1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumArrayLenItCounts, 143 "Number of trip counts computed with array length"); 144 STATISTIC(NumTripCountsComputed, 145 "Number of loops with predictable loop counts"); 146 STATISTIC(NumTripCountsNotComputed, 147 "Number of loops without predictable loop counts"); 148 STATISTIC(NumBruteForceTripCountsComputed, 149 "Number of loops with trip counts computed by force"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 //===----------------------------------------------------------------------===// 237 // SCEV class definitions 238 //===----------------------------------------------------------------------===// 239 240 //===----------------------------------------------------------------------===// 241 // Implementation of the SCEV class. 242 // 243 244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 245 LLVM_DUMP_METHOD void SCEV::dump() const { 246 print(dbgs()); 247 dbgs() << '\n'; 248 } 249 #endif 250 251 void SCEV::print(raw_ostream &OS) const { 252 switch (getSCEVType()) { 253 case scConstant: 254 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 255 return; 256 case scPtrToInt: { 257 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 258 const SCEV *Op = PtrToInt->getOperand(); 259 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 260 << *PtrToInt->getType() << ")"; 261 return; 262 } 263 case scTruncate: { 264 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 265 const SCEV *Op = Trunc->getOperand(); 266 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 267 << *Trunc->getType() << ")"; 268 return; 269 } 270 case scZeroExtend: { 271 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 272 const SCEV *Op = ZExt->getOperand(); 273 OS << "(zext " << *Op->getType() << " " << *Op << " to " 274 << *ZExt->getType() << ")"; 275 return; 276 } 277 case scSignExtend: { 278 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 279 const SCEV *Op = SExt->getOperand(); 280 OS << "(sext " << *Op->getType() << " " << *Op << " to " 281 << *SExt->getType() << ")"; 282 return; 283 } 284 case scAddRecExpr: { 285 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 286 OS << "{" << *AR->getOperand(0); 287 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 288 OS << ",+," << *AR->getOperand(i); 289 OS << "}<"; 290 if (AR->hasNoUnsignedWrap()) 291 OS << "nuw><"; 292 if (AR->hasNoSignedWrap()) 293 OS << "nsw><"; 294 if (AR->hasNoSelfWrap() && 295 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 296 OS << "nw><"; 297 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 298 OS << ">"; 299 return; 300 } 301 case scAddExpr: 302 case scMulExpr: 303 case scUMaxExpr: 304 case scSMaxExpr: 305 case scUMinExpr: 306 case scSMinExpr: { 307 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 308 const char *OpStr = nullptr; 309 switch (NAry->getSCEVType()) { 310 case scAddExpr: OpStr = " + "; break; 311 case scMulExpr: OpStr = " * "; break; 312 case scUMaxExpr: OpStr = " umax "; break; 313 case scSMaxExpr: OpStr = " smax "; break; 314 case scUMinExpr: 315 OpStr = " umin "; 316 break; 317 case scSMinExpr: 318 OpStr = " smin "; 319 break; 320 default: 321 llvm_unreachable("There are no other nary expression types."); 322 } 323 OS << "("; 324 ListSeparator LS(OpStr); 325 for (const SCEV *Op : NAry->operands()) 326 OS << LS << *Op; 327 OS << ")"; 328 switch (NAry->getSCEVType()) { 329 case scAddExpr: 330 case scMulExpr: 331 if (NAry->hasNoUnsignedWrap()) 332 OS << "<nuw>"; 333 if (NAry->hasNoSignedWrap()) 334 OS << "<nsw>"; 335 break; 336 default: 337 // Nothing to print for other nary expressions. 338 break; 339 } 340 return; 341 } 342 case scUDivExpr: { 343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 344 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 345 return; 346 } 347 case scUnknown: { 348 const SCEVUnknown *U = cast<SCEVUnknown>(this); 349 Type *AllocTy; 350 if (U->isSizeOf(AllocTy)) { 351 OS << "sizeof(" << *AllocTy << ")"; 352 return; 353 } 354 if (U->isAlignOf(AllocTy)) { 355 OS << "alignof(" << *AllocTy << ")"; 356 return; 357 } 358 359 Type *CTy; 360 Constant *FieldNo; 361 if (U->isOffsetOf(CTy, FieldNo)) { 362 OS << "offsetof(" << *CTy << ", "; 363 FieldNo->printAsOperand(OS, false); 364 OS << ")"; 365 return; 366 } 367 368 // Otherwise just print it normally. 369 U->getValue()->printAsOperand(OS, false); 370 return; 371 } 372 case scCouldNotCompute: 373 OS << "***COULDNOTCOMPUTE***"; 374 return; 375 } 376 llvm_unreachable("Unknown SCEV kind!"); 377 } 378 379 Type *SCEV::getType() const { 380 switch (getSCEVType()) { 381 case scConstant: 382 return cast<SCEVConstant>(this)->getType(); 383 case scPtrToInt: 384 case scTruncate: 385 case scZeroExtend: 386 case scSignExtend: 387 return cast<SCEVCastExpr>(this)->getType(); 388 case scAddRecExpr: 389 return cast<SCEVAddRecExpr>(this)->getType(); 390 case scMulExpr: 391 return cast<SCEVMulExpr>(this)->getType(); 392 case scUMaxExpr: 393 case scSMaxExpr: 394 case scUMinExpr: 395 case scSMinExpr: 396 return cast<SCEVMinMaxExpr>(this)->getType(); 397 case scAddExpr: 398 return cast<SCEVAddExpr>(this)->getType(); 399 case scUDivExpr: 400 return cast<SCEVUDivExpr>(this)->getType(); 401 case scUnknown: 402 return cast<SCEVUnknown>(this)->getType(); 403 case scCouldNotCompute: 404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 405 } 406 llvm_unreachable("Unknown SCEV kind!"); 407 } 408 409 bool SCEV::isZero() const { 410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 411 return SC->getValue()->isZero(); 412 return false; 413 } 414 415 bool SCEV::isOne() const { 416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 417 return SC->getValue()->isOne(); 418 return false; 419 } 420 421 bool SCEV::isAllOnesValue() const { 422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 423 return SC->getValue()->isMinusOne(); 424 return false; 425 } 426 427 bool SCEV::isNonConstantNegative() const { 428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 429 if (!Mul) return false; 430 431 // If there is a constant factor, it will be first. 432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 433 if (!SC) return false; 434 435 // Return true if the value is negative, this matches things like (-42 * V). 436 return SC->getAPInt().isNegative(); 437 } 438 439 SCEVCouldNotCompute::SCEVCouldNotCompute() : 440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 441 442 bool SCEVCouldNotCompute::classof(const SCEV *S) { 443 return S->getSCEVType() == scCouldNotCompute; 444 } 445 446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 447 FoldingSetNodeID ID; 448 ID.AddInteger(scConstant); 449 ID.AddPointer(V); 450 void *IP = nullptr; 451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 453 UniqueSCEVs.InsertNode(S, IP); 454 return S; 455 } 456 457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 458 return getConstant(ConstantInt::get(getContext(), Val)); 459 } 460 461 const SCEV * 462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 464 return getConstant(ConstantInt::get(ITy, V, isSigned)); 465 } 466 467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 468 const SCEV *op, Type *ty) 469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 470 Operands[0] = op; 471 } 472 473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 474 Type *ITy) 475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 477 "Must be a non-bit-width-changing pointer-to-integer cast!"); 478 } 479 480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 481 SCEVTypes SCEVTy, const SCEV *op, 482 Type *ty) 483 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 484 485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 486 Type *ty) 487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 489 "Cannot truncate non-integer value!"); 490 } 491 492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 493 const SCEV *op, Type *ty) 494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 496 "Cannot zero extend non-integer value!"); 497 } 498 499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 500 const SCEV *op, Type *ty) 501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 503 "Cannot sign extend non-integer value!"); 504 } 505 506 void SCEVUnknown::deleted() { 507 // Clear this SCEVUnknown from various maps. 508 SE->forgetMemoizedResults(this); 509 510 // Remove this SCEVUnknown from the uniquing map. 511 SE->UniqueSCEVs.RemoveNode(this); 512 513 // Release the value. 514 setValPtr(nullptr); 515 } 516 517 void SCEVUnknown::allUsesReplacedWith(Value *New) { 518 // Remove this SCEVUnknown from the uniquing map. 519 SE->UniqueSCEVs.RemoveNode(this); 520 521 // Update this SCEVUnknown to point to the new value. This is needed 522 // because there may still be outstanding SCEVs which still point to 523 // this SCEVUnknown. 524 setValPtr(New); 525 } 526 527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 529 if (VCE->getOpcode() == Instruction::PtrToInt) 530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 531 if (CE->getOpcode() == Instruction::GetElementPtr && 532 CE->getOperand(0)->isNullValue() && 533 CE->getNumOperands() == 2) 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 535 if (CI->isOne()) { 536 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 537 return true; 538 } 539 540 return false; 541 } 542 543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 544 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 545 if (VCE->getOpcode() == Instruction::PtrToInt) 546 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 547 if (CE->getOpcode() == Instruction::GetElementPtr && 548 CE->getOperand(0)->isNullValue()) { 549 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 550 if (StructType *STy = dyn_cast<StructType>(Ty)) 551 if (!STy->isPacked() && 552 CE->getNumOperands() == 3 && 553 CE->getOperand(1)->isNullValue()) { 554 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 555 if (CI->isOne() && 556 STy->getNumElements() == 2 && 557 STy->getElementType(0)->isIntegerTy(1)) { 558 AllocTy = STy->getElementType(1); 559 return true; 560 } 561 } 562 } 563 564 return false; 565 } 566 567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 568 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 569 if (VCE->getOpcode() == Instruction::PtrToInt) 570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 571 if (CE->getOpcode() == Instruction::GetElementPtr && 572 CE->getNumOperands() == 3 && 573 CE->getOperand(0)->isNullValue() && 574 CE->getOperand(1)->isNullValue()) { 575 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 576 // Ignore vector types here so that ScalarEvolutionExpander doesn't 577 // emit getelementptrs that index into vectors. 578 if (Ty->isStructTy() || Ty->isArrayTy()) { 579 CTy = Ty; 580 FieldNo = CE->getOperand(2); 581 return true; 582 } 583 } 584 585 return false; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SCEV Utilities 590 //===----------------------------------------------------------------------===// 591 592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 594 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 595 /// have been previously deemed to be "equally complex" by this routine. It is 596 /// intended to avoid exponential time complexity in cases like: 597 /// 598 /// %a = f(%x, %y) 599 /// %b = f(%a, %a) 600 /// %c = f(%b, %b) 601 /// 602 /// %d = f(%x, %y) 603 /// %e = f(%d, %d) 604 /// %f = f(%e, %e) 605 /// 606 /// CompareValueComplexity(%f, %c) 607 /// 608 /// Since we do not continue running this routine on expression trees once we 609 /// have seen unequal values, there is no need to track them in the cache. 610 static int 611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 612 const LoopInfo *const LI, Value *LV, Value *RV, 613 unsigned Depth) { 614 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 615 return 0; 616 617 // Order pointer values after integer values. This helps SCEVExpander form 618 // GEPs. 619 bool LIsPointer = LV->getType()->isPointerTy(), 620 RIsPointer = RV->getType()->isPointerTy(); 621 if (LIsPointer != RIsPointer) 622 return (int)LIsPointer - (int)RIsPointer; 623 624 // Compare getValueID values. 625 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 626 if (LID != RID) 627 return (int)LID - (int)RID; 628 629 // Sort arguments by their position. 630 if (const auto *LA = dyn_cast<Argument>(LV)) { 631 const auto *RA = cast<Argument>(RV); 632 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 633 return (int)LArgNo - (int)RArgNo; 634 } 635 636 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 637 const auto *RGV = cast<GlobalValue>(RV); 638 639 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 640 auto LT = GV->getLinkage(); 641 return !(GlobalValue::isPrivateLinkage(LT) || 642 GlobalValue::isInternalLinkage(LT)); 643 }; 644 645 // Use the names to distinguish the two values, but only if the 646 // names are semantically important. 647 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 648 return LGV->getName().compare(RGV->getName()); 649 } 650 651 // For instructions, compare their loop depth, and their operand count. This 652 // is pretty loose. 653 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 654 const auto *RInst = cast<Instruction>(RV); 655 656 // Compare loop depths. 657 const BasicBlock *LParent = LInst->getParent(), 658 *RParent = RInst->getParent(); 659 if (LParent != RParent) { 660 unsigned LDepth = LI->getLoopDepth(LParent), 661 RDepth = LI->getLoopDepth(RParent); 662 if (LDepth != RDepth) 663 return (int)LDepth - (int)RDepth; 664 } 665 666 // Compare the number of operands. 667 unsigned LNumOps = LInst->getNumOperands(), 668 RNumOps = RInst->getNumOperands(); 669 if (LNumOps != RNumOps) 670 return (int)LNumOps - (int)RNumOps; 671 672 for (unsigned Idx : seq(0u, LNumOps)) { 673 int Result = 674 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 675 RInst->getOperand(Idx), Depth + 1); 676 if (Result != 0) 677 return Result; 678 } 679 } 680 681 EqCacheValue.unionSets(LV, RV); 682 return 0; 683 } 684 685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 686 // than RHS, respectively. A three-way result allows recursive comparisons to be 687 // more efficient. 688 // If the max analysis depth was reached, return None, assuming we do not know 689 // if they are equivalent for sure. 690 static Optional<int> 691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 692 EquivalenceClasses<const Value *> &EqCacheValue, 693 const LoopInfo *const LI, const SCEV *LHS, 694 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 695 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 696 if (LHS == RHS) 697 return 0; 698 699 // Primarily, sort the SCEVs by their getSCEVType(). 700 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 701 if (LType != RType) 702 return (int)LType - (int)RType; 703 704 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 705 return 0; 706 707 if (Depth > MaxSCEVCompareDepth) 708 return None; 709 710 // Aside from the getSCEVType() ordering, the particular ordering 711 // isn't very important except that it's beneficial to be consistent, 712 // so that (a + b) and (b + a) don't end up as different expressions. 713 switch (LType) { 714 case scUnknown: { 715 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 716 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 717 718 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 719 RU->getValue(), Depth + 1); 720 if (X == 0) 721 EqCacheSCEV.unionSets(LHS, RHS); 722 return X; 723 } 724 725 case scConstant: { 726 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 727 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 728 729 // Compare constant values. 730 const APInt &LA = LC->getAPInt(); 731 const APInt &RA = RC->getAPInt(); 732 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 733 if (LBitWidth != RBitWidth) 734 return (int)LBitWidth - (int)RBitWidth; 735 return LA.ult(RA) ? -1 : 1; 736 } 737 738 case scAddRecExpr: { 739 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 740 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 741 742 // There is always a dominance between two recs that are used by one SCEV, 743 // so we can safely sort recs by loop header dominance. We require such 744 // order in getAddExpr. 745 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 746 if (LLoop != RLoop) { 747 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 748 assert(LHead != RHead && "Two loops share the same header?"); 749 if (DT.dominates(LHead, RHead)) 750 return 1; 751 else 752 assert(DT.dominates(RHead, LHead) && 753 "No dominance between recurrences used by one SCEV?"); 754 return -1; 755 } 756 757 // Addrec complexity grows with operand count. 758 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 759 if (LNumOps != RNumOps) 760 return (int)LNumOps - (int)RNumOps; 761 762 // Lexicographically compare. 763 for (unsigned i = 0; i != LNumOps; ++i) { 764 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 765 LA->getOperand(i), RA->getOperand(i), DT, 766 Depth + 1); 767 if (X != 0) 768 return X; 769 } 770 EqCacheSCEV.unionSets(LHS, RHS); 771 return 0; 772 } 773 774 case scAddExpr: 775 case scMulExpr: 776 case scSMaxExpr: 777 case scUMaxExpr: 778 case scSMinExpr: 779 case scUMinExpr: { 780 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 781 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 782 783 // Lexicographically compare n-ary expressions. 784 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 785 if (LNumOps != RNumOps) 786 return (int)LNumOps - (int)RNumOps; 787 788 for (unsigned i = 0; i != LNumOps; ++i) { 789 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 790 LC->getOperand(i), RC->getOperand(i), DT, 791 Depth + 1); 792 if (X != 0) 793 return X; 794 } 795 EqCacheSCEV.unionSets(LHS, RHS); 796 return 0; 797 } 798 799 case scUDivExpr: { 800 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 801 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 802 803 // Lexicographically compare udiv expressions. 804 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 805 RC->getLHS(), DT, Depth + 1); 806 if (X != 0) 807 return X; 808 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 809 RC->getRHS(), DT, Depth + 1); 810 if (X == 0) 811 EqCacheSCEV.unionSets(LHS, RHS); 812 return X; 813 } 814 815 case scPtrToInt: 816 case scTruncate: 817 case scZeroExtend: 818 case scSignExtend: { 819 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 820 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 821 822 // Compare cast expressions by operand. 823 auto X = 824 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 825 RC->getOperand(), DT, Depth + 1); 826 if (X == 0) 827 EqCacheSCEV.unionSets(LHS, RHS); 828 return X; 829 } 830 831 case scCouldNotCompute: 832 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 833 } 834 llvm_unreachable("Unknown SCEV kind!"); 835 } 836 837 /// Given a list of SCEV objects, order them by their complexity, and group 838 /// objects of the same complexity together by value. When this routine is 839 /// finished, we know that any duplicates in the vector are consecutive and that 840 /// complexity is monotonically increasing. 841 /// 842 /// Note that we go take special precautions to ensure that we get deterministic 843 /// results from this routine. In other words, we don't want the results of 844 /// this to depend on where the addresses of various SCEV objects happened to 845 /// land in memory. 846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 847 LoopInfo *LI, DominatorTree &DT) { 848 if (Ops.size() < 2) return; // Noop 849 850 EquivalenceClasses<const SCEV *> EqCacheSCEV; 851 EquivalenceClasses<const Value *> EqCacheValue; 852 853 // Whether LHS has provably less complexity than RHS. 854 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 855 auto Complexity = 856 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 857 return Complexity && *Complexity < 0; 858 }; 859 if (Ops.size() == 2) { 860 // This is the common case, which also happens to be trivially simple. 861 // Special case it. 862 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 863 if (IsLessComplex(RHS, LHS)) 864 std::swap(LHS, RHS); 865 return; 866 } 867 868 // Do the rough sort by complexity. 869 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 870 return IsLessComplex(LHS, RHS); 871 }); 872 873 // Now that we are sorted by complexity, group elements of the same 874 // complexity. Note that this is, at worst, N^2, but the vector is likely to 875 // be extremely short in practice. Note that we take this approach because we 876 // do not want to depend on the addresses of the objects we are grouping. 877 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 878 const SCEV *S = Ops[i]; 879 unsigned Complexity = S->getSCEVType(); 880 881 // If there are any objects of the same complexity and same value as this 882 // one, group them. 883 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 884 if (Ops[j] == S) { // Found a duplicate. 885 // Move it to immediately after i'th element. 886 std::swap(Ops[i+1], Ops[j]); 887 ++i; // no need to rescan it. 888 if (i == e-2) return; // Done! 889 } 890 } 891 } 892 } 893 894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 895 /// least HugeExprThreshold nodes). 896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 897 return any_of(Ops, [](const SCEV *S) { 898 return S->getExpressionSize() >= HugeExprThreshold; 899 }); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Simple SCEV method implementations 904 //===----------------------------------------------------------------------===// 905 906 /// Compute BC(It, K). The result has width W. Assume, K > 0. 907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 908 ScalarEvolution &SE, 909 Type *ResultTy) { 910 // Handle the simplest case efficiently. 911 if (K == 1) 912 return SE.getTruncateOrZeroExtend(It, ResultTy); 913 914 // We are using the following formula for BC(It, K): 915 // 916 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 917 // 918 // Suppose, W is the bitwidth of the return value. We must be prepared for 919 // overflow. Hence, we must assure that the result of our computation is 920 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 921 // safe in modular arithmetic. 922 // 923 // However, this code doesn't use exactly that formula; the formula it uses 924 // is something like the following, where T is the number of factors of 2 in 925 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 926 // exponentiation: 927 // 928 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 929 // 930 // This formula is trivially equivalent to the previous formula. However, 931 // this formula can be implemented much more efficiently. The trick is that 932 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 933 // arithmetic. To do exact division in modular arithmetic, all we have 934 // to do is multiply by the inverse. Therefore, this step can be done at 935 // width W. 936 // 937 // The next issue is how to safely do the division by 2^T. The way this 938 // is done is by doing the multiplication step at a width of at least W + T 939 // bits. This way, the bottom W+T bits of the product are accurate. Then, 940 // when we perform the division by 2^T (which is equivalent to a right shift 941 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 942 // truncated out after the division by 2^T. 943 // 944 // In comparison to just directly using the first formula, this technique 945 // is much more efficient; using the first formula requires W * K bits, 946 // but this formula less than W + K bits. Also, the first formula requires 947 // a division step, whereas this formula only requires multiplies and shifts. 948 // 949 // It doesn't matter whether the subtraction step is done in the calculation 950 // width or the input iteration count's width; if the subtraction overflows, 951 // the result must be zero anyway. We prefer here to do it in the width of 952 // the induction variable because it helps a lot for certain cases; CodeGen 953 // isn't smart enough to ignore the overflow, which leads to much less 954 // efficient code if the width of the subtraction is wider than the native 955 // register width. 956 // 957 // (It's possible to not widen at all by pulling out factors of 2 before 958 // the multiplication; for example, K=2 can be calculated as 959 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 960 // extra arithmetic, so it's not an obvious win, and it gets 961 // much more complicated for K > 3.) 962 963 // Protection from insane SCEVs; this bound is conservative, 964 // but it probably doesn't matter. 965 if (K > 1000) 966 return SE.getCouldNotCompute(); 967 968 unsigned W = SE.getTypeSizeInBits(ResultTy); 969 970 // Calculate K! / 2^T and T; we divide out the factors of two before 971 // multiplying for calculating K! / 2^T to avoid overflow. 972 // Other overflow doesn't matter because we only care about the bottom 973 // W bits of the result. 974 APInt OddFactorial(W, 1); 975 unsigned T = 1; 976 for (unsigned i = 3; i <= K; ++i) { 977 APInt Mult(W, i); 978 unsigned TwoFactors = Mult.countTrailingZeros(); 979 T += TwoFactors; 980 Mult.lshrInPlace(TwoFactors); 981 OddFactorial *= Mult; 982 } 983 984 // We need at least W + T bits for the multiplication step 985 unsigned CalculationBits = W + T; 986 987 // Calculate 2^T, at width T+W. 988 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 989 990 // Calculate the multiplicative inverse of K! / 2^T; 991 // this multiplication factor will perform the exact division by 992 // K! / 2^T. 993 APInt Mod = APInt::getSignedMinValue(W+1); 994 APInt MultiplyFactor = OddFactorial.zext(W+1); 995 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 996 MultiplyFactor = MultiplyFactor.trunc(W); 997 998 // Calculate the product, at width T+W 999 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1000 CalculationBits); 1001 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1002 for (unsigned i = 1; i != K; ++i) { 1003 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1004 Dividend = SE.getMulExpr(Dividend, 1005 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1006 } 1007 1008 // Divide by 2^T 1009 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1010 1011 // Truncate the result, and divide by K! / 2^T. 1012 1013 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1014 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1015 } 1016 1017 /// Return the value of this chain of recurrences at the specified iteration 1018 /// number. We can evaluate this recurrence by multiplying each element in the 1019 /// chain by the binomial coefficient corresponding to it. In other words, we 1020 /// can evaluate {A,+,B,+,C,+,D} as: 1021 /// 1022 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1023 /// 1024 /// where BC(It, k) stands for binomial coefficient. 1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1026 ScalarEvolution &SE) const { 1027 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1028 } 1029 1030 const SCEV * 1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1032 const SCEV *It, ScalarEvolution &SE) { 1033 assert(Operands.size() > 0); 1034 const SCEV *Result = Operands[0]; 1035 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1036 // The computation is correct in the face of overflow provided that the 1037 // multiplication is performed _after_ the evaluation of the binomial 1038 // coefficient. 1039 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1040 if (isa<SCEVCouldNotCompute>(Coeff)) 1041 return Coeff; 1042 1043 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1044 } 1045 return Result; 1046 } 1047 1048 //===----------------------------------------------------------------------===// 1049 // SCEV Expression folder implementations 1050 //===----------------------------------------------------------------------===// 1051 1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1053 unsigned Depth) { 1054 assert(Depth <= 1 && 1055 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1056 1057 // We could be called with an integer-typed operands during SCEV rewrites. 1058 // Since the operand is an integer already, just perform zext/trunc/self cast. 1059 if (!Op->getType()->isPointerTy()) 1060 return Op; 1061 1062 // What would be an ID for such a SCEV cast expression? 1063 FoldingSetNodeID ID; 1064 ID.AddInteger(scPtrToInt); 1065 ID.AddPointer(Op); 1066 1067 void *IP = nullptr; 1068 1069 // Is there already an expression for such a cast? 1070 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1071 return S; 1072 1073 // It isn't legal for optimizations to construct new ptrtoint expressions 1074 // for non-integral pointers. 1075 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1076 return getCouldNotCompute(); 1077 1078 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1079 1080 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1081 // is sufficiently wide to represent all possible pointer values. 1082 // We could theoretically teach SCEV to truncate wider pointers, but 1083 // that isn't implemented for now. 1084 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1085 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1086 return getCouldNotCompute(); 1087 1088 // If not, is this expression something we can't reduce any further? 1089 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1090 // Perform some basic constant folding. If the operand of the ptr2int cast 1091 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1092 // left as-is), but produce a zero constant. 1093 // NOTE: We could handle a more general case, but lack motivational cases. 1094 if (isa<ConstantPointerNull>(U->getValue())) 1095 return getZero(IntPtrTy); 1096 1097 // Create an explicit cast node. 1098 // We can reuse the existing insert position since if we get here, 1099 // we won't have made any changes which would invalidate it. 1100 SCEV *S = new (SCEVAllocator) 1101 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1102 UniqueSCEVs.InsertNode(S, IP); 1103 addToLoopUseLists(S); 1104 return S; 1105 } 1106 1107 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1108 "non-SCEVUnknown's."); 1109 1110 // Otherwise, we've got some expression that is more complex than just a 1111 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1112 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1113 // only, and the expressions must otherwise be integer-typed. 1114 // So sink the cast down to the SCEVUnknown's. 1115 1116 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1117 /// which computes a pointer-typed value, and rewrites the whole expression 1118 /// tree so that *all* the computations are done on integers, and the only 1119 /// pointer-typed operands in the expression are SCEVUnknown. 1120 class SCEVPtrToIntSinkingRewriter 1121 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1122 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1123 1124 public: 1125 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1126 1127 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1128 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1129 return Rewriter.visit(Scev); 1130 } 1131 1132 const SCEV *visit(const SCEV *S) { 1133 Type *STy = S->getType(); 1134 // If the expression is not pointer-typed, just keep it as-is. 1135 if (!STy->isPointerTy()) 1136 return S; 1137 // Else, recursively sink the cast down into it. 1138 return Base::visit(S); 1139 } 1140 1141 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1142 SmallVector<const SCEV *, 2> Operands; 1143 bool Changed = false; 1144 for (auto *Op : Expr->operands()) { 1145 Operands.push_back(visit(Op)); 1146 Changed |= Op != Operands.back(); 1147 } 1148 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1149 } 1150 1151 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1152 SmallVector<const SCEV *, 2> Operands; 1153 bool Changed = false; 1154 for (auto *Op : Expr->operands()) { 1155 Operands.push_back(visit(Op)); 1156 Changed |= Op != Operands.back(); 1157 } 1158 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1159 } 1160 1161 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1162 assert(Expr->getType()->isPointerTy() && 1163 "Should only reach pointer-typed SCEVUnknown's."); 1164 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1165 } 1166 }; 1167 1168 // And actually perform the cast sinking. 1169 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1170 assert(IntOp->getType()->isIntegerTy() && 1171 "We must have succeeded in sinking the cast, " 1172 "and ending up with an integer-typed expression!"); 1173 return IntOp; 1174 } 1175 1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1177 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1178 1179 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1180 if (isa<SCEVCouldNotCompute>(IntOp)) 1181 return IntOp; 1182 1183 return getTruncateOrZeroExtend(IntOp, Ty); 1184 } 1185 1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1187 unsigned Depth) { 1188 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1189 "This is not a truncating conversion!"); 1190 assert(isSCEVable(Ty) && 1191 "This is not a conversion to a SCEVable type!"); 1192 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1193 Ty = getEffectiveSCEVType(Ty); 1194 1195 FoldingSetNodeID ID; 1196 ID.AddInteger(scTruncate); 1197 ID.AddPointer(Op); 1198 ID.AddPointer(Ty); 1199 void *IP = nullptr; 1200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1201 1202 // Fold if the operand is constant. 1203 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1204 return getConstant( 1205 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1206 1207 // trunc(trunc(x)) --> trunc(x) 1208 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1209 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1210 1211 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1212 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1213 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1214 1215 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1216 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1217 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1218 1219 if (Depth > MaxCastDepth) { 1220 SCEV *S = 1221 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1222 UniqueSCEVs.InsertNode(S, IP); 1223 addToLoopUseLists(S); 1224 return S; 1225 } 1226 1227 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1228 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1229 // if after transforming we have at most one truncate, not counting truncates 1230 // that replace other casts. 1231 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1232 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1233 SmallVector<const SCEV *, 4> Operands; 1234 unsigned numTruncs = 0; 1235 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1236 ++i) { 1237 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1238 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1239 isa<SCEVTruncateExpr>(S)) 1240 numTruncs++; 1241 Operands.push_back(S); 1242 } 1243 if (numTruncs < 2) { 1244 if (isa<SCEVAddExpr>(Op)) 1245 return getAddExpr(Operands); 1246 else if (isa<SCEVMulExpr>(Op)) 1247 return getMulExpr(Operands); 1248 else 1249 llvm_unreachable("Unexpected SCEV type for Op."); 1250 } 1251 // Although we checked in the beginning that ID is not in the cache, it is 1252 // possible that during recursion and different modification ID was inserted 1253 // into the cache. So if we find it, just return it. 1254 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1255 return S; 1256 } 1257 1258 // If the input value is a chrec scev, truncate the chrec's operands. 1259 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1260 SmallVector<const SCEV *, 4> Operands; 1261 for (const SCEV *Op : AddRec->operands()) 1262 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1263 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1264 } 1265 1266 // Return zero if truncating to known zeros. 1267 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1268 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1269 return getZero(Ty); 1270 1271 // The cast wasn't folded; create an explicit cast node. We can reuse 1272 // the existing insert position since if we get here, we won't have 1273 // made any changes which would invalidate it. 1274 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1275 Op, Ty); 1276 UniqueSCEVs.InsertNode(S, IP); 1277 addToLoopUseLists(S); 1278 return S; 1279 } 1280 1281 // Get the limit of a recurrence such that incrementing by Step cannot cause 1282 // signed overflow as long as the value of the recurrence within the 1283 // loop does not exceed this limit before incrementing. 1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1285 ICmpInst::Predicate *Pred, 1286 ScalarEvolution *SE) { 1287 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1288 if (SE->isKnownPositive(Step)) { 1289 *Pred = ICmpInst::ICMP_SLT; 1290 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1291 SE->getSignedRangeMax(Step)); 1292 } 1293 if (SE->isKnownNegative(Step)) { 1294 *Pred = ICmpInst::ICMP_SGT; 1295 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1296 SE->getSignedRangeMin(Step)); 1297 } 1298 return nullptr; 1299 } 1300 1301 // Get the limit of a recurrence such that incrementing by Step cannot cause 1302 // unsigned overflow as long as the value of the recurrence within the loop does 1303 // not exceed this limit before incrementing. 1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1305 ICmpInst::Predicate *Pred, 1306 ScalarEvolution *SE) { 1307 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1308 *Pred = ICmpInst::ICMP_ULT; 1309 1310 return SE->getConstant(APInt::getMinValue(BitWidth) - 1311 SE->getUnsignedRangeMax(Step)); 1312 } 1313 1314 namespace { 1315 1316 struct ExtendOpTraitsBase { 1317 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1318 unsigned); 1319 }; 1320 1321 // Used to make code generic over signed and unsigned overflow. 1322 template <typename ExtendOp> struct ExtendOpTraits { 1323 // Members present: 1324 // 1325 // static const SCEV::NoWrapFlags WrapType; 1326 // 1327 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1328 // 1329 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1330 // ICmpInst::Predicate *Pred, 1331 // ScalarEvolution *SE); 1332 }; 1333 1334 template <> 1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1336 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1337 1338 static const GetExtendExprTy GetExtendExpr; 1339 1340 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1341 ICmpInst::Predicate *Pred, 1342 ScalarEvolution *SE) { 1343 return getSignedOverflowLimitForStep(Step, Pred, SE); 1344 } 1345 }; 1346 1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1348 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1349 1350 template <> 1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1352 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1353 1354 static const GetExtendExprTy GetExtendExpr; 1355 1356 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1357 ICmpInst::Predicate *Pred, 1358 ScalarEvolution *SE) { 1359 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1360 } 1361 }; 1362 1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1364 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1365 1366 } // end anonymous namespace 1367 1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1373 // expression "Step + sext/zext(PreIncAR)" is congruent with 1374 // "sext/zext(PostIncAR)" 1375 template <typename ExtendOpTy> 1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1377 ScalarEvolution *SE, unsigned Depth) { 1378 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1379 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1380 1381 const Loop *L = AR->getLoop(); 1382 const SCEV *Start = AR->getStart(); 1383 const SCEV *Step = AR->getStepRecurrence(*SE); 1384 1385 // Check for a simple looking step prior to loop entry. 1386 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1387 if (!SA) 1388 return nullptr; 1389 1390 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1391 // subtraction is expensive. For this purpose, perform a quick and dirty 1392 // difference, by checking for Step in the operand list. 1393 SmallVector<const SCEV *, 4> DiffOps; 1394 for (const SCEV *Op : SA->operands()) 1395 if (Op != Step) 1396 DiffOps.push_back(Op); 1397 1398 if (DiffOps.size() == SA->getNumOperands()) 1399 return nullptr; 1400 1401 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1402 // `Step`: 1403 1404 // 1. NSW/NUW flags on the step increment. 1405 auto PreStartFlags = 1406 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1407 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1408 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1409 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1410 1411 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1412 // "S+X does not sign/unsign-overflow". 1413 // 1414 1415 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1416 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1417 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1418 return PreStart; 1419 1420 // 2. Direct overflow check on the step operation's expression. 1421 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1422 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1423 const SCEV *OperandExtendedStart = 1424 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1425 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1426 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1427 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1428 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1429 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1430 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1431 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1432 } 1433 return PreStart; 1434 } 1435 1436 // 3. Loop precondition. 1437 ICmpInst::Predicate Pred; 1438 const SCEV *OverflowLimit = 1439 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1440 1441 if (OverflowLimit && 1442 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1443 return PreStart; 1444 1445 return nullptr; 1446 } 1447 1448 // Get the normalized zero or sign extended expression for this AddRec's Start. 1449 template <typename ExtendOpTy> 1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1451 ScalarEvolution *SE, 1452 unsigned Depth) { 1453 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1454 1455 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1456 if (!PreStart) 1457 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1458 1459 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1460 Depth), 1461 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1462 } 1463 1464 // Try to prove away overflow by looking at "nearby" add recurrences. A 1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1467 // 1468 // Formally: 1469 // 1470 // {S,+,X} == {S-T,+,X} + T 1471 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1472 // 1473 // If ({S-T,+,X} + T) does not overflow ... (1) 1474 // 1475 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1476 // 1477 // If {S-T,+,X} does not overflow ... (2) 1478 // 1479 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1480 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1481 // 1482 // If (S-T)+T does not overflow ... (3) 1483 // 1484 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1485 // == {Ext(S),+,Ext(X)} == LHS 1486 // 1487 // Thus, if (1), (2) and (3) are true for some T, then 1488 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1489 // 1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1491 // does not overflow" restricted to the 0th iteration. Therefore we only need 1492 // to check for (1) and (2). 1493 // 1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1495 // is `Delta` (defined below). 1496 template <typename ExtendOpTy> 1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1498 const SCEV *Step, 1499 const Loop *L) { 1500 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1501 1502 // We restrict `Start` to a constant to prevent SCEV from spending too much 1503 // time here. It is correct (but more expensive) to continue with a 1504 // non-constant `Start` and do a general SCEV subtraction to compute 1505 // `PreStart` below. 1506 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1507 if (!StartC) 1508 return false; 1509 1510 APInt StartAI = StartC->getAPInt(); 1511 1512 for (unsigned Delta : {-2, -1, 1, 2}) { 1513 const SCEV *PreStart = getConstant(StartAI - Delta); 1514 1515 FoldingSetNodeID ID; 1516 ID.AddInteger(scAddRecExpr); 1517 ID.AddPointer(PreStart); 1518 ID.AddPointer(Step); 1519 ID.AddPointer(L); 1520 void *IP = nullptr; 1521 const auto *PreAR = 1522 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1523 1524 // Give up if we don't already have the add recurrence we need because 1525 // actually constructing an add recurrence is relatively expensive. 1526 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1527 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1528 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1529 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1530 DeltaS, &Pred, this); 1531 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1532 return true; 1533 } 1534 } 1535 1536 return false; 1537 } 1538 1539 // Finds an integer D for an expression (C + x + y + ...) such that the top 1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1543 // the (C + x + y + ...) expression is \p WholeAddExpr. 1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1545 const SCEVConstant *ConstantTerm, 1546 const SCEVAddExpr *WholeAddExpr) { 1547 const APInt &C = ConstantTerm->getAPInt(); 1548 const unsigned BitWidth = C.getBitWidth(); 1549 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1550 uint32_t TZ = BitWidth; 1551 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1552 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1553 if (TZ) { 1554 // Set D to be as many least significant bits of C as possible while still 1555 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1556 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1557 } 1558 return APInt(BitWidth, 0); 1559 } 1560 1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1566 const APInt &ConstantStart, 1567 const SCEV *Step) { 1568 const unsigned BitWidth = ConstantStart.getBitWidth(); 1569 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1570 if (TZ) 1571 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1572 : ConstantStart; 1573 return APInt(BitWidth, 0); 1574 } 1575 1576 const SCEV * 1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1578 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1579 "This is not an extending conversion!"); 1580 assert(isSCEVable(Ty) && 1581 "This is not a conversion to a SCEVable type!"); 1582 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1583 Ty = getEffectiveSCEVType(Ty); 1584 1585 // Fold if the operand is constant. 1586 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1587 return getConstant( 1588 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1589 1590 // zext(zext(x)) --> zext(x) 1591 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1592 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1593 1594 // Before doing any expensive analysis, check to see if we've already 1595 // computed a SCEV for this Op and Ty. 1596 FoldingSetNodeID ID; 1597 ID.AddInteger(scZeroExtend); 1598 ID.AddPointer(Op); 1599 ID.AddPointer(Ty); 1600 void *IP = nullptr; 1601 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1602 if (Depth > MaxCastDepth) { 1603 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1604 Op, Ty); 1605 UniqueSCEVs.InsertNode(S, IP); 1606 addToLoopUseLists(S); 1607 return S; 1608 } 1609 1610 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1611 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1612 // It's possible the bits taken off by the truncate were all zero bits. If 1613 // so, we should be able to simplify this further. 1614 const SCEV *X = ST->getOperand(); 1615 ConstantRange CR = getUnsignedRange(X); 1616 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1617 unsigned NewBits = getTypeSizeInBits(Ty); 1618 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1619 CR.zextOrTrunc(NewBits))) 1620 return getTruncateOrZeroExtend(X, Ty, Depth); 1621 } 1622 1623 // If the input value is a chrec scev, and we can prove that the value 1624 // did not overflow the old, smaller, value, we can zero extend all of the 1625 // operands (often constants). This allows analysis of something like 1626 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1627 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1628 if (AR->isAffine()) { 1629 const SCEV *Start = AR->getStart(); 1630 const SCEV *Step = AR->getStepRecurrence(*this); 1631 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1632 const Loop *L = AR->getLoop(); 1633 1634 if (!AR->hasNoUnsignedWrap()) { 1635 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1636 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1637 } 1638 1639 // If we have special knowledge that this addrec won't overflow, 1640 // we don't need to do any further analysis. 1641 if (AR->hasNoUnsignedWrap()) 1642 return getAddRecExpr( 1643 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1644 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1645 1646 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1647 // Note that this serves two purposes: It filters out loops that are 1648 // simply not analyzable, and it covers the case where this code is 1649 // being called from within backedge-taken count analysis, such that 1650 // attempting to ask for the backedge-taken count would likely result 1651 // in infinite recursion. In the later case, the analysis code will 1652 // cope with a conservative value, and it will take care to purge 1653 // that value once it has finished. 1654 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1655 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1656 // Manually compute the final value for AR, checking for overflow. 1657 1658 // Check whether the backedge-taken count can be losslessly casted to 1659 // the addrec's type. The count is always unsigned. 1660 const SCEV *CastedMaxBECount = 1661 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1662 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1663 CastedMaxBECount, MaxBECount->getType(), Depth); 1664 if (MaxBECount == RecastedMaxBECount) { 1665 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1666 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1667 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1668 SCEV::FlagAnyWrap, Depth + 1); 1669 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1670 SCEV::FlagAnyWrap, 1671 Depth + 1), 1672 WideTy, Depth + 1); 1673 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1674 const SCEV *WideMaxBECount = 1675 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1676 const SCEV *OperandExtendedAdd = 1677 getAddExpr(WideStart, 1678 getMulExpr(WideMaxBECount, 1679 getZeroExtendExpr(Step, WideTy, Depth + 1), 1680 SCEV::FlagAnyWrap, Depth + 1), 1681 SCEV::FlagAnyWrap, Depth + 1); 1682 if (ZAdd == OperandExtendedAdd) { 1683 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1684 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1685 // Return the expression with the addrec on the outside. 1686 return getAddRecExpr( 1687 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1688 Depth + 1), 1689 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1690 AR->getNoWrapFlags()); 1691 } 1692 // Similar to above, only this time treat the step value as signed. 1693 // This covers loops that count down. 1694 OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getSignExtendExpr(Step, WideTy, Depth + 1), 1698 SCEV::FlagAnyWrap, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1); 1700 if (ZAdd == OperandExtendedAdd) { 1701 // Cache knowledge of AR NW, which is propagated to this AddRec. 1702 // Negative step causes unsigned wrap, but it still can't self-wrap. 1703 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1704 // Return the expression with the addrec on the outside. 1705 return getAddRecExpr( 1706 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1707 Depth + 1), 1708 getSignExtendExpr(Step, Ty, Depth + 1), L, 1709 AR->getNoWrapFlags()); 1710 } 1711 } 1712 } 1713 1714 // Normally, in the cases we can prove no-overflow via a 1715 // backedge guarding condition, we can also compute a backedge 1716 // taken count for the loop. The exceptions are assumptions and 1717 // guards present in the loop -- SCEV is not great at exploiting 1718 // these to compute max backedge taken counts, but can still use 1719 // these to prove lack of overflow. Use this fact to avoid 1720 // doing extra work that may not pay off. 1721 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1722 !AC.assumptions().empty()) { 1723 1724 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1725 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1726 if (AR->hasNoUnsignedWrap()) { 1727 // Same as nuw case above - duplicated here to avoid a compile time 1728 // issue. It's not clear that the order of checks does matter, but 1729 // it's one of two issue possible causes for a change which was 1730 // reverted. Be conservative for the moment. 1731 return getAddRecExpr( 1732 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1733 Depth + 1), 1734 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1735 AR->getNoWrapFlags()); 1736 } 1737 1738 // For a negative step, we can extend the operands iff doing so only 1739 // traverses values in the range zext([0,UINT_MAX]). 1740 if (isKnownNegative(Step)) { 1741 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1742 getSignedRangeMin(Step)); 1743 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1744 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1745 // Cache knowledge of AR NW, which is propagated to this 1746 // AddRec. Negative step causes unsigned wrap, but it 1747 // still can't self-wrap. 1748 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1749 // Return the expression with the addrec on the outside. 1750 return getAddRecExpr( 1751 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1752 Depth + 1), 1753 getSignExtendExpr(Step, Ty, Depth + 1), L, 1754 AR->getNoWrapFlags()); 1755 } 1756 } 1757 } 1758 1759 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1760 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1761 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1762 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1763 const APInt &C = SC->getAPInt(); 1764 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1765 if (D != 0) { 1766 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1767 const SCEV *SResidual = 1768 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1769 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1770 return getAddExpr(SZExtD, SZExtR, 1771 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1772 Depth + 1); 1773 } 1774 } 1775 1776 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1777 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1778 return getAddRecExpr( 1779 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1780 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1781 } 1782 } 1783 1784 // zext(A % B) --> zext(A) % zext(B) 1785 { 1786 const SCEV *LHS; 1787 const SCEV *RHS; 1788 if (matchURem(Op, LHS, RHS)) 1789 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1790 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1791 } 1792 1793 // zext(A / B) --> zext(A) / zext(B). 1794 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1795 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1796 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1797 1798 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1799 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1800 if (SA->hasNoUnsignedWrap()) { 1801 // If the addition does not unsign overflow then we can, by definition, 1802 // commute the zero extension with the addition operation. 1803 SmallVector<const SCEV *, 4> Ops; 1804 for (const auto *Op : SA->operands()) 1805 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1806 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1807 } 1808 1809 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1810 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1811 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1812 // 1813 // Often address arithmetics contain expressions like 1814 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1815 // This transformation is useful while proving that such expressions are 1816 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1817 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1818 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1819 if (D != 0) { 1820 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1821 const SCEV *SResidual = 1822 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1823 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1824 return getAddExpr(SZExtD, SZExtR, 1825 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1826 Depth + 1); 1827 } 1828 } 1829 } 1830 1831 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1832 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1833 if (SM->hasNoUnsignedWrap()) { 1834 // If the multiply does not unsign overflow then we can, by definition, 1835 // commute the zero extension with the multiply operation. 1836 SmallVector<const SCEV *, 4> Ops; 1837 for (const auto *Op : SM->operands()) 1838 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1839 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1840 } 1841 1842 // zext(2^K * (trunc X to iN)) to iM -> 1843 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1844 // 1845 // Proof: 1846 // 1847 // zext(2^K * (trunc X to iN)) to iM 1848 // = zext((trunc X to iN) << K) to iM 1849 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1850 // (because shl removes the top K bits) 1851 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1852 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1853 // 1854 if (SM->getNumOperands() == 2) 1855 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1856 if (MulLHS->getAPInt().isPowerOf2()) 1857 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1858 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1859 MulLHS->getAPInt().logBase2(); 1860 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1861 return getMulExpr( 1862 getZeroExtendExpr(MulLHS, Ty), 1863 getZeroExtendExpr( 1864 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1865 SCEV::FlagNUW, Depth + 1); 1866 } 1867 } 1868 1869 // The cast wasn't folded; create an explicit cast node. 1870 // Recompute the insert position, as it may have been invalidated. 1871 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1872 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1873 Op, Ty); 1874 UniqueSCEVs.InsertNode(S, IP); 1875 addToLoopUseLists(S); 1876 return S; 1877 } 1878 1879 const SCEV * 1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1882 "This is not an extending conversion!"); 1883 assert(isSCEVable(Ty) && 1884 "This is not a conversion to a SCEVable type!"); 1885 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1886 Ty = getEffectiveSCEVType(Ty); 1887 1888 // Fold if the operand is constant. 1889 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1890 return getConstant( 1891 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1892 1893 // sext(sext(x)) --> sext(x) 1894 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1895 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1896 1897 // sext(zext(x)) --> zext(x) 1898 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1899 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1900 1901 // Before doing any expensive analysis, check to see if we've already 1902 // computed a SCEV for this Op and Ty. 1903 FoldingSetNodeID ID; 1904 ID.AddInteger(scSignExtend); 1905 ID.AddPointer(Op); 1906 ID.AddPointer(Ty); 1907 void *IP = nullptr; 1908 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1909 // Limit recursion depth. 1910 if (Depth > MaxCastDepth) { 1911 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1912 Op, Ty); 1913 UniqueSCEVs.InsertNode(S, IP); 1914 addToLoopUseLists(S); 1915 return S; 1916 } 1917 1918 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1919 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1920 // It's possible the bits taken off by the truncate were all sign bits. If 1921 // so, we should be able to simplify this further. 1922 const SCEV *X = ST->getOperand(); 1923 ConstantRange CR = getSignedRange(X); 1924 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1925 unsigned NewBits = getTypeSizeInBits(Ty); 1926 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1927 CR.sextOrTrunc(NewBits))) 1928 return getTruncateOrSignExtend(X, Ty, Depth); 1929 } 1930 1931 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1932 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1933 if (SA->hasNoSignedWrap()) { 1934 // If the addition does not sign overflow then we can, by definition, 1935 // commute the sign extension with the addition operation. 1936 SmallVector<const SCEV *, 4> Ops; 1937 for (const auto *Op : SA->operands()) 1938 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1939 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1940 } 1941 1942 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1943 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1944 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1945 // 1946 // For instance, this will bring two seemingly different expressions: 1947 // 1 + sext(5 + 20 * %x + 24 * %y) and 1948 // sext(6 + 20 * %x + 24 * %y) 1949 // to the same form: 1950 // 2 + sext(4 + 20 * %x + 24 * %y) 1951 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1952 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1953 if (D != 0) { 1954 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1955 const SCEV *SResidual = 1956 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1957 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1958 return getAddExpr(SSExtD, SSExtR, 1959 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1960 Depth + 1); 1961 } 1962 } 1963 } 1964 // If the input value is a chrec scev, and we can prove that the value 1965 // did not overflow the old, smaller, value, we can sign extend all of the 1966 // operands (often constants). This allows analysis of something like 1967 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1968 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1969 if (AR->isAffine()) { 1970 const SCEV *Start = AR->getStart(); 1971 const SCEV *Step = AR->getStepRecurrence(*this); 1972 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1973 const Loop *L = AR->getLoop(); 1974 1975 if (!AR->hasNoSignedWrap()) { 1976 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1977 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1978 } 1979 1980 // If we have special knowledge that this addrec won't overflow, 1981 // we don't need to do any further analysis. 1982 if (AR->hasNoSignedWrap()) 1983 return getAddRecExpr( 1984 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1985 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1986 1987 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1988 // Note that this serves two purposes: It filters out loops that are 1989 // simply not analyzable, and it covers the case where this code is 1990 // being called from within backedge-taken count analysis, such that 1991 // attempting to ask for the backedge-taken count would likely result 1992 // in infinite recursion. In the later case, the analysis code will 1993 // cope with a conservative value, and it will take care to purge 1994 // that value once it has finished. 1995 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1996 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1997 // Manually compute the final value for AR, checking for 1998 // overflow. 1999 2000 // Check whether the backedge-taken count can be losslessly casted to 2001 // the addrec's type. The count is always unsigned. 