1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include <algorithm> 92 using namespace llvm; 93 94 #define DEBUG_TYPE "scalar-evolution" 95 96 STATISTIC(NumArrayLenItCounts, 97 "Number of trip counts computed with array length"); 98 STATISTIC(NumTripCountsComputed, 99 "Number of loops with predictable loop counts"); 100 STATISTIC(NumTripCountsNotComputed, 101 "Number of loops without predictable loop counts"); 102 STATISTIC(NumBruteForceTripCountsComputed, 103 "Number of loops with trip counts computed by force"); 104 105 static cl::opt<unsigned> 106 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 107 cl::desc("Maximum number of iterations SCEV will " 108 "symbolically execute a constant " 109 "derived loop"), 110 cl::init(100)); 111 112 // FIXME: Enable this with XDEBUG when the test suite is clean. 113 static cl::opt<bool> 114 VerifySCEV("verify-scev", 115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 116 117 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 118 "Scalar Evolution Analysis", false, true) 119 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 120 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 122 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 123 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 124 "Scalar Evolution Analysis", false, true) 125 char ScalarEvolution::ID = 0; 126 127 //===----------------------------------------------------------------------===// 128 // SCEV class definitions 129 //===----------------------------------------------------------------------===// 130 131 //===----------------------------------------------------------------------===// 132 // Implementation of the SCEV class. 133 // 134 135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 136 void SCEV::dump() const { 137 print(dbgs()); 138 dbgs() << '\n'; 139 } 140 #endif 141 142 void SCEV::print(raw_ostream &OS) const { 143 switch (static_cast<SCEVTypes>(getSCEVType())) { 144 case scConstant: 145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 146 return; 147 case scTruncate: { 148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 149 const SCEV *Op = Trunc->getOperand(); 150 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 151 << *Trunc->getType() << ")"; 152 return; 153 } 154 case scZeroExtend: { 155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 156 const SCEV *Op = ZExt->getOperand(); 157 OS << "(zext " << *Op->getType() << " " << *Op << " to " 158 << *ZExt->getType() << ")"; 159 return; 160 } 161 case scSignExtend: { 162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 163 const SCEV *Op = SExt->getOperand(); 164 OS << "(sext " << *Op->getType() << " " << *Op << " to " 165 << *SExt->getType() << ")"; 166 return; 167 } 168 case scAddRecExpr: { 169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 170 OS << "{" << *AR->getOperand(0); 171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 172 OS << ",+," << *AR->getOperand(i); 173 OS << "}<"; 174 if (AR->getNoWrapFlags(FlagNUW)) 175 OS << "nuw><"; 176 if (AR->getNoWrapFlags(FlagNSW)) 177 OS << "nsw><"; 178 if (AR->getNoWrapFlags(FlagNW) && 179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 180 OS << "nw><"; 181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 182 OS << ">"; 183 return; 184 } 185 case scAddExpr: 186 case scMulExpr: 187 case scUMaxExpr: 188 case scSMaxExpr: { 189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 190 const char *OpStr = nullptr; 191 switch (NAry->getSCEVType()) { 192 case scAddExpr: OpStr = " + "; break; 193 case scMulExpr: OpStr = " * "; break; 194 case scUMaxExpr: OpStr = " umax "; break; 195 case scSMaxExpr: OpStr = " smax "; break; 196 } 197 OS << "("; 198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 199 I != E; ++I) { 200 OS << **I; 201 if (std::next(I) != E) 202 OS << OpStr; 203 } 204 OS << ")"; 205 switch (NAry->getSCEVType()) { 206 case scAddExpr: 207 case scMulExpr: 208 if (NAry->getNoWrapFlags(FlagNUW)) 209 OS << "<nuw>"; 210 if (NAry->getNoWrapFlags(FlagNSW)) 211 OS << "<nsw>"; 212 } 213 return; 214 } 215 case scUDivExpr: { 216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 218 return; 219 } 220 case scUnknown: { 221 const SCEVUnknown *U = cast<SCEVUnknown>(this); 222 Type *AllocTy; 223 if (U->isSizeOf(AllocTy)) { 224 OS << "sizeof(" << *AllocTy << ")"; 225 return; 226 } 227 if (U->isAlignOf(AllocTy)) { 228 OS << "alignof(" << *AllocTy << ")"; 229 return; 230 } 231 232 Type *CTy; 233 Constant *FieldNo; 234 if (U->isOffsetOf(CTy, FieldNo)) { 235 OS << "offsetof(" << *CTy << ", "; 236 FieldNo->printAsOperand(OS, false); 237 OS << ")"; 238 return; 239 } 240 241 // Otherwise just print it normally. 242 U->getValue()->printAsOperand(OS, false); 243 return; 244 } 245 case scCouldNotCompute: 246 OS << "***COULDNOTCOMPUTE***"; 247 return; 248 } 249 llvm_unreachable("Unknown SCEV kind!"); 250 } 251 252 Type *SCEV::getType() const { 253 switch (static_cast<SCEVTypes>(getSCEVType())) { 254 case scConstant: 255 return cast<SCEVConstant>(this)->getType(); 256 case scTruncate: 257 case scZeroExtend: 258 case scSignExtend: 259 return cast<SCEVCastExpr>(this)->getType(); 260 case scAddRecExpr: 261 case scMulExpr: 262 case scUMaxExpr: 263 case scSMaxExpr: 264 return cast<SCEVNAryExpr>(this)->getType(); 265 case scAddExpr: 266 return cast<SCEVAddExpr>(this)->getType(); 267 case scUDivExpr: 268 return cast<SCEVUDivExpr>(this)->getType(); 269 case scUnknown: 270 return cast<SCEVUnknown>(this)->getType(); 271 case scCouldNotCompute: 272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 273 } 274 llvm_unreachable("Unknown SCEV kind!"); 275 } 276 277 bool SCEV::isZero() const { 278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 279 return SC->getValue()->isZero(); 280 return false; 281 } 282 283 bool SCEV::isOne() const { 284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 285 return SC->getValue()->isOne(); 286 return false; 287 } 288 289 bool SCEV::isAllOnesValue() const { 290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 291 return SC->getValue()->isAllOnesValue(); 292 return false; 293 } 294 295 /// isNonConstantNegative - Return true if the specified scev is negated, but 296 /// not a constant. 297 bool SCEV::isNonConstantNegative() const { 298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 299 if (!Mul) return false; 300 301 // If there is a constant factor, it will be first. 302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 303 if (!SC) return false; 304 305 // Return true if the value is negative, this matches things like (-42 * V). 306 return SC->getValue()->getValue().isNegative(); 307 } 308 309 SCEVCouldNotCompute::SCEVCouldNotCompute() : 310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 311 312 bool SCEVCouldNotCompute::classof(const SCEV *S) { 313 return S->getSCEVType() == scCouldNotCompute; 314 } 315 316 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 317 FoldingSetNodeID ID; 318 ID.AddInteger(scConstant); 319 ID.AddPointer(V); 320 void *IP = nullptr; 321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 323 UniqueSCEVs.InsertNode(S, IP); 324 return S; 325 } 326 327 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 328 return getConstant(ConstantInt::get(getContext(), Val)); 329 } 330 331 const SCEV * 332 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 334 return getConstant(ConstantInt::get(ITy, V, isSigned)); 335 } 336 337 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 338 unsigned SCEVTy, const SCEV *op, Type *ty) 339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 340 341 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 342 const SCEV *op, Type *ty) 343 : SCEVCastExpr(ID, scTruncate, op, ty) { 344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 345 (Ty->isIntegerTy() || Ty->isPointerTy()) && 346 "Cannot truncate non-integer value!"); 347 } 348 349 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 350 const SCEV *op, Type *ty) 351 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 353 (Ty->isIntegerTy() || Ty->isPointerTy()) && 354 "Cannot zero extend non-integer value!"); 355 } 356 357 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 358 const SCEV *op, Type *ty) 359 : SCEVCastExpr(ID, scSignExtend, op, ty) { 360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 361 (Ty->isIntegerTy() || Ty->isPointerTy()) && 362 "Cannot sign extend non-integer value!"); 363 } 364 365 void SCEVUnknown::deleted() { 366 // Clear this SCEVUnknown from various maps. 367 SE->forgetMemoizedResults(this); 368 369 // Remove this SCEVUnknown from the uniquing map. 370 SE->UniqueSCEVs.RemoveNode(this); 371 372 // Release the value. 373 setValPtr(nullptr); 374 } 375 376 void SCEVUnknown::allUsesReplacedWith(Value *New) { 377 // Clear this SCEVUnknown from various maps. 378 SE->forgetMemoizedResults(this); 379 380 // Remove this SCEVUnknown from the uniquing map. 381 SE->UniqueSCEVs.RemoveNode(this); 382 383 // Update this SCEVUnknown to point to the new value. This is needed 384 // because there may still be outstanding SCEVs which still point to 385 // this SCEVUnknown. 386 setValPtr(New); 387 } 388 389 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 391 if (VCE->getOpcode() == Instruction::PtrToInt) 392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 393 if (CE->getOpcode() == Instruction::GetElementPtr && 394 CE->getOperand(0)->isNullValue() && 395 CE->getNumOperands() == 2) 396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 397 if (CI->isOne()) { 398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 399 ->getElementType(); 400 return true; 401 } 402 403 return false; 404 } 405 406 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 408 if (VCE->getOpcode() == Instruction::PtrToInt) 409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 410 if (CE->getOpcode() == Instruction::GetElementPtr && 411 CE->getOperand(0)->isNullValue()) { 412 Type *Ty = 413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 414 if (StructType *STy = dyn_cast<StructType>(Ty)) 415 if (!STy->isPacked() && 416 CE->getNumOperands() == 3 && 417 CE->getOperand(1)->isNullValue()) { 418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 419 if (CI->isOne() && 420 STy->getNumElements() == 2 && 421 STy->getElementType(0)->isIntegerTy(1)) { 422 AllocTy = STy->getElementType(1); 423 return true; 424 } 425 } 426 } 427 428 return false; 429 } 430 431 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 433 if (VCE->getOpcode() == Instruction::PtrToInt) 434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 435 if (CE->getOpcode() == Instruction::GetElementPtr && 436 CE->getNumOperands() == 3 && 437 CE->getOperand(0)->isNullValue() && 438 CE->getOperand(1)->isNullValue()) { 439 Type *Ty = 440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 441 // Ignore vector types here so that ScalarEvolutionExpander doesn't 442 // emit getelementptrs that index into vectors. 443 if (Ty->isStructTy() || Ty->isArrayTy()) { 444 CTy = Ty; 445 FieldNo = CE->getOperand(2); 446 return true; 447 } 448 } 449 450 return false; 451 } 452 453 //===----------------------------------------------------------------------===// 454 // SCEV Utilities 455 //===----------------------------------------------------------------------===// 456 457 namespace { 458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 459 /// than the complexity of the RHS. This comparator is used to canonicalize 460 /// expressions. 461 class SCEVComplexityCompare { 462 const LoopInfo *const LI; 463 public: 464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 465 466 // Return true or false if LHS is less than, or at least RHS, respectively. 467 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 468 return compare(LHS, RHS) < 0; 469 } 470 471 // Return negative, zero, or positive, if LHS is less than, equal to, or 472 // greater than RHS, respectively. A three-way result allows recursive 473 // comparisons to be more efficient. 474 int compare(const SCEV *LHS, const SCEV *RHS) const { 475 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 476 if (LHS == RHS) 477 return 0; 478 479 // Primarily, sort the SCEVs by their getSCEVType(). 480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 481 if (LType != RType) 482 return (int)LType - (int)RType; 483 484 // Aside from the getSCEVType() ordering, the particular ordering 485 // isn't very important except that it's beneficial to be consistent, 486 // so that (a + b) and (b + a) don't end up as different expressions. 487 switch (static_cast<SCEVTypes>(LType)) { 488 case scUnknown: { 489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 491 492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 493 // not as complete as it could be. 494 const Value *LV = LU->getValue(), *RV = RU->getValue(); 495 496 // Order pointer values after integer values. This helps SCEVExpander 497 // form GEPs. 498 bool LIsPointer = LV->getType()->isPointerTy(), 499 RIsPointer = RV->getType()->isPointerTy(); 500 if (LIsPointer != RIsPointer) 501 return (int)LIsPointer - (int)RIsPointer; 502 503 // Compare getValueID values. 504 unsigned LID = LV->getValueID(), 505 RID = RV->getValueID(); 506 if (LID != RID) 507 return (int)LID - (int)RID; 508 509 // Sort arguments by their position. 510 if (const Argument *LA = dyn_cast<Argument>(LV)) { 511 const Argument *RA = cast<Argument>(RV); 512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 513 return (int)LArgNo - (int)RArgNo; 514 } 515 516 // For instructions, compare their loop depth, and their operand 517 // count. This is pretty loose. 518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 519 const Instruction *RInst = cast<Instruction>(RV); 520 521 // Compare loop depths. 522 const BasicBlock *LParent = LInst->getParent(), 523 *RParent = RInst->getParent(); 524 if (LParent != RParent) { 525 unsigned LDepth = LI->getLoopDepth(LParent), 526 RDepth = LI->getLoopDepth(RParent); 527 if (LDepth != RDepth) 528 return (int)LDepth - (int)RDepth; 529 } 530 531 // Compare the number of operands. 532 unsigned LNumOps = LInst->getNumOperands(), 533 RNumOps = RInst->getNumOperands(); 534 return (int)LNumOps - (int)RNumOps; 535 } 536 537 return 0; 538 } 539 540 case scConstant: { 541 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 542 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 543 544 // Compare constant values. 545 const APInt &LA = LC->getValue()->getValue(); 546 const APInt &RA = RC->getValue()->getValue(); 547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 548 if (LBitWidth != RBitWidth) 549 return (int)LBitWidth - (int)RBitWidth; 550 return LA.ult(RA) ? -1 : 1; 551 } 552 553 case scAddRecExpr: { 554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 556 557 // Compare addrec loop depths. 558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 559 if (LLoop != RLoop) { 560 unsigned LDepth = LLoop->getLoopDepth(), 561 RDepth = RLoop->getLoopDepth(); 562 if (LDepth != RDepth) 563 return (int)LDepth - (int)RDepth; 564 } 565 566 // Addrec complexity grows with operand count. 567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 568 if (LNumOps != RNumOps) 569 return (int)LNumOps - (int)RNumOps; 570 571 // Lexicographically compare. 572 for (unsigned i = 0; i != LNumOps; ++i) { 573 long X = compare(LA->getOperand(i), RA->getOperand(i)); 574 if (X != 0) 575 return X; 576 } 577 578 return 0; 579 } 580 581 case scAddExpr: 582 case scMulExpr: 583 case scSMaxExpr: 584 case scUMaxExpr: { 585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 587 588 // Lexicographically compare n-ary expressions. 589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 590 if (LNumOps != RNumOps) 591 return (int)LNumOps - (int)RNumOps; 592 593 for (unsigned i = 0; i != LNumOps; ++i) { 594 if (i >= RNumOps) 595 return 1; 596 long X = compare(LC->getOperand(i), RC->getOperand(i)); 597 if (X != 0) 598 return X; 599 } 600 return (int)LNumOps - (int)RNumOps; 601 } 602 603 case scUDivExpr: { 604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 606 607 // Lexicographically compare udiv expressions. 608 long X = compare(LC->getLHS(), RC->getLHS()); 609 if (X != 0) 610 return X; 611 return compare(LC->getRHS(), RC->getRHS()); 612 } 613 614 case scTruncate: 615 case scZeroExtend: 616 case scSignExtend: { 617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 619 620 // Compare cast expressions by operand. 621 return compare(LC->getOperand(), RC->getOperand()); 622 } 623 624 case scCouldNotCompute: 625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 626 } 627 llvm_unreachable("Unknown SCEV kind!"); 628 } 629 }; 630 } 631 632 /// GroupByComplexity - Given a list of SCEV objects, order them by their 633 /// complexity, and group objects of the same complexity together by value. 634 /// When this routine is finished, we know that any duplicates in the vector are 635 /// consecutive and that complexity is monotonically increasing. 636 /// 637 /// Note that we go take special precautions to ensure that we get deterministic 638 /// results from this routine. In other words, we don't want the results of 639 /// this to depend on where the addresses of various SCEV objects happened to 640 /// land in memory. 641 /// 642 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 643 LoopInfo *LI) { 644 if (Ops.size() < 2) return; // Noop 645 if (Ops.size() == 2) { 646 // This is the common case, which also happens to be trivially simple. 647 // Special case it. 648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 649 if (SCEVComplexityCompare(LI)(RHS, LHS)) 650 std::swap(LHS, RHS); 651 return; 652 } 653 654 // Do the rough sort by complexity. 655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 656 657 // Now that we are sorted by complexity, group elements of the same 658 // complexity. Note that this is, at worst, N^2, but the vector is likely to 659 // be extremely short in practice. Note that we take this approach because we 660 // do not want to depend on the addresses of the objects we are grouping. 661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 662 const SCEV *S = Ops[i]; 663 unsigned Complexity = S->getSCEVType(); 664 665 // If there are any objects of the same complexity and same value as this 666 // one, group them. 667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 668 if (Ops[j] == S) { // Found a duplicate. 669 // Move it to immediately after i'th element. 670 std::swap(Ops[i+1], Ops[j]); 671 ++i; // no need to rescan it. 672 if (i == e-2) return; // Done! 673 } 674 } 675 } 676 } 677 678 namespace { 679 struct FindSCEVSize { 680 int Size; 681 FindSCEVSize() : Size(0) {} 682 683 bool follow(const SCEV *S) { 684 ++Size; 685 // Keep looking at all operands of S. 686 return true; 687 } 688 bool isDone() const { 689 return false; 690 } 691 }; 692 } 693 694 // Returns the size of the SCEV S. 695 static inline int sizeOfSCEV(const SCEV *S) { 696 FindSCEVSize F; 697 SCEVTraversal<FindSCEVSize> ST(F); 698 ST.visitAll(S); 699 return F.Size; 700 } 701 702 namespace { 703 704 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 705 public: 706 // Computes the Quotient and Remainder of the division of Numerator by 707 // Denominator. 708 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 709 const SCEV *Denominator, const SCEV **Quotient, 710 const SCEV **Remainder) { 711 assert(Numerator && Denominator && "Uninitialized SCEV"); 712 713 SCEVDivision D(SE, Numerator, Denominator); 714 715 // Check for the trivial case here to avoid having to check for it in the 716 // rest of the code. 717 if (Numerator == Denominator) { 718 *Quotient = D.One; 719 *Remainder = D.Zero; 720 return; 721 } 722 723 if (Numerator->isZero()) { 724 *Quotient = D.Zero; 725 *Remainder = D.Zero; 726 return; 727 } 728 729 // Split the Denominator when it is a product. 730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 731 const SCEV *Q, *R; 732 *Quotient = Numerator; 733 for (const SCEV *Op : T->operands()) { 734 divide(SE, *Quotient, Op, &Q, &R); 735 *Quotient = Q; 736 737 // Bail out when the Numerator is not divisible by one of the terms of 738 // the Denominator. 739 if (!R->isZero()) { 740 *Quotient = D.Zero; 741 *Remainder = Numerator; 742 return; 743 } 744 } 745 *Remainder = D.Zero; 746 return; 747 } 748 749 D.visit(Numerator); 750 *Quotient = D.Quotient; 751 *Remainder = D.Remainder; 752 } 753 754 // Except in the trivial case described above, we do not know how to divide 755 // Expr by Denominator for the following functions with empty implementation. 756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 762 void visitUnknown(const SCEVUnknown *Numerator) {} 763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 764 765 void visitConstant(const SCEVConstant *Numerator) { 766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 767 APInt NumeratorVal = Numerator->getValue()->getValue(); 768 APInt DenominatorVal = D->getValue()->getValue(); 769 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 770 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 771 772 if (NumeratorBW > DenominatorBW) 773 DenominatorVal = DenominatorVal.sext(NumeratorBW); 774 else if (NumeratorBW < DenominatorBW) 775 NumeratorVal = NumeratorVal.sext(DenominatorBW); 776 777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 780 Quotient = SE.getConstant(QuotientVal); 781 Remainder = SE.getConstant(RemainderVal); 782 return; 783 } 784 } 785 786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 787 const SCEV *StartQ, *StartR, *StepQ, *StepR; 788 assert(Numerator->isAffine() && "Numerator should be affine"); 789 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 790 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 791 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 792 Numerator->getNoWrapFlags()); 793 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 794 Numerator->getNoWrapFlags()); 795 } 796 797 void visitAddExpr(const SCEVAddExpr *Numerator) { 798 SmallVector<const SCEV *, 2> Qs, Rs; 799 Type *Ty = Denominator->getType(); 800 801 for (const SCEV *Op : Numerator->operands()) { 802 const SCEV *Q, *R; 803 divide(SE, Op, Denominator, &Q, &R); 804 805 // Bail out if types do not match. 806 if (Ty != Q->getType() || Ty != R->getType()) { 807 Quotient = Zero; 808 Remainder = Numerator; 809 return; 810 } 811 812 Qs.push_back(Q); 813 Rs.push_back(R); 814 } 815 816 if (Qs.size() == 1) { 817 Quotient = Qs[0]; 818 Remainder = Rs[0]; 819 return; 820 } 821 822 Quotient = SE.getAddExpr(Qs); 823 Remainder = SE.getAddExpr(Rs); 824 } 825 826 void visitMulExpr(const SCEVMulExpr *Numerator) { 827 SmallVector<const SCEV *, 2> Qs; 828 Type *Ty = Denominator->getType(); 829 830 bool FoundDenominatorTerm = false; 831 for (const SCEV *Op : Numerator->operands()) { 832 // Bail out if types do not match. 833 if (Ty != Op->getType()) { 834 Quotient = Zero; 835 Remainder = Numerator; 836 return; 837 } 838 839 if (FoundDenominatorTerm) { 840 Qs.push_back(Op); 841 continue; 842 } 843 844 // Check whether Denominator divides one of the product operands. 845 const SCEV *Q, *R; 846 divide(SE, Op, Denominator, &Q, &R); 847 if (!R->isZero()) { 848 Qs.push_back(Op); 849 continue; 850 } 851 852 // Bail out if types do not match. 853 if (Ty != Q->getType()) { 854 Quotient = Zero; 855 Remainder = Numerator; 856 return; 857 } 858 859 FoundDenominatorTerm = true; 860 Qs.push_back(Q); 861 } 862 863 if (FoundDenominatorTerm) { 864 Remainder = Zero; 865 if (Qs.size() == 1) 866 Quotient = Qs[0]; 867 else 868 Quotient = SE.getMulExpr(Qs); 869 return; 870 } 871 872 if (!isa<SCEVUnknown>(Denominator)) { 873 Quotient = Zero; 874 Remainder = Numerator; 875 return; 876 } 877 878 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 879 ValueToValueMap RewriteMap; 880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 881 cast<SCEVConstant>(Zero)->getValue(); 882 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 883 884 if (Remainder->isZero()) { 885 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 886 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 887 cast<SCEVConstant>(One)->getValue(); 888 Quotient = 889 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 890 return; 891 } 892 893 // Quotient is (Numerator - Remainder) divided by Denominator. 894 const SCEV *Q, *R; 895 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 896 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) { 897 // This SCEV does not seem to simplify: fail the division here. 898 Quotient = Zero; 899 Remainder = Numerator; 900 return; 901 } 902 divide(SE, Diff, Denominator, &Q, &R); 903 assert(R == Zero && 904 "(Numerator - Remainder) should evenly divide Denominator"); 905 Quotient = Q; 906 } 907 908 private: 909 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 910 const SCEV *Denominator) 911 : SE(S), Denominator(Denominator) { 912 Zero = SE.getConstant(Denominator->getType(), 0); 913 One = SE.getConstant(Denominator->getType(), 1); 914 915 // By default, we don't know how to divide Expr by Denominator. 916 // Providing the default here simplifies the rest of the code. 917 Quotient = Zero; 918 Remainder = Numerator; 919 } 920 921 ScalarEvolution &SE; 922 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 923 }; 924 925 } 926 927 //===----------------------------------------------------------------------===// 928 // Simple SCEV method implementations 929 //===----------------------------------------------------------------------===// 930 931 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 932 /// Assume, K > 0. 933 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 934 ScalarEvolution &SE, 935 Type *ResultTy) { 936 // Handle the simplest case efficiently. 937 if (K == 1) 938 return SE.getTruncateOrZeroExtend(It, ResultTy); 939 940 // We are using the following formula for BC(It, K): 941 // 942 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 943 // 944 // Suppose, W is the bitwidth of the return value. We must be prepared for 945 // overflow. Hence, we must assure that the result of our computation is 946 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 947 // safe in modular arithmetic. 948 // 949 // However, this code doesn't use exactly that formula; the formula it uses 950 // is something like the following, where T is the number of factors of 2 in 951 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 952 // exponentiation: 953 // 954 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 955 // 956 // This formula is trivially equivalent to the previous formula. However, 957 // this formula can be implemented much more efficiently. The trick is that 958 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 959 // arithmetic. To do exact division in modular arithmetic, all we have 960 // to do is multiply by the inverse. Therefore, this step can be done at 961 // width W. 962 // 963 // The next issue is how to safely do the division by 2^T. The way this 964 // is done is by doing the multiplication step at a width of at least W + T 965 // bits. This way, the bottom W+T bits of the product are accurate. Then, 966 // when we perform the division by 2^T (which is equivalent to a right shift 967 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 968 // truncated out after the division by 2^T. 969 // 970 // In comparison to just directly using the first formula, this technique 971 // is much more efficient; using the first formula requires W * K bits, 972 // but this formula less than W + K bits. Also, the first formula requires 973 // a division step, whereas this formula only requires multiplies and shifts. 974 // 975 // It doesn't matter whether the subtraction step is done in the calculation 976 // width or the input iteration count's width; if the subtraction overflows, 977 // the result must be zero anyway. We prefer here to do it in the width of 978 // the induction variable because it helps a lot for certain cases; CodeGen 979 // isn't smart enough to ignore the overflow, which leads to much less 980 // efficient code if the width of the subtraction is wider than the native 981 // register width. 982 // 983 // (It's possible to not widen at all by pulling out factors of 2 before 984 // the multiplication; for example, K=2 can be calculated as 985 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 986 // extra arithmetic, so it's not an obvious win, and it gets 987 // much more complicated for K > 3.) 988 989 // Protection from insane SCEVs; this bound is conservative, 990 // but it probably doesn't matter. 991 if (K > 1000) 992 return SE.getCouldNotCompute(); 993 994 unsigned W = SE.getTypeSizeInBits(ResultTy); 995 996 // Calculate K! / 2^T and T; we divide out the factors of two before 997 // multiplying for calculating K! / 2^T to avoid overflow. 998 // Other overflow doesn't matter because we only care about the bottom 999 // W bits of the result. 1000 APInt OddFactorial(W, 1); 1001 unsigned T = 1; 1002 for (unsigned i = 3; i <= K; ++i) { 1003 APInt Mult(W, i); 1004 unsigned TwoFactors = Mult.countTrailingZeros(); 1005 T += TwoFactors; 1006 Mult = Mult.lshr(TwoFactors); 1007 OddFactorial *= Mult; 1008 } 1009 1010 // We need at least W + T bits for the multiplication step 1011 unsigned CalculationBits = W + T; 1012 1013 // Calculate 2^T, at width T+W. 1014 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1015 1016 // Calculate the multiplicative inverse of K! / 2^T; 1017 // this multiplication factor will perform the exact division by 1018 // K! / 2^T. 1019 APInt Mod = APInt::getSignedMinValue(W+1); 1020 APInt MultiplyFactor = OddFactorial.zext(W+1); 1021 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1022 MultiplyFactor = MultiplyFactor.trunc(W); 1023 1024 // Calculate the product, at width T+W 1025 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1026 CalculationBits); 1027 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1028 for (unsigned i = 1; i != K; ++i) { 1029 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1030 Dividend = SE.getMulExpr(Dividend, 1031 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1032 } 1033 1034 // Divide by 2^T 1035 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1036 1037 // Truncate the result, and divide by K! / 2^T. 1038 1039 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1040 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1041 } 1042 1043 /// evaluateAtIteration - Return the value of this chain of recurrences at 1044 /// the specified iteration number. We can evaluate this recurrence by 1045 /// multiplying each element in the chain by the binomial coefficient 1046 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1047 /// 1048 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1049 /// 1050 /// where BC(It, k) stands for binomial coefficient. 1051 /// 1052 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1053 ScalarEvolution &SE) const { 1054 const SCEV *Result = getStart(); 1055 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1056 // The computation is correct in the face of overflow provided that the 1057 // multiplication is performed _after_ the evaluation of the binomial 1058 // coefficient. 1059 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1060 if (isa<SCEVCouldNotCompute>(Coeff)) 1061 return Coeff; 1062 1063 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1064 } 1065 return Result; 1066 } 1067 1068 //===----------------------------------------------------------------------===// 1069 // SCEV Expression folder implementations 1070 //===----------------------------------------------------------------------===// 1071 1072 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1073 Type *Ty) { 1074 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1075 "This is not a truncating conversion!"); 1076 assert(isSCEVable(Ty) && 1077 "This is not a conversion to a SCEVable type!"); 1078 Ty = getEffectiveSCEVType(Ty); 1079 1080 FoldingSetNodeID ID; 1081 ID.AddInteger(scTruncate); 1082 ID.AddPointer(Op); 1083 ID.AddPointer(Ty); 1084 void *IP = nullptr; 1085 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1086 1087 // Fold if the operand is constant. 