 
12416 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12417   // For each block.
12418   for (auto *BB : L.getBlocks())
12419     for (auto &I : *BB) {
12420       if (!SE.isSCEVable(I.getType()))
12421         continue;
12422 
12423       auto *Expr = SE.getSCEV(&I);
12424       auto II = RewriteMap.find(Expr);
12425 
12426       if (II == RewriteMap.end())
12427         continue;
12428 
12429       // Don't print things that are not interesting.
12430       if (II->second.second == Expr)
12431         continue;
12432 
12433       OS.indent(Depth) << "[PSE]" << I << ":\n";
12434       OS.indent(Depth + 2) << *Expr << "\n";
12435       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12436     }
12437 }
12438 
12439 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12440 // arbitrary expressions.
12441 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12442 // 4, A / B becomes X / 8).
12443 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12444                                 const SCEV *&RHS) {
12445   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12446   if (Add == nullptr || Add->getNumOperands() != 2)
12447     return false;
12448 
12449   const SCEV *A = Add->getOperand(1);
12450   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12451 
12452   if (Mul == nullptr)
12453     return false;
12454 
12455   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12456     // (SomeExpr + (-(SomeExpr / B) * B)).
12457     if (Expr == getURemExpr(A, B)) {
12458       LHS = A;
12459       RHS = B;
12460       return true;
12461     }
12462     return false;
12463   };
12464 
12465   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12466   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12467     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12468            MatchURemWithDivisor(Mul->getOperand(2));
12469 
12470   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12471   if (Mul->getNumOperands() == 2)
12472     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12473            MatchURemWithDivisor(Mul->getOperand(0)) ||
12474            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12475            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12476   return false;
12477 }
12478