2002 const SCEV *CastedMaxBECount = 2003 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2004 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2005 CastedMaxBECount, MaxBECount->getType(), Depth); 2006 if (MaxBECount == RecastedMaxBECount) { 2007 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2008 // Check whether Start+Step*MaxBECount has no signed overflow. 2009 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2010 SCEV::FlagAnyWrap, Depth + 1); 2011 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2012 SCEV::FlagAnyWrap, 2013 Depth + 1), 2014 WideTy, Depth + 1); 2015 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2016 const SCEV *WideMaxBECount = 2017 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2018 const SCEV *OperandExtendedAdd = 2019 getAddExpr(WideStart, 2020 getMulExpr(WideMaxBECount, 2021 getSignExtendExpr(Step, WideTy, Depth + 1), 2022 SCEV::FlagAnyWrap, Depth + 1), 2023 SCEV::FlagAnyWrap, Depth + 1); 2024 if (SAdd == OperandExtendedAdd) { 2025 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2026 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2027 // Return the expression with the addrec on the outside. 2028 return getAddRecExpr( 2029 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2030 Depth + 1), 2031 getSignExtendExpr(Step, Ty, Depth + 1), L, 2032 AR->getNoWrapFlags()); 2033 } 2034 // Similar to above, only this time treat the step value as unsigned. 2035 // This covers loops that count up with an unsigned step. 2036 OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getZeroExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // If AR wraps around then 2044 // 2045 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2046 // => SAdd != OperandExtendedAdd 2047 // 2048 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2049 // (SAdd == OperandExtendedAdd => AR is NW) 2050 2051 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2052 2053 // Return the expression with the addrec on the outside. 2054 return getAddRecExpr( 2055 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2056 Depth + 1), 2057 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2058 AR->getNoWrapFlags()); 2059 } 2060 } 2061 } 2062 2063 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2064 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2065 if (AR->hasNoSignedWrap()) { 2066 // Same as nsw case above - duplicated here to avoid a compile time 2067 // issue. It's not clear that the order of checks does matter, but 2068 // it's one of two issue possible causes for a change which was 2069 // reverted. Be conservative for the moment. 2070 return getAddRecExpr( 2071 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2072 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2073 } 2074 2075 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2076 // if D + (C - D + Step * n) could be proven to not signed wrap 2077 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2078 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2079 const APInt &C = SC->getAPInt(); 2080 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2081 if (D != 0) { 2082 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2083 const SCEV *SResidual = 2084 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2085 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2086 return getAddExpr(SSExtD, SSExtR, 2087 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2088 Depth + 1); 2089 } 2090 } 2091 2092 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2093 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2094 return getAddRecExpr( 2095 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2096 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2097 } 2098 } 2099 2100 // If the input value is provably positive and we could not simplify 2101 // away the sext build a zext instead. 2102 if (isKnownNonNegative(Op)) 2103 return getZeroExtendExpr(Op, Ty, Depth + 1); 2104 2105 // The cast wasn't folded; create an explicit cast node. 2106 // Recompute the insert position, as it may have been invalidated. 2107 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2108 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2109 Op, Ty); 2110 UniqueSCEVs.InsertNode(S, IP); 2111 addToLoopUseLists(S); 2112 return S; 2113 } 2114 2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2116 /// unspecified bits out to the given type. 2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2118 Type *Ty) { 2119 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2120 "This is not an extending conversion!"); 2121 assert(isSCEVable(Ty) && 2122 "This is not a conversion to a SCEVable type!"); 2123 Ty = getEffectiveSCEVType(Ty); 2124 2125 // Sign-extend negative constants. 2126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2127 if (SC->getAPInt().isNegative()) 2128 return getSignExtendExpr(Op, Ty); 2129 2130 // Peel off a truncate cast. 2131 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2132 const SCEV *NewOp = T->getOperand(); 2133 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2134 return getAnyExtendExpr(NewOp, Ty); 2135 return getTruncateOrNoop(NewOp, Ty); 2136 } 2137 2138 // Next try a zext cast. If the cast is folded, use it. 2139 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2140 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2141 return ZExt; 2142 2143 // Next try a sext cast. If the cast is folded, use it. 2144 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2145 if (!isa<SCEVSignExtendExpr>(SExt)) 2146 return SExt; 2147 2148 // Force the cast to be folded into the operands of an addrec. 2149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2150 SmallVector<const SCEV *, 4> Ops; 2151 for (const SCEV *Op : AR->operands()) 2152 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2153 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2154 } 2155 2156 // If the expression is obviously signed, use the sext cast value. 2157 if (isa<SCEVSMaxExpr>(Op)) 2158 return SExt; 2159 2160 // Absent any other information, use the zext cast value. 2161 return ZExt; 2162 } 2163 2164 /// Process the given Ops list, which is a list of operands to be added under 2165 /// the given scale, update the given map. This is a helper function for 2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2167 /// that would form an add expression like this: 2168 /// 2169 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2170 /// 2171 /// where A and B are constants, update the map with these values: 2172 /// 2173 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2174 /// 2175 /// and add 13 + A*B*29 to AccumulatedConstant. 2176 /// This will allow getAddRecExpr to produce this: 2177 /// 2178 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2179 /// 2180 /// This form often exposes folding opportunities that are hidden in 2181 /// the original operand list. 2182 /// 2183 /// Return true iff it appears that any interesting folding opportunities 2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2185 /// the common case where no interesting opportunities are present, and 2186 /// is also used as a check to avoid infinite recursion. 2187 static bool 2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2189 SmallVectorImpl<const SCEV *> &NewOps, 2190 APInt &AccumulatedConstant, 2191 const SCEV *const *Ops, size_t NumOperands, 2192 const APInt &Scale, 2193 ScalarEvolution &SE) { 2194 bool Interesting = false; 2195 2196 // Iterate over the add operands. They are sorted, with constants first. 2197 unsigned i = 0; 2198 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2199 ++i; 2200 // Pull a buried constant out to the outside. 2201 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2202 Interesting = true; 2203 AccumulatedConstant += Scale * C->getAPInt(); 2204 } 2205 2206 // Next comes everything else. We're especially interested in multiplies 2207 // here, but they're in the middle, so just visit the rest with one loop. 2208 for (; i != NumOperands; ++i) { 2209 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2210 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2211 APInt NewScale = 2212 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2213 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2214 // A multiplication of a constant with another add; recurse. 2215 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2216 Interesting |= 2217 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2218 Add->op_begin(), Add->getNumOperands(), 2219 NewScale, SE); 2220 } else { 2221 // A multiplication of a constant with some other value. Update 2222 // the map. 2223 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2224 const SCEV *Key = SE.getMulExpr(MulOps); 2225 auto Pair = M.insert({Key, NewScale}); 2226 if (Pair.second) { 2227 NewOps.push_back(Pair.first->first); 2228 } else { 2229 Pair.first->second += NewScale; 2230 // The map already had an entry for this value, which may indicate 2231 // a folding opportunity. 2232 Interesting = true; 2233 } 2234 } 2235 } else { 2236 // An ordinary operand. Update the map. 2237 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2238 M.insert({Ops[i], Scale}); 2239 if (Pair.second) { 2240 NewOps.push_back(Pair.first->first); 2241 } else { 2242 Pair.first->second += Scale; 2243 // The map already had an entry for this value, which may indicate 2244 // a folding opportunity. 2245 Interesting = true; 2246 } 2247 } 2248 } 2249 2250 return Interesting; 2251 } 2252 2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2254 const SCEV *LHS, const SCEV *RHS) { 2255 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2256 SCEV::NoWrapFlags, unsigned); 2257 switch (BinOp) { 2258 default: 2259 llvm_unreachable("Unsupported binary op"); 2260 case Instruction::Add: 2261 Operation = &ScalarEvolution::getAddExpr; 2262 break; 2263 case Instruction::Sub: 2264 Operation = &ScalarEvolution::getMinusSCEV; 2265 break; 2266 case Instruction::Mul: 2267 Operation = &ScalarEvolution::getMulExpr; 2268 break; 2269 } 2270 2271 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2272 Signed ? &ScalarEvolution::getSignExtendExpr 2273 : &ScalarEvolution::getZeroExtendExpr; 2274 2275 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2276 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2277 auto *WideTy = 2278 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2279 2280 const SCEV *A = (this->*Extension)( 2281 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2282 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2283 (this->*Extension)(RHS, WideTy, 0), 2284 SCEV::FlagAnyWrap, 0); 2285 return A == B; 2286 } 2287 2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2290 const OverflowingBinaryOperator *OBO) { 2291 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2292 2293 if (OBO->hasNoUnsignedWrap()) 2294 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2295 if (OBO->hasNoSignedWrap()) 2296 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2297 2298 bool Deduced = false; 2299 2300 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2301 return {Flags, Deduced}; 2302 2303 if (OBO->getOpcode() != Instruction::Add && 2304 OBO->getOpcode() != Instruction::Sub && 2305 OBO->getOpcode() != Instruction::Mul) 2306 return {Flags, Deduced}; 2307 2308 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2309 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2310 2311 if (!OBO->hasNoUnsignedWrap() && 2312 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2313 /* Signed */ false, LHS, RHS)) { 2314 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2315 Deduced = true; 2316 } 2317 2318 if (!OBO->hasNoSignedWrap() && 2319 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2320 /* Signed */ true, LHS, RHS)) { 2321 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2322 Deduced = true; 2323 } 2324 2325 return {Flags, Deduced}; 2326 } 2327 2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2329 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2330 // can't-overflow flags for the operation if possible. 2331 static SCEV::NoWrapFlags 2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2333 const ArrayRef<const SCEV *> Ops, 2334 SCEV::NoWrapFlags Flags) { 2335 using namespace std::placeholders; 2336 2337 using OBO = OverflowingBinaryOperator; 2338 2339 bool CanAnalyze = 2340 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2341 (void)CanAnalyze; 2342 assert(CanAnalyze && "don't call from other places!"); 2343 2344 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2345 SCEV::NoWrapFlags SignOrUnsignWrap = 2346 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2347 2348 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2349 auto IsKnownNonNegative = [&](const SCEV *S) { 2350 return SE->isKnownNonNegative(S); 2351 }; 2352 2353 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2354 Flags = 2355 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2356 2357 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2358 2359 if (SignOrUnsignWrap != SignOrUnsignMask && 2360 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2361 isa<SCEVConstant>(Ops[0])) { 2362 2363 auto Opcode = [&] { 2364 switch (Type) { 2365 case scAddExpr: 2366 return Instruction::Add; 2367 case scMulExpr: 2368 return Instruction::Mul; 2369 default: 2370 llvm_unreachable("Unexpected SCEV op."); 2371 } 2372 }(); 2373 2374 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2375 2376 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2377 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2378 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2379 Opcode, C, OBO::NoSignedWrap); 2380 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2381 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2382 } 2383 2384 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2385 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2386 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2387 Opcode, C, OBO::NoUnsignedWrap); 2388 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2389 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2390 } 2391 } 2392 2393 // <0,+,nonnegative><nw> is also nuw 2394 // TODO: Add corresponding nsw case 2395 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2396 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2397 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2398 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2399 2400 return Flags; 2401 } 2402 2403 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2404 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2405 } 2406 2407 /// Get a canonical add expression, or something simpler if possible. 2408 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2409 SCEV::NoWrapFlags OrigFlags, 2410 unsigned Depth) { 2411 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2412 "only nuw or nsw allowed"); 2413 assert(!Ops.empty() && "Cannot get empty add!"); 2414 if (Ops.size() == 1) return Ops[0]; 2415 #ifndef NDEBUG 2416 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2417 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2418 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2419 "SCEVAddExpr operand types don't match!"); 2420 unsigned NumPtrs = count_if( 2421 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2422 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2423 #endif 2424 2425 // Sort by complexity, this groups all similar expression types together. 2426 GroupByComplexity(Ops, &LI, DT); 2427 2428 // If there are any constants, fold them together. 2429 unsigned Idx = 0; 2430 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2431 ++Idx; 2432 assert(Idx < Ops.size()); 2433 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2434 // We found two constants, fold them together! 2435 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2436 if (Ops.size() == 2) return Ops[0]; 2437 Ops.erase(Ops.begin()+1); // Erase the folded element 2438 LHSC = cast<SCEVConstant>(Ops[0]); 2439 } 2440 2441 // If we are left with a constant zero being added, strip it off. 2442 if (LHSC->getValue()->isZero()) { 2443 Ops.erase(Ops.begin()); 2444 --Idx; 2445 } 2446 2447 if (Ops.size() == 1) return Ops[0]; 2448 } 2449 2450 // Delay expensive flag strengthening until necessary. 2451 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2452 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2453 }; 2454 2455 // Limit recursion calls depth. 2456 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2457 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2458 2459 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2460 // Don't strengthen flags if we have no new information. 2461 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2462 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2463 Add->setNoWrapFlags(ComputeFlags(Ops)); 2464 return S; 2465 } 2466 2467 // Okay, check to see if the same value occurs in the operand list more than 2468 // once. If so, merge them together into an multiply expression. Since we 2469 // sorted the list, these values are required to be adjacent. 2470 Type *Ty = Ops[0]->getType(); 2471 bool FoundMatch = false; 2472 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2473 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2474 // Scan ahead to count how many equal operands there are. 2475 unsigned Count = 2; 2476 while (i+Count != e && Ops[i+Count] == Ops[i]) 2477 ++Count; 2478 // Merge the values into a multiply. 2479 const SCEV *Scale = getConstant(Ty, Count); 2480 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2481 if (Ops.size() == Count) 2482 return Mul; 2483 Ops[i] = Mul; 2484 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2485 --i; e -= Count - 1; 2486 FoundMatch = true; 2487 } 2488 if (FoundMatch) 2489 return getAddExpr(Ops, OrigFlags, Depth + 1); 2490 2491 // Check for truncates. If all the operands are truncated from the same 2492 // type, see if factoring out the truncate would permit the result to be 2493 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2494 // if the contents of the resulting outer trunc fold to something simple. 2495 auto FindTruncSrcType = [&]() -> Type * { 2496 // We're ultimately looking to fold an addrec of truncs and muls of only 2497 // constants and truncs, so if we find any other types of SCEV 2498 // as operands of the addrec then we bail and return nullptr here. 2499 // Otherwise, we return the type of the operand of a trunc that we find. 2500 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2501 return T->getOperand()->getType(); 2502 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2503 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2504 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2505 return T->getOperand()->getType(); 2506 } 2507 return nullptr; 2508 }; 2509 if (auto *SrcType = FindTruncSrcType()) { 2510 SmallVector<const SCEV *, 8> LargeOps; 2511 bool Ok = true; 2512 // Check all the operands to see if they can be represented in the 2513 // source type of the truncate. 2514 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2515 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2516 if (T->getOperand()->getType() != SrcType) { 2517 Ok = false; 2518 break; 2519 } 2520 LargeOps.push_back(T->getOperand()); 2521 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2522 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2523 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2524 SmallVector<const SCEV *, 8> LargeMulOps; 2525 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2526 if (const SCEVTruncateExpr *T = 2527 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2528 if (T->getOperand()->getType() != SrcType) { 2529 Ok = false; 2530 break; 2531 } 2532 LargeMulOps.push_back(T->getOperand()); 2533 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2534 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2535 } else { 2536 Ok = false; 2537 break; 2538 } 2539 } 2540 if (Ok) 2541 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2542 } else { 2543 Ok = false; 2544 break; 2545 } 2546 } 2547 if (Ok) { 2548 // Evaluate the expression in the larger type. 2549 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2550 // If it folds to something simple, use it. Otherwise, don't. 2551 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2552 return getTruncateExpr(Fold, Ty); 2553 } 2554 } 2555 2556 if (Ops.size() == 2) { 2557 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2558 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2559 // C1). 2560 const SCEV *A = Ops[0]; 2561 const SCEV *B = Ops[1]; 2562 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2563 auto *C = dyn_cast<SCEVConstant>(A); 2564 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2565 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2566 auto C2 = C->getAPInt(); 2567 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2568 2569 APInt ConstAdd = C1 + C2; 2570 auto AddFlags = AddExpr->getNoWrapFlags(); 2571 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2572 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2573 ConstAdd.ule(C1)) { 2574 PreservedFlags = 2575 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2576 } 2577 2578 // Adding a constant with the same sign and small magnitude is NSW, if the 2579 // original AddExpr was NSW. 2580 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2581 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2582 ConstAdd.abs().ule(C1.abs())) { 2583 PreservedFlags = 2584 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2585 } 2586 2587 if (PreservedFlags != SCEV::FlagAnyWrap) { 2588 SmallVector<const SCEV *, 4> NewOps(AddExpr->op_begin(), 2589 AddExpr->op_end()); 2590 NewOps[0] = getConstant(ConstAdd); 2591 return getAddExpr(NewOps, PreservedFlags); 2592 } 2593 } 2594 } 2595 2596 // Skip past any other cast SCEVs. 2597 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2598 ++Idx; 2599 2600 // If there are add operands they would be next. 2601 if (Idx < Ops.size()) { 2602 bool DeletedAdd = false; 2603 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2604 // common NUW flag for expression after inlining. Other flags cannot be 2605 // preserved, because they may depend on the original order of operations. 2606 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2607 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2608 if (Ops.size() > AddOpsInlineThreshold || 2609 Add->getNumOperands() > AddOpsInlineThreshold) 2610 break; 2611 // If we have an add, expand the add operands onto the end of the operands 2612 // list. 2613 Ops.erase(Ops.begin()+Idx); 2614 Ops.append(Add->op_begin(), Add->op_end()); 2615 DeletedAdd = true; 2616 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2617 } 2618 2619 // If we deleted at least one add, we added operands to the end of the list, 2620 // and they are not necessarily sorted. Recurse to resort and resimplify 2621 // any operands we just acquired. 2622 if (DeletedAdd) 2623 return getAddExpr(Ops, CommonFlags, Depth + 1); 2624 } 2625 2626 // Skip over the add expression until we get to a multiply. 2627 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2628 ++Idx; 2629 2630 // Check to see if there are any folding opportunities present with 2631 // operands multiplied by constant values. 2632 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2633 uint64_t BitWidth = getTypeSizeInBits(Ty); 2634 DenseMap<const SCEV *, APInt> M; 2635 SmallVector<const SCEV *, 8> NewOps; 2636 APInt AccumulatedConstant(BitWidth, 0); 2637 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2638 Ops.data(), Ops.size(), 2639 APInt(BitWidth, 1), *this)) { 2640 struct APIntCompare { 2641 bool operator()(const APInt &LHS, const APInt &RHS) const { 2642 return LHS.ult(RHS); 2643 } 2644 }; 2645 2646 // Some interesting folding opportunity is present, so its worthwhile to 2647 // re-generate the operands list. Group the operands by constant scale, 2648 // to avoid multiplying by the same constant scale multiple times. 2649 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2650 for (const SCEV *NewOp : NewOps) 2651 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2652 // Re-generate the operands list. 2653 Ops.clear(); 2654 if (AccumulatedConstant != 0) 2655 Ops.push_back(getConstant(AccumulatedConstant)); 2656 for (auto &MulOp : MulOpLists) { 2657 if (MulOp.first == 1) { 2658 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2659 } else if (MulOp.first != 0) { 2660 Ops.push_back(getMulExpr( 2661 getConstant(MulOp.first), 2662 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2663 SCEV::FlagAnyWrap, Depth + 1)); 2664 } 2665 } 2666 if (Ops.empty()) 2667 return getZero(Ty); 2668 if (Ops.size() == 1) 2669 return Ops[0]; 2670 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2671 } 2672 } 2673 2674 // If we are adding something to a multiply expression, make sure the 2675 // something is not already an operand of the multiply. If so, merge it into 2676 // the multiply. 2677 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2678 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2679 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2680 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2681 if (isa<SCEVConstant>(MulOpSCEV)) 2682 continue; 2683 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2684 if (MulOpSCEV == Ops[AddOp]) { 2685 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2686 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2687 if (Mul->getNumOperands() != 2) { 2688 // If the multiply has more than two operands, we must get the 2689 // Y*Z term. 2690 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2691 Mul->op_begin()+MulOp); 2692 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2693 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2694 } 2695 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2696 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2697 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2698 SCEV::FlagAnyWrap, Depth + 1); 2699 if (Ops.size() == 2) return OuterMul; 2700 if (AddOp < Idx) { 2701 Ops.erase(Ops.begin()+AddOp); 2702 Ops.erase(Ops.begin()+Idx-1); 2703 } else { 2704 Ops.erase(Ops.begin()+Idx); 2705 Ops.erase(Ops.begin()+AddOp-1); 2706 } 2707 Ops.push_back(OuterMul); 2708 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2709 } 2710 2711 // Check this multiply against other multiplies being added together. 2712 for (unsigned OtherMulIdx = Idx+1; 2713 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2714 ++OtherMulIdx) { 2715 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2716 // If MulOp occurs in OtherMul, we can fold the two multiplies 2717 // together. 2718 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2719 OMulOp != e; ++OMulOp) 2720 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2721 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2722 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2723 if (Mul->getNumOperands() != 2) { 2724 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2725 Mul->op_begin()+MulOp); 2726 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2727 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2728 } 2729 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2730 if (OtherMul->getNumOperands() != 2) { 2731 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2732 OtherMul->op_begin()+OMulOp); 2733 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2734 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2735 } 2736 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2737 const SCEV *InnerMulSum = 2738 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2739 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2740 SCEV::FlagAnyWrap, Depth + 1); 2741 if (Ops.size() == 2) return OuterMul; 2742 Ops.erase(Ops.begin()+Idx); 2743 Ops.erase(Ops.begin()+OtherMulIdx-1); 2744 Ops.push_back(OuterMul); 2745 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2746 } 2747 } 2748 } 2749 } 2750 2751 // If there are any add recurrences in the operands list, see if any other 2752 // added values are loop invariant. If so, we can fold them into the 2753 // recurrence. 2754 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2755 ++Idx; 2756 2757 // Scan over all recurrences, trying to fold loop invariants into them. 2758 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2759 // Scan all of the other operands to this add and add them to the vector if 2760 // they are loop invariant w.r.t. the recurrence. 2761 SmallVector<const SCEV *, 8> LIOps; 2762 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2763 const Loop *AddRecLoop = AddRec->getLoop(); 2764 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2765 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2766 LIOps.push_back(Ops[i]); 2767 Ops.erase(Ops.begin()+i); 2768 --i; --e; 2769 } 2770 2771 // If we found some loop invariants, fold them into the recurrence. 2772 if (!LIOps.empty()) { 2773 // Compute nowrap flags for the addition of the loop-invariant ops and 2774 // the addrec. Temporarily push it as an operand for that purpose. 2775 LIOps.push_back(AddRec); 2776 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2777 LIOps.pop_back(); 2778 2779 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2780 LIOps.push_back(AddRec->getStart()); 2781 2782 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2783 // This follows from the fact that the no-wrap flags on the outer add 2784 // expression are applicable on the 0th iteration, when the add recurrence 2785 // will be equal to its start value. 2786 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2787 2788 // Build the new addrec. Propagate the NUW and NSW flags if both the 2789 // outer add and the inner addrec are guaranteed to have no overflow. 2790 // Always propagate NW. 2791 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2792 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2793 2794 // If all of the other operands were loop invariant, we are done. 2795 if (Ops.size() == 1) return NewRec; 2796 2797 // Otherwise, add the folded AddRec by the non-invariant parts. 2798 for (unsigned i = 0;; ++i) 2799 if (Ops[i] == AddRec) { 2800 Ops[i] = NewRec; 2801 break; 2802 } 2803 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2804 } 2805 2806 // Okay, if there weren't any loop invariants to be folded, check to see if 2807 // there are multiple AddRec's with the same loop induction variable being 2808 // added together. If so, we can fold them. 2809 for (unsigned OtherIdx = Idx+1; 2810 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2811 ++OtherIdx) { 2812 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2813 // so that the 1st found AddRecExpr is dominated by all others. 2814 assert(DT.dominates( 2815 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2816 AddRec->getLoop()->getHeader()) && 2817 "AddRecExprs are not sorted in reverse dominance order?"); 2818 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2819 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2820 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2821 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2822 ++OtherIdx) { 2823 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2824 if (OtherAddRec->getLoop() == AddRecLoop) { 2825 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2826 i != e; ++i) { 2827 if (i >= AddRecOps.size()) { 2828 AddRecOps.append(OtherAddRec->op_begin()+i, 2829 OtherAddRec->op_end()); 2830 break; 2831 } 2832 SmallVector<const SCEV *, 2> TwoOps = { 2833 AddRecOps[i], OtherAddRec->getOperand(i)}; 2834 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2835 } 2836 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2837 } 2838 } 2839 // Step size has changed, so we cannot guarantee no self-wraparound. 2840 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2841 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2842 } 2843 } 2844 2845 // Otherwise couldn't fold anything into this recurrence. Move onto the 2846 // next one. 2847 } 2848 2849 // Okay, it looks like we really DO need an add expr. Check to see if we 2850 // already have one, otherwise create a new one. 2851 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2852 } 2853 2854 const SCEV * 2855 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2856 SCEV::NoWrapFlags Flags) { 2857 FoldingSetNodeID ID; 2858 ID.AddInteger(scAddExpr); 2859 for (const SCEV *Op : Ops) 2860 ID.AddPointer(Op); 2861 void *IP = nullptr; 2862 SCEVAddExpr *S = 2863 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2864 if (!S) { 2865 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2866 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2867 S = new (SCEVAllocator) 2868 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2869 UniqueSCEVs.InsertNode(S, IP); 2870 addToLoopUseLists(S); 2871 } 2872 S->setNoWrapFlags(Flags); 2873 return S; 2874 } 2875 2876 const SCEV * 2877 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2878 const Loop *L, SCEV::NoWrapFlags Flags) { 2879 FoldingSetNodeID ID; 2880 ID.AddInteger(scAddRecExpr); 2881 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2882 ID.AddPointer(Ops[i]); 2883 ID.AddPointer(L); 2884 void *IP = nullptr; 2885 SCEVAddRecExpr *S = 2886 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2887 if (!S) { 2888 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2889 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2890 S = new (SCEVAllocator) 2891 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2892 UniqueSCEVs.InsertNode(S, IP); 2893 addToLoopUseLists(S); 2894 } 2895 setNoWrapFlags(S, Flags); 2896 return S; 2897 } 2898 2899 const SCEV * 2900 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2901 SCEV::NoWrapFlags Flags) { 2902 FoldingSetNodeID ID; 2903 ID.AddInteger(scMulExpr); 2904 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2905 ID.AddPointer(Ops[i]); 2906 void *IP = nullptr; 2907 SCEVMulExpr *S = 2908 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2909 if (!S) { 2910 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2911 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2912 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2913 O, Ops.size()); 2914 UniqueSCEVs.InsertNode(S, IP); 2915 addToLoopUseLists(S); 2916 } 2917 S->setNoWrapFlags(Flags); 2918 return S; 2919 } 2920 2921 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2922 uint64_t k = i*j; 2923 if (j > 1 && k / j != i) Overflow = true; 2924 return k; 2925 } 2926 2927 /// Compute the result of "n choose k", the binomial coefficient. If an 2928 /// intermediate computation overflows, Overflow will be set and the return will 2929 /// be garbage. Overflow is not cleared on absence of overflow. 2930 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2931 // We use the multiplicative formula: 2932 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2933 // At each iteration, we take the n-th term of the numeral and divide by the 2934 // (k-n)th term of the denominator. This division will always produce an 2935 // integral result, and helps reduce the chance of overflow in the 2936 // intermediate computations. However, we can still overflow even when the 2937 // final result would fit. 2938 2939 if (n == 0 || n == k) return 1; 2940 if (k > n) return 0; 2941 2942 if (k > n/2) 2943 k = n-k; 2944 2945 uint64_t r = 1; 2946 for (uint64_t i = 1; i <= k; ++i) { 2947 r = umul_ov(r, n-(i-1), Overflow); 2948 r /= i; 2949 } 2950 return r; 2951 } 2952 2953 /// Determine if any of the operands in this SCEV are a constant or if 2954 /// any of the add or multiply expressions in this SCEV contain a constant. 2955 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2956 struct FindConstantInAddMulChain { 2957 bool FoundConstant = false; 2958 2959 bool follow(const SCEV *S) { 2960 FoundConstant |= isa<SCEVConstant>(S); 2961 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2962 } 2963 2964 bool isDone() const { 2965 return FoundConstant; 2966 } 2967 }; 2968 2969 FindConstantInAddMulChain F; 2970 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2971 ST.visitAll(StartExpr); 2972 return F.FoundConstant; 2973 } 2974 2975 /// Get a canonical multiply expression, or something simpler if possible. 2976 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2977 SCEV::NoWrapFlags OrigFlags, 2978 unsigned Depth) { 2979 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2980 "only nuw or nsw allowed"); 2981 assert(!Ops.empty() && "Cannot get empty mul!"); 2982 if (Ops.size() == 1) return Ops[0]; 2983 #ifndef NDEBUG 2984 Type *ETy = Ops[0]->getType(); 2985 assert(!ETy->isPointerTy()); 2986 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2987 assert(Ops[i]->getType() == ETy && 2988 "SCEVMulExpr operand types don't match!"); 2989 #endif 2990 2991 // Sort by complexity, this groups all similar expression types together. 2992 GroupByComplexity(Ops, &LI, DT); 2993 2994 // If there are any constants, fold them together. 2995 unsigned Idx = 0; 2996 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2997 ++Idx; 2998 assert(Idx < Ops.size()); 2999 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3000 // We found two constants, fold them together! 3001 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3002 if (Ops.size() == 2) return Ops[0]; 3003 Ops.erase(Ops.begin()+1); // Erase the folded element 3004 LHSC = cast<SCEVConstant>(Ops[0]); 3005 } 3006 3007 // If we have a multiply of zero, it will always be zero. 3008 if (LHSC->getValue()->isZero()) 3009 return LHSC; 3010 3011 // If we are left with a constant one being multiplied, strip it off. 3012 if (LHSC->getValue()->isOne()) { 3013 Ops.erase(Ops.begin()); 3014 --Idx; 3015 } 3016 3017 if (Ops.size() == 1) 3018 return Ops[0]; 3019 } 3020 3021 // Delay expensive flag strengthening until necessary. 3022 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3023 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3024 }; 3025 3026 // Limit recursion calls depth. 3027 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3028 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3029 3030 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 3031 // Don't strengthen flags if we have no new information. 3032 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3033 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3034 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3035 return S; 3036 } 3037 3038 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3039 if (Ops.size() == 2) { 3040 // C1*(C2+V) -> C1*C2 + C1*V 3041 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3042 // If any of Add's ops are Adds or Muls with a constant, apply this 3043 // transformation as well. 3044 // 3045 // TODO: There are some cases where this transformation is not 3046 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3047 // this transformation should be narrowed down. 3048 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3049 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3050 SCEV::FlagAnyWrap, Depth + 1), 3051 getMulExpr(LHSC, Add->getOperand(1), 3052 SCEV::FlagAnyWrap, Depth + 1), 3053 SCEV::FlagAnyWrap, Depth + 1); 3054 3055 if (Ops[0]->isAllOnesValue()) { 3056 // If we have a mul by -1 of an add, try distributing the -1 among the 3057 // add operands. 3058 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3059 SmallVector<const SCEV *, 4> NewOps; 3060 bool AnyFolded = false; 3061 for (const SCEV *AddOp : Add->operands()) { 3062 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3063 Depth + 1); 3064 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3065 NewOps.push_back(Mul); 3066 } 3067 if (AnyFolded) 3068 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3069 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3070 // Negation preserves a recurrence's no self-wrap property. 3071 SmallVector<const SCEV *, 4> Operands; 3072 for (const SCEV *AddRecOp : AddRec->operands()) 3073 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3074 Depth + 1)); 3075 3076 return getAddRecExpr(Operands, AddRec->getLoop(), 3077 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3078 } 3079 } 3080 } 3081 } 3082 3083 // Skip over the add expression until we get to a multiply. 3084 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3085 ++Idx; 3086 3087 // If there are mul operands inline them all into this expression. 3088 if (Idx < Ops.size()) { 3089 bool DeletedMul = false; 3090 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3091 if (Ops.size() > MulOpsInlineThreshold) 3092 break; 3093 // If we have an mul, expand the mul operands onto the end of the 3094 // operands list. 3095 Ops.erase(Ops.begin()+Idx); 3096 Ops.append(Mul->op_begin(), Mul->op_end()); 3097 DeletedMul = true; 3098 } 3099 3100 // If we deleted at least one mul, we added operands to the end of the 3101 // list, and they are not necessarily sorted. Recurse to resort and 3102 // resimplify any operands we just acquired. 3103 if (DeletedMul) 3104 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3105 } 3106 3107 // If there are any add recurrences in the operands list, see if any other 3108 // added values are loop invariant. If so, we can fold them into the 3109 // recurrence. 3110 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3111 ++Idx; 3112 3113 // Scan over all recurrences, trying to fold loop invariants into them. 3114 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3115 // Scan all of the other operands to this mul and add them to the vector 3116 // if they are loop invariant w.r.t. the recurrence. 3117 SmallVector<const SCEV *, 8> LIOps; 3118 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3119 const Loop *AddRecLoop = AddRec->getLoop(); 3120 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3121 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3122 LIOps.push_back(Ops[i]); 3123 Ops.erase(Ops.begin()+i); 3124 --i; --e; 3125 } 3126 3127 // If we found some loop invariants, fold them into the recurrence. 3128 if (!LIOps.empty()) { 3129 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3130 SmallVector<const SCEV *, 4> NewOps; 3131 NewOps.reserve(AddRec->getNumOperands()); 3132 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3133 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3134 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3135 SCEV::FlagAnyWrap, Depth + 1)); 3136 3137 // Build the new addrec. Propagate the NUW and NSW flags if both the 3138 // outer mul and the inner addrec are guaranteed to have no overflow. 3139 // 3140 // No self-wrap cannot be guaranteed after changing the step size, but 3141 // will be inferred if either NUW or NSW is true. 3142 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3143 const SCEV *NewRec = getAddRecExpr( 3144 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3145 3146 // If all of the other operands were loop invariant, we are done. 3147 if (Ops.size() == 1) return NewRec; 3148 3149 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3150 for (unsigned i = 0;; ++i) 3151 if (Ops[i] == AddRec) { 3152 Ops[i] = NewRec; 3153 break; 3154 } 3155 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3156 } 3157 3158 // Okay, if there weren't any loop invariants to be folded, check to see 3159 // if there are multiple AddRec's with the same loop induction variable 3160 // being multiplied together. If so, we can fold them. 3161 3162 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3163 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3164 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3165 // ]]],+,...up to x=2n}. 3166 // Note that the arguments to choose() are always integers with values 3167 // known at compile time, never SCEV objects. 3168 // 3169 // The implementation avoids pointless extra computations when the two 3170 // addrec's are of different length (mathematically, it's equivalent to 3171 // an infinite stream of zeros on the right). 3172 bool OpsModified = false; 3173 for (unsigned OtherIdx = Idx+1; 3174 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3175 ++OtherIdx) { 3176 const SCEVAddRecExpr *OtherAddRec = 3177 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3178 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3179 continue; 3180 3181 // Limit max number of arguments to avoid creation of unreasonably big 3182 // SCEVAddRecs with very complex operands. 3183 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3184 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3185 continue; 3186 3187 bool Overflow = false; 3188 Type *Ty = AddRec->getType(); 3189 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3190 SmallVector<const SCEV*, 7> AddRecOps; 3191 for (int x = 0, xe = AddRec->getNumOperands() + 3192 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3193 SmallVector <const SCEV *, 7> SumOps; 3194 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3195 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3196 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3197 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3198 z < ze && !Overflow; ++z) { 3199 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3200 uint64_t Coeff; 3201 if (LargerThan64Bits) 3202 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3203 else 3204 Coeff = Coeff1*Coeff2; 3205 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3206 const SCEV *Term1 = AddRec->getOperand(y-z); 3207 const SCEV *Term2 = OtherAddRec->getOperand(z); 3208 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3209 SCEV::FlagAnyWrap, Depth + 1)); 3210 } 3211 } 3212 if (SumOps.empty()) 3213 SumOps.push_back(getZero(Ty)); 3214 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3215 } 3216 if (!Overflow) { 3217 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3218 SCEV::FlagAnyWrap); 3219 if (Ops.size() == 2) return NewAddRec; 3220 Ops[Idx] = NewAddRec; 3221 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3222 OpsModified = true; 3223 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3224 if (!AddRec) 3225 break; 3226 } 3227 } 3228 if (OpsModified) 3229 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3230 3231 // Otherwise couldn't fold anything into this recurrence. Move onto the 3232 // next one. 3233 } 3234 3235 // Okay, it looks like we really DO need an mul expr. Check to see if we 3236 // already have one, otherwise create a new one. 3237 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3238 } 3239 3240 /// Represents an unsigned remainder expression based on unsigned division. 3241 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3242 const SCEV *RHS) { 3243 assert(getEffectiveSCEVType(LHS->getType()) == 3244 getEffectiveSCEVType(RHS->getType()) && 3245 "SCEVURemExpr operand types don't match!"); 3246 3247 // Short-circuit easy cases 3248 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3249 // If constant is one, the result is trivial 3250 if (RHSC->getValue()->isOne()) 3251 return getZero(LHS->getType()); // X urem 1 --> 0 3252 3253 // If constant is a power of two, fold into a zext(trunc(LHS)). 3254 if (RHSC->getAPInt().isPowerOf2()) { 3255 Type *FullTy = LHS->getType(); 3256 Type *TruncTy = 3257 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3258 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3259 } 3260 } 3261 3262 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3263 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3264 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3265 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3266 } 3267 3268 /// Get a canonical unsigned division expression, or something simpler if 3269 /// possible. 3270 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3271 const SCEV *RHS) { 3272 assert(!LHS->getType()->isPointerTy() && 3273 "SCEVUDivExpr operand can't be pointer!"); 3274 assert(LHS->getType() == RHS->getType() && 3275 "SCEVUDivExpr operand types don't match!"); 3276 3277 FoldingSetNodeID ID; 3278 ID.AddInteger(scUDivExpr); 3279 ID.AddPointer(LHS); 3280 ID.AddPointer(RHS); 3281 void *IP = nullptr; 3282 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3283 return S; 3284 3285 // 0 udiv Y == 0 3286 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3287 if (LHSC->getValue()->isZero()) 3288 return LHS; 3289 3290 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3291 if (RHSC->getValue()->isOne()) 3292 return LHS; // X udiv 1 --> x 3293 // If the denominator is zero, the result of the udiv is undefined. Don't 3294 // try to analyze it, because the resolution chosen here may differ from 3295 // the resolution chosen in other parts of the compiler. 3296 if (!RHSC->getValue()->isZero()) { 3297 // Determine if the division can be folded into the operands of 3298 // its operands. 3299 // TODO: Generalize this to non-constants by using known-bits information. 3300 Type *Ty = LHS->getType(); 3301 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3302 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3303 // For non-power-of-two values, effectively round the value up to the 3304 // nearest power of two. 3305 if (!RHSC->getAPInt().isPowerOf2()) 3306 ++MaxShiftAmt; 3307 IntegerType *ExtTy = 3308 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3309 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3310 if (const SCEVConstant *Step = 3311 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3312 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3313 const APInt &StepInt = Step->getAPInt(); 3314 const APInt &DivInt = RHSC->getAPInt(); 3315 if (!StepInt.urem(DivInt) && 3316 getZeroExtendExpr(AR, ExtTy) == 3317 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3318 getZeroExtendExpr(Step, ExtTy), 3319 AR->getLoop(), SCEV::FlagAnyWrap)) { 3320 SmallVector<const SCEV *, 4> Operands; 3321 for (const SCEV *Op : AR->operands()) 3322 Operands.push_back(getUDivExpr(Op, RHS)); 3323 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3324 } 3325 /// Get a canonical UDivExpr for a recurrence. 3326 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3327 // We can currently only fold X%N if X is constant. 3328 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3329 if (StartC && !DivInt.urem(StepInt) && 3330 getZeroExtendExpr(AR, ExtTy) == 3331 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3332 getZeroExtendExpr(Step, ExtTy), 3333 AR->getLoop(), SCEV::FlagAnyWrap)) { 3334 const APInt &StartInt = StartC->getAPInt(); 3335 const APInt &StartRem = StartInt.urem(StepInt); 3336 if (StartRem != 0) { 3337 const SCEV *NewLHS = 3338 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3339 AR->getLoop(), SCEV::FlagNW); 3340 if (LHS != NewLHS) { 3341 LHS = NewLHS; 3342 3343 // Reset the ID to include the new LHS, and check if it is 3344 // already cached. 3345 ID.clear(); 3346 ID.AddInteger(scUDivExpr); 3347 ID.AddPointer(LHS); 3348 ID.AddPointer(RHS); 3349 IP = nullptr; 3350 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3351 return S; 3352 } 3353 } 3354 } 3355 } 3356 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3357 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3358 SmallVector<const SCEV *, 4> Operands; 3359 for (const SCEV *Op : M->operands()) 3360 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3361 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3362 // Find an operand that's safely divisible. 3363 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3364 const SCEV *Op = M->getOperand(i); 3365 const SCEV *Div = getUDivExpr(Op, RHSC); 3366 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3367 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3368 Operands[i] = Div; 3369 return getMulExpr(Operands); 3370 } 3371 } 3372 } 3373 3374 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3375 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3376 if (auto *DivisorConstant = 3377 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3378 bool Overflow = false; 3379 APInt NewRHS = 3380 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3381 if (Overflow) { 3382 return getConstant(RHSC->getType(), 0, false); 3383 } 3384 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3385 } 3386 } 3387 3388 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3389 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3390 SmallVector<const SCEV *, 4> Operands; 3391 for (const SCEV *Op : A->operands()) 3392 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3393 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3394 Operands.clear(); 3395 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3396 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3397 if (isa<SCEVUDivExpr>(Op) || 3398 getMulExpr(Op, RHS) != A->getOperand(i)) 3399 break; 3400 Operands.push_back(Op); 3401 } 3402 if (Operands.size() == A->getNumOperands()) 3403 return getAddExpr(Operands); 3404 } 3405 } 3406 3407 // Fold if both operands are constant. 3408 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3409 Constant *LHSCV = LHSC->getValue(); 3410 Constant *RHSCV = RHSC->getValue(); 3411 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3412 RHSCV))); 3413 } 3414 } 3415 } 3416 3417 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3418 // changes). Make sure we get a new one. 3419 IP = nullptr; 3420 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3421 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3422 LHS, RHS); 3423 UniqueSCEVs.InsertNode(S, IP); 3424 addToLoopUseLists(S); 3425 return S; 3426 } 3427 3428 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3429 APInt A = C1->getAPInt().abs(); 3430 APInt B = C2->getAPInt().abs(); 3431 uint32_t ABW = A.getBitWidth(); 3432 uint32_t BBW = B.getBitWidth(); 3433 3434 if (ABW > BBW) 3435 B = B.zext(ABW); 3436 else if (ABW < BBW) 3437 A = A.zext(BBW); 3438 3439 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3440 } 3441 3442 /// Get a canonical unsigned division expression, or something simpler if 3443 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3444 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3445 /// it's not exact because the udiv may be clearing bits. 3446 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3447 const SCEV *RHS) { 3448 // TODO: we could try to find factors in all sorts of things, but for now we 3449 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3450 // end of this file for inspiration. 3451 3452 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3453 if (!Mul || !Mul->hasNoUnsignedWrap()) 3454 return getUDivExpr(LHS, RHS); 3455 3456 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3457 // If the mulexpr multiplies by a constant, then that constant must be the 3458 // first element of the mulexpr. 3459 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3460 if (LHSCst == RHSCst) { 3461 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3462 return getMulExpr(Operands); 3463 } 3464 3465 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3466 // that there's a factor provided by one of the other terms. We need to 3467 // check. 3468 APInt Factor = gcd(LHSCst, RHSCst); 3469 if (!Factor.isIntN(1)) { 3470 LHSCst = 3471 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3472 RHSCst = 3473 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3474 SmallVector<const SCEV *, 2> Operands; 3475 Operands.push_back(LHSCst); 3476 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3477 LHS = getMulExpr(Operands); 3478 RHS = RHSCst; 3479 Mul = dyn_cast<SCEVMulExpr>(LHS); 3480 if (!Mul) 3481 return getUDivExactExpr(LHS, RHS); 3482 } 3483 } 3484 } 3485 3486 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3487 if (Mul->getOperand(i) == RHS) { 3488 SmallVector<const SCEV *, 2> Operands; 3489 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3490 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3491 return getMulExpr(Operands); 3492 } 3493 } 3494 3495 return getUDivExpr(LHS, RHS); 3496 } 3497 3498 /// Get an add recurrence expression for the specified loop. Simplify the 3499 /// expression as much as possible. 3500 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3501 const Loop *L, 3502 SCEV::NoWrapFlags Flags) { 3503 SmallVector<const SCEV *, 4> Operands; 3504 Operands.push_back(Start); 3505 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3506 if (StepChrec->getLoop() == L) { 3507 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3508 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3509 } 3510 3511 Operands.push_back(Step); 3512 return getAddRecExpr(Operands, L, Flags); 3513 } 3514 3515 /// Get an add recurrence expression for the specified loop. Simplify the 3516 /// expression as much as possible. 3517 const SCEV * 3518 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3519 const Loop *L, SCEV::NoWrapFlags Flags) { 3520 if (Operands.size() == 1) return Operands[0]; 3521 #ifndef NDEBUG 3522 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3523 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3524 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3525 "SCEVAddRecExpr operand types don't match!"); 3526 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3527 } 3528 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3529 assert(isLoopInvariant(Operands[i], L) && 3530 "SCEVAddRecExpr operand is not loop-invariant!"); 3531 #endif 3532 3533 if (Operands.back()->isZero()) { 3534 Operands.pop_back(); 3535 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3536 } 3537 3538 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3539 // use that information to infer NUW and NSW flags. However, computing a 3540 // BE count requires calling getAddRecExpr, so we may not yet have a 3541 // meaningful BE count at this point (and if we don't, we'd be stuck 3542 // with a SCEVCouldNotCompute as the cached BE count). 3543 3544 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3545 3546 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3547 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3548 const Loop *NestedLoop = NestedAR->getLoop(); 3549 if (L->contains(NestedLoop) 3550 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3551 : (!NestedLoop->contains(L) && 3552 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3553 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3554 Operands[0] = NestedAR->getStart(); 3555 // AddRecs require their operands be loop-invariant with respect to their 3556 // loops. Don't perform this transformation if it would break this 3557 // requirement. 3558 bool AllInvariant = all_of( 3559 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3560 3561 if (AllInvariant) { 3562 // Create a recurrence for the outer loop with the same step size. 3563 // 3564 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3565 // inner recurrence has the same property. 3566 SCEV::NoWrapFlags OuterFlags = 3567 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3568 3569 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3570 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3571 return isLoopInvariant(Op, NestedLoop); 3572 }); 3573 3574 if (AllInvariant) { 3575 // Ok, both add recurrences are valid after the transformation. 3576 // 3577 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3578 // the outer recurrence has the same property. 3579 SCEV::NoWrapFlags InnerFlags = 3580 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3581 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3582 } 3583 } 3584 // Reset Operands to its original state. 3585 Operands[0] = NestedAR; 3586 } 3587 } 3588 3589 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3590 // already have one, otherwise create a new one. 3591 return getOrCreateAddRecExpr(Operands, L, Flags); 3592 } 3593 3594 const SCEV * 3595 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3596 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3597 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3598 // getSCEV(Base)->getType() has the same address space as Base->getType() 3599 // because SCEV::getType() preserves the address space. 3600 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3601 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3602 // instruction to its SCEV, because the Instruction may be guarded by control 3603 // flow and the no-overflow bits may not be valid for the expression in any 3604 // context. This can be fixed similarly to how these flags are handled for 3605 // adds. 3606 SCEV::NoWrapFlags OffsetWrap = 3607 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3608 3609 Type *CurTy = GEP->getType(); 3610 bool FirstIter = true; 3611 SmallVector<const SCEV *, 4> Offsets; 3612 for (const SCEV *IndexExpr : IndexExprs) { 3613 // Compute the (potentially symbolic) offset in bytes for this index. 3614 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3615 // For a struct, add the member offset. 3616 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3617 unsigned FieldNo = Index->getZExtValue(); 3618 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3619 Offsets.push_back(FieldOffset); 3620 3621 // Update CurTy to the type of the field at Index. 3622 CurTy = STy->getTypeAtIndex(Index); 3623 } else { 3624 // Update CurTy to its element type. 3625 if (FirstIter) { 3626 assert(isa<PointerType>(CurTy) && 3627 "The first index of a GEP indexes a pointer"); 3628 CurTy = GEP->getSourceElementType(); 3629 FirstIter = false; 3630 } else { 3631 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3632 } 3633 // For an array, add the element offset, explicitly scaled. 3634 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3635 // Getelementptr indices are signed. 3636 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3637 3638 // Multiply the index by the element size to compute the element offset. 3639 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3640 Offsets.push_back(LocalOffset); 3641 } 3642 } 3643 3644 // Handle degenerate case of GEP without offsets. 3645 if (Offsets.empty()) 3646 return BaseExpr; 3647 3648 // Add the offsets together, assuming nsw if inbounds. 3649 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3650 // Add the base address and the offset. We cannot use the nsw flag, as the 3651 // base address is unsigned. However, if we know that the offset is 3652 // non-negative, we can use nuw. 3653 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset) 3654 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3655 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3656 assert(BaseExpr->getType() == GEPExpr->getType() && 3657 "GEP should not change type mid-flight."); 3658 return GEPExpr; 3659 } 3660 3661 std::tuple<SCEV *, FoldingSetNodeID, void *> 3662 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3663 ArrayRef<const SCEV *> Ops) { 3664 FoldingSetNodeID ID; 3665 void *IP = nullptr; 3666 ID.AddInteger(SCEVType); 3667 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3668 ID.AddPointer(Ops[i]); 3669 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3670 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3671 } 3672 3673 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3674 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3675 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3676 } 3677 3678 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3679 SmallVectorImpl<const SCEV *> &Ops) { 3680 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3681 if (Ops.size() == 1) return Ops[0]; 3682 #ifndef NDEBUG 3683 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3684 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3685 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3686 "Operand types don't match!"); 3687 assert(Ops[0]->getType()->isPointerTy() == 3688 Ops[i]->getType()->isPointerTy() && 3689 "min/max should be consistently pointerish"); 3690 } 3691 #endif 3692 3693 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3694 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3695 3696 // Sort by complexity, this groups all similar expression types together. 3697 GroupByComplexity(Ops, &LI, DT); 3698 3699 // Check if we have created the same expression before. 3700 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3701 return S; 3702 } 3703 3704 // If there are any constants, fold them together. 