1088 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1089 return getConstant( 1090 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1091 1092 // trunc(trunc(x)) --> trunc(x) 1093 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1094 return getTruncateExpr(ST->getOperand(), Ty); 1095 1096 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1097 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1098 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1099 1100 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1101 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1102 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1103 1104 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1105 // eliminate all the truncates. 1106 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1107 SmallVector<const SCEV *, 4> Operands; 1108 bool hasTrunc = false; 1109 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1110 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1111 hasTrunc = isa<SCEVTruncateExpr>(S); 1112 Operands.push_back(S); 1113 } 1114 if (!hasTrunc) 1115 return getAddExpr(Operands); 1116 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1117 } 1118 1119 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1120 // eliminate all the truncates. 1121 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1122 SmallVector<const SCEV *, 4> Operands; 1123 bool hasTrunc = false; 1124 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1125 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1126 hasTrunc = isa<SCEVTruncateExpr>(S); 1127 Operands.push_back(S); 1128 } 1129 if (!hasTrunc) 1130 return getMulExpr(Operands); 1131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1132 } 1133 1134 // If the input value is a chrec scev, truncate the chrec's operands. 1135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1136 SmallVector<const SCEV *, 4> Operands; 1137 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1138 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 1139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1140 } 1141 1142 // The cast wasn't folded; create an explicit cast node. We can reuse 1143 // the existing insert position since if we get here, we won't have 1144 // made any changes which would invalidate it. 1145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1146 Op, Ty); 1147 UniqueSCEVs.InsertNode(S, IP); 1148 return S; 1149 } 1150 1151 // Get the limit of a recurrence such that incrementing by Step cannot cause 1152 // signed overflow as long as the value of the recurrence within the 1153 // loop does not exceed this limit before incrementing. 1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1155 ICmpInst::Predicate *Pred, 1156 ScalarEvolution *SE) { 1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1158 if (SE->isKnownPositive(Step)) { 1159 *Pred = ICmpInst::ICMP_SLT; 1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1161 SE->getSignedRange(Step).getSignedMax()); 1162 } 1163 if (SE->isKnownNegative(Step)) { 1164 *Pred = ICmpInst::ICMP_SGT; 1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1166 SE->getSignedRange(Step).getSignedMin()); 1167 } 1168 return nullptr; 1169 } 1170 1171 // Get the limit of a recurrence such that incrementing by Step cannot cause 1172 // unsigned overflow as long as the value of the recurrence within the loop does 1173 // not exceed this limit before incrementing. 1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1175 ICmpInst::Predicate *Pred, 1176 ScalarEvolution *SE) { 1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1178 *Pred = ICmpInst::ICMP_ULT; 1179 1180 return SE->getConstant(APInt::getMinValue(BitWidth) - 1181 SE->getUnsignedRange(Step).getUnsignedMax()); 1182 } 1183 1184 namespace { 1185 1186 struct ExtendOpTraitsBase { 1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1188 }; 1189 1190 // Used to make code generic over signed and unsigned overflow. 1191 template <typename ExtendOp> struct ExtendOpTraits { 1192 // Members present: 1193 // 1194 // static const SCEV::NoWrapFlags WrapType; 1195 // 1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1197 // 1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1199 // ICmpInst::Predicate *Pred, 1200 // ScalarEvolution *SE); 1201 }; 1202 1203 template <> 1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1206 1207 static const GetExtendExprTy GetExtendExpr; 1208 1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1210 ICmpInst::Predicate *Pred, 1211 ScalarEvolution *SE) { 1212 return getSignedOverflowLimitForStep(Step, Pred, SE); 1213 } 1214 }; 1215 1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1218 1219 template <> 1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1222 1223 static const GetExtendExprTy GetExtendExpr; 1224 1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1226 ICmpInst::Predicate *Pred, 1227 ScalarEvolution *SE) { 1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1229 } 1230 }; 1231 1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1234 } 1235 1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1241 // expression "Step + sext/zext(PreIncAR)" is congruent with 1242 // "sext/zext(PostIncAR)" 1243 template <typename ExtendOpTy> 1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1245 ScalarEvolution *SE) { 1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1248 1249 const Loop *L = AR->getLoop(); 1250 const SCEV *Start = AR->getStart(); 1251 const SCEV *Step = AR->getStepRecurrence(*SE); 1252 1253 // Check for a simple looking step prior to loop entry. 1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1255 if (!SA) 1256 return nullptr; 1257 1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1259 // subtraction is expensive. For this purpose, perform a quick and dirty 1260 // difference, by checking for Step in the operand list. 1261 SmallVector<const SCEV *, 4> DiffOps; 1262 for (const SCEV *Op : SA->operands()) 1263 if (Op != Step) 1264 DiffOps.push_back(Op); 1265 1266 if (DiffOps.size() == SA->getNumOperands()) 1267 return nullptr; 1268 1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1270 // `Step`: 1271 1272 // 1. NSW/NUW flags on the step increment. 1273 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1274 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1275 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1276 1277 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1278 // "S+X does not sign/unsign-overflow". 1279 // 1280 1281 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1282 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1283 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1284 return PreStart; 1285 1286 // 2. Direct overflow check on the step operation's expression. 1287 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1288 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1289 const SCEV *OperandExtendedStart = 1290 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1291 (SE->*GetExtendExpr)(Step, WideTy)); 1292 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1293 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1294 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1295 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1296 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1297 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1298 } 1299 return PreStart; 1300 } 1301 1302 // 3. Loop precondition. 1303 ICmpInst::Predicate Pred; 1304 const SCEV *OverflowLimit = 1305 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1306 1307 if (OverflowLimit && 1308 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1309 return PreStart; 1310 } 1311 return nullptr; 1312 } 1313 1314 // Get the normalized zero or sign extended expression for this AddRec's Start. 1315 template <typename ExtendOpTy> 1316 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1317 ScalarEvolution *SE) { 1318 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1319 1320 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1321 if (!PreStart) 1322 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1323 1324 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1325 (SE->*GetExtendExpr)(PreStart, Ty)); 1326 } 1327 1328 // Try to prove away overflow by looking at "nearby" add recurrences. A 1329 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1330 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1331 // 1332 // Formally: 1333 // 1334 // {S,+,X} == {S-T,+,X} + T 1335 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1336 // 1337 // If ({S-T,+,X} + T) does not overflow ... (1) 1338 // 1339 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1340 // 1341 // If {S-T,+,X} does not overflow ... (2) 1342 // 1343 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1344 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1345 // 1346 // If (S-T)+T does not overflow ... (3) 1347 // 1348 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1349 // == {Ext(S),+,Ext(X)} == LHS 1350 // 1351 // Thus, if (1), (2) and (3) are true for some T, then 1352 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1353 // 1354 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1355 // does not overflow" restricted to the 0th iteration. Therefore we only need 1356 // to check for (1) and (2). 1357 // 1358 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1359 // is `Delta` (defined below). 1360 // 1361 template <typename ExtendOpTy> 1362 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1363 const SCEV *Step, 1364 const Loop *L) { 1365 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1366 1367 // We restrict `Start` to a constant to prevent SCEV from spending too much 1368 // time here. It is correct (but more expensive) to continue with a 1369 // non-constant `Start` and do a general SCEV subtraction to compute 1370 // `PreStart` below. 1371 // 1372 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1373 if (!StartC) 1374 return false; 1375 1376 APInt StartAI = StartC->getValue()->getValue(); 1377 1378 for (unsigned Delta : {-2, -1, 1, 2}) { 1379 const SCEV *PreStart = getConstant(StartAI - Delta); 1380 1381 // Give up if we don't already have the add recurrence we need because 1382 // actually constructing an add recurrence is relatively expensive. 1383 const SCEVAddRecExpr *PreAR = [&]() { 1384 FoldingSetNodeID ID; 1385 ID.AddInteger(scAddRecExpr); 1386 ID.AddPointer(PreStart); 1387 ID.AddPointer(Step); 1388 ID.AddPointer(L); 1389 void *IP = nullptr; 1390 return static_cast<SCEVAddRecExpr *>( 1391 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1392 }(); 1393 1394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1398 DeltaS, &Pred, this); 1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1400 return true; 1401 } 1402 } 1403 1404 return false; 1405 } 1406 1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1408 Type *Ty) { 1409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1410 "This is not an extending conversion!"); 1411 assert(isSCEVable(Ty) && 1412 "This is not a conversion to a SCEVable type!"); 1413 Ty = getEffectiveSCEVType(Ty); 1414 1415 // Fold if the operand is constant. 1416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1417 return getConstant( 1418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1419 1420 // zext(zext(x)) --> zext(x) 1421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1422 return getZeroExtendExpr(SZ->getOperand(), Ty); 1423 1424 // Before doing any expensive analysis, check to see if we've already 1425 // computed a SCEV for this Op and Ty. 1426 FoldingSetNodeID ID; 1427 ID.AddInteger(scZeroExtend); 1428 ID.AddPointer(Op); 1429 ID.AddPointer(Ty); 1430 void *IP = nullptr; 1431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1432 1433 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1435 // It's possible the bits taken off by the truncate were all zero bits. If 1436 // so, we should be able to simplify this further. 1437 const SCEV *X = ST->getOperand(); 1438 ConstantRange CR = getUnsignedRange(X); 1439 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1440 unsigned NewBits = getTypeSizeInBits(Ty); 1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1442 CR.zextOrTrunc(NewBits))) 1443 return getTruncateOrZeroExtend(X, Ty); 1444 } 1445 1446 // If the input value is a chrec scev, and we can prove that the value 1447 // did not overflow the old, smaller, value, we can zero extend all of the 1448 // operands (often constants). This allows analysis of something like 1449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1451 if (AR->isAffine()) { 1452 const SCEV *Start = AR->getStart(); 1453 const SCEV *Step = AR->getStepRecurrence(*this); 1454 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1455 const Loop *L = AR->getLoop(); 1456 1457 // If we have special knowledge that this addrec won't overflow, 1458 // we don't need to do any further analysis. 1459 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1460 return getAddRecExpr( 1461 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1462 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1463 1464 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1465 // Note that this serves two purposes: It filters out loops that are 1466 // simply not analyzable, and it covers the case where this code is 1467 // being called from within backedge-taken count analysis, such that 1468 // attempting to ask for the backedge-taken count would likely result 1469 // in infinite recursion. In the later case, the analysis code will 1470 // cope with a conservative value, and it will take care to purge 1471 // that value once it has finished. 1472 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1473 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1474 // Manually compute the final value for AR, checking for 1475 // overflow. 1476 1477 // Check whether the backedge-taken count can be losslessly casted to 1478 // the addrec's type. The count is always unsigned. 1479 const SCEV *CastedMaxBECount = 1480 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1481 const SCEV *RecastedMaxBECount = 1482 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1483 if (MaxBECount == RecastedMaxBECount) { 1484 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1485 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1486 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1487 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1488 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1489 const SCEV *WideMaxBECount = 1490 getZeroExtendExpr(CastedMaxBECount, WideTy); 1491 const SCEV *OperandExtendedAdd = 1492 getAddExpr(WideStart, 1493 getMulExpr(WideMaxBECount, 1494 getZeroExtendExpr(Step, WideTy))); 1495 if (ZAdd == OperandExtendedAdd) { 1496 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1497 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1498 // Return the expression with the addrec on the outside. 1499 return getAddRecExpr( 1500 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1501 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1502 } 1503 // Similar to above, only this time treat the step value as signed. 1504 // This covers loops that count down. 1505 OperandExtendedAdd = 1506 getAddExpr(WideStart, 1507 getMulExpr(WideMaxBECount, 1508 getSignExtendExpr(Step, WideTy))); 1509 if (ZAdd == OperandExtendedAdd) { 1510 // Cache knowledge of AR NW, which is propagated to this AddRec. 1511 // Negative step causes unsigned wrap, but it still can't self-wrap. 1512 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1513 // Return the expression with the addrec on the outside. 1514 return getAddRecExpr( 1515 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1516 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1517 } 1518 } 1519 1520 // If the backedge is guarded by a comparison with the pre-inc value 1521 // the addrec is safe. Also, if the entry is guarded by a comparison 1522 // with the start value and the backedge is guarded by a comparison 1523 // with the post-inc value, the addrec is safe. 1524 if (isKnownPositive(Step)) { 1525 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1526 getUnsignedRange(Step).getUnsignedMax()); 1527 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1528 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1529 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1530 AR->getPostIncExpr(*this), N))) { 1531 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1532 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1533 // Return the expression with the addrec on the outside. 1534 return getAddRecExpr( 1535 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1536 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1537 } 1538 } else if (isKnownNegative(Step)) { 1539 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1540 getSignedRange(Step).getSignedMin()); 1541 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1542 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1543 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1544 AR->getPostIncExpr(*this), N))) { 1545 // Cache knowledge of AR NW, which is propagated to this AddRec. 1546 // Negative step causes unsigned wrap, but it still can't self-wrap. 1547 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1548 // Return the expression with the addrec on the outside. 1549 return getAddRecExpr( 1550 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1551 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1552 } 1553 } 1554 } 1555 1556 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1557 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1558 return getAddRecExpr( 1559 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1560 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1561 } 1562 } 1563 1564 // The cast wasn't folded; create an explicit cast node. 1565 // Recompute the insert position, as it may have been invalidated. 1566 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1567 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1568 Op, Ty); 1569 UniqueSCEVs.InsertNode(S, IP); 1570 return S; 1571 } 1572 1573 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1574 Type *Ty) { 1575 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1576 "This is not an extending conversion!"); 1577 assert(isSCEVable(Ty) && 1578 "This is not a conversion to a SCEVable type!"); 1579 Ty = getEffectiveSCEVType(Ty); 1580 1581 // Fold if the operand is constant. 1582 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1583 return getConstant( 1584 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1585 1586 // sext(sext(x)) --> sext(x) 1587 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1588 return getSignExtendExpr(SS->getOperand(), Ty); 1589 1590 // sext(zext(x)) --> zext(x) 1591 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1592 return getZeroExtendExpr(SZ->getOperand(), Ty); 1593 1594 // Before doing any expensive analysis, check to see if we've already 1595 // computed a SCEV for this Op and Ty. 1596 FoldingSetNodeID ID; 1597 ID.AddInteger(scSignExtend); 1598 ID.AddPointer(Op); 1599 ID.AddPointer(Ty); 1600 void *IP = nullptr; 1601 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1602 1603 // If the input value is provably positive, build a zext instead. 1604 if (isKnownNonNegative(Op)) 1605 return getZeroExtendExpr(Op, Ty); 1606 1607 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1608 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1609 // It's possible the bits taken off by the truncate were all sign bits. If 1610 // so, we should be able to simplify this further. 1611 const SCEV *X = ST->getOperand(); 1612 ConstantRange CR = getSignedRange(X); 1613 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1614 unsigned NewBits = getTypeSizeInBits(Ty); 1615 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1616 CR.sextOrTrunc(NewBits))) 1617 return getTruncateOrSignExtend(X, Ty); 1618 } 1619 1620 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1621 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 1622 if (SA->getNumOperands() == 2) { 1623 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1624 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1625 if (SMul && SC1) { 1626 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1627 const APInt &C1 = SC1->getValue()->getValue(); 1628 const APInt &C2 = SC2->getValue()->getValue(); 1629 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1630 C2.ugt(C1) && C2.isPowerOf2()) 1631 return getAddExpr(getSignExtendExpr(SC1, Ty), 1632 getSignExtendExpr(SMul, Ty)); 1633 } 1634 } 1635 } 1636 } 1637 // If the input value is a chrec scev, and we can prove that the value 1638 // did not overflow the old, smaller, value, we can sign extend all of the 1639 // operands (often constants). This allows analysis of something like 1640 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1641 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1642 if (AR->isAffine()) { 1643 const SCEV *Start = AR->getStart(); 1644 const SCEV *Step = AR->getStepRecurrence(*this); 1645 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1646 const Loop *L = AR->getLoop(); 1647 1648 // If we have special knowledge that this addrec won't overflow, 1649 // we don't need to do any further analysis. 1650 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1651 return getAddRecExpr( 1652 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1653 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1654 1655 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1656 // Note that this serves two purposes: It filters out loops that are 1657 // simply not analyzable, and it covers the case where this code is 1658 // being called from within backedge-taken count analysis, such that 1659 // attempting to ask for the backedge-taken count would likely result 1660 // in infinite recursion. In the later case, the analysis code will 1661 // cope with a conservative value, and it will take care to purge 1662 // that value once it has finished. 1663 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1664 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1665 // Manually compute the final value for AR, checking for 1666 // overflow. 1667 1668 // Check whether the backedge-taken count can be losslessly casted to 1669 // the addrec's type. The count is always unsigned. 1670 const SCEV *CastedMaxBECount = 1671 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1672 const SCEV *RecastedMaxBECount = 1673 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1674 if (MaxBECount == RecastedMaxBECount) { 1675 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1676 // Check whether Start+Step*MaxBECount has no signed overflow. 1677 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1678 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1679 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1680 const SCEV *WideMaxBECount = 1681 getZeroExtendExpr(CastedMaxBECount, WideTy); 1682 const SCEV *OperandExtendedAdd = 1683 getAddExpr(WideStart, 1684 getMulExpr(WideMaxBECount, 1685 getSignExtendExpr(Step, WideTy))); 1686 if (SAdd == OperandExtendedAdd) { 1687 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1688 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1689 // Return the expression with the addrec on the outside. 1690 return getAddRecExpr( 1691 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1692 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1693 } 1694 // Similar to above, only this time treat the step value as unsigned. 1695 // This covers loops that count up with an unsigned step. 1696 OperandExtendedAdd = 1697 getAddExpr(WideStart, 1698 getMulExpr(WideMaxBECount, 1699 getZeroExtendExpr(Step, WideTy))); 1700 if (SAdd == OperandExtendedAdd) { 1701 // If AR wraps around then 1702 // 1703 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1704 // => SAdd != OperandExtendedAdd 1705 // 1706 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1707 // (SAdd == OperandExtendedAdd => AR is NW) 1708 1709 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1710 1711 // Return the expression with the addrec on the outside. 1712 return getAddRecExpr( 1713 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1714 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1715 } 1716 } 1717 1718 // If the backedge is guarded by a comparison with the pre-inc value 1719 // the addrec is safe. Also, if the entry is guarded by a comparison 1720 // with the start value and the backedge is guarded by a comparison 1721 // with the post-inc value, the addrec is safe. 1722 ICmpInst::Predicate Pred; 1723 const SCEV *OverflowLimit = 1724 getSignedOverflowLimitForStep(Step, &Pred, this); 1725 if (OverflowLimit && 1726 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1727 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1728 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1729 OverflowLimit)))) { 1730 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1731 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1732 return getAddRecExpr( 1733 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1734 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1735 } 1736 } 1737 // If Start and Step are constants, check if we can apply this 1738 // transformation: 1739 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1740 auto SC1 = dyn_cast<SCEVConstant>(Start); 1741 auto SC2 = dyn_cast<SCEVConstant>(Step); 1742 if (SC1 && SC2) { 1743 const APInt &C1 = SC1->getValue()->getValue(); 1744 const APInt &C2 = SC2->getValue()->getValue(); 1745 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1746 C2.isPowerOf2()) { 1747 Start = getSignExtendExpr(Start, Ty); 1748 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step, 1749 L, AR->getNoWrapFlags()); 1750 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1751 } 1752 } 1753 1754 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1755 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1756 return getAddRecExpr( 1757 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1758 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1759 } 1760 } 1761 1762 // The cast wasn't folded; create an explicit cast node. 1763 // Recompute the insert position, as it may have been invalidated. 1764 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1765 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1766 Op, Ty); 1767 UniqueSCEVs.InsertNode(S, IP); 1768 return S; 1769 } 1770 1771 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1772 /// unspecified bits out to the given type. 1773 /// 1774 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1775 Type *Ty) { 1776 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1777 "This is not an extending conversion!"); 1778 assert(isSCEVable(Ty) && 1779 "This is not a conversion to a SCEVable type!"); 1780 Ty = getEffectiveSCEVType(Ty); 1781 1782 // Sign-extend negative constants. 1783 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1784 if (SC->getValue()->getValue().isNegative()) 1785 return getSignExtendExpr(Op, Ty); 1786 1787 // Peel off a truncate cast. 1788 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1789 const SCEV *NewOp = T->getOperand(); 1790 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1791 return getAnyExtendExpr(NewOp, Ty); 1792 return getTruncateOrNoop(NewOp, Ty); 1793 } 1794 1795 // Next try a zext cast. If the cast is folded, use it. 1796 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1797 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1798 return ZExt; 1799 1800 // Next try a sext cast. If the cast is folded, use it. 1801 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1802 if (!isa<SCEVSignExtendExpr>(SExt)) 1803 return SExt; 1804 1805 // Force the cast to be folded into the operands of an addrec. 1806 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1807 SmallVector<const SCEV *, 4> Ops; 1808 for (const SCEV *Op : AR->operands()) 1809 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1810 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1811 } 1812 1813 // If the expression is obviously signed, use the sext cast value. 1814 if (isa<SCEVSMaxExpr>(Op)) 1815 return SExt; 1816 1817 // Absent any other information, use the zext cast value. 1818 return ZExt; 1819 } 1820 1821 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1822 /// a list of operands to be added under the given scale, update the given 1823 /// map. This is a helper function for getAddRecExpr. As an example of 1824 /// what it does, given a sequence of operands that would form an add 1825 /// expression like this: 1826 /// 1827 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1828 /// 1829 /// where A and B are constants, update the map with these values: 1830 /// 1831 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1832 /// 1833 /// and add 13 + A*B*29 to AccumulatedConstant. 1834 /// This will allow getAddRecExpr to produce this: 1835 /// 1836 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1837 /// 1838 /// This form often exposes folding opportunities that are hidden in 1839 /// the original operand list. 1840 /// 1841 /// Return true iff it appears that any interesting folding opportunities 1842 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1843 /// the common case where no interesting opportunities are present, and 1844 /// is also used as a check to avoid infinite recursion. 1845 /// 1846 static bool 1847 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1848 SmallVectorImpl<const SCEV *> &NewOps, 1849 APInt &AccumulatedConstant, 1850 const SCEV *const *Ops, size_t NumOperands, 1851 const APInt &Scale, 1852 ScalarEvolution &SE) { 1853 bool Interesting = false; 1854 1855 // Iterate over the add operands. They are sorted, with constants first. 1856 unsigned i = 0; 1857 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1858 ++i; 1859 // Pull a buried constant out to the outside. 1860 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1861 Interesting = true; 1862 AccumulatedConstant += Scale * C->getValue()->getValue(); 1863 } 1864 1865 // Next comes everything else. We're especially interested in multiplies 1866 // here, but they're in the middle, so just visit the rest with one loop. 1867 for (; i != NumOperands; ++i) { 1868 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1869 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1870 APInt NewScale = 1871 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1872 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1873 // A multiplication of a constant with another add; recurse. 1874 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1875 Interesting |= 1876 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1877 Add->op_begin(), Add->getNumOperands(), 1878 NewScale, SE); 1879 } else { 1880 // A multiplication of a constant with some other value. Update 1881 // the map. 1882 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1883 const SCEV *Key = SE.getMulExpr(MulOps); 1884 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1885 M.insert(std::make_pair(Key, NewScale)); 1886 if (Pair.second) { 1887 NewOps.push_back(Pair.first->first); 1888 } else { 1889 Pair.first->second += NewScale; 1890 // The map already had an entry for this value, which may indicate 1891 // a folding opportunity. 1892 Interesting = true; 1893 } 1894 } 1895 } else { 1896 // An ordinary operand. Update the map. 1897 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1898 M.insert(std::make_pair(Ops[i], Scale)); 1899 if (Pair.second) { 1900 NewOps.push_back(Pair.first->first); 1901 } else { 1902 Pair.first->second += Scale; 1903 // The map already had an entry for this value, which may indicate 1904 // a folding opportunity. 1905 Interesting = true; 1906 } 1907 } 1908 } 1909 1910 return Interesting; 1911 } 1912 1913 namespace { 1914 struct APIntCompare { 1915 bool operator()(const APInt &LHS, const APInt &RHS) const { 1916 return LHS.ult(RHS); 1917 } 1918 }; 1919 } 1920 1921 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1922 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1923 // can't-overflow flags for the operation if possible. 1924 static SCEV::NoWrapFlags 1925 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1926 const SmallVectorImpl<const SCEV *> &Ops, 1927 SCEV::NoWrapFlags OldFlags) { 1928 using namespace std::placeholders; 1929 1930 bool CanAnalyze = 1931 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1932 (void)CanAnalyze; 1933 assert(CanAnalyze && "don't call from other places!"); 1934 1935 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1936 SCEV::NoWrapFlags SignOrUnsignWrap = 1937 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); 1938 1939 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1940 auto IsKnownNonNegative = 1941 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1942 1943 if (SignOrUnsignWrap == SCEV::FlagNSW && 1944 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1945 return ScalarEvolution::setFlags(OldFlags, 1946 (SCEV::NoWrapFlags)SignOrUnsignMask); 1947 1948 return OldFlags; 1949 } 1950 1951 /// getAddExpr - Get a canonical add expression, or something simpler if 1952 /// possible. 1953 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1954 SCEV::NoWrapFlags Flags) { 1955 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1956 "only nuw or nsw allowed"); 1957 assert(!Ops.empty() && "Cannot get empty add!"); 1958 if (Ops.size() == 1) return Ops[0]; 1959 #ifndef NDEBUG 1960 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1961 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1962 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1963 "SCEVAddExpr operand types don't match!"); 1964 #endif 1965 1966 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 1967 1968 // Sort by complexity, this groups all similar expression types together. 1969 GroupByComplexity(Ops, LI); 1970 1971 // If there are any constants, fold them together. 1972 unsigned Idx = 0; 1973 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1974 ++Idx; 1975 assert(Idx < Ops.size()); 1976 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1977 // We found two constants, fold them together! 1978 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1979 RHSC->getValue()->getValue()); 1980 if (Ops.size() == 2) return Ops[0]; 1981 Ops.erase(Ops.begin()+1); // Erase the folded element 1982 LHSC = cast<SCEVConstant>(Ops[0]); 1983 } 1984 1985 // If we are left with a constant zero being added, strip it off. 1986 if (LHSC->getValue()->isZero()) { 1987 Ops.erase(Ops.begin()); 1988 --Idx; 1989 } 1990 1991 if (Ops.size() == 1) return Ops[0]; 1992 } 1993 1994 // Okay, check to see if the same value occurs in the operand list more than 1995 // once. If so, merge them together into an multiply expression. Since we 1996 // sorted the list, these values are required to be adjacent. 1997 Type *Ty = Ops[0]->getType(); 1998 bool FoundMatch = false; 1999 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2000 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2001 // Scan ahead to count how many equal operands there are. 2002 unsigned Count = 2; 2003 while (i+Count != e && Ops[i+Count] == Ops[i]) 2004 ++Count; 2005 // Merge the values into a multiply. 2006 const SCEV *Scale = getConstant(Ty, Count); 2007 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2008 if (Ops.size() == Count) 2009 return Mul; 2010 Ops[i] = Mul; 2011 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2012 --i; e -= Count - 1; 2013 FoundMatch = true; 2014 } 2015 if (FoundMatch) 2016 return getAddExpr(Ops, Flags); 2017 2018 // Check for truncates. If all the operands are truncated from the same 2019 // type, see if factoring out the truncate would permit the result to be 2020 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2021 // if the contents of the resulting outer trunc fold to something simple. 2022 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2023 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2024 Type *DstType = Trunc->getType(); 2025 Type *SrcType = Trunc->getOperand()->getType(); 2026 SmallVector<const SCEV *, 8> LargeOps; 2027 bool Ok = true; 2028 // Check all the operands to see if they can be represented in the 2029 // source type of the truncate. 2030 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2031 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2032 if (T->getOperand()->getType() != SrcType) { 2033 Ok = false; 2034 break; 2035 } 2036 LargeOps.push_back(T->getOperand()); 2037 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2038 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2039 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2040 SmallVector<const SCEV *, 8> LargeMulOps; 2041 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2042 if (const SCEVTruncateExpr *T = 2043 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2044 if (T->getOperand()->getType() != SrcType) { 2045 Ok = false; 2046 break; 2047 } 2048 LargeMulOps.push_back(T->getOperand()); 2049 } else if (const SCEVConstant *C = 2050 dyn_cast<SCEVConstant>(M->getOperand(j))) { 2051 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2052 } else { 2053 Ok = false; 2054 break; 2055 } 2056 } 2057 if (Ok) 2058 LargeOps.push_back(getMulExpr(LargeMulOps)); 2059 } else { 2060 Ok = false; 2061 break; 2062 } 2063 } 2064 if (Ok) { 2065 // Evaluate the expression in the larger type. 2066 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2067 // If it folds to something simple, use it. Otherwise, don't. 2068 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2069 return getTruncateExpr(Fold, DstType); 2070 } 2071 } 2072 2073 // Skip past any other cast SCEVs. 2074 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2075 ++Idx; 2076 2077 // If there are add operands they would be next. 2078 if (Idx < Ops.size()) { 2079 bool DeletedAdd = false; 2080 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2081 // If we have an add, expand the add operands onto the end of the operands 2082 // list. 2083 Ops.erase(Ops.begin()+Idx); 2084 Ops.append(Add->op_begin(), Add->op_end()); 2085 DeletedAdd = true; 2086 } 2087 2088 // If we deleted at least one add, we added operands to the end of the list, 2089 // and they are not necessarily sorted. Recurse to resort and resimplify 2090 // any operands we just acquired. 2091 if (DeletedAdd) 2092 return getAddExpr(Ops); 2093 } 2094 2095 // Skip over the add expression until we get to a multiply. 2096 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2097 ++Idx; 2098 2099 // Check to see if there are any folding opportunities present with 2100 // operands multiplied by constant values. 2101 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2102 uint64_t BitWidth = getTypeSizeInBits(Ty); 2103 DenseMap<const SCEV *, APInt> M; 2104 SmallVector<const SCEV *, 8> NewOps; 2105 APInt AccumulatedConstant(BitWidth, 0); 2106 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2107 Ops.data(), Ops.size(), 2108 APInt(BitWidth, 1), *this)) { 2109 // Some interesting folding opportunity is present, so its worthwhile to 2110 // re-generate the operands list. Group the operands by constant scale, 2111 // to avoid multiplying by the same constant scale multiple times. 2112 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2113 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2114 E = NewOps.end(); I != E; ++I) 2115 MulOpLists[M.find(*I)->second].push_back(*I); 2116 // Re-generate the operands list. 2117 Ops.clear(); 2118 if (AccumulatedConstant != 0) 2119 Ops.push_back(getConstant(AccumulatedConstant)); 2120 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2121 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2122 if (I->first != 0) 2123 Ops.push_back(getMulExpr(getConstant(I->first), 2124 getAddExpr(I->second))); 2125 if (Ops.empty()) 2126 return getConstant(Ty, 0); 2127 if (Ops.size() == 1) 2128 return Ops[0]; 2129 return getAddExpr(Ops); 2130 } 2131 } 2132 2133 // If we are adding something to a multiply expression, make sure the 2134 // something is not already an operand of the multiply. If so, merge it into 2135 // the multiply. 2136 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2137 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2138 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2139 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2140 if (isa<SCEVConstant>(MulOpSCEV)) 2141 continue; 2142 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2143 if (MulOpSCEV == Ops[AddOp]) { 2144 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2145 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2146 if (Mul->getNumOperands() != 2) { 2147 // If the multiply has more than two operands, we must get the 2148 // Y*Z term. 2149 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2150 Mul->op_begin()+MulOp); 2151 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2152 InnerMul = getMulExpr(MulOps); 2153 } 2154 const SCEV *One = getConstant(Ty, 1); 2155 const SCEV *AddOne = getAddExpr(One, InnerMul); 2156 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2157 if (Ops.size() == 2) return OuterMul; 2158 if (AddOp < Idx) { 2159 Ops.erase(Ops.begin()+AddOp); 2160 Ops.erase(Ops.begin()+Idx-1); 2161 } else { 2162 Ops.erase(Ops.begin()+Idx); 2163 Ops.erase(Ops.begin()+AddOp-1); 2164 } 2165 Ops.push_back(OuterMul); 2166 return getAddExpr(Ops); 2167 } 2168 2169 // Check this multiply against other multiplies being added together. 2170 for (unsigned OtherMulIdx = Idx+1; 2171 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2172 ++OtherMulIdx) { 2173 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2174 // If MulOp occurs in OtherMul, we can fold the two multiplies 2175 // together. 2176 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2177 OMulOp != e; ++OMulOp) 2178 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2179 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2180 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2181 if (Mul->getNumOperands() != 2) { 2182 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2183 Mul->op_begin()+MulOp); 2184 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2185 InnerMul1 = getMulExpr(MulOps); 2186 } 2187 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2188 if (OtherMul->getNumOperands() != 2) { 2189 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2190 OtherMul->op_begin()+OMulOp); 2191 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2192 InnerMul2 = getMulExpr(MulOps); 2193 } 2194 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2195 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2196 if (Ops.size() == 2) return OuterMul; 2197 Ops.erase(Ops.begin()+Idx); 2198 Ops.erase(Ops.begin()+OtherMulIdx-1); 2199 Ops.push_back(OuterMul); 2200 return getAddExpr(Ops); 2201 } 2202 } 2203 } 2204 } 2205 2206 // If there are any add recurrences in the operands list, see if any other 2207 // added values are loop invariant. If so, we can fold them into the 2208 // recurrence. 2209 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2210 ++Idx; 2211 2212 // Scan over all recurrences, trying to fold loop invariants into them. 2213 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2214 // Scan all of the other operands to this add and add them to the vector if 2215 // they are loop invariant w.r.t. the recurrence. 2216 SmallVector<const SCEV *, 8> LIOps; 2217 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2218 const Loop *AddRecLoop = AddRec->getLoop(); 2219 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2220 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2221 LIOps.push_back(Ops[i]); 2222 Ops.erase(Ops.begin()+i); 2223 --i; --e; 2224 } 2225 2226 // If we found some loop invariants, fold them into the recurrence. 2227 if (!LIOps.empty()) { 2228 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2229 LIOps.push_back(AddRec->getStart()); 2230 2231 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2232 AddRec->op_end()); 2233 AddRecOps[0] = getAddExpr(LIOps); 2234 2235 // Build the new addrec. Propagate the NUW and NSW flags if both the 2236 // outer add and the inner addrec are guaranteed to have no overflow. 2237 // Always propagate NW. 2238 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2239 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2240 2241 // If all of the other operands were loop invariant, we are done. 2242 if (Ops.size() == 1) return NewRec; 2243 2244 // Otherwise, add the folded AddRec by the non-invariant parts. 2245 for (unsigned i = 0;; ++i) 2246 if (Ops[i] == AddRec) { 2247 Ops[i] = NewRec; 2248 break; 2249 } 2250 return getAddExpr(Ops); 2251 } 2252 2253 // Okay, if there weren't any loop invariants to be folded, check to see if 2254 // there are multiple AddRec's with the same loop induction variable being 2255 // added together. If so, we can fold them. 2256 for (unsigned OtherIdx = Idx+1; 2257 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2258 ++OtherIdx) 2259 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2260 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2261 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2262 AddRec->op_end()); 2263 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2264 ++OtherIdx) 2265 if (const SCEVAddRecExpr *OtherAddRec = 2266 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2267 if (OtherAddRec->getLoop() == AddRecLoop) { 2268 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2269 i != e; ++i) { 2270 if (i >= AddRecOps.size()) { 2271 AddRecOps.append(OtherAddRec->op_begin()+i, 2272 OtherAddRec->op_end()); 2273 break; 2274 } 2275 AddRecOps[i] = getAddExpr(AddRecOps[i], 2276 OtherAddRec->getOperand(i)); 2277 } 2278 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2279 } 2280 // Step size has changed, so we cannot guarantee no self-wraparound. 2281 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2282 return getAddExpr(Ops); 2283 } 2284 2285 // Otherwise couldn't fold anything into this recurrence. Move onto the 2286 // next one. 2287 } 2288 2289 // Okay, it looks like we really DO need an add expr. Check to see if we 2290 // already have one, otherwise create a new one. 2291 FoldingSetNodeID ID; 2292 ID.AddInteger(scAddExpr); 2293 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2294 ID.AddPointer(Ops[i]); 2295 void *IP = nullptr; 2296 SCEVAddExpr *S = 2297 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2298 if (!S) { 2299 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2300 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2301 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2302 O, Ops.size()); 2303 UniqueSCEVs.InsertNode(S, IP); 2304 } 2305 S->setNoWrapFlags(Flags); 2306 return S; 2307 } 2308 2309 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2310 uint64_t k = i*j; 2311 if (j > 1 && k / j != i) Overflow = true; 2312 return k; 2313 } 2314 2315 /// Compute the result of "n choose k", the binomial coefficient. If an 2316 /// intermediate computation overflows, Overflow will be set and the return will 2317 /// be garbage. Overflow is not cleared on absence of overflow. 2318 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2319 // We use the multiplicative formula: 2320 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2321 // At each iteration, we take the n-th term of the numeral and divide by the 2322 // (k-n)th term of the denominator. This division will always produce an 2323 // integral result, and helps reduce the chance of overflow in the 2324 // intermediate computations. However, we can still overflow even when the 2325 // final result would fit. 2326 2327 if (n == 0 || n == k) return 1; 2328 if (k > n) return 0; 2329 2330 if (k > n/2) 2331 k = n-k; 2332 2333 uint64_t r = 1; 2334 for (uint64_t i = 1; i <= k; ++i) { 2335 r = umul_ov(r, n-(i-1), Overflow); 2336 r /= i; 2337 } 2338 return r; 2339 } 2340 2341 /// Determine if any of the operands in this SCEV are a constant or if 2342 /// any of the add or multiply expressions in this SCEV contain a constant. 2343 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2344 SmallVector<const SCEV *, 4> Ops; 2345 Ops.push_back(StartExpr); 2346 while (!Ops.empty()) { 2347 const SCEV *CurrentExpr = Ops.pop_back_val(); 2348 if (isa<SCEVConstant>(*CurrentExpr)) 2349 return true; 2350 2351 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2352 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2353 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2354 } 2355 } 2356 return false; 2357 } 2358 2359 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2360 /// possible. 2361 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2362 SCEV::NoWrapFlags Flags) { 2363 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2364 "only nuw or nsw allowed"); 2365 assert(!Ops.empty() && "Cannot get empty mul!"); 2366 if (Ops.size() == 1) return Ops[0]; 2367 #ifndef NDEBUG 2368 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2369 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2370 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2371 "SCEVMulExpr operand types don't match!"); 2372 #endif 2373 2374 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2375 2376 // Sort by complexity, this groups all similar expression types together. 2377 GroupByComplexity(Ops, LI); 2378 2379 // If there are any constants, fold them together. 2380 unsigned Idx = 0; 2381 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2382 2383 // C1*(C2+V) -> C1*C2 + C1*V 2384 if (Ops.size() == 2) 2385 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2386 // If any of Add's ops are Adds or Muls with a constant, 2387 // apply this transformation as well. 2388 if (Add->getNumOperands() == 2) 2389 if (containsConstantSomewhere(Add)) 2390 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2391 getMulExpr(LHSC, Add->getOperand(1))); 2392 2393 ++Idx; 2394 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2395 // We found two constants, fold them together! 2396 ConstantInt *Fold = ConstantInt::get(getContext(), 2397 LHSC->getValue()->getValue() * 2398 RHSC->getValue()->getValue()); 2399 Ops[0] = getConstant(Fold); 2400 Ops.erase(Ops.begin()+1); // Erase the folded element 2401 if (Ops.size() == 1) return Ops[0]; 2402 LHSC = cast<SCEVConstant>(Ops[0]); 2403 } 2404 2405 // If we are left with a constant one being multiplied, strip it off. 2406 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2407 Ops.erase(Ops.begin()); 2408 --Idx; 2409 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2410 // If we have a multiply of zero, it will always be zero. 2411 return Ops[0]; 2412 } else if (Ops[0]->isAllOnesValue()) { 2413 // If we have a mul by -1 of an add, try distributing the -1 among the 2414 // add operands. 2415 if (Ops.size() == 2) { 2416 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2417 SmallVector<const SCEV *, 4> NewOps; 2418 bool AnyFolded = false; 2419 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2420 E = Add->op_end(); I != E; ++I) { 2421 const SCEV *Mul = getMulExpr(Ops[0], *I); 2422 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2423 NewOps.push_back(Mul); 2424 } 2425 if (AnyFolded) 2426 return getAddExpr(NewOps); 2427 } 2428 else if (const SCEVAddRecExpr * 2429 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2430 // Negation preserves a recurrence's no self-wrap property. 2431 SmallVector<const SCEV *, 4> Operands; 2432 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2433 E = AddRec->op_end(); I != E; ++I) { 2434 Operands.push_back(getMulExpr(Ops[0], *I)); 2435 } 2436 return getAddRecExpr(Operands, AddRec->getLoop(), 2437 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2438 } 2439 } 2440 } 2441 2442 if (Ops.size() == 1) 2443 return Ops[0]; 2444 } 2445 2446 // Skip over the add expression until we get to a multiply. 2447 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2448 ++Idx; 2449 2450 // If there are mul operands inline them all into this expression. 2451 if (Idx < Ops.size()) { 2452 bool DeletedMul = false; 2453 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2454 // If we have an mul, expand the mul operands onto the end of the operands 2455 // list. 2456 Ops.erase(Ops.begin()+Idx); 2457 Ops.append(Mul->op_begin(), Mul->op_end()); 2458 DeletedMul = true; 2459 } 2460 2461 // If we deleted at least one mul, we added operands to the end of the list, 2462 // and they are not necessarily sorted. Recurse to resort and resimplify 2463 // any operands we just acquired. 2464 if (DeletedMul) 2465 return getMulExpr(Ops); 2466 } 2467 2468 // If there are any add recurrences in the operands list, see if any other 2469 // added values are loop invariant. If so, we can fold them into the 2470 // recurrence. 2471 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2472 ++Idx; 2473 2474 // Scan over all recurrences, trying to fold loop invariants into them. 2475 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2476 // Scan all of the other operands to this mul and add them to the vector if 2477 // they are loop invariant w.r.t. the recurrence. 2478 SmallVector<const SCEV *, 8> LIOps; 2479 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2480 const Loop *AddRecLoop = AddRec->getLoop(); 2481 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2482 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2483 LIOps.push_back(Ops[i]); 2484 Ops.erase(Ops.begin()+i); 2485 --i; --e; 2486 } 2487 2488 // If we found some loop invariants, fold them into the recurrence. 2489 if (!LIOps.empty()) { 2490 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2491 SmallVector<const SCEV *, 4> NewOps; 2492 NewOps.reserve(AddRec->getNumOperands()); 2493 const SCEV *Scale = getMulExpr(LIOps); 2494 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2495 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2496 2497 // Build the new addrec. Propagate the NUW and NSW flags if both the 2498 // outer mul and the inner addrec are guaranteed to have no overflow. 2499 // 2500 // No self-wrap cannot be guaranteed after changing the step size, but 2501 // will be inferred if either NUW or NSW is true. 2502 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2503 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2504 2505 // If all of the other operands were loop invariant, we are done. 2506 if (Ops.size() == 1) return NewRec; 2507 2508 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2509 for (unsigned i = 0;; ++i) 2510 if (Ops[i] == AddRec) { 2511 Ops[i] = NewRec; 2512 break; 2513 } 2514 return getMulExpr(Ops); 2515 } 2516 2517 // Okay, if there weren't any loop invariants to be folded, check to see if 2518 // there are multiple AddRec's with the same loop induction variable being 2519 // multiplied together. If so, we can fold them. 2520 2521 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2522 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2523 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2524 // ]]],+,...up to x=2n}. 2525 // Note that the arguments to choose() are always integers with values 2526 // known at compile time, never SCEV objects. 2527 // 2528 // The implementation avoids pointless extra computations when the two 2529 // addrec's are of different length (mathematically, it's equivalent to 2530 // an infinite stream of zeros on the right). 2531 bool OpsModified = false; 2532 for (unsigned OtherIdx = Idx+1; 2533 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2534 ++OtherIdx) { 2535 const SCEVAddRecExpr *OtherAddRec = 2536 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2537 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2538 continue; 2539 2540 bool Overflow = false; 2541 Type *Ty = AddRec->getType(); 2542 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2543 SmallVector<const SCEV*, 7> AddRecOps; 2544 for (int x = 0, xe = AddRec->getNumOperands() + 2545 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2546 const SCEV *Term = getConstant(Ty, 0); 2547 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2548 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2549 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2550 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2551 z < ze && !Overflow; ++z) { 2552 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2553 uint64_t Coeff; 2554 if (LargerThan64Bits) 2555 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2556 else 2557 Coeff = Coeff1*Coeff2; 2558 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2559 const SCEV *Term1 = AddRec->getOperand(y-z); 2560 const SCEV *Term2 = OtherAddRec->getOperand(z); 2561 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2562 } 2563 } 2564 AddRecOps.push_back(Term); 2565 } 2566 if (!Overflow) { 2567 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2568 SCEV::FlagAnyWrap); 2569 if (Ops.size() == 2) return NewAddRec; 2570 Ops[Idx] = NewAddRec; 2571 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2572 OpsModified = true; 2573 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2574 if (!AddRec) 2575 break; 2576 } 2577 } 2578 if (OpsModified) 2579 return getMulExpr(Ops); 2580 2581 // Otherwise couldn't fold anything into this recurrence. Move onto the 2582 // next one. 2583 } 2584 2585 // Okay, it looks like we really DO need an mul expr. Check to see if we 2586 // already have one, otherwise create a new one. 2587 FoldingSetNodeID ID; 2588 ID.AddInteger(scMulExpr); 2589 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2590 ID.AddPointer(Ops[i]); 2591 void *IP = nullptr; 2592 SCEVMulExpr *S = 2593 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2594 if (!S) { 2595 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2596 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2597 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2598 O, Ops.size()); 2599 UniqueSCEVs.InsertNode(S, IP); 2600 } 2601 S->setNoWrapFlags(Flags); 2602 return S; 2603 } 2604 2605 /// getUDivExpr - Get a canonical unsigned division expression, or something 2606 /// simpler if possible. 2607 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2608 const SCEV *RHS) { 2609 assert(getEffectiveSCEVType(LHS->getType()) == 2610 getEffectiveSCEVType(RHS->getType()) && 2611 "SCEVUDivExpr operand types don't match!"); 2612 2613 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2614 if (RHSC->getValue()->equalsInt(1)) 2615 return LHS; // X udiv 1 --> x 2616 // If the denominator is zero, the result of the udiv is undefined. Don't 2617 // try to analyze it, because the resolution chosen here may differ from 2618 // the resolution chosen in other parts of the compiler. 2619 if (!RHSC->getValue()->isZero()) { 2620 // Determine if the division can be folded into the operands of 2621 // its operands. 2622 // TODO: Generalize this to non-constants by using known-bits information. 2623 Type *Ty = LHS->getType(); 2624 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2625 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2626 // For non-power-of-two values, effectively round the value up to the 2627 // nearest power of two. 2628 if (!RHSC->getValue()->getValue().isPowerOf2()) 2629 ++MaxShiftAmt; 2630 IntegerType *ExtTy = 2631 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2632 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2633 if (const SCEVConstant *Step = 2634 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2635 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2636 const APInt &StepInt = Step->getValue()->getValue(); 2637 const APInt &DivInt = RHSC->getValue()->getValue(); 2638 if (!StepInt.urem(DivInt) && 2639 getZeroExtendExpr(AR, ExtTy) == 2640 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2641 getZeroExtendExpr(Step, ExtTy), 2642 AR->getLoop(), SCEV::FlagAnyWrap)) { 2643 SmallVector<const SCEV *, 4> Operands; 2644 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2645 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2646 return getAddRecExpr(Operands, AR->getLoop(), 2647 SCEV::FlagNW); 2648 } 2649 /// Get a canonical UDivExpr for a recurrence. 2650 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2651 // We can currently only fold X%N if X is constant. 2652 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2653 if (StartC && !DivInt.urem(StepInt) && 2654 getZeroExtendExpr(AR, ExtTy) == 2655 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2656 getZeroExtendExpr(Step, ExtTy), 2657 AR->getLoop(), SCEV::FlagAnyWrap)) { 2658 const APInt &StartInt = StartC->getValue()->getValue(); 2659 const APInt &StartRem = StartInt.urem(StepInt); 2660 if (StartRem != 0) 2661 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2662 AR->getLoop(), SCEV::FlagNW); 2663 } 2664 } 2665 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2666 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2667 SmallVector<const SCEV *, 4> Operands; 2668 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2669 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2670 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2671 // Find an operand that's safely divisible. 2672 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2673 const SCEV *Op = M->getOperand(i); 2674 const SCEV *Div = getUDivExpr(Op, RHSC); 2675 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2676 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2677 M->op_end()); 2678 Operands[i] = Div; 2679 return getMulExpr(Operands); 2680 } 2681 } 2682 } 2683 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2684 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2685 SmallVector<const SCEV *, 4> Operands; 2686 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2687 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2688 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2689 Operands.clear(); 2690 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2691 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2692 if (isa<SCEVUDivExpr>(Op) || 2693 getMulExpr(Op, RHS) != A->getOperand(i)) 2694 break; 2695 Operands.push_back(Op); 2696 } 2697 if (Operands.size() == A->getNumOperands()) 2698 return getAddExpr(Operands); 2699 } 2700 } 2701 2702 // Fold if both operands are constant. 2703 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2704 Constant *LHSCV = LHSC->getValue(); 2705 Constant *RHSCV = RHSC->getValue(); 2706 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2707 RHSCV))); 2708 } 2709 } 2710 } 2711 2712 FoldingSetNodeID ID; 2713 ID.AddInteger(scUDivExpr); 2714 ID.AddPointer(LHS); 2715 ID.AddPointer(RHS); 2716 void *IP = nullptr; 2717 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2718 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2719 LHS, RHS); 2720 UniqueSCEVs.InsertNode(S, IP); 2721 return S; 2722 } 2723 2724 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2725 APInt A = C1->getValue()->getValue().abs(); 2726 APInt B = C2->getValue()->getValue().abs(); 2727 uint32_t ABW = A.getBitWidth(); 2728 uint32_t BBW = B.getBitWidth(); 2729 2730 if (ABW > BBW) 2731 B = B.zext(ABW); 2732 else if (ABW < BBW) 2733 A = A.zext(BBW); 2734 2735 return APIntOps::GreatestCommonDivisor(A, B); 2736 } 2737 2738 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2739 /// something simpler if possible. There is no representation for an exact udiv 2740 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2741 /// We can't do this when it's not exact because the udiv may be clearing bits. 2742 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2743 const SCEV *RHS) { 2744 // TODO: we could try to find factors in all sorts of things, but for now we 2745 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2746 // end of this file for inspiration. 2747 2748 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2749 if (!Mul) 2750 return getUDivExpr(LHS, RHS); 2751 2752 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2753 // If the mulexpr multiplies by a constant, then that constant must be the 2754 // first element of the mulexpr. 2755 if (const SCEVConstant *LHSCst = 2756 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2757 if (LHSCst == RHSCst) { 2758 SmallVector<const SCEV *, 2> Operands; 2759 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2760 return getMulExpr(Operands); 2761 } 2762 2763 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2764 // that there's a factor provided by one of the other terms. We need to 2765 // check. 