3705 unsigned Idx = 0; 3706 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3707 ++Idx; 3708 assert(Idx < Ops.size()); 3709 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3710 if (Kind == scSMaxExpr) 3711 return APIntOps::smax(LHS, RHS); 3712 else if (Kind == scSMinExpr) 3713 return APIntOps::smin(LHS, RHS); 3714 else if (Kind == scUMaxExpr) 3715 return APIntOps::umax(LHS, RHS); 3716 else if (Kind == scUMinExpr) 3717 return APIntOps::umin(LHS, RHS); 3718 llvm_unreachable("Unknown SCEV min/max opcode"); 3719 }; 3720 3721 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3722 // We found two constants, fold them together! 3723 ConstantInt *Fold = ConstantInt::get( 3724 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3725 Ops[0] = getConstant(Fold); 3726 Ops.erase(Ops.begin()+1); // Erase the folded element 3727 if (Ops.size() == 1) return Ops[0]; 3728 LHSC = cast<SCEVConstant>(Ops[0]); 3729 } 3730 3731 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3732 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3733 3734 if (IsMax ? IsMinV : IsMaxV) { 3735 // If we are left with a constant minimum(/maximum)-int, strip it off. 3736 Ops.erase(Ops.begin()); 3737 --Idx; 3738 } else if (IsMax ? IsMaxV : IsMinV) { 3739 // If we have a max(/min) with a constant maximum(/minimum)-int, 3740 // it will always be the extremum. 3741 return LHSC; 3742 } 3743 3744 if (Ops.size() == 1) return Ops[0]; 3745 } 3746 3747 // Find the first operation of the same kind 3748 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3749 ++Idx; 3750 3751 // Check to see if one of the operands is of the same kind. If so, expand its 3752 // operands onto our operand list, and recurse to simplify. 3753 if (Idx < Ops.size()) { 3754 bool DeletedAny = false; 3755 while (Ops[Idx]->getSCEVType() == Kind) { 3756 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3757 Ops.erase(Ops.begin()+Idx); 3758 Ops.append(SMME->op_begin(), SMME->op_end()); 3759 DeletedAny = true; 3760 } 3761 3762 if (DeletedAny) 3763 return getMinMaxExpr(Kind, Ops); 3764 } 3765 3766 // Okay, check to see if the same value occurs in the operand list twice. If 3767 // so, delete one. Since we sorted the list, these values are required to 3768 // be adjacent. 3769 llvm::CmpInst::Predicate GEPred = 3770 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3771 llvm::CmpInst::Predicate LEPred = 3772 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3773 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3774 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3775 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3776 if (Ops[i] == Ops[i + 1] || 3777 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3778 // X op Y op Y --> X op Y 3779 // X op Y --> X, if we know X, Y are ordered appropriately 3780 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3781 --i; 3782 --e; 3783 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3784 Ops[i + 1])) { 3785 // X op Y --> Y, if we know X, Y are ordered appropriately 3786 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3787 --i; 3788 --e; 3789 } 3790 } 3791 3792 if (Ops.size() == 1) return Ops[0]; 3793 3794 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3795 3796 // Okay, it looks like we really DO need an expr. Check to see if we 3797 // already have one, otherwise create a new one. 3798 const SCEV *ExistingSCEV; 3799 FoldingSetNodeID ID; 3800 void *IP; 3801 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3802 if (ExistingSCEV) 3803 return ExistingSCEV; 3804 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3805 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3806 SCEV *S = new (SCEVAllocator) 3807 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3808 3809 UniqueSCEVs.InsertNode(S, IP); 3810 addToLoopUseLists(S); 3811 return S; 3812 } 3813 3814 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3815 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3816 return getSMaxExpr(Ops); 3817 } 3818 3819 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3820 return getMinMaxExpr(scSMaxExpr, Ops); 3821 } 3822 3823 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3824 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3825 return getUMaxExpr(Ops); 3826 } 3827 3828 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3829 return getMinMaxExpr(scUMaxExpr, Ops); 3830 } 3831 3832 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3833 const SCEV *RHS) { 3834 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3835 return getSMinExpr(Ops); 3836 } 3837 3838 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3839 return getMinMaxExpr(scSMinExpr, Ops); 3840 } 3841 3842 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3843 const SCEV *RHS) { 3844 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3845 return getUMinExpr(Ops); 3846 } 3847 3848 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3849 return getMinMaxExpr(scUMinExpr, Ops); 3850 } 3851 3852 const SCEV * 3853 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3854 ScalableVectorType *ScalableTy) { 3855 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3856 Constant *One = ConstantInt::get(IntTy, 1); 3857 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3858 // Note that the expression we created is the final expression, we don't 3859 // want to simplify it any further Also, if we call a normal getSCEV(), 3860 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3861 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3862 } 3863 3864 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3865 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3866 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3867 // We can bypass creating a target-independent constant expression and then 3868 // folding it back into a ConstantInt. This is just a compile-time 3869 // optimization. 3870 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3871 } 3872 3873 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3874 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3875 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3876 // We can bypass creating a target-independent constant expression and then 3877 // folding it back into a ConstantInt. This is just a compile-time 3878 // optimization. 3879 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3880 } 3881 3882 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3883 StructType *STy, 3884 unsigned FieldNo) { 3885 // We can bypass creating a target-independent constant expression and then 3886 // folding it back into a ConstantInt. This is just a compile-time 3887 // optimization. 3888 return getConstant( 3889 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3890 } 3891 3892 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3893 // Don't attempt to do anything other than create a SCEVUnknown object 3894 // here. createSCEV only calls getUnknown after checking for all other 3895 // interesting possibilities, and any other code that calls getUnknown 3896 // is doing so in order to hide a value from SCEV canonicalization. 3897 3898 FoldingSetNodeID ID; 3899 ID.AddInteger(scUnknown); 3900 ID.AddPointer(V); 3901 void *IP = nullptr; 3902 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3903 assert(cast<SCEVUnknown>(S)->getValue() == V && 3904 "Stale SCEVUnknown in uniquing map!"); 3905 return S; 3906 } 3907 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3908 FirstUnknown); 3909 FirstUnknown = cast<SCEVUnknown>(S); 3910 UniqueSCEVs.InsertNode(S, IP); 3911 return S; 3912 } 3913 3914 //===----------------------------------------------------------------------===// 3915 // Basic SCEV Analysis and PHI Idiom Recognition Code 3916 // 3917 3918 /// Test if values of the given type are analyzable within the SCEV 3919 /// framework. This primarily includes integer types, and it can optionally 3920 /// include pointer types if the ScalarEvolution class has access to 3921 /// target-specific information. 3922 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3923 // Integers and pointers are always SCEVable. 3924 return Ty->isIntOrPtrTy(); 3925 } 3926 3927 /// Return the size in bits of the specified type, for which isSCEVable must 3928 /// return true. 3929 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3930 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3931 if (Ty->isPointerTy()) 3932 return getDataLayout().getIndexTypeSizeInBits(Ty); 3933 return getDataLayout().getTypeSizeInBits(Ty); 3934 } 3935 3936 /// Return a type with the same bitwidth as the given type and which represents 3937 /// how SCEV will treat the given type, for which isSCEVable must return 3938 /// true. For pointer types, this is the pointer index sized integer type. 3939 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3940 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3941 3942 if (Ty->isIntegerTy()) 3943 return Ty; 3944 3945 // The only other support type is pointer. 3946 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3947 return getDataLayout().getIndexType(Ty); 3948 } 3949 3950 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3951 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3952 } 3953 3954 const SCEV *ScalarEvolution::getCouldNotCompute() { 3955 return CouldNotCompute.get(); 3956 } 3957 3958 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3959 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3960 auto *SU = dyn_cast<SCEVUnknown>(S); 3961 return SU && SU->getValue() == nullptr; 3962 }); 3963 3964 return !ContainsNulls; 3965 } 3966 3967 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3968 HasRecMapType::iterator I = HasRecMap.find(S); 3969 if (I != HasRecMap.end()) 3970 return I->second; 3971 3972 bool FoundAddRec = 3973 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3974 HasRecMap.insert({S, FoundAddRec}); 3975 return FoundAddRec; 3976 } 3977 3978 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3979 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3980 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3981 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3982 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3983 if (!Add) 3984 return {S, nullptr}; 3985 3986 if (Add->getNumOperands() != 2) 3987 return {S, nullptr}; 3988 3989 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3990 if (!ConstOp) 3991 return {S, nullptr}; 3992 3993 return {Add->getOperand(1), ConstOp->getValue()}; 3994 } 3995 3996 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3997 /// by the value and offset from any ValueOffsetPair in the set. 3998 ScalarEvolution::ValueOffsetPairSetVector * 3999 ScalarEvolution::getSCEVValues(const SCEV *S) { 4000 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4001 if (SI == ExprValueMap.end()) 4002 return nullptr; 4003 #ifndef NDEBUG 4004 if (VerifySCEVMap) { 4005 // Check there is no dangling Value in the set returned. 4006 for (const auto &VE : SI->second) 4007 assert(ValueExprMap.count(VE.first)); 4008 } 4009 #endif 4010 return &SI->second; 4011 } 4012 4013 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4014 /// cannot be used separately. eraseValueFromMap should be used to remove 4015 /// V from ValueExprMap and ExprValueMap at the same time. 4016 void ScalarEvolution::eraseValueFromMap(Value *V) { 4017 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4018 if (I != ValueExprMap.end()) { 4019 const SCEV *S = I->second; 4020 // Remove {V, 0} from the set of ExprValueMap[S] 4021 if (auto *SV = getSCEVValues(S)) 4022 SV->remove({V, nullptr}); 4023 4024 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4025 const SCEV *Stripped; 4026 ConstantInt *Offset; 4027 std::tie(Stripped, Offset) = splitAddExpr(S); 4028 if (Offset != nullptr) { 4029 if (auto *SV = getSCEVValues(Stripped)) 4030 SV->remove({V, Offset}); 4031 } 4032 ValueExprMap.erase(V); 4033 } 4034 } 4035 4036 /// Check whether value has nuw/nsw/exact set but SCEV does not. 4037 /// TODO: In reality it is better to check the poison recursively 4038 /// but this is better than nothing. 4039 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 4040 if (auto *I = dyn_cast<Instruction>(V)) { 4041 if (isa<OverflowingBinaryOperator>(I)) { 4042 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 4043 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 4044 return true; 4045 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 4046 return true; 4047 } 4048 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 4049 return true; 4050 } 4051 return false; 4052 } 4053 4054 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4055 /// create a new one. 4056 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4057 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4058 4059 const SCEV *S = getExistingSCEV(V); 4060 if (S == nullptr) { 4061 S = createSCEV(V); 4062 // During PHI resolution, it is possible to create two SCEVs for the same 4063 // V, so it is needed to double check whether V->S is inserted into 4064 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4065 std::pair<ValueExprMapType::iterator, bool> Pair = 4066 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4067 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 4068 ExprValueMap[S].insert({V, nullptr}); 4069 4070 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4071 // ExprValueMap. 4072 const SCEV *Stripped = S; 4073 ConstantInt *Offset = nullptr; 4074 std::tie(Stripped, Offset) = splitAddExpr(S); 4075 // If stripped is SCEVUnknown, don't bother to save 4076 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4077 // increase the complexity of the expansion code. 4078 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4079 // because it may generate add/sub instead of GEP in SCEV expansion. 4080 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4081 !isa<GetElementPtrInst>(V)) 4082 ExprValueMap[Stripped].insert({V, Offset}); 4083 } 4084 } 4085 return S; 4086 } 4087 4088 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4089 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4090 4091 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4092 if (I != ValueExprMap.end()) { 4093 const SCEV *S = I->second; 4094 if (checkValidity(S)) 4095 return S; 4096 eraseValueFromMap(V); 4097 forgetMemoizedResults(S); 4098 } 4099 return nullptr; 4100 } 4101 4102 /// Return a SCEV corresponding to -V = -1*V 4103 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4104 SCEV::NoWrapFlags Flags) { 4105 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4106 return getConstant( 4107 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4108 4109 Type *Ty = V->getType(); 4110 Ty = getEffectiveSCEVType(Ty); 4111 return getMulExpr(V, getMinusOne(Ty), Flags); 4112 } 4113 4114 /// If Expr computes ~A, return A else return nullptr 4115 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4116 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4117 if (!Add || Add->getNumOperands() != 2 || 4118 !Add->getOperand(0)->isAllOnesValue()) 4119 return nullptr; 4120 4121 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4122 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4123 !AddRHS->getOperand(0)->isAllOnesValue()) 4124 return nullptr; 4125 4126 return AddRHS->getOperand(1); 4127 } 4128 4129 /// Return a SCEV corresponding to ~V = -1-V 4130 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4131 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4132 return getConstant( 4133 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4134 4135 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4136 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4137 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4138 SmallVector<const SCEV *, 2> MatchedOperands; 4139 for (const SCEV *Operand : MME->operands()) { 4140 const SCEV *Matched = MatchNotExpr(Operand); 4141 if (!Matched) 4142 return (const SCEV *)nullptr; 4143 MatchedOperands.push_back(Matched); 4144 } 4145 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4146 MatchedOperands); 4147 }; 4148 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4149 return Replaced; 4150 } 4151 4152 Type *Ty = V->getType(); 4153 Ty = getEffectiveSCEVType(Ty); 4154 return getMinusSCEV(getMinusOne(Ty), V); 4155 } 4156 4157 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4158 assert(P->getType()->isPointerTy()); 4159 4160 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4161 // The base of an AddRec is the first operand. 4162 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4163 Ops[0] = removePointerBase(Ops[0]); 4164 // Don't try to transfer nowrap flags for now. We could in some cases 4165 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4166 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4167 } 4168 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4169 // The base of an Add is the pointer operand. 4170 SmallVector<const SCEV *> Ops{Add->operands()}; 4171 const SCEV **PtrOp = nullptr; 4172 for (const SCEV *&AddOp : Ops) { 4173 if (AddOp->getType()->isPointerTy()) { 4174 assert(!PtrOp && "Cannot have multiple pointer ops"); 4175 PtrOp = &AddOp; 4176 } 4177 } 4178 *PtrOp = removePointerBase(*PtrOp); 4179 // Don't try to transfer nowrap flags for now. We could in some cases 4180 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4181 return getAddExpr(Ops); 4182 } 4183 // Any other expression must be a pointer base. 4184 return getZero(P->getType()); 4185 } 4186 4187 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4188 SCEV::NoWrapFlags Flags, 4189 unsigned Depth) { 4190 // Fast path: X - X --> 0. 4191 if (LHS == RHS) 4192 return getZero(LHS->getType()); 4193 4194 // If we subtract two pointers with different pointer bases, bail. 4195 // Eventually, we're going to add an assertion to getMulExpr that we 4196 // can't multiply by a pointer. 4197 if (RHS->getType()->isPointerTy()) { 4198 if (!LHS->getType()->isPointerTy() || 4199 getPointerBase(LHS) != getPointerBase(RHS)) 4200 return getCouldNotCompute(); 4201 LHS = removePointerBase(LHS); 4202 RHS = removePointerBase(RHS); 4203 } 4204 4205 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4206 // makes it so that we cannot make much use of NUW. 4207 auto AddFlags = SCEV::FlagAnyWrap; 4208 const bool RHSIsNotMinSigned = 4209 !getSignedRangeMin(RHS).isMinSignedValue(); 4210 if (hasFlags(Flags, SCEV::FlagNSW)) { 4211 // Let M be the minimum representable signed value. Then (-1)*RHS 4212 // signed-wraps if and only if RHS is M. That can happen even for 4213 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4214 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4215 // (-1)*RHS, we need to prove that RHS != M. 4216 // 4217 // If LHS is non-negative and we know that LHS - RHS does not 4218 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4219 // either by proving that RHS > M or that LHS >= 0. 4220 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4221 AddFlags = SCEV::FlagNSW; 4222 } 4223 } 4224 4225 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4226 // RHS is NSW and LHS >= 0. 4227 // 4228 // The difficulty here is that the NSW flag may have been proven 4229 // relative to a loop that is to be found in a recurrence in LHS and 4230 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4231 // larger scope than intended. 4232 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4233 4234 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4235 } 4236 4237 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4238 unsigned Depth) { 4239 Type *SrcTy = V->getType(); 4240 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4241 "Cannot truncate or zero extend with non-integer arguments!"); 4242 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4243 return V; // No conversion 4244 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4245 return getTruncateExpr(V, Ty, Depth); 4246 return getZeroExtendExpr(V, Ty, Depth); 4247 } 4248 4249 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4250 unsigned Depth) { 4251 Type *SrcTy = V->getType(); 4252 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4253 "Cannot truncate or zero extend with non-integer arguments!"); 4254 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4255 return V; // No conversion 4256 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4257 return getTruncateExpr(V, Ty, Depth); 4258 return getSignExtendExpr(V, Ty, Depth); 4259 } 4260 4261 const SCEV * 4262 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4263 Type *SrcTy = V->getType(); 4264 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4265 "Cannot noop or zero extend with non-integer arguments!"); 4266 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4267 "getNoopOrZeroExtend cannot truncate!"); 4268 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4269 return V; // No conversion 4270 return getZeroExtendExpr(V, Ty); 4271 } 4272 4273 const SCEV * 4274 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4275 Type *SrcTy = V->getType(); 4276 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4277 "Cannot noop or sign extend with non-integer arguments!"); 4278 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4279 "getNoopOrSignExtend cannot truncate!"); 4280 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4281 return V; // No conversion 4282 return getSignExtendExpr(V, Ty); 4283 } 4284 4285 const SCEV * 4286 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4287 Type *SrcTy = V->getType(); 4288 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4289 "Cannot noop or any extend with non-integer arguments!"); 4290 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4291 "getNoopOrAnyExtend cannot truncate!"); 4292 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4293 return V; // No conversion 4294 return getAnyExtendExpr(V, Ty); 4295 } 4296 4297 const SCEV * 4298 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4299 Type *SrcTy = V->getType(); 4300 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4301 "Cannot truncate or noop with non-integer arguments!"); 4302 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4303 "getTruncateOrNoop cannot extend!"); 4304 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4305 return V; // No conversion 4306 return getTruncateExpr(V, Ty); 4307 } 4308 4309 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4310 const SCEV *RHS) { 4311 const SCEV *PromotedLHS = LHS; 4312 const SCEV *PromotedRHS = RHS; 4313 4314 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4315 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4316 else 4317 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4318 4319 return getUMaxExpr(PromotedLHS, PromotedRHS); 4320 } 4321 4322 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4323 const SCEV *RHS) { 4324 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4325 return getUMinFromMismatchedTypes(Ops); 4326 } 4327 4328 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4329 SmallVectorImpl<const SCEV *> &Ops) { 4330 assert(!Ops.empty() && "At least one operand must be!"); 4331 // Trivial case. 4332 if (Ops.size() == 1) 4333 return Ops[0]; 4334 4335 // Find the max type first. 4336 Type *MaxType = nullptr; 4337 for (auto *S : Ops) 4338 if (MaxType) 4339 MaxType = getWiderType(MaxType, S->getType()); 4340 else 4341 MaxType = S->getType(); 4342 assert(MaxType && "Failed to find maximum type!"); 4343 4344 // Extend all ops to max type. 4345 SmallVector<const SCEV *, 2> PromotedOps; 4346 for (auto *S : Ops) 4347 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4348 4349 // Generate umin. 4350 return getUMinExpr(PromotedOps); 4351 } 4352 4353 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4354 // A pointer operand may evaluate to a nonpointer expression, such as null. 4355 if (!V->getType()->isPointerTy()) 4356 return V; 4357 4358 while (true) { 4359 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4360 V = AddRec->getStart(); 4361 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4362 const SCEV *PtrOp = nullptr; 4363 for (const SCEV *AddOp : Add->operands()) { 4364 if (AddOp->getType()->isPointerTy()) { 4365 assert(!PtrOp && "Cannot have multiple pointer ops"); 4366 PtrOp = AddOp; 4367 } 4368 } 4369 assert(PtrOp && "Must have pointer op"); 4370 V = PtrOp; 4371 } else // Not something we can look further into. 4372 return V; 4373 } 4374 } 4375 4376 /// Push users of the given Instruction onto the given Worklist. 4377 static void 4378 PushDefUseChildren(Instruction *I, 4379 SmallVectorImpl<Instruction *> &Worklist) { 4380 // Push the def-use children onto the Worklist stack. 4381 for (User *U : I->users()) 4382 Worklist.push_back(cast<Instruction>(U)); 4383 } 4384 4385 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4386 SmallVector<Instruction *, 16> Worklist; 4387 PushDefUseChildren(PN, Worklist); 4388 4389 SmallPtrSet<Instruction *, 8> Visited; 4390 Visited.insert(PN); 4391 while (!Worklist.empty()) { 4392 Instruction *I = Worklist.pop_back_val(); 4393 if (!Visited.insert(I).second) 4394 continue; 4395 4396 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4397 if (It != ValueExprMap.end()) { 4398 const SCEV *Old = It->second; 4399 4400 // Short-circuit the def-use traversal if the symbolic name 4401 // ceases to appear in expressions. 4402 if (Old != SymName && !hasOperand(Old, SymName)) 4403 continue; 4404 4405 // SCEVUnknown for a PHI either means that it has an unrecognized 4406 // structure, it's a PHI that's in the progress of being computed 4407 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4408 // additional loop trip count information isn't going to change anything. 4409 // In the second case, createNodeForPHI will perform the necessary 4410 // updates on its own when it gets to that point. In the third, we do 4411 // want to forget the SCEVUnknown. 4412 if (!isa<PHINode>(I) || 4413 !isa<SCEVUnknown>(Old) || 4414 (I != PN && Old == SymName)) { 4415 eraseValueFromMap(It->first); 4416 forgetMemoizedResults(Old); 4417 } 4418 } 4419 4420 PushDefUseChildren(I, Worklist); 4421 } 4422 } 4423 4424 namespace { 4425 4426 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4427 /// expression in case its Loop is L. If it is not L then 4428 /// if IgnoreOtherLoops is true then use AddRec itself 4429 /// otherwise rewrite cannot be done. 4430 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4431 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4432 public: 4433 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4434 bool IgnoreOtherLoops = true) { 4435 SCEVInitRewriter Rewriter(L, SE); 4436 const SCEV *Result = Rewriter.visit(S); 4437 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4438 return SE.getCouldNotCompute(); 4439 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4440 ? SE.getCouldNotCompute() 4441 : Result; 4442 } 4443 4444 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4445 if (!SE.isLoopInvariant(Expr, L)) 4446 SeenLoopVariantSCEVUnknown = true; 4447 return Expr; 4448 } 4449 4450 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4451 // Only re-write AddRecExprs for this loop. 4452 if (Expr->getLoop() == L) 4453 return Expr->getStart(); 4454 SeenOtherLoops = true; 4455 return Expr; 4456 } 4457 4458 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4459 4460 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4461 4462 private: 4463 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4464 : SCEVRewriteVisitor(SE), L(L) {} 4465 4466 const Loop *L; 4467 bool SeenLoopVariantSCEVUnknown = false; 4468 bool SeenOtherLoops = false; 4469 }; 4470 4471 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4472 /// increment expression in case its Loop is L. If it is not L then 4473 /// use AddRec itself. 4474 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4475 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4476 public: 4477 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4478 SCEVPostIncRewriter Rewriter(L, SE); 4479 const SCEV *Result = Rewriter.visit(S); 4480 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4481 ? SE.getCouldNotCompute() 4482 : Result; 4483 } 4484 4485 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4486 if (!SE.isLoopInvariant(Expr, L)) 4487 SeenLoopVariantSCEVUnknown = true; 4488 return Expr; 4489 } 4490 4491 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4492 // Only re-write AddRecExprs for this loop. 4493 if (Expr->getLoop() == L) 4494 return Expr->getPostIncExpr(SE); 4495 SeenOtherLoops = true; 4496 return Expr; 4497 } 4498 4499 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4500 4501 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4502 4503 private: 4504 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4505 : SCEVRewriteVisitor(SE), L(L) {} 4506 4507 const Loop *L; 4508 bool SeenLoopVariantSCEVUnknown = false; 4509 bool SeenOtherLoops = false; 4510 }; 4511 4512 /// This class evaluates the compare condition by matching it against the 4513 /// condition of loop latch. If there is a match we assume a true value 4514 /// for the condition while building SCEV nodes. 4515 class SCEVBackedgeConditionFolder 4516 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4517 public: 4518 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4519 ScalarEvolution &SE) { 4520 bool IsPosBECond = false; 4521 Value *BECond = nullptr; 4522 if (BasicBlock *Latch = L->getLoopLatch()) { 4523 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4524 if (BI && BI->isConditional()) { 4525 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4526 "Both outgoing branches should not target same header!"); 4527 BECond = BI->getCondition(); 4528 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4529 } else { 4530 return S; 4531 } 4532 } 4533 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4534 return Rewriter.visit(S); 4535 } 4536 4537 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4538 const SCEV *Result = Expr; 4539 bool InvariantF = SE.isLoopInvariant(Expr, L); 4540 4541 if (!InvariantF) { 4542 Instruction *I = cast<Instruction>(Expr->getValue()); 4543 switch (I->getOpcode()) { 4544 case Instruction::Select: { 4545 SelectInst *SI = cast<SelectInst>(I); 4546 Optional<const SCEV *> Res = 4547 compareWithBackedgeCondition(SI->getCondition()); 4548 if (Res.hasValue()) { 4549 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4550 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4551 } 4552 break; 4553 } 4554 default: { 4555 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4556 if (Res.hasValue()) 4557 Result = Res.getValue(); 4558 break; 4559 } 4560 } 4561 } 4562 return Result; 4563 } 4564 4565 private: 4566 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4567 bool IsPosBECond, ScalarEvolution &SE) 4568 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4569 IsPositiveBECond(IsPosBECond) {} 4570 4571 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4572 4573 const Loop *L; 4574 /// Loop back condition. 4575 Value *BackedgeCond = nullptr; 4576 /// Set to true if loop back is on positive branch condition. 4577 bool IsPositiveBECond; 4578 }; 4579 4580 Optional<const SCEV *> 4581 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4582 4583 // If value matches the backedge condition for loop latch, 4584 // then return a constant evolution node based on loopback 4585 // branch taken. 4586 if (BackedgeCond == IC) 4587 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4588 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4589 return None; 4590 } 4591 4592 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4593 public: 4594 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4595 ScalarEvolution &SE) { 4596 SCEVShiftRewriter Rewriter(L, SE); 4597 const SCEV *Result = Rewriter.visit(S); 4598 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4599 } 4600 4601 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4602 // Only allow AddRecExprs for this loop. 4603 if (!SE.isLoopInvariant(Expr, L)) 4604 Valid = false; 4605 return Expr; 4606 } 4607 4608 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4609 if (Expr->getLoop() == L && Expr->isAffine()) 4610 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4611 Valid = false; 4612 return Expr; 4613 } 4614 4615 bool isValid() { return Valid; } 4616 4617 private: 4618 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4619 : SCEVRewriteVisitor(SE), L(L) {} 4620 4621 const Loop *L; 4622 bool Valid = true; 4623 }; 4624 4625 } // end anonymous namespace 4626 4627 SCEV::NoWrapFlags 4628 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4629 if (!AR->isAffine()) 4630 return SCEV::FlagAnyWrap; 4631 4632 using OBO = OverflowingBinaryOperator; 4633 4634 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4635 4636 if (!AR->hasNoSignedWrap()) { 4637 ConstantRange AddRecRange = getSignedRange(AR); 4638 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4639 4640 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4641 Instruction::Add, IncRange, OBO::NoSignedWrap); 4642 if (NSWRegion.contains(AddRecRange)) 4643 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4644 } 4645 4646 if (!AR->hasNoUnsignedWrap()) { 4647 ConstantRange AddRecRange = getUnsignedRange(AR); 4648 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4649 4650 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4651 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4652 if (NUWRegion.contains(AddRecRange)) 4653 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4654 } 4655 4656 return Result; 4657 } 4658 4659 SCEV::NoWrapFlags 4660 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4661 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4662 4663 if (AR->hasNoSignedWrap()) 4664 return Result; 4665 4666 if (!AR->isAffine()) 4667 return Result; 4668 4669 const SCEV *Step = AR->getStepRecurrence(*this); 4670 const Loop *L = AR->getLoop(); 4671 4672 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4673 // Note that this serves two purposes: It filters out loops that are 4674 // simply not analyzable, and it covers the case where this code is 4675 // being called from within backedge-taken count analysis, such that 4676 // attempting to ask for the backedge-taken count would likely result 4677 // in infinite recursion. In the later case, the analysis code will 4678 // cope with a conservative value, and it will take care to purge 4679 // that value once it has finished. 4680 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4681 4682 // Normally, in the cases we can prove no-overflow via a 4683 // backedge guarding condition, we can also compute a backedge 4684 // taken count for the loop. The exceptions are assumptions and 4685 // guards present in the loop -- SCEV is not great at exploiting 4686 // these to compute max backedge taken counts, but can still use 4687 // these to prove lack of overflow. Use this fact to avoid 4688 // doing extra work that may not pay off. 4689 4690 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4691 AC.assumptions().empty()) 4692 return Result; 4693 4694 // If the backedge is guarded by a comparison with the pre-inc value the 4695 // addrec is safe. Also, if the entry is guarded by a comparison with the 4696 // start value and the backedge is guarded by a comparison with the post-inc 4697 // value, the addrec is safe. 4698 ICmpInst::Predicate Pred; 4699 const SCEV *OverflowLimit = 4700 getSignedOverflowLimitForStep(Step, &Pred, this); 4701 if (OverflowLimit && 4702 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4703 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4704 Result = setFlags(Result, SCEV::FlagNSW); 4705 } 4706 return Result; 4707 } 4708 SCEV::NoWrapFlags 4709 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4710 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4711 4712 if (AR->hasNoUnsignedWrap()) 4713 return Result; 4714 4715 if (!AR->isAffine()) 4716 return Result; 4717 4718 const SCEV *Step = AR->getStepRecurrence(*this); 4719 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4720 const Loop *L = AR->getLoop(); 4721 4722 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4723 // Note that this serves two purposes: It filters out loops that are 4724 // simply not analyzable, and it covers the case where this code is 4725 // being called from within backedge-taken count analysis, such that 4726 // attempting to ask for the backedge-taken count would likely result 4727 // in infinite recursion. In the later case, the analysis code will 4728 // cope with a conservative value, and it will take care to purge 4729 // that value once it has finished. 4730 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4731 4732 // Normally, in the cases we can prove no-overflow via a 4733 // backedge guarding condition, we can also compute a backedge 4734 // taken count for the loop. The exceptions are assumptions and 4735 // guards present in the loop -- SCEV is not great at exploiting 4736 // these to compute max backedge taken counts, but can still use 4737 // these to prove lack of overflow. Use this fact to avoid 4738 // doing extra work that may not pay off. 4739 4740 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4741 AC.assumptions().empty()) 4742 return Result; 4743 4744 // If the backedge is guarded by a comparison with the pre-inc value the 4745 // addrec is safe. Also, if the entry is guarded by a comparison with the 4746 // start value and the backedge is guarded by a comparison with the post-inc 4747 // value, the addrec is safe. 4748 if (isKnownPositive(Step)) { 4749 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4750 getUnsignedRangeMax(Step)); 4751 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4752 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4753 Result = setFlags(Result, SCEV::FlagNUW); 4754 } 4755 } 4756 4757 return Result; 4758 } 4759 4760 namespace { 4761 4762 /// Represents an abstract binary operation. This may exist as a 4763 /// normal instruction or constant expression, or may have been 4764 /// derived from an expression tree. 4765 struct BinaryOp { 4766 unsigned Opcode; 4767 Value *LHS; 4768 Value *RHS; 4769 bool IsNSW = false; 4770 bool IsNUW = false; 4771 4772 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4773 /// constant expression. 4774 Operator *Op = nullptr; 4775 4776 explicit BinaryOp(Operator *Op) 4777 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4778 Op(Op) { 4779 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4780 IsNSW = OBO->hasNoSignedWrap(); 4781 IsNUW = OBO->hasNoUnsignedWrap(); 4782 } 4783 } 4784 4785 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4786 bool IsNUW = false) 4787 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4788 }; 4789 4790 } // end anonymous namespace 4791 4792 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4793 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4794 auto *Op = dyn_cast<Operator>(V); 4795 if (!Op) 4796 return None; 4797 4798 // Implementation detail: all the cleverness here should happen without 4799 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4800 // SCEV expressions when possible, and we should not break that. 4801 4802 switch (Op->getOpcode()) { 4803 case Instruction::Add: 4804 case Instruction::Sub: 4805 case Instruction::Mul: 4806 case Instruction::UDiv: 4807 case Instruction::URem: 4808 case Instruction::And: 4809 case Instruction::Or: 4810 case Instruction::AShr: 4811 case Instruction::Shl: 4812 return BinaryOp(Op); 4813 4814 case Instruction::Xor: 4815 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4816 // If the RHS of the xor is a signmask, then this is just an add. 4817 // Instcombine turns add of signmask into xor as a strength reduction step. 4818 if (RHSC->getValue().isSignMask()) 4819 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4820 return BinaryOp(Op); 4821 4822 case Instruction::LShr: 4823 // Turn logical shift right of a constant into a unsigned divide. 4824 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4825 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4826 4827 // If the shift count is not less than the bitwidth, the result of 4828 // the shift is undefined. Don't try to analyze it, because the 4829 // resolution chosen here may differ from the resolution chosen in 4830 // other parts of the compiler. 4831 if (SA->getValue().ult(BitWidth)) { 4832 Constant *X = 4833 ConstantInt::get(SA->getContext(), 4834 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4835 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4836 } 4837 } 4838 return BinaryOp(Op); 4839 4840 case Instruction::ExtractValue: { 4841 auto *EVI = cast<ExtractValueInst>(Op); 4842 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4843 break; 4844 4845 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4846 if (!WO) 4847 break; 4848 4849 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4850 bool Signed = WO->isSigned(); 4851 // TODO: Should add nuw/nsw flags for mul as well. 4852 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4853 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4854 4855 // Now that we know that all uses of the arithmetic-result component of 4856 // CI are guarded by the overflow check, we can go ahead and pretend 4857 // that the arithmetic is non-overflowing. 4858 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4859 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4860 } 4861 4862 default: 4863 break; 4864 } 4865 4866 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4867 // semantics as a Sub, return a binary sub expression. 4868 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4869 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4870 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4871 4872 return None; 4873 } 4874 4875 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4876 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4877 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4878 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4879 /// follows one of the following patterns: 4880 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4881 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4882 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4883 /// we return the type of the truncation operation, and indicate whether the 4884 /// truncated type should be treated as signed/unsigned by setting 4885 /// \p Signed to true/false, respectively. 4886 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4887 bool &Signed, ScalarEvolution &SE) { 4888 // The case where Op == SymbolicPHI (that is, with no type conversions on 4889 // the way) is handled by the regular add recurrence creating logic and 4890 // would have already been triggered in createAddRecForPHI. Reaching it here 4891 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4892 // because one of the other operands of the SCEVAddExpr updating this PHI is 4893 // not invariant). 4894 // 4895 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4896 // this case predicates that allow us to prove that Op == SymbolicPHI will 4897 // be added. 4898 if (Op == SymbolicPHI) 4899 return nullptr; 4900 4901 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4902 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4903 if (SourceBits != NewBits) 4904 return nullptr; 4905 4906 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4907 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4908 if (!SExt && !ZExt) 4909 return nullptr; 4910 const SCEVTruncateExpr *Trunc = 4911 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4912 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4913 if (!Trunc) 4914 return nullptr; 4915 const SCEV *X = Trunc->getOperand(); 4916 if (X != SymbolicPHI) 4917 return nullptr; 4918 Signed = SExt != nullptr; 4919 return Trunc->getType(); 4920 } 4921 4922 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4923 if (!PN->getType()->isIntegerTy()) 4924 return nullptr; 4925 const Loop *L = LI.getLoopFor(PN->getParent()); 4926 if (!L || L->getHeader() != PN->getParent()) 4927 return nullptr; 4928 return L; 4929 } 4930 4931 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4932 // computation that updates the phi follows the following pattern: 4933 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4934 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4935 // If so, try to see if it can be rewritten as an AddRecExpr under some 4936 // Predicates. If successful, return them as a pair. Also cache the results 4937 // of the analysis. 4938 // 4939 // Example usage scenario: 4940 // Say the Rewriter is called for the following SCEV: 4941 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4942 // where: 4943 // %X = phi i64 (%Start, %BEValue) 4944 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4945 // and call this function with %SymbolicPHI = %X. 4946 // 4947 // The analysis will find that the value coming around the backedge has 4948 // the following SCEV: 4949 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4950 // Upon concluding that this matches the desired pattern, the function 4951 // will return the pair {NewAddRec, SmallPredsVec} where: 4952 // NewAddRec = {%Start,+,%Step} 4953 // SmallPredsVec = {P1, P2, P3} as follows: 4954 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4955 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4956 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4957 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4958 // under the predicates {P1,P2,P3}. 4959 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4960 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4961 // 4962 // TODO's: 4963 // 4964 // 1) Extend the Induction descriptor to also support inductions that involve 4965 // casts: When needed (namely, when we are called in the context of the 4966 // vectorizer induction analysis), a Set of cast instructions will be 4967 // populated by this method, and provided back to isInductionPHI. This is 4968 // needed to allow the vectorizer to properly record them to be ignored by 4969 // the cost model and to avoid vectorizing them (otherwise these casts, 4970 // which are redundant under the runtime overflow checks, will be 4971 // vectorized, which can be costly). 4972 // 4973 // 2) Support additional induction/PHISCEV patterns: We also want to support 4974 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4975 // after the induction update operation (the induction increment): 4976 // 4977 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4978 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4979 // 4980 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4981 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4982 // 4983 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4984 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4985 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4986 SmallVector<const SCEVPredicate *, 3> Predicates; 4987 4988 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4989 // return an AddRec expression under some predicate. 4990 4991 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4992 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4993 assert(L && "Expecting an integer loop header phi"); 4994 4995 // The loop may have multiple entrances or multiple exits; we can analyze 4996 // this phi as an addrec if it has a unique entry value and a unique 4997 // backedge value. 4998 Value *BEValueV = nullptr, *StartValueV = nullptr; 4999 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5000 Value *V = PN->getIncomingValue(i); 5001 if (L->contains(PN->getIncomingBlock(i))) { 5002 if (!BEValueV) { 5003 BEValueV = V; 5004 } else if (BEValueV != V) { 5005 BEValueV = nullptr; 5006 break; 5007 } 5008 } else if (!StartValueV) { 5009 StartValueV = V; 5010 } else if (StartValueV != V) { 5011 StartValueV = nullptr; 5012 break; 5013 } 5014 } 5015 if (!BEValueV || !StartValueV) 5016 return None; 5017 5018 const SCEV *BEValue = getSCEV(BEValueV); 5019 5020 // If the value coming around the backedge is an add with the symbolic 5021 // value we just inserted, possibly with casts that we can ignore under 5022 // an appropriate runtime guard, then we found a simple induction variable! 5023 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5024 if (!Add) 5025 return None; 5026 5027 // If there is a single occurrence of the symbolic value, possibly 5028 // casted, replace it with a recurrence. 5029 unsigned FoundIndex = Add->getNumOperands(); 5030 Type *TruncTy = nullptr; 5031 bool Signed; 5032 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5033 if ((TruncTy = 5034 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5035 if (FoundIndex == e) { 5036 FoundIndex = i; 5037 break; 5038 } 5039 5040 if (FoundIndex == Add->getNumOperands()) 5041 return None; 5042 5043 // Create an add with everything but the specified operand. 5044 SmallVector<const SCEV *, 8> Ops; 5045 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5046 if (i != FoundIndex) 5047 Ops.push_back(Add->getOperand(i)); 5048 const SCEV *Accum = getAddExpr(Ops); 5049 5050 // The runtime checks will not be valid if the step amount is 5051 // varying inside the loop. 5052 if (!isLoopInvariant(Accum, L)) 5053 return None; 5054 5055 // *** Part2: Create the predicates 5056 5057 // Analysis was successful: we have a phi-with-cast pattern for which we 5058 // can return an AddRec expression under the following predicates: 5059 // 5060 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5061 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5062 // P2: An Equal predicate that guarantees that 5063 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5064 // P3: An Equal predicate that guarantees that 5065 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5066 // 5067 // As we next prove, the above predicates guarantee that: 5068 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5069 // 5070 // 5071 // More formally, we want to prove that: 5072 // Expr(i+1) = Start + (i+1) * Accum 5073 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5074 // 5075 // Given that: 5076 // 1) Expr(0) = Start 5077 // 2) Expr(1) = Start + Accum 5078 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5079 // 3) Induction hypothesis (step i): 5080 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5081 // 5082 // Proof: 5083 // Expr(i+1) = 5084 // = Start + (i+1)*Accum 5085 // = (Start + i*Accum) + Accum 5086 // = Expr(i) + Accum 5087 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5088 // :: from step i 5089 // 5090 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5091 // 5092 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5093 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5094 // + Accum :: from P3 5095 // 5096 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5097 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5098 // 5099 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5100 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5101 // 5102 // By induction, the same applies to all iterations 1<=i<n: 5103 // 5104 5105 // Create a truncated addrec for which we will add a no overflow check (P1). 5106 const SCEV *StartVal = getSCEV(StartValueV); 5107 const SCEV *PHISCEV = 5108 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5109 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5110 5111 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5112 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5113 // will be constant. 5114 // 5115 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5116 // add P1. 5117 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5118 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5119 Signed ? SCEVWrapPredicate::IncrementNSSW 5120 : SCEVWrapPredicate::IncrementNUSW; 5121 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5122 Predicates.push_back(AddRecPred); 5123 } 5124 5125 // Create the Equal Predicates P2,P3: 5126 5127 // It is possible that the predicates P2 and/or P3 are computable at 5128 // compile time due to StartVal and/or Accum being constants. 5129 // If either one is, then we can check that now and escape if either P2 5130 // or P3 is false. 5131 5132 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5133 // for each of StartVal and Accum 5134 auto getExtendedExpr = [&](const SCEV *Expr, 5135 bool CreateSignExtend) -> const SCEV * { 5136 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5137 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5138 const SCEV *ExtendedExpr = 5139 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5140 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5141 return ExtendedExpr; 5142 }; 5143 5144 // Given: 5145 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5146 // = getExtendedExpr(Expr) 5147 // Determine whether the predicate P: Expr == ExtendedExpr 5148 // is known to be false at compile time 5149 auto PredIsKnownFalse = [&](const SCEV *Expr, 5150 const SCEV *ExtendedExpr) -> bool { 5151 return Expr != ExtendedExpr && 5152 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5153 }; 5154 5155 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5156 if (PredIsKnownFalse(StartVal, StartExtended)) { 5157 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5158 return None; 5159 } 5160 5161 // The Step is always Signed (because the overflow checks are either 5162 // NSSW or NUSW) 5163 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5164 if (PredIsKnownFalse(Accum, AccumExtended)) { 5165 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5166 return None; 5167 } 5168 5169 auto AppendPredicate = [&](const SCEV *Expr, 5170 const SCEV *ExtendedExpr) -> void { 5171 if (Expr != ExtendedExpr && 5172 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5173 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5174 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5175 Predicates.push_back(Pred); 5176 } 5177 }; 5178 5179 AppendPredicate(StartVal, StartExtended); 5180 AppendPredicate(Accum, AccumExtended); 5181 5182 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5183 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5184 // into NewAR if it will also add the runtime overflow checks specified in 5185 // Predicates. 5186 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5187 5188 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5189 std::make_pair(NewAR, Predicates); 5190 // Remember the result of the analysis for this SCEV at this locayyytion. 5191 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5192 return PredRewrite; 5193 } 5194 5195 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5196 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5197 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5198 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5199 if (!L) 5200 return None; 5201 5202 // Check to see if we already analyzed this PHI. 5203 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5204 if (I != PredicatedSCEVRewrites.end()) { 5205 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5206 I->second; 5207 // Analysis was done before and failed to create an AddRec: 5208 if (Rewrite.first == SymbolicPHI) 5209 return None; 5210 // Analysis was done before and succeeded to create an AddRec under 5211 // a predicate: 5212 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5213 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5214 return Rewrite; 5215 } 5216 5217 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5218 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5219 5220 // Record in the cache that the analysis failed 5221 if (!Rewrite) { 5222 SmallVector<const SCEVPredicate *, 3> Predicates; 5223 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5224 return None; 5225 } 5226 5227 return Rewrite; 5228 } 5229 5230 // FIXME: This utility is currently required because the Rewriter currently 5231 // does not rewrite this expression: 5232 // {0, +, (sext ix (trunc iy to ix) to iy)} 5233 // into {0, +, %step}, 5234 // even when the following Equal predicate exists: 5235 // "%step == (sext ix (trunc iy to ix) to iy)". 5236 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5237 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5238 if (AR1 == AR2) 5239 return true; 5240 5241 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5242 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5243 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5244 return false; 5245 return true; 5246 }; 5247 5248 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5249 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5250 return false; 5251 return true; 5252 } 5253 5254 /// A helper function for createAddRecFromPHI to handle simple cases. 5255 /// 5256 /// This function tries to find an AddRec expression for the simplest (yet most 5257 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5258 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5259 /// technique for finding the AddRec expression. 5260 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5261 Value *BEValueV, 5262 Value *StartValueV) { 5263 const Loop *L = LI.getLoopFor(PN->getParent()); 5264 assert(L && L->getHeader() == PN->getParent()); 5265 assert(BEValueV && StartValueV); 5266 5267 auto BO = MatchBinaryOp(BEValueV, DT); 5268 if (!BO) 5269 return nullptr; 5270 5271 if (BO->Opcode != Instruction::Add) 5272 return nullptr; 5273 5274 const SCEV *Accum = nullptr; 5275 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5276 Accum = getSCEV(BO->RHS); 5277 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5278 Accum = getSCEV(BO->LHS); 5279 5280 if (!Accum) 5281 return nullptr; 5282 5283 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5284 if (BO->IsNUW) 5285 Flags = setFlags(Flags, SCEV::FlagNUW); 5286 if (BO->IsNSW) 5287 Flags = setFlags(Flags, SCEV::FlagNSW); 5288 5289 const SCEV *StartVal = getSCEV(StartValueV); 5290 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5291 5292 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5293 5294 // We can add Flags to the post-inc expression only if we 5295 // know that it is *undefined behavior* for BEValueV to 5296 // overflow. 5297 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5298 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5299 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5300 5301 return PHISCEV; 5302 } 5303 5304 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5305 const Loop *L = LI.getLoopFor(PN->getParent()); 5306 if (!L || L->getHeader() != PN->getParent()) 5307 return nullptr; 5308 5309 // The loop may have multiple entrances or multiple exits; we can analyze 5310 // this phi as an addrec if it has a unique entry value and a unique 5311 // backedge value. 5312 Value *BEValueV = nullptr, *StartValueV = nullptr; 5313 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5314 Value *V = PN->getIncomingValue(i); 5315 if (L->contains(PN->getIncomingBlock(i))) { 5316 if (!BEValueV) { 5317 BEValueV = V; 5318 } else if (BEValueV != V) { 5319 BEValueV = nullptr; 5320 break; 5321 } 5322 } else if (!StartValueV) { 5323 StartValueV = V; 5324 } else if (StartValueV != V) { 5325 StartValueV = nullptr; 5326 break; 5327 } 5328 } 5329 if (!BEValueV || !StartValueV) 5330 return nullptr; 5331 5332 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5333 "PHI node already processed?"); 5334 5335 // First, try to find AddRec expression without creating a fictituos symbolic 5336 // value for PN. 5337 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5338 return S; 5339 5340 // Handle PHI node value symbolically. 5341 const SCEV *SymbolicName = getUnknown(PN); 5342 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5343 5344 // Using this symbolic name for the PHI, analyze the value coming around 5345 // the back-edge. 5346 const SCEV *BEValue = getSCEV(BEValueV); 5347 5348 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5349 // has a special value for the first iteration of the loop. 5350 5351 // If the value coming around the backedge is an add with the symbolic 5352 // value we just inserted, then we found a simple induction variable! 5353 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5354 // If there is a single occurrence of the symbolic value, replace it 5355 // with a recurrence. 5356 unsigned FoundIndex = Add->getNumOperands(); 5357 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5358 if (Add->getOperand(i) == SymbolicName) 5359 if (FoundIndex == e) { 5360 FoundIndex = i; 5361 break; 5362 } 5363 5364 if (FoundIndex != Add->getNumOperands()) { 5365 // Create an add with everything but the specified operand. 5366 SmallVector<const SCEV *, 8> Ops; 5367 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5368 if (i != FoundIndex) 5369 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5370 L, *this)); 5371 const SCEV *Accum = getAddExpr(Ops); 5372 5373 // This is not a valid addrec if the step amount is varying each 5374 // loop iteration, but is not itself an addrec in this loop. 5375 if (isLoopInvariant(Accum, L) || 5376 (isa<SCEVAddRecExpr>(Accum) && 5377 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5378 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5379 5380 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5381 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5382 if (BO->IsNUW) 5383 Flags = setFlags(Flags, SCEV::FlagNUW); 5384 if (BO->IsNSW) 5385 Flags = setFlags(Flags, SCEV::FlagNSW); 5386 } 5387 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5388 // If the increment is an inbounds GEP, then we know the address 5389 // space cannot be wrapped around. We cannot make any guarantee 5390 // about signed or unsigned overflow because pointers are 5391 // unsigned but we may have a negative index from the base 5392 // pointer. We can guarantee that no unsigned wrap occurs if the 5393 // indices form a positive value. 5394 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5395 Flags = setFlags(Flags, SCEV::FlagNW); 5396 5397 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5398 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5399 Flags = setFlags(Flags, SCEV::FlagNUW); 5400 } 5401 5402 // We cannot transfer nuw and nsw flags from subtraction 5403 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5404 // for instance. 5405 } 5406 5407 const SCEV *StartVal = getSCEV(StartValueV); 5408 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5409 5410 // Okay, for the entire analysis of this edge we assumed the PHI 5411 // to be symbolic. We now need to go back and purge all of the 5412 // entries for the scalars that use the symbolic expression. 5413 forgetSymbolicName(PN, SymbolicName); 5414 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5415 5416 // We can add Flags to the post-inc expression only if we 5417 // know that it is *undefined behavior* for BEValueV to 5418 // overflow. 5419 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5420 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5421 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5422 5423 return PHISCEV; 5424 } 5425 } 5426 } else { 5427 // Otherwise, this could be a loop like this: 5428 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5429 // In this case, j = {1,+,1} and BEValue is j. 5430 // Because the other in-value of i (0) fits the evolution of BEValue 5431 // i really is an addrec evolution. 5432 // 5433 // We can generalize this saying that i is the shifted value of BEValue 5434 // by one iteration: 5435 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5436 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5437 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5438 if (Shifted != getCouldNotCompute() && 5439 Start != getCouldNotCompute()) { 5440 const SCEV *StartVal = getSCEV(StartValueV); 5441 if (Start == StartVal) { 5442 // Okay, for the entire analysis of this edge we assumed the PHI 5443 // to be symbolic. We now need to go back and purge all of the 5444 // entries for the scalars that use the symbolic expression. 5445 forgetSymbolicName(PN, SymbolicName); 5446 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5447 return Shifted; 5448 } 5449 } 5450 } 5451 5452 // Remove the temporary PHI node SCEV that has been inserted while intending 5453 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5454 // as it will prevent later (possibly simpler) SCEV expressions to be added 5455 // to the ValueExprMap. 