2766 APInt Factor = gcd(LHSCst, RHSCst); 2767 if (!Factor.isIntN(1)) { 2768 LHSCst = cast<SCEVConstant>( 2769 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2770 RHSCst = cast<SCEVConstant>( 2771 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2772 SmallVector<const SCEV *, 2> Operands; 2773 Operands.push_back(LHSCst); 2774 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2775 LHS = getMulExpr(Operands); 2776 RHS = RHSCst; 2777 Mul = dyn_cast<SCEVMulExpr>(LHS); 2778 if (!Mul) 2779 return getUDivExactExpr(LHS, RHS); 2780 } 2781 } 2782 } 2783 2784 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2785 if (Mul->getOperand(i) == RHS) { 2786 SmallVector<const SCEV *, 2> Operands; 2787 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2788 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2789 return getMulExpr(Operands); 2790 } 2791 } 2792 2793 return getUDivExpr(LHS, RHS); 2794 } 2795 2796 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2797 /// Simplify the expression as much as possible. 2798 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2799 const Loop *L, 2800 SCEV::NoWrapFlags Flags) { 2801 SmallVector<const SCEV *, 4> Operands; 2802 Operands.push_back(Start); 2803 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2804 if (StepChrec->getLoop() == L) { 2805 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2806 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2807 } 2808 2809 Operands.push_back(Step); 2810 return getAddRecExpr(Operands, L, Flags); 2811 } 2812 2813 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2814 /// Simplify the expression as much as possible. 2815 const SCEV * 2816 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2817 const Loop *L, SCEV::NoWrapFlags Flags) { 2818 if (Operands.size() == 1) return Operands[0]; 2819 #ifndef NDEBUG 2820 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2821 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2822 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2823 "SCEVAddRecExpr operand types don't match!"); 2824 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2825 assert(isLoopInvariant(Operands[i], L) && 2826 "SCEVAddRecExpr operand is not loop-invariant!"); 2827 #endif 2828 2829 if (Operands.back()->isZero()) { 2830 Operands.pop_back(); 2831 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2832 } 2833 2834 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2835 // use that information to infer NUW and NSW flags. However, computing a 2836 // BE count requires calling getAddRecExpr, so we may not yet have a 2837 // meaningful BE count at this point (and if we don't, we'd be stuck 2838 // with a SCEVCouldNotCompute as the cached BE count). 2839 2840 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2841 2842 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2843 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2844 const Loop *NestedLoop = NestedAR->getLoop(); 2845 if (L->contains(NestedLoop) ? 2846 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2847 (!NestedLoop->contains(L) && 2848 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2849 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2850 NestedAR->op_end()); 2851 Operands[0] = NestedAR->getStart(); 2852 // AddRecs require their operands be loop-invariant with respect to their 2853 // loops. Don't perform this transformation if it would break this 2854 // requirement. 2855 bool AllInvariant = true; 2856 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2857 if (!isLoopInvariant(Operands[i], L)) { 2858 AllInvariant = false; 2859 break; 2860 } 2861 if (AllInvariant) { 2862 // Create a recurrence for the outer loop with the same step size. 2863 // 2864 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2865 // inner recurrence has the same property. 2866 SCEV::NoWrapFlags OuterFlags = 2867 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2868 2869 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2870 AllInvariant = true; 2871 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2872 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2873 AllInvariant = false; 2874 break; 2875 } 2876 if (AllInvariant) { 2877 // Ok, both add recurrences are valid after the transformation. 2878 // 2879 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2880 // the outer recurrence has the same property. 2881 SCEV::NoWrapFlags InnerFlags = 2882 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2883 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2884 } 2885 } 2886 // Reset Operands to its original state. 2887 Operands[0] = NestedAR; 2888 } 2889 } 2890 2891 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2892 // already have one, otherwise create a new one. 2893 FoldingSetNodeID ID; 2894 ID.AddInteger(scAddRecExpr); 2895 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2896 ID.AddPointer(Operands[i]); 2897 ID.AddPointer(L); 2898 void *IP = nullptr; 2899 SCEVAddRecExpr *S = 2900 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2901 if (!S) { 2902 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2903 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2904 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2905 O, Operands.size(), L); 2906 UniqueSCEVs.InsertNode(S, IP); 2907 } 2908 S->setNoWrapFlags(Flags); 2909 return S; 2910 } 2911 2912 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2913 const SCEV *RHS) { 2914 SmallVector<const SCEV *, 2> Ops; 2915 Ops.push_back(LHS); 2916 Ops.push_back(RHS); 2917 return getSMaxExpr(Ops); 2918 } 2919 2920 const SCEV * 2921 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2922 assert(!Ops.empty() && "Cannot get empty smax!"); 2923 if (Ops.size() == 1) return Ops[0]; 2924 #ifndef NDEBUG 2925 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2926 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2927 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2928 "SCEVSMaxExpr operand types don't match!"); 2929 #endif 2930 2931 // Sort by complexity, this groups all similar expression types together. 2932 GroupByComplexity(Ops, LI); 2933 2934 // If there are any constants, fold them together. 2935 unsigned Idx = 0; 2936 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2937 ++Idx; 2938 assert(Idx < Ops.size()); 2939 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2940 // We found two constants, fold them together! 2941 ConstantInt *Fold = ConstantInt::get(getContext(), 2942 APIntOps::smax(LHSC->getValue()->getValue(), 2943 RHSC->getValue()->getValue())); 2944 Ops[0] = getConstant(Fold); 2945 Ops.erase(Ops.begin()+1); // Erase the folded element 2946 if (Ops.size() == 1) return Ops[0]; 2947 LHSC = cast<SCEVConstant>(Ops[0]); 2948 } 2949 2950 // If we are left with a constant minimum-int, strip it off. 2951 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2952 Ops.erase(Ops.begin()); 2953 --Idx; 2954 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2955 // If we have an smax with a constant maximum-int, it will always be 2956 // maximum-int. 2957 return Ops[0]; 2958 } 2959 2960 if (Ops.size() == 1) return Ops[0]; 2961 } 2962 2963 // Find the first SMax 2964 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2965 ++Idx; 2966 2967 // Check to see if one of the operands is an SMax. If so, expand its operands 2968 // onto our operand list, and recurse to simplify. 2969 if (Idx < Ops.size()) { 2970 bool DeletedSMax = false; 2971 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2972 Ops.erase(Ops.begin()+Idx); 2973 Ops.append(SMax->op_begin(), SMax->op_end()); 2974 DeletedSMax = true; 2975 } 2976 2977 if (DeletedSMax) 2978 return getSMaxExpr(Ops); 2979 } 2980 2981 // Okay, check to see if the same value occurs in the operand list twice. If 2982 // so, delete one. Since we sorted the list, these values are required to 2983 // be adjacent. 2984 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2985 // X smax Y smax Y --> X smax Y 2986 // X smax Y --> X, if X is always greater than Y 2987 if (Ops[i] == Ops[i+1] || 2988 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2989 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2990 --i; --e; 2991 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2992 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2993 --i; --e; 2994 } 2995 2996 if (Ops.size() == 1) return Ops[0]; 2997 2998 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2999 3000 // Okay, it looks like we really DO need an smax expr. Check to see if we 3001 // already have one, otherwise create a new one. 3002 FoldingSetNodeID ID; 3003 ID.AddInteger(scSMaxExpr); 3004 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3005 ID.AddPointer(Ops[i]); 3006 void *IP = nullptr; 3007 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3008 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3009 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3010 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3011 O, Ops.size()); 3012 UniqueSCEVs.InsertNode(S, IP); 3013 return S; 3014 } 3015 3016 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3017 const SCEV *RHS) { 3018 SmallVector<const SCEV *, 2> Ops; 3019 Ops.push_back(LHS); 3020 Ops.push_back(RHS); 3021 return getUMaxExpr(Ops); 3022 } 3023 3024 const SCEV * 3025 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3026 assert(!Ops.empty() && "Cannot get empty umax!"); 3027 if (Ops.size() == 1) return Ops[0]; 3028 #ifndef NDEBUG 3029 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3030 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3031 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3032 "SCEVUMaxExpr operand types don't match!"); 3033 #endif 3034 3035 // Sort by complexity, this groups all similar expression types together. 3036 GroupByComplexity(Ops, LI); 3037 3038 // If there are any constants, fold them together. 3039 unsigned Idx = 0; 3040 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3041 ++Idx; 3042 assert(Idx < Ops.size()); 3043 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3044 // We found two constants, fold them together! 3045 ConstantInt *Fold = ConstantInt::get(getContext(), 3046 APIntOps::umax(LHSC->getValue()->getValue(), 3047 RHSC->getValue()->getValue())); 3048 Ops[0] = getConstant(Fold); 3049 Ops.erase(Ops.begin()+1); // Erase the folded element 3050 if (Ops.size() == 1) return Ops[0]; 3051 LHSC = cast<SCEVConstant>(Ops[0]); 3052 } 3053 3054 // If we are left with a constant minimum-int, strip it off. 3055 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3056 Ops.erase(Ops.begin()); 3057 --Idx; 3058 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3059 // If we have an umax with a constant maximum-int, it will always be 3060 // maximum-int. 3061 return Ops[0]; 3062 } 3063 3064 if (Ops.size() == 1) return Ops[0]; 3065 } 3066 3067 // Find the first UMax 3068 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3069 ++Idx; 3070 3071 // Check to see if one of the operands is a UMax. If so, expand its operands 3072 // onto our operand list, and recurse to simplify. 3073 if (Idx < Ops.size()) { 3074 bool DeletedUMax = false; 3075 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3076 Ops.erase(Ops.begin()+Idx); 3077 Ops.append(UMax->op_begin(), UMax->op_end()); 3078 DeletedUMax = true; 3079 } 3080 3081 if (DeletedUMax) 3082 return getUMaxExpr(Ops); 3083 } 3084 3085 // Okay, check to see if the same value occurs in the operand list twice. If 3086 // so, delete one. Since we sorted the list, these values are required to 3087 // be adjacent. 3088 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3089 // X umax Y umax Y --> X umax Y 3090 // X umax Y --> X, if X is always greater than Y 3091 if (Ops[i] == Ops[i+1] || 3092 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3093 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3094 --i; --e; 3095 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3096 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3097 --i; --e; 3098 } 3099 3100 if (Ops.size() == 1) return Ops[0]; 3101 3102 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3103 3104 // Okay, it looks like we really DO need a umax expr. Check to see if we 3105 // already have one, otherwise create a new one. 3106 FoldingSetNodeID ID; 3107 ID.AddInteger(scUMaxExpr); 3108 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3109 ID.AddPointer(Ops[i]); 3110 void *IP = nullptr; 3111 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3112 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3113 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3114 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3115 O, Ops.size()); 3116 UniqueSCEVs.InsertNode(S, IP); 3117 return S; 3118 } 3119 3120 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3121 const SCEV *RHS) { 3122 // ~smax(~x, ~y) == smin(x, y). 3123 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3124 } 3125 3126 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3127 const SCEV *RHS) { 3128 // ~umax(~x, ~y) == umin(x, y) 3129 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3130 } 3131 3132 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3133 // If we have DataLayout, we can bypass creating a target-independent 3134 // constant expression and then folding it back into a ConstantInt. 3135 // This is just a compile-time optimization. 3136 if (DL) 3137 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy)); 3138 3139 Constant *C = ConstantExpr::getSizeOf(AllocTy); 3140 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3141 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 3142 C = Folded; 3143 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 3144 assert(Ty == IntTy && "Effective SCEV type doesn't match"); 3145 return getTruncateOrZeroExtend(getSCEV(C), Ty); 3146 } 3147 3148 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3149 StructType *STy, 3150 unsigned FieldNo) { 3151 // If we have DataLayout, we can bypass creating a target-independent 3152 // constant expression and then folding it back into a ConstantInt. 3153 // This is just a compile-time optimization. 3154 if (DL) { 3155 return getConstant(IntTy, 3156 DL->getStructLayout(STy)->getElementOffset(FieldNo)); 3157 } 3158 3159 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 3160 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3161 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 3162 C = Folded; 3163 3164 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 3165 return getTruncateOrZeroExtend(getSCEV(C), Ty); 3166 } 3167 3168 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3169 // Don't attempt to do anything other than create a SCEVUnknown object 3170 // here. createSCEV only calls getUnknown after checking for all other 3171 // interesting possibilities, and any other code that calls getUnknown 3172 // is doing so in order to hide a value from SCEV canonicalization. 3173 3174 FoldingSetNodeID ID; 3175 ID.AddInteger(scUnknown); 3176 ID.AddPointer(V); 3177 void *IP = nullptr; 3178 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3179 assert(cast<SCEVUnknown>(S)->getValue() == V && 3180 "Stale SCEVUnknown in uniquing map!"); 3181 return S; 3182 } 3183 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3184 FirstUnknown); 3185 FirstUnknown = cast<SCEVUnknown>(S); 3186 UniqueSCEVs.InsertNode(S, IP); 3187 return S; 3188 } 3189 3190 //===----------------------------------------------------------------------===// 3191 // Basic SCEV Analysis and PHI Idiom Recognition Code 3192 // 3193 3194 /// isSCEVable - Test if values of the given type are analyzable within 3195 /// the SCEV framework. This primarily includes integer types, and it 3196 /// can optionally include pointer types if the ScalarEvolution class 3197 /// has access to target-specific information. 3198 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3199 // Integers and pointers are always SCEVable. 3200 return Ty->isIntegerTy() || Ty->isPointerTy(); 3201 } 3202 3203 /// getTypeSizeInBits - Return the size in bits of the specified type, 3204 /// for which isSCEVable must return true. 3205 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3206 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3207 3208 // If we have a DataLayout, use it! 3209 if (DL) 3210 return DL->getTypeSizeInBits(Ty); 3211 3212 // Integer types have fixed sizes. 3213 if (Ty->isIntegerTy()) 3214 return Ty->getPrimitiveSizeInBits(); 3215 3216 // The only other support type is pointer. Without DataLayout, conservatively 3217 // assume pointers are 64-bit. 3218 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 3219 return 64; 3220 } 3221 3222 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3223 /// the given type and which represents how SCEV will treat the given 3224 /// type, for which isSCEVable must return true. For pointer types, 3225 /// this is the pointer-sized integer type. 3226 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3227 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3228 3229 if (Ty->isIntegerTy()) { 3230 return Ty; 3231 } 3232 3233 // The only other support type is pointer. 3234 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3235 3236 if (DL) 3237 return DL->getIntPtrType(Ty); 3238 3239 // Without DataLayout, conservatively assume pointers are 64-bit. 3240 return Type::getInt64Ty(getContext()); 3241 } 3242 3243 const SCEV *ScalarEvolution::getCouldNotCompute() { 3244 return &CouldNotCompute; 3245 } 3246 3247 namespace { 3248 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3249 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3250 // is set iff if find such SCEVUnknown. 3251 // 3252 struct FindInvalidSCEVUnknown { 3253 bool FindOne; 3254 FindInvalidSCEVUnknown() { FindOne = false; } 3255 bool follow(const SCEV *S) { 3256 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3257 case scConstant: 3258 return false; 3259 case scUnknown: 3260 if (!cast<SCEVUnknown>(S)->getValue()) 3261 FindOne = true; 3262 return false; 3263 default: 3264 return true; 3265 } 3266 } 3267 bool isDone() const { return FindOne; } 3268 }; 3269 } 3270 3271 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3272 FindInvalidSCEVUnknown F; 3273 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3274 ST.visitAll(S); 3275 3276 return !F.FindOne; 3277 } 3278 3279 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3280 /// expression and create a new one. 3281 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3282 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3283 3284 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3285 if (I != ValueExprMap.end()) { 3286 const SCEV *S = I->second; 3287 if (checkValidity(S)) 3288 return S; 3289 else 3290 ValueExprMap.erase(I); 3291 } 3292 const SCEV *S = createSCEV(V); 3293 3294 // The process of creating a SCEV for V may have caused other SCEVs 3295 // to have been created, so it's necessary to insert the new entry 3296 // from scratch, rather than trying to remember the insert position 3297 // above. 3298 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3299 return S; 3300 } 3301 3302 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3303 /// 3304 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 3305 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3306 return getConstant( 3307 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3308 3309 Type *Ty = V->getType(); 3310 Ty = getEffectiveSCEVType(Ty); 3311 return getMulExpr(V, 3312 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 3313 } 3314 3315 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3316 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3317 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3318 return getConstant( 3319 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3320 3321 Type *Ty = V->getType(); 3322 Ty = getEffectiveSCEVType(Ty); 3323 const SCEV *AllOnes = 3324 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3325 return getMinusSCEV(AllOnes, V); 3326 } 3327 3328 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3329 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3330 SCEV::NoWrapFlags Flags) { 3331 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 3332 3333 // Fast path: X - X --> 0. 3334 if (LHS == RHS) 3335 return getConstant(LHS->getType(), 0); 3336 3337 // X - Y --> X + -Y. 3338 // X -(nsw || nuw) Y --> X + -Y. 3339 return getAddExpr(LHS, getNegativeSCEV(RHS)); 3340 } 3341 3342 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3343 /// input value to the specified type. If the type must be extended, it is zero 3344 /// extended. 3345 const SCEV * 3346 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3347 Type *SrcTy = V->getType(); 3348 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3349 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3350 "Cannot truncate or zero extend with non-integer arguments!"); 3351 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3352 return V; // No conversion 3353 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3354 return getTruncateExpr(V, Ty); 3355 return getZeroExtendExpr(V, Ty); 3356 } 3357 3358 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3359 /// input value to the specified type. If the type must be extended, it is sign 3360 /// extended. 3361 const SCEV * 3362 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3363 Type *Ty) { 3364 Type *SrcTy = V->getType(); 3365 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3366 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3367 "Cannot truncate or zero extend with non-integer arguments!"); 3368 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3369 return V; // No conversion 3370 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3371 return getTruncateExpr(V, Ty); 3372 return getSignExtendExpr(V, Ty); 3373 } 3374 3375 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3376 /// input value to the specified type. If the type must be extended, it is zero 3377 /// extended. The conversion must not be narrowing. 3378 const SCEV * 3379 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3380 Type *SrcTy = V->getType(); 3381 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3382 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3383 "Cannot noop or zero extend with non-integer arguments!"); 3384 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3385 "getNoopOrZeroExtend cannot truncate!"); 3386 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3387 return V; // No conversion 3388 return getZeroExtendExpr(V, Ty); 3389 } 3390 3391 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3392 /// input value to the specified type. If the type must be extended, it is sign 3393 /// extended. The conversion must not be narrowing. 3394 const SCEV * 3395 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3396 Type *SrcTy = V->getType(); 3397 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3398 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3399 "Cannot noop or sign extend with non-integer arguments!"); 3400 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3401 "getNoopOrSignExtend cannot truncate!"); 3402 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3403 return V; // No conversion 3404 return getSignExtendExpr(V, Ty); 3405 } 3406 3407 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3408 /// the input value to the specified type. If the type must be extended, 3409 /// it is extended with unspecified bits. The conversion must not be 3410 /// narrowing. 3411 const SCEV * 3412 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3413 Type *SrcTy = V->getType(); 3414 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3415 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3416 "Cannot noop or any extend with non-integer arguments!"); 3417 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3418 "getNoopOrAnyExtend cannot truncate!"); 3419 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3420 return V; // No conversion 3421 return getAnyExtendExpr(V, Ty); 3422 } 3423 3424 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3425 /// input value to the specified type. The conversion must not be widening. 3426 const SCEV * 3427 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3428 Type *SrcTy = V->getType(); 3429 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3430 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3431 "Cannot truncate or noop with non-integer arguments!"); 3432 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3433 "getTruncateOrNoop cannot extend!"); 3434 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3435 return V; // No conversion 3436 return getTruncateExpr(V, Ty); 3437 } 3438 3439 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3440 /// the types using zero-extension, and then perform a umax operation 3441 /// with them. 3442 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3443 const SCEV *RHS) { 3444 const SCEV *PromotedLHS = LHS; 3445 const SCEV *PromotedRHS = RHS; 3446 3447 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3448 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3449 else 3450 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3451 3452 return getUMaxExpr(PromotedLHS, PromotedRHS); 3453 } 3454 3455 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3456 /// the types using zero-extension, and then perform a umin operation 3457 /// with them. 3458 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3459 const SCEV *RHS) { 3460 const SCEV *PromotedLHS = LHS; 3461 const SCEV *PromotedRHS = RHS; 3462 3463 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3464 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3465 else 3466 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3467 3468 return getUMinExpr(PromotedLHS, PromotedRHS); 3469 } 3470 3471 /// getPointerBase - Transitively follow the chain of pointer-type operands 3472 /// until reaching a SCEV that does not have a single pointer operand. This 3473 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3474 /// but corner cases do exist. 3475 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3476 // A pointer operand may evaluate to a nonpointer expression, such as null. 3477 if (!V->getType()->isPointerTy()) 3478 return V; 3479 3480 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3481 return getPointerBase(Cast->getOperand()); 3482 } 3483 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3484 const SCEV *PtrOp = nullptr; 3485 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3486 I != E; ++I) { 3487 if ((*I)->getType()->isPointerTy()) { 3488 // Cannot find the base of an expression with multiple pointer operands. 3489 if (PtrOp) 3490 return V; 3491 PtrOp = *I; 3492 } 3493 } 3494 if (!PtrOp) 3495 return V; 3496 return getPointerBase(PtrOp); 3497 } 3498 return V; 3499 } 3500 3501 /// PushDefUseChildren - Push users of the given Instruction 3502 /// onto the given Worklist. 3503 static void 3504 PushDefUseChildren(Instruction *I, 3505 SmallVectorImpl<Instruction *> &Worklist) { 3506 // Push the def-use children onto the Worklist stack. 3507 for (User *U : I->users()) 3508 Worklist.push_back(cast<Instruction>(U)); 3509 } 3510 3511 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3512 /// instructions that depend on the given instruction and removes them from 3513 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3514 /// resolution. 3515 void 3516 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3517 SmallVector<Instruction *, 16> Worklist; 3518 PushDefUseChildren(PN, Worklist); 3519 3520 SmallPtrSet<Instruction *, 8> Visited; 3521 Visited.insert(PN); 3522 while (!Worklist.empty()) { 3523 Instruction *I = Worklist.pop_back_val(); 3524 if (!Visited.insert(I).second) 3525 continue; 3526 3527 ValueExprMapType::iterator It = 3528 ValueExprMap.find_as(static_cast<Value *>(I)); 3529 if (It != ValueExprMap.end()) { 3530 const SCEV *Old = It->second; 3531 3532 // Short-circuit the def-use traversal if the symbolic name 3533 // ceases to appear in expressions. 3534 if (Old != SymName && !hasOperand(Old, SymName)) 3535 continue; 3536 3537 // SCEVUnknown for a PHI either means that it has an unrecognized 3538 // structure, it's a PHI that's in the progress of being computed 3539 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3540 // additional loop trip count information isn't going to change anything. 3541 // In the second case, createNodeForPHI will perform the necessary 3542 // updates on its own when it gets to that point. In the third, we do 3543 // want to forget the SCEVUnknown. 3544 if (!isa<PHINode>(I) || 3545 !isa<SCEVUnknown>(Old) || 3546 (I != PN && Old == SymName)) { 3547 forgetMemoizedResults(Old); 3548 ValueExprMap.erase(It); 3549 } 3550 } 3551 3552 PushDefUseChildren(I, Worklist); 3553 } 3554 } 3555 3556 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3557 /// a loop header, making it a potential recurrence, or it doesn't. 3558 /// 3559 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3560 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3561 if (L->getHeader() == PN->getParent()) { 3562 // The loop may have multiple entrances or multiple exits; we can analyze 3563 // this phi as an addrec if it has a unique entry value and a unique 3564 // backedge value. 3565 Value *BEValueV = nullptr, *StartValueV = nullptr; 3566 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3567 Value *V = PN->getIncomingValue(i); 3568 if (L->contains(PN->getIncomingBlock(i))) { 3569 if (!BEValueV) { 3570 BEValueV = V; 3571 } else if (BEValueV != V) { 3572 BEValueV = nullptr; 3573 break; 3574 } 3575 } else if (!StartValueV) { 3576 StartValueV = V; 3577 } else if (StartValueV != V) { 3578 StartValueV = nullptr; 3579 break; 3580 } 3581 } 3582 if (BEValueV && StartValueV) { 3583 // While we are analyzing this PHI node, handle its value symbolically. 3584 const SCEV *SymbolicName = getUnknown(PN); 3585 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3586 "PHI node already processed?"); 3587 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3588 3589 // Using this symbolic name for the PHI, analyze the value coming around 3590 // the back-edge. 3591 const SCEV *BEValue = getSCEV(BEValueV); 3592 3593 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3594 // has a special value for the first iteration of the loop. 3595 3596 // If the value coming around the backedge is an add with the symbolic 3597 // value we just inserted, then we found a simple induction variable! 3598 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3599 // If there is a single occurrence of the symbolic value, replace it 3600 // with a recurrence. 3601 unsigned FoundIndex = Add->getNumOperands(); 3602 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3603 if (Add->getOperand(i) == SymbolicName) 3604 if (FoundIndex == e) { 3605 FoundIndex = i; 3606 break; 3607 } 3608 3609 if (FoundIndex != Add->getNumOperands()) { 3610 // Create an add with everything but the specified operand. 3611 SmallVector<const SCEV *, 8> Ops; 3612 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3613 if (i != FoundIndex) 3614 Ops.push_back(Add->getOperand(i)); 3615 const SCEV *Accum = getAddExpr(Ops); 3616 3617 // This is not a valid addrec if the step amount is varying each 3618 // loop iteration, but is not itself an addrec in this loop. 3619 if (isLoopInvariant(Accum, L) || 3620 (isa<SCEVAddRecExpr>(Accum) && 3621 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3622 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3623 3624 // If the increment doesn't overflow, then neither the addrec nor 3625 // the post-increment will overflow. 3626 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3627 if (OBO->hasNoUnsignedWrap()) 3628 Flags = setFlags(Flags, SCEV::FlagNUW); 3629 if (OBO->hasNoSignedWrap()) 3630 Flags = setFlags(Flags, SCEV::FlagNSW); 3631 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3632 // If the increment is an inbounds GEP, then we know the address 3633 // space cannot be wrapped around. We cannot make any guarantee 3634 // about signed or unsigned overflow because pointers are 3635 // unsigned but we may have a negative index from the base 3636 // pointer. We can guarantee that no unsigned wrap occurs if the 3637 // indices form a positive value. 3638 if (GEP->isInBounds()) { 3639 Flags = setFlags(Flags, SCEV::FlagNW); 3640 3641 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3642 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3643 Flags = setFlags(Flags, SCEV::FlagNUW); 3644 } 3645 3646 // We cannot transfer nuw and nsw flags from subtraction 3647 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3648 // for instance. 3649 } 3650 3651 const SCEV *StartVal = getSCEV(StartValueV); 3652 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3653 3654 // Since the no-wrap flags are on the increment, they apply to the 3655 // post-incremented value as well. 3656 if (isLoopInvariant(Accum, L)) 3657 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3658 Accum, L, Flags); 3659 3660 // Okay, for the entire analysis of this edge we assumed the PHI 3661 // to be symbolic. We now need to go back and purge all of the 3662 // entries for the scalars that use the symbolic expression. 3663 ForgetSymbolicName(PN, SymbolicName); 3664 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3665 return PHISCEV; 3666 } 3667 } 3668 } else if (const SCEVAddRecExpr *AddRec = 3669 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3670 // Otherwise, this could be a loop like this: 3671 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3672 // In this case, j = {1,+,1} and BEValue is j. 3673 // Because the other in-value of i (0) fits the evolution of BEValue 3674 // i really is an addrec evolution. 3675 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3676 const SCEV *StartVal = getSCEV(StartValueV); 3677 3678 // If StartVal = j.start - j.stride, we can use StartVal as the 3679 // initial step of the addrec evolution. 3680 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3681 AddRec->getOperand(1))) { 3682 // FIXME: For constant StartVal, we should be able to infer 3683 // no-wrap flags. 3684 const SCEV *PHISCEV = 3685 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3686 SCEV::FlagAnyWrap); 3687 3688 // Okay, for the entire analysis of this edge we assumed the PHI 3689 // to be symbolic. We now need to go back and purge all of the 3690 // entries for the scalars that use the symbolic expression. 3691 ForgetSymbolicName(PN, SymbolicName); 3692 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3693 return PHISCEV; 3694 } 3695 } 3696 } 3697 } 3698 } 3699 3700 // If the PHI has a single incoming value, follow that value, unless the 3701 // PHI's incoming blocks are in a different loop, in which case doing so 3702 // risks breaking LCSSA form. Instcombine would normally zap these, but 3703 // it doesn't have DominatorTree information, so it may miss cases. 3704 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AC)) 3705 if (LI->replacementPreservesLCSSAForm(PN, V)) 3706 return getSCEV(V); 3707 3708 // If it's not a loop phi, we can't handle it yet. 3709 return getUnknown(PN); 3710 } 3711 3712 /// createNodeForGEP - Expand GEP instructions into add and multiply 3713 /// operations. This allows them to be analyzed by regular SCEV code. 3714 /// 3715 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3716 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3717 Value *Base = GEP->getOperand(0); 3718 // Don't attempt to analyze GEPs over unsized objects. 3719 if (!Base->getType()->getPointerElementType()->isSized()) 3720 return getUnknown(GEP); 3721 3722 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3723 // Add expression, because the Instruction may be guarded by control flow 3724 // and the no-overflow bits may not be valid for the expression in any 3725 // context. 3726 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3727 3728 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3729 gep_type_iterator GTI = gep_type_begin(GEP); 3730 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()), 3731 E = GEP->op_end(); 3732 I != E; ++I) { 3733 Value *Index = *I; 3734 // Compute the (potentially symbolic) offset in bytes for this index. 3735 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3736 // For a struct, add the member offset. 3737 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3738 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3739 3740 // Add the field offset to the running total offset. 3741 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3742 } else { 3743 // For an array, add the element offset, explicitly scaled. 3744 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI); 3745 const SCEV *IndexS = getSCEV(Index); 3746 // Getelementptr indices are signed. 3747 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3748 3749 // Multiply the index by the element size to compute the element offset. 3750 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap); 3751 3752 // Add the element offset to the running total offset. 3753 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3754 } 3755 } 3756 3757 // Get the SCEV for the GEP base. 3758 const SCEV *BaseS = getSCEV(Base); 3759 3760 // Add the total offset from all the GEP indices to the base. 3761 return getAddExpr(BaseS, TotalOffset, Wrap); 3762 } 3763 3764 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3765 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3766 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3767 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3768 uint32_t 3769 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3770 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3771 return C->getValue()->getValue().countTrailingZeros(); 3772 3773 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3774 return std::min(GetMinTrailingZeros(T->getOperand()), 3775 (uint32_t)getTypeSizeInBits(T->getType())); 3776 3777 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3778 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3779 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3780 getTypeSizeInBits(E->getType()) : OpRes; 3781 } 3782 3783 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3784 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3785 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3786 getTypeSizeInBits(E->getType()) : OpRes; 3787 } 3788 3789 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3790 // The result is the min of all operands results. 3791 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3792 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3793 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3794 return MinOpRes; 3795 } 3796 3797 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3798 // The result is the sum of all operands results. 3799 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3800 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3801 for (unsigned i = 1, e = M->getNumOperands(); 3802 SumOpRes != BitWidth && i != e; ++i) 3803 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3804 BitWidth); 3805 return SumOpRes; 3806 } 3807 3808 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3809 // The result is the min of all operands results. 3810 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3811 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3812 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3813 return MinOpRes; 3814 } 3815 3816 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3817 // The result is the min of all operands results. 3818 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3819 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3820 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3821 return MinOpRes; 3822 } 3823 3824 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3825 // The result is the min of all operands results. 3826 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3827 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3828 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3829 return MinOpRes; 3830 } 3831 3832 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3833 // For a SCEVUnknown, ask ValueTracking. 3834 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3835 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3836 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT); 3837 return Zeros.countTrailingOnes(); 3838 } 3839 3840 // SCEVUDivExpr 3841 return 0; 3842 } 3843 3844 /// GetRangeFromMetadata - Helper method to assign a range to V from 3845 /// metadata present in the IR. 3846 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 3847 if (Instruction *I = dyn_cast<Instruction>(V)) { 3848 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 3849 ConstantRange TotalRange( 3850 cast<IntegerType>(I->getType())->getBitWidth(), false); 3851 3852 unsigned NumRanges = MD->getNumOperands() / 2; 3853 assert(NumRanges >= 1); 3854 3855 for (unsigned i = 0; i < NumRanges; ++i) { 3856 ConstantInt *Lower = 3857 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 3858 ConstantInt *Upper = 3859 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 3860 ConstantRange Range(Lower->getValue(), Upper->getValue()); 3861 TotalRange = TotalRange.unionWith(Range); 3862 } 3863 3864 return TotalRange; 3865 } 3866 } 3867 3868 return None; 3869 } 3870 3871 /// getRange - Determine the range for a particular SCEV. If SignHint is 3872 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 3873 /// with a "cleaner" unsigned (resp. signed) representation. 3874 /// 3875 ConstantRange 3876 ScalarEvolution::getRange(const SCEV *S, 3877 ScalarEvolution::RangeSignHint SignHint) { 3878 DenseMap<const SCEV *, ConstantRange> &Cache = 3879 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 3880 : SignedRanges; 3881 3882 // See if we've computed this range already. 3883 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 3884 if (I != Cache.end()) 3885 return I->second; 3886 3887 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3888 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 3889 3890 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3891 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3892 3893 // If the value has known zeros, the maximum value will have those known zeros 3894 // as well. 3895 uint32_t TZ = GetMinTrailingZeros(S); 3896 if (TZ != 0) { 3897 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 3898 ConservativeResult = 3899 ConstantRange(APInt::getMinValue(BitWidth), 3900 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3901 else 3902 ConservativeResult = ConstantRange( 3903 APInt::getSignedMinValue(BitWidth), 3904 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3905 } 3906 3907 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3908 ConstantRange X = getRange(Add->getOperand(0), SignHint); 3909 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3910 X = X.add(getRange(Add->getOperand(i), SignHint)); 3911 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 3912 } 3913 3914 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3915 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 3916 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3917 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 3918 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 3919 } 3920 3921 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3922 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 3923 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3924 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 3925 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 3926 } 3927 3928 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3929 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 3930 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3931 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 3932 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 3933 } 3934 3935 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3936 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 3937 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 3938 return setRange(UDiv, SignHint, 3939 ConservativeResult.intersectWith(X.udiv(Y))); 3940 } 3941 3942 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3943 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 3944 return setRange(ZExt, SignHint, 3945 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3946 } 3947 3948 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3949 ConstantRange X = getRange(SExt->getOperand(), SignHint); 3950 return setRange(SExt, SignHint, 3951 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3952 } 3953 3954 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3955 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 3956 return setRange(Trunc, SignHint, 3957 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3958 } 3959 3960 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3961 // If there's no unsigned wrap, the value will never be less than its 3962 // initial value. 3963 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3964 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3965 if (!C->getValue()->isZero()) 3966 ConservativeResult = 3967 ConservativeResult.intersectWith( 3968 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3969 3970 // If there's no signed wrap, and all the operands have the same sign or 3971 // zero, the value won't ever change sign. 3972 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3973 bool AllNonNeg = true; 3974 bool AllNonPos = true; 3975 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3976 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3977 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3978 } 3979 if (AllNonNeg) 3980 ConservativeResult = ConservativeResult.intersectWith( 3981 ConstantRange(APInt(BitWidth, 0), 3982 APInt::getSignedMinValue(BitWidth))); 3983 else if (AllNonPos) 3984 ConservativeResult = ConservativeResult.intersectWith( 3985 ConstantRange(APInt::getSignedMinValue(BitWidth), 3986 APInt(BitWidth, 1))); 3987 } 3988 3989 // TODO: non-affine addrec 3990 if (AddRec->isAffine()) { 3991 Type *Ty = AddRec->getType(); 3992 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3993 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3994 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3995 3996 // Check for overflow. This must be done with ConstantRange arithmetic 3997 // because we could be called from within the ScalarEvolution overflow 3998 // checking code. 3999 4000 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4001 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4002 ConstantRange ZExtMaxBECountRange = 4003 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4004 4005 const SCEV *Start = AddRec->getStart(); 4006 const SCEV *Step = AddRec->getStepRecurrence(*this); 4007 ConstantRange StepSRange = getSignedRange(Step); 4008 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4009 4010 ConstantRange StartURange = getUnsignedRange(Start); 4011 ConstantRange EndURange = 4012 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4013 4014 // Check for unsigned overflow. 4015 ConstantRange ZExtStartURange = 4016 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4017 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4018 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4019 ZExtEndURange) { 4020 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4021 EndURange.getUnsignedMin()); 4022 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4023 EndURange.getUnsignedMax()); 4024 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4025 if (!IsFullRange) 4026 ConservativeResult = 4027 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4028 } 4029 4030 ConstantRange StartSRange = getSignedRange(Start); 4031 ConstantRange EndSRange = 4032 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4033 4034 // Check for signed overflow. This must be done with ConstantRange 4035 // arithmetic because we could be called from within the ScalarEvolution 4036 // overflow checking code. 4037 ConstantRange SExtStartSRange = 4038 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4039 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4040 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4041 SExtEndSRange) { 4042 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4043 EndSRange.getSignedMin()); 4044 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4045 EndSRange.getSignedMax()); 4046 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4047 if (!IsFullRange) 4048 ConservativeResult = 4049 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4050 } 4051 } 4052 } 4053 4054 return setRange(AddRec, SignHint, ConservativeResult); 4055 } 4056 4057 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4058 // Check if the IR explicitly contains !range metadata. 4059 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4060 if (MDRange.hasValue()) 4061 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4062 4063 // Split here to avoid paying the compile-time cost of calling both 4064 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4065 // if needed. 4066 4067 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4068 // For a SCEVUnknown, ask ValueTracking. 4069 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4070 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT); 4071 if (Ones != ~Zeros + 1) 4072 ConservativeResult = 4073 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4074 } else { 4075 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4076 "generalize as needed!"); 4077 if (U->getValue()->getType()->isIntegerTy() || DL) { 4078 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT); 4079 if (NS > 1) 4080 ConservativeResult = ConservativeResult.intersectWith(ConstantRange( 4081 APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4082 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4083 } 4084 } 4085 4086 return setRange(U, SignHint, ConservativeResult); 4087 } 4088 4089 return setRange(S, SignHint, ConservativeResult); 4090 } 4091 4092 /// createSCEV - We know that there is no SCEV for the specified value. 4093 /// Analyze the expression. 4094 /// 4095 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4096 if (!isSCEVable(V->getType())) 4097 return getUnknown(V); 4098 4099 unsigned Opcode = Instruction::UserOp1; 4100 if (Instruction *I = dyn_cast<Instruction>(V)) { 4101 Opcode = I->getOpcode(); 4102 4103 // Don't attempt to analyze instructions in blocks that aren't 4104 // reachable. Such instructions don't matter, and they aren't required 4105 // to obey basic rules for definitions dominating uses which this 4106 // analysis depends on. 4107 if (!DT->isReachableFromEntry(I->getParent())) 4108 return getUnknown(V); 4109 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4110 Opcode = CE->getOpcode(); 4111 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4112 return getConstant(CI); 4113 else if (isa<ConstantPointerNull>(V)) 4114 return getConstant(V->getType(), 0); 4115 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4116 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4117 else 4118 return getUnknown(V); 4119 4120 Operator *U = cast<Operator>(V); 4121 switch (Opcode) { 4122 case Instruction::Add: { 4123 // The simple thing to do would be to just call getSCEV on both operands 4124 // and call getAddExpr with the result. However if we're looking at a 4125 // bunch of things all added together, this can be quite inefficient, 4126 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4127 // Instead, gather up all the operands and make a single getAddExpr call. 4128 // LLVM IR canonical form means we need only traverse the left operands. 4129 // 4130 // Don't apply this instruction's NSW or NUW flags to the new 4131 // expression. The instruction may be guarded by control flow that the 4132 // no-wrap behavior depends on. Non-control-equivalent instructions can be 4133 // mapped to the same SCEV expression, and it would be incorrect to transfer 4134 // NSW/NUW semantics to those operations. 4135 SmallVector<const SCEV *, 4> AddOps; 4136 AddOps.push_back(getSCEV(U->getOperand(1))); 4137 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 4138 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 4139 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 4140 break; 4141 U = cast<Operator>(Op); 4142 const SCEV *Op1 = getSCEV(U->getOperand(1)); 4143 if (Opcode == Instruction::Sub) 4144 AddOps.push_back(getNegativeSCEV(Op1)); 4145 else 4146 AddOps.push_back(Op1); 4147 } 4148 AddOps.push_back(getSCEV(U->getOperand(0))); 4149 return getAddExpr(AddOps); 4150 } 4151 case Instruction::Mul: { 4152 // Don't transfer NSW/NUW for the same reason as AddExpr. 4153 SmallVector<const SCEV *, 4> MulOps; 4154 MulOps.push_back(getSCEV(U->getOperand(1))); 4155 for (Value *Op = U->getOperand(0); 4156 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 4157 Op = U->getOperand(0)) { 4158 U = cast<Operator>(Op); 4159 MulOps.push_back(getSCEV(U->getOperand(1))); 4160 } 4161 MulOps.push_back(getSCEV(U->getOperand(0))); 4162 return getMulExpr(MulOps); 4163 } 4164 case Instruction::UDiv: 4165 return getUDivExpr(getSCEV(U->getOperand(0)), 4166 getSCEV(U->getOperand(1))); 4167 case Instruction::Sub: 4168 return getMinusSCEV(getSCEV(U->getOperand(0)), 4169 getSCEV(U->getOperand(1))); 4170 case Instruction::And: 4171 // For an expression like x&255 that merely masks off the high bits, 4172 // use zext(trunc(x)) as the SCEV expression. 4173 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4174 if (CI->isNullValue()) 4175 return getSCEV(U->getOperand(1)); 4176 if (CI->isAllOnesValue()) 4177 return getSCEV(U->getOperand(0)); 4178 const APInt &A = CI->getValue(); 4179 4180 // Instcombine's ShrinkDemandedConstant may strip bits out of 4181 // constants, obscuring what would otherwise be a low-bits mask. 4182 // Use computeKnownBits to compute what ShrinkDemandedConstant 4183 // knew about to reconstruct a low-bits mask value. 4184 unsigned LZ = A.countLeadingZeros(); 4185 unsigned TZ = A.countTrailingZeros(); 4186 unsigned BitWidth = A.getBitWidth(); 4187 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4188 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, 0, AC, 4189 nullptr, DT); 4190 4191 APInt EffectiveMask = 4192 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4193 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4194 const SCEV *MulCount = getConstant( 4195 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4196 return getMulExpr( 4197 getZeroExtendExpr( 4198 getTruncateExpr( 4199 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4200 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4201 U->getType()), 4202 MulCount); 4203 } 4204 } 4205 break; 4206 4207 case Instruction::Or: 4208 // If the RHS of the Or is a constant, we may have something like: 4209 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4210 // optimizations will transparently handle this case. 4211 // 4212 // In order for this transformation to be safe, the LHS must be of the 4213 // form X*(2^n) and the Or constant must be less than 2^n. 4214 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4215 const SCEV *LHS = getSCEV(U->getOperand(0)); 4216 const APInt &CIVal = CI->getValue(); 4217 if (GetMinTrailingZeros(LHS) >= 4218 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4219 // Build a plain add SCEV. 4220 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4221 // If the LHS of the add was an addrec and it has no-wrap flags, 4222 // transfer the no-wrap flags, since an or won't introduce a wrap. 4223 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4224 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4225 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4226 OldAR->getNoWrapFlags()); 4227 } 4228 return S; 4229 } 4230 } 4231 break; 4232 case Instruction::Xor: 4233 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4234 // If the RHS of the xor is a signbit, then this is just an add. 4235 // Instcombine turns add of signbit into xor as a strength reduction step. 4236 if (CI->getValue().isSignBit()) 4237 return getAddExpr(getSCEV(U->getOperand(0)), 4238 getSCEV(U->getOperand(1))); 4239 4240 // If the RHS of xor is -1, then this is a not operation. 4241 if (CI->isAllOnesValue()) 4242 return getNotSCEV(getSCEV(U->getOperand(0))); 4243 4244 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4245 // This is a variant of the check for xor with -1, and it handles 4246 // the case where instcombine has trimmed non-demanded bits out 4247 // of an xor with -1. 4248 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4249 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4250 if (BO->getOpcode() == Instruction::And && 4251 LCI->getValue() == CI->getValue()) 4252 if (const SCEVZeroExtendExpr *Z = 4253 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4254 Type *UTy = U->getType(); 4255 const SCEV *Z0 = Z->getOperand(); 4256 Type *Z0Ty = Z0->getType(); 4257 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4258 4259 // If C is a low-bits mask, the zero extend is serving to 4260 // mask off the high bits. Complement the operand and 4261 // re-apply the zext. 4262 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4263 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4264 4265 // If C is a single bit, it may be in the sign-bit position 4266 // before the zero-extend. In this case, represent the xor 4267 // using an add, which is equivalent, and re-apply the zext. 4268 APInt Trunc = CI->getValue().trunc(Z0TySize); 4269 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4270 Trunc.isSignBit()) 4271 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4272 UTy); 4273 } 4274 } 4275 break; 4276 4277 case Instruction::Shl: 4278 // Turn shift left of a constant amount into a multiply. 4279 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4280 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4281 4282 // If the shift count is not less than the bitwidth, the result of 4283 // the shift is undefined. Don't try to analyze it, because the 4284 // resolution chosen here may differ from the resolution chosen in 4285 // other parts of the compiler. 4286 if (SA->getValue().uge(BitWidth)) 4287 break; 4288 4289 Constant *X = ConstantInt::get(getContext(), 4290 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4291 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4292 } 4293 break; 4294 4295 case Instruction::LShr: 4296 // Turn logical shift right of a constant into a unsigned divide. 4297 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4298 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4299 4300 // If the shift count is not less than the bitwidth, the result of 4301 // the shift is undefined. Don't try to analyze it, because the 4302 // resolution chosen here may differ from the resolution chosen in 4303 // other parts of the compiler. 4304 if (SA->getValue().uge(BitWidth)) 4305 break; 4306 4307 Constant *X = ConstantInt::get(getContext(), 4308 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4309 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4310 } 4311 break; 4312 4313 case Instruction::AShr: 4314 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4315 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4316 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4317 if (L->getOpcode() == Instruction::Shl && 4318 L->getOperand(1) == U->getOperand(1)) { 4319 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4320 4321 // If the shift count is not less than the bitwidth, the result of 4322 // the shift is undefined. Don't try to analyze it, because the 4323 // resolution chosen here may differ from the resolution chosen in 4324 // other parts of the compiler. 4325 if (CI->getValue().uge(BitWidth)) 4326 break; 4327 4328 uint64_t Amt = BitWidth - CI->getZExtValue(); 4329 if (Amt == BitWidth) 4330 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4331 return 4332 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4333 IntegerType::get(getContext(), 4334 Amt)), 4335 U->getType()); 4336 } 4337 break; 4338 4339 case Instruction::Trunc: 4340 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4341 4342 case Instruction::ZExt: 4343 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4344 4345 case Instruction::SExt: 4346 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4347 4348 case Instruction::BitCast: 4349 // BitCasts are no-op casts so we just eliminate the cast. 4350 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4351 return getSCEV(U->getOperand(0)); 4352 break; 4353 4354 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4355 // lead to pointer expressions which cannot safely be expanded to GEPs, 4356 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4357 // simplifying integer expressions. 4358 4359 case Instruction::GetElementPtr: 4360 return createNodeForGEP(cast<GEPOperator>(U)); 4361 4362 case Instruction::PHI: 4363 return createNodeForPHI(cast<PHINode>(U)); 4364 4365 case Instruction::Select: 4366 // This could be a smax or umax that was lowered earlier. 4367 // Try to recover it. 4368 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 4369 Value *LHS = ICI->getOperand(0); 4370 Value *RHS = ICI->getOperand(1); 4371 switch (ICI->getPredicate()) { 4372 case ICmpInst::ICMP_SLT: 4373 case ICmpInst::ICMP_SLE: 4374 std::swap(LHS, RHS); 4375 // fall through 4376 case ICmpInst::ICMP_SGT: 4377 case ICmpInst::ICMP_SGE: 4378 // a >s b ? a+x : b+x -> smax(a, b)+x 4379 // a >s b ? b+x : a+x -> smin(a, b)+x 4380 if (getTypeSizeInBits(LHS->getType()) <= 4381 getTypeSizeInBits(U->getType())) { 4382 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType()); 4383 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType()); 4384 const SCEV *LA = getSCEV(U->getOperand(1)); 4385 const SCEV *RA = getSCEV(U->getOperand(2)); 4386 const SCEV *LDiff = getMinusSCEV(LA, LS); 4387 const SCEV *RDiff = getMinusSCEV(RA, RS); 4388 if (LDiff == RDiff) 4389 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4390 LDiff = getMinusSCEV(LA, RS); 4391 RDiff = getMinusSCEV(RA, LS); 4392 if (LDiff == RDiff) 4393 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4394 } 4395 break; 4396 case ICmpInst::ICMP_ULT: 4397 case ICmpInst::ICMP_ULE: 4398 std::swap(LHS, RHS); 4399 // fall through 4400 case ICmpInst::ICMP_UGT: 4401 case ICmpInst::ICMP_UGE: 4402 // a >u b ? a+x : b+x -> umax(a, b)+x 4403 // a >u b ? b+x : a+x -> umin(a, b)+x 4404 if (getTypeSizeInBits(LHS->getType()) <= 4405 getTypeSizeInBits(U->getType())) { 4406 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4407 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType()); 4408 const SCEV *LA = getSCEV(U->getOperand(1)); 4409 const SCEV *RA = getSCEV(U->getOperand(2)); 4410 const SCEV *LDiff = getMinusSCEV(LA, LS); 4411 const SCEV *RDiff = getMinusSCEV(RA, RS); 4412 if (LDiff == RDiff) 4413 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4414 LDiff = getMinusSCEV(LA, RS); 4415 RDiff = getMinusSCEV(RA, LS); 4416 if (LDiff == RDiff) 4417 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4418 } 4419 break; 4420 case ICmpInst::ICMP_NE: 4421 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4422 if (getTypeSizeInBits(LHS->getType()) <= 4423 getTypeSizeInBits(U->getType()) && 4424 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4425 const SCEV *One = getConstant(U->getType(), 1); 4426 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4427 const SCEV *LA = getSCEV(U->getOperand(1)); 4428 const SCEV *RA = getSCEV(U->getOperand(2)); 4429 const SCEV *LDiff = getMinusSCEV(LA, LS); 4430 const SCEV *RDiff = getMinusSCEV(RA, One); 4431 if (LDiff == RDiff) 4432 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4433 } 4434 break; 4435 case ICmpInst::ICMP_EQ: 4436 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4437 if (getTypeSizeInBits(LHS->getType()) <= 4438 getTypeSizeInBits(U->getType()) && 4439 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4440 const SCEV *One = getConstant(U->getType(), 1); 4441 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4442 const SCEV *LA = getSCEV(U->getOperand(1)); 4443 const SCEV *RA = getSCEV(U->getOperand(2)); 4444 const SCEV *LDiff = getMinusSCEV(LA, One); 4445 const SCEV *RDiff = getMinusSCEV(RA, LS); 4446 if (LDiff == RDiff) 4447 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4448 } 4449 break; 4450 default: 4451 break; 4452 } 4453 } 4454 4455 default: // We cannot analyze this expression. 4456 break; 4457 } 4458 4459 return getUnknown(V); 4460 } 4461 4462 4463 4464 //===----------------------------------------------------------------------===// 4465 // Iteration Count Computation Code 4466 // 4467 4468 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4469 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4470 return getSmallConstantTripCount(L, ExitingBB); 4471 4472 // No trip count information for multiple exits. 