5456 eraseValueFromMap(PN); 5457 5458 return nullptr; 5459 } 5460 5461 // Checks if the SCEV S is available at BB. S is considered available at BB 5462 // if S can be materialized at BB without introducing a fault. 5463 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5464 BasicBlock *BB) { 5465 struct CheckAvailable { 5466 bool TraversalDone = false; 5467 bool Available = true; 5468 5469 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5470 BasicBlock *BB = nullptr; 5471 DominatorTree &DT; 5472 5473 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5474 : L(L), BB(BB), DT(DT) {} 5475 5476 bool setUnavailable() { 5477 TraversalDone = true; 5478 Available = false; 5479 return false; 5480 } 5481 5482 bool follow(const SCEV *S) { 5483 switch (S->getSCEVType()) { 5484 case scConstant: 5485 case scPtrToInt: 5486 case scTruncate: 5487 case scZeroExtend: 5488 case scSignExtend: 5489 case scAddExpr: 5490 case scMulExpr: 5491 case scUMaxExpr: 5492 case scSMaxExpr: 5493 case scUMinExpr: 5494 case scSMinExpr: 5495 // These expressions are available if their operand(s) is/are. 5496 return true; 5497 5498 case scAddRecExpr: { 5499 // We allow add recurrences that are on the loop BB is in, or some 5500 // outer loop. This guarantees availability because the value of the 5501 // add recurrence at BB is simply the "current" value of the induction 5502 // variable. We can relax this in the future; for instance an add 5503 // recurrence on a sibling dominating loop is also available at BB. 5504 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5505 if (L && (ARLoop == L || ARLoop->contains(L))) 5506 return true; 5507 5508 return setUnavailable(); 5509 } 5510 5511 case scUnknown: { 5512 // For SCEVUnknown, we check for simple dominance. 5513 const auto *SU = cast<SCEVUnknown>(S); 5514 Value *V = SU->getValue(); 5515 5516 if (isa<Argument>(V)) 5517 return false; 5518 5519 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5520 return false; 5521 5522 return setUnavailable(); 5523 } 5524 5525 case scUDivExpr: 5526 case scCouldNotCompute: 5527 // We do not try to smart about these at all. 5528 return setUnavailable(); 5529 } 5530 llvm_unreachable("Unknown SCEV kind!"); 5531 } 5532 5533 bool isDone() { return TraversalDone; } 5534 }; 5535 5536 CheckAvailable CA(L, BB, DT); 5537 SCEVTraversal<CheckAvailable> ST(CA); 5538 5539 ST.visitAll(S); 5540 return CA.Available; 5541 } 5542 5543 // Try to match a control flow sequence that branches out at BI and merges back 5544 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5545 // match. 5546 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5547 Value *&C, Value *&LHS, Value *&RHS) { 5548 C = BI->getCondition(); 5549 5550 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5551 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5552 5553 if (!LeftEdge.isSingleEdge()) 5554 return false; 5555 5556 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5557 5558 Use &LeftUse = Merge->getOperandUse(0); 5559 Use &RightUse = Merge->getOperandUse(1); 5560 5561 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5562 LHS = LeftUse; 5563 RHS = RightUse; 5564 return true; 5565 } 5566 5567 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5568 LHS = RightUse; 5569 RHS = LeftUse; 5570 return true; 5571 } 5572 5573 return false; 5574 } 5575 5576 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5577 auto IsReachable = 5578 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5579 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5580 const Loop *L = LI.getLoopFor(PN->getParent()); 5581 5582 // We don't want to break LCSSA, even in a SCEV expression tree. 5583 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5584 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5585 return nullptr; 5586 5587 // Try to match 5588 // 5589 // br %cond, label %left, label %right 5590 // left: 5591 // br label %merge 5592 // right: 5593 // br label %merge 5594 // merge: 5595 // V = phi [ %x, %left ], [ %y, %right ] 5596 // 5597 // as "select %cond, %x, %y" 5598 5599 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5600 assert(IDom && "At least the entry block should dominate PN"); 5601 5602 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5603 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5604 5605 if (BI && BI->isConditional() && 5606 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5607 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5608 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5609 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5610 } 5611 5612 return nullptr; 5613 } 5614 5615 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5616 if (const SCEV *S = createAddRecFromPHI(PN)) 5617 return S; 5618 5619 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5620 return S; 5621 5622 // If the PHI has a single incoming value, follow that value, unless the 5623 // PHI's incoming blocks are in a different loop, in which case doing so 5624 // risks breaking LCSSA form. Instcombine would normally zap these, but 5625 // it doesn't have DominatorTree information, so it may miss cases. 5626 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5627 if (LI.replacementPreservesLCSSAForm(PN, V)) 5628 return getSCEV(V); 5629 5630 // If it's not a loop phi, we can't handle it yet. 5631 return getUnknown(PN); 5632 } 5633 5634 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5635 Value *Cond, 5636 Value *TrueVal, 5637 Value *FalseVal) { 5638 // Handle "constant" branch or select. This can occur for instance when a 5639 // loop pass transforms an inner loop and moves on to process the outer loop. 5640 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5641 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5642 5643 // Try to match some simple smax or umax patterns. 5644 auto *ICI = dyn_cast<ICmpInst>(Cond); 5645 if (!ICI) 5646 return getUnknown(I); 5647 5648 Value *LHS = ICI->getOperand(0); 5649 Value *RHS = ICI->getOperand(1); 5650 5651 switch (ICI->getPredicate()) { 5652 case ICmpInst::ICMP_SLT: 5653 case ICmpInst::ICMP_SLE: 5654 case ICmpInst::ICMP_ULT: 5655 case ICmpInst::ICMP_ULE: 5656 std::swap(LHS, RHS); 5657 LLVM_FALLTHROUGH; 5658 case ICmpInst::ICMP_SGT: 5659 case ICmpInst::ICMP_SGE: 5660 case ICmpInst::ICMP_UGT: 5661 case ICmpInst::ICMP_UGE: 5662 // a > b ? a+x : b+x -> max(a, b)+x 5663 // a > b ? b+x : a+x -> min(a, b)+x 5664 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5665 bool Signed = ICI->isSigned(); 5666 const SCEV *LA = getSCEV(TrueVal); 5667 const SCEV *RA = getSCEV(FalseVal); 5668 const SCEV *LS = getSCEV(LHS); 5669 const SCEV *RS = getSCEV(RHS); 5670 if (LA->getType()->isPointerTy()) { 5671 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5672 // Need to make sure we can't produce weird expressions involving 5673 // negated pointers. 5674 if (LA == LS && RA == RS) 5675 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5676 if (LA == RS && RA == LS) 5677 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5678 } 5679 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5680 if (Op->getType()->isPointerTy()) { 5681 Op = getLosslessPtrToIntExpr(Op); 5682 if (isa<SCEVCouldNotCompute>(Op)) 5683 return Op; 5684 } 5685 if (Signed) 5686 Op = getNoopOrSignExtend(Op, I->getType()); 5687 else 5688 Op = getNoopOrZeroExtend(Op, I->getType()); 5689 return Op; 5690 }; 5691 LS = CoerceOperand(LS); 5692 RS = CoerceOperand(RS); 5693 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5694 break; 5695 const SCEV *LDiff = getMinusSCEV(LA, LS); 5696 const SCEV *RDiff = getMinusSCEV(RA, RS); 5697 if (LDiff == RDiff) 5698 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5699 LDiff); 5700 LDiff = getMinusSCEV(LA, RS); 5701 RDiff = getMinusSCEV(RA, LS); 5702 if (LDiff == RDiff) 5703 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5704 LDiff); 5705 } 5706 break; 5707 case ICmpInst::ICMP_NE: 5708 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5709 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5710 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5711 const SCEV *One = getOne(I->getType()); 5712 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5713 const SCEV *LA = getSCEV(TrueVal); 5714 const SCEV *RA = getSCEV(FalseVal); 5715 const SCEV *LDiff = getMinusSCEV(LA, LS); 5716 const SCEV *RDiff = getMinusSCEV(RA, One); 5717 if (LDiff == RDiff) 5718 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5719 } 5720 break; 5721 case ICmpInst::ICMP_EQ: 5722 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5723 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5724 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5725 const SCEV *One = getOne(I->getType()); 5726 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5727 const SCEV *LA = getSCEV(TrueVal); 5728 const SCEV *RA = getSCEV(FalseVal); 5729 const SCEV *LDiff = getMinusSCEV(LA, One); 5730 const SCEV *RDiff = getMinusSCEV(RA, LS); 5731 if (LDiff == RDiff) 5732 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5733 } 5734 break; 5735 default: 5736 break; 5737 } 5738 5739 return getUnknown(I); 5740 } 5741 5742 /// Expand GEP instructions into add and multiply operations. This allows them 5743 /// to be analyzed by regular SCEV code. 5744 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5745 // Don't attempt to analyze GEPs over unsized objects. 5746 if (!GEP->getSourceElementType()->isSized()) 5747 return getUnknown(GEP); 5748 5749 SmallVector<const SCEV *, 4> IndexExprs; 5750 for (Value *Index : GEP->indices()) 5751 IndexExprs.push_back(getSCEV(Index)); 5752 return getGEPExpr(GEP, IndexExprs); 5753 } 5754 5755 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5756 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5757 return C->getAPInt().countTrailingZeros(); 5758 5759 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5760 return GetMinTrailingZeros(I->getOperand()); 5761 5762 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5763 return std::min(GetMinTrailingZeros(T->getOperand()), 5764 (uint32_t)getTypeSizeInBits(T->getType())); 5765 5766 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5767 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5768 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5769 ? getTypeSizeInBits(E->getType()) 5770 : OpRes; 5771 } 5772 5773 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5774 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5775 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5776 ? getTypeSizeInBits(E->getType()) 5777 : OpRes; 5778 } 5779 5780 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5781 // The result is the min of all operands results. 5782 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5783 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5784 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5785 return MinOpRes; 5786 } 5787 5788 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5789 // The result is the sum of all operands results. 5790 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5791 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5792 for (unsigned i = 1, e = M->getNumOperands(); 5793 SumOpRes != BitWidth && i != e; ++i) 5794 SumOpRes = 5795 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5796 return SumOpRes; 5797 } 5798 5799 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5800 // The result is the min of all operands results. 5801 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5802 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5803 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5804 return MinOpRes; 5805 } 5806 5807 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5808 // The result is the min of all operands results. 5809 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5810 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5811 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5812 return MinOpRes; 5813 } 5814 5815 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5816 // The result is the min of all operands results. 5817 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5818 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5819 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5820 return MinOpRes; 5821 } 5822 5823 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5824 // For a SCEVUnknown, ask ValueTracking. 5825 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5826 return Known.countMinTrailingZeros(); 5827 } 5828 5829 // SCEVUDivExpr 5830 return 0; 5831 } 5832 5833 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5834 auto I = MinTrailingZerosCache.find(S); 5835 if (I != MinTrailingZerosCache.end()) 5836 return I->second; 5837 5838 uint32_t Result = GetMinTrailingZerosImpl(S); 5839 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5840 assert(InsertPair.second && "Should insert a new key"); 5841 return InsertPair.first->second; 5842 } 5843 5844 /// Helper method to assign a range to V from metadata present in the IR. 5845 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5846 if (Instruction *I = dyn_cast<Instruction>(V)) 5847 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5848 return getConstantRangeFromMetadata(*MD); 5849 5850 return None; 5851 } 5852 5853 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5854 SCEV::NoWrapFlags Flags) { 5855 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5856 AddRec->setNoWrapFlags(Flags); 5857 UnsignedRanges.erase(AddRec); 5858 SignedRanges.erase(AddRec); 5859 } 5860 } 5861 5862 ConstantRange ScalarEvolution:: 5863 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5864 const DataLayout &DL = getDataLayout(); 5865 5866 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5867 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 5868 5869 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5870 // use information about the trip count to improve our available range. Note 5871 // that the trip count independent cases are already handled by known bits. 5872 // WARNING: The definition of recurrence used here is subtly different than 5873 // the one used by AddRec (and thus most of this file). Step is allowed to 5874 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5875 // and other addrecs in the same loop (for non-affine addrecs). The code 5876 // below intentionally handles the case where step is not loop invariant. 5877 auto *P = dyn_cast<PHINode>(U->getValue()); 5878 if (!P) 5879 return FullSet; 5880 5881 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5882 // even the values that are not available in these blocks may come from them, 5883 // and this leads to false-positive recurrence test. 5884 for (auto *Pred : predecessors(P->getParent())) 5885 if (!DT.isReachableFromEntry(Pred)) 5886 return FullSet; 5887 5888 BinaryOperator *BO; 5889 Value *Start, *Step; 5890 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5891 return FullSet; 5892 5893 // If we found a recurrence in reachable code, we must be in a loop. Note 5894 // that BO might be in some subloop of L, and that's completely okay. 5895 auto *L = LI.getLoopFor(P->getParent()); 5896 assert(L && L->getHeader() == P->getParent()); 5897 if (!L->contains(BO->getParent())) 5898 // NOTE: This bailout should be an assert instead. However, asserting 5899 // the condition here exposes a case where LoopFusion is querying SCEV 5900 // with malformed loop information during the midst of the transform. 5901 // There doesn't appear to be an obvious fix, so for the moment bailout 5902 // until the caller issue can be fixed. PR49566 tracks the bug. 5903 return FullSet; 5904 5905 // TODO: Extend to other opcodes such as mul, and div 5906 switch (BO->getOpcode()) { 5907 default: 5908 return FullSet; 5909 case Instruction::AShr: 5910 case Instruction::LShr: 5911 case Instruction::Shl: 5912 break; 5913 }; 5914 5915 if (BO->getOperand(0) != P) 5916 // TODO: Handle the power function forms some day. 5917 return FullSet; 5918 5919 unsigned TC = getSmallConstantMaxTripCount(L); 5920 if (!TC || TC >= BitWidth) 5921 return FullSet; 5922 5923 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5924 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5925 assert(KnownStart.getBitWidth() == BitWidth && 5926 KnownStep.getBitWidth() == BitWidth); 5927 5928 // Compute total shift amount, being careful of overflow and bitwidths. 5929 auto MaxShiftAmt = KnownStep.getMaxValue(); 5930 APInt TCAP(BitWidth, TC-1); 5931 bool Overflow = false; 5932 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5933 if (Overflow) 5934 return FullSet; 5935 5936 switch (BO->getOpcode()) { 5937 default: 5938 llvm_unreachable("filtered out above"); 5939 case Instruction::AShr: { 5940 // For each ashr, three cases: 5941 // shift = 0 => unchanged value 5942 // saturation => 0 or -1 5943 // other => a value closer to zero (of the same sign) 5944 // Thus, the end value is closer to zero than the start. 5945 auto KnownEnd = KnownBits::ashr(KnownStart, 5946 KnownBits::makeConstant(TotalShift)); 5947 if (KnownStart.isNonNegative()) 5948 // Analogous to lshr (simply not yet canonicalized) 5949 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5950 KnownStart.getMaxValue() + 1); 5951 if (KnownStart.isNegative()) 5952 // End >=u Start && End <=s Start 5953 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 5954 KnownEnd.getMaxValue() + 1); 5955 break; 5956 } 5957 case Instruction::LShr: { 5958 // For each lshr, three cases: 5959 // shift = 0 => unchanged value 5960 // saturation => 0 5961 // other => a smaller positive number 5962 // Thus, the low end of the unsigned range is the last value produced. 5963 auto KnownEnd = KnownBits::lshr(KnownStart, 5964 KnownBits::makeConstant(TotalShift)); 5965 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5966 KnownStart.getMaxValue() + 1); 5967 } 5968 case Instruction::Shl: { 5969 // Iff no bits are shifted out, value increases on every shift. 5970 auto KnownEnd = KnownBits::shl(KnownStart, 5971 KnownBits::makeConstant(TotalShift)); 5972 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 5973 return ConstantRange(KnownStart.getMinValue(), 5974 KnownEnd.getMaxValue() + 1); 5975 break; 5976 } 5977 }; 5978 return FullSet; 5979 } 5980 5981 /// Determine the range for a particular SCEV. If SignHint is 5982 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5983 /// with a "cleaner" unsigned (resp. signed) representation. 5984 const ConstantRange & 5985 ScalarEvolution::getRangeRef(const SCEV *S, 5986 ScalarEvolution::RangeSignHint SignHint) { 5987 DenseMap<const SCEV *, ConstantRange> &Cache = 5988 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5989 : SignedRanges; 5990 ConstantRange::PreferredRangeType RangeType = 5991 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5992 ? ConstantRange::Unsigned : ConstantRange::Signed; 5993 5994 // See if we've computed this range already. 5995 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5996 if (I != Cache.end()) 5997 return I->second; 5998 5999 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6000 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6001 6002 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6003 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6004 using OBO = OverflowingBinaryOperator; 6005 6006 // If the value has known zeros, the maximum value will have those known zeros 6007 // as well. 6008 uint32_t TZ = GetMinTrailingZeros(S); 6009 if (TZ != 0) { 6010 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6011 ConservativeResult = 6012 ConstantRange(APInt::getMinValue(BitWidth), 6013 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6014 else 6015 ConservativeResult = ConstantRange( 6016 APInt::getSignedMinValue(BitWidth), 6017 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6018 } 6019 6020 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6021 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6022 unsigned WrapType = OBO::AnyWrap; 6023 if (Add->hasNoSignedWrap()) 6024 WrapType |= OBO::NoSignedWrap; 6025 if (Add->hasNoUnsignedWrap()) 6026 WrapType |= OBO::NoUnsignedWrap; 6027 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6028 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6029 WrapType, RangeType); 6030 return setRange(Add, SignHint, 6031 ConservativeResult.intersectWith(X, RangeType)); 6032 } 6033 6034 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6035 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6036 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6037 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6038 return setRange(Mul, SignHint, 6039 ConservativeResult.intersectWith(X, RangeType)); 6040 } 6041 6042 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 6043 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 6044 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 6045 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 6046 return setRange(SMax, SignHint, 6047 ConservativeResult.intersectWith(X, RangeType)); 6048 } 6049 6050 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 6051 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 6052 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 6053 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 6054 return setRange(UMax, SignHint, 6055 ConservativeResult.intersectWith(X, RangeType)); 6056 } 6057 6058 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 6059 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 6060 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 6061 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 6062 return setRange(SMin, SignHint, 6063 ConservativeResult.intersectWith(X, RangeType)); 6064 } 6065 6066 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 6067 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 6068 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 6069 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 6070 return setRange(UMin, SignHint, 6071 ConservativeResult.intersectWith(X, RangeType)); 6072 } 6073 6074 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6075 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6076 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6077 return setRange(UDiv, SignHint, 6078 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6079 } 6080 6081 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6082 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6083 return setRange(ZExt, SignHint, 6084 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6085 RangeType)); 6086 } 6087 6088 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6089 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6090 return setRange(SExt, SignHint, 6091 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6092 RangeType)); 6093 } 6094 6095 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6096 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6097 return setRange(PtrToInt, SignHint, X); 6098 } 6099 6100 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6101 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6102 return setRange(Trunc, SignHint, 6103 ConservativeResult.intersectWith(X.truncate(BitWidth), 6104 RangeType)); 6105 } 6106 6107 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6108 // If there's no unsigned wrap, the value will never be less than its 6109 // initial value. 6110 if (AddRec->hasNoUnsignedWrap()) { 6111 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6112 if (!UnsignedMinValue.isNullValue()) 6113 ConservativeResult = ConservativeResult.intersectWith( 6114 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6115 } 6116 6117 // If there's no signed wrap, and all the operands except initial value have 6118 // the same sign or zero, the value won't ever be: 6119 // 1: smaller than initial value if operands are non negative, 6120 // 2: bigger than initial value if operands are non positive. 6121 // For both cases, value can not cross signed min/max boundary. 6122 if (AddRec->hasNoSignedWrap()) { 6123 bool AllNonNeg = true; 6124 bool AllNonPos = true; 6125 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6126 if (!isKnownNonNegative(AddRec->getOperand(i))) 6127 AllNonNeg = false; 6128 if (!isKnownNonPositive(AddRec->getOperand(i))) 6129 AllNonPos = false; 6130 } 6131 if (AllNonNeg) 6132 ConservativeResult = ConservativeResult.intersectWith( 6133 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6134 APInt::getSignedMinValue(BitWidth)), 6135 RangeType); 6136 else if (AllNonPos) 6137 ConservativeResult = ConservativeResult.intersectWith( 6138 ConstantRange::getNonEmpty( 6139 APInt::getSignedMinValue(BitWidth), 6140 getSignedRangeMax(AddRec->getStart()) + 1), 6141 RangeType); 6142 } 6143 6144 // TODO: non-affine addrec 6145 if (AddRec->isAffine()) { 6146 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6147 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6148 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6149 auto RangeFromAffine = getRangeForAffineAR( 6150 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6151 BitWidth); 6152 ConservativeResult = 6153 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6154 6155 auto RangeFromFactoring = getRangeViaFactoring( 6156 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6157 BitWidth); 6158 ConservativeResult = 6159 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6160 } 6161 6162 // Now try symbolic BE count and more powerful methods. 6163 if (UseExpensiveRangeSharpening) { 6164 const SCEV *SymbolicMaxBECount = 6165 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6166 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6167 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6168 AddRec->hasNoSelfWrap()) { 6169 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6170 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6171 ConservativeResult = 6172 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6173 } 6174 } 6175 } 6176 6177 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6178 } 6179 6180 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6181 6182 // Check if the IR explicitly contains !range metadata. 6183 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6184 if (MDRange.hasValue()) 6185 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6186 RangeType); 6187 6188 // Use facts about recurrences in the underlying IR. Note that add 6189 // recurrences are AddRecExprs and thus don't hit this path. This 6190 // primarily handles shift recurrences. 6191 auto CR = getRangeForUnknownRecurrence(U); 6192 ConservativeResult = ConservativeResult.intersectWith(CR); 6193 6194 // See if ValueTracking can give us a useful range. 6195 const DataLayout &DL = getDataLayout(); 6196 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6197 if (Known.getBitWidth() != BitWidth) 6198 Known = Known.zextOrTrunc(BitWidth); 6199 6200 // ValueTracking may be able to compute a tighter result for the number of 6201 // sign bits than for the value of those sign bits. 6202 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6203 if (U->getType()->isPointerTy()) { 6204 // If the pointer size is larger than the index size type, this can cause 6205 // NS to be larger than BitWidth. So compensate for this. 6206 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6207 int ptrIdxDiff = ptrSize - BitWidth; 6208 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6209 NS -= ptrIdxDiff; 6210 } 6211 6212 if (NS > 1) { 6213 // If we know any of the sign bits, we know all of the sign bits. 6214 if (!Known.Zero.getHiBits(NS).isNullValue()) 6215 Known.Zero.setHighBits(NS); 6216 if (!Known.One.getHiBits(NS).isNullValue()) 6217 Known.One.setHighBits(NS); 6218 } 6219 6220 if (Known.getMinValue() != Known.getMaxValue() + 1) 6221 ConservativeResult = ConservativeResult.intersectWith( 6222 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6223 RangeType); 6224 if (NS > 1) 6225 ConservativeResult = ConservativeResult.intersectWith( 6226 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6227 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6228 RangeType); 6229 6230 // A range of Phi is a subset of union of all ranges of its input. 6231 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6232 // Make sure that we do not run over cycled Phis. 6233 if (PendingPhiRanges.insert(Phi).second) { 6234 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6235 for (auto &Op : Phi->operands()) { 6236 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6237 RangeFromOps = RangeFromOps.unionWith(OpRange); 6238 // No point to continue if we already have a full set. 6239 if (RangeFromOps.isFullSet()) 6240 break; 6241 } 6242 ConservativeResult = 6243 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6244 bool Erased = PendingPhiRanges.erase(Phi); 6245 assert(Erased && "Failed to erase Phi properly?"); 6246 (void) Erased; 6247 } 6248 } 6249 6250 return setRange(U, SignHint, std::move(ConservativeResult)); 6251 } 6252 6253 return setRange(S, SignHint, std::move(ConservativeResult)); 6254 } 6255 6256 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6257 // values that the expression can take. Initially, the expression has a value 6258 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6259 // argument defines if we treat Step as signed or unsigned. 6260 static ConstantRange getRangeForAffineARHelper(APInt Step, 6261 const ConstantRange &StartRange, 6262 const APInt &MaxBECount, 6263 unsigned BitWidth, bool Signed) { 6264 // If either Step or MaxBECount is 0, then the expression won't change, and we 6265 // just need to return the initial range. 6266 if (Step == 0 || MaxBECount == 0) 6267 return StartRange; 6268 6269 // If we don't know anything about the initial value (i.e. StartRange is 6270 // FullRange), then we don't know anything about the final range either. 6271 // Return FullRange. 6272 if (StartRange.isFullSet()) 6273 return ConstantRange::getFull(BitWidth); 6274 6275 // If Step is signed and negative, then we use its absolute value, but we also 6276 // note that we're moving in the opposite direction. 6277 bool Descending = Signed && Step.isNegative(); 6278 6279 if (Signed) 6280 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6281 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6282 // This equations hold true due to the well-defined wrap-around behavior of 6283 // APInt. 6284 Step = Step.abs(); 6285 6286 // Check if Offset is more than full span of BitWidth. If it is, the 6287 // expression is guaranteed to overflow. 6288 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6289 return ConstantRange::getFull(BitWidth); 6290 6291 // Offset is by how much the expression can change. Checks above guarantee no 6292 // overflow here. 6293 APInt Offset = Step * MaxBECount; 6294 6295 // Minimum value of the final range will match the minimal value of StartRange 6296 // if the expression is increasing and will be decreased by Offset otherwise. 6297 // Maximum value of the final range will match the maximal value of StartRange 6298 // if the expression is decreasing and will be increased by Offset otherwise. 6299 APInt StartLower = StartRange.getLower(); 6300 APInt StartUpper = StartRange.getUpper() - 1; 6301 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6302 : (StartUpper + std::move(Offset)); 6303 6304 // It's possible that the new minimum/maximum value will fall into the initial 6305 // range (due to wrap around). This means that the expression can take any 6306 // value in this bitwidth, and we have to return full range. 6307 if (StartRange.contains(MovedBoundary)) 6308 return ConstantRange::getFull(BitWidth); 6309 6310 APInt NewLower = 6311 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6312 APInt NewUpper = 6313 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6314 NewUpper += 1; 6315 6316 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6317 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6318 } 6319 6320 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6321 const SCEV *Step, 6322 const SCEV *MaxBECount, 6323 unsigned BitWidth) { 6324 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6325 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6326 "Precondition!"); 6327 6328 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6329 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6330 6331 // First, consider step signed. 6332 ConstantRange StartSRange = getSignedRange(Start); 6333 ConstantRange StepSRange = getSignedRange(Step); 6334 6335 // If Step can be both positive and negative, we need to find ranges for the 6336 // maximum absolute step values in both directions and union them. 6337 ConstantRange SR = 6338 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6339 MaxBECountValue, BitWidth, /* Signed = */ true); 6340 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6341 StartSRange, MaxBECountValue, 6342 BitWidth, /* Signed = */ true)); 6343 6344 // Next, consider step unsigned. 6345 ConstantRange UR = getRangeForAffineARHelper( 6346 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6347 MaxBECountValue, BitWidth, /* Signed = */ false); 6348 6349 // Finally, intersect signed and unsigned ranges. 6350 return SR.intersectWith(UR, ConstantRange::Smallest); 6351 } 6352 6353 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6354 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6355 ScalarEvolution::RangeSignHint SignHint) { 6356 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6357 assert(AddRec->hasNoSelfWrap() && 6358 "This only works for non-self-wrapping AddRecs!"); 6359 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6360 const SCEV *Step = AddRec->getStepRecurrence(*this); 6361 // Only deal with constant step to save compile time. 6362 if (!isa<SCEVConstant>(Step)) 6363 return ConstantRange::getFull(BitWidth); 6364 // Let's make sure that we can prove that we do not self-wrap during 6365 // MaxBECount iterations. We need this because MaxBECount is a maximum 6366 // iteration count estimate, and we might infer nw from some exit for which we 6367 // do not know max exit count (or any other side reasoning). 6368 // TODO: Turn into assert at some point. 6369 if (getTypeSizeInBits(MaxBECount->getType()) > 6370 getTypeSizeInBits(AddRec->getType())) 6371 return ConstantRange::getFull(BitWidth); 6372 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6373 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6374 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6375 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6376 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6377 MaxItersWithoutWrap)) 6378 return ConstantRange::getFull(BitWidth); 6379 6380 ICmpInst::Predicate LEPred = 6381 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6382 ICmpInst::Predicate GEPred = 6383 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6384 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6385 6386 // We know that there is no self-wrap. Let's take Start and End values and 6387 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6388 // the iteration. They either lie inside the range [Min(Start, End), 6389 // Max(Start, End)] or outside it: 6390 // 6391 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6392 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6393 // 6394 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6395 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6396 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6397 // Start <= End and step is positive, or Start >= End and step is negative. 6398 const SCEV *Start = AddRec->getStart(); 6399 ConstantRange StartRange = getRangeRef(Start, SignHint); 6400 ConstantRange EndRange = getRangeRef(End, SignHint); 6401 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6402 // If they already cover full iteration space, we will know nothing useful 6403 // even if we prove what we want to prove. 6404 if (RangeBetween.isFullSet()) 6405 return RangeBetween; 6406 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6407 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6408 : RangeBetween.isWrappedSet(); 6409 if (IsWrappedSet) 6410 return ConstantRange::getFull(BitWidth); 6411 6412 if (isKnownPositive(Step) && 6413 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6414 return RangeBetween; 6415 else if (isKnownNegative(Step) && 6416 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6417 return RangeBetween; 6418 return ConstantRange::getFull(BitWidth); 6419 } 6420 6421 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6422 const SCEV *Step, 6423 const SCEV *MaxBECount, 6424 unsigned BitWidth) { 6425 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6426 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6427 6428 struct SelectPattern { 6429 Value *Condition = nullptr; 6430 APInt TrueValue; 6431 APInt FalseValue; 6432 6433 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6434 const SCEV *S) { 6435 Optional<unsigned> CastOp; 6436 APInt Offset(BitWidth, 0); 6437 6438 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6439 "Should be!"); 6440 6441 // Peel off a constant offset: 6442 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6443 // In the future we could consider being smarter here and handle 6444 // {Start+Step,+,Step} too. 6445 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6446 return; 6447 6448 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6449 S = SA->getOperand(1); 6450 } 6451 6452 // Peel off a cast operation 6453 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6454 CastOp = SCast->getSCEVType(); 6455 S = SCast->getOperand(); 6456 } 6457 6458 using namespace llvm::PatternMatch; 6459 6460 auto *SU = dyn_cast<SCEVUnknown>(S); 6461 const APInt *TrueVal, *FalseVal; 6462 if (!SU || 6463 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6464 m_APInt(FalseVal)))) { 6465 Condition = nullptr; 6466 return; 6467 } 6468 6469 TrueValue = *TrueVal; 6470 FalseValue = *FalseVal; 6471 6472 // Re-apply the cast we peeled off earlier 6473 if (CastOp.hasValue()) 6474 switch (*CastOp) { 6475 default: 6476 llvm_unreachable("Unknown SCEV cast type!"); 6477 6478 case scTruncate: 6479 TrueValue = TrueValue.trunc(BitWidth); 6480 FalseValue = FalseValue.trunc(BitWidth); 6481 break; 6482 case scZeroExtend: 6483 TrueValue = TrueValue.zext(BitWidth); 6484 FalseValue = FalseValue.zext(BitWidth); 6485 break; 6486 case scSignExtend: 6487 TrueValue = TrueValue.sext(BitWidth); 6488 FalseValue = FalseValue.sext(BitWidth); 6489 break; 6490 } 6491 6492 // Re-apply the constant offset we peeled off earlier 6493 TrueValue += Offset; 6494 FalseValue += Offset; 6495 } 6496 6497 bool isRecognized() { return Condition != nullptr; } 6498 }; 6499 6500 SelectPattern StartPattern(*this, BitWidth, Start); 6501 if (!StartPattern.isRecognized()) 6502 return ConstantRange::getFull(BitWidth); 6503 6504 SelectPattern StepPattern(*this, BitWidth, Step); 6505 if (!StepPattern.isRecognized()) 6506 return ConstantRange::getFull(BitWidth); 6507 6508 if (StartPattern.Condition != StepPattern.Condition) { 6509 // We don't handle this case today; but we could, by considering four 6510 // possibilities below instead of two. I'm not sure if there are cases where 6511 // that will help over what getRange already does, though. 6512 return ConstantRange::getFull(BitWidth); 6513 } 6514 6515 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6516 // construct arbitrary general SCEV expressions here. This function is called 6517 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6518 // say) can end up caching a suboptimal value. 6519 6520 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6521 // C2352 and C2512 (otherwise it isn't needed). 6522 6523 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6524 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6525 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6526 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6527 6528 ConstantRange TrueRange = 6529 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6530 ConstantRange FalseRange = 6531 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6532 6533 return TrueRange.unionWith(FalseRange); 6534 } 6535 6536 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6537 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6538 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6539 6540 // Return early if there are no flags to propagate to the SCEV. 6541 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6542 if (BinOp->hasNoUnsignedWrap()) 6543 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6544 if (BinOp->hasNoSignedWrap()) 6545 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6546 if (Flags == SCEV::FlagAnyWrap) 6547 return SCEV::FlagAnyWrap; 6548 6549 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6550 } 6551 6552 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6553 // Here we check that I is in the header of the innermost loop containing I, 6554 // since we only deal with instructions in the loop header. The actual loop we 6555 // need to check later will come from an add recurrence, but getting that 6556 // requires computing the SCEV of the operands, which can be expensive. This 6557 // check we can do cheaply to rule out some cases early. 6558 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6559 if (InnermostContainingLoop == nullptr || 6560 InnermostContainingLoop->getHeader() != I->getParent()) 6561 return false; 6562 6563 // Only proceed if we can prove that I does not yield poison. 6564 if (!programUndefinedIfPoison(I)) 6565 return false; 6566 6567 // At this point we know that if I is executed, then it does not wrap 6568 // according to at least one of NSW or NUW. If I is not executed, then we do 6569 // not know if the calculation that I represents would wrap. Multiple 6570 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6571 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6572 // derived from other instructions that map to the same SCEV. We cannot make 6573 // that guarantee for cases where I is not executed. So we need to find the 6574 // loop that I is considered in relation to and prove that I is executed for 6575 // every iteration of that loop. That implies that the value that I 6576 // calculates does not wrap anywhere in the loop, so then we can apply the 6577 // flags to the SCEV. 6578 // 6579 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6580 // from different loops, so that we know which loop to prove that I is 6581 // executed in. 6582 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6583 // I could be an extractvalue from a call to an overflow intrinsic. 6584 // TODO: We can do better here in some cases. 6585 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6586 return false; 6587 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6588 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6589 bool AllOtherOpsLoopInvariant = true; 6590 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6591 ++OtherOpIndex) { 6592 if (OtherOpIndex != OpIndex) { 6593 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6594 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6595 AllOtherOpsLoopInvariant = false; 6596 break; 6597 } 6598 } 6599 } 6600 if (AllOtherOpsLoopInvariant && 6601 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6602 return true; 6603 } 6604 } 6605 return false; 6606 } 6607 6608 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6609 // If we know that \c I can never be poison period, then that's enough. 6610 if (isSCEVExprNeverPoison(I)) 6611 return true; 6612 6613 // For an add recurrence specifically, we assume that infinite loops without 6614 // side effects are undefined behavior, and then reason as follows: 6615 // 6616 // If the add recurrence is poison in any iteration, it is poison on all 6617 // future iterations (since incrementing poison yields poison). If the result 6618 // of the add recurrence is fed into the loop latch condition and the loop 6619 // does not contain any throws or exiting blocks other than the latch, we now 6620 // have the ability to "choose" whether the backedge is taken or not (by 6621 // choosing a sufficiently evil value for the poison feeding into the branch) 6622 // for every iteration including and after the one in which \p I first became 6623 // poison. There are two possibilities (let's call the iteration in which \p 6624 // I first became poison as K): 6625 // 6626 // 1. In the set of iterations including and after K, the loop body executes 6627 // no side effects. In this case executing the backege an infinte number 6628 // of times will yield undefined behavior. 6629 // 6630 // 2. In the set of iterations including and after K, the loop body executes 6631 // at least one side effect. In this case, that specific instance of side 6632 // effect is control dependent on poison, which also yields undefined 6633 // behavior. 6634 6635 auto *ExitingBB = L->getExitingBlock(); 6636 auto *LatchBB = L->getLoopLatch(); 6637 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6638 return false; 6639 6640 SmallPtrSet<const Instruction *, 16> Pushed; 6641 SmallVector<const Instruction *, 8> PoisonStack; 6642 6643 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6644 // things that are known to be poison under that assumption go on the 6645 // PoisonStack. 6646 Pushed.insert(I); 6647 PoisonStack.push_back(I); 6648 6649 bool LatchControlDependentOnPoison = false; 6650 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6651 const Instruction *Poison = PoisonStack.pop_back_val(); 6652 6653 for (auto *PoisonUser : Poison->users()) { 6654 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6655 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6656 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6657 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6658 assert(BI->isConditional() && "Only possibility!"); 6659 if (BI->getParent() == LatchBB) { 6660 LatchControlDependentOnPoison = true; 6661 break; 6662 } 6663 } 6664 } 6665 } 6666 6667 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6668 } 6669 6670 ScalarEvolution::LoopProperties 6671 ScalarEvolution::getLoopProperties(const Loop *L) { 6672 using LoopProperties = ScalarEvolution::LoopProperties; 6673 6674 auto Itr = LoopPropertiesCache.find(L); 6675 if (Itr == LoopPropertiesCache.end()) { 6676 auto HasSideEffects = [](Instruction *I) { 6677 if (auto *SI = dyn_cast<StoreInst>(I)) 6678 return !SI->isSimple(); 6679 6680 return I->mayThrow() || I->mayWriteToMemory(); 6681 }; 6682 6683 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6684 /*HasNoSideEffects*/ true}; 6685 6686 for (auto *BB : L->getBlocks()) 6687 for (auto &I : *BB) { 6688 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6689 LP.HasNoAbnormalExits = false; 6690 if (HasSideEffects(&I)) 6691 LP.HasNoSideEffects = false; 6692 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6693 break; // We're already as pessimistic as we can get. 6694 } 6695 6696 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6697 assert(InsertPair.second && "We just checked!"); 6698 Itr = InsertPair.first; 6699 } 6700 6701 return Itr->second; 6702 } 6703 6704 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 6705 // A mustprogress loop without side effects must be finite. 6706 // TODO: The check used here is very conservative. It's only *specific* 6707 // side effects which are well defined in infinite loops. 6708 return isMustProgress(L) && loopHasNoSideEffects(L); 6709 } 6710 6711 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6712 if (!isSCEVable(V->getType())) 6713 return getUnknown(V); 6714 6715 if (Instruction *I = dyn_cast<Instruction>(V)) { 6716 // Don't attempt to analyze instructions in blocks that aren't 6717 // reachable. Such instructions don't matter, and they aren't required 6718 // to obey basic rules for definitions dominating uses which this 6719 // analysis depends on. 6720 if (!DT.isReachableFromEntry(I->getParent())) 6721 return getUnknown(UndefValue::get(V->getType())); 6722 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6723 return getConstant(CI); 6724 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6725 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6726 else if (!isa<ConstantExpr>(V)) 6727 return getUnknown(V); 6728 6729 Operator *U = cast<Operator>(V); 6730 if (auto BO = MatchBinaryOp(U, DT)) { 6731 switch (BO->Opcode) { 6732 case Instruction::Add: { 6733 // The simple thing to do would be to just call getSCEV on both operands 6734 // and call getAddExpr with the result. However if we're looking at a 6735 // bunch of things all added together, this can be quite inefficient, 6736 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6737 // Instead, gather up all the operands and make a single getAddExpr call. 6738 // LLVM IR canonical form means we need only traverse the left operands. 6739 SmallVector<const SCEV *, 4> AddOps; 6740 do { 6741 if (BO->Op) { 6742 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6743 AddOps.push_back(OpSCEV); 6744 break; 6745 } 6746 6747 // If a NUW or NSW flag can be applied to the SCEV for this 6748 // addition, then compute the SCEV for this addition by itself 6749 // with a separate call to getAddExpr. We need to do that 6750 // instead of pushing the operands of the addition onto AddOps, 6751 // since the flags are only known to apply to this particular 6752 // addition - they may not apply to other additions that can be 6753 // formed with operands from AddOps. 6754 const SCEV *RHS = getSCEV(BO->RHS); 6755 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6756 if (Flags != SCEV::FlagAnyWrap) { 6757 const SCEV *LHS = getSCEV(BO->LHS); 6758 if (BO->Opcode == Instruction::Sub) 6759 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6760 else 6761 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6762 break; 6763 } 6764 } 6765 6766 if (BO->Opcode == Instruction::Sub) 6767 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6768 else 6769 AddOps.push_back(getSCEV(BO->RHS)); 6770 6771 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6772 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6773 NewBO->Opcode != Instruction::Sub)) { 6774 AddOps.push_back(getSCEV(BO->LHS)); 6775 break; 6776 } 6777 BO = NewBO; 6778 } while (true); 6779 6780 return getAddExpr(AddOps); 6781 } 6782 6783 case Instruction::Mul: { 6784 SmallVector<const SCEV *, 4> MulOps; 6785 do { 6786 if (BO->Op) { 6787 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6788 MulOps.push_back(OpSCEV); 6789 break; 6790 } 6791 6792 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6793 if (Flags != SCEV::FlagAnyWrap) { 6794 MulOps.push_back( 6795 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6796 break; 6797 } 6798 } 6799 6800 MulOps.push_back(getSCEV(BO->RHS)); 6801 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6802 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6803 MulOps.push_back(getSCEV(BO->LHS)); 6804 break; 6805 } 6806 BO = NewBO; 6807 } while (true); 6808 6809 return getMulExpr(MulOps); 6810 } 6811 case Instruction::UDiv: 6812 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6813 case Instruction::URem: 6814 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6815 case Instruction::Sub: { 6816 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6817 if (BO->Op) 6818 Flags = getNoWrapFlagsFromUB(BO->Op); 6819 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6820 } 6821 case Instruction::And: 6822 // For an expression like x&255 that merely masks off the high bits, 6823 // use zext(trunc(x)) as the SCEV expression. 6824 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6825 if (CI->isZero()) 6826 return getSCEV(BO->RHS); 6827 if (CI->isMinusOne()) 6828 return getSCEV(BO->LHS); 6829 const APInt &A = CI->getValue(); 6830 6831 // Instcombine's ShrinkDemandedConstant may strip bits out of 6832 // constants, obscuring what would otherwise be a low-bits mask. 6833 // Use computeKnownBits to compute what ShrinkDemandedConstant 6834 // knew about to reconstruct a low-bits mask value. 6835 unsigned LZ = A.countLeadingZeros(); 6836 unsigned TZ = A.countTrailingZeros(); 6837 unsigned BitWidth = A.getBitWidth(); 6838 KnownBits Known(BitWidth); 6839 computeKnownBits(BO->LHS, Known, getDataLayout(), 6840 0, &AC, nullptr, &DT); 6841 6842 APInt EffectiveMask = 6843 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6844 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6845 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6846 const SCEV *LHS = getSCEV(BO->LHS); 6847 const SCEV *ShiftedLHS = nullptr; 6848 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6849 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6850 // For an expression like (x * 8) & 8, simplify the multiply. 6851 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6852 unsigned GCD = std::min(MulZeros, TZ); 6853 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6854 SmallVector<const SCEV*, 4> MulOps; 6855 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6856 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6857 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6858 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6859 } 6860 } 6861 if (!ShiftedLHS) 6862 ShiftedLHS = getUDivExpr(LHS, MulCount); 6863 return getMulExpr( 6864 getZeroExtendExpr( 6865 getTruncateExpr(ShiftedLHS, 6866 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6867 BO->LHS->getType()), 6868 MulCount); 6869 } 6870 } 6871 break; 6872 6873 case Instruction::Or: 6874 // If the RHS of the Or is a constant, we may have something like: 6875 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6876 // optimizations will transparently handle this case. 6877 // 6878 // In order for this transformation to be safe, the LHS must be of the 6879 // form X*(2^n) and the Or constant must be less than 2^n. 6880 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6881 const SCEV *LHS = getSCEV(BO->LHS); 6882 const APInt &CIVal = CI->getValue(); 6883 if (GetMinTrailingZeros(LHS) >= 6884 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6885 // Build a plain add SCEV. 6886 return getAddExpr(LHS, getSCEV(CI), 6887 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6888 } 6889 } 6890 break; 6891 6892 case Instruction::Xor: 6893 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6894 // If the RHS of xor is -1, then this is a not operation. 6895 if (CI->isMinusOne()) 6896 return getNotSCEV(getSCEV(BO->LHS)); 6897 6898 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6899 // This is a variant of the check for xor with -1, and it handles 6900 // the case where instcombine has trimmed non-demanded bits out 6901 // of an xor with -1. 6902 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6903 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6904 if (LBO->getOpcode() == Instruction::And && 6905 LCI->getValue() == CI->getValue()) 6906 if (const SCEVZeroExtendExpr *Z = 6907 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6908 Type *UTy = BO->LHS->getType(); 6909 const SCEV *Z0 = Z->getOperand(); 6910 Type *Z0Ty = Z0->getType(); 6911 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6912 6913 // If C is a low-bits mask, the zero extend is serving to 6914 // mask off the high bits. Complement the operand and 6915 // re-apply the zext. 6916 if (CI->getValue().isMask(Z0TySize)) 6917 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6918 6919 // If C is a single bit, it may be in the sign-bit position 6920 // before the zero-extend. In this case, represent the xor 6921 // using an add, which is equivalent, and re-apply the zext. 6922 APInt Trunc = CI->getValue().trunc(Z0TySize); 6923 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6924 Trunc.isSignMask()) 6925 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6926 UTy); 6927 } 6928 } 6929 break; 6930 6931 case Instruction::Shl: 6932 // Turn shift left of a constant amount into a multiply. 6933 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6934 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6935 6936 // If the shift count is not less than the bitwidth, the result of 6937 // the shift is undefined. Don't try to analyze it, because the 6938 // resolution chosen here may differ from the resolution chosen in 6939 // other parts of the compiler. 6940 if (SA->getValue().uge(BitWidth)) 6941 break; 6942 6943 // We can safely preserve the nuw flag in all cases. It's also safe to 6944 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6945 // requires special handling. It can be preserved as long as we're not 6946 // left shifting by bitwidth - 1. 6947 auto Flags = SCEV::FlagAnyWrap; 6948 if (BO->Op) { 6949 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6950 if ((MulFlags & SCEV::FlagNSW) && 6951 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6952 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6953 if (MulFlags & SCEV::FlagNUW) 6954 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6955 } 6956 6957 Constant *X = ConstantInt::get( 6958 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6959 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6960 } 6961 break; 6962 6963 case Instruction::AShr: { 6964 // AShr X, C, where C is a constant. 6965 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6966 if (!CI) 6967 break; 6968 6969 Type *OuterTy = BO->LHS->getType(); 6970 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6971 // If the shift count is not less than the bitwidth, the result of 6972 // the shift is undefined. Don't try to analyze it, because the 6973 // resolution chosen here may differ from the resolution chosen in 6974 // other parts of the compiler. 6975 if (CI->getValue().uge(BitWidth)) 6976 break; 6977 6978 if (CI->isZero()) 6979 return getSCEV(BO->LHS); // shift by zero --> noop 6980 6981 uint64_t AShrAmt = CI->getZExtValue(); 6982 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6983 6984 Operator *L = dyn_cast<Operator>(BO->LHS); 6985 if (L && L->getOpcode() == Instruction::Shl) { 6986 // X = Shl A, n 6987 // Y = AShr X, m 6988 // Both n and m are constant. 6989 6990 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6991 if (L->getOperand(1) == BO->RHS) 6992 // For a two-shift sext-inreg, i.e. n = m, 6993 // use sext(trunc(x)) as the SCEV expression. 6994 return getSignExtendExpr( 6995 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6996 6997 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6998 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6999 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7000 if (ShlAmt > AShrAmt) { 7001 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7002 // expression. We already checked that ShlAmt < BitWidth, so 7003 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7004 // ShlAmt - AShrAmt < Amt. 7005 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7006 ShlAmt - AShrAmt); 7007 return getSignExtendExpr( 7008 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7009 getConstant(Mul)), OuterTy); 7010 } 7011 } 7012 } 7013 break; 7014 } 7015 } 7016 } 7017 7018 switch (U->getOpcode()) { 7019 case Instruction::Trunc: 7020 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7021 7022 case Instruction::ZExt: 7023 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7024 7025 case Instruction::SExt: 7026 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7027 // The NSW flag of a subtract does not always survive the conversion to 7028 // A + (-1)*B. By pushing sign extension onto its operands we are much 7029 // more likely to preserve NSW and allow later AddRec optimisations. 7030 // 7031 // NOTE: This is effectively duplicating this logic from getSignExtend: 7032 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7033 // but by that point the NSW information has potentially been lost. 7034 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7035 Type *Ty = U->getType(); 7036 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7037 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7038 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7039 } 7040 } 7041 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7042 7043 case Instruction::BitCast: 7044 // BitCasts are no-op casts so we just eliminate the cast. 7045 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7046 return getSCEV(U->getOperand(0)); 7047 break; 7048 7049 case Instruction::PtrToInt: { 7050 // Pointer to integer cast is straight-forward, so do model it. 7051 const SCEV *Op = getSCEV(U->getOperand(0)); 7052 Type *DstIntTy = U->getType(); 7053 // But only if effective SCEV (integer) type is wide enough to represent 7054 // all possible pointer values. 7055 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7056 if (isa<SCEVCouldNotCompute>(IntOp)) 7057 return getUnknown(V); 7058 return IntOp; 7059 } 7060 case Instruction::IntToPtr: 7061 // Just don't deal with inttoptr casts. 7062 return getUnknown(V); 7063 7064 case Instruction::SDiv: 7065 // If both operands are non-negative, this is just an udiv. 7066 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7067 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7068 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7069 break; 7070 7071 case Instruction::SRem: 7072 // If both operands are non-negative, this is just an urem. 7073 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7074 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7075 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7076 break; 7077 7078 case Instruction::GetElementPtr: 7079 return createNodeForGEP(cast<GEPOperator>(U)); 7080 7081 case Instruction::PHI: 7082 return createNodeForPHI(cast<PHINode>(U)); 7083 7084 case Instruction::Select: 7085 // U can also be a select constant expr, which let fall through. Since 7086 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 7087 // constant expressions cannot have instructions as operands, we'd have 7088 // returned getUnknown for a select constant expressions anyway. 7089 if (isa<Instruction>(U)) 7090 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 7091 U->getOperand(1), U->getOperand(2)); 7092 break; 7093 7094 case Instruction::Call: 7095 case Instruction::Invoke: 7096 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7097 return getSCEV(RV); 7098 7099 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7100 switch (II->getIntrinsicID()) { 7101 case Intrinsic::abs: 7102 return getAbsExpr( 7103 getSCEV(II->getArgOperand(0)), 7104 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7105 case Intrinsic::umax: 7106 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7107 getSCEV(II->getArgOperand(1))); 7108 case Intrinsic::umin: 7109 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7110 getSCEV(II->getArgOperand(1))); 7111 case Intrinsic::smax: 7112 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7113 getSCEV(II->getArgOperand(1))); 7114 case Intrinsic::smin: 7115 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7116 getSCEV(II->getArgOperand(1))); 7117 case Intrinsic::usub_sat: { 7118 const SCEV *X = getSCEV(II->getArgOperand(0)); 7119 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7120 const SCEV *ClampedY = getUMinExpr(X, Y); 7121 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7122 } 7123 case Intrinsic::uadd_sat: { 7124 const SCEV *X = getSCEV(II->getArgOperand(0)); 7125 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7126 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7127 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7128 } 7129 case Intrinsic::start_loop_iterations: 7130 // A start_loop_iterations is just equivalent to the first operand for 7131 // SCEV purposes. 7132 return getSCEV(II->getArgOperand(0)); 7133 default: 7134 break; 7135 } 7136 } 7137 break; 7138 } 7139 7140 return getUnknown(V); 7141 } 7142 7143 //===----------------------------------------------------------------------===// 7144 // Iteration Count Computation Code 7145 // 7146 7147 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { 7148 // Get the trip count from the BE count by adding 1. Overflow, results 7149 // in zero which means "unknown". 7150 return getAddExpr(ExitCount, getOne(ExitCount->getType())); 7151 } 7152 7153 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7154 if (!ExitCount) 7155 return 0; 7156 7157 ConstantInt *ExitConst = ExitCount->getValue(); 7158 7159 // Guard against huge trip counts. 7160 if (ExitConst->getValue().getActiveBits() > 32) 7161 return 0; 7162 7163 // In case of integer overflow, this returns 0, which is correct. 7164 return ((unsigned)ExitConst->getZExtValue()) + 1; 7165 } 7166 7167 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7168 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7169 return getConstantTripCount(ExitCount); 7170 } 7171 7172 unsigned 7173 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7174 const BasicBlock *ExitingBlock) { 7175 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7176 assert(L->isLoopExiting(ExitingBlock) && 7177 "Exiting block must actually branch out of the loop!"); 7178 const SCEVConstant *ExitCount = 7179 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7180 return getConstantTripCount(ExitCount); 7181 } 7182 7183 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7184 const auto *MaxExitCount = 7185 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7186 return getConstantTripCount(MaxExitCount); 7187 } 7188 7189 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7190 SmallVector<BasicBlock *, 8> ExitingBlocks; 7191 L->getExitingBlocks(ExitingBlocks); 7192 7193 Optional<unsigned> Res = None; 7194 for (auto *ExitingBB : ExitingBlocks) { 7195 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7196 if (!Res) 7197 Res = Multiple; 7198 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7199 } 7200 return Res.getValueOr(1); 7201 } 7202 7203 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7204 const SCEV *ExitCount) { 7205 if (ExitCount == getCouldNotCompute()) 7206 return 1; 7207 7208 // Get the trip count 7209 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7210 7211 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7212 if (!TC) 7213 // Attempt to factor more general cases. Returns the greatest power of 7214 // two divisor. If overflow happens, the trip count expression is still 7215 // divisible by the greatest power of 2 divisor returned. 7216 return 1U << std::min((uint32_t)31, 7217 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7218 7219 ConstantInt *Result = TC->getValue(); 7220 7221 // Guard against huge trip counts (this requires checking 7222 // for zero to handle the case where the trip count == -1 and the 7223 // addition wraps). 7224 if (!Result || Result->getValue().getActiveBits() > 32 || 7225 Result->getValue().getActiveBits() == 0) 7226 return 1; 7227 7228 return (unsigned)Result->getZExtValue(); 7229 } 7230 7231 /// Returns the largest constant divisor of the trip count of this loop as a 7232 /// normal unsigned value, if possible. This means that the actual trip count is 7233 /// always a multiple of the returned value (don't forget the trip count could 7234 /// very well be zero as well!). 7235 /// 7236 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7237 /// multiple of a constant (which is also the case if the trip count is simply 7238 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7239 /// if the trip count is very large (>= 2^32). 7240 /// 7241 /// As explained in the comments for getSmallConstantTripCount, this assumes 7242 /// that control exits the loop via ExitingBlock. 7243 unsigned 7244 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7245 const BasicBlock *ExitingBlock) { 7246 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7247 assert(L->isLoopExiting(ExitingBlock) && 7248 "Exiting block must actually branch out of the loop!"); 7249 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7250 return getSmallConstantTripMultiple(L, ExitCount); 7251 } 7252 7253 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7254 const BasicBlock *ExitingBlock, 7255 ExitCountKind Kind) { 7256 switch (Kind) { 7257 case Exact: 7258 case SymbolicMaximum: 7259 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7260 case ConstantMaximum: 7261 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7262 }; 7263 llvm_unreachable("Invalid ExitCountKind!"); 7264 } 7265 7266 const SCEV * 7267 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7268 SCEVUnionPredicate &Preds) { 7269 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7270 } 7271 7272 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7273 ExitCountKind Kind) { 7274 switch (Kind) { 7275 case Exact: 7276 return getBackedgeTakenInfo(L).getExact(L, this); 7277 case ConstantMaximum: 7278 return getBackedgeTakenInfo(L).getConstantMax(this); 7279 case SymbolicMaximum: 7280 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7281 }; 7282 llvm_unreachable("Invalid ExitCountKind!"); 7283 } 7284 7285 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7286 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7287 } 7288 7289 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7290 static void 7291 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 7292 BasicBlock *Header = L->getHeader(); 7293 7294 // Push all Loop-header PHIs onto the Worklist stack. 7295 for (PHINode &PN : Header->phis()) 7296 Worklist.push_back(&PN); 7297 } 7298 7299 const ScalarEvolution::BackedgeTakenInfo & 7300 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7301 auto &BTI = getBackedgeTakenInfo(L); 7302 if (BTI.hasFullInfo()) 7303 return BTI; 7304 7305 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7306 7307 if (!Pair.second) 7308 return Pair.first->second; 7309 7310 BackedgeTakenInfo Result = 7311 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7312 7313 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7314 } 7315 7316 ScalarEvolution::BackedgeTakenInfo & 7317 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7318 // Initially insert an invalid entry for this loop. If the insertion 7319 // succeeds, proceed to actually compute a backedge-taken count and 7320 // update the value. The temporary CouldNotCompute value tells SCEV 7321 // code elsewhere that it shouldn't attempt to request a new 7322 // backedge-taken count, which could result in infinite recursion. 7323 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7324 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7325 if (!Pair.second) 7326 return Pair.first->second; 7327 7328 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7329 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7330 // must be cleared in this scope. 7331 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7332 7333 // In product build, there are no usage of statistic. 7334 (void)NumTripCountsComputed; 7335 (void)NumTripCountsNotComputed; 7336 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7337 const SCEV *BEExact = Result.getExact(L, this); 7338 if (BEExact != getCouldNotCompute()) { 7339 assert(isLoopInvariant(BEExact, L) && 7340 isLoopInvariant(Result.getConstantMax(this), L) && 7341 "Computed backedge-taken count isn't loop invariant for loop!"); 7342 ++NumTripCountsComputed; 7343 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7344 isa<PHINode>(L->getHeader()->begin())) { 7345 // Only count loops that have phi nodes as not being computable. 7346 ++NumTripCountsNotComputed; 7347 } 7348 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7349 7350 // Now that we know more about the trip count for this loop, forget any 7351 // existing SCEV values for PHI nodes in this loop since they are only 7352 // conservative estimates made without the benefit of trip count 7353 // information. This is similar to the code in forgetLoop, except that 7354 // it handles SCEVUnknown PHI nodes specially. 7355 if (Result.hasAnyInfo()) { 7356 SmallVector<Instruction *, 16> Worklist; 7357 PushLoopPHIs(L, Worklist); 7358 7359 SmallPtrSet<Instruction *, 8> Discovered; 7360 while (!Worklist.empty()) { 7361 Instruction *I = Worklist.pop_back_val(); 7362 7363 ValueExprMapType::iterator It = 7364 ValueExprMap.find_as(static_cast<Value *>(I)); 7365 if (It != ValueExprMap.end()) { 7366 const SCEV *Old = It->second; 7367 7368 // SCEVUnknown for a PHI either means that it has an unrecognized 7369 // structure, or it's a PHI that's in the progress of being computed 7370 // by createNodeForPHI. In the former case, additional loop trip 7371 // count information isn't going to change anything. In the later 7372 // case, createNodeForPHI will perform the necessary updates on its 7373 // own when it gets to that point. 7374 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7375 eraseValueFromMap(It->first); 7376 forgetMemoizedResults(Old); 7377 } 7378 if (PHINode *PN = dyn_cast<PHINode>(I)) 7379 ConstantEvolutionLoopExitValue.erase(PN); 7380 } 7381 7382 // Since we don't need to invalidate anything for correctness and we're 7383 // only invalidating to make SCEV's results more precise, we get to stop 7384 // early to avoid invalidating too much. This is especially important in 7385 // cases like: 7386 // 7387 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7388 // loop0: 7389 // %pn0 = phi 7390 // ... 7391 // loop1: 7392 // %pn1 = phi 7393 // ... 7394 // 7395 // where both loop0 and loop1's backedge taken count uses the SCEV 7396 // expression for %v. If we don't have the early stop below then in cases 7397 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7398 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7399 // count for loop1, effectively nullifying SCEV's trip count cache. 7400 for (auto *U : I->users()) 7401 if (auto *I = dyn_cast<Instruction>(U)) { 7402 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7403 if (LoopForUser && L->contains(LoopForUser) && 7404 Discovered.insert(I).second) 7405 Worklist.push_back(I); 7406 } 7407 } 7408 } 7409 7410 // Re-lookup the insert position, since the call to 7411 // computeBackedgeTakenCount above could result in a 7412 // recusive call to getBackedgeTakenInfo (on a different 7413 // loop), which would invalidate the iterator computed 7414 // earlier. 7415 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7416 } 7417 7418 void ScalarEvolution::forgetAllLoops() { 7419 // This method is intended to forget all info about loops. It should 7420 // invalidate caches as if the following happened: 7421 // - The trip counts of all loops have changed arbitrarily 7422 // - Every llvm::Value has been updated in place to produce a different 7423 // result. 7424 BackedgeTakenCounts.clear(); 7425 PredicatedBackedgeTakenCounts.clear(); 7426 LoopPropertiesCache.clear(); 7427 ConstantEvolutionLoopExitValue.clear(); 7428 ValueExprMap.clear(); 7429 ValuesAtScopes.clear(); 7430 LoopDispositions.clear(); 7431 BlockDispositions.clear(); 7432 UnsignedRanges.clear(); 7433 SignedRanges.clear(); 7434 ExprValueMap.clear(); 7435 HasRecMap.clear(); 7436 MinTrailingZerosCache.clear(); 7437 PredicatedSCEVRewrites.clear(); 7438 } 7439 7440 void ScalarEvolution::forgetLoop(const Loop *L) { 7441 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7442 SmallVector<Instruction *, 32> Worklist; 7443 SmallPtrSet<Instruction *, 16> Visited; 7444 7445 // Iterate over all the loops and sub-loops to drop SCEV information. 7446 while (!LoopWorklist.empty()) { 7447 auto *CurrL = LoopWorklist.pop_back_val(); 7448 7449 // Drop any stored trip count value. 7450 BackedgeTakenCounts.erase(CurrL); 7451 PredicatedBackedgeTakenCounts.erase(CurrL); 7452 7453 // Drop information about predicated SCEV rewrites for this loop. 7454 for (auto I = PredicatedSCEVRewrites.begin(); 7455 I != PredicatedSCEVRewrites.end();) { 7456 std::pair<const SCEV *, const Loop *> Entry = I->first; 7457 if (Entry.second == CurrL) 7458 PredicatedSCEVRewrites.erase(I++); 7459 else 7460 ++I; 7461 } 7462 7463 auto LoopUsersItr = LoopUsers.find(CurrL); 7464 if (LoopUsersItr != LoopUsers.end()) { 7465 for (auto *S : LoopUsersItr->second) 7466 forgetMemoizedResults(S); 7467 LoopUsers.erase(LoopUsersItr); 7468 } 7469 7470 // Drop information about expressions based on loop-header PHIs. 7471 PushLoopPHIs(CurrL, Worklist); 7472 7473 while (!Worklist.empty()) { 7474 Instruction *I = Worklist.pop_back_val(); 7475 if (!Visited.insert(I).second) 7476 continue; 7477 7478 ValueExprMapType::iterator It = 7479 ValueExprMap.find_as(static_cast<Value *>(I)); 7480 if (It != ValueExprMap.end()) { 7481 eraseValueFromMap(It->first); 7482 forgetMemoizedResults(It->second); 7483 if (PHINode *PN = dyn_cast<PHINode>(I)) 7484 ConstantEvolutionLoopExitValue.erase(PN); 7485 } 7486 7487 PushDefUseChildren(I, Worklist); 7488 } 7489 7490 LoopPropertiesCache.erase(CurrL); 7491 // Forget all contained loops too, to avoid dangling entries in the 7492 // ValuesAtScopes map. 7493 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7494 } 7495 } 7496 7497 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7498 while (Loop *Parent = L->getParentLoop()) 7499 L = Parent; 7500 forgetLoop(L); 7501 } 7502 7503 void ScalarEvolution::forgetValue(Value *V) { 7504 Instruction *I = dyn_cast<Instruction>(V); 7505 if (!I) return; 7506 7507 // Drop information about expressions based on loop-header PHIs. 7508 SmallVector<Instruction *, 16> Worklist; 7509 Worklist.push_back(I); 7510 7511 SmallPtrSet<Instruction *, 8> Visited; 7512 while (!Worklist.empty()) { 7513 I = Worklist.pop_back_val(); 7514 if (!Visited.insert(I).second) 7515 continue; 7516 7517 ValueExprMapType::iterator It = 7518 ValueExprMap.find_as(static_cast<Value *>(I)); 7519 if (It != ValueExprMap.end()) { 7520 eraseValueFromMap(It->first); 7521 forgetMemoizedResults(It->second); 7522 if (PHINode *PN = dyn_cast<PHINode>(I)) 7523 ConstantEvolutionLoopExitValue.erase(PN); 7524 } 7525 7526 PushDefUseChildren(I, Worklist); 7527 } 7528 } 7529 7530 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7531 LoopDispositions.clear(); 7532 } 7533 7534 /// Get the exact loop backedge taken count considering all loop exits. A 7535 /// computable result can only be returned for loops with all exiting blocks 7536 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7537 /// is never skipped. This is a valid assumption as long as the loop exits via 7538 /// that test. For precise results, it is the caller's responsibility to specify 7539 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7540 const SCEV * 7541 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7542 SCEVUnionPredicate *Preds) const { 7543 // If any exits were not computable, the loop is not computable. 7544 if (!isComplete() || ExitNotTaken.empty()) 7545 return SE->getCouldNotCompute(); 7546 7547 const BasicBlock *Latch = L->getLoopLatch(); 7548 // All exiting blocks we have collected must dominate the only backedge. 7549 if (!Latch) 7550 return SE->getCouldNotCompute(); 7551 7552 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7553 // count is simply a minimum out of all these calculated exit counts. 7554 SmallVector<const SCEV *, 2> Ops; 7555 for (auto &ENT : ExitNotTaken) { 7556 const SCEV *BECount = ENT.ExactNotTaken; 7557 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7558 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7559 "We should only have known counts for exiting blocks that dominate " 7560 "latch!"); 7561 7562 Ops.push_back(BECount); 7563 7564 if (Preds && !ENT.hasAlwaysTruePredicate()) 7565 Preds->add(ENT.Predicate.get()); 7566 7567 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7568 "Predicate should be always true!"); 7569 } 7570 7571 return SE->getUMinFromMismatchedTypes(Ops); 7572 } 7573 7574 /// Get the exact not taken count for this loop exit. 7575 const SCEV * 7576 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7577 ScalarEvolution *SE) const { 7578 for (auto &ENT : ExitNotTaken) 7579 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7580 return ENT.ExactNotTaken; 7581 7582 return SE->getCouldNotCompute(); 7583 } 7584 7585 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7586 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7587 for (auto &ENT : ExitNotTaken) 7588 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7589 return ENT.MaxNotTaken; 7590 7591 return SE->getCouldNotCompute(); 7592 } 7593 7594 /// getConstantMax - Get the constant max backedge taken count for the loop. 7595 const SCEV * 7596 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7597 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7598 return !ENT.hasAlwaysTruePredicate(); 7599 }; 7600 7601 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7602 return SE->getCouldNotCompute(); 7603 7604 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7605 isa<SCEVConstant>(getConstantMax())) && 7606 "No point in having a non-constant max backedge taken count!"); 7607 return getConstantMax(); 7608 } 7609 7610 const SCEV * 7611 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7612 ScalarEvolution *SE) { 7613 if (!SymbolicMax) 7614 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7615 return SymbolicMax; 7616 } 7617 7618 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7619 ScalarEvolution *SE) const { 7620 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7621 return !ENT.hasAlwaysTruePredicate(); 7622 }; 7623 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7624 } 7625 7626 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const { 7627 return Operands.contains(S); 7628 } 7629 7630 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7631 : ExitLimit(E, E, false, None) { 7632 } 7633 7634 ScalarEvolution::ExitLimit::ExitLimit( 7635 const SCEV *E, const SCEV *M, bool MaxOrZero, 7636 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7637 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7638 // If we prove the max count is zero, so is the symbolic bound. This happens 7639 // in practice due to differences in a) how context sensitive we've chosen 7640 // to be and b) how we reason about bounds impied by UB. 7641 if (MaxNotTaken->isZero()) 7642 ExactNotTaken = MaxNotTaken; 7643 7644 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7645 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7646 "Exact is not allowed to be less precise than Max"); 7647 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7648 isa<SCEVConstant>(MaxNotTaken)) && 7649 "No point in having a non-constant max backedge taken count!"); 7650 for (auto *PredSet : PredSetList) 7651 for (auto *P : *PredSet) 7652 addPredicate(P); 7653 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 7654 "Backedge count should be int"); 7655 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 7656 "Max backedge count should be int"); 7657 } 7658 7659 ScalarEvolution::ExitLimit::ExitLimit( 7660 const SCEV *E, const SCEV *M, bool MaxOrZero, 7661 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7662 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7663 } 7664 7665 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7666 bool MaxOrZero) 7667 : ExitLimit(E, M, MaxOrZero, None) { 7668 } 7669 7670 class SCEVRecordOperands { 7671 SmallPtrSetImpl<const SCEV *> &Operands; 7672 7673 public: 7674 SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands) 7675 : Operands(Operands) {} 7676 bool follow(const SCEV *S) { 7677 Operands.insert(S); 7678 return true; 7679 } 7680 bool isDone() { return false; } 7681 }; 7682 7683 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7684 /// computable exit into a persistent ExitNotTakenInfo array. 7685 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7686 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7687 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7688 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7689 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7690 7691 ExitNotTaken.reserve(ExitCounts.size()); 7692 std::transform( 7693 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7694 [&](const EdgeExitInfo &EEI) { 7695 BasicBlock *ExitBB = EEI.first; 7696 const ExitLimit &EL = EEI.second; 7697 if (EL.Predicates.empty()) 7698 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7699 nullptr); 7700 7701 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7702 for (auto *Pred : EL.Predicates) 7703 Predicate->add(Pred); 7704 7705 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7706 std::move(Predicate)); 7707 }); 7708 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7709 isa<SCEVConstant>(ConstantMax)) && 7710 "No point in having a non-constant max backedge taken count!"); 7711 7712 SCEVRecordOperands RecordOperands(Operands); 7713 SCEVTraversal<SCEVRecordOperands> ST(RecordOperands); 7714 if (!isa<SCEVCouldNotCompute>(ConstantMax)) 7715 ST.visitAll(ConstantMax); 7716 for (auto &ENT : ExitNotTaken) 7717 if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken)) 7718 ST.visitAll(ENT.ExactNotTaken); 7719 } 7720 7721 /// Compute the number of times the backedge of the specified loop will execute. 7722 ScalarEvolution::BackedgeTakenInfo 7723 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7724 bool AllowPredicates) { 7725 SmallVector<BasicBlock *, 8> ExitingBlocks; 7726 L->getExitingBlocks(ExitingBlocks); 7727 7728 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7729 7730 SmallVector<EdgeExitInfo, 4> ExitCounts; 7731 bool CouldComputeBECount = true; 7732 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7733 const SCEV *MustExitMaxBECount = nullptr; 7734 const SCEV *MayExitMaxBECount = nullptr; 7735 bool MustExitMaxOrZero = false; 7736 7737 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7738 // and compute maxBECount. 7739 // Do a union of all the predicates here. 7740 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7741 BasicBlock *ExitBB = ExitingBlocks[i]; 7742 7743 // We canonicalize untaken exits to br (constant), ignore them so that 7744 // proving an exit untaken doesn't negatively impact our ability to reason 7745 // about the loop as whole. 7746 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7747 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7748 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7749 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7750 continue; 7751 } 7752 7753 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7754 7755 assert((AllowPredicates || EL.Predicates.empty()) && 7756 "Predicated exit limit when predicates are not allowed!"); 7757 7758 // 1. For each exit that can be computed, add an entry to ExitCounts. 7759 // CouldComputeBECount is true only if all exits can be computed. 7760 if (EL.ExactNotTaken == getCouldNotCompute()) 7761 // We couldn't compute an exact value for this exit, so 7762 // we won't be able to compute an exact value for the loop. 7763 CouldComputeBECount = false; 7764 else 7765 ExitCounts.emplace_back(ExitBB, EL); 7766 7767 // 2. Derive the loop's MaxBECount from each exit's max number of 7768 // non-exiting iterations. Partition the loop exits into two kinds: 7769 // LoopMustExits and LoopMayExits. 7770 // 7771 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7772 // is a LoopMayExit. If any computable LoopMustExit is found, then 7773 // MaxBECount is the minimum EL.MaxNotTaken of computable 7774 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7775 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7776 // computable EL.MaxNotTaken. 7777 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7778 DT.dominates(ExitBB, Latch)) { 7779 if (!MustExitMaxBECount) { 7780 MustExitMaxBECount = EL.MaxNotTaken; 7781 MustExitMaxOrZero = EL.MaxOrZero; 7782 } else { 7783 MustExitMaxBECount = 7784 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7785 } 7786 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7787 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7788 MayExitMaxBECount = EL.MaxNotTaken; 7789 else { 7790 MayExitMaxBECount = 7791 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7792 } 7793 } 7794 } 7795 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7796 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7797 // The loop backedge will be taken the maximum or zero times if there's 7798 // a single exit that must be taken the maximum or zero times. 7799 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7800 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7801 MaxBECount, MaxOrZero); 7802 } 7803 7804 ScalarEvolution::ExitLimit 7805 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7806 bool AllowPredicates) { 7807 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7808 // If our exiting block does not dominate the latch, then its connection with 7809 // loop's exit limit may be far from trivial. 7810 const BasicBlock *Latch = L->getLoopLatch(); 7811 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7812 return getCouldNotCompute(); 7813 7814 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7815 Instruction *Term = ExitingBlock->getTerminator(); 7816 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7817 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7818 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7819 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7820 "It should have one successor in loop and one exit block!"); 7821 // Proceed to the next level to examine the exit condition expression. 7822 return computeExitLimitFromCond( 7823 L, BI->getCondition(), ExitIfTrue, 7824 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7825 } 7826 7827 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7828 // For switch, make sure that there is a single exit from the loop. 7829 BasicBlock *Exit = nullptr; 7830 for (auto *SBB : successors(ExitingBlock)) 7831 if (!L->contains(SBB)) { 7832 if (Exit) // Multiple exit successors. 7833 return getCouldNotCompute(); 7834 Exit = SBB; 7835 } 7836 assert(Exit && "Exiting block must have at least one exit"); 7837 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7838 /*ControlsExit=*/IsOnlyExit); 7839 } 7840 7841 return getCouldNotCompute(); 7842 } 7843 7844 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7845 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7846 bool ControlsExit, bool AllowPredicates) { 7847 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7848 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7849 ControlsExit, AllowPredicates); 7850 } 7851 7852 Optional<ScalarEvolution::ExitLimit> 7853 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7854 bool ExitIfTrue, bool ControlsExit, 7855 bool AllowPredicates) { 7856 (void)this->L; 7857 (void)this->ExitIfTrue; 7858 (void)this->AllowPredicates; 7859 7860 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7861 this->AllowPredicates == AllowPredicates && 7862 "Variance in assumed invariant key components!"); 7863 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7864 if (Itr == TripCountMap.end()) 7865 return None; 7866 return Itr->second; 7867 } 7868 7869 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7870 bool ExitIfTrue, 7871 bool ControlsExit, 7872 bool AllowPredicates, 7873 const ExitLimit &EL) { 7874 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7875 this->AllowPredicates == AllowPredicates && 7876 "Variance in assumed invariant key components!"); 7877 7878 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7879 assert(InsertResult.second && "Expected successful insertion!"); 7880 (void)InsertResult; 7881 (void)ExitIfTrue; 7882 } 7883 7884 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7885 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7886 bool ControlsExit, bool AllowPredicates) { 7887 7888 if (auto MaybeEL = 7889 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7890 return *MaybeEL; 7891 7892 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7893 ControlsExit, AllowPredicates); 7894 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7895 return EL; 7896 } 7897 7898 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7899 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7900 bool ControlsExit, bool AllowPredicates) { 7901 // Handle BinOp conditions (And, Or). 7902 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7903 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7904 return *LimitFromBinOp; 7905 7906 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7907 // Proceed to the next level to examine the icmp. 7908 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7909 ExitLimit EL = 7910 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7911 if (EL.hasFullInfo() || !AllowPredicates) 7912 return EL; 7913 7914 // Try again, but use SCEV predicates this time. 7915 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7916 /*AllowPredicates=*/true); 7917 } 7918 7919 // Check for a constant condition. These are normally stripped out by 7920 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7921 // preserve the CFG and is temporarily leaving constant conditions 7922 // in place. 7923 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7924 if (ExitIfTrue == !CI->getZExtValue()) 7925 // The backedge is always taken. 7926 return getCouldNotCompute(); 7927 else 7928 // The backedge is never taken. 7929 return getZero(CI->getType()); 7930 } 7931 7932 // If it's not an integer or pointer comparison then compute it the hard way. 7933 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7934 } 7935 7936 Optional<ScalarEvolution::ExitLimit> 7937 ScalarEvolution::computeExitLimitFromCondFromBinOp( 7938 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7939 bool ControlsExit, bool AllowPredicates) { 7940 // Check if the controlling expression for this loop is an And or Or. 7941 Value *Op0, *Op1; 7942 bool IsAnd = false; 7943 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 7944 IsAnd = true; 7945 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 7946 IsAnd = false; 7947 else 7948 return None; 7949 7950 // EitherMayExit is true in these two cases: 7951 // br (and Op0 Op1), loop, exit 7952 // br (or Op0 Op1), exit, loop 7953 bool EitherMayExit = IsAnd ^ ExitIfTrue; 7954 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 7955 ControlsExit && !EitherMayExit, 7956 AllowPredicates); 7957 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 7958 ControlsExit && !EitherMayExit, 7959 AllowPredicates); 7960 7961 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 7962 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 7963 if (isa<ConstantInt>(Op1)) 7964 return Op1 == NeutralElement ? EL0 : EL1; 7965 if (isa<ConstantInt>(Op0)) 7966 return Op0 == NeutralElement ? EL1 : EL0; 7967 7968 const SCEV *BECount = getCouldNotCompute(); 7969 const SCEV *MaxBECount = getCouldNotCompute(); 7970 if (EitherMayExit) { 7971 // Both conditions must be same for the loop to continue executing. 7972 // Choose the less conservative count. 7973 // If ExitCond is a short-circuit form (select), using 7974 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 7975 // To see the detailed examples, please see 7976 // test/Analysis/ScalarEvolution/exit-count-select.ll 7977 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 7978 if (!PoisonSafe) 7979 // Even if ExitCond is select, we can safely derive BECount using both 7980 // EL0 and EL1 in these cases: 7981 // (1) EL0.ExactNotTaken is non-zero 7982 // (2) EL1.ExactNotTaken is non-poison 7983 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 7984 // it cannot be umin(0, ..)) 7985 // The PoisonSafe assignment below is simplified and the assertion after 7986 // BECount calculation fully guarantees the condition (3). 7987 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 7988 isa<SCEVConstant>(EL1.ExactNotTaken); 7989 if (EL0.ExactNotTaken != getCouldNotCompute() && 7990 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 7991 BECount = 7992 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7993 7994 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 7995 // it should have been simplified to zero (see the condition (3) above) 7996 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 7997 BECount->isZero()); 7998 } 7999 if (EL0.MaxNotTaken == getCouldNotCompute()) 8000 MaxBECount = EL1.MaxNotTaken; 8001 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8002 MaxBECount = EL0.MaxNotTaken; 8003 else 8004 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8005 } else { 8006 // Both conditions must be same at the same time for the loop to exit. 8007 // For now, be conservative. 8008 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8009 BECount = EL0.ExactNotTaken; 8010 } 8011 8012 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8013 // to be more aggressive when computing BECount than when computing 8014 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8015 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8016 // to not. 8017 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8018 !isa<SCEVCouldNotCompute>(BECount)) 8019 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8020 8021 return ExitLimit(BECount, MaxBECount, false, 8022 { &EL0.Predicates, &EL1.Predicates }); 8023 } 8024 8025 ScalarEvolution::ExitLimit 8026 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8027 ICmpInst *ExitCond, 8028 bool ExitIfTrue, 8029 bool ControlsExit, 8030 bool AllowPredicates) { 8031 // If the condition was exit on true, convert the condition to exit on false 8032 ICmpInst::Predicate Pred; 8033 if (!ExitIfTrue) 8034 Pred = ExitCond->getPredicate(); 8035 else 8036 Pred = ExitCond->getInversePredicate(); 8037 const ICmpInst::Predicate OriginalPred = Pred; 8038 8039 // Handle common loops like: for (X = "string"; *X; ++X) 8040 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 8041 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 8042 ExitLimit ItCnt = 8043 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 8044 if (ItCnt.hasAnyInfo()) 8045 return ItCnt; 8046 } 8047 8048 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8049 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8050 8051 // Try to evaluate any dependencies out of the loop. 8052 LHS = getSCEVAtScope(LHS, L); 8053 RHS = getSCEVAtScope(RHS, L); 8054 8055 // At this point, we would like to compute how many iterations of the 8056 // loop the predicate will return true for these inputs. 8057 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8058 // If there is a loop-invariant, force it into the RHS. 8059 std::swap(LHS, RHS); 8060 Pred = ICmpInst::getSwappedPredicate(Pred); 8061 } 8062 8063 // Simplify the operands before analyzing them. 8064 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8065 8066 // If we have a comparison of a chrec against a constant, try to use value 8067 // ranges to answer this query. 8068 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8069 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8070 if (AddRec->getLoop() == L) { 8071 // Form the constant range. 8072 ConstantRange CompRange = 8073 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8074 8075 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8076 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8077 } 8078 8079 switch (Pred) { 8080 case ICmpInst::ICMP_NE: { // while (X != Y) 8081 // Convert to: while (X-Y != 0) 8082 if (LHS->getType()->isPointerTy()) { 8083 LHS = getLosslessPtrToIntExpr(LHS); 8084 if (isa<SCEVCouldNotCompute>(LHS)) 8085 return LHS; 8086 } 8087 if (RHS->getType()->isPointerTy()) { 8088 RHS = getLosslessPtrToIntExpr(RHS); 8089 if (isa<SCEVCouldNotCompute>(RHS)) 8090 return RHS; 8091 } 8092 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8093 AllowPredicates); 8094 if (EL.hasAnyInfo()) return EL; 8095 break; 8096 } 8097 case ICmpInst::ICMP_EQ: { // while (X == Y) 8098 // Convert to: while (X-Y == 0) 8099 if (LHS->getType()->isPointerTy()) { 8100 LHS = getLosslessPtrToIntExpr(LHS); 8101 if (isa<SCEVCouldNotCompute>(LHS)) 8102 return LHS; 8103 } 8104 if (RHS->getType()->isPointerTy()) { 8105 RHS = getLosslessPtrToIntExpr(RHS); 8106 if (isa<SCEVCouldNotCompute>(RHS)) 8107 return RHS; 8108 } 8109 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8110 if (EL.hasAnyInfo()) return EL; 8111 break; 8112 } 8113 case ICmpInst::ICMP_SLT: 8114 case ICmpInst::ICMP_ULT: { // while (X < Y) 8115 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8116 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8117 AllowPredicates); 8118 if (EL.hasAnyInfo()) return EL; 8119 break; 8120 } 8121 case ICmpInst::ICMP_SGT: 8122 case ICmpInst::ICMP_UGT: { // while (X > Y) 8123 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8124 ExitLimit EL = 8125 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8126 AllowPredicates); 8127 if (EL.hasAnyInfo()) return EL; 8128 break; 8129 } 8130 default: 8131 break; 8132 } 8133 8134 auto *ExhaustiveCount = 8135 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8136 8137 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8138 return ExhaustiveCount; 8139 8140 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8141 ExitCond->getOperand(1), L, OriginalPred); 8142 } 8143 8144 ScalarEvolution::ExitLimit 8145 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8146 SwitchInst *Switch, 8147 BasicBlock *ExitingBlock, 8148 bool ControlsExit) { 8149 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8150 8151 // Give up if the exit is the default dest of a switch. 8152 if (Switch->getDefaultDest() == ExitingBlock) 8153 return getCouldNotCompute(); 8154 8155 assert(L->contains(Switch->getDefaultDest()) && 8156 "Default case must not exit the loop!"); 8157 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8158 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8159 8160 // while (X != Y) --> while (X-Y != 0) 8161 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8162 if (EL.hasAnyInfo()) 8163 return EL; 8164 8165 return getCouldNotCompute(); 8166 } 8167 8168 static ConstantInt * 8169 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8170 ScalarEvolution &SE) { 8171 const SCEV *InVal = SE.getConstant(C); 8172 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8173 assert(isa<SCEVConstant>(Val) && 8174 "Evaluation of SCEV at constant didn't fold correctly?"); 8175 return cast<SCEVConstant>(Val)->getValue(); 8176 } 8177 8178 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 8179 /// compute the backedge execution count. 8180 ScalarEvolution::ExitLimit 8181 ScalarEvolution::computeLoadConstantCompareExitLimit( 8182 LoadInst *LI, 8183 Constant *RHS, 8184 const Loop *L, 8185 ICmpInst::Predicate predicate) { 8186 if (LI->isVolatile()) return getCouldNotCompute(); 8187 8188 // Check to see if the loaded pointer is a getelementptr of a global. 8189 // TODO: Use SCEV instead of manually grubbing with GEPs. 8190 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 8191 if (!GEP) return getCouldNotCompute(); 8192 8193 // Make sure that it is really a constant global we are gepping, with an 8194 // initializer, and make sure the first IDX is really 0. 8195 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 8196 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 8197 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 8198 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 8199 return getCouldNotCompute(); 8200 8201 // Okay, we allow one non-constant index into the GEP instruction. 8202 Value *VarIdx = nullptr; 8203 std::vector<Constant*> Indexes; 8204 unsigned VarIdxNum = 0; 8205 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 8206 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 8207 Indexes.push_back(CI); 8208 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 8209 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 8210 VarIdx = GEP->getOperand(i); 8211 VarIdxNum = i-2; 8212 Indexes.push_back(nullptr); 8213 } 8214 8215 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 8216 if (!VarIdx) 8217 return getCouldNotCompute(); 8218 8219 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 8220 // Check to see if X is a loop variant variable value now. 8221 const SCEV *Idx = getSCEV(VarIdx); 8222 Idx = getSCEVAtScope(Idx, L); 8223 8224 // We can only recognize very limited forms of loop index expressions, in 8225 // particular, only affine AddRec's like {C1,+,C2}<L>. 8226 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 8227 if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() || 8228 isLoopInvariant(IdxExpr, L) || 8229 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 8230 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 8231 return getCouldNotCompute(); 8232 8233 unsigned MaxSteps = MaxBruteForceIterations; 8234 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 8235 ConstantInt *ItCst = ConstantInt::get( 8236 cast<IntegerType>(IdxExpr->getType()), IterationNum); 8237 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 8238 8239 // Form the GEP offset. 8240 Indexes[VarIdxNum] = Val; 8241 8242 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 8243 Indexes); 8244 if (!Result) break; // Cannot compute! 8245 8246 // Evaluate the condition for this iteration. 8247 Result = ConstantExpr::getICmp(predicate, Result, RHS); 8248 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 8249 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 8250 ++NumArrayLenItCounts; 8251 return getConstant(ItCst); // Found terminating iteration! 8252 } 8253 } 8254 return getCouldNotCompute(); 8255 } 8256 8257 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8258 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8259 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8260 if (!RHS) 8261 return getCouldNotCompute(); 8262 8263 const BasicBlock *Latch = L->getLoopLatch(); 8264 if (!Latch) 8265 return getCouldNotCompute(); 8266 8267 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8268 if (!Predecessor) 8269 return getCouldNotCompute(); 8270 8271 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8272 // Return LHS in OutLHS and shift_opt in OutOpCode. 8273 auto MatchPositiveShift = 8274 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8275 8276 using namespace PatternMatch; 8277 8278 ConstantInt *ShiftAmt; 8279 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8280 OutOpCode = Instruction::LShr; 8281 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8282 OutOpCode = Instruction::AShr; 8283 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8284 OutOpCode = Instruction::Shl; 8285 else 8286 return false; 8287 8288 return ShiftAmt->getValue().isStrictlyPositive(); 8289 }; 8290 8291 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8292 // 8293 // loop: 8294 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8295 // %iv.shifted = lshr i32 %iv, <positive constant> 8296 // 8297 // Return true on a successful match. Return the corresponding PHI node (%iv 8298 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8299 auto MatchShiftRecurrence = 8300 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8301 Optional<Instruction::BinaryOps> PostShiftOpCode; 8302 8303 { 8304 Instruction::BinaryOps OpC; 8305 Value *V; 8306 8307 // If we encounter a shift instruction, "peel off" the shift operation, 8308 // and remember that we did so. Later when we inspect %iv's backedge 8309 // value, we will make sure that the backedge value uses the same 8310 // operation. 8311 // 8312 // Note: the peeled shift operation does not have to be the same 8313 // instruction as the one feeding into the PHI's backedge value. We only 8314 // really care about it being the same *kind* of shift instruction -- 8315 // that's all that is required for our later inferences to hold. 8316 if (MatchPositiveShift(LHS, V, OpC)) { 8317 PostShiftOpCode = OpC; 8318 LHS = V; 8319 } 8320 } 8321 8322 PNOut = dyn_cast<PHINode>(LHS); 8323 if (!PNOut || PNOut->getParent() != L->getHeader()) 8324 return false; 8325 8326 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8327 Value *OpLHS; 8328 8329 return 8330 // The backedge value for the PHI node must be a shift by a positive 8331 // amount 8332 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8333 8334 // of the PHI node itself 8335 OpLHS == PNOut && 8336 8337 // and the kind of shift should be match the kind of shift we peeled 8338 // off, if any. 8339 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8340 }; 8341 8342 PHINode *PN; 8343 Instruction::BinaryOps OpCode; 8344 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8345 return getCouldNotCompute(); 8346 8347 const DataLayout &DL = getDataLayout(); 8348 8349 // The key rationale for this optimization is that for some kinds of shift 8350 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8351 // within a finite number of iterations. If the condition guarding the 8352 // backedge (in the sense that the backedge is taken if the condition is true) 8353 // is false for the value the shift recurrence stabilizes to, then we know 8354 // that the backedge is taken only a finite number of times. 8355 8356 ConstantInt *StableValue = nullptr; 8357 switch (OpCode) { 8358 default: 8359 llvm_unreachable("Impossible case!"); 8360 8361 case Instruction::AShr: { 8362 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8363 // bitwidth(K) iterations. 8364 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8365 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8366 Predecessor->getTerminator(), &DT); 8367 auto *Ty = cast<IntegerType>(RHS->getType()); 8368 if (Known.isNonNegative()) 8369 StableValue = ConstantInt::get(Ty, 0); 8370 else if (Known.isNegative()) 8371 StableValue = ConstantInt::get(Ty, -1, true); 8372 else 8373 return getCouldNotCompute(); 8374 8375 break; 8376 } 8377 case Instruction::LShr: 8378 case Instruction::Shl: 8379 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8380 // stabilize to 0 in at most bitwidth(K) iterations. 8381 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8382 break; 8383 } 8384 8385 auto *Result = 8386 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8387 assert(Result->getType()->isIntegerTy(1) && 8388 "Otherwise cannot be an operand to a branch instruction"); 8389 8390 if (Result->isZeroValue()) { 8391 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8392 const SCEV *UpperBound = 8393 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8394 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8395 } 8396 8397 return getCouldNotCompute(); 8398 } 8399 8400 /// Return true if we can constant fold an instruction of the specified type, 8401 /// assuming that all operands were constants. 8402 static bool CanConstantFold(const Instruction *I) { 8403 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8404 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8405 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8406 return true; 8407 8408 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8409 if (const Function *F = CI->getCalledFunction()) 8410 return canConstantFoldCallTo(CI, F); 8411 return false; 8412 } 8413 8414 /// Determine whether this instruction can constant evolve within this loop 8415 /// assuming its operands can all constant evolve. 8416 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8417 // An instruction outside of the loop can't be derived from a loop PHI. 8418 if (!L->contains(I)) return false; 8419 8420 if (isa<PHINode>(I)) { 8421 // We don't currently keep track of the control flow needed to evaluate 8422 // PHIs, so we cannot handle PHIs inside of loops. 8423 return L->getHeader() == I->getParent(); 8424 } 8425 8426 // If we won't be able to constant fold this expression even if the operands 8427 // are constants, bail early. 8428 return CanConstantFold(I); 8429 } 8430 8431 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8432 /// recursing through each instruction operand until reaching a loop header phi. 8433 static PHINode * 8434 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8435 DenseMap<Instruction *, PHINode *> &PHIMap, 8436 unsigned Depth) { 8437 if (Depth > MaxConstantEvolvingDepth) 8438 return nullptr; 8439 8440 // Otherwise, we can evaluate this instruction if all of its operands are 8441 // constant or derived from a PHI node themselves. 8442 PHINode *PHI = nullptr; 8443 for (Value *Op : UseInst->operands()) { 8444 if (isa<Constant>(Op)) continue; 8445 8446 Instruction *OpInst = dyn_cast<Instruction>(Op); 8447 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8448 8449 PHINode *P = dyn_cast<PHINode>(OpInst); 8450 if (!P) 8451 // If this operand is already visited, reuse the prior result. 8452 // We may have P != PHI if this is the deepest point at which the 8453 // inconsistent paths meet. 8454 P = PHIMap.lookup(OpInst); 8455 if (!P) { 8456 // Recurse and memoize the results, whether a phi is found or not. 8457 // This recursive call invalidates pointers into PHIMap. 8458 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8459 PHIMap[OpInst] = P; 8460 } 8461 if (!P) 8462 return nullptr; // Not evolving from PHI 8463 if (PHI && PHI != P) 8464 return nullptr; // Evolving from multiple different PHIs. 8465 PHI = P; 8466 } 8467 // This is a expression evolving from a constant PHI! 8468 return PHI; 8469 } 8470 8471 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8472 /// in the loop that V is derived from. We allow arbitrary operations along the 8473 /// way, but the operands of an operation must either be constants or a value 8474 /// derived from a constant PHI. If this expression does not fit with these 8475 /// constraints, return null. 8476 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8477 Instruction *I = dyn_cast<Instruction>(V); 8478 if (!I || !canConstantEvolve(I, L)) return nullptr; 8479 8480 if (PHINode *PN = dyn_cast<PHINode>(I)) 8481 return PN; 8482 8483 // Record non-constant instructions contained by the loop. 8484 DenseMap<Instruction *, PHINode *> PHIMap; 8485 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8486 } 8487 8488 /// EvaluateExpression - Given an expression that passes the 8489 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8490 /// in the loop has the value PHIVal. If we can't fold this expression for some 8491 /// reason, return null. 8492 static Constant *EvaluateExpression(Value *V, const Loop *L, 8493 DenseMap<Instruction *, Constant *> &Vals, 8494 const DataLayout &DL, 8495 const TargetLibraryInfo *TLI) { 8496 // Convenient constant check, but redundant for recursive calls. 8497 if (Constant *C = dyn_cast<Constant>(V)) return C; 8498 Instruction *I = dyn_cast<Instruction>(V); 8499 if (!I) return nullptr; 8500 8501 if (Constant *C = Vals.lookup(I)) return C; 8502 8503 // An instruction inside the loop depends on a value outside the loop that we 8504 // weren't given a mapping for, or a value such as a call inside the loop. 8505 if (!canConstantEvolve(I, L)) return nullptr; 8506 8507 // An unmapped PHI can be due to a branch or another loop inside this loop, 8508 // or due to this not being the initial iteration through a loop where we 8509 // couldn't compute the evolution of this particular PHI last time. 8510 if (isa<PHINode>(I)) return nullptr; 8511 8512 std::vector<Constant*> Operands(I->getNumOperands()); 8513 8514 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8515 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8516 if (!Operand) { 8517 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8518 if (!Operands[i]) return nullptr; 8519 continue; 8520 } 8521 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8522 Vals[Operand] = C; 8523 if (!C) return nullptr; 8524 Operands[i] = C; 8525 } 8526 8527 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8528 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8529 Operands[1], DL, TLI); 8530 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8531 if (!LI->isVolatile()) 8532 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8533 } 8534 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8535 } 8536 8537 8538 // If every incoming value to PN except the one for BB is a specific Constant, 8539 // return that, else return nullptr. 8540 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8541 Constant *IncomingVal = nullptr; 8542 8543 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8544 if (PN->getIncomingBlock(i) == BB) 8545 continue; 8546 8547 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8548 if (!CurrentVal) 8549 return nullptr; 8550 8551 if (IncomingVal != CurrentVal) { 8552 if (IncomingVal) 8553 return nullptr; 8554 IncomingVal = CurrentVal; 8555 } 8556 } 8557 8558 return IncomingVal; 8559 } 8560 8561 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8562 /// in the header of its containing loop, we know the loop executes a 8563 /// constant number of times, and the PHI node is just a recurrence 8564 /// involving constants, fold it. 8565 Constant * 8566 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8567 const APInt &BEs, 8568 const Loop *L) { 8569 auto I = ConstantEvolutionLoopExitValue.find(PN); 8570 if (I != ConstantEvolutionLoopExitValue.end()) 8571 return I->second; 8572 8573 if (BEs.ugt(MaxBruteForceIterations)) 8574 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8575 8576 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8577 8578 DenseMap<Instruction *, Constant *> CurrentIterVals; 8579 BasicBlock *Header = L->getHeader(); 8580 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8581 8582 BasicBlock *Latch = L->getLoopLatch(); 8583 if (!Latch) 8584 return nullptr; 8585 8586 for (PHINode &PHI : Header->phis()) { 8587 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8588 CurrentIterVals[&PHI] = StartCST; 8589 } 8590 if (!CurrentIterVals.count(PN)) 8591 return RetVal = nullptr; 8592 8593 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8594 8595 // Execute the loop symbolically to determine the exit value. 8596 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8597 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8598 8599 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8600 unsigned IterationNum = 0; 8601 const DataLayout &DL = getDataLayout(); 8602 for (; ; ++IterationNum) { 8603 if (IterationNum == NumIterations) 8604 return RetVal = CurrentIterVals[PN]; // Got exit value! 8605 8606 // Compute the value of the PHIs for the next iteration. 8607 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8608 DenseMap<Instruction *, Constant *> NextIterVals; 8609 Constant *NextPHI = 8610 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8611 if (!NextPHI) 8612 return nullptr; // Couldn't evaluate! 8613 NextIterVals[PN] = NextPHI; 8614 8615 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8616 8617 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8618 // cease to be able to evaluate one of them or if they stop evolving, 8619 // because that doesn't necessarily prevent us from computing PN. 8620 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8621 for (const auto &I : CurrentIterVals) { 8622 PHINode *PHI = dyn_cast<PHINode>(I.first); 8623 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8624 PHIsToCompute.emplace_back(PHI, I.second); 8625 } 8626 // We use two distinct loops because EvaluateExpression may invalidate any 8627 // iterators into CurrentIterVals. 8628 for (const auto &I : PHIsToCompute) { 8629 PHINode *PHI = I.first; 8630 Constant *&NextPHI = NextIterVals[PHI]; 8631 if (!NextPHI) { // Not already computed. 8632 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8633 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8634 } 8635 if (NextPHI != I.second) 8636 StoppedEvolving = false; 8637 } 8638 8639 // If all entries in CurrentIterVals == NextIterVals then we can stop 8640 // iterating, the loop can't continue to change. 8641 if (StoppedEvolving) 8642 return RetVal = CurrentIterVals[PN]; 8643 8644 CurrentIterVals.swap(NextIterVals); 8645 } 8646 } 8647 8648 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8649 Value *Cond, 8650 bool ExitWhen) { 8651 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8652 if (!PN) return getCouldNotCompute(); 8653 8654 // If the loop is canonicalized, the PHI will have exactly two entries. 8655 // That's the only form we support here. 8656 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8657 8658 DenseMap<Instruction *, Constant *> CurrentIterVals; 8659 BasicBlock *Header = L->getHeader(); 8660 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8661 8662 BasicBlock *Latch = L->getLoopLatch(); 8663 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8664 8665 for (PHINode &PHI : Header->phis()) { 8666 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8667 CurrentIterVals[&PHI] = StartCST; 8668 } 8669 if (!CurrentIterVals.count(PN)) 8670 return getCouldNotCompute(); 8671 8672 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8673 // the loop symbolically to determine when the condition gets a value of 8674 // "ExitWhen". 8675 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8676 const DataLayout &DL = getDataLayout(); 8677 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8678 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8679 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8680 8681 // Couldn't symbolically evaluate. 8682 if (!CondVal) return getCouldNotCompute(); 8683 8684 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8685 ++NumBruteForceTripCountsComputed; 8686 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8687 } 8688 8689 // Update all the PHI nodes for the next iteration. 8690 DenseMap<Instruction *, Constant *> NextIterVals; 8691 8692 // Create a list of which PHIs we need to compute. We want to do this before 8693 // calling EvaluateExpression on them because that may invalidate iterators 8694 // into CurrentIterVals. 8695 SmallVector<PHINode *, 8> PHIsToCompute; 8696 for (const auto &I : CurrentIterVals) { 8697 PHINode *PHI = dyn_cast<PHINode>(I.first); 8698 if (!PHI || PHI->getParent() != Header) continue; 8699 PHIsToCompute.push_back(PHI); 8700 } 8701 for (PHINode *PHI : PHIsToCompute) { 8702 Constant *&NextPHI = NextIterVals[PHI]; 8703 if (NextPHI) continue; // Already computed! 8704 8705 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8706 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8707 } 8708 CurrentIterVals.swap(NextIterVals); 8709 } 8710 8711 // Too many iterations were needed to evaluate. 8712 return getCouldNotCompute(); 8713 } 8714 8715 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8716 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8717 ValuesAtScopes[V]; 8718 // Check to see if we've folded this expression at this loop before. 8719 for (auto &LS : Values) 8720 if (LS.first == L) 8721 return LS.second ? LS.second : V; 8722 8723 Values.emplace_back(L, nullptr); 8724 8725 // Otherwise compute it. 8726 const SCEV *C = computeSCEVAtScope(V, L); 8727 for (auto &LS : reverse(ValuesAtScopes[V])) 8728 if (LS.first == L) { 8729 LS.second = C; 8730 break; 8731 } 8732 return C; 8733 } 8734 8735 /// This builds up a Constant using the ConstantExpr interface. That way, we 8736 /// will return Constants for objects which aren't represented by a 8737 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8738 /// Returns NULL if the SCEV isn't representable as a Constant. 8739 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8740 switch (V->getSCEVType()) { 8741 case scCouldNotCompute: 8742 case scAddRecExpr: 8743 return nullptr; 8744 case scConstant: 8745 return cast<SCEVConstant>(V)->getValue(); 8746 case scUnknown: 8747 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8748 case scSignExtend: { 8749 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8750 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8751 return ConstantExpr::getSExt(CastOp, SS->getType()); 8752 return nullptr; 8753 } 8754 case scZeroExtend: { 8755 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8756 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8757 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8758 return nullptr; 8759 } 8760 case scPtrToInt: { 8761 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8762 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8763 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8764 8765 return nullptr; 8766 } 8767 case scTruncate: { 8768 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8769 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8770 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8771 return nullptr; 8772 } 8773 case scAddExpr: { 8774 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8775 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8776 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8777 unsigned AS = PTy->getAddressSpace(); 8778 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8779 C = ConstantExpr::getBitCast(C, DestPtrTy); 8780 } 8781 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8782 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8783 if (!C2) 8784 return nullptr; 8785 8786 // First pointer! 8787 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8788 unsigned AS = C2->getType()->getPointerAddressSpace(); 8789 std::swap(C, C2); 8790 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8791 // The offsets have been converted to bytes. We can add bytes to an 8792 // i8* by GEP with the byte count in the first index. 8793 C = ConstantExpr::getBitCast(C, DestPtrTy); 8794 } 8795 8796 // Don't bother trying to sum two pointers. We probably can't 8797 // statically compute a load that results from it anyway. 8798 if (C2->getType()->isPointerTy()) 8799 return nullptr; 8800 8801 if (C->getType()->isPointerTy()) { 8802 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 8803 C, C2); 8804 } else { 8805 C = ConstantExpr::getAdd(C, C2); 8806 } 8807 } 8808 return C; 8809 } 8810 return nullptr; 8811 } 8812 case scMulExpr: { 8813 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8814 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8815 // Don't bother with pointers at all. 8816 if (C->getType()->isPointerTy()) 8817 return nullptr; 8818 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8819 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8820 if (!C2 || C2->getType()->isPointerTy()) 8821 return nullptr; 8822 C = ConstantExpr::getMul(C, C2); 8823 } 8824 return C; 8825 } 8826 return nullptr; 8827 } 8828 case scUDivExpr: { 8829 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8830 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8831 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8832 if (LHS->getType() == RHS->getType()) 8833 return ConstantExpr::getUDiv(LHS, RHS); 8834 return nullptr; 8835 } 8836 case scSMaxExpr: 8837 case scUMaxExpr: 8838 case scSMinExpr: 8839 case scUMinExpr: 8840 return nullptr; // TODO: smax, umax, smin, umax. 8841 } 8842 llvm_unreachable("Unknown SCEV kind!"); 8843 } 8844 8845 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8846 if (isa<SCEVConstant>(V)) return V; 8847 8848 // If this instruction is evolved from a constant-evolving PHI, compute the 8849 // exit value from the loop without using SCEVs. 8850 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8851 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8852 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8853 const Loop *CurrLoop = this->LI[I->getParent()]; 8854 // Looking for loop exit value. 8855 if (CurrLoop && CurrLoop->getParentLoop() == L && 8856 PN->getParent() == CurrLoop->getHeader()) { 8857 // Okay, there is no closed form solution for the PHI node. Check 8858 // to see if the loop that contains it has a known backedge-taken 8859 // count. If so, we may be able to force computation of the exit 8860 // value. 8861 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8862 // This trivial case can show up in some degenerate cases where 8863 // the incoming IR has not yet been fully simplified. 8864 if (BackedgeTakenCount->isZero()) { 8865 Value *InitValue = nullptr; 8866 bool MultipleInitValues = false; 8867 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8868 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8869 if (!InitValue) 8870 InitValue = PN->getIncomingValue(i); 8871 else if (InitValue != PN->getIncomingValue(i)) { 8872 MultipleInitValues = true; 8873 break; 8874 } 8875 } 8876 } 8877 if (!MultipleInitValues && InitValue) 8878 return getSCEV(InitValue); 8879 } 8880 // Do we have a loop invariant value flowing around the backedge 8881 // for a loop which must execute the backedge? 8882 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8883 isKnownPositive(BackedgeTakenCount) && 8884 PN->getNumIncomingValues() == 2) { 8885 8886 unsigned InLoopPred = 8887 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8888 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8889 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8890 return getSCEV(BackedgeVal); 8891 } 8892 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8893 // Okay, we know how many times the containing loop executes. If 8894 // this is a constant evolving PHI node, get the final value at 8895 // the specified iteration number. 