4473 return 0; 4474 } 4475 4476 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4477 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4478 /// constant. Will also return 0 if the maximum trip count is very large (>= 4479 /// 2^32). 4480 /// 4481 /// This "trip count" assumes that control exits via ExitingBlock. More 4482 /// precisely, it is the number of times that control may reach ExitingBlock 4483 /// before taking the branch. For loops with multiple exits, it may not be the 4484 /// number times that the loop header executes because the loop may exit 4485 /// prematurely via another branch. 4486 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4487 BasicBlock *ExitingBlock) { 4488 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4489 assert(L->isLoopExiting(ExitingBlock) && 4490 "Exiting block must actually branch out of the loop!"); 4491 const SCEVConstant *ExitCount = 4492 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4493 if (!ExitCount) 4494 return 0; 4495 4496 ConstantInt *ExitConst = ExitCount->getValue(); 4497 4498 // Guard against huge trip counts. 4499 if (ExitConst->getValue().getActiveBits() > 32) 4500 return 0; 4501 4502 // In case of integer overflow, this returns 0, which is correct. 4503 return ((unsigned)ExitConst->getZExtValue()) + 1; 4504 } 4505 4506 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4507 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4508 return getSmallConstantTripMultiple(L, ExitingBB); 4509 4510 // No trip multiple information for multiple exits. 4511 return 0; 4512 } 4513 4514 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4515 /// trip count of this loop as a normal unsigned value, if possible. This 4516 /// means that the actual trip count is always a multiple of the returned 4517 /// value (don't forget the trip count could very well be zero as well!). 4518 /// 4519 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4520 /// multiple of a constant (which is also the case if the trip count is simply 4521 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4522 /// if the trip count is very large (>= 2^32). 4523 /// 4524 /// As explained in the comments for getSmallConstantTripCount, this assumes 4525 /// that control exits the loop via ExitingBlock. 4526 unsigned 4527 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4528 BasicBlock *ExitingBlock) { 4529 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4530 assert(L->isLoopExiting(ExitingBlock) && 4531 "Exiting block must actually branch out of the loop!"); 4532 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4533 if (ExitCount == getCouldNotCompute()) 4534 return 1; 4535 4536 // Get the trip count from the BE count by adding 1. 4537 const SCEV *TCMul = getAddExpr(ExitCount, 4538 getConstant(ExitCount->getType(), 1)); 4539 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4540 // to factor simple cases. 4541 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4542 TCMul = Mul->getOperand(0); 4543 4544 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4545 if (!MulC) 4546 return 1; 4547 4548 ConstantInt *Result = MulC->getValue(); 4549 4550 // Guard against huge trip counts (this requires checking 4551 // for zero to handle the case where the trip count == -1 and the 4552 // addition wraps). 4553 if (!Result || Result->getValue().getActiveBits() > 32 || 4554 Result->getValue().getActiveBits() == 0) 4555 return 1; 4556 4557 return (unsigned)Result->getZExtValue(); 4558 } 4559 4560 // getExitCount - Get the expression for the number of loop iterations for which 4561 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4562 // SCEVCouldNotCompute. 4563 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4564 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4565 } 4566 4567 /// getBackedgeTakenCount - If the specified loop has a predictable 4568 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4569 /// object. The backedge-taken count is the number of times the loop header 4570 /// will be branched to from within the loop. This is one less than the 4571 /// trip count of the loop, since it doesn't count the first iteration, 4572 /// when the header is branched to from outside the loop. 4573 /// 4574 /// Note that it is not valid to call this method on a loop without a 4575 /// loop-invariant backedge-taken count (see 4576 /// hasLoopInvariantBackedgeTakenCount). 4577 /// 4578 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4579 return getBackedgeTakenInfo(L).getExact(this); 4580 } 4581 4582 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4583 /// return the least SCEV value that is known never to be less than the 4584 /// actual backedge taken count. 4585 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4586 return getBackedgeTakenInfo(L).getMax(this); 4587 } 4588 4589 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4590 /// onto the given Worklist. 4591 static void 4592 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4593 BasicBlock *Header = L->getHeader(); 4594 4595 // Push all Loop-header PHIs onto the Worklist stack. 4596 for (BasicBlock::iterator I = Header->begin(); 4597 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4598 Worklist.push_back(PN); 4599 } 4600 4601 const ScalarEvolution::BackedgeTakenInfo & 4602 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4603 // Initially insert an invalid entry for this loop. If the insertion 4604 // succeeds, proceed to actually compute a backedge-taken count and 4605 // update the value. The temporary CouldNotCompute value tells SCEV 4606 // code elsewhere that it shouldn't attempt to request a new 4607 // backedge-taken count, which could result in infinite recursion. 4608 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4609 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4610 if (!Pair.second) 4611 return Pair.first->second; 4612 4613 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4614 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4615 // must be cleared in this scope. 4616 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4617 4618 if (Result.getExact(this) != getCouldNotCompute()) { 4619 assert(isLoopInvariant(Result.getExact(this), L) && 4620 isLoopInvariant(Result.getMax(this), L) && 4621 "Computed backedge-taken count isn't loop invariant for loop!"); 4622 ++NumTripCountsComputed; 4623 } 4624 else if (Result.getMax(this) == getCouldNotCompute() && 4625 isa<PHINode>(L->getHeader()->begin())) { 4626 // Only count loops that have phi nodes as not being computable. 4627 ++NumTripCountsNotComputed; 4628 } 4629 4630 // Now that we know more about the trip count for this loop, forget any 4631 // existing SCEV values for PHI nodes in this loop since they are only 4632 // conservative estimates made without the benefit of trip count 4633 // information. This is similar to the code in forgetLoop, except that 4634 // it handles SCEVUnknown PHI nodes specially. 4635 if (Result.hasAnyInfo()) { 4636 SmallVector<Instruction *, 16> Worklist; 4637 PushLoopPHIs(L, Worklist); 4638 4639 SmallPtrSet<Instruction *, 8> Visited; 4640 while (!Worklist.empty()) { 4641 Instruction *I = Worklist.pop_back_val(); 4642 if (!Visited.insert(I).second) 4643 continue; 4644 4645 ValueExprMapType::iterator It = 4646 ValueExprMap.find_as(static_cast<Value *>(I)); 4647 if (It != ValueExprMap.end()) { 4648 const SCEV *Old = It->second; 4649 4650 // SCEVUnknown for a PHI either means that it has an unrecognized 4651 // structure, or it's a PHI that's in the progress of being computed 4652 // by createNodeForPHI. In the former case, additional loop trip 4653 // count information isn't going to change anything. In the later 4654 // case, createNodeForPHI will perform the necessary updates on its 4655 // own when it gets to that point. 4656 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4657 forgetMemoizedResults(Old); 4658 ValueExprMap.erase(It); 4659 } 4660 if (PHINode *PN = dyn_cast<PHINode>(I)) 4661 ConstantEvolutionLoopExitValue.erase(PN); 4662 } 4663 4664 PushDefUseChildren(I, Worklist); 4665 } 4666 } 4667 4668 // Re-lookup the insert position, since the call to 4669 // ComputeBackedgeTakenCount above could result in a 4670 // recusive call to getBackedgeTakenInfo (on a different 4671 // loop), which would invalidate the iterator computed 4672 // earlier. 4673 return BackedgeTakenCounts.find(L)->second = Result; 4674 } 4675 4676 /// forgetLoop - This method should be called by the client when it has 4677 /// changed a loop in a way that may effect ScalarEvolution's ability to 4678 /// compute a trip count, or if the loop is deleted. 4679 void ScalarEvolution::forgetLoop(const Loop *L) { 4680 // Drop any stored trip count value. 4681 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4682 BackedgeTakenCounts.find(L); 4683 if (BTCPos != BackedgeTakenCounts.end()) { 4684 BTCPos->second.clear(); 4685 BackedgeTakenCounts.erase(BTCPos); 4686 } 4687 4688 // Drop information about expressions based on loop-header PHIs. 4689 SmallVector<Instruction *, 16> Worklist; 4690 PushLoopPHIs(L, Worklist); 4691 4692 SmallPtrSet<Instruction *, 8> Visited; 4693 while (!Worklist.empty()) { 4694 Instruction *I = Worklist.pop_back_val(); 4695 if (!Visited.insert(I).second) 4696 continue; 4697 4698 ValueExprMapType::iterator It = 4699 ValueExprMap.find_as(static_cast<Value *>(I)); 4700 if (It != ValueExprMap.end()) { 4701 forgetMemoizedResults(It->second); 4702 ValueExprMap.erase(It); 4703 if (PHINode *PN = dyn_cast<PHINode>(I)) 4704 ConstantEvolutionLoopExitValue.erase(PN); 4705 } 4706 4707 PushDefUseChildren(I, Worklist); 4708 } 4709 4710 // Forget all contained loops too, to avoid dangling entries in the 4711 // ValuesAtScopes map. 4712 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4713 forgetLoop(*I); 4714 } 4715 4716 /// forgetValue - This method should be called by the client when it has 4717 /// changed a value in a way that may effect its value, or which may 4718 /// disconnect it from a def-use chain linking it to a loop. 4719 void ScalarEvolution::forgetValue(Value *V) { 4720 Instruction *I = dyn_cast<Instruction>(V); 4721 if (!I) return; 4722 4723 // Drop information about expressions based on loop-header PHIs. 4724 SmallVector<Instruction *, 16> Worklist; 4725 Worklist.push_back(I); 4726 4727 SmallPtrSet<Instruction *, 8> Visited; 4728 while (!Worklist.empty()) { 4729 I = Worklist.pop_back_val(); 4730 if (!Visited.insert(I).second) 4731 continue; 4732 4733 ValueExprMapType::iterator It = 4734 ValueExprMap.find_as(static_cast<Value *>(I)); 4735 if (It != ValueExprMap.end()) { 4736 forgetMemoizedResults(It->second); 4737 ValueExprMap.erase(It); 4738 if (PHINode *PN = dyn_cast<PHINode>(I)) 4739 ConstantEvolutionLoopExitValue.erase(PN); 4740 } 4741 4742 PushDefUseChildren(I, Worklist); 4743 } 4744 } 4745 4746 /// getExact - Get the exact loop backedge taken count considering all loop 4747 /// exits. A computable result can only be return for loops with a single exit. 4748 /// Returning the minimum taken count among all exits is incorrect because one 4749 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4750 /// the limit of each loop test is never skipped. This is a valid assumption as 4751 /// long as the loop exits via that test. For precise results, it is the 4752 /// caller's responsibility to specify the relevant loop exit using 4753 /// getExact(ExitingBlock, SE). 4754 const SCEV * 4755 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4756 // If any exits were not computable, the loop is not computable. 4757 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4758 4759 // We need exactly one computable exit. 4760 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4761 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4762 4763 const SCEV *BECount = nullptr; 4764 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4765 ENT != nullptr; ENT = ENT->getNextExit()) { 4766 4767 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4768 4769 if (!BECount) 4770 BECount = ENT->ExactNotTaken; 4771 else if (BECount != ENT->ExactNotTaken) 4772 return SE->getCouldNotCompute(); 4773 } 4774 assert(BECount && "Invalid not taken count for loop exit"); 4775 return BECount; 4776 } 4777 4778 /// getExact - Get the exact not taken count for this loop exit. 4779 const SCEV * 4780 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4781 ScalarEvolution *SE) const { 4782 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4783 ENT != nullptr; ENT = ENT->getNextExit()) { 4784 4785 if (ENT->ExitingBlock == ExitingBlock) 4786 return ENT->ExactNotTaken; 4787 } 4788 return SE->getCouldNotCompute(); 4789 } 4790 4791 /// getMax - Get the max backedge taken count for the loop. 4792 const SCEV * 4793 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4794 return Max ? Max : SE->getCouldNotCompute(); 4795 } 4796 4797 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4798 ScalarEvolution *SE) const { 4799 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4800 return true; 4801 4802 if (!ExitNotTaken.ExitingBlock) 4803 return false; 4804 4805 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4806 ENT != nullptr; ENT = ENT->getNextExit()) { 4807 4808 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4809 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4810 return true; 4811 } 4812 } 4813 return false; 4814 } 4815 4816 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4817 /// computable exit into a persistent ExitNotTakenInfo array. 4818 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4819 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4820 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4821 4822 if (!Complete) 4823 ExitNotTaken.setIncomplete(); 4824 4825 unsigned NumExits = ExitCounts.size(); 4826 if (NumExits == 0) return; 4827 4828 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4829 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4830 if (NumExits == 1) return; 4831 4832 // Handle the rare case of multiple computable exits. 4833 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4834 4835 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4836 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4837 PrevENT->setNextExit(ENT); 4838 ENT->ExitingBlock = ExitCounts[i].first; 4839 ENT->ExactNotTaken = ExitCounts[i].second; 4840 } 4841 } 4842 4843 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4844 void ScalarEvolution::BackedgeTakenInfo::clear() { 4845 ExitNotTaken.ExitingBlock = nullptr; 4846 ExitNotTaken.ExactNotTaken = nullptr; 4847 delete[] ExitNotTaken.getNextExit(); 4848 } 4849 4850 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4851 /// of the specified loop will execute. 4852 ScalarEvolution::BackedgeTakenInfo 4853 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4854 SmallVector<BasicBlock *, 8> ExitingBlocks; 4855 L->getExitingBlocks(ExitingBlocks); 4856 4857 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4858 bool CouldComputeBECount = true; 4859 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4860 const SCEV *MustExitMaxBECount = nullptr; 4861 const SCEV *MayExitMaxBECount = nullptr; 4862 4863 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 4864 // and compute maxBECount. 4865 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4866 BasicBlock *ExitBB = ExitingBlocks[i]; 4867 ExitLimit EL = ComputeExitLimit(L, ExitBB); 4868 4869 // 1. For each exit that can be computed, add an entry to ExitCounts. 4870 // CouldComputeBECount is true only if all exits can be computed. 4871 if (EL.Exact == getCouldNotCompute()) 4872 // We couldn't compute an exact value for this exit, so 4873 // we won't be able to compute an exact value for the loop. 4874 CouldComputeBECount = false; 4875 else 4876 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 4877 4878 // 2. Derive the loop's MaxBECount from each exit's max number of 4879 // non-exiting iterations. Partition the loop exits into two kinds: 4880 // LoopMustExits and LoopMayExits. 4881 // 4882 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 4883 // is a LoopMayExit. If any computable LoopMustExit is found, then 4884 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 4885 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 4886 // considered greater than any computable EL.Max. 4887 if (EL.Max != getCouldNotCompute() && Latch && 4888 DT->dominates(ExitBB, Latch)) { 4889 if (!MustExitMaxBECount) 4890 MustExitMaxBECount = EL.Max; 4891 else { 4892 MustExitMaxBECount = 4893 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 4894 } 4895 } else if (MayExitMaxBECount != getCouldNotCompute()) { 4896 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 4897 MayExitMaxBECount = EL.Max; 4898 else { 4899 MayExitMaxBECount = 4900 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 4901 } 4902 } 4903 } 4904 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 4905 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 4906 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4907 } 4908 4909 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4910 /// loop will execute if it exits via the specified block. 4911 ScalarEvolution::ExitLimit 4912 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4913 4914 // Okay, we've chosen an exiting block. See what condition causes us to 4915 // exit at this block and remember the exit block and whether all other targets 4916 // lead to the loop header. 4917 bool MustExecuteLoopHeader = true; 4918 BasicBlock *Exit = nullptr; 4919 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 4920 SI != SE; ++SI) 4921 if (!L->contains(*SI)) { 4922 if (Exit) // Multiple exit successors. 4923 return getCouldNotCompute(); 4924 Exit = *SI; 4925 } else if (*SI != L->getHeader()) { 4926 MustExecuteLoopHeader = false; 4927 } 4928 4929 // At this point, we know we have a conditional branch that determines whether 4930 // the loop is exited. However, we don't know if the branch is executed each 4931 // time through the loop. If not, then the execution count of the branch will 4932 // not be equal to the trip count of the loop. 4933 // 4934 // Currently we check for this by checking to see if the Exit branch goes to 4935 // the loop header. If so, we know it will always execute the same number of 4936 // times as the loop. We also handle the case where the exit block *is* the 4937 // loop header. This is common for un-rotated loops. 4938 // 4939 // If both of those tests fail, walk up the unique predecessor chain to the 4940 // header, stopping if there is an edge that doesn't exit the loop. If the 4941 // header is reached, the execution count of the branch will be equal to the 4942 // trip count of the loop. 4943 // 4944 // More extensive analysis could be done to handle more cases here. 4945 // 4946 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 4947 // The simple checks failed, try climbing the unique predecessor chain 4948 // up to the header. 4949 bool Ok = false; 4950 for (BasicBlock *BB = ExitingBlock; BB; ) { 4951 BasicBlock *Pred = BB->getUniquePredecessor(); 4952 if (!Pred) 4953 return getCouldNotCompute(); 4954 TerminatorInst *PredTerm = Pred->getTerminator(); 4955 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4956 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4957 if (PredSucc == BB) 4958 continue; 4959 // If the predecessor has a successor that isn't BB and isn't 4960 // outside the loop, assume the worst. 4961 if (L->contains(PredSucc)) 4962 return getCouldNotCompute(); 4963 } 4964 if (Pred == L->getHeader()) { 4965 Ok = true; 4966 break; 4967 } 4968 BB = Pred; 4969 } 4970 if (!Ok) 4971 return getCouldNotCompute(); 4972 } 4973 4974 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 4975 TerminatorInst *Term = ExitingBlock->getTerminator(); 4976 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 4977 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 4978 // Proceed to the next level to examine the exit condition expression. 4979 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 4980 BI->getSuccessor(1), 4981 /*ControlsExit=*/IsOnlyExit); 4982 } 4983 4984 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 4985 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 4986 /*ControlsExit=*/IsOnlyExit); 4987 4988 return getCouldNotCompute(); 4989 } 4990 4991 /// ComputeExitLimitFromCond - Compute the number of times the 4992 /// backedge of the specified loop will execute if its exit condition 4993 /// were a conditional branch of ExitCond, TBB, and FBB. 4994 /// 4995 /// @param ControlsExit is true if ExitCond directly controls the exit 4996 /// branch. In this case, we can assume that the loop exits only if the 4997 /// condition is true and can infer that failing to meet the condition prior to 4998 /// integer wraparound results in undefined behavior. 4999 ScalarEvolution::ExitLimit 5000 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 5001 Value *ExitCond, 5002 BasicBlock *TBB, 5003 BasicBlock *FBB, 5004 bool ControlsExit) { 5005 // Check if the controlling expression for this loop is an And or Or. 5006 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5007 if (BO->getOpcode() == Instruction::And) { 5008 // Recurse on the operands of the and. 5009 bool EitherMayExit = L->contains(TBB); 5010 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5011 ControlsExit && !EitherMayExit); 5012 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5013 ControlsExit && !EitherMayExit); 5014 const SCEV *BECount = getCouldNotCompute(); 5015 const SCEV *MaxBECount = getCouldNotCompute(); 5016 if (EitherMayExit) { 5017 // Both conditions must be true for the loop to continue executing. 5018 // Choose the less conservative count. 5019 if (EL0.Exact == getCouldNotCompute() || 5020 EL1.Exact == getCouldNotCompute()) 5021 BECount = getCouldNotCompute(); 5022 else 5023 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5024 if (EL0.Max == getCouldNotCompute()) 5025 MaxBECount = EL1.Max; 5026 else if (EL1.Max == getCouldNotCompute()) 5027 MaxBECount = EL0.Max; 5028 else 5029 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5030 } else { 5031 // Both conditions must be true at the same time for the loop to exit. 5032 // For now, be conservative. 5033 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5034 if (EL0.Max == EL1.Max) 5035 MaxBECount = EL0.Max; 5036 if (EL0.Exact == EL1.Exact) 5037 BECount = EL0.Exact; 5038 } 5039 5040 return ExitLimit(BECount, MaxBECount); 5041 } 5042 if (BO->getOpcode() == Instruction::Or) { 5043 // Recurse on the operands of the or. 5044 bool EitherMayExit = L->contains(FBB); 5045 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5046 ControlsExit && !EitherMayExit); 5047 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5048 ControlsExit && !EitherMayExit); 5049 const SCEV *BECount = getCouldNotCompute(); 5050 const SCEV *MaxBECount = getCouldNotCompute(); 5051 if (EitherMayExit) { 5052 // Both conditions must be false for the loop to continue executing. 5053 // Choose the less conservative count. 5054 if (EL0.Exact == getCouldNotCompute() || 5055 EL1.Exact == getCouldNotCompute()) 5056 BECount = getCouldNotCompute(); 5057 else 5058 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5059 if (EL0.Max == getCouldNotCompute()) 5060 MaxBECount = EL1.Max; 5061 else if (EL1.Max == getCouldNotCompute()) 5062 MaxBECount = EL0.Max; 5063 else 5064 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5065 } else { 5066 // Both conditions must be false at the same time for the loop to exit. 5067 // For now, be conservative. 5068 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5069 if (EL0.Max == EL1.Max) 5070 MaxBECount = EL0.Max; 5071 if (EL0.Exact == EL1.Exact) 5072 BECount = EL0.Exact; 5073 } 5074 5075 return ExitLimit(BECount, MaxBECount); 5076 } 5077 } 5078 5079 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5080 // Proceed to the next level to examine the icmp. 5081 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5082 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5083 5084 // Check for a constant condition. These are normally stripped out by 5085 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5086 // preserve the CFG and is temporarily leaving constant conditions 5087 // in place. 5088 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5089 if (L->contains(FBB) == !CI->getZExtValue()) 5090 // The backedge is always taken. 5091 return getCouldNotCompute(); 5092 else 5093 // The backedge is never taken. 5094 return getConstant(CI->getType(), 0); 5095 } 5096 5097 // If it's not an integer or pointer comparison then compute it the hard way. 5098 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5099 } 5100 5101 /// ComputeExitLimitFromICmp - Compute the number of times the 5102 /// backedge of the specified loop will execute if its exit condition 5103 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 5104 ScalarEvolution::ExitLimit 5105 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 5106 ICmpInst *ExitCond, 5107 BasicBlock *TBB, 5108 BasicBlock *FBB, 5109 bool ControlsExit) { 5110 5111 // If the condition was exit on true, convert the condition to exit on false 5112 ICmpInst::Predicate Cond; 5113 if (!L->contains(FBB)) 5114 Cond = ExitCond->getPredicate(); 5115 else 5116 Cond = ExitCond->getInversePredicate(); 5117 5118 // Handle common loops like: for (X = "string"; *X; ++X) 5119 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5120 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5121 ExitLimit ItCnt = 5122 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5123 if (ItCnt.hasAnyInfo()) 5124 return ItCnt; 5125 } 5126 5127 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5128 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5129 5130 // Try to evaluate any dependencies out of the loop. 5131 LHS = getSCEVAtScope(LHS, L); 5132 RHS = getSCEVAtScope(RHS, L); 5133 5134 // At this point, we would like to compute how many iterations of the 5135 // loop the predicate will return true for these inputs. 5136 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5137 // If there is a loop-invariant, force it into the RHS. 5138 std::swap(LHS, RHS); 5139 Cond = ICmpInst::getSwappedPredicate(Cond); 5140 } 5141 5142 // Simplify the operands before analyzing them. 5143 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5144 5145 // If we have a comparison of a chrec against a constant, try to use value 5146 // ranges to answer this query. 5147 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5148 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5149 if (AddRec->getLoop() == L) { 5150 // Form the constant range. 5151 ConstantRange CompRange( 5152 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5153 5154 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5155 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5156 } 5157 5158 switch (Cond) { 5159 case ICmpInst::ICMP_NE: { // while (X != Y) 5160 // Convert to: while (X-Y != 0) 5161 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5162 if (EL.hasAnyInfo()) return EL; 5163 break; 5164 } 5165 case ICmpInst::ICMP_EQ: { // while (X == Y) 5166 // Convert to: while (X-Y == 0) 5167 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5168 if (EL.hasAnyInfo()) return EL; 5169 break; 5170 } 5171 case ICmpInst::ICMP_SLT: 5172 case ICmpInst::ICMP_ULT: { // while (X < Y) 5173 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5174 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5175 if (EL.hasAnyInfo()) return EL; 5176 break; 5177 } 5178 case ICmpInst::ICMP_SGT: 5179 case ICmpInst::ICMP_UGT: { // while (X > Y) 5180 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5181 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5182 if (EL.hasAnyInfo()) return EL; 5183 break; 5184 } 5185 default: 5186 #if 0 5187 dbgs() << "ComputeBackedgeTakenCount "; 5188 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5189 dbgs() << "[unsigned] "; 5190 dbgs() << *LHS << " " 5191 << Instruction::getOpcodeName(Instruction::ICmp) 5192 << " " << *RHS << "\n"; 5193 #endif 5194 break; 5195 } 5196 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5197 } 5198 5199 ScalarEvolution::ExitLimit 5200 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 5201 SwitchInst *Switch, 5202 BasicBlock *ExitingBlock, 5203 bool ControlsExit) { 5204 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5205 5206 // Give up if the exit is the default dest of a switch. 5207 if (Switch->getDefaultDest() == ExitingBlock) 5208 return getCouldNotCompute(); 5209 5210 assert(L->contains(Switch->getDefaultDest()) && 5211 "Default case must not exit the loop!"); 5212 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5213 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5214 5215 // while (X != Y) --> while (X-Y != 0) 5216 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5217 if (EL.hasAnyInfo()) 5218 return EL; 5219 5220 return getCouldNotCompute(); 5221 } 5222 5223 static ConstantInt * 5224 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5225 ScalarEvolution &SE) { 5226 const SCEV *InVal = SE.getConstant(C); 5227 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5228 assert(isa<SCEVConstant>(Val) && 5229 "Evaluation of SCEV at constant didn't fold correctly?"); 5230 return cast<SCEVConstant>(Val)->getValue(); 5231 } 5232 5233 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 5234 /// 'icmp op load X, cst', try to see if we can compute the backedge 5235 /// execution count. 5236 ScalarEvolution::ExitLimit 5237 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 5238 LoadInst *LI, 5239 Constant *RHS, 5240 const Loop *L, 5241 ICmpInst::Predicate predicate) { 5242 5243 if (LI->isVolatile()) return getCouldNotCompute(); 5244 5245 // Check to see if the loaded pointer is a getelementptr of a global. 5246 // TODO: Use SCEV instead of manually grubbing with GEPs. 5247 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5248 if (!GEP) return getCouldNotCompute(); 5249 5250 // Make sure that it is really a constant global we are gepping, with an 5251 // initializer, and make sure the first IDX is really 0. 5252 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5253 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5254 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5255 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5256 return getCouldNotCompute(); 5257 5258 // Okay, we allow one non-constant index into the GEP instruction. 5259 Value *VarIdx = nullptr; 5260 std::vector<Constant*> Indexes; 5261 unsigned VarIdxNum = 0; 5262 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5263 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5264 Indexes.push_back(CI); 5265 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5266 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5267 VarIdx = GEP->getOperand(i); 5268 VarIdxNum = i-2; 5269 Indexes.push_back(nullptr); 5270 } 5271 5272 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5273 if (!VarIdx) 5274 return getCouldNotCompute(); 5275 5276 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5277 // Check to see if X is a loop variant variable value now. 5278 const SCEV *Idx = getSCEV(VarIdx); 5279 Idx = getSCEVAtScope(Idx, L); 5280 5281 // We can only recognize very limited forms of loop index expressions, in 5282 // particular, only affine AddRec's like {C1,+,C2}. 5283 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5284 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5285 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5286 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5287 return getCouldNotCompute(); 5288 5289 unsigned MaxSteps = MaxBruteForceIterations; 5290 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5291 ConstantInt *ItCst = ConstantInt::get( 5292 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5293 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5294 5295 // Form the GEP offset. 5296 Indexes[VarIdxNum] = Val; 5297 5298 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5299 Indexes); 5300 if (!Result) break; // Cannot compute! 5301 5302 // Evaluate the condition for this iteration. 