8896 Constant *RV = getConstantEvolutionLoopExitValue( 8897 PN, BTCC->getAPInt(), CurrLoop); 8898 if (RV) return getSCEV(RV); 8899 } 8900 } 8901 8902 // If there is a single-input Phi, evaluate it at our scope. If we can 8903 // prove that this replacement does not break LCSSA form, use new value. 8904 if (PN->getNumOperands() == 1) { 8905 const SCEV *Input = getSCEV(PN->getOperand(0)); 8906 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8907 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8908 // for the simplest case just support constants. 8909 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8910 } 8911 } 8912 8913 // Okay, this is an expression that we cannot symbolically evaluate 8914 // into a SCEV. Check to see if it's possible to symbolically evaluate 8915 // the arguments into constants, and if so, try to constant propagate the 8916 // result. This is particularly useful for computing loop exit values. 8917 if (CanConstantFold(I)) { 8918 SmallVector<Constant *, 4> Operands; 8919 bool MadeImprovement = false; 8920 for (Value *Op : I->operands()) { 8921 if (Constant *C = dyn_cast<Constant>(Op)) { 8922 Operands.push_back(C); 8923 continue; 8924 } 8925 8926 // If any of the operands is non-constant and if they are 8927 // non-integer and non-pointer, don't even try to analyze them 8928 // with scev techniques. 8929 if (!isSCEVable(Op->getType())) 8930 return V; 8931 8932 const SCEV *OrigV = getSCEV(Op); 8933 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8934 MadeImprovement |= OrigV != OpV; 8935 8936 Constant *C = BuildConstantFromSCEV(OpV); 8937 if (!C) return V; 8938 if (C->getType() != Op->getType()) 8939 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8940 Op->getType(), 8941 false), 8942 C, Op->getType()); 8943 Operands.push_back(C); 8944 } 8945 8946 // Check to see if getSCEVAtScope actually made an improvement. 8947 if (MadeImprovement) { 8948 Constant *C = nullptr; 8949 const DataLayout &DL = getDataLayout(); 8950 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8951 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8952 Operands[1], DL, &TLI); 8953 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8954 if (!Load->isVolatile()) 8955 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8956 DL); 8957 } else 8958 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8959 if (!C) return V; 8960 return getSCEV(C); 8961 } 8962 } 8963 } 8964 8965 // This is some other type of SCEVUnknown, just return it. 8966 return V; 8967 } 8968 8969 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8970 // Avoid performing the look-up in the common case where the specified 8971 // expression has no loop-variant portions. 8972 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8973 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8974 if (OpAtScope != Comm->getOperand(i)) { 8975 // Okay, at least one of these operands is loop variant but might be 8976 // foldable. Build a new instance of the folded commutative expression. 8977 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8978 Comm->op_begin()+i); 8979 NewOps.push_back(OpAtScope); 8980 8981 for (++i; i != e; ++i) { 8982 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8983 NewOps.push_back(OpAtScope); 8984 } 8985 if (isa<SCEVAddExpr>(Comm)) 8986 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8987 if (isa<SCEVMulExpr>(Comm)) 8988 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8989 if (isa<SCEVMinMaxExpr>(Comm)) 8990 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8991 llvm_unreachable("Unknown commutative SCEV type!"); 8992 } 8993 } 8994 // If we got here, all operands are loop invariant. 8995 return Comm; 8996 } 8997 8998 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8999 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9000 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9001 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9002 return Div; // must be loop invariant 9003 return getUDivExpr(LHS, RHS); 9004 } 9005 9006 // If this is a loop recurrence for a loop that does not contain L, then we 9007 // are dealing with the final value computed by the loop. 9008 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9009 // First, attempt to evaluate each operand. 9010 // Avoid performing the look-up in the common case where the specified 9011 // expression has no loop-variant portions. 9012 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9013 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9014 if (OpAtScope == AddRec->getOperand(i)) 9015 continue; 9016 9017 // Okay, at least one of these operands is loop variant but might be 9018 // foldable. Build a new instance of the folded commutative expression. 9019 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9020 AddRec->op_begin()+i); 9021 NewOps.push_back(OpAtScope); 9022 for (++i; i != e; ++i) 9023 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9024 9025 const SCEV *FoldedRec = 9026 getAddRecExpr(NewOps, AddRec->getLoop(), 9027 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9028 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9029 // The addrec may be folded to a nonrecurrence, for example, if the 9030 // induction variable is multiplied by zero after constant folding. Go 9031 // ahead and return the folded value. 9032 if (!AddRec) 9033 return FoldedRec; 9034 break; 9035 } 9036 9037 // If the scope is outside the addrec's loop, evaluate it by using the 9038 // loop exit value of the addrec. 9039 if (!AddRec->getLoop()->contains(L)) { 9040 // To evaluate this recurrence, we need to know how many times the AddRec 9041 // loop iterates. Compute this now. 9042 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9043 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9044 9045 // Then, evaluate the AddRec. 9046 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9047 } 9048 9049 return AddRec; 9050 } 9051 9052 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 9053 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9054 if (Op == Cast->getOperand()) 9055 return Cast; // must be loop invariant 9056 return getZeroExtendExpr(Op, Cast->getType()); 9057 } 9058 9059 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 9060 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9061 if (Op == Cast->getOperand()) 9062 return Cast; // must be loop invariant 9063 return getSignExtendExpr(Op, Cast->getType()); 9064 } 9065 9066 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 9067 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9068 if (Op == Cast->getOperand()) 9069 return Cast; // must be loop invariant 9070 return getTruncateExpr(Op, Cast->getType()); 9071 } 9072 9073 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 9074 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9075 if (Op == Cast->getOperand()) 9076 return Cast; // must be loop invariant 9077 return getPtrToIntExpr(Op, Cast->getType()); 9078 } 9079 9080 llvm_unreachable("Unknown SCEV type!"); 9081 } 9082 9083 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9084 return getSCEVAtScope(getSCEV(V), L); 9085 } 9086 9087 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9088 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9089 return stripInjectiveFunctions(ZExt->getOperand()); 9090 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9091 return stripInjectiveFunctions(SExt->getOperand()); 9092 return S; 9093 } 9094 9095 /// Finds the minimum unsigned root of the following equation: 9096 /// 9097 /// A * X = B (mod N) 9098 /// 9099 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9100 /// A and B isn't important. 9101 /// 9102 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9103 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9104 ScalarEvolution &SE) { 9105 uint32_t BW = A.getBitWidth(); 9106 assert(BW == SE.getTypeSizeInBits(B->getType())); 9107 assert(A != 0 && "A must be non-zero."); 9108 9109 // 1. D = gcd(A, N) 9110 // 9111 // The gcd of A and N may have only one prime factor: 2. The number of 9112 // trailing zeros in A is its multiplicity 9113 uint32_t Mult2 = A.countTrailingZeros(); 9114 // D = 2^Mult2 9115 9116 // 2. Check if B is divisible by D. 9117 // 9118 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9119 // is not less than multiplicity of this prime factor for D. 9120 if (SE.GetMinTrailingZeros(B) < Mult2) 9121 return SE.getCouldNotCompute(); 9122 9123 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9124 // modulo (N / D). 9125 // 9126 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9127 // (N / D) in general. The inverse itself always fits into BW bits, though, 9128 // so we immediately truncate it. 9129 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9130 APInt Mod(BW + 1, 0); 9131 Mod.setBit(BW - Mult2); // Mod = N / D 9132 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9133 9134 // 4. Compute the minimum unsigned root of the equation: 9135 // I * (B / D) mod (N / D) 9136 // To simplify the computation, we factor out the divide by D: 9137 // (I * B mod N) / D 9138 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9139 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9140 } 9141 9142 /// For a given quadratic addrec, generate coefficients of the corresponding 9143 /// quadratic equation, multiplied by a common value to ensure that they are 9144 /// integers. 9145 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9146 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9147 /// were multiplied by, and BitWidth is the bit width of the original addrec 9148 /// coefficients. 9149 /// This function returns None if the addrec coefficients are not compile- 9150 /// time constants. 9151 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9152 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9153 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9154 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9155 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9156 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9157 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9158 << *AddRec << '\n'); 9159 9160 // We currently can only solve this if the coefficients are constants. 9161 if (!LC || !MC || !NC) { 9162 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9163 return None; 9164 } 9165 9166 APInt L = LC->getAPInt(); 9167 APInt M = MC->getAPInt(); 9168 APInt N = NC->getAPInt(); 9169 assert(!N.isNullValue() && "This is not a quadratic addrec"); 9170 9171 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9172 unsigned NewWidth = BitWidth + 1; 9173 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9174 << BitWidth << '\n'); 9175 // The sign-extension (as opposed to a zero-extension) here matches the 9176 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9177 N = N.sext(NewWidth); 9178 M = M.sext(NewWidth); 9179 L = L.sext(NewWidth); 9180 9181 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9182 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9183 // L+M, L+2M+N, L+3M+3N, ... 9184 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9185 // 9186 // The equation Acc = 0 is then 9187 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9188 // In a quadratic form it becomes: 9189 // N n^2 + (2M-N) n + 2L = 0. 9190 9191 APInt A = N; 9192 APInt B = 2 * M - A; 9193 APInt C = 2 * L; 9194 APInt T = APInt(NewWidth, 2); 9195 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9196 << "x + " << C << ", coeff bw: " << NewWidth 9197 << ", multiplied by " << T << '\n'); 9198 return std::make_tuple(A, B, C, T, BitWidth); 9199 } 9200 9201 /// Helper function to compare optional APInts: 9202 /// (a) if X and Y both exist, return min(X, Y), 9203 /// (b) if neither X nor Y exist, return None, 9204 /// (c) if exactly one of X and Y exists, return that value. 9205 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9206 if (X.hasValue() && Y.hasValue()) { 9207 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9208 APInt XW = X->sextOrSelf(W); 9209 APInt YW = Y->sextOrSelf(W); 9210 return XW.slt(YW) ? *X : *Y; 9211 } 9212 if (!X.hasValue() && !Y.hasValue()) 9213 return None; 9214 return X.hasValue() ? *X : *Y; 9215 } 9216 9217 /// Helper function to truncate an optional APInt to a given BitWidth. 9218 /// When solving addrec-related equations, it is preferable to return a value 9219 /// that has the same bit width as the original addrec's coefficients. If the 9220 /// solution fits in the original bit width, truncate it (except for i1). 9221 /// Returning a value of a different bit width may inhibit some optimizations. 9222 /// 9223 /// In general, a solution to a quadratic equation generated from an addrec 9224 /// may require BW+1 bits, where BW is the bit width of the addrec's 9225 /// coefficients. The reason is that the coefficients of the quadratic 9226 /// equation are BW+1 bits wide (to avoid truncation when converting from 9227 /// the addrec to the equation). 9228 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9229 if (!X.hasValue()) 9230 return None; 9231 unsigned W = X->getBitWidth(); 9232 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9233 return X->trunc(BitWidth); 9234 return X; 9235 } 9236 9237 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9238 /// iterations. The values L, M, N are assumed to be signed, and they 9239 /// should all have the same bit widths. 9240 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9241 /// where BW is the bit width of the addrec's coefficients. 9242 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9243 /// returned as such, otherwise the bit width of the returned value may 9244 /// be greater than BW. 9245 /// 9246 /// This function returns None if 9247 /// (a) the addrec coefficients are not constant, or 9248 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9249 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9250 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9251 static Optional<APInt> 9252 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9253 APInt A, B, C, M; 9254 unsigned BitWidth; 9255 auto T = GetQuadraticEquation(AddRec); 9256 if (!T.hasValue()) 9257 return None; 9258 9259 std::tie(A, B, C, M, BitWidth) = *T; 9260 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9261 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9262 if (!X.hasValue()) 9263 return None; 9264 9265 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9266 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9267 if (!V->isZero()) 9268 return None; 9269 9270 return TruncIfPossible(X, BitWidth); 9271 } 9272 9273 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9274 /// iterations. The values M, N are assumed to be signed, and they 9275 /// should all have the same bit widths. 9276 /// Find the least n such that c(n) does not belong to the given range, 9277 /// while c(n-1) does. 9278 /// 9279 /// This function returns None if 9280 /// (a) the addrec coefficients are not constant, or 9281 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9282 /// bounds of the range. 9283 static Optional<APInt> 9284 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9285 const ConstantRange &Range, ScalarEvolution &SE) { 9286 assert(AddRec->getOperand(0)->isZero() && 9287 "Starting value of addrec should be 0"); 9288 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9289 << Range << ", addrec " << *AddRec << '\n'); 9290 // This case is handled in getNumIterationsInRange. Here we can assume that 9291 // we start in the range. 9292 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9293 "Addrec's initial value should be in range"); 9294 9295 APInt A, B, C, M; 9296 unsigned BitWidth; 9297 auto T = GetQuadraticEquation(AddRec); 9298 if (!T.hasValue()) 9299 return None; 9300 9301 // Be careful about the return value: there can be two reasons for not 9302 // returning an actual number. First, if no solutions to the equations 9303 // were found, and second, if the solutions don't leave the given range. 9304 // The first case means that the actual solution is "unknown", the second 9305 // means that it's known, but not valid. If the solution is unknown, we 9306 // cannot make any conclusions. 9307 // Return a pair: the optional solution and a flag indicating if the 9308 // solution was found. 9309 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9310 // Solve for signed overflow and unsigned overflow, pick the lower 9311 // solution. 9312 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9313 << Bound << " (before multiplying by " << M << ")\n"); 9314 Bound *= M; // The quadratic equation multiplier. 9315 9316 Optional<APInt> SO = None; 9317 if (BitWidth > 1) { 9318 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9319 "signed overflow\n"); 9320 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9321 } 9322 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9323 "unsigned overflow\n"); 9324 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9325 BitWidth+1); 9326 9327 auto LeavesRange = [&] (const APInt &X) { 9328 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9329 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9330 if (Range.contains(V0->getValue())) 9331 return false; 9332 // X should be at least 1, so X-1 is non-negative. 9333 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9334 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9335 if (Range.contains(V1->getValue())) 9336 return true; 9337 return false; 9338 }; 9339 9340 // If SolveQuadraticEquationWrap returns None, it means that there can 9341 // be a solution, but the function failed to find it. We cannot treat it 9342 // as "no solution". 9343 if (!SO.hasValue() || !UO.hasValue()) 9344 return { None, false }; 9345 9346 // Check the smaller value first to see if it leaves the range. 9347 // At this point, both SO and UO must have values. 9348 Optional<APInt> Min = MinOptional(SO, UO); 9349 if (LeavesRange(*Min)) 9350 return { Min, true }; 9351 Optional<APInt> Max = Min == SO ? UO : SO; 9352 if (LeavesRange(*Max)) 9353 return { Max, true }; 9354 9355 // Solutions were found, but were eliminated, hence the "true". 9356 return { None, true }; 9357 }; 9358 9359 std::tie(A, B, C, M, BitWidth) = *T; 9360 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9361 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9362 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9363 auto SL = SolveForBoundary(Lower); 9364 auto SU = SolveForBoundary(Upper); 9365 // If any of the solutions was unknown, no meaninigful conclusions can 9366 // be made. 9367 if (!SL.second || !SU.second) 9368 return None; 9369 9370 // Claim: The correct solution is not some value between Min and Max. 9371 // 9372 // Justification: Assuming that Min and Max are different values, one of 9373 // them is when the first signed overflow happens, the other is when the 9374 // first unsigned overflow happens. Crossing the range boundary is only 9375 // possible via an overflow (treating 0 as a special case of it, modeling 9376 // an overflow as crossing k*2^W for some k). 9377 // 9378 // The interesting case here is when Min was eliminated as an invalid 9379 // solution, but Max was not. The argument is that if there was another 9380 // overflow between Min and Max, it would also have been eliminated if 9381 // it was considered. 9382 // 9383 // For a given boundary, it is possible to have two overflows of the same 9384 // type (signed/unsigned) without having the other type in between: this 9385 // can happen when the vertex of the parabola is between the iterations 9386 // corresponding to the overflows. This is only possible when the two 9387 // overflows cross k*2^W for the same k. In such case, if the second one 9388 // left the range (and was the first one to do so), the first overflow 9389 // would have to enter the range, which would mean that either we had left 9390 // the range before or that we started outside of it. Both of these cases 9391 // are contradictions. 9392 // 9393 // Claim: In the case where SolveForBoundary returns None, the correct 9394 // solution is not some value between the Max for this boundary and the 9395 // Min of the other boundary. 9396 // 9397 // Justification: Assume that we had such Max_A and Min_B corresponding 9398 // to range boundaries A and B and such that Max_A < Min_B. If there was 9399 // a solution between Max_A and Min_B, it would have to be caused by an 9400 // overflow corresponding to either A or B. It cannot correspond to B, 9401 // since Min_B is the first occurrence of such an overflow. If it 9402 // corresponded to A, it would have to be either a signed or an unsigned 9403 // overflow that is larger than both eliminated overflows for A. But 9404 // between the eliminated overflows and this overflow, the values would 9405 // cover the entire value space, thus crossing the other boundary, which 9406 // is a contradiction. 9407 9408 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9409 } 9410 9411 ScalarEvolution::ExitLimit 9412 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9413 bool AllowPredicates) { 9414 9415 // This is only used for loops with a "x != y" exit test. The exit condition 9416 // is now expressed as a single expression, V = x-y. So the exit test is 9417 // effectively V != 0. We know and take advantage of the fact that this 9418 // expression only being used in a comparison by zero context. 9419 9420 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9421 // If the value is a constant 9422 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9423 // If the value is already zero, the branch will execute zero times. 9424 if (C->getValue()->isZero()) return C; 9425 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9426 } 9427 9428 const SCEVAddRecExpr *AddRec = 9429 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9430 9431 if (!AddRec && AllowPredicates) 9432 // Try to make this an AddRec using runtime tests, in the first X 9433 // iterations of this loop, where X is the SCEV expression found by the 9434 // algorithm below. 9435 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9436 9437 if (!AddRec || AddRec->getLoop() != L) 9438 return getCouldNotCompute(); 9439 9440 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9441 // the quadratic equation to solve it. 9442 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9443 // We can only use this value if the chrec ends up with an exact zero 9444 // value at this index. When solving for "X*X != 5", for example, we 9445 // should not accept a root of 2. 9446 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9447 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9448 return ExitLimit(R, R, false, Predicates); 9449 } 9450 return getCouldNotCompute(); 9451 } 9452 9453 // Otherwise we can only handle this if it is affine. 9454 if (!AddRec->isAffine()) 9455 return getCouldNotCompute(); 9456 9457 // If this is an affine expression, the execution count of this branch is 9458 // the minimum unsigned root of the following equation: 9459 // 9460 // Start + Step*N = 0 (mod 2^BW) 9461 // 9462 // equivalent to: 9463 // 9464 // Step*N = -Start (mod 2^BW) 9465 // 9466 // where BW is the common bit width of Start and Step. 9467 9468 // Get the initial value for the loop. 9469 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9470 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9471 9472 // For now we handle only constant steps. 9473 // 9474 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9475 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9476 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9477 // We have not yet seen any such cases. 9478 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9479 if (!StepC || StepC->getValue()->isZero()) 9480 return getCouldNotCompute(); 9481 9482 // For positive steps (counting up until unsigned overflow): 9483 // N = -Start/Step (as unsigned) 9484 // For negative steps (counting down to zero): 9485 // N = Start/-Step 9486 // First compute the unsigned distance from zero in the direction of Step. 9487 bool CountDown = StepC->getAPInt().isNegative(); 9488 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9489 9490 // Handle unitary steps, which cannot wraparound. 9491 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9492 // N = Distance (as unsigned) 9493 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9494 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9495 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9496 if (MaxBECountBase.ult(MaxBECount)) 9497 MaxBECount = MaxBECountBase; 9498 9499 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9500 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9501 // case, and see if we can improve the bound. 9502 // 9503 // Explicitly handling this here is necessary because getUnsignedRange 9504 // isn't context-sensitive; it doesn't know that we only care about the 9505 // range inside the loop. 9506 const SCEV *Zero = getZero(Distance->getType()); 9507 const SCEV *One = getOne(Distance->getType()); 9508 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9509 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9510 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9511 // as "unsigned_max(Distance + 1) - 1". 9512 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9513 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9514 } 9515 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9516 } 9517 9518 // If the condition controls loop exit (the loop exits only if the expression 9519 // is true) and the addition is no-wrap we can use unsigned divide to 9520 // compute the backedge count. In this case, the step may not divide the 9521 // distance, but we don't care because if the condition is "missed" the loop 9522 // will have undefined behavior due to wrapping. 9523 if (ControlsExit && AddRec->hasNoSelfWrap() && 9524 loopHasNoAbnormalExits(AddRec->getLoop())) { 9525 const SCEV *Exact = 9526 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9527 const SCEV *Max = getCouldNotCompute(); 9528 if (Exact != getCouldNotCompute()) { 9529 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9530 APInt BaseMaxInt = getUnsignedRangeMax(Exact); 9531 if (BaseMaxInt.ult(MaxInt)) 9532 Max = getConstant(BaseMaxInt); 9533 else 9534 Max = getConstant(MaxInt); 9535 } 9536 return ExitLimit(Exact, Max, false, Predicates); 9537 } 9538 9539 // Solve the general equation. 9540 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9541 getNegativeSCEV(Start), *this); 9542 const SCEV *M = E == getCouldNotCompute() 9543 ? E 9544 : getConstant(getUnsignedRangeMax(E)); 9545 return ExitLimit(E, M, false, Predicates); 9546 } 9547 9548 ScalarEvolution::ExitLimit 9549 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9550 // Loops that look like: while (X == 0) are very strange indeed. We don't 9551 // handle them yet except for the trivial case. This could be expanded in the 9552 // future as needed. 9553 9554 // If the value is a constant, check to see if it is known to be non-zero 9555 // already. If so, the backedge will execute zero times. 9556 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9557 if (!C->getValue()->isZero()) 9558 return getZero(C->getType()); 9559 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9560 } 9561 9562 // We could implement others, but I really doubt anyone writes loops like 9563 // this, and if they did, they would already be constant folded. 9564 return getCouldNotCompute(); 9565 } 9566 9567 std::pair<const BasicBlock *, const BasicBlock *> 9568 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9569 const { 9570 // If the block has a unique predecessor, then there is no path from the 9571 // predecessor to the block that does not go through the direct edge 9572 // from the predecessor to the block. 9573 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9574 return {Pred, BB}; 9575 9576 // A loop's header is defined to be a block that dominates the loop. 9577 // If the header has a unique predecessor outside the loop, it must be 9578 // a block that has exactly one successor that can reach the loop. 9579 if (const Loop *L = LI.getLoopFor(BB)) 9580 return {L->getLoopPredecessor(), L->getHeader()}; 9581 9582 return {nullptr, nullptr}; 9583 } 9584 9585 /// SCEV structural equivalence is usually sufficient for testing whether two 9586 /// expressions are equal, however for the purposes of looking for a condition 9587 /// guarding a loop, it can be useful to be a little more general, since a 9588 /// front-end may have replicated the controlling expression. 9589 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9590 // Quick check to see if they are the same SCEV. 9591 if (A == B) return true; 9592 9593 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9594 // Not all instructions that are "identical" compute the same value. For 9595 // instance, two distinct alloca instructions allocating the same type are 9596 // identical and do not read memory; but compute distinct values. 9597 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9598 }; 9599 9600 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9601 // two different instructions with the same value. Check for this case. 9602 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9603 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9604 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9605 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9606 if (ComputesEqualValues(AI, BI)) 9607 return true; 9608 9609 // Otherwise assume they may have a different value. 9610 return false; 9611 } 9612 9613 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9614 const SCEV *&LHS, const SCEV *&RHS, 9615 unsigned Depth) { 9616 bool Changed = false; 9617 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9618 // '0 != 0'. 9619 auto TrivialCase = [&](bool TriviallyTrue) { 9620 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9621 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9622 return true; 9623 }; 9624 // If we hit the max recursion limit bail out. 9625 if (Depth >= 3) 9626 return false; 9627 9628 // Canonicalize a constant to the right side. 9629 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9630 // Check for both operands constant. 9631 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9632 if (ConstantExpr::getICmp(Pred, 9633 LHSC->getValue(), 9634 RHSC->getValue())->isNullValue()) 9635 return TrivialCase(false); 9636 else 9637 return TrivialCase(true); 9638 } 9639 // Otherwise swap the operands to put the constant on the right. 9640 std::swap(LHS, RHS); 9641 Pred = ICmpInst::getSwappedPredicate(Pred); 9642 Changed = true; 9643 } 9644 9645 // If we're comparing an addrec with a value which is loop-invariant in the 9646 // addrec's loop, put the addrec on the left. Also make a dominance check, 9647 // as both operands could be addrecs loop-invariant in each other's loop. 9648 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9649 const Loop *L = AR->getLoop(); 9650 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9651 std::swap(LHS, RHS); 9652 Pred = ICmpInst::getSwappedPredicate(Pred); 9653 Changed = true; 9654 } 9655 } 9656 9657 // If there's a constant operand, canonicalize comparisons with boundary 9658 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9659 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9660 const APInt &RA = RC->getAPInt(); 9661 9662 bool SimplifiedByConstantRange = false; 9663 9664 if (!ICmpInst::isEquality(Pred)) { 9665 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9666 if (ExactCR.isFullSet()) 9667 return TrivialCase(true); 9668 else if (ExactCR.isEmptySet()) 9669 return TrivialCase(false); 9670 9671 APInt NewRHS; 9672 CmpInst::Predicate NewPred; 9673 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9674 ICmpInst::isEquality(NewPred)) { 9675 // We were able to convert an inequality to an equality. 9676 Pred = NewPred; 9677 RHS = getConstant(NewRHS); 9678 Changed = SimplifiedByConstantRange = true; 9679 } 9680 } 9681 9682 if (!SimplifiedByConstantRange) { 9683 switch (Pred) { 9684 default: 9685 break; 9686 case ICmpInst::ICMP_EQ: 9687 case ICmpInst::ICMP_NE: 9688 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9689 if (!RA) 9690 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9691 if (const SCEVMulExpr *ME = 9692 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9693 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9694 ME->getOperand(0)->isAllOnesValue()) { 9695 RHS = AE->getOperand(1); 9696 LHS = ME->getOperand(1); 9697 Changed = true; 9698 } 9699 break; 9700 9701 9702 // The "Should have been caught earlier!" messages refer to the fact 9703 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9704 // should have fired on the corresponding cases, and canonicalized the 9705 // check to trivial case. 9706 9707 case ICmpInst::ICMP_UGE: 9708 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9709 Pred = ICmpInst::ICMP_UGT; 9710 RHS = getConstant(RA - 1); 9711 Changed = true; 9712 break; 9713 case ICmpInst::ICMP_ULE: 9714 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9715 Pred = ICmpInst::ICMP_ULT; 9716 RHS = getConstant(RA + 1); 9717 Changed = true; 9718 break; 9719 case ICmpInst::ICMP_SGE: 9720 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9721 Pred = ICmpInst::ICMP_SGT; 9722 RHS = getConstant(RA - 1); 9723 Changed = true; 9724 break; 9725 case ICmpInst::ICMP_SLE: 9726 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9727 Pred = ICmpInst::ICMP_SLT; 9728 RHS = getConstant(RA + 1); 9729 Changed = true; 9730 break; 9731 } 9732 } 9733 } 9734 9735 // Check for obvious equality. 9736 if (HasSameValue(LHS, RHS)) { 9737 if (ICmpInst::isTrueWhenEqual(Pred)) 9738 return TrivialCase(true); 9739 if (ICmpInst::isFalseWhenEqual(Pred)) 9740 return TrivialCase(false); 9741 } 9742 9743 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9744 // adding or subtracting 1 from one of the operands. 9745 switch (Pred) { 9746 case ICmpInst::ICMP_SLE: 9747 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9748 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9749 SCEV::FlagNSW); 9750 Pred = ICmpInst::ICMP_SLT; 9751 Changed = true; 9752 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9753 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9754 SCEV::FlagNSW); 9755 Pred = ICmpInst::ICMP_SLT; 9756 Changed = true; 9757 } 9758 break; 9759 case ICmpInst::ICMP_SGE: 9760 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9761 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9762 SCEV::FlagNSW); 9763 Pred = ICmpInst::ICMP_SGT; 9764 Changed = true; 9765 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9766 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9767 SCEV::FlagNSW); 9768 Pred = ICmpInst::ICMP_SGT; 9769 Changed = true; 9770 } 9771 break; 9772 case ICmpInst::ICMP_ULE: 9773 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9774 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9775 SCEV::FlagNUW); 9776 Pred = ICmpInst::ICMP_ULT; 9777 Changed = true; 9778 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9779 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9780 Pred = ICmpInst::ICMP_ULT; 9781 Changed = true; 9782 } 9783 break; 9784 case ICmpInst::ICMP_UGE: 9785 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9786 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9787 Pred = ICmpInst::ICMP_UGT; 9788 Changed = true; 9789 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9790 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9791 SCEV::FlagNUW); 9792 Pred = ICmpInst::ICMP_UGT; 9793 Changed = true; 9794 } 9795 break; 9796 default: 9797 break; 9798 } 9799 9800 // TODO: More simplifications are possible here. 9801 9802 // Recursively simplify until we either hit a recursion limit or nothing 9803 // changes. 9804 if (Changed) 9805 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9806 9807 return Changed; 9808 } 9809 9810 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9811 return getSignedRangeMax(S).isNegative(); 9812 } 9813 9814 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9815 return getSignedRangeMin(S).isStrictlyPositive(); 9816 } 9817 9818 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9819 return !getSignedRangeMin(S).isNegative(); 9820 } 9821 9822 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9823 return !getSignedRangeMax(S).isStrictlyPositive(); 9824 } 9825 9826 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9827 return getUnsignedRangeMin(S) != 0; 9828 } 9829 9830 std::pair<const SCEV *, const SCEV *> 9831 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9832 // Compute SCEV on entry of loop L. 9833 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9834 if (Start == getCouldNotCompute()) 9835 return { Start, Start }; 9836 // Compute post increment SCEV for loop L. 9837 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9838 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9839 return { Start, PostInc }; 9840 } 9841 9842 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9843 const SCEV *LHS, const SCEV *RHS) { 9844 // First collect all loops. 9845 SmallPtrSet<const Loop *, 8> LoopsUsed; 9846 getUsedLoops(LHS, LoopsUsed); 9847 getUsedLoops(RHS, LoopsUsed); 9848 9849 if (LoopsUsed.empty()) 9850 return false; 9851 9852 // Domination relationship must be a linear order on collected loops. 9853 #ifndef NDEBUG 9854 for (auto *L1 : LoopsUsed) 9855 for (auto *L2 : LoopsUsed) 9856 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9857 DT.dominates(L2->getHeader(), L1->getHeader())) && 9858 "Domination relationship is not a linear order"); 9859 #endif 9860 9861 const Loop *MDL = 9862 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9863 [&](const Loop *L1, const Loop *L2) { 9864 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9865 }); 9866 9867 // Get init and post increment value for LHS. 9868 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9869 // if LHS contains unknown non-invariant SCEV then bail out. 9870 if (SplitLHS.first == getCouldNotCompute()) 9871 return false; 9872 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9873 // Get init and post increment value for RHS. 9874 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9875 // if RHS contains unknown non-invariant SCEV then bail out. 9876 if (SplitRHS.first == getCouldNotCompute()) 9877 return false; 9878 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9879 // It is possible that init SCEV contains an invariant load but it does 9880 // not dominate MDL and is not available at MDL loop entry, so we should 9881 // check it here. 9882 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9883 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9884 return false; 9885 9886 // It seems backedge guard check is faster than entry one so in some cases 9887 // it can speed up whole estimation by short circuit 9888 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9889 SplitRHS.second) && 9890 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9891 } 9892 9893 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9894 const SCEV *LHS, const SCEV *RHS) { 9895 // Canonicalize the inputs first. 9896 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9897 9898 if (isKnownViaInduction(Pred, LHS, RHS)) 9899 return true; 9900 9901 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9902 return true; 9903 9904 // Otherwise see what can be done with some simple reasoning. 9905 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9906 } 9907 9908 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 9909 const SCEV *LHS, 9910 const SCEV *RHS) { 9911 if (isKnownPredicate(Pred, LHS, RHS)) 9912 return true; 9913 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 9914 return false; 9915 return None; 9916 } 9917 9918 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9919 const SCEV *LHS, const SCEV *RHS, 9920 const Instruction *Context) { 9921 // TODO: Analyze guards and assumes from Context's block. 9922 return isKnownPredicate(Pred, LHS, RHS) || 9923 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9924 } 9925 9926 Optional<bool> 9927 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, 9928 const SCEV *RHS, 9929 const Instruction *Context) { 9930 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 9931 if (KnownWithoutContext) 9932 return KnownWithoutContext; 9933 9934 if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS)) 9935 return true; 9936 else if (isBasicBlockEntryGuardedByCond(Context->getParent(), 9937 ICmpInst::getInversePredicate(Pred), 9938 LHS, RHS)) 9939 return false; 9940 return None; 9941 } 9942 9943 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9944 const SCEVAddRecExpr *LHS, 9945 const SCEV *RHS) { 9946 const Loop *L = LHS->getLoop(); 9947 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9948 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9949 } 9950 9951 Optional<ScalarEvolution::MonotonicPredicateType> 9952 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9953 ICmpInst::Predicate Pred) { 9954 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9955 9956 #ifndef NDEBUG 9957 // Verify an invariant: inverting the predicate should turn a monotonically 9958 // increasing change to a monotonically decreasing one, and vice versa. 9959 if (Result) { 9960 auto ResultSwapped = 9961 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9962 9963 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9964 assert(ResultSwapped.getValue() != Result.getValue() && 9965 "monotonicity should flip as we flip the predicate"); 9966 } 9967 #endif 9968 9969 return Result; 9970 } 9971 9972 Optional<ScalarEvolution::MonotonicPredicateType> 9973 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9974 ICmpInst::Predicate Pred) { 9975 // A zero step value for LHS means the induction variable is essentially a 9976 // loop invariant value. We don't really depend on the predicate actually 9977 // flipping from false to true (for increasing predicates, and the other way 9978 // around for decreasing predicates), all we care about is that *if* the 9979 // predicate changes then it only changes from false to true. 9980 // 9981 // A zero step value in itself is not very useful, but there may be places 9982 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9983 // as general as possible. 9984 9985 // Only handle LE/LT/GE/GT predicates. 9986 if (!ICmpInst::isRelational(Pred)) 9987 return None; 9988 9989 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9990 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9991 "Should be greater or less!"); 9992 9993 // Check that AR does not wrap. 9994 if (ICmpInst::isUnsigned(Pred)) { 9995 if (!LHS->hasNoUnsignedWrap()) 9996 return None; 9997 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9998 } else { 9999 assert(ICmpInst::isSigned(Pred) && 10000 "Relational predicate is either signed or unsigned!"); 10001 if (!LHS->hasNoSignedWrap()) 10002 return None; 10003 10004 const SCEV *Step = LHS->getStepRecurrence(*this); 10005 10006 if (isKnownNonNegative(Step)) 10007 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10008 10009 if (isKnownNonPositive(Step)) 10010 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10011 10012 return None; 10013 } 10014 } 10015 10016 Optional<ScalarEvolution::LoopInvariantPredicate> 10017 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10018 const SCEV *LHS, const SCEV *RHS, 10019 const Loop *L) { 10020 10021 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10022 if (!isLoopInvariant(RHS, L)) { 10023 if (!isLoopInvariant(LHS, L)) 10024 return None; 10025 10026 std::swap(LHS, RHS); 10027 Pred = ICmpInst::getSwappedPredicate(Pred); 10028 } 10029 10030 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10031 if (!ArLHS || ArLHS->getLoop() != L) 10032 return None; 10033 10034 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10035 if (!MonotonicType) 10036 return None; 10037 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10038 // true as the loop iterates, and the backedge is control dependent on 10039 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10040 // 10041 // * if the predicate was false in the first iteration then the predicate 10042 // is never evaluated again, since the loop exits without taking the 10043 // backedge. 10044 // * if the predicate was true in the first iteration then it will 10045 // continue to be true for all future iterations since it is 10046 // monotonically increasing. 10047 // 10048 // For both the above possibilities, we can replace the loop varying 10049 // predicate with its value on the first iteration of the loop (which is 10050 // loop invariant). 10051 // 10052 // A similar reasoning applies for a monotonically decreasing predicate, by 10053 // replacing true with false and false with true in the above two bullets. 10054 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10055 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10056 10057 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10058 return None; 10059 10060 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10061 } 10062 10063 Optional<ScalarEvolution::LoopInvariantPredicate> 10064 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10065 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10066 const Instruction *Context, const SCEV *MaxIter) { 10067 // Try to prove the following set of facts: 10068 // - The predicate is monotonic in the iteration space. 10069 // - If the check does not fail on the 1st iteration: 10070 // - No overflow will happen during first MaxIter iterations; 10071 // - It will not fail on the MaxIter'th iteration. 10072 // If the check does fail on the 1st iteration, we leave the loop and no 10073 // other checks matter. 10074 10075 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10076 if (!isLoopInvariant(RHS, L)) { 10077 if (!isLoopInvariant(LHS, L)) 10078 return None; 10079 10080 std::swap(LHS, RHS); 10081 Pred = ICmpInst::getSwappedPredicate(Pred); 10082 } 10083 10084 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10085 if (!AR || AR->getLoop() != L) 10086 return None; 10087 10088 // The predicate must be relational (i.e. <, <=, >=, >). 10089 if (!ICmpInst::isRelational(Pred)) 10090 return None; 10091 10092 // TODO: Support steps other than +/- 1. 10093 const SCEV *Step = AR->getStepRecurrence(*this); 10094 auto *One = getOne(Step->getType()); 10095 auto *MinusOne = getNegativeSCEV(One); 10096 if (Step != One && Step != MinusOne) 10097 return None; 10098 10099 // Type mismatch here means that MaxIter is potentially larger than max 10100 // unsigned value in start type, which mean we cannot prove no wrap for the 10101 // indvar. 10102 if (AR->getType() != MaxIter->getType()) 10103 return None; 10104 10105 // Value of IV on suggested last iteration. 10106 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10107 // Does it still meet the requirement? 10108 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10109 return None; 10110 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10111 // not exceed max unsigned value of this type), this effectively proves 10112 // that there is no wrap during the iteration. To prove that there is no 10113 // signed/unsigned wrap, we need to check that 10114 // Start <= Last for step = 1 or Start >= Last for step = -1. 10115 ICmpInst::Predicate NoOverflowPred = 10116 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10117 if (Step == MinusOne) 10118 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10119 const SCEV *Start = AR->getStart(); 10120 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context)) 10121 return None; 10122 10123 // Everything is fine. 10124 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10125 } 10126 10127 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10128 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10129 if (HasSameValue(LHS, RHS)) 10130 return ICmpInst::isTrueWhenEqual(Pred); 10131 10132 // This code is split out from isKnownPredicate because it is called from 10133 // within isLoopEntryGuardedByCond. 10134 10135 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10136 const ConstantRange &RangeRHS) { 10137 return RangeLHS.icmp(Pred, RangeRHS); 10138 }; 10139 10140 // The check at the top of the function catches the case where the values are 10141 // known to be equal. 10142 if (Pred == CmpInst::ICMP_EQ) 10143 return false; 10144 10145 if (Pred == CmpInst::ICMP_NE) { 10146 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10147 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10148 return true; 10149 auto *Diff = getMinusSCEV(LHS, RHS); 10150 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10151 } 10152 10153 if (CmpInst::isSigned(Pred)) 10154 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10155 10156 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10157 } 10158 10159 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10160 const SCEV *LHS, 10161 const SCEV *RHS) { 10162 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10163 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10164 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10165 // OutC1 and OutC2. 10166 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10167 APInt &OutC1, APInt &OutC2, 10168 SCEV::NoWrapFlags ExpectedFlags) { 10169 const SCEV *XNonConstOp, *XConstOp; 10170 const SCEV *YNonConstOp, *YConstOp; 10171 SCEV::NoWrapFlags XFlagsPresent; 10172 SCEV::NoWrapFlags YFlagsPresent; 10173 10174 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10175 XConstOp = getZero(X->getType()); 10176 XNonConstOp = X; 10177 XFlagsPresent = ExpectedFlags; 10178 } 10179 if (!isa<SCEVConstant>(XConstOp) || 10180 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10181 return false; 10182 10183 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10184 YConstOp = getZero(Y->getType()); 10185 YNonConstOp = Y; 10186 YFlagsPresent = ExpectedFlags; 10187 } 10188 10189 if (!isa<SCEVConstant>(YConstOp) || 10190 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10191 return false; 10192 10193 if (YNonConstOp != XNonConstOp) 10194 return false; 10195 10196 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10197 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10198 10199 return true; 10200 }; 10201 10202 APInt C1; 10203 APInt C2; 10204 10205 switch (Pred) { 10206 default: 10207 break; 10208 10209 case ICmpInst::ICMP_SGE: 10210 std::swap(LHS, RHS); 10211 LLVM_FALLTHROUGH; 10212 case ICmpInst::ICMP_SLE: 10213 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10214 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10215 return true; 10216 10217 break; 10218 10219 case ICmpInst::ICMP_SGT: 10220 std::swap(LHS, RHS); 10221 LLVM_FALLTHROUGH; 10222 case ICmpInst::ICMP_SLT: 10223 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10224 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10225 return true; 10226 10227 break; 10228 10229 case ICmpInst::ICMP_UGE: 10230 std::swap(LHS, RHS); 10231 LLVM_FALLTHROUGH; 10232 case ICmpInst::ICMP_ULE: 10233 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10234 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10235 return true; 10236 10237 break; 10238 10239 case ICmpInst::ICMP_UGT: 10240 std::swap(LHS, RHS); 10241 LLVM_FALLTHROUGH; 10242 case ICmpInst::ICMP_ULT: 10243 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10244 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10245 return true; 10246 break; 10247 } 10248 10249 return false; 10250 } 10251 10252 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10253 const SCEV *LHS, 10254 const SCEV *RHS) { 10255 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10256 return false; 10257 10258 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10259 // the stack can result in exponential time complexity. 10260 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10261 10262 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10263 // 10264 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10265 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10266 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10267 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10268 // use isKnownPredicate later if needed. 10269 return isKnownNonNegative(RHS) && 10270 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10271 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10272 } 10273 10274 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10275 ICmpInst::Predicate Pred, 10276 const SCEV *LHS, const SCEV *RHS) { 10277 // No need to even try if we know the module has no guards. 10278 if (!HasGuards) 10279 return false; 10280 10281 return any_of(*BB, [&](const Instruction &I) { 10282 using namespace llvm::PatternMatch; 10283 10284 Value *Condition; 10285 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10286 m_Value(Condition))) && 10287 isImpliedCond(Pred, LHS, RHS, Condition, false); 10288 }); 10289 } 10290 10291 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10292 /// protected by a conditional between LHS and RHS. This is used to 10293 /// to eliminate casts. 10294 bool 10295 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10296 ICmpInst::Predicate Pred, 10297 const SCEV *LHS, const SCEV *RHS) { 10298 // Interpret a null as meaning no loop, where there is obviously no guard 10299 // (interprocedural conditions notwithstanding). 10300 if (!L) return true; 10301 10302 if (VerifyIR) 10303 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10304 "This cannot be done on broken IR!"); 10305 10306 10307 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10308 return true; 10309 10310 BasicBlock *Latch = L->getLoopLatch(); 10311 if (!Latch) 10312 return false; 10313 10314 BranchInst *LoopContinuePredicate = 10315 dyn_cast<BranchInst>(Latch->getTerminator()); 10316 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10317 isImpliedCond(Pred, LHS, RHS, 10318 LoopContinuePredicate->getCondition(), 10319 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10320 return true; 10321 10322 // We don't want more than one activation of the following loops on the stack 10323 // -- that can lead to O(n!) time complexity. 10324 if (WalkingBEDominatingConds) 10325 return false; 10326 10327 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10328 10329 // See if we can exploit a trip count to prove the predicate. 10330 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10331 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10332 if (LatchBECount != getCouldNotCompute()) { 10333 // We know that Latch branches back to the loop header exactly 10334 // LatchBECount times. This means the backdege condition at Latch is 10335 // equivalent to "{0,+,1} u< LatchBECount". 10336 Type *Ty = LatchBECount->getType(); 10337 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10338 const SCEV *LoopCounter = 10339 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10340 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10341 LatchBECount)) 10342 return true; 10343 } 10344 10345 // Check conditions due to any @llvm.assume intrinsics. 10346 for (auto &AssumeVH : AC.assumptions()) { 10347 if (!AssumeVH) 10348 continue; 10349 auto *CI = cast<CallInst>(AssumeVH); 10350 if (!DT.dominates(CI, Latch->getTerminator())) 10351 continue; 10352 10353 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10354 return true; 10355 } 10356 10357 // If the loop is not reachable from the entry block, we risk running into an 10358 // infinite loop as we walk up into the dom tree. These loops do not matter 10359 // anyway, so we just return a conservative answer when we see them. 10360 if (!DT.isReachableFromEntry(L->getHeader())) 10361 return false; 10362 10363 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10364 return true; 10365 10366 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10367 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10368 assert(DTN && "should reach the loop header before reaching the root!"); 10369 10370 BasicBlock *BB = DTN->getBlock(); 10371 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10372 return true; 10373 10374 BasicBlock *PBB = BB->getSinglePredecessor(); 10375 if (!PBB) 10376 continue; 10377 10378 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10379 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10380 continue; 10381 10382 Value *Condition = ContinuePredicate->getCondition(); 10383 10384 // If we have an edge `E` within the loop body that dominates the only 10385 // latch, the condition guarding `E` also guards the backedge. This 10386 // reasoning works only for loops with a single latch. 10387 10388 BasicBlockEdge DominatingEdge(PBB, BB); 10389 if (DominatingEdge.isSingleEdge()) { 10390 // We're constructively (and conservatively) enumerating edges within the 10391 // loop body that dominate the latch. The dominator tree better agree 10392 // with us on this: 10393 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10394 10395 if (isImpliedCond(Pred, LHS, RHS, Condition, 10396 BB != ContinuePredicate->getSuccessor(0))) 10397 return true; 10398 } 10399 } 10400 10401 return false; 10402 } 10403 10404 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10405 ICmpInst::Predicate Pred, 10406 const SCEV *LHS, 10407 const SCEV *RHS) { 10408 if (VerifyIR) 10409 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10410 "This cannot be done on broken IR!"); 10411 10412 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10413 // the facts (a >= b && a != b) separately. A typical situation is when the 10414 // non-strict comparison is known from ranges and non-equality is known from 10415 // dominating predicates. If we are proving strict comparison, we always try 10416 // to prove non-equality and non-strict comparison separately. 10417 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10418 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10419 bool ProvedNonStrictComparison = false; 10420 bool ProvedNonEquality = false; 10421 10422 auto SplitAndProve = 10423 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10424 if (!ProvedNonStrictComparison) 10425 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10426 if (!ProvedNonEquality) 10427 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10428 if (ProvedNonStrictComparison && ProvedNonEquality) 10429 return true; 10430 return false; 10431 }; 10432 10433 if (ProvingStrictComparison) { 10434 auto ProofFn = [&](ICmpInst::Predicate P) { 10435 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10436 }; 10437 if (SplitAndProve(ProofFn)) 10438 return true; 10439 } 10440 10441 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10442 auto ProveViaGuard = [&](const BasicBlock *Block) { 10443 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10444 return true; 10445 if (ProvingStrictComparison) { 10446 auto ProofFn = [&](ICmpInst::Predicate P) { 10447 return isImpliedViaGuard(Block, P, LHS, RHS); 10448 }; 10449 if (SplitAndProve(ProofFn)) 10450 return true; 10451 } 10452 return false; 10453 }; 10454 10455 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10456 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10457 const Instruction *Context = &BB->front(); 10458 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 10459 return true; 10460 if (ProvingStrictComparison) { 10461 auto ProofFn = [&](ICmpInst::Predicate P) { 10462 return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context); 10463 }; 10464 if (SplitAndProve(ProofFn)) 10465 return true; 10466 } 10467 return false; 10468 }; 10469 10470 // Starting at the block's predecessor, climb up the predecessor chain, as long 10471 // as there are predecessors that can be found that have unique successors 10472 // leading to the original block. 10473 const Loop *ContainingLoop = LI.getLoopFor(BB); 10474 const BasicBlock *PredBB; 10475 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10476 PredBB = ContainingLoop->getLoopPredecessor(); 10477 else 10478 PredBB = BB->getSinglePredecessor(); 10479 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10480 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10481 if (ProveViaGuard(Pair.first)) 10482 return true; 10483 10484 const BranchInst *LoopEntryPredicate = 10485 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10486 if (!LoopEntryPredicate || 10487 LoopEntryPredicate->isUnconditional()) 10488 continue; 10489 10490 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10491 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10492 return true; 10493 } 10494 10495 // Check conditions due to any @llvm.assume intrinsics. 10496 for (auto &AssumeVH : AC.assumptions()) { 10497 if (!AssumeVH) 10498 continue; 10499 auto *CI = cast<CallInst>(AssumeVH); 10500 if (!DT.dominates(CI, BB)) 10501 continue; 10502 10503 if (ProveViaCond(CI->getArgOperand(0), false)) 10504 return true; 10505 } 10506 10507 return false; 10508 } 10509 10510 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10511 ICmpInst::Predicate Pred, 10512 const SCEV *LHS, 10513 const SCEV *RHS) { 10514 // Interpret a null as meaning no loop, where there is obviously no guard 10515 // (interprocedural conditions notwithstanding). 10516 if (!L) 10517 return false; 10518 10519 // Both LHS and RHS must be available at loop entry. 10520 assert(isAvailableAtLoopEntry(LHS, L) && 10521 "LHS is not available at Loop Entry"); 10522 assert(isAvailableAtLoopEntry(RHS, L) && 10523 "RHS is not available at Loop Entry"); 10524 10525 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10526 return true; 10527 10528 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10529 } 10530 10531 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10532 const SCEV *RHS, 10533 const Value *FoundCondValue, bool Inverse, 10534 const Instruction *Context) { 10535 // False conditions implies anything. Do not bother analyzing it further. 10536 if (FoundCondValue == 10537 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10538 return true; 10539 10540 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10541 return false; 10542 10543 auto ClearOnExit = 10544 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10545 10546 // Recursively handle And and Or conditions. 10547 const Value *Op0, *Op1; 10548 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10549 if (!Inverse) 10550 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10551 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10552 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10553 if (Inverse) 10554 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10555 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10556 } 10557 10558 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10559 if (!ICI) return false; 10560 10561 // Now that we found a conditional branch that dominates the loop or controls 10562 // the loop latch. Check to see if it is the comparison we are looking for. 10563 ICmpInst::Predicate FoundPred; 10564 if (Inverse) 10565 FoundPred = ICI->getInversePredicate(); 10566 else 10567 FoundPred = ICI->getPredicate(); 10568 10569 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10570 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10571 10572 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 10573 } 10574 10575 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10576 const SCEV *RHS, 10577 ICmpInst::Predicate FoundPred, 10578 const SCEV *FoundLHS, const SCEV *FoundRHS, 10579 const Instruction *Context) { 10580 // Balance the types. 10581 if (getTypeSizeInBits(LHS->getType()) < 10582 getTypeSizeInBits(FoundLHS->getType())) { 10583 // For unsigned and equality predicates, try to prove that both found 10584 // operands fit into narrow unsigned range. If so, try to prove facts in 10585 // narrow types. 10586 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) { 10587 auto *NarrowType = LHS->getType(); 10588 auto *WideType = FoundLHS->getType(); 10589 auto BitWidth = getTypeSizeInBits(NarrowType); 10590 const SCEV *MaxValue = getZeroExtendExpr( 10591 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10592 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10593 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10594 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10595 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10596 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10597 TruncFoundRHS, Context)) 10598 return true; 10599 } 10600 } 10601 10602 if (LHS->getType()->isPointerTy()) 10603 return false; 10604 if (CmpInst::isSigned(Pred)) { 10605 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10606 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10607 } else { 10608 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10609 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10610 } 10611 } else if (getTypeSizeInBits(LHS->getType()) > 10612 getTypeSizeInBits(FoundLHS->getType())) { 10613 if (FoundLHS->getType()->isPointerTy()) 10614 return false; 10615 if (CmpInst::isSigned(FoundPred)) { 10616 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10617 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10618 } else { 10619 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10620 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10621 } 10622 } 10623 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10624 FoundRHS, Context); 10625 } 10626 10627 bool ScalarEvolution::isImpliedCondBalancedTypes( 10628 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10629 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10630 const Instruction *Context) { 10631 assert(getTypeSizeInBits(LHS->getType()) == 10632 getTypeSizeInBits(FoundLHS->getType()) && 10633 "Types should be balanced!"); 10634 // Canonicalize the query to match the way instcombine will have 10635 // canonicalized the comparison. 10636 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10637 if (LHS == RHS) 10638 return CmpInst::isTrueWhenEqual(Pred); 10639 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10640 if (FoundLHS == FoundRHS) 10641 return CmpInst::isFalseWhenEqual(FoundPred); 10642 10643 // Check to see if we can make the LHS or RHS match. 10644 if (LHS == FoundRHS || RHS == FoundLHS) { 10645 if (isa<SCEVConstant>(RHS)) { 10646 std::swap(FoundLHS, FoundRHS); 10647 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10648 } else { 10649 std::swap(LHS, RHS); 10650 Pred = ICmpInst::getSwappedPredicate(Pred); 10651 } 10652 } 10653 10654 // Check whether the found predicate is the same as the desired predicate. 10655 if (FoundPred == Pred) 10656 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10657 10658 // Check whether swapping the found predicate makes it the same as the 10659 // desired predicate. 10660 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10661 // We can write the implication 10662 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10663 // using one of the following ways: 10664 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10665 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10666 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10667 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10668 // Forms 1. and 2. require swapping the operands of one condition. Don't 10669 // do this if it would break canonical constant/addrec ordering. 10670 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10671 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10672 Context); 10673 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10674 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 10675 10676 // Don't try to getNotSCEV pointers. 10677 if (LHS->getType()->isPointerTy() || FoundLHS->getType()->isPointerTy()) 10678 return false; 10679 10680 // There's no clear preference between forms 3. and 4., try both. 10681 return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10682 FoundLHS, FoundRHS, Context) || 10683 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10684 getNotSCEV(FoundRHS), Context); 10685 } 10686 10687 // Unsigned comparison is the same as signed comparison when both the operands 10688 // are non-negative. 10689 if (CmpInst::isUnsigned(FoundPred) && 10690 CmpInst::getSignedPredicate(FoundPred) == Pred && 10691 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 10692 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10693 10694 // Check if we can make progress by sharpening ranges. 10695 if (FoundPred == ICmpInst::ICMP_NE && 10696 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10697 10698 const SCEVConstant *C = nullptr; 10699 const SCEV *V = nullptr; 10700 10701 if (isa<SCEVConstant>(FoundLHS)) { 10702 C = cast<SCEVConstant>(FoundLHS); 10703 V = FoundRHS; 10704 } else { 10705 C = cast<SCEVConstant>(FoundRHS); 10706 V = FoundLHS; 10707 } 10708 10709 // The guarding predicate tells us that C != V. If the known range 10710 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10711 // range we consider has to correspond to same signedness as the 10712 // predicate we're interested in folding. 10713 10714 APInt Min = ICmpInst::isSigned(Pred) ? 10715 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10716 10717 if (Min == C->getAPInt()) { 10718 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10719 // This is true even if (Min + 1) wraps around -- in case of 10720 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10721 10722 APInt SharperMin = Min + 1; 10723 10724 switch (Pred) { 10725 case ICmpInst::ICMP_SGE: 10726 case ICmpInst::ICMP_UGE: 10727 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10728 // RHS, we're done. 10729 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10730 Context)) 10731 return true; 10732 LLVM_FALLTHROUGH; 10733 10734 case ICmpInst::ICMP_SGT: 10735 case ICmpInst::ICMP_UGT: 10736 // We know from the range information that (V `Pred` Min || 10737 // V == Min). We know from the guarding condition that !(V 10738 // == Min). This gives us 10739 // 10740 // V `Pred` Min || V == Min && !(V == Min) 10741 // => V `Pred` Min 10742 // 10743 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10744 10745 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 10746 Context)) 10747 return true; 10748 break; 10749 10750 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10751 case ICmpInst::ICMP_SLE: 10752 case ICmpInst::ICMP_ULE: 10753 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10754 LHS, V, getConstant(SharperMin), Context)) 10755 return true; 10756 LLVM_FALLTHROUGH; 10757 10758 case ICmpInst::ICMP_SLT: 10759 case ICmpInst::ICMP_ULT: 10760 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10761 LHS, V, getConstant(Min), Context)) 10762 return true; 10763 break; 10764 10765 default: 10766 // No change 10767 break; 10768 } 10769 } 10770 } 10771 10772 // Check whether the actual condition is beyond sufficient. 10773 if (FoundPred == ICmpInst::ICMP_EQ) 10774 if (ICmpInst::isTrueWhenEqual(Pred)) 10775 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 10776 return true; 10777 if (Pred == ICmpInst::ICMP_NE) 10778 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10779 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 10780 Context)) 10781 return true; 10782 10783 // Otherwise assume the worst. 10784 return false; 10785 } 10786 10787 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10788 const SCEV *&L, const SCEV *&R, 10789 SCEV::NoWrapFlags &Flags) { 10790 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10791 if (!AE || AE->getNumOperands() != 2) 10792 return false; 10793 10794 L = AE->getOperand(0); 10795 R = AE->getOperand(1); 10796 Flags = AE->getNoWrapFlags(); 10797 return true; 10798 } 10799 10800 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10801 const SCEV *Less) { 10802 // We avoid subtracting expressions here because this function is usually 10803 // fairly deep in the call stack (i.e. is called many times). 10804 10805 // X - X = 0. 10806 if (More == Less) 10807 return APInt(getTypeSizeInBits(More->getType()), 0); 10808 10809 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10810 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10811 const auto *MAR = cast<SCEVAddRecExpr>(More); 10812 10813 if (LAR->getLoop() != MAR->getLoop()) 10814 return None; 10815 10816 // We look at affine expressions only; not for correctness but to keep 10817 // getStepRecurrence cheap. 10818 if (!LAR->isAffine() || !MAR->isAffine()) 10819 return None; 10820 10821 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10822 return None; 10823 10824 Less = LAR->getStart(); 10825 More = MAR->getStart(); 10826 10827 // fall through 10828 } 10829 10830 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10831 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10832 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10833 return M - L; 10834 } 10835 10836 SCEV::NoWrapFlags Flags; 10837 const SCEV *LLess = nullptr, *RLess = nullptr; 10838 const SCEV *LMore = nullptr, *RMore = nullptr; 10839 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10840 // Compare (X + C1) vs X. 10841 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10842 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10843 if (RLess == More) 10844 return -(C1->getAPInt()); 10845 10846 // Compare X vs (X + C2). 10847 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10848 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10849 if (RMore == Less) 10850 return C2->getAPInt(); 10851 10852 // Compare (X + C1) vs (X + C2). 10853 if (C1 && C2 && RLess == RMore) 10854 return C2->getAPInt() - C1->getAPInt(); 10855 10856 return None; 10857 } 10858 10859 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10860 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10861 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 10862 // Try to recognize the following pattern: 10863 // 10864 // FoundRHS = ... 10865 // ... 10866 // loop: 10867 // FoundLHS = {Start,+,W} 10868 // context_bb: // Basic block from the same loop 10869 // known(Pred, FoundLHS, FoundRHS) 10870 // 10871 // If some predicate is known in the context of a loop, it is also known on 10872 // each iteration of this loop, including the first iteration. Therefore, in 10873 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10874 // prove the original pred using this fact. 10875 if (!Context) 10876 return false; 10877 const BasicBlock *ContextBB = Context->getParent(); 10878 // Make sure AR varies in the context block. 10879 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10880 const Loop *L = AR->getLoop(); 10881 // Make sure that context belongs to the loop and executes on 1st iteration 10882 // (if it ever executes at all). 10883 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10884 return false; 10885 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10886 return false; 10887 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10888 } 10889 10890 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10891 const Loop *L = AR->getLoop(); 10892 // Make sure that context belongs to the loop and executes on 1st iteration 10893 // (if it ever executes at all). 10894 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10895 return false; 10896 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10897 return false; 10898 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10899 } 10900 10901 return false; 10902 } 10903 10904 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10905 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10906 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10907 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10908 return false; 10909 10910 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10911 if (!AddRecLHS) 10912 return false; 10913 10914 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10915 if (!AddRecFoundLHS) 10916 return false; 10917 10918 // We'd like to let SCEV reason about control dependencies, so we constrain 10919 // both the inequalities to be about add recurrences on the same loop. This 10920 // way we can use isLoopEntryGuardedByCond later. 10921 10922 const Loop *L = AddRecFoundLHS->getLoop(); 10923 if (L != AddRecLHS->getLoop()) 10924 return false; 10925 10926 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10927 // 10928 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10929 // ... (2) 10930 // 10931 // Informal proof for (2), assuming (1) [*]: 10932 // 10933 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10934 // 10935 // Then 10936 // 10937 // FoundLHS s< FoundRHS s< INT_MIN - C 10938 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10939 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10940 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10941 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10942 // <=> FoundLHS + C s< FoundRHS + C 10943 // 10944 // [*]: (1) can be proved by ruling out overflow. 10945 // 10946 // [**]: This can be proved by analyzing all the four possibilities: 10947 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10948 // (A s>= 0, B s>= 0). 10949 // 10950 // Note: 10951 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10952 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10953 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10954 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10955 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10956 // C)". 10957 10958 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10959 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10960 if (!LDiff || !RDiff || *LDiff != *RDiff) 10961 return false; 10962 10963 if (LDiff->isMinValue()) 10964 return true; 10965 10966 APInt FoundRHSLimit; 10967 10968 if (Pred == CmpInst::ICMP_ULT) { 10969 FoundRHSLimit = -(*RDiff); 10970 } else { 10971 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10972 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10973 } 10974 10975 // Try to prove (1) or (2), as needed. 10976 return isAvailableAtLoopEntry(FoundRHS, L) && 10977 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10978 getConstant(FoundRHSLimit)); 10979 } 10980 10981 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10982 const SCEV *LHS, const SCEV *RHS, 10983 const SCEV *FoundLHS, 10984 const SCEV *FoundRHS, unsigned Depth) { 10985 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10986 10987 auto ClearOnExit = make_scope_exit([&]() { 10988 if (LPhi) { 10989 bool Erased = PendingMerges.erase(LPhi); 10990 assert(Erased && "Failed to erase LPhi!"); 10991 (void)Erased; 10992 } 10993 if (RPhi) { 10994 bool Erased = PendingMerges.erase(RPhi); 10995 assert(Erased && "Failed to erase RPhi!"); 10996 (void)Erased; 10997 } 10998 }); 10999 11000 // Find respective Phis and check that they are not being pending. 11001 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11002 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11003 if (!PendingMerges.insert(Phi).second) 11004 return false; 11005 LPhi = Phi; 11006 } 11007 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11008 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11009 // If we detect a loop of Phi nodes being processed by this method, for 11010 // example: 11011 // 11012 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11013 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11014 // 11015 // we don't want to deal with a case that complex, so return conservative 11016 // answer false. 11017 if (!PendingMerges.insert(Phi).second) 11018 return false; 11019 RPhi = Phi; 11020 } 11021 11022 // If none of LHS, RHS is a Phi, nothing to do here. 11023 if (!LPhi && !RPhi) 11024 return false; 11025 11026 // If there is a SCEVUnknown Phi we are interested in, make it left. 11027 if (!LPhi) { 11028 std::swap(LHS, RHS); 11029 std::swap(FoundLHS, FoundRHS); 11030 std::swap(LPhi, RPhi); 11031 Pred = ICmpInst::getSwappedPredicate(Pred); 11032 } 11033 11034 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11035 const BasicBlock *LBB = LPhi->getParent(); 11036 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11037 11038 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11039 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11040 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11041 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11042 }; 11043 11044 if (RPhi && RPhi->getParent() == LBB) { 11045 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11046 // If we compare two Phis from the same block, and for each entry block 11047 // the predicate is true for incoming values from this block, then the 11048 // predicate is also true for the Phis. 11049 for (const BasicBlock *IncBB : predecessors(LBB)) { 11050 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11051 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11052 if (!ProvedEasily(L, R)) 11053 return false; 11054 } 11055 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11056 // Case two: RHS is also a Phi from the same basic block, and it is an 11057 // AddRec. It means that there is a loop which has both AddRec and Unknown 11058 // PHIs, for it we can compare incoming values of AddRec from above the loop 11059 // and latch with their respective incoming values of LPhi. 11060 // TODO: Generalize to handle loops with many inputs in a header. 11061 if (LPhi->getNumIncomingValues() != 2) return false; 11062 11063 auto *RLoop = RAR->getLoop(); 11064 auto *Predecessor = RLoop->getLoopPredecessor(); 11065 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11066 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11067 if (!ProvedEasily(L1, RAR->getStart())) 11068 return false; 11069 auto *Latch = RLoop->getLoopLatch(); 11070 assert(Latch && "Loop with AddRec with no latch?"); 11071 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11072 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11073 return false; 11074 } else { 11075 // In all other cases go over inputs of LHS and compare each of them to RHS, 11076 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11077 // At this point RHS is either a non-Phi, or it is a Phi from some block 11078 // different from LBB. 11079 for (const BasicBlock *IncBB : predecessors(LBB)) { 11080 // Check that RHS is available in this block. 11081 if (!dominates(RHS, IncBB)) 11082 return false; 11083 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11084 // Make sure L does not refer to a value from a potentially previous 11085 // iteration of a loop. 11086 if (!properlyDominates(L, IncBB)) 11087 return false; 11088 if (!ProvedEasily(L, RHS)) 11089 return false; 11090 } 11091 } 11092 return true; 11093 } 11094 11095 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11096 const SCEV *LHS, const SCEV *RHS, 11097 const SCEV *FoundLHS, 11098 const SCEV *FoundRHS, 11099 const Instruction *Context) { 11100 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11101 return true; 11102 11103 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11104 return true; 11105 11106 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11107 Context)) 11108 return true; 11109 11110 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11111 FoundLHS, FoundRHS); 11112 } 11113 11114 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11115 template <typename MinMaxExprType> 11116 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11117 const SCEV *Candidate) { 11118 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11119 if (!MinMaxExpr) 11120 return false; 11121 11122 return is_contained(MinMaxExpr->operands(), Candidate); 11123 } 11124 11125 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11126 ICmpInst::Predicate Pred, 11127 const SCEV *LHS, const SCEV *RHS) { 11128 // If both sides are affine addrecs for the same loop, with equal 11129 // steps, and we know the recurrences don't wrap, then we only 11130 // need to check the predicate on the starting values. 11131 11132 if (!ICmpInst::isRelational(Pred)) 11133 return false; 11134 11135 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11136 if (!LAR) 11137 return false; 11138 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11139 if (!RAR) 11140 return false; 11141 if (LAR->getLoop() != RAR->getLoop()) 11142 return false; 11143 if (!LAR->isAffine() || !RAR->isAffine()) 11144 return false; 11145 11146 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11147 return false; 11148 11149 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11150 SCEV::FlagNSW : SCEV::FlagNUW; 11151 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11152 return false; 11153 11154 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11155 } 11156 11157 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11158 /// expression? 11159 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11160 ICmpInst::Predicate Pred, 11161 const SCEV *LHS, const SCEV *RHS) { 11162 switch (Pred) { 11163 default: 11164 return false; 11165 11166 case ICmpInst::ICMP_SGE: 11167 std::swap(LHS, RHS); 11168 LLVM_FALLTHROUGH; 11169 case ICmpInst::ICMP_SLE: 11170 return 11171 // min(A, ...) <= A 11172 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11173 // A <= max(A, ...) 11174 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11175 11176 case ICmpInst::ICMP_UGE: 11177 std::swap(LHS, RHS); 11178 LLVM_FALLTHROUGH; 11179 case ICmpInst::ICMP_ULE: 11180 return 11181 // min(A, ...) <= A 11182 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11183 // A <= max(A, ...) 11184 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11185 } 11186 11187 llvm_unreachable("covered switch fell through?!"); 11188 } 11189 11190 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11191 const SCEV *LHS, const SCEV *RHS, 11192 const SCEV *FoundLHS, 11193 const SCEV *FoundRHS, 11194 unsigned Depth) { 11195 assert(getTypeSizeInBits(LHS->getType()) == 11196 getTypeSizeInBits(RHS->getType()) && 11197 "LHS and RHS have different sizes?"); 11198 assert(getTypeSizeInBits(FoundLHS->getType()) == 11199 getTypeSizeInBits(FoundRHS->getType()) && 11200 "FoundLHS and FoundRHS have different sizes?"); 11201 // We want to avoid hurting the compile time with analysis of too big trees. 11202 if (Depth > MaxSCEVOperationsImplicationDepth) 11203 return false; 11204 11205 // We only want to work with GT comparison so far. 11206 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11207 Pred = CmpInst::getSwappedPredicate(Pred); 11208 std::swap(LHS, RHS); 11209 std::swap(FoundLHS, FoundRHS); 11210 } 11211 11212 // For unsigned, try to reduce it to corresponding signed comparison. 11213 if (Pred == ICmpInst::ICMP_UGT) 11214 // We can replace unsigned predicate with its signed counterpart if all 11215 // involved values are non-negative. 11216 // TODO: We could have better support for unsigned. 11217 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11218 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11219 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11220 // use this fact to prove that LHS and RHS are non-negative. 11221 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11222 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11223 FoundRHS) && 11224 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11225 FoundRHS)) 11226 Pred = ICmpInst::ICMP_SGT; 11227 } 11228 11229 if (Pred != ICmpInst::ICMP_SGT) 11230 return false; 11231 11232 auto GetOpFromSExt = [&](const SCEV *S) { 11233 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11234 return Ext->getOperand(); 11235 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11236 // the constant in some cases. 11237 return S; 11238 }; 11239 11240 // Acquire values from extensions. 11241 auto *OrigLHS = LHS; 11242 auto *OrigFoundLHS = FoundLHS; 11243 LHS = GetOpFromSExt(LHS); 11244 FoundLHS = GetOpFromSExt(FoundLHS); 11245 11246 // Is the SGT predicate can be proved trivially or using the found context. 11247 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11248 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11249 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11250 FoundRHS, Depth + 1); 11251 }; 11252 11253 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11254 // We want to avoid creation of any new non-constant SCEV. Since we are 11255 // going to compare the operands to RHS, we should be certain that we don't 11256 // need any size extensions for this. So let's decline all cases when the 11257 // sizes of types of LHS and RHS do not match. 11258 // TODO: Maybe try to get RHS from sext to catch more cases? 11259 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11260 return false; 11261 11262 // Should not overflow. 11263 if (!LHSAddExpr->hasNoSignedWrap()) 11264 return false; 11265 11266 auto *LL = LHSAddExpr->getOperand(0); 11267 auto *LR = LHSAddExpr->getOperand(1); 11268 auto *MinusOne = getMinusOne(RHS->getType()); 11269 11270 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11271 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11272 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11273 }; 11274 // Try to prove the following rule: 11275 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11276 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11277 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11278 return true; 11279 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11280 Value *LL, *LR; 11281 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11282 11283 using namespace llvm::PatternMatch; 11284 11285 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11286 // Rules for division. 11287 // We are going to perform some comparisons with Denominator and its 11288 // derivative expressions. In general case, creating a SCEV for it may 11289 // lead to a complex analysis of the entire graph, and in particular it 11290 // can request trip count recalculation for the same loop. This would 11291 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11292 // this, we only want to create SCEVs that are constants in this section. 11293 // So we bail if Denominator is not a constant. 11294 if (!isa<ConstantInt>(LR)) 11295 return false; 11296 11297 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11298 11299 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11300 // then a SCEV for the numerator already exists and matches with FoundLHS. 11301 auto *Numerator = getExistingSCEV(LL); 11302 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11303 return false; 11304 11305 // Make sure that the numerator matches with FoundLHS and the denominator 11306 // is positive. 11307 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11308 return false; 11309 11310 auto *DTy = Denominator->getType(); 11311 auto *FRHSTy = FoundRHS->getType(); 11312 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11313 // One of types is a pointer and another one is not. We cannot extend 11314 // them properly to a wider type, so let us just reject this case. 11315 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11316 // to avoid this check. 11317 return false; 11318 11319 // Given that: 11320 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11321 auto *WTy = getWiderType(DTy, FRHSTy); 11322 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11323 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11324 11325 // Try to prove the following rule: 11326 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11327 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11328 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11329 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11330 if (isKnownNonPositive(RHS) && 11331 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11332 return true; 11333 11334 // Try to prove the following rule: 11335 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11336 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11337 // If we divide it by Denominator > 2, then: 11338 // 1. If FoundLHS is negative, then the result is 0. 11339 // 2. If FoundLHS is non-negative, then the result is non-negative. 11340 // Anyways, the result is non-negative. 11341 auto *MinusOne = getMinusOne(WTy); 11342 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11343 if (isKnownNegative(RHS) && 11344 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11345 return true; 11346 } 11347 } 11348 11349 // If our expression contained SCEVUnknown Phis, and we split it down and now 11350 // need to prove something for them, try to prove the predicate for every 11351 // possible incoming values of those Phis. 11352 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11353 return true; 11354 11355 return false; 11356 } 11357 11358 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11359 const SCEV *LHS, const SCEV *RHS) { 11360 // zext x u<= sext x, sext x s<= zext x 11361 switch (Pred) { 11362 case ICmpInst::ICMP_SGE: 11363 std::swap(LHS, RHS); 11364 LLVM_FALLTHROUGH; 11365 case ICmpInst::ICMP_SLE: { 11366 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11367 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11368 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11369 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11370 return true; 11371 break; 11372 } 11373 case ICmpInst::ICMP_UGE: 11374 std::swap(LHS, RHS); 11375 LLVM_FALLTHROUGH; 11376 case ICmpInst::ICMP_ULE: { 11377 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11378 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11379 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11380 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11381 return true; 11382 break; 11383 } 11384 default: 11385 break; 11386 }; 11387 return false; 11388 } 11389 11390 bool 11391 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11392 const SCEV *LHS, const SCEV *RHS) { 11393 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11394 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11395 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11396 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11397 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11398 } 11399 11400 bool 11401 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11402 const SCEV *LHS, const SCEV *RHS, 11403 const SCEV *FoundLHS, 11404 const SCEV *FoundRHS) { 11405 switch (Pred) { 11406 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11407 case ICmpInst::ICMP_EQ: 11408 case ICmpInst::ICMP_NE: 11409 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11410 return true; 11411 break; 11412 case ICmpInst::ICMP_SLT: 11413 case ICmpInst::ICMP_SLE: 11414 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11415 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11416 return true; 11417 break; 11418 case ICmpInst::ICMP_SGT: 11419 case ICmpInst::ICMP_SGE: 11420 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11421 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11422 return true; 11423 break; 11424 case ICmpInst::ICMP_ULT: 11425 case ICmpInst::ICMP_ULE: 11426 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11427 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11428 return true; 11429 break; 11430 case ICmpInst::ICMP_UGT: 11431 case ICmpInst::ICMP_UGE: 11432 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11433 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11434 return true; 11435 break; 11436 } 11437 11438 // Maybe it can be proved via operations? 11439 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11440 return true; 11441 11442 return false; 11443 } 11444 11445 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11446 const SCEV *LHS, 11447 const SCEV *RHS, 11448 const SCEV *FoundLHS, 11449 const SCEV *FoundRHS) { 11450 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11451 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11452 // reduce the compile time impact of this optimization. 11453 return false; 11454 11455 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11456 if (!Addend) 11457 return false; 11458 11459 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11460 11461 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11462 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11463 ConstantRange FoundLHSRange = 11464 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11465 11466 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11467 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11468 11469 // We can also compute the range of values for `LHS` that satisfy the 11470 // consequent, "`LHS` `Pred` `RHS`": 11471 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11472 // The antecedent implies the consequent if every value of `LHS` that 11473 // satisfies the antecedent also satisfies the consequent. 11474 return LHSRange.icmp(Pred, ConstRHS); 11475 } 11476 11477 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11478 bool IsSigned) { 11479 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11480 11481 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11482 const SCEV *One = getOne(Stride->getType()); 11483 11484 if (IsSigned) { 11485 APInt MaxRHS = getSignedRangeMax(RHS); 11486 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11487 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11488 11489 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11490 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11491 } 11492 11493 APInt MaxRHS = getUnsignedRangeMax(RHS); 11494 APInt MaxValue = APInt::getMaxValue(BitWidth); 11495 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11496 11497 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11498 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11499 } 11500 11501 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11502 bool IsSigned) { 11503 11504 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11505 const SCEV *One = getOne(Stride->getType()); 11506 11507 if (IsSigned) { 11508 APInt MinRHS = getSignedRangeMin(RHS); 11509 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11510 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11511 11512 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11513 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11514 } 11515 11516 APInt MinRHS = getUnsignedRangeMin(RHS); 11517 APInt MinValue = APInt::getMinValue(BitWidth); 11518 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11519 11520 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11521 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11522 } 11523 11524 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 11525 // umin(N, 1) + floor((N - umin(N, 1)) / D) 11526 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 11527 // expression fixes the case of N=0. 11528 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 11529 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 11530 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 11531 } 11532 11533 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11534 const SCEV *Stride, 11535 const SCEV *End, 11536 unsigned BitWidth, 11537 bool IsSigned) { 11538 // The logic in this function assumes we can represent a positive stride. 11539 // If we can't, the backedge-taken count must be zero. 11540 if (IsSigned && BitWidth == 1) 11541 return getZero(Stride->getType()); 11542 11543 // Calculate the maximum backedge count based on the range of values 11544 // permitted by Start, End, and Stride. 11545 APInt MinStart = 11546 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11547 11548 APInt MinStride = 11549 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11550 11551 // We assume either the stride is positive, or the backedge-taken count 11552 // is zero. So force StrideForMaxBECount to be at least one. 11553 APInt One(BitWidth, 1); 11554 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 11555 : APIntOps::umax(One, MinStride); 11556 11557 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11558 : APInt::getMaxValue(BitWidth); 11559 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11560 11561 // Although End can be a MAX expression we estimate MaxEnd considering only 11562 // the case End = RHS of the loop termination condition. This is safe because 11563 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11564 // taken count. 11565 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11566 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11567 11568 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 11569 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 11570 : APIntOps::umax(MaxEnd, MinStart); 11571 11572 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 11573 getConstant(StrideForMaxBECount) /* Step */); 11574 } 11575 11576 ScalarEvolution::ExitLimit 11577 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11578 const Loop *L, bool IsSigned, 11579 bool ControlsExit, bool AllowPredicates) { 11580 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11581 11582 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11583 bool PredicatedIV = false; 11584 11585 if (!IV && AllowPredicates) { 11586 // Try to make this an AddRec using runtime tests, in the first X 11587 // iterations of this loop, where X is the SCEV expression found by the 11588 // algorithm below. 11589 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11590 PredicatedIV = true; 11591 } 11592 11593 // Avoid weird loops 11594 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11595 return getCouldNotCompute(); 11596 11597 // A precondition of this method is that the condition being analyzed 11598 // reaches an exiting branch which dominates the latch. Given that, we can 11599 // assume that an increment which violates the nowrap specification and 11600 // produces poison must cause undefined behavior when the resulting poison 11601 // value is branched upon and thus we can conclude that the backedge is 11602 // taken no more often than would be required to produce that poison value. 11603 // Note that a well defined loop can exit on the iteration which violates 11604 // the nowrap specification if there is another exit (either explicit or 11605 // implicit/exceptional) which causes the loop to execute before the 11606 // exiting instruction we're analyzing would trigger UB. 11607 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11608 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11609 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11610 11611 const SCEV *Stride = IV->getStepRecurrence(*this); 11612 11613 bool PositiveStride = isKnownPositive(Stride); 11614 11615 // Avoid negative or zero stride values. 11616 if (!PositiveStride) { 11617 // We can compute the correct backedge taken count for loops with unknown 11618 // strides if we can prove that the loop is not an infinite loop with side 11619 // effects. Here's the loop structure we are trying to handle - 11620 // 11621 // i = start 11622 // do { 11623 // A[i] = i; 11624 // i += s; 11625 // } while (i < end); 11626 // 11627 // The backedge taken count for such loops is evaluated as - 11628 // (max(end, start + stride) - start - 1) /u stride 11629 // 11630 // The additional preconditions that we need to check to prove correctness 11631 // of the above formula is as follows - 11632 // 11633 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11634 // NoWrap flag). 11635 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 11636 // no side effects within the loop) 11637 // b) loop has a single static exit (with no abnormal exits) 11638 // 11639 // Precondition a) implies that if the stride is negative, this is a single 11640 // trip loop. The backedge taken count formula reduces to zero in this case. 11641 // 11642 // Precondition b) and c) combine to imply that if rhs is invariant in L, 11643 // then a zero stride means the backedge can't be taken without executing 11644 // undefined behavior. 11645 // 11646 // The positive stride case is the same as isKnownPositive(Stride) returning 11647 // true (original behavior of the function). 11648 // 11649 // We want to make sure that the stride is truly unknown as there are edge 11650 // cases where ScalarEvolution propagates no wrap flags to the 11651 // post-increment/decrement IV even though the increment/decrement operation 11652 // itself is wrapping. The computed backedge taken count may be wrong in 11653 // such cases. This is prevented by checking that the stride is not known to 11654 // be either positive or non-positive. For example, no wrap flags are 11655 // propagated to the post-increment IV of this loop with a trip count of 2 - 11656 // 11657 // unsigned char i; 11658 // for(i=127; i<128; i+=129) 11659 // A[i] = i; 11660 // 11661 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 11662 !loopIsFiniteByAssumption(L) || !loopHasNoAbnormalExits(L)) 11663 return getCouldNotCompute(); 11664 11665 if (!isKnownNonZero(Stride)) { 11666 // If we have a step of zero, and RHS isn't invariant in L, we don't know 11667 // if it might eventually be greater than start and if so, on which 11668 // iteration. We can't even produce a useful upper bound. 11669 if (!isLoopInvariant(RHS, L)) 11670 return getCouldNotCompute(); 11671 11672 // We allow a potentially zero stride, but we need to divide by stride 11673 // below. Since the loop can't be infinite and this check must control 11674 // the sole exit, we can infer the exit must be taken on the first 11675 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 11676 // we know the numerator in the divides below must be zero, so we can 11677 // pick an arbitrary non-zero value for the denominator (e.g. stride) 11678 // and produce the right result. 11679 // FIXME: Handle the case where Stride is poison? 11680 auto wouldZeroStrideBeUB = [&]() { 11681 // Proof by contradiction. Suppose the stride were zero. If we can 11682 // prove that the backedge *is* taken on the first iteration, then since 11683 // we know this condition controls the sole exit, we must have an 11684 // infinite loop. We can't have a (well defined) infinite loop per 11685 // check just above. 11686 // Note: The (Start - Stride) term is used to get the start' term from 11687 // (start' + stride,+,stride). Remember that we only care about the 11688 // result of this expression when stride == 0 at runtime. 11689 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 11690 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 11691 }; 11692 if (!wouldZeroStrideBeUB()) { 11693 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 11694 } 11695 } 11696 } else if (!Stride->isOne() && !NoWrap) { 11697 auto isUBOnWrap = [&]() { 11698 // Can we prove this loop *must* be UB if overflow of IV occurs? 11699 // Reasoning goes as follows: 11700 // * Suppose the IV did self wrap. 11701 // * If Stride evenly divides the iteration space, then once wrap 11702 // occurs, the loop must revisit the same values. 11703 // * We know that RHS is invariant, and that none of those values 11704 // caused this exit to be taken previously. Thus, this exit is 11705 // dynamically dead. 11706 // * If this is the sole exit, then a dead exit implies the loop 11707 // must be infinite if there are no abnormal exits. 11708 // * If the loop were infinite, then it must either not be mustprogress 11709 // or have side effects. Otherwise, it must be UB. 11710 // * It can't (by assumption), be UB so we have contradicted our 11711 // premise and can conclude the IV did not in fact self-wrap. 11712 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 11713 // follows trivially from the fact that every (un)signed-wrapped, but 11714 // not self-wrapped value must be LT than the last value before 11715 // (un)signed wrap. Since we know that last value didn't exit, nor 11716 // will any smaller one. 11717 11718 if (!isLoopInvariant(RHS, L)) 11719 return false; 11720 11721 auto *StrideC = dyn_cast<SCEVConstant>(Stride); 11722 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 11723 return false; 11724 11725 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 11726 return false; 11727 11728 return loopIsFiniteByAssumption(L); 11729 }; 11730 11731 // Avoid proven overflow cases: this will ensure that the backedge taken 11732 // count will not generate any unsigned overflow. Relaxed no-overflow 11733 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11734 // undefined behaviors like the case of C language. 11735 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 11736 return getCouldNotCompute(); 11737 } 11738 11739 // On all paths just preceeding, we established the following invariant: 11740 // IV can be assumed not to overflow up to and including the exiting 11741 // iteration. We proved this in one of two ways: 11742 // 1) We can show overflow doesn't occur before the exiting iteration 11743 // 1a) canIVOverflowOnLT, and b) step of one 11744 // 2) We can show that if overflow occurs, the loop must execute UB 11745 // before any possible exit. 11746 // Note that we have not yet proved RHS invariant (in general). 11747 11748 const SCEV *Start = IV->getStart(); 11749 11750 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 11751 // Use integer-typed versions for actual computation. 11752 const SCEV *OrigStart = Start; 11753 const SCEV *OrigRHS = RHS; 11754 if (Start->getType()->isPointerTy()) { 11755 Start = getLosslessPtrToIntExpr(Start); 11756 if (isa<SCEVCouldNotCompute>(Start)) 11757 return Start; 11758 } 11759 if (RHS->getType()->isPointerTy()) { 11760 RHS = getLosslessPtrToIntExpr(RHS); 11761 if (isa<SCEVCouldNotCompute>(RHS)) 11762 return RHS; 11763 } 11764 11765 // When the RHS is not invariant, we do not know the end bound of the loop and 11766 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11767 // calculate the MaxBECount, given the start, stride and max value for the end 11768 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11769 // checked above). 11770 if (!isLoopInvariant(RHS, L)) { 11771 const SCEV *MaxBECount = computeMaxBECountForLT( 11772 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11773 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11774 false /*MaxOrZero*/, Predicates); 11775 } 11776 11777 // We use the expression (max(End,Start)-Start)/Stride to describe the 11778 // backedge count, as if the backedge is taken at least once max(End,Start) 11779 // is End and so the result is as above, and if not max(End,Start) is Start 11780 // so we get a backedge count of zero. 11781 const SCEV *BECount = nullptr; 11782 auto *StartMinusStride = getMinusSCEV(OrigStart, Stride); 11783 // Can we prove (max(RHS,Start) > Start - Stride? 11784 if (isLoopEntryGuardedByCond(L, Cond, StartMinusStride, Start) && 11785 isLoopEntryGuardedByCond(L, Cond, StartMinusStride, RHS)) { 11786 // In this case, we can use a refined formula for computing backedge taken 11787 // count. The general formula remains: 11788 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 11789 // We want to use the alternate formula: 11790 // "((End - 1) - (Start - Stride)) /u Stride" 11791 // Let's do a quick case analysis to show these are equivalent under 11792 // our precondition that max(RHS,Start) > Start - Stride. 11793 // * For RHS <= Start, the backedge-taken count must be zero. 11794 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11795 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 11796 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 11797 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 11798 // this to the stride of 1 case. 11799 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 11800 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11801 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 11802 // "((RHS - (Start - Stride) - 1) /u Stride". 11803 // Our preconditions trivially imply no overflow in that form. 11804 const SCEV *MinusOne = getMinusOne(Stride->getType()); 11805 const SCEV *Numerator = 11806 getMinusSCEV(getAddExpr(RHS, MinusOne), StartMinusStride); 11807 if (!isa<SCEVCouldNotCompute>(Numerator)) { 11808 BECount = getUDivExpr(Numerator, Stride); 11809 } 11810 } 11811 11812 const SCEV *BECountIfBackedgeTaken = nullptr; 11813 if (!BECount) { 11814 auto canProveRHSGreaterThanEqualStart = [&]() { 11815 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 11816 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 11817 return true; 11818 11819 // (RHS > Start - 1) implies RHS >= Start. 11820 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 11821 // "Start - 1" doesn't overflow. 11822 // * For signed comparison, if Start - 1 does overflow, it's equal 11823 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 11824 // * For unsigned comparison, if Start - 1 does overflow, it's equal 11825 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 11826 // 11827 // FIXME: Should isLoopEntryGuardedByCond do this for us? 11828 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11829 auto *StartMinusOne = getAddExpr(OrigStart, 11830 getMinusOne(OrigStart->getType())); 11831 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 11832 }; 11833 11834 // If we know that RHS >= Start in the context of loop, then we know that 11835 // max(RHS, Start) = RHS at this point. 11836 const SCEV *End; 11837 if (canProveRHSGreaterThanEqualStart()) { 11838 End = RHS; 11839 } else { 11840 // If RHS < Start, the backedge will be taken zero times. So in 11841 // general, we can write the backedge-taken count as: 11842 // 11843 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 11844 // 11845 // We convert it to the following to make it more convenient for SCEV: 11846 // 11847 // ceil(max(RHS, Start) - Start) / Stride 11848 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11849 11850 // See what would happen if we assume the backedge is taken. This is 11851 // used to compute MaxBECount. 11852 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 11853 } 11854 11855 // At this point, we know: 11856 // 11857 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 11858 // 2. The index variable doesn't overflow. 11859 // 11860 // Therefore, we know N exists such that 11861 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 11862 // doesn't overflow. 11863 // 11864 // Using this information, try to prove whether the addition in 11865 // "(Start - End) + (Stride - 1)" has unsigned overflow. 11866 const SCEV *One = getOne(Stride->getType()); 11867 bool MayAddOverflow = [&] { 11868 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 11869 if (StrideC->getAPInt().isPowerOf2()) { 11870 // Suppose Stride is a power of two, and Start/End are unsigned 11871 // integers. Let UMAX be the largest representable unsigned 11872 // integer. 11873 // 11874 // By the preconditions of this function, we know 11875 // "(Start + Stride * N) >= End", and this doesn't overflow. 11876 // As a formula: 11877 // 11878 // End <= (Start + Stride * N) <= UMAX 11879 // 11880 // Subtracting Start from all the terms: 11881 // 11882 // End - Start <= Stride * N <= UMAX - Start 11883 // 11884 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 11885 // 11886 // End - Start <= Stride * N <= UMAX 11887 // 11888 // Stride * N is a multiple of Stride. Therefore, 11889 // 11890 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 11891 // 11892 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 11893 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 11894 // 11895 // End - Start <= Stride * N <= UMAX - Stride - 1 11896 // 11897 // Dropping the middle term: 11898 // 11899 // End - Start <= UMAX - Stride - 1 11900 // 11901 // Adding Stride - 1 to both sides: 11902 // 11903 // (End - Start) + (Stride - 1) <= UMAX 11904 // 11905 // In other words, the addition doesn't have unsigned overflow. 11906 // 11907 // A similar proof works if we treat Start/End as signed values. 11908 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 11909 // use signed max instead of unsigned max. Note that we're trying 11910 // to prove a lack of unsigned overflow in either case. 11911 return false; 11912 } 11913 } 11914 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 11915 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 11916 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 11917 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 11918 // 11919 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 11920 return false; 11921 } 11922 return true; 11923 }(); 11924 11925 const SCEV *Delta = getMinusSCEV(End, Start); 11926 if (!MayAddOverflow) { 11927 // floor((D + (S - 1)) / S) 11928 // We prefer this formulation if it's legal because it's fewer operations. 11929 BECount = 11930 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 11931 } else { 11932 BECount = getUDivCeilSCEV(Delta, Stride); 11933 } 11934 } 11935 11936 const SCEV *MaxBECount; 11937 bool MaxOrZero = false; 11938 if (isa<SCEVConstant>(BECount)) { 11939 MaxBECount = BECount; 11940 } else if (BECountIfBackedgeTaken && 11941 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11942 // If we know exactly how many times the backedge will be taken if it's 11943 // taken at least once, then the backedge count will either be that or 11944 // zero. 11945 MaxBECount = BECountIfBackedgeTaken; 11946 MaxOrZero = true; 11947 } else { 11948 MaxBECount = computeMaxBECountForLT( 11949 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11950 } 11951 11952 if (isa<SCEVCouldNotCompute>(MaxBECount) && 11953 !isa<SCEVCouldNotCompute>(BECount)) 11954 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 11955 11956 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 11957 } 11958 11959 ScalarEvolution::ExitLimit 11960 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 11961 const Loop *L, bool IsSigned, 11962 bool ControlsExit, bool AllowPredicates) { 11963 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11964 // We handle only IV > Invariant 11965 if (!isLoopInvariant(RHS, L)) 11966 return getCouldNotCompute(); 11967 11968 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11969 if (!IV && AllowPredicates) 11970 // Try to make this an AddRec using runtime tests, in the first X 11971 // iterations of this loop, where X is the SCEV expression found by the 11972 // algorithm below. 11973 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11974 11975 // Avoid weird loops 11976 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11977 return getCouldNotCompute(); 11978 11979 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11980 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11981 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11982 11983 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 11984 11985 // Avoid negative or zero stride values 11986 if (!isKnownPositive(Stride)) 11987 return getCouldNotCompute(); 11988 11989 // Avoid proven overflow cases: this will ensure that the backedge taken count 11990 // will not generate any unsigned overflow. Relaxed no-overflow conditions 11991 // exploit NoWrapFlags, allowing to optimize in presence of undefined 11992 // behaviors like the case of C language. 11993 if (!Stride->isOne() && !NoWrap) 11994 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 11995 return getCouldNotCompute(); 11996 11997 const SCEV *Start = IV->getStart(); 11998 const SCEV *End = RHS; 11999 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12000 // If we know that Start >= RHS in the context of loop, then we know that 12001 // min(RHS, Start) = RHS at this point. 12002 if (isLoopEntryGuardedByCond( 12003 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12004 End = RHS; 12005 else 12006 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12007 } 12008 12009 if (Start->getType()->isPointerTy()) { 12010 Start = getLosslessPtrToIntExpr(Start); 12011 if (isa<SCEVCouldNotCompute>(Start)) 12012 return Start; 12013 } 12014 if (End->getType()->isPointerTy()) { 12015 End = getLosslessPtrToIntExpr(End); 12016 if (isa<SCEVCouldNotCompute>(End)) 12017 return End; 12018 } 12019 12020 // Compute ((Start - End) + (Stride - 1)) / Stride. 12021 // FIXME: This can overflow. Holding off on fixing this for now; 12022 // howManyGreaterThans will hopefully be gone soon. 12023 const SCEV *One = getOne(Stride->getType()); 12024 const SCEV *BECount = getUDivExpr( 12025 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12026 12027 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12028 : getUnsignedRangeMax(Start); 12029 12030 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12031 : getUnsignedRangeMin(Stride); 12032 12033 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12034 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12035 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12036 12037 // Although End can be a MIN expression we estimate MinEnd considering only 12038 // the case End = RHS. This is safe because in the other case (Start - End) 12039 // is zero, leading to a zero maximum backedge taken count. 12040 APInt MinEnd = 12041 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12042 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12043 12044 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12045 ? BECount 12046 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12047 getConstant(MinStride)); 12048 12049 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12050 MaxBECount = BECount; 12051 12052 return ExitLimit(BECount, MaxBECount, false, Predicates); 12053 } 12054 12055 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12056 ScalarEvolution &SE) const { 12057 if (Range.isFullSet()) // Infinite loop. 12058 return SE.getCouldNotCompute(); 12059 12060 // If the start is a non-zero constant, shift the range to simplify things. 12061 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12062 if (!SC->getValue()->isZero()) { 12063 SmallVector<const SCEV *, 4> Operands(operands()); 12064 Operands[0] = SE.getZero(SC->getType()); 12065 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12066 getNoWrapFlags(FlagNW)); 12067 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12068 return ShiftedAddRec->getNumIterationsInRange( 12069 Range.subtract(SC->getAPInt()), SE); 12070 // This is strange and shouldn't happen. 12071 return SE.getCouldNotCompute(); 12072 } 12073 12074 // The only time we can solve this is when we have all constant indices. 12075 // Otherwise, we cannot determine the overflow conditions. 12076 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12077 return SE.getCouldNotCompute(); 12078 12079 // Okay at this point we know that all elements of the chrec are constants and 12080 // that the start element is zero. 12081 12082 // First check to see if the range contains zero. If not, the first 12083 // iteration exits. 12084 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12085 if (!Range.contains(APInt(BitWidth, 0))) 12086 return SE.getZero(getType()); 12087 12088 if (isAffine()) { 12089 // If this is an affine expression then we have this situation: 12090 // Solve {0,+,A} in Range === Ax in Range 12091 12092 // We know that zero is in the range. If A is positive then we know that 12093 // the upper value of the range must be the first possible exit value. 12094 // If A is negative then the lower of the range is the last possible loop 12095 // value. Also note that we already checked for a full range. 12096 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12097 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12098 12099 // The exit value should be (End+A)/A. 12100 APInt ExitVal = (End + A).udiv(A); 12101 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12102 12103 // Evaluate at the exit value. If we really did fall out of the valid 12104 // range, then we computed our trip count, otherwise wrap around or other 12105 // things must have happened. 12106 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12107 if (Range.contains(Val->getValue())) 12108 return SE.getCouldNotCompute(); // Something strange happened 12109 12110 // Ensure that the previous value is in the range. This is a sanity check. 12111 assert(Range.contains( 12112 EvaluateConstantChrecAtConstant(this, 12113 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12114 "Linear scev computation is off in a bad way!"); 12115 return SE.getConstant(ExitValue); 12116 } 12117 12118 if (isQuadratic()) { 12119 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12120 return SE.getConstant(S.getValue()); 12121 } 12122 12123 return SE.getCouldNotCompute(); 12124 } 12125 12126 const SCEVAddRecExpr * 12127 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12128 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12129 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12130 // but in this case we cannot guarantee that the value returned will be an 12131 // AddRec because SCEV does not have a fixed point where it stops 12132 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12133 // may happen if we reach arithmetic depth limit while simplifying. So we 12134 // construct the returned value explicitly. 12135 SmallVector<const SCEV *, 3> Ops; 12136 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12137 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12138 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12139 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12140 // We know that the last operand is not a constant zero (otherwise it would 12141 // have been popped out earlier). This guarantees us that if the result has 12142 // the same last operand, then it will also not be popped out, meaning that 12143 // the returned value will be an AddRec. 12144 const SCEV *Last = getOperand(getNumOperands() - 1); 12145 assert(!Last->isZero() && "Recurrency with zero step?"); 12146 Ops.push_back(Last); 12147 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12148 SCEV::FlagAnyWrap)); 12149 } 12150 12151 // Return true when S contains at least an undef value. 12152 static inline bool containsUndefs(const SCEV *S) { 12153 return SCEVExprContains(S, [](const SCEV *S) { 12154 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12155 return isa<UndefValue>(SU->getValue()); 12156 return false; 12157 }); 12158 } 12159 12160 namespace { 12161 12162 // Collect all steps of SCEV expressions. 12163 struct SCEVCollectStrides { 12164 ScalarEvolution &SE; 12165 SmallVectorImpl<const SCEV *> &Strides; 12166 12167 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 12168 : SE(SE), Strides(S) {} 12169 12170 bool follow(const SCEV *S) { 12171 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 12172 Strides.push_back(AR->getStepRecurrence(SE)); 12173 return true; 12174 } 12175 12176 bool isDone() const { return false; } 12177 }; 12178 12179 // Collect all SCEVUnknown and SCEVMulExpr expressions. 12180 struct SCEVCollectTerms { 12181 SmallVectorImpl<const SCEV *> &Terms; 12182 12183 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 12184 12185 bool follow(const SCEV *S) { 12186 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 12187 isa<SCEVSignExtendExpr>(S)) { 12188 if (!containsUndefs(S)) 12189 Terms.push_back(S); 12190 12191 // Stop recursion: once we collected a term, do not walk its operands. 12192 return false; 12193 } 12194 12195 // Keep looking. 12196 return true; 12197 } 12198 12199 bool isDone() const { return false; } 12200 }; 12201 12202 // Check if a SCEV contains an AddRecExpr. 12203 struct SCEVHasAddRec { 12204 bool &ContainsAddRec; 12205 12206 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 12207 ContainsAddRec = false; 12208 } 12209 12210 bool follow(const SCEV *S) { 12211 if (isa<SCEVAddRecExpr>(S)) { 12212 ContainsAddRec = true; 12213 12214 // Stop recursion: once we collected a term, do not walk its operands. 12215 return false; 12216 } 12217 12218 // Keep looking. 12219 return true; 12220 } 12221 12222 bool isDone() const { return false; } 12223 }; 12224 12225 // Find factors that are multiplied with an expression that (possibly as a 12226 // subexpression) contains an AddRecExpr. In the expression: 12227 // 12228 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 12229 // 12230 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 12231 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 12232 // parameters as they form a product with an induction variable. 12233 // 12234 // This collector expects all array size parameters to be in the same MulExpr. 12235 // It might be necessary to later add support for collecting parameters that are 12236 // spread over different nested MulExpr. 