5303 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5304 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5305 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5306 #if 0 5307 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5308 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5309 << "***\n"; 5310 #endif 5311 ++NumArrayLenItCounts; 5312 return getConstant(ItCst); // Found terminating iteration! 5313 } 5314 } 5315 return getCouldNotCompute(); 5316 } 5317 5318 5319 /// CanConstantFold - Return true if we can constant fold an instruction of the 5320 /// specified type, assuming that all operands were constants. 5321 static bool CanConstantFold(const Instruction *I) { 5322 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5323 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5324 isa<LoadInst>(I)) 5325 return true; 5326 5327 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5328 if (const Function *F = CI->getCalledFunction()) 5329 return canConstantFoldCallTo(F); 5330 return false; 5331 } 5332 5333 /// Determine whether this instruction can constant evolve within this loop 5334 /// assuming its operands can all constant evolve. 5335 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5336 // An instruction outside of the loop can't be derived from a loop PHI. 5337 if (!L->contains(I)) return false; 5338 5339 if (isa<PHINode>(I)) { 5340 if (L->getHeader() == I->getParent()) 5341 return true; 5342 else 5343 // We don't currently keep track of the control flow needed to evaluate 5344 // PHIs, so we cannot handle PHIs inside of loops. 5345 return false; 5346 } 5347 5348 // If we won't be able to constant fold this expression even if the operands 5349 // are constants, bail early. 5350 return CanConstantFold(I); 5351 } 5352 5353 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5354 /// recursing through each instruction operand until reaching a loop header phi. 5355 static PHINode * 5356 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5357 DenseMap<Instruction *, PHINode *> &PHIMap) { 5358 5359 // Otherwise, we can evaluate this instruction if all of its operands are 5360 // constant or derived from a PHI node themselves. 5361 PHINode *PHI = nullptr; 5362 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5363 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5364 5365 if (isa<Constant>(*OpI)) continue; 5366 5367 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5368 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5369 5370 PHINode *P = dyn_cast<PHINode>(OpInst); 5371 if (!P) 5372 // If this operand is already visited, reuse the prior result. 5373 // We may have P != PHI if this is the deepest point at which the 5374 // inconsistent paths meet. 5375 P = PHIMap.lookup(OpInst); 5376 if (!P) { 5377 // Recurse and memoize the results, whether a phi is found or not. 5378 // This recursive call invalidates pointers into PHIMap. 5379 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5380 PHIMap[OpInst] = P; 5381 } 5382 if (!P) 5383 return nullptr; // Not evolving from PHI 5384 if (PHI && PHI != P) 5385 return nullptr; // Evolving from multiple different PHIs. 5386 PHI = P; 5387 } 5388 // This is a expression evolving from a constant PHI! 5389 return PHI; 5390 } 5391 5392 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5393 /// in the loop that V is derived from. We allow arbitrary operations along the 5394 /// way, but the operands of an operation must either be constants or a value 5395 /// derived from a constant PHI. If this expression does not fit with these 5396 /// constraints, return null. 5397 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5398 Instruction *I = dyn_cast<Instruction>(V); 5399 if (!I || !canConstantEvolve(I, L)) return nullptr; 5400 5401 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5402 return PN; 5403 } 5404 5405 // Record non-constant instructions contained by the loop. 5406 DenseMap<Instruction *, PHINode *> PHIMap; 5407 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5408 } 5409 5410 /// EvaluateExpression - Given an expression that passes the 5411 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5412 /// in the loop has the value PHIVal. If we can't fold this expression for some 5413 /// reason, return null. 5414 static Constant *EvaluateExpression(Value *V, const Loop *L, 5415 DenseMap<Instruction *, Constant *> &Vals, 5416 const DataLayout *DL, 5417 const TargetLibraryInfo *TLI) { 5418 // Convenient constant check, but redundant for recursive calls. 5419 if (Constant *C = dyn_cast<Constant>(V)) return C; 5420 Instruction *I = dyn_cast<Instruction>(V); 5421 if (!I) return nullptr; 5422 5423 if (Constant *C = Vals.lookup(I)) return C; 5424 5425 // An instruction inside the loop depends on a value outside the loop that we 5426 // weren't given a mapping for, or a value such as a call inside the loop. 5427 if (!canConstantEvolve(I, L)) return nullptr; 5428 5429 // An unmapped PHI can be due to a branch or another loop inside this loop, 5430 // or due to this not being the initial iteration through a loop where we 5431 // couldn't compute the evolution of this particular PHI last time. 5432 if (isa<PHINode>(I)) return nullptr; 5433 5434 std::vector<Constant*> Operands(I->getNumOperands()); 5435 5436 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5437 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5438 if (!Operand) { 5439 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5440 if (!Operands[i]) return nullptr; 5441 continue; 5442 } 5443 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5444 Vals[Operand] = C; 5445 if (!C) return nullptr; 5446 Operands[i] = C; 5447 } 5448 5449 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5450 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5451 Operands[1], DL, TLI); 5452 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5453 if (!LI->isVolatile()) 5454 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5455 } 5456 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5457 TLI); 5458 } 5459 5460 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5461 /// in the header of its containing loop, we know the loop executes a 5462 /// constant number of times, and the PHI node is just a recurrence 5463 /// involving constants, fold it. 5464 Constant * 5465 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5466 const APInt &BEs, 5467 const Loop *L) { 5468 DenseMap<PHINode*, Constant*>::const_iterator I = 5469 ConstantEvolutionLoopExitValue.find(PN); 5470 if (I != ConstantEvolutionLoopExitValue.end()) 5471 return I->second; 5472 5473 if (BEs.ugt(MaxBruteForceIterations)) 5474 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5475 5476 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5477 5478 DenseMap<Instruction *, Constant *> CurrentIterVals; 5479 BasicBlock *Header = L->getHeader(); 5480 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5481 5482 // Since the loop is canonicalized, the PHI node must have two entries. One 5483 // entry must be a constant (coming in from outside of the loop), and the 5484 // second must be derived from the same PHI. 5485 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5486 PHINode *PHI = nullptr; 5487 for (BasicBlock::iterator I = Header->begin(); 5488 (PHI = dyn_cast<PHINode>(I)); ++I) { 5489 Constant *StartCST = 5490 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5491 if (!StartCST) continue; 5492 CurrentIterVals[PHI] = StartCST; 5493 } 5494 if (!CurrentIterVals.count(PN)) 5495 return RetVal = nullptr; 5496 5497 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5498 5499 // Execute the loop symbolically to determine the exit value. 5500 if (BEs.getActiveBits() >= 32) 5501 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5502 5503 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5504 unsigned IterationNum = 0; 5505 for (; ; ++IterationNum) { 5506 if (IterationNum == NumIterations) 5507 return RetVal = CurrentIterVals[PN]; // Got exit value! 5508 5509 // Compute the value of the PHIs for the next iteration. 5510 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5511 DenseMap<Instruction *, Constant *> NextIterVals; 5512 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, 5513 TLI); 5514 if (!NextPHI) 5515 return nullptr; // Couldn't evaluate! 5516 NextIterVals[PN] = NextPHI; 5517 5518 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5519 5520 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5521 // cease to be able to evaluate one of them or if they stop evolving, 5522 // because that doesn't necessarily prevent us from computing PN. 5523 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5524 for (DenseMap<Instruction *, Constant *>::const_iterator 5525 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5526 PHINode *PHI = dyn_cast<PHINode>(I->first); 5527 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5528 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5529 } 5530 // We use two distinct loops because EvaluateExpression may invalidate any 5531 // iterators into CurrentIterVals. 5532 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5533 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5534 PHINode *PHI = I->first; 5535 Constant *&NextPHI = NextIterVals[PHI]; 5536 if (!NextPHI) { // Not already computed. 5537 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5538 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5539 } 5540 if (NextPHI != I->second) 5541 StoppedEvolving = false; 5542 } 5543 5544 // If all entries in CurrentIterVals == NextIterVals then we can stop 5545 // iterating, the loop can't continue to change. 5546 if (StoppedEvolving) 5547 return RetVal = CurrentIterVals[PN]; 5548 5549 CurrentIterVals.swap(NextIterVals); 5550 } 5551 } 5552 5553 /// ComputeExitCountExhaustively - If the loop is known to execute a 5554 /// constant number of times (the condition evolves only from constants), 5555 /// try to evaluate a few iterations of the loop until we get the exit 5556 /// condition gets a value of ExitWhen (true or false). If we cannot 5557 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5558 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5559 Value *Cond, 5560 bool ExitWhen) { 5561 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5562 if (!PN) return getCouldNotCompute(); 5563 5564 // If the loop is canonicalized, the PHI will have exactly two entries. 5565 // That's the only form we support here. 5566 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5567 5568 DenseMap<Instruction *, Constant *> CurrentIterVals; 5569 BasicBlock *Header = L->getHeader(); 5570 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5571 5572 // One entry must be a constant (coming in from outside of the loop), and the 5573 // second must be derived from the same PHI. 5574 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5575 PHINode *PHI = nullptr; 5576 for (BasicBlock::iterator I = Header->begin(); 5577 (PHI = dyn_cast<PHINode>(I)); ++I) { 5578 Constant *StartCST = 5579 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5580 if (!StartCST) continue; 5581 CurrentIterVals[PHI] = StartCST; 5582 } 5583 if (!CurrentIterVals.count(PN)) 5584 return getCouldNotCompute(); 5585 5586 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5587 // the loop symbolically to determine when the condition gets a value of 5588 // "ExitWhen". 5589 5590 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5591 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5592 ConstantInt *CondVal = 5593 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 5594 DL, TLI)); 5595 5596 // Couldn't symbolically evaluate. 5597 if (!CondVal) return getCouldNotCompute(); 5598 5599 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5600 ++NumBruteForceTripCountsComputed; 5601 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5602 } 5603 5604 // Update all the PHI nodes for the next iteration. 5605 DenseMap<Instruction *, Constant *> NextIterVals; 5606 5607 // Create a list of which PHIs we need to compute. We want to do this before 5608 // calling EvaluateExpression on them because that may invalidate iterators 5609 // into CurrentIterVals. 5610 SmallVector<PHINode *, 8> PHIsToCompute; 5611 for (DenseMap<Instruction *, Constant *>::const_iterator 5612 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5613 PHINode *PHI = dyn_cast<PHINode>(I->first); 5614 if (!PHI || PHI->getParent() != Header) continue; 5615 PHIsToCompute.push_back(PHI); 5616 } 5617 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5618 E = PHIsToCompute.end(); I != E; ++I) { 5619 PHINode *PHI = *I; 5620 Constant *&NextPHI = NextIterVals[PHI]; 5621 if (NextPHI) continue; // Already computed! 5622 5623 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5624 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5625 } 5626 CurrentIterVals.swap(NextIterVals); 5627 } 5628 5629 // Too many iterations were needed to evaluate. 5630 return getCouldNotCompute(); 5631 } 5632 5633 /// getSCEVAtScope - Return a SCEV expression for the specified value 5634 /// at the specified scope in the program. The L value specifies a loop 5635 /// nest to evaluate the expression at, where null is the top-level or a 5636 /// specified loop is immediately inside of the loop. 5637 /// 5638 /// This method can be used to compute the exit value for a variable defined 5639 /// in a loop by querying what the value will hold in the parent loop. 5640 /// 5641 /// In the case that a relevant loop exit value cannot be computed, the 5642 /// original value V is returned. 5643 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5644 // Check to see if we've folded this expression at this loop before. 5645 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5646 for (unsigned u = 0; u < Values.size(); u++) { 5647 if (Values[u].first == L) 5648 return Values[u].second ? Values[u].second : V; 5649 } 5650 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5651 // Otherwise compute it. 5652 const SCEV *C = computeSCEVAtScope(V, L); 5653 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5654 for (unsigned u = Values2.size(); u > 0; u--) { 5655 if (Values2[u - 1].first == L) { 5656 Values2[u - 1].second = C; 5657 break; 5658 } 5659 } 5660 return C; 5661 } 5662 5663 /// This builds up a Constant using the ConstantExpr interface. That way, we 5664 /// will return Constants for objects which aren't represented by a 5665 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5666 /// Returns NULL if the SCEV isn't representable as a Constant. 5667 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5668 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5669 case scCouldNotCompute: 5670 case scAddRecExpr: 5671 break; 5672 case scConstant: 5673 return cast<SCEVConstant>(V)->getValue(); 5674 case scUnknown: 5675 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5676 case scSignExtend: { 5677 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5678 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5679 return ConstantExpr::getSExt(CastOp, SS->getType()); 5680 break; 5681 } 5682 case scZeroExtend: { 5683 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5684 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5685 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5686 break; 5687 } 5688 case scTruncate: { 5689 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5690 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5691 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5692 break; 5693 } 5694 case scAddExpr: { 5695 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5696 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5697 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5698 unsigned AS = PTy->getAddressSpace(); 5699 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5700 C = ConstantExpr::getBitCast(C, DestPtrTy); 5701 } 5702 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5703 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5704 if (!C2) return nullptr; 5705 5706 // First pointer! 5707 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5708 unsigned AS = C2->getType()->getPointerAddressSpace(); 5709 std::swap(C, C2); 5710 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5711 // The offsets have been converted to bytes. We can add bytes to an 5712 // i8* by GEP with the byte count in the first index. 5713 C = ConstantExpr::getBitCast(C, DestPtrTy); 5714 } 5715 5716 // Don't bother trying to sum two pointers. We probably can't 5717 // statically compute a load that results from it anyway. 5718 if (C2->getType()->isPointerTy()) 5719 return nullptr; 5720 5721 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5722 if (PTy->getElementType()->isStructTy()) 5723 C2 = ConstantExpr::getIntegerCast( 5724 C2, Type::getInt32Ty(C->getContext()), true); 5725 C = ConstantExpr::getGetElementPtr(C, C2); 5726 } else 5727 C = ConstantExpr::getAdd(C, C2); 5728 } 5729 return C; 5730 } 5731 break; 5732 } 5733 case scMulExpr: { 5734 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5735 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5736 // Don't bother with pointers at all. 5737 if (C->getType()->isPointerTy()) return nullptr; 5738 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5739 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5740 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5741 C = ConstantExpr::getMul(C, C2); 5742 } 5743 return C; 5744 } 5745 break; 5746 } 5747 case scUDivExpr: { 5748 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5749 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5750 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5751 if (LHS->getType() == RHS->getType()) 5752 return ConstantExpr::getUDiv(LHS, RHS); 5753 break; 5754 } 5755 case scSMaxExpr: 5756 case scUMaxExpr: 5757 break; // TODO: smax, umax. 5758 } 5759 return nullptr; 5760 } 5761 5762 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5763 if (isa<SCEVConstant>(V)) return V; 5764 5765 // If this instruction is evolved from a constant-evolving PHI, compute the 5766 // exit value from the loop without using SCEVs. 5767 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5768 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5769 const Loop *LI = (*this->LI)[I->getParent()]; 5770 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5771 if (PHINode *PN = dyn_cast<PHINode>(I)) 5772 if (PN->getParent() == LI->getHeader()) { 5773 // Okay, there is no closed form solution for the PHI node. Check 5774 // to see if the loop that contains it has a known backedge-taken 5775 // count. If so, we may be able to force computation of the exit 5776 // value. 5777 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5778 if (const SCEVConstant *BTCC = 5779 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5780 // Okay, we know how many times the containing loop executes. If 5781 // this is a constant evolving PHI node, get the final value at 5782 // the specified iteration number. 5783 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5784 BTCC->getValue()->getValue(), 5785 LI); 5786 if (RV) return getSCEV(RV); 5787 } 5788 } 5789 5790 // Okay, this is an expression that we cannot symbolically evaluate 5791 // into a SCEV. Check to see if it's possible to symbolically evaluate 5792 // the arguments into constants, and if so, try to constant propagate the 5793 // result. This is particularly useful for computing loop exit values. 5794 if (CanConstantFold(I)) { 5795 SmallVector<Constant *, 4> Operands; 5796 bool MadeImprovement = false; 5797 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5798 Value *Op = I->getOperand(i); 5799 if (Constant *C = dyn_cast<Constant>(Op)) { 5800 Operands.push_back(C); 5801 continue; 5802 } 5803 5804 // If any of the operands is non-constant and if they are 5805 // non-integer and non-pointer, don't even try to analyze them 5806 // with scev techniques. 5807 if (!isSCEVable(Op->getType())) 5808 return V; 5809 5810 const SCEV *OrigV = getSCEV(Op); 5811 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5812 MadeImprovement |= OrigV != OpV; 5813 5814 Constant *C = BuildConstantFromSCEV(OpV); 5815 if (!C) return V; 5816 if (C->getType() != Op->getType()) 5817 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5818 Op->getType(), 5819 false), 5820 C, Op->getType()); 5821 Operands.push_back(C); 5822 } 5823 5824 // Check to see if getSCEVAtScope actually made an improvement. 5825 if (MadeImprovement) { 5826 Constant *C = nullptr; 5827 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5828 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5829 Operands[0], Operands[1], DL, 5830 TLI); 5831 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5832 if (!LI->isVolatile()) 5833 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5834 } else 5835 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5836 Operands, DL, TLI); 5837 if (!C) return V; 5838 return getSCEV(C); 5839 } 5840 } 5841 } 5842 5843 // This is some other type of SCEVUnknown, just return it. 5844 return V; 5845 } 5846 5847 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5848 // Avoid performing the look-up in the common case where the specified 5849 // expression has no loop-variant portions. 5850 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5851 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5852 if (OpAtScope != Comm->getOperand(i)) { 5853 // Okay, at least one of these operands is loop variant but might be 5854 // foldable. Build a new instance of the folded commutative expression. 5855 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5856 Comm->op_begin()+i); 5857 NewOps.push_back(OpAtScope); 5858 5859 for (++i; i != e; ++i) { 5860 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5861 NewOps.push_back(OpAtScope); 5862 } 5863 if (isa<SCEVAddExpr>(Comm)) 5864 return getAddExpr(NewOps); 5865 if (isa<SCEVMulExpr>(Comm)) 5866 return getMulExpr(NewOps); 5867 if (isa<SCEVSMaxExpr>(Comm)) 5868 return getSMaxExpr(NewOps); 5869 if (isa<SCEVUMaxExpr>(Comm)) 5870 return getUMaxExpr(NewOps); 5871 llvm_unreachable("Unknown commutative SCEV type!"); 5872 } 5873 } 5874 // If we got here, all operands are loop invariant. 5875 return Comm; 5876 } 5877 5878 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5879 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5880 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5881 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5882 return Div; // must be loop invariant 5883 return getUDivExpr(LHS, RHS); 5884 } 5885 5886 // If this is a loop recurrence for a loop that does not contain L, then we 5887 // are dealing with the final value computed by the loop. 5888 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5889 // First, attempt to evaluate each operand. 5890 // Avoid performing the look-up in the common case where the specified 5891 // expression has no loop-variant portions. 5892 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5893 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5894 if (OpAtScope == AddRec->getOperand(i)) 5895 continue; 5896 5897 // Okay, at least one of these operands is loop variant but might be 5898 // foldable. Build a new instance of the folded commutative expression. 5899 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5900 AddRec->op_begin()+i); 5901 NewOps.push_back(OpAtScope); 5902 for (++i; i != e; ++i) 5903 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5904 5905 const SCEV *FoldedRec = 5906 getAddRecExpr(NewOps, AddRec->getLoop(), 5907 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5908 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5909 // The addrec may be folded to a nonrecurrence, for example, if the 5910 // induction variable is multiplied by zero after constant folding. Go 5911 // ahead and return the folded value. 5912 if (!AddRec) 5913 return FoldedRec; 5914 break; 5915 } 5916 5917 // If the scope is outside the addrec's loop, evaluate it by using the 5918 // loop exit value of the addrec. 5919 if (!AddRec->getLoop()->contains(L)) { 5920 // To evaluate this recurrence, we need to know how many times the AddRec 5921 // loop iterates. Compute this now. 5922 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5923 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5924 5925 // Then, evaluate the AddRec. 5926 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5927 } 5928 5929 return AddRec; 5930 } 5931 5932 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5933 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5934 if (Op == Cast->getOperand()) 5935 return Cast; // must be loop invariant 5936 return getZeroExtendExpr(Op, Cast->getType()); 5937 } 5938 5939 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5940 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5941 if (Op == Cast->getOperand()) 5942 return Cast; // must be loop invariant 5943 return getSignExtendExpr(Op, Cast->getType()); 5944 } 5945 5946 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5947 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5948 if (Op == Cast->getOperand()) 5949 return Cast; // must be loop invariant 5950 return getTruncateExpr(Op, Cast->getType()); 5951 } 5952 5953 llvm_unreachable("Unknown SCEV type!"); 5954 } 5955 5956 /// getSCEVAtScope - This is a convenience function which does 5957 /// getSCEVAtScope(getSCEV(V), L). 5958 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5959 return getSCEVAtScope(getSCEV(V), L); 5960 } 5961 5962 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5963 /// following equation: 5964 /// 5965 /// A * X = B (mod N) 5966 /// 5967 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5968 /// A and B isn't important. 5969 /// 5970 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5971 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5972 ScalarEvolution &SE) { 5973 uint32_t BW = A.getBitWidth(); 5974 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5975 assert(A != 0 && "A must be non-zero."); 5976 5977 // 1. D = gcd(A, N) 5978 // 5979 // The gcd of A and N may have only one prime factor: 2. The number of 5980 // trailing zeros in A is its multiplicity 5981 uint32_t Mult2 = A.countTrailingZeros(); 5982 // D = 2^Mult2 5983 5984 // 2. Check if B is divisible by D. 5985 // 5986 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5987 // is not less than multiplicity of this prime factor for D. 5988 if (B.countTrailingZeros() < Mult2) 5989 return SE.getCouldNotCompute(); 5990 5991 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5992 // modulo (N / D). 5993 // 5994 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5995 // bit width during computations. 5996 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5997 APInt Mod(BW + 1, 0); 5998 Mod.setBit(BW - Mult2); // Mod = N / D 5999 APInt I = AD.multiplicativeInverse(Mod); 6000 6001 // 4. Compute the minimum unsigned root of the equation: 6002 // I * (B / D) mod (N / D) 6003 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6004 6005 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6006 // bits. 6007 return SE.getConstant(Result.trunc(BW)); 6008 } 6009 6010 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6011 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6012 /// might be the same) or two SCEVCouldNotCompute objects. 6013 /// 6014 static std::pair<const SCEV *,const SCEV *> 6015 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6016 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6017 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6018 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6019 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6020 6021 // We currently can only solve this if the coefficients are constants. 6022 if (!LC || !MC || !NC) { 6023 const SCEV *CNC = SE.getCouldNotCompute(); 6024 return std::make_pair(CNC, CNC); 6025 } 6026 6027 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6028 const APInt &L = LC->getValue()->getValue(); 6029 const APInt &M = MC->getValue()->getValue(); 6030 const APInt &N = NC->getValue()->getValue(); 6031 APInt Two(BitWidth, 2); 6032 APInt Four(BitWidth, 4); 6033 6034 { 6035 using namespace APIntOps; 6036 const APInt& C = L; 6037 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6038 // The B coefficient is M-N/2 6039 APInt B(M); 6040 B -= sdiv(N,Two); 6041 6042 // The A coefficient is N/2 6043 APInt A(N.sdiv(Two)); 6044 6045 // Compute the B^2-4ac term. 6046 APInt SqrtTerm(B); 6047 SqrtTerm *= B; 6048 SqrtTerm -= Four * (A * C); 6049 6050 if (SqrtTerm.isNegative()) { 6051 // The loop is provably infinite. 6052 const SCEV *CNC = SE.getCouldNotCompute(); 6053 return std::make_pair(CNC, CNC); 6054 } 6055 6056 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6057 // integer value or else APInt::sqrt() will assert. 6058 APInt SqrtVal(SqrtTerm.sqrt()); 6059 6060 // Compute the two solutions for the quadratic formula. 6061 // The divisions must be performed as signed divisions. 6062 APInt NegB(-B); 6063 APInt TwoA(A << 1); 6064 if (TwoA.isMinValue()) { 6065 const SCEV *CNC = SE.getCouldNotCompute(); 6066 return std::make_pair(CNC, CNC); 6067 } 6068 6069 LLVMContext &Context = SE.getContext(); 6070 6071 ConstantInt *Solution1 = 6072 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6073 ConstantInt *Solution2 = 6074 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6075 6076 return std::make_pair(SE.getConstant(Solution1), 6077 SE.getConstant(Solution2)); 6078 } // end APIntOps namespace 6079 } 6080 6081 /// HowFarToZero - Return the number of times a backedge comparing the specified 6082 /// value to zero will execute. If not computable, return CouldNotCompute. 6083 /// 6084 /// This is only used for loops with a "x != y" exit test. The exit condition is 6085 /// now expressed as a single expression, V = x-y. So the exit test is 6086 /// effectively V != 0. We know and take advantage of the fact that this 6087 /// expression only being used in a comparison by zero context. 6088 ScalarEvolution::ExitLimit 6089 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6090 // If the value is a constant 6091 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6092 // If the value is already zero, the branch will execute zero times. 6093 if (C->getValue()->isZero()) return C; 6094 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6095 } 6096 6097 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6098 if (!AddRec || AddRec->getLoop() != L) 6099 return getCouldNotCompute(); 6100 6101 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6102 // the quadratic equation to solve it. 6103 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6104 std::pair<const SCEV *,const SCEV *> Roots = 6105 SolveQuadraticEquation(AddRec, *this); 6106 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6107 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6108 if (R1 && R2) { 6109 #if 0 6110 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6111 << " sol#2: " << *R2 << "\n"; 6112 #endif 6113 // Pick the smallest positive root value. 6114 if (ConstantInt *CB = 6115 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6116 R1->getValue(), 6117 R2->getValue()))) { 6118 if (!CB->getZExtValue()) 6119 std::swap(R1, R2); // R1 is the minimum root now. 6120 6121 // We can only use this value if the chrec ends up with an exact zero 6122 // value at this index. When solving for "X*X != 5", for example, we 6123 // should not accept a root of 2. 6124 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6125 if (Val->isZero()) 6126 return R1; // We found a quadratic root! 6127 } 6128 } 6129 return getCouldNotCompute(); 6130 } 6131 6132 // Otherwise we can only handle this if it is affine. 6133 if (!AddRec->isAffine()) 6134 return getCouldNotCompute(); 6135 6136 // If this is an affine expression, the execution count of this branch is 6137 // the minimum unsigned root of the following equation: 6138 // 6139 // Start + Step*N = 0 (mod 2^BW) 6140 // 6141 // equivalent to: 6142 // 6143 // Step*N = -Start (mod 2^BW) 6144 // 6145 // where BW is the common bit width of Start and Step. 6146 6147 // Get the initial value for the loop. 6148 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6149 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6150 6151 // For now we handle only constant steps. 