12237 struct SCEVCollectAddRecMultiplies { 12238 SmallVectorImpl<const SCEV *> &Terms; 12239 ScalarEvolution &SE; 12240 12241 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 12242 : Terms(T), SE(SE) {} 12243 12244 bool follow(const SCEV *S) { 12245 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 12246 bool HasAddRec = false; 12247 SmallVector<const SCEV *, 0> Operands; 12248 for (auto Op : Mul->operands()) { 12249 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 12250 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 12251 Operands.push_back(Op); 12252 } else if (Unknown) { 12253 HasAddRec = true; 12254 } else { 12255 bool ContainsAddRec = false; 12256 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 12257 visitAll(Op, ContiansAddRec); 12258 HasAddRec |= ContainsAddRec; 12259 } 12260 } 12261 if (Operands.size() == 0) 12262 return true; 12263 12264 if (!HasAddRec) 12265 return false; 12266 12267 Terms.push_back(SE.getMulExpr(Operands)); 12268 // Stop recursion: once we collected a term, do not walk its operands. 12269 return false; 12270 } 12271 12272 // Keep looking. 12273 return true; 12274 } 12275 12276 bool isDone() const { return false; } 12277 }; 12278 12279 } // end anonymous namespace 12280 12281 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 12282 /// two places: 12283 /// 1) The strides of AddRec expressions. 12284 /// 2) Unknowns that are multiplied with AddRec expressions. 12285 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 12286 SmallVectorImpl<const SCEV *> &Terms) { 12287 SmallVector<const SCEV *, 4> Strides; 12288 SCEVCollectStrides StrideCollector(*this, Strides); 12289 visitAll(Expr, StrideCollector); 12290 12291 LLVM_DEBUG({ 12292 dbgs() << "Strides:\n"; 12293 for (const SCEV *S : Strides) 12294 dbgs() << *S << "\n"; 12295 }); 12296 12297 for (const SCEV *S : Strides) { 12298 SCEVCollectTerms TermCollector(Terms); 12299 visitAll(S, TermCollector); 12300 } 12301 12302 LLVM_DEBUG({ 12303 dbgs() << "Terms:\n"; 12304 for (const SCEV *T : Terms) 12305 dbgs() << *T << "\n"; 12306 }); 12307 12308 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 12309 visitAll(Expr, MulCollector); 12310 } 12311 12312 static bool findArrayDimensionsRec(ScalarEvolution &SE, 12313 SmallVectorImpl<const SCEV *> &Terms, 12314 SmallVectorImpl<const SCEV *> &Sizes) { 12315 int Last = Terms.size() - 1; 12316 const SCEV *Step = Terms[Last]; 12317 12318 // End of recursion. 12319 if (Last == 0) { 12320 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 12321 SmallVector<const SCEV *, 2> Qs; 12322 for (const SCEV *Op : M->operands()) 12323 if (!isa<SCEVConstant>(Op)) 12324 Qs.push_back(Op); 12325 12326 Step = SE.getMulExpr(Qs); 12327 } 12328 12329 Sizes.push_back(Step); 12330 return true; 12331 } 12332 12333 for (const SCEV *&Term : Terms) { 12334 // Normalize the terms before the next call to findArrayDimensionsRec. 12335 const SCEV *Q, *R; 12336 SCEVDivision::divide(SE, Term, Step, &Q, &R); 12337 12338 // Bail out when GCD does not evenly divide one of the terms. 12339 if (!R->isZero()) 12340 return false; 12341 12342 Term = Q; 12343 } 12344 12345 // Remove all SCEVConstants. 12346 erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }); 12347 12348 if (Terms.size() > 0) 12349 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 12350 return false; 12351 12352 Sizes.push_back(Step); 12353 return true; 12354 } 12355 12356 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 12357 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 12358 for (const SCEV *T : Terms) 12359 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 12360 return true; 12361 12362 return false; 12363 } 12364 12365 // Return the number of product terms in S. 12366 static inline int numberOfTerms(const SCEV *S) { 12367 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 12368 return Expr->getNumOperands(); 12369 return 1; 12370 } 12371 12372 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 12373 if (isa<SCEVConstant>(T)) 12374 return nullptr; 12375 12376 if (isa<SCEVUnknown>(T)) 12377 return T; 12378 12379 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 12380 SmallVector<const SCEV *, 2> Factors; 12381 for (const SCEV *Op : M->operands()) 12382 if (!isa<SCEVConstant>(Op)) 12383 Factors.push_back(Op); 12384 12385 return SE.getMulExpr(Factors); 12386 } 12387 12388 return T; 12389 } 12390 12391 /// Return the size of an element read or written by Inst. 12392 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12393 Type *Ty; 12394 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12395 Ty = Store->getValueOperand()->getType(); 12396 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12397 Ty = Load->getType(); 12398 else 12399 return nullptr; 12400 12401 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12402 return getSizeOfExpr(ETy, Ty); 12403 } 12404 12405 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 12406 SmallVectorImpl<const SCEV *> &Sizes, 12407 const SCEV *ElementSize) { 12408 if (Terms.size() < 1 || !ElementSize) 12409 return; 12410 12411 // Early return when Terms do not contain parameters: we do not delinearize 12412 // non parametric SCEVs. 12413 if (!containsParameters(Terms)) 12414 return; 12415 12416 LLVM_DEBUG({ 12417 dbgs() << "Terms:\n"; 12418 for (const SCEV *T : Terms) 12419 dbgs() << *T << "\n"; 12420 }); 12421 12422 // Remove duplicates. 12423 array_pod_sort(Terms.begin(), Terms.end()); 12424 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 12425 12426 // Put larger terms first. 12427 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 12428 return numberOfTerms(LHS) > numberOfTerms(RHS); 12429 }); 12430 12431 // Try to divide all terms by the element size. If term is not divisible by 12432 // element size, proceed with the original term. 12433 for (const SCEV *&Term : Terms) { 12434 const SCEV *Q, *R; 12435 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 12436 if (!Q->isZero()) 12437 Term = Q; 12438 } 12439 12440 SmallVector<const SCEV *, 4> NewTerms; 12441 12442 // Remove constant factors. 12443 for (const SCEV *T : Terms) 12444 if (const SCEV *NewT = removeConstantFactors(*this, T)) 12445 NewTerms.push_back(NewT); 12446 12447 LLVM_DEBUG({ 12448 dbgs() << "Terms after sorting:\n"; 12449 for (const SCEV *T : NewTerms) 12450 dbgs() << *T << "\n"; 12451 }); 12452 12453 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 12454 Sizes.clear(); 12455 return; 12456 } 12457 12458 // The last element to be pushed into Sizes is the size of an element. 12459 Sizes.push_back(ElementSize); 12460 12461 LLVM_DEBUG({ 12462 dbgs() << "Sizes:\n"; 12463 for (const SCEV *S : Sizes) 12464 dbgs() << *S << "\n"; 12465 }); 12466 } 12467 12468 void ScalarEvolution::computeAccessFunctions( 12469 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 12470 SmallVectorImpl<const SCEV *> &Sizes) { 12471 // Early exit in case this SCEV is not an affine multivariate function. 12472 if (Sizes.empty()) 12473 return; 12474 12475 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 12476 if (!AR->isAffine()) 12477 return; 12478 12479 const SCEV *Res = Expr; 12480 int Last = Sizes.size() - 1; 12481 for (int i = Last; i >= 0; i--) { 12482 const SCEV *Q, *R; 12483 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 12484 12485 LLVM_DEBUG({ 12486 dbgs() << "Res: " << *Res << "\n"; 12487 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 12488 dbgs() << "Res divided by Sizes[i]:\n"; 12489 dbgs() << "Quotient: " << *Q << "\n"; 12490 dbgs() << "Remainder: " << *R << "\n"; 12491 }); 12492 12493 Res = Q; 12494 12495 // Do not record the last subscript corresponding to the size of elements in 12496 // the array. 12497 if (i == Last) { 12498 12499 // Bail out if the remainder is too complex. 12500 if (isa<SCEVAddRecExpr>(R)) { 12501 Subscripts.clear(); 12502 Sizes.clear(); 12503 return; 12504 } 12505 12506 continue; 12507 } 12508 12509 // Record the access function for the current subscript. 12510 Subscripts.push_back(R); 12511 } 12512 12513 // Also push in last position the remainder of the last division: it will be 12514 // the access function of the innermost dimension. 12515 Subscripts.push_back(Res); 12516 12517 std::reverse(Subscripts.begin(), Subscripts.end()); 12518 12519 LLVM_DEBUG({ 12520 dbgs() << "Subscripts:\n"; 12521 for (const SCEV *S : Subscripts) 12522 dbgs() << *S << "\n"; 12523 }); 12524 } 12525 12526 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 12527 /// sizes of an array access. Returns the remainder of the delinearization that 12528 /// is the offset start of the array. The SCEV->delinearize algorithm computes 12529 /// the multiples of SCEV coefficients: that is a pattern matching of sub 12530 /// expressions in the stride and base of a SCEV corresponding to the 12531 /// computation of a GCD (greatest common divisor) of base and stride. When 12532 /// SCEV->delinearize fails, it returns the SCEV unchanged. 12533 /// 12534 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 12535 /// 12536 /// void foo(long n, long m, long o, double A[n][m][o]) { 12537 /// 12538 /// for (long i = 0; i < n; i++) 12539 /// for (long j = 0; j < m; j++) 12540 /// for (long k = 0; k < o; k++) 12541 /// A[i][j][k] = 1.0; 12542 /// } 12543 /// 12544 /// the delinearization input is the following AddRec SCEV: 12545 /// 12546 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 12547 /// 12548 /// From this SCEV, we are able to say that the base offset of the access is %A 12549 /// because it appears as an offset that does not divide any of the strides in 12550 /// the loops: 12551 /// 12552 /// CHECK: Base offset: %A 12553 /// 12554 /// and then SCEV->delinearize determines the size of some of the dimensions of 12555 /// the array as these are the multiples by which the strides are happening: 12556 /// 12557 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 12558 /// 12559 /// Note that the outermost dimension remains of UnknownSize because there are 12560 /// no strides that would help identifying the size of the last dimension: when 12561 /// the array has been statically allocated, one could compute the size of that 12562 /// dimension by dividing the overall size of the array by the size of the known 12563 /// dimensions: %m * %o * 8. 12564 /// 12565 /// Finally delinearize provides the access functions for the array reference 12566 /// that does correspond to A[i][j][k] of the above C testcase: 12567 /// 12568 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 12569 /// 12570 /// The testcases are checking the output of a function pass: 12571 /// DelinearizationPass that walks through all loads and stores of a function 12572 /// asking for the SCEV of the memory access with respect to all enclosing 12573 /// loops, calling SCEV->delinearize on that and printing the results. 12574 void ScalarEvolution::delinearize(const SCEV *Expr, 12575 SmallVectorImpl<const SCEV *> &Subscripts, 12576 SmallVectorImpl<const SCEV *> &Sizes, 12577 const SCEV *ElementSize) { 12578 // First step: collect parametric terms. 12579 SmallVector<const SCEV *, 4> Terms; 12580 collectParametricTerms(Expr, Terms); 12581 12582 if (Terms.empty()) 12583 return; 12584 12585 // Second step: find subscript sizes. 12586 findArrayDimensions(Terms, Sizes, ElementSize); 12587 12588 if (Sizes.empty()) 12589 return; 12590 12591 // Third step: compute the access functions for each subscript. 12592 computeAccessFunctions(Expr, Subscripts, Sizes); 12593 12594 if (Subscripts.empty()) 12595 return; 12596 12597 LLVM_DEBUG({ 12598 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 12599 dbgs() << "ArrayDecl[UnknownSize]"; 12600 for (const SCEV *S : Sizes) 12601 dbgs() << "[" << *S << "]"; 12602 12603 dbgs() << "\nArrayRef"; 12604 for (const SCEV *S : Subscripts) 12605 dbgs() << "[" << *S << "]"; 12606 dbgs() << "\n"; 12607 }); 12608 } 12609 12610 bool ScalarEvolution::getIndexExpressionsFromGEP( 12611 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 12612 SmallVectorImpl<int> &Sizes) { 12613 assert(Subscripts.empty() && Sizes.empty() && 12614 "Expected output lists to be empty on entry to this function."); 12615 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 12616 Type *Ty = nullptr; 12617 bool DroppedFirstDim = false; 12618 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 12619 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 12620 if (i == 1) { 12621 Ty = GEP->getSourceElementType(); 12622 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 12623 if (Const->getValue()->isZero()) { 12624 DroppedFirstDim = true; 12625 continue; 12626 } 12627 Subscripts.push_back(Expr); 12628 continue; 12629 } 12630 12631 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 12632 if (!ArrayTy) { 12633 Subscripts.clear(); 12634 Sizes.clear(); 12635 return false; 12636 } 12637 12638 Subscripts.push_back(Expr); 12639 if (!(DroppedFirstDim && i == 2)) 12640 Sizes.push_back(ArrayTy->getNumElements()); 12641 12642 Ty = ArrayTy->getElementType(); 12643 } 12644 return !Subscripts.empty(); 12645 } 12646 12647 //===----------------------------------------------------------------------===// 12648 // SCEVCallbackVH Class Implementation 12649 //===----------------------------------------------------------------------===// 12650 12651 void ScalarEvolution::SCEVCallbackVH::deleted() { 12652 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12653 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12654 SE->ConstantEvolutionLoopExitValue.erase(PN); 12655 SE->eraseValueFromMap(getValPtr()); 12656 // this now dangles! 12657 } 12658 12659 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12660 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12661 12662 // Forget all the expressions associated with users of the old value, 12663 // so that future queries will recompute the expressions using the new 12664 // value. 12665 Value *Old = getValPtr(); 12666 SmallVector<User *, 16> Worklist(Old->users()); 12667 SmallPtrSet<User *, 8> Visited; 12668 while (!Worklist.empty()) { 12669 User *U = Worklist.pop_back_val(); 12670 // Deleting the Old value will cause this to dangle. Postpone 12671 // that until everything else is done. 12672 if (U == Old) 12673 continue; 12674 if (!Visited.insert(U).second) 12675 continue; 12676 if (PHINode *PN = dyn_cast<PHINode>(U)) 12677 SE->ConstantEvolutionLoopExitValue.erase(PN); 12678 SE->eraseValueFromMap(U); 12679 llvm::append_range(Worklist, U->users()); 12680 } 12681 // Delete the Old value. 12682 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12683 SE->ConstantEvolutionLoopExitValue.erase(PN); 12684 SE->eraseValueFromMap(Old); 12685 // this now dangles! 12686 } 12687 12688 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12689 : CallbackVH(V), SE(se) {} 12690 12691 //===----------------------------------------------------------------------===// 12692 // ScalarEvolution Class Implementation 12693 //===----------------------------------------------------------------------===// 12694 12695 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12696 AssumptionCache &AC, DominatorTree &DT, 12697 LoopInfo &LI) 12698 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12699 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12700 LoopDispositions(64), BlockDispositions(64) { 12701 // To use guards for proving predicates, we need to scan every instruction in 12702 // relevant basic blocks, and not just terminators. Doing this is a waste of 12703 // time if the IR does not actually contain any calls to 12704 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12705 // 12706 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12707 // to _add_ guards to the module when there weren't any before, and wants 12708 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12709 // efficient in lieu of being smart in that rather obscure case. 12710 12711 auto *GuardDecl = F.getParent()->getFunction( 12712 Intrinsic::getName(Intrinsic::experimental_guard)); 12713 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12714 } 12715 12716 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12717 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12718 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12719 ValueExprMap(std::move(Arg.ValueExprMap)), 12720 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12721 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12722 PendingMerges(std::move(Arg.PendingMerges)), 12723 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12724 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12725 PredicatedBackedgeTakenCounts( 12726 std::move(Arg.PredicatedBackedgeTakenCounts)), 12727 ConstantEvolutionLoopExitValue( 12728 std::move(Arg.ConstantEvolutionLoopExitValue)), 12729 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12730 LoopDispositions(std::move(Arg.LoopDispositions)), 12731 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12732 BlockDispositions(std::move(Arg.BlockDispositions)), 12733 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12734 SignedRanges(std::move(Arg.SignedRanges)), 12735 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12736 UniquePreds(std::move(Arg.UniquePreds)), 12737 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12738 LoopUsers(std::move(Arg.LoopUsers)), 12739 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12740 FirstUnknown(Arg.FirstUnknown) { 12741 Arg.FirstUnknown = nullptr; 12742 } 12743 12744 ScalarEvolution::~ScalarEvolution() { 12745 // Iterate through all the SCEVUnknown instances and call their 12746 // destructors, so that they release their references to their values. 12747 for (SCEVUnknown *U = FirstUnknown; U;) { 12748 SCEVUnknown *Tmp = U; 12749 U = U->Next; 12750 Tmp->~SCEVUnknown(); 12751 } 12752 FirstUnknown = nullptr; 12753 12754 ExprValueMap.clear(); 12755 ValueExprMap.clear(); 12756 HasRecMap.clear(); 12757 BackedgeTakenCounts.clear(); 12758 PredicatedBackedgeTakenCounts.clear(); 12759 12760 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12761 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12762 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12763 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12764 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12765 } 12766 12767 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12768 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12769 } 12770 12771 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12772 const Loop *L) { 12773 // Print all inner loops first 12774 for (Loop *I : *L) 12775 PrintLoopInfo(OS, SE, I); 12776 12777 OS << "Loop "; 12778 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12779 OS << ": "; 12780 12781 SmallVector<BasicBlock *, 8> ExitingBlocks; 12782 L->getExitingBlocks(ExitingBlocks); 12783 if (ExitingBlocks.size() != 1) 12784 OS << "<multiple exits> "; 12785 12786 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12787 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12788 else 12789 OS << "Unpredictable backedge-taken count.\n"; 12790 12791 if (ExitingBlocks.size() > 1) 12792 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12793 OS << " exit count for " << ExitingBlock->getName() << ": " 12794 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12795 } 12796 12797 OS << "Loop "; 12798 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12799 OS << ": "; 12800 12801 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12802 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12803 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12804 OS << ", actual taken count either this or zero."; 12805 } else { 12806 OS << "Unpredictable max backedge-taken count. "; 12807 } 12808 12809 OS << "\n" 12810 "Loop "; 12811 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12812 OS << ": "; 12813 12814 SCEVUnionPredicate Pred; 12815 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12816 if (!isa<SCEVCouldNotCompute>(PBT)) { 12817 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12818 OS << " Predicates:\n"; 12819 Pred.print(OS, 4); 12820 } else { 12821 OS << "Unpredictable predicated backedge-taken count. "; 12822 } 12823 OS << "\n"; 12824 12825 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12826 OS << "Loop "; 12827 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12828 OS << ": "; 12829 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12830 } 12831 } 12832 12833 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12834 switch (LD) { 12835 case ScalarEvolution::LoopVariant: 12836 return "Variant"; 12837 case ScalarEvolution::LoopInvariant: 12838 return "Invariant"; 12839 case ScalarEvolution::LoopComputable: 12840 return "Computable"; 12841 } 12842 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12843 } 12844 12845 void ScalarEvolution::print(raw_ostream &OS) const { 12846 // ScalarEvolution's implementation of the print method is to print 12847 // out SCEV values of all instructions that are interesting. Doing 12848 // this potentially causes it to create new SCEV objects though, 12849 // which technically conflicts with the const qualifier. This isn't 12850 // observable from outside the class though, so casting away the 12851 // const isn't dangerous. 12852 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12853 12854 if (ClassifyExpressions) { 12855 OS << "Classifying expressions for: "; 12856 F.printAsOperand(OS, /*PrintType=*/false); 12857 OS << "\n"; 12858 for (Instruction &I : instructions(F)) 12859 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12860 OS << I << '\n'; 12861 OS << " --> "; 12862 const SCEV *SV = SE.getSCEV(&I); 12863 SV->print(OS); 12864 if (!isa<SCEVCouldNotCompute>(SV)) { 12865 OS << " U: "; 12866 SE.getUnsignedRange(SV).print(OS); 12867 OS << " S: "; 12868 SE.getSignedRange(SV).print(OS); 12869 } 12870 12871 const Loop *L = LI.getLoopFor(I.getParent()); 12872 12873 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12874 if (AtUse != SV) { 12875 OS << " --> "; 12876 AtUse->print(OS); 12877 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12878 OS << " U: "; 12879 SE.getUnsignedRange(AtUse).print(OS); 12880 OS << " S: "; 12881 SE.getSignedRange(AtUse).print(OS); 12882 } 12883 } 12884 12885 if (L) { 12886 OS << "\t\t" "Exits: "; 12887 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12888 if (!SE.isLoopInvariant(ExitValue, L)) { 12889 OS << "<<Unknown>>"; 12890 } else { 12891 OS << *ExitValue; 12892 } 12893 12894 bool First = true; 12895 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12896 if (First) { 12897 OS << "\t\t" "LoopDispositions: { "; 12898 First = false; 12899 } else { 12900 OS << ", "; 12901 } 12902 12903 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12904 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12905 } 12906 12907 for (auto *InnerL : depth_first(L)) { 12908 if (InnerL == L) 12909 continue; 12910 if (First) { 12911 OS << "\t\t" "LoopDispositions: { "; 12912 First = false; 12913 } else { 12914 OS << ", "; 12915 } 12916 12917 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12918 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12919 } 12920 12921 OS << " }"; 12922 } 12923 12924 OS << "\n"; 12925 } 12926 } 12927 12928 OS << "Determining loop execution counts for: "; 12929 F.printAsOperand(OS, /*PrintType=*/false); 12930 OS << "\n"; 12931 for (Loop *I : LI) 12932 PrintLoopInfo(OS, &SE, I); 12933 } 12934 12935 ScalarEvolution::LoopDisposition 12936 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12937 auto &Values = LoopDispositions[S]; 12938 for (auto &V : Values) { 12939 if (V.getPointer() == L) 12940 return V.getInt(); 12941 } 12942 Values.emplace_back(L, LoopVariant); 12943 LoopDisposition D = computeLoopDisposition(S, L); 12944 auto &Values2 = LoopDispositions[S]; 12945 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12946 if (V.getPointer() == L) { 12947 V.setInt(D); 12948 break; 12949 } 12950 } 12951 return D; 12952 } 12953 12954 ScalarEvolution::LoopDisposition 12955 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12956 switch (S->getSCEVType()) { 12957 case scConstant: 12958 return LoopInvariant; 12959 case scPtrToInt: 12960 case scTruncate: 12961 case scZeroExtend: 12962 case scSignExtend: 12963 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12964 case scAddRecExpr: { 12965 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12966 12967 // If L is the addrec's loop, it's computable. 12968 if (AR->getLoop() == L) 12969 return LoopComputable; 12970 12971 // Add recurrences are never invariant in the function-body (null loop). 12972 if (!L) 12973 return LoopVariant; 12974 12975 // Everything that is not defined at loop entry is variant. 12976 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12977 return LoopVariant; 12978 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12979 " dominate the contained loop's header?"); 12980 12981 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12982 if (AR->getLoop()->contains(L)) 12983 return LoopInvariant; 12984 12985 // This recurrence is variant w.r.t. L if any of its operands 12986 // are variant. 12987 for (auto *Op : AR->operands()) 12988 if (!isLoopInvariant(Op, L)) 12989 return LoopVariant; 12990 12991 // Otherwise it's loop-invariant. 12992 return LoopInvariant; 12993 } 12994 case scAddExpr: 12995 case scMulExpr: 12996 case scUMaxExpr: 12997 case scSMaxExpr: 12998 case scUMinExpr: 12999 case scSMinExpr: { 13000 bool HasVarying = false; 13001 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 13002 LoopDisposition D = getLoopDisposition(Op, L); 13003 if (D == LoopVariant) 13004 return LoopVariant; 13005 if (D == LoopComputable) 13006 HasVarying = true; 13007 } 13008 return HasVarying ? LoopComputable : LoopInvariant; 13009 } 13010 case scUDivExpr: { 13011 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13012 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13013 if (LD == LoopVariant) 13014 return LoopVariant; 13015 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13016 if (RD == LoopVariant) 13017 return LoopVariant; 13018 return (LD == LoopInvariant && RD == LoopInvariant) ? 13019 LoopInvariant : LoopComputable; 13020 } 13021 case scUnknown: 13022 // All non-instruction values are loop invariant. All instructions are loop 13023 // invariant if they are not contained in the specified loop. 13024 // Instructions are never considered invariant in the function body 13025 // (null loop) because they are defined within the "loop". 13026 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13027 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13028 return LoopInvariant; 13029 case scCouldNotCompute: 13030 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13031 } 13032 llvm_unreachable("Unknown SCEV kind!"); 13033 } 13034 13035 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13036 return getLoopDisposition(S, L) == LoopInvariant; 13037 } 13038 13039 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13040 return getLoopDisposition(S, L) == LoopComputable; 13041 } 13042 13043 ScalarEvolution::BlockDisposition 13044 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13045 auto &Values = BlockDispositions[S]; 13046 for (auto &V : Values) { 13047 if (V.getPointer() == BB) 13048 return V.getInt(); 13049 } 13050 Values.emplace_back(BB, DoesNotDominateBlock); 13051 BlockDisposition D = computeBlockDisposition(S, BB); 13052 auto &Values2 = BlockDispositions[S]; 13053 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 13054 if (V.getPointer() == BB) { 13055 V.setInt(D); 13056 break; 13057 } 13058 } 13059 return D; 13060 } 13061 13062 ScalarEvolution::BlockDisposition 13063 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13064 switch (S->getSCEVType()) { 13065 case scConstant: 13066 return ProperlyDominatesBlock; 13067 case scPtrToInt: 13068 case scTruncate: 13069 case scZeroExtend: 13070 case scSignExtend: 13071 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13072 case scAddRecExpr: { 13073 // This uses a "dominates" query instead of "properly dominates" query 13074 // to test for proper dominance too, because the instruction which 13075 // produces the addrec's value is a PHI, and a PHI effectively properly 13076 // dominates its entire containing block. 13077 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13078 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13079 return DoesNotDominateBlock; 13080 13081 // Fall through into SCEVNAryExpr handling. 13082 LLVM_FALLTHROUGH; 13083 } 13084 case scAddExpr: 13085 case scMulExpr: 13086 case scUMaxExpr: 13087 case scSMaxExpr: 13088 case scUMinExpr: 13089 case scSMinExpr: { 13090 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13091 bool Proper = true; 13092 for (const SCEV *NAryOp : NAry->operands()) { 13093 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13094 if (D == DoesNotDominateBlock) 13095 return DoesNotDominateBlock; 13096 if (D == DominatesBlock) 13097 Proper = false; 13098 } 13099 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13100 } 13101 case scUDivExpr: { 13102 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13103 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13104 BlockDisposition LD = getBlockDisposition(LHS, BB); 13105 if (LD == DoesNotDominateBlock) 13106 return DoesNotDominateBlock; 13107 BlockDisposition RD = getBlockDisposition(RHS, BB); 13108 if (RD == DoesNotDominateBlock) 13109 return DoesNotDominateBlock; 13110 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13111 ProperlyDominatesBlock : DominatesBlock; 13112 } 13113 case scUnknown: 13114 if (Instruction *I = 13115 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13116 if (I->getParent() == BB) 13117 return DominatesBlock; 13118 if (DT.properlyDominates(I->getParent(), BB)) 13119 return ProperlyDominatesBlock; 13120 return DoesNotDominateBlock; 13121 } 13122 return ProperlyDominatesBlock; 13123 case scCouldNotCompute: 13124 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13125 } 13126 llvm_unreachable("Unknown SCEV kind!"); 13127 } 13128 13129 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13130 return getBlockDisposition(S, BB) >= DominatesBlock; 13131 } 13132 13133 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13134 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13135 } 13136 13137 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13138 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13139 } 13140 13141 void 13142 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 13143 ValuesAtScopes.erase(S); 13144 LoopDispositions.erase(S); 13145 BlockDispositions.erase(S); 13146 UnsignedRanges.erase(S); 13147 SignedRanges.erase(S); 13148 ExprValueMap.erase(S); 13149 HasRecMap.erase(S); 13150 MinTrailingZerosCache.erase(S); 13151 13152 for (auto I = PredicatedSCEVRewrites.begin(); 13153 I != PredicatedSCEVRewrites.end();) { 13154 std::pair<const SCEV *, const Loop *> Entry = I->first; 13155 if (Entry.first == S) 13156 PredicatedSCEVRewrites.erase(I++); 13157 else 13158 ++I; 13159 } 13160 13161 auto RemoveSCEVFromBackedgeMap = 13162 [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 13163 for (auto I = Map.begin(), E = Map.end(); I != E;) { 13164 BackedgeTakenInfo &BEInfo = I->second; 13165 if (BEInfo.hasOperand(S)) 13166 Map.erase(I++); 13167 else 13168 ++I; 13169 } 13170 }; 13171 13172 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 13173 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 13174 } 13175 13176 void 13177 ScalarEvolution::getUsedLoops(const SCEV *S, 13178 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13179 struct FindUsedLoops { 13180 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13181 : LoopsUsed(LoopsUsed) {} 13182 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13183 bool follow(const SCEV *S) { 13184 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13185 LoopsUsed.insert(AR->getLoop()); 13186 return true; 13187 } 13188 13189 bool isDone() const { return false; } 13190 }; 13191 13192 FindUsedLoops F(LoopsUsed); 13193 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13194 } 13195 13196 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 13197 SmallPtrSet<const Loop *, 8> LoopsUsed; 13198 getUsedLoops(S, LoopsUsed); 13199 for (auto *L : LoopsUsed) 13200 LoopUsers[L].push_back(S); 13201 } 13202 13203 void ScalarEvolution::verify() const { 13204 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13205 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13206 13207 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13208 13209 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13210 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13211 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13212 13213 const SCEV *visitConstant(const SCEVConstant *Constant) { 13214 return SE.getConstant(Constant->getAPInt()); 13215 } 13216 13217 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13218 return SE.getUnknown(Expr->getValue()); 13219 } 13220 13221 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13222 return SE.getCouldNotCompute(); 13223 } 13224 }; 13225 13226 SCEVMapper SCM(SE2); 13227 13228 while (!LoopStack.empty()) { 13229 auto *L = LoopStack.pop_back_val(); 13230 llvm::append_range(LoopStack, *L); 13231 13232 auto *CurBECount = SCM.visit( 13233 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 13234 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13235 13236 if (CurBECount == SE2.getCouldNotCompute() || 13237 NewBECount == SE2.getCouldNotCompute()) { 13238 // NB! This situation is legal, but is very suspicious -- whatever pass 13239 // change the loop to make a trip count go from could not compute to 13240 // computable or vice-versa *should have* invalidated SCEV. However, we 13241 // choose not to assert here (for now) since we don't want false 13242 // positives. 13243 continue; 13244 } 13245 13246 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 13247 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13248 // not propagate undef aggressively). This means we can (and do) fail 13249 // verification in cases where a transform makes the trip count of a loop 13250 // go from "undef" to "undef+1" (say). The transform is fine, since in 13251 // both cases the loop iterates "undef" times, but SCEV thinks we 13252 // increased the trip count of the loop by 1 incorrectly. 13253 continue; 13254 } 13255 13256 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13257 SE.getTypeSizeInBits(NewBECount->getType())) 13258 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13259 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13260 SE.getTypeSizeInBits(NewBECount->getType())) 13261 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13262 13263 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 13264 13265 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13266 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 13267 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13268 dbgs() << "Old: " << *CurBECount << "\n"; 13269 dbgs() << "New: " << *NewBECount << "\n"; 13270 dbgs() << "Delta: " << *Delta << "\n"; 13271 std::abort(); 13272 } 13273 } 13274 13275 // Collect all valid loops currently in LoopInfo. 13276 SmallPtrSet<Loop *, 32> ValidLoops; 13277 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13278 while (!Worklist.empty()) { 13279 Loop *L = Worklist.pop_back_val(); 13280 if (ValidLoops.contains(L)) 13281 continue; 13282 ValidLoops.insert(L); 13283 Worklist.append(L->begin(), L->end()); 13284 } 13285 // Check for SCEV expressions referencing invalid/deleted loops. 13286 for (auto &KV : ValueExprMap) { 13287 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 13288 if (!AR) 13289 continue; 13290 assert(ValidLoops.contains(AR->getLoop()) && 13291 "AddRec references invalid loop"); 13292 } 13293 } 13294 13295 bool ScalarEvolution::invalidate( 13296 Function &F, const PreservedAnalyses &PA, 13297 FunctionAnalysisManager::Invalidator &Inv) { 13298 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13299 // of its dependencies is invalidated. 13300 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13301 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13302 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13303 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13304 Inv.invalidate<LoopAnalysis>(F, PA); 13305 } 13306 13307 AnalysisKey ScalarEvolutionAnalysis::Key; 13308 13309 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13310 FunctionAnalysisManager &AM) { 13311 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13312 AM.getResult<AssumptionAnalysis>(F), 13313 AM.getResult<DominatorTreeAnalysis>(F), 13314 AM.getResult<LoopAnalysis>(F)); 13315 } 13316 13317 PreservedAnalyses 13318 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13319 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13320 return PreservedAnalyses::all(); 13321 } 13322 13323 PreservedAnalyses 13324 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13325 // For compatibility with opt's -analyze feature under legacy pass manager 13326 // which was not ported to NPM. This keeps tests using 13327 // update_analyze_test_checks.py working. 13328 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13329 << F.getName() << "':\n"; 13330 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13331 return PreservedAnalyses::all(); 13332 } 13333 13334 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13335 "Scalar Evolution Analysis", false, true) 13336 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13337 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13338 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13339 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13340 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13341 "Scalar Evolution Analysis", false, true) 13342 13343 char ScalarEvolutionWrapperPass::ID = 0; 13344 13345 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13346 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13347 } 13348 13349 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13350 SE.reset(new ScalarEvolution( 13351 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13352 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13353 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13354 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13355 return false; 13356 } 13357 13358 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13359 13360 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13361 SE->print(OS); 13362 } 13363 13364 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13365 if (!VerifySCEV) 13366 return; 13367 13368 SE->verify(); 13369 } 13370 13371 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13372 AU.setPreservesAll(); 13373 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13374 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13375 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13376 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13377 } 13378 13379 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13380 const SCEV *RHS) { 13381 FoldingSetNodeID ID; 13382 assert(LHS->getType() == RHS->getType() && 13383 "Type mismatch between LHS and RHS"); 13384 // Unique this node based on the arguments 13385 ID.AddInteger(SCEVPredicate::P_Equal); 13386 ID.AddPointer(LHS); 13387 ID.AddPointer(RHS); 13388 void *IP = nullptr; 13389 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13390 return S; 13391 SCEVEqualPredicate *Eq = new (SCEVAllocator) 13392 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 13393 UniquePreds.InsertNode(Eq, IP); 13394 return Eq; 13395 } 13396 13397 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13398 const SCEVAddRecExpr *AR, 13399 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13400 FoldingSetNodeID ID; 13401 // Unique this node based on the arguments 13402 ID.AddInteger(SCEVPredicate::P_Wrap); 13403 ID.AddPointer(AR); 13404 ID.AddInteger(AddedFlags); 13405 void *IP = nullptr; 13406 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13407 return S; 13408 auto *OF = new (SCEVAllocator) 13409 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13410 UniquePreds.InsertNode(OF, IP); 13411 return OF; 13412 } 13413 13414 namespace { 13415 13416 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13417 public: 13418 13419 /// Rewrites \p S in the context of a loop L and the SCEV predication 13420 /// infrastructure. 13421 /// 13422 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13423 /// equivalences present in \p Pred. 13424 /// 13425 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13426 /// \p NewPreds such that the result will be an AddRecExpr. 13427 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13428 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13429 SCEVUnionPredicate *Pred) { 13430 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13431 return Rewriter.visit(S); 13432 } 13433 13434 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13435 if (Pred) { 13436 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13437 for (auto *Pred : ExprPreds) 13438 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 13439 if (IPred->getLHS() == Expr) 13440 return IPred->getRHS(); 13441 } 13442 return convertToAddRecWithPreds(Expr); 13443 } 13444 13445 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13446 const SCEV *Operand = visit(Expr->getOperand()); 13447 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13448 if (AR && AR->getLoop() == L && AR->isAffine()) { 13449 // This couldn't be folded because the operand didn't have the nuw 13450 // flag. Add the nusw flag as an assumption that we could make. 13451 const SCEV *Step = AR->getStepRecurrence(SE); 13452 Type *Ty = Expr->getType(); 13453 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13454 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13455 SE.getSignExtendExpr(Step, Ty), L, 13456 AR->getNoWrapFlags()); 13457 } 13458 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13459 } 13460 13461 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13462 const SCEV *Operand = visit(Expr->getOperand()); 13463 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13464 if (AR && AR->getLoop() == L && AR->isAffine()) { 13465 // This couldn't be folded because the operand didn't have the nsw 13466 // flag. Add the nssw flag as an assumption that we could make. 13467 const SCEV *Step = AR->getStepRecurrence(SE); 13468 Type *Ty = Expr->getType(); 13469 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13470 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13471 SE.getSignExtendExpr(Step, Ty), L, 13472 AR->getNoWrapFlags()); 13473 } 13474 return SE.getSignExtendExpr(Operand, Expr->getType()); 13475 } 13476 13477 private: 13478 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13479 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13480 SCEVUnionPredicate *Pred) 13481 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13482 13483 bool addOverflowAssumption(const SCEVPredicate *P) { 13484 if (!NewPreds) { 13485 // Check if we've already made this assumption. 13486 return Pred && Pred->implies(P); 13487 } 13488 NewPreds->insert(P); 13489 return true; 13490 } 13491 13492 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13493 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13494 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13495 return addOverflowAssumption(A); 13496 } 13497 13498 // If \p Expr represents a PHINode, we try to see if it can be represented 13499 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13500 // to add this predicate as a runtime overflow check, we return the AddRec. 13501 // If \p Expr does not meet these conditions (is not a PHI node, or we 13502 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13503 // return \p Expr. 13504 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13505 if (!isa<PHINode>(Expr->getValue())) 13506 return Expr; 13507 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13508 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13509 if (!PredicatedRewrite) 13510 return Expr; 13511 for (auto *P : PredicatedRewrite->second){ 13512 // Wrap predicates from outer loops are not supported. 13513 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13514 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13515 if (L != AR->getLoop()) 13516 return Expr; 13517 } 13518 if (!addOverflowAssumption(P)) 13519 return Expr; 13520 } 13521 return PredicatedRewrite->first; 13522 } 13523 13524 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13525 SCEVUnionPredicate *Pred; 13526 const Loop *L; 13527 }; 13528 13529 } // end anonymous namespace 13530 13531 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13532 SCEVUnionPredicate &Preds) { 13533 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13534 } 13535 13536 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13537 const SCEV *S, const Loop *L, 13538 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13539 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13540 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13541 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13542 13543 if (!AddRec) 13544 return nullptr; 13545 13546 // Since the transformation was successful, we can now transfer the SCEV 13547 // predicates. 13548 for (auto *P : TransformPreds) 13549 Preds.insert(P); 13550 13551 return AddRec; 13552 } 13553 13554 /// SCEV predicates 13555 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13556 SCEVPredicateKind Kind) 13557 : FastID(ID), Kind(Kind) {} 13558 13559 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13560 const SCEV *LHS, const SCEV *RHS) 13561 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13562 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13563 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13564 } 13565 13566 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13567 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13568 13569 if (!Op) 13570 return false; 13571 13572 return Op->LHS == LHS && Op->RHS == RHS; 13573 } 13574 13575 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13576 13577 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13578 13579 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13580 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13581 } 13582 13583 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13584 const SCEVAddRecExpr *AR, 13585 IncrementWrapFlags Flags) 13586 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13587 13588 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13589 13590 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13591 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13592 13593 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13594 } 13595 13596 bool SCEVWrapPredicate::isAlwaysTrue() const { 13597 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13598 IncrementWrapFlags IFlags = Flags; 13599 13600 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13601 IFlags = clearFlags(IFlags, IncrementNSSW); 13602 13603 return IFlags == IncrementAnyWrap; 13604 } 13605 13606 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13607 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13608 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13609 OS << "<nusw>"; 13610 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13611 OS << "<nssw>"; 13612 OS << "\n"; 13613 } 13614 13615 SCEVWrapPredicate::IncrementWrapFlags 13616 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13617 ScalarEvolution &SE) { 13618 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13619 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13620 13621 // We can safely transfer the NSW flag as NSSW. 13622 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13623 ImpliedFlags = IncrementNSSW; 13624 13625 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13626 // If the increment is positive, the SCEV NUW flag will also imply the 13627 // WrapPredicate NUSW flag. 13628 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13629 if (Step->getValue()->getValue().isNonNegative()) 13630 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13631 } 13632 13633 return ImpliedFlags; 13634 } 13635 13636 /// Union predicates don't get cached so create a dummy set ID for it. 13637 SCEVUnionPredicate::SCEVUnionPredicate() 13638 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13639 13640 bool SCEVUnionPredicate::isAlwaysTrue() const { 13641 return all_of(Preds, 13642 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13643 } 13644 13645 ArrayRef<const SCEVPredicate *> 13646 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13647 auto I = SCEVToPreds.find(Expr); 13648 if (I == SCEVToPreds.end()) 13649 return ArrayRef<const SCEVPredicate *>(); 13650 return I->second; 13651 } 13652 13653 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13654 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13655 return all_of(Set->Preds, 13656 [this](const SCEVPredicate *I) { return this->implies(I); }); 13657 13658 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13659 if (ScevPredsIt == SCEVToPreds.end()) 13660 return false; 13661 auto &SCEVPreds = ScevPredsIt->second; 13662 13663 return any_of(SCEVPreds, 13664 [N](const SCEVPredicate *I) { return I->implies(N); }); 13665 } 13666 13667 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13668 13669 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13670 for (auto Pred : Preds) 13671 Pred->print(OS, Depth); 13672 } 13673 13674 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13675 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13676 for (auto Pred : Set->Preds) 13677 add(Pred); 13678 return; 13679 } 13680 13681 if (implies(N)) 13682 return; 13683 13684 const SCEV *Key = N->getExpr(); 13685 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13686 " associated expression!"); 13687 13688 SCEVToPreds[Key].push_back(N); 13689 Preds.push_back(N); 13690 } 13691 13692 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13693 Loop &L) 13694 : SE(SE), L(L) {} 13695 13696 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13697 const SCEV *Expr = SE.getSCEV(V); 13698 RewriteEntry &Entry = RewriteMap[Expr]; 13699 13700 // If we already have an entry and the version matches, return it. 13701 if (Entry.second && Generation == Entry.first) 13702 return Entry.second; 13703 13704 // We found an entry but it's stale. Rewrite the stale entry 13705 // according to the current predicate. 13706 if (Entry.second) 13707 Expr = Entry.second; 13708 13709 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13710 Entry = {Generation, NewSCEV}; 13711 13712 return NewSCEV; 13713 } 13714 13715 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13716 if (!BackedgeCount) { 13717 SCEVUnionPredicate BackedgePred; 13718 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13719 addPredicate(BackedgePred); 13720 } 13721 return BackedgeCount; 13722 } 13723 13724 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13725 if (Preds.implies(&Pred)) 13726 return; 13727 Preds.add(&Pred); 13728 updateGeneration(); 13729 } 13730 13731 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13732 return Preds; 13733 } 13734 13735 void PredicatedScalarEvolution::updateGeneration() { 13736 // If the generation number wrapped recompute everything. 13737 if (++Generation == 0) { 13738 for (auto &II : RewriteMap) { 13739 const SCEV *Rewritten = II.second.second; 13740 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13741 } 13742 } 13743 } 13744 13745 void PredicatedScalarEvolution::setNoOverflow( 13746 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13747 const SCEV *Expr = getSCEV(V); 13748 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13749 13750 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13751 13752 // Clear the statically implied flags. 13753 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13754 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13755 13756 auto II = FlagsMap.insert({V, Flags}); 13757 if (!II.second) 13758 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13759 } 13760 13761 bool PredicatedScalarEvolution::hasNoOverflow( 13762 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13763 const SCEV *Expr = getSCEV(V); 13764 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13765 13766 Flags = SCEVWrapPredicate::clearFlags( 13767 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13768 13769 auto II = FlagsMap.find(V); 13770 13771 if (II != FlagsMap.end()) 13772 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13773 13774 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13775 } 13776 13777 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13778 const SCEV *Expr = this->getSCEV(V); 13779 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13780 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13781 13782 if (!New) 13783 return nullptr; 13784 13785 for (auto *P : NewPreds) 13786 Preds.add(P); 13787 13788 updateGeneration(); 13789 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13790 return New; 13791 } 13792 13793 PredicatedScalarEvolution::PredicatedScalarEvolution( 13794 const PredicatedScalarEvolution &Init) 13795 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13796 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13797 for (auto I : Init.FlagsMap) 13798 FlagsMap.insert(I); 13799 } 13800 13801 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13802 // For each block. 13803 for (auto *BB : L.getBlocks()) 13804 for (auto &I : *BB) { 13805 if (!SE.isSCEVable(I.getType())) 13806 continue; 13807 13808 auto *Expr = SE.getSCEV(&I); 13809 auto II = RewriteMap.find(Expr); 13810 13811 if (II == RewriteMap.end()) 13812 continue; 13813 13814 // Don't print things that are not interesting. 13815 if (II->second.second == Expr) 13816 continue; 13817 13818 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13819 OS.indent(Depth + 2) << *Expr << "\n"; 13820 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13821 } 13822 } 13823 13824 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13825 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13826 // for URem with constant power-of-2 second operands. 13827 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13828 // 4, A / B becomes X / 8). 13829 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13830 const SCEV *&RHS) { 13831 // Try to match 'zext (trunc A to iB) to iY', which is used 13832 // for URem with constant power-of-2 second operands. Make sure the size of 13833 // the operand A matches the size of the whole expressions. 13834 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13835 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13836 LHS = Trunc->getOperand(); 13837 // Bail out if the type of the LHS is larger than the type of the 13838 // expression for now. 13839 if (getTypeSizeInBits(LHS->getType()) > 13840 getTypeSizeInBits(Expr->getType())) 13841 return false; 13842 if (LHS->getType() != Expr->getType()) 13843 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13844 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13845 << getTypeSizeInBits(Trunc->getType())); 13846 return true; 13847 } 13848 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13849 if (Add == nullptr || Add->getNumOperands() != 2) 13850 return false; 13851 13852 const SCEV *A = Add->getOperand(1); 13853 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13854 13855 if (Mul == nullptr) 13856 return false; 13857 13858 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13859 // (SomeExpr + (-(SomeExpr / B) * B)). 13860 if (Expr == getURemExpr(A, B)) { 13861 LHS = A; 13862 RHS = B; 13863 return true; 13864 } 13865 return false; 13866 }; 13867 13868 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13869 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13870 return MatchURemWithDivisor(Mul->getOperand(1)) || 13871 MatchURemWithDivisor(Mul->getOperand(2)); 13872 13873 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13874 if (Mul->getNumOperands() == 2) 13875 return MatchURemWithDivisor(Mul->getOperand(1)) || 13876 MatchURemWithDivisor(Mul->getOperand(0)) || 13877 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13878 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13879 return false; 13880 } 13881 13882 const SCEV * 13883 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13884 SmallVector<BasicBlock*, 16> ExitingBlocks; 13885 L->getExitingBlocks(ExitingBlocks); 13886 13887 // Form an expression for the maximum exit count possible for this loop. We 13888 // merge the max and exact information to approximate a version of 13889 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13890 SmallVector<const SCEV*, 4> ExitCounts; 13891 for (BasicBlock *ExitingBB : ExitingBlocks) { 13892 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13893 if (isa<SCEVCouldNotCompute>(ExitCount)) 13894 ExitCount = getExitCount(L, ExitingBB, 13895 ScalarEvolution::ConstantMaximum); 13896 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13897 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13898 "We should only have known counts for exiting blocks that " 13899 "dominate latch!"); 13900 ExitCounts.push_back(ExitCount); 13901 } 13902 } 13903 if (ExitCounts.empty()) 13904 return getCouldNotCompute(); 13905 return getUMinFromMismatchedTypes(ExitCounts); 13906 } 13907 13908 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13909 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13910 /// we cannot guarantee that the replacement is loop invariant in the loop of 13911 /// the AddRec. 13912 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13913 ValueToSCEVMapTy ⤅ 13914 13915 public: 13916 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13917 : SCEVRewriteVisitor(SE), Map(M) {} 13918 13919 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13920 13921 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13922 auto I = Map.find(Expr->getValue()); 13923 if (I == Map.end()) 13924 return Expr; 13925 return I->second; 13926 } 13927 }; 13928 13929 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13930 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13931 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13932 // If we have LHS == 0, check if LHS is computing a property of some unknown 13933 // SCEV %v which we can rewrite %v to express explicitly. 13934 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13935 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13936 RHSC->getValue()->isNullValue()) { 13937 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13938 // explicitly express that. 13939 const SCEV *URemLHS = nullptr; 13940 const SCEV *URemRHS = nullptr; 13941 if (matchURem(LHS, URemLHS, URemRHS)) { 13942 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13943 Value *V = LHSUnknown->getValue(); 13944 auto Multiple = 13945 getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS, 13946 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 13947 RewriteMap[V] = Multiple; 13948 return; 13949 } 13950 } 13951 } 13952 13953 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 13954 std::swap(LHS, RHS); 13955 Predicate = CmpInst::getSwappedPredicate(Predicate); 13956 } 13957 13958 // Check for a condition of the form (-C1 + X < C2). InstCombine will 13959 // create this form when combining two checks of the form (X u< C2 + C1) and 13960 // (X >=u C1). 13961 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() { 13962 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 13963 if (!AddExpr || AddExpr->getNumOperands() != 2) 13964 return false; 13965 13966 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 13967 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 13968 auto *C2 = dyn_cast<SCEVConstant>(RHS); 13969 if (!C1 || !C2 || !LHSUnknown) 13970 return false; 13971 13972 auto ExactRegion = 13973 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 13974 .sub(C1->getAPInt()); 13975 13976 // Bail out, unless we have a non-wrapping, monotonic range. 13977 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 13978 return false; 13979 auto I = RewriteMap.find(LHSUnknown->getValue()); 13980 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13981 RewriteMap[LHSUnknown->getValue()] = getUMaxExpr( 13982 getConstant(ExactRegion.getUnsignedMin()), 13983 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 13984 return true; 13985 }; 13986 if (MatchRangeCheckIdiom()) 13987 return; 13988 13989 // For now, limit to conditions that provide information about unknown 13990 // expressions. RHS also cannot contain add recurrences. 13991 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13992 if (!LHSUnknown || containsAddRecurrence(RHS)) 13993 return; 13994 13995 // Check whether LHS has already been rewritten. In that case we want to 13996 // chain further rewrites onto the already rewritten value. 13997 auto I = RewriteMap.find(LHSUnknown->getValue()); 13998 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13999 const SCEV *RewrittenRHS = nullptr; 14000 switch (Predicate) { 14001 case CmpInst::ICMP_ULT: 14002 RewrittenRHS = 14003 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14004 break; 14005 case CmpInst::ICMP_SLT: 14006 RewrittenRHS = 14007 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14008 break; 14009 case CmpInst::ICMP_ULE: 14010 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14011 break; 14012 case CmpInst::ICMP_SLE: 14013 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14014 break; 14015 case CmpInst::ICMP_UGT: 14016 RewrittenRHS = 14017 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14018 break; 14019 case CmpInst::ICMP_SGT: 14020 RewrittenRHS = 14021 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14022 break; 14023 case CmpInst::ICMP_UGE: 14024 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14025 break; 14026 case CmpInst::ICMP_SGE: 14027 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14028 break; 14029 case CmpInst::ICMP_EQ: 14030 if (isa<SCEVConstant>(RHS)) 14031 RewrittenRHS = RHS; 14032 break; 14033 case CmpInst::ICMP_NE: 14034 if (isa<SCEVConstant>(RHS) && 14035 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14036 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14037 break; 14038 default: 14039 break; 14040 } 14041 14042 if (RewrittenRHS) 14043 RewriteMap[LHSUnknown->getValue()] = RewrittenRHS; 14044 }; 14045 // Starting at the loop predecessor, climb up the predecessor chain, as long 14046 // as there are predecessors that can be found that have unique successors 14047 // leading to the original header. 14048 // TODO: share this logic with isLoopEntryGuardedByCond. 14049 ValueToSCEVMapTy RewriteMap; 14050 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14051 L->getLoopPredecessor(), L->getHeader()); 14052 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14053 14054 const BranchInst *LoopEntryPredicate = 14055 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14056 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14057 continue; 14058 14059 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second; 14060 SmallVector<Value *, 8> Worklist; 14061 SmallPtrSet<Value *, 8> Visited; 14062 Worklist.push_back(LoopEntryPredicate->getCondition()); 14063 while (!Worklist.empty()) { 14064 Value *Cond = Worklist.pop_back_val(); 14065 if (!Visited.insert(Cond).second) 14066 continue; 14067 14068 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14069 auto Predicate = 14070 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14071 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 14072 getSCEV(Cmp->getOperand(1)), RewriteMap); 14073 continue; 14074 } 14075 14076 Value *L, *R; 14077 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14078 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14079 Worklist.push_back(L); 14080 Worklist.push_back(R); 14081 } 14082 } 14083 } 14084 14085 // Also collect information from assumptions dominating the loop. 14086 for (auto &AssumeVH : AC.assumptions()) { 14087 if (!AssumeVH) 14088 continue; 14089 auto *AssumeI = cast<CallInst>(AssumeVH); 14090 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 14091 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 14092 continue; 14093 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 14094 getSCEV(Cmp->getOperand(1)), RewriteMap); 14095 } 14096 14097 if (RewriteMap.empty()) 14098 return Expr; 14099 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14100 return Rewriter.visit(Expr); 14101 } 14102