6152 // 6153 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6154 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6155 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6156 // We have not yet seen any such cases. 6157 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6158 if (!StepC || StepC->getValue()->equalsInt(0)) 6159 return getCouldNotCompute(); 6160 6161 // For positive steps (counting up until unsigned overflow): 6162 // N = -Start/Step (as unsigned) 6163 // For negative steps (counting down to zero): 6164 // N = Start/-Step 6165 // First compute the unsigned distance from zero in the direction of Step. 6166 bool CountDown = StepC->getValue()->getValue().isNegative(); 6167 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6168 6169 // Handle unitary steps, which cannot wraparound. 6170 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6171 // N = Distance (as unsigned) 6172 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6173 ConstantRange CR = getUnsignedRange(Start); 6174 const SCEV *MaxBECount; 6175 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6176 // When counting up, the worst starting value is 1, not 0. 6177 MaxBECount = CR.getUnsignedMax().isMinValue() 6178 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6179 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6180 else 6181 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6182 : -CR.getUnsignedMin()); 6183 return ExitLimit(Distance, MaxBECount); 6184 } 6185 6186 // As a special case, handle the instance where Step is a positive power of 6187 // two. In this case, determining whether Step divides Distance evenly can be 6188 // done by counting and comparing the number of trailing zeros of Step and 6189 // Distance. 6190 if (!CountDown) { 6191 const APInt &StepV = StepC->getValue()->getValue(); 6192 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6193 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6194 // case is not handled as this code is guarded by !CountDown. 6195 if (StepV.isPowerOf2() && 6196 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) 6197 return getUDivExactExpr(Distance, Step); 6198 } 6199 6200 // If the condition controls loop exit (the loop exits only if the expression 6201 // is true) and the addition is no-wrap we can use unsigned divide to 6202 // compute the backedge count. In this case, the step may not divide the 6203 // distance, but we don't care because if the condition is "missed" the loop 6204 // will have undefined behavior due to wrapping. 6205 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6206 const SCEV *Exact = 6207 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6208 return ExitLimit(Exact, Exact); 6209 } 6210 6211 // Then, try to solve the above equation provided that Start is constant. 6212 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6213 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6214 -StartC->getValue()->getValue(), 6215 *this); 6216 return getCouldNotCompute(); 6217 } 6218 6219 /// HowFarToNonZero - Return the number of times a backedge checking the 6220 /// specified value for nonzero will execute. If not computable, return 6221 /// CouldNotCompute 6222 ScalarEvolution::ExitLimit 6223 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6224 // Loops that look like: while (X == 0) are very strange indeed. We don't 6225 // handle them yet except for the trivial case. This could be expanded in the 6226 // future as needed. 6227 6228 // If the value is a constant, check to see if it is known to be non-zero 6229 // already. If so, the backedge will execute zero times. 6230 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6231 if (!C->getValue()->isNullValue()) 6232 return getConstant(C->getType(), 0); 6233 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6234 } 6235 6236 // We could implement others, but I really doubt anyone writes loops like 6237 // this, and if they did, they would already be constant folded. 6238 return getCouldNotCompute(); 6239 } 6240 6241 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6242 /// (which may not be an immediate predecessor) which has exactly one 6243 /// successor from which BB is reachable, or null if no such block is 6244 /// found. 6245 /// 6246 std::pair<BasicBlock *, BasicBlock *> 6247 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6248 // If the block has a unique predecessor, then there is no path from the 6249 // predecessor to the block that does not go through the direct edge 6250 // from the predecessor to the block. 6251 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6252 return std::make_pair(Pred, BB); 6253 6254 // A loop's header is defined to be a block that dominates the loop. 6255 // If the header has a unique predecessor outside the loop, it must be 6256 // a block that has exactly one successor that can reach the loop. 6257 if (Loop *L = LI->getLoopFor(BB)) 6258 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6259 6260 return std::pair<BasicBlock *, BasicBlock *>(); 6261 } 6262 6263 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6264 /// testing whether two expressions are equal, however for the purposes of 6265 /// looking for a condition guarding a loop, it can be useful to be a little 6266 /// more general, since a front-end may have replicated the controlling 6267 /// expression. 6268 /// 6269 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6270 // Quick check to see if they are the same SCEV. 6271 if (A == B) return true; 6272 6273 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6274 // two different instructions with the same value. Check for this case. 6275 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6276 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6277 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6278 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6279 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 6280 return true; 6281 6282 // Otherwise assume they may have a different value. 6283 return false; 6284 } 6285 6286 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6287 /// predicate Pred. Return true iff any changes were made. 6288 /// 6289 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6290 const SCEV *&LHS, const SCEV *&RHS, 6291 unsigned Depth) { 6292 bool Changed = false; 6293 6294 // If we hit the max recursion limit bail out. 6295 if (Depth >= 3) 6296 return false; 6297 6298 // Canonicalize a constant to the right side. 6299 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6300 // Check for both operands constant. 6301 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6302 if (ConstantExpr::getICmp(Pred, 6303 LHSC->getValue(), 6304 RHSC->getValue())->isNullValue()) 6305 goto trivially_false; 6306 else 6307 goto trivially_true; 6308 } 6309 // Otherwise swap the operands to put the constant on the right. 6310 std::swap(LHS, RHS); 6311 Pred = ICmpInst::getSwappedPredicate(Pred); 6312 Changed = true; 6313 } 6314 6315 // If we're comparing an addrec with a value which is loop-invariant in the 6316 // addrec's loop, put the addrec on the left. Also make a dominance check, 6317 // as both operands could be addrecs loop-invariant in each other's loop. 6318 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6319 const Loop *L = AR->getLoop(); 6320 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6321 std::swap(LHS, RHS); 6322 Pred = ICmpInst::getSwappedPredicate(Pred); 6323 Changed = true; 6324 } 6325 } 6326 6327 // If there's a constant operand, canonicalize comparisons with boundary 6328 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6329 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6330 const APInt &RA = RC->getValue()->getValue(); 6331 switch (Pred) { 6332 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6333 case ICmpInst::ICMP_EQ: 6334 case ICmpInst::ICMP_NE: 6335 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6336 if (!RA) 6337 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6338 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6339 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6340 ME->getOperand(0)->isAllOnesValue()) { 6341 RHS = AE->getOperand(1); 6342 LHS = ME->getOperand(1); 6343 Changed = true; 6344 } 6345 break; 6346 case ICmpInst::ICMP_UGE: 6347 if ((RA - 1).isMinValue()) { 6348 Pred = ICmpInst::ICMP_NE; 6349 RHS = getConstant(RA - 1); 6350 Changed = true; 6351 break; 6352 } 6353 if (RA.isMaxValue()) { 6354 Pred = ICmpInst::ICMP_EQ; 6355 Changed = true; 6356 break; 6357 } 6358 if (RA.isMinValue()) goto trivially_true; 6359 6360 Pred = ICmpInst::ICMP_UGT; 6361 RHS = getConstant(RA - 1); 6362 Changed = true; 6363 break; 6364 case ICmpInst::ICMP_ULE: 6365 if ((RA + 1).isMaxValue()) { 6366 Pred = ICmpInst::ICMP_NE; 6367 RHS = getConstant(RA + 1); 6368 Changed = true; 6369 break; 6370 } 6371 if (RA.isMinValue()) { 6372 Pred = ICmpInst::ICMP_EQ; 6373 Changed = true; 6374 break; 6375 } 6376 if (RA.isMaxValue()) goto trivially_true; 6377 6378 Pred = ICmpInst::ICMP_ULT; 6379 RHS = getConstant(RA + 1); 6380 Changed = true; 6381 break; 6382 case ICmpInst::ICMP_SGE: 6383 if ((RA - 1).isMinSignedValue()) { 6384 Pred = ICmpInst::ICMP_NE; 6385 RHS = getConstant(RA - 1); 6386 Changed = true; 6387 break; 6388 } 6389 if (RA.isMaxSignedValue()) { 6390 Pred = ICmpInst::ICMP_EQ; 6391 Changed = true; 6392 break; 6393 } 6394 if (RA.isMinSignedValue()) goto trivially_true; 6395 6396 Pred = ICmpInst::ICMP_SGT; 6397 RHS = getConstant(RA - 1); 6398 Changed = true; 6399 break; 6400 case ICmpInst::ICMP_SLE: 6401 if ((RA + 1).isMaxSignedValue()) { 6402 Pred = ICmpInst::ICMP_NE; 6403 RHS = getConstant(RA + 1); 6404 Changed = true; 6405 break; 6406 } 6407 if (RA.isMinSignedValue()) { 6408 Pred = ICmpInst::ICMP_EQ; 6409 Changed = true; 6410 break; 6411 } 6412 if (RA.isMaxSignedValue()) goto trivially_true; 6413 6414 Pred = ICmpInst::ICMP_SLT; 6415 RHS = getConstant(RA + 1); 6416 Changed = true; 6417 break; 6418 case ICmpInst::ICMP_UGT: 6419 if (RA.isMinValue()) { 6420 Pred = ICmpInst::ICMP_NE; 6421 Changed = true; 6422 break; 6423 } 6424 if ((RA + 1).isMaxValue()) { 6425 Pred = ICmpInst::ICMP_EQ; 6426 RHS = getConstant(RA + 1); 6427 Changed = true; 6428 break; 6429 } 6430 if (RA.isMaxValue()) goto trivially_false; 6431 break; 6432 case ICmpInst::ICMP_ULT: 6433 if (RA.isMaxValue()) { 6434 Pred = ICmpInst::ICMP_NE; 6435 Changed = true; 6436 break; 6437 } 6438 if ((RA - 1).isMinValue()) { 6439 Pred = ICmpInst::ICMP_EQ; 6440 RHS = getConstant(RA - 1); 6441 Changed = true; 6442 break; 6443 } 6444 if (RA.isMinValue()) goto trivially_false; 6445 break; 6446 case ICmpInst::ICMP_SGT: 6447 if (RA.isMinSignedValue()) { 6448 Pred = ICmpInst::ICMP_NE; 6449 Changed = true; 6450 break; 6451 } 6452 if ((RA + 1).isMaxSignedValue()) { 6453 Pred = ICmpInst::ICMP_EQ; 6454 RHS = getConstant(RA + 1); 6455 Changed = true; 6456 break; 6457 } 6458 if (RA.isMaxSignedValue()) goto trivially_false; 6459 break; 6460 case ICmpInst::ICMP_SLT: 6461 if (RA.isMaxSignedValue()) { 6462 Pred = ICmpInst::ICMP_NE; 6463 Changed = true; 6464 break; 6465 } 6466 if ((RA - 1).isMinSignedValue()) { 6467 Pred = ICmpInst::ICMP_EQ; 6468 RHS = getConstant(RA - 1); 6469 Changed = true; 6470 break; 6471 } 6472 if (RA.isMinSignedValue()) goto trivially_false; 6473 break; 6474 } 6475 } 6476 6477 // Check for obvious equality. 6478 if (HasSameValue(LHS, RHS)) { 6479 if (ICmpInst::isTrueWhenEqual(Pred)) 6480 goto trivially_true; 6481 if (ICmpInst::isFalseWhenEqual(Pred)) 6482 goto trivially_false; 6483 } 6484 6485 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6486 // adding or subtracting 1 from one of the operands. 6487 switch (Pred) { 6488 case ICmpInst::ICMP_SLE: 6489 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6490 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6491 SCEV::FlagNSW); 6492 Pred = ICmpInst::ICMP_SLT; 6493 Changed = true; 6494 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6495 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6496 SCEV::FlagNSW); 6497 Pred = ICmpInst::ICMP_SLT; 6498 Changed = true; 6499 } 6500 break; 6501 case ICmpInst::ICMP_SGE: 6502 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6503 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6504 SCEV::FlagNSW); 6505 Pred = ICmpInst::ICMP_SGT; 6506 Changed = true; 6507 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6508 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6509 SCEV::FlagNSW); 6510 Pred = ICmpInst::ICMP_SGT; 6511 Changed = true; 6512 } 6513 break; 6514 case ICmpInst::ICMP_ULE: 6515 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6516 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6517 SCEV::FlagNUW); 6518 Pred = ICmpInst::ICMP_ULT; 6519 Changed = true; 6520 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6521 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6522 SCEV::FlagNUW); 6523 Pred = ICmpInst::ICMP_ULT; 6524 Changed = true; 6525 } 6526 break; 6527 case ICmpInst::ICMP_UGE: 6528 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6529 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6530 SCEV::FlagNUW); 6531 Pred = ICmpInst::ICMP_UGT; 6532 Changed = true; 6533 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6534 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6535 SCEV::FlagNUW); 6536 Pred = ICmpInst::ICMP_UGT; 6537 Changed = true; 6538 } 6539 break; 6540 default: 6541 break; 6542 } 6543 6544 // TODO: More simplifications are possible here. 6545 6546 // Recursively simplify until we either hit a recursion limit or nothing 6547 // changes. 6548 if (Changed) 6549 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6550 6551 return Changed; 6552 6553 trivially_true: 6554 // Return 0 == 0. 6555 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6556 Pred = ICmpInst::ICMP_EQ; 6557 return true; 6558 6559 trivially_false: 6560 // Return 0 != 0. 6561 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6562 Pred = ICmpInst::ICMP_NE; 6563 return true; 6564 } 6565 6566 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6567 return getSignedRange(S).getSignedMax().isNegative(); 6568 } 6569 6570 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6571 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6572 } 6573 6574 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6575 return !getSignedRange(S).getSignedMin().isNegative(); 6576 } 6577 6578 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6579 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6580 } 6581 6582 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6583 return isKnownNegative(S) || isKnownPositive(S); 6584 } 6585 6586 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6587 const SCEV *LHS, const SCEV *RHS) { 6588 // Canonicalize the inputs first. 6589 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6590 6591 // If LHS or RHS is an addrec, check to see if the condition is true in 6592 // every iteration of the loop. 6593 // If LHS and RHS are both addrec, both conditions must be true in 6594 // every iteration of the loop. 6595 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6596 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6597 bool LeftGuarded = false; 6598 bool RightGuarded = false; 6599 if (LAR) { 6600 const Loop *L = LAR->getLoop(); 6601 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6602 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6603 if (!RAR) return true; 6604 LeftGuarded = true; 6605 } 6606 } 6607 if (RAR) { 6608 const Loop *L = RAR->getLoop(); 6609 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6610 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6611 if (!LAR) return true; 6612 RightGuarded = true; 6613 } 6614 } 6615 if (LeftGuarded && RightGuarded) 6616 return true; 6617 6618 // Otherwise see what can be done with known constant ranges. 6619 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6620 } 6621 6622 bool 6623 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6624 const SCEV *LHS, const SCEV *RHS) { 6625 if (HasSameValue(LHS, RHS)) 6626 return ICmpInst::isTrueWhenEqual(Pred); 6627 6628 // This code is split out from isKnownPredicate because it is called from 6629 // within isLoopEntryGuardedByCond. 6630 switch (Pred) { 6631 default: 6632 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6633 case ICmpInst::ICMP_SGT: 6634 std::swap(LHS, RHS); 6635 case ICmpInst::ICMP_SLT: { 6636 ConstantRange LHSRange = getSignedRange(LHS); 6637 ConstantRange RHSRange = getSignedRange(RHS); 6638 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6639 return true; 6640 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6641 return false; 6642 break; 6643 } 6644 case ICmpInst::ICMP_SGE: 6645 std::swap(LHS, RHS); 6646 case ICmpInst::ICMP_SLE: { 6647 ConstantRange LHSRange = getSignedRange(LHS); 6648 ConstantRange RHSRange = getSignedRange(RHS); 6649 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6650 return true; 6651 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6652 return false; 6653 break; 6654 } 6655 case ICmpInst::ICMP_UGT: 6656 std::swap(LHS, RHS); 6657 case ICmpInst::ICMP_ULT: { 6658 ConstantRange LHSRange = getUnsignedRange(LHS); 6659 ConstantRange RHSRange = getUnsignedRange(RHS); 6660 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6661 return true; 6662 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6663 return false; 6664 break; 6665 } 6666 case ICmpInst::ICMP_UGE: 6667 std::swap(LHS, RHS); 6668 case ICmpInst::ICMP_ULE: { 6669 ConstantRange LHSRange = getUnsignedRange(LHS); 6670 ConstantRange RHSRange = getUnsignedRange(RHS); 6671 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6672 return true; 6673 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6674 return false; 6675 break; 6676 } 6677 case ICmpInst::ICMP_NE: { 6678 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6679 return true; 6680 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6681 return true; 6682 6683 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6684 if (isKnownNonZero(Diff)) 6685 return true; 6686 break; 6687 } 6688 case ICmpInst::ICMP_EQ: 6689 // The check at the top of the function catches the case where 6690 // the values are known to be equal. 6691 break; 6692 } 6693 return false; 6694 } 6695 6696 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6697 /// protected by a conditional between LHS and RHS. This is used to 6698 /// to eliminate casts. 6699 bool 6700 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6701 ICmpInst::Predicate Pred, 6702 const SCEV *LHS, const SCEV *RHS) { 6703 // Interpret a null as meaning no loop, where there is obviously no guard 6704 // (interprocedural conditions notwithstanding). 6705 if (!L) return true; 6706 6707 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 6708 6709 BasicBlock *Latch = L->getLoopLatch(); 6710 if (!Latch) 6711 return false; 6712 6713 BranchInst *LoopContinuePredicate = 6714 dyn_cast<BranchInst>(Latch->getTerminator()); 6715 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 6716 isImpliedCond(Pred, LHS, RHS, 6717 LoopContinuePredicate->getCondition(), 6718 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 6719 return true; 6720 6721 // Check conditions due to any @llvm.assume intrinsics. 6722 for (auto &AssumeVH : AC->assumptions()) { 6723 if (!AssumeVH) 6724 continue; 6725 auto *CI = cast<CallInst>(AssumeVH); 6726 if (!DT->dominates(CI, Latch->getTerminator())) 6727 continue; 6728 6729 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 6730 return true; 6731 } 6732 6733 return false; 6734 } 6735 6736 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6737 /// by a conditional between LHS and RHS. This is used to help avoid max 6738 /// expressions in loop trip counts, and to eliminate casts. 6739 bool 6740 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6741 ICmpInst::Predicate Pred, 6742 const SCEV *LHS, const SCEV *RHS) { 6743 // Interpret a null as meaning no loop, where there is obviously no guard 6744 // (interprocedural conditions notwithstanding). 6745 if (!L) return false; 6746 6747 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 6748 6749 // Starting at the loop predecessor, climb up the predecessor chain, as long 6750 // as there are predecessors that can be found that have unique successors 6751 // leading to the original header. 6752 for (std::pair<BasicBlock *, BasicBlock *> 6753 Pair(L->getLoopPredecessor(), L->getHeader()); 6754 Pair.first; 6755 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6756 6757 BranchInst *LoopEntryPredicate = 6758 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6759 if (!LoopEntryPredicate || 6760 LoopEntryPredicate->isUnconditional()) 6761 continue; 6762 6763 if (isImpliedCond(Pred, LHS, RHS, 6764 LoopEntryPredicate->getCondition(), 6765 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6766 return true; 6767 } 6768 6769 // Check conditions due to any @llvm.assume intrinsics. 6770 for (auto &AssumeVH : AC->assumptions()) { 6771 if (!AssumeVH) 6772 continue; 6773 auto *CI = cast<CallInst>(AssumeVH); 6774 if (!DT->dominates(CI, L->getHeader())) 6775 continue; 6776 6777 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 6778 return true; 6779 } 6780 6781 return false; 6782 } 6783 6784 /// RAII wrapper to prevent recursive application of isImpliedCond. 6785 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6786 /// currently evaluating isImpliedCond. 6787 struct MarkPendingLoopPredicate { 6788 Value *Cond; 6789 DenseSet<Value*> &LoopPreds; 6790 bool Pending; 6791 6792 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6793 : Cond(C), LoopPreds(LP) { 6794 Pending = !LoopPreds.insert(Cond).second; 6795 } 6796 ~MarkPendingLoopPredicate() { 6797 if (!Pending) 6798 LoopPreds.erase(Cond); 6799 } 6800 }; 6801 6802 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6803 /// and RHS is true whenever the given Cond value evaluates to true. 6804 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6805 const SCEV *LHS, const SCEV *RHS, 6806 Value *FoundCondValue, 6807 bool Inverse) { 6808 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6809 if (Mark.Pending) 6810 return false; 6811 6812 // Recursively handle And and Or conditions. 6813 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6814 if (BO->getOpcode() == Instruction::And) { 6815 if (!Inverse) 6816 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6817 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6818 } else if (BO->getOpcode() == Instruction::Or) { 6819 if (Inverse) 6820 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6821 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6822 } 6823 } 6824 6825 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6826 if (!ICI) return false; 6827 6828 // Bail if the ICmp's operands' types are wider than the needed type 6829 // before attempting to call getSCEV on them. This avoids infinite 6830 // recursion, since the analysis of widening casts can require loop 6831 // exit condition information for overflow checking, which would 6832 // lead back here. 6833 if (getTypeSizeInBits(LHS->getType()) < 6834 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6835 return false; 6836 6837 // Now that we found a conditional branch that dominates the loop or controls 6838 // the loop latch. Check to see if it is the comparison we are looking for. 6839 ICmpInst::Predicate FoundPred; 6840 if (Inverse) 6841 FoundPred = ICI->getInversePredicate(); 6842 else 6843 FoundPred = ICI->getPredicate(); 6844 6845 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6846 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6847 6848 // Balance the types. The case where FoundLHS' type is wider than 6849 // LHS' type is checked for above. 6850 if (getTypeSizeInBits(LHS->getType()) > 6851 getTypeSizeInBits(FoundLHS->getType())) { 6852 if (CmpInst::isSigned(FoundPred)) { 6853 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6854 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6855 } else { 6856 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6857 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6858 } 6859 } 6860 6861 // Canonicalize the query to match the way instcombine will have 6862 // canonicalized the comparison. 6863 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6864 if (LHS == RHS) 6865 return CmpInst::isTrueWhenEqual(Pred); 6866 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6867 if (FoundLHS == FoundRHS) 6868 return CmpInst::isFalseWhenEqual(FoundPred); 6869 6870 // Check to see if we can make the LHS or RHS match. 6871 if (LHS == FoundRHS || RHS == FoundLHS) { 6872 if (isa<SCEVConstant>(RHS)) { 6873 std::swap(FoundLHS, FoundRHS); 6874 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6875 } else { 6876 std::swap(LHS, RHS); 6877 Pred = ICmpInst::getSwappedPredicate(Pred); 6878 } 6879 } 6880 6881 // Check whether the found predicate is the same as the desired predicate. 6882 if (FoundPred == Pred) 6883 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6884 6885 // Check whether swapping the found predicate makes it the same as the 6886 // desired predicate. 6887 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6888 if (isa<SCEVConstant>(RHS)) 6889 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6890 else 6891 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6892 RHS, LHS, FoundLHS, FoundRHS); 6893 } 6894 6895 // Check if we can make progress by sharpening ranges. 6896 if (FoundPred == ICmpInst::ICMP_NE && 6897 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 6898 6899 const SCEVConstant *C = nullptr; 6900 const SCEV *V = nullptr; 6901 6902 if (isa<SCEVConstant>(FoundLHS)) { 6903 C = cast<SCEVConstant>(FoundLHS); 6904 V = FoundRHS; 6905 } else { 6906 C = cast<SCEVConstant>(FoundRHS); 6907 V = FoundLHS; 6908 } 6909 6910 // The guarding predicate tells us that C != V. If the known range 6911 // of V is [C, t), we can sharpen the range to [C + 1, t). The 6912 // range we consider has to correspond to same signedness as the 6913 // predicate we're interested in folding. 6914 6915 APInt Min = ICmpInst::isSigned(Pred) ? 6916 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 6917 6918 if (Min == C->getValue()->getValue()) { 6919 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 6920 // This is true even if (Min + 1) wraps around -- in case of 6921 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 6922 6923 APInt SharperMin = Min + 1; 6924 6925 switch (Pred) { 6926 case ICmpInst::ICMP_SGE: 6927 case ICmpInst::ICMP_UGE: 6928 // We know V `Pred` SharperMin. If this implies LHS `Pred` 6929 // RHS, we're done. 6930 if (isImpliedCondOperands(Pred, LHS, RHS, V, 6931 getConstant(SharperMin))) 6932 return true; 6933 6934 case ICmpInst::ICMP_SGT: 6935 case ICmpInst::ICMP_UGT: 6936 // We know from the range information that (V `Pred` Min || 6937 // V == Min). We know from the guarding condition that !(V 6938 // == Min). This gives us 6939 // 6940 // V `Pred` Min || V == Min && !(V == Min) 6941 // => V `Pred` Min 6942 // 6943 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 6944 6945 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 6946 return true; 6947 6948 default: 6949 // No change 6950 break; 6951 } 6952 } 6953 } 6954 6955 // Check whether the actual condition is beyond sufficient. 6956 if (FoundPred == ICmpInst::ICMP_EQ) 6957 if (ICmpInst::isTrueWhenEqual(Pred)) 6958 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6959 return true; 6960 if (Pred == ICmpInst::ICMP_NE) 6961 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6962 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6963 return true; 6964 6965 // Otherwise assume the worst. 6966 return false; 6967 } 6968 6969 /// isImpliedCondOperands - Test whether the condition described by Pred, 6970 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6971 /// and FoundRHS is true. 6972 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6973 const SCEV *LHS, const SCEV *RHS, 6974 const SCEV *FoundLHS, 6975 const SCEV *FoundRHS) { 6976 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6977 FoundLHS, FoundRHS) || 6978 // ~x < ~y --> x > y 6979 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6980 getNotSCEV(FoundRHS), 6981 getNotSCEV(FoundLHS)); 6982 } 6983 6984 6985 /// If Expr computes ~A, return A else return nullptr 6986 static const SCEV *MatchNotExpr(const SCEV *Expr) { 6987 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 6988 if (!Add || Add->getNumOperands() != 2) return nullptr; 6989 6990 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0)); 6991 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue())) 6992 return nullptr; 6993 6994 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 6995 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr; 6996 6997 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0)); 6998 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue())) 6999 return nullptr; 7000 7001 return AddRHS->getOperand(1); 7002 } 7003 7004 7005 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7006 template<typename MaxExprType> 7007 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7008 const SCEV *Candidate) { 7009 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7010 if (!MaxExpr) return false; 7011 7012 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7013 return It != MaxExpr->op_end(); 7014 } 7015 7016 7017 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7018 template<typename MaxExprType> 7019 static bool IsMinConsistingOf(ScalarEvolution &SE, 7020 const SCEV *MaybeMinExpr, 7021 const SCEV *Candidate) { 7022 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7023 if (!MaybeMaxExpr) 7024 return false; 7025 7026 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7027 } 7028 7029 7030 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7031 /// expression? 7032 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7033 ICmpInst::Predicate Pred, 7034 const SCEV *LHS, const SCEV *RHS) { 7035 switch (Pred) { 7036 default: 7037 return false; 7038 7039 case ICmpInst::ICMP_SGE: 7040 std::swap(LHS, RHS); 7041 // fall through 7042 case ICmpInst::ICMP_SLE: 7043 return 7044 // min(A, ...) <= A 7045 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7046 // A <= max(A, ...) 7047 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7048 7049 case ICmpInst::ICMP_UGE: 7050 std::swap(LHS, RHS); 7051 // fall through 7052 case ICmpInst::ICMP_ULE: 7053 return 7054 // min(A, ...) <= A 7055 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7056 // A <= max(A, ...) 7057 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7058 } 7059 7060 llvm_unreachable("covered switch fell through?!"); 7061 } 7062 7063 /// isImpliedCondOperandsHelper - Test whether the condition described by 7064 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7065 /// FoundLHS, and FoundRHS is true. 7066 bool 7067 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7068 const SCEV *LHS, const SCEV *RHS, 7069 const SCEV *FoundLHS, 7070 const SCEV *FoundRHS) { 7071 auto IsKnownPredicateFull = 7072 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7073 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7074 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS); 7075 }; 7076 7077 switch (Pred) { 7078 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7079 case ICmpInst::ICMP_EQ: 7080 case ICmpInst::ICMP_NE: 7081 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7082 return true; 7083 break; 7084 case ICmpInst::ICMP_SLT: 7085 case ICmpInst::ICMP_SLE: 7086 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7087 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7088 return true; 7089 break; 7090 case ICmpInst::ICMP_SGT: 7091 case ICmpInst::ICMP_SGE: 7092 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7093 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7094 return true; 7095 break; 7096 case ICmpInst::ICMP_ULT: 7097 case ICmpInst::ICMP_ULE: 7098 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7099 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7100 return true; 7101 break; 7102 case ICmpInst::ICMP_UGT: 7103 case ICmpInst::ICMP_UGE: 7104 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7105 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7106 return true; 7107 break; 7108 } 7109 7110 return false; 7111 } 7112 7113 // Verify if an linear IV with positive stride can overflow when in a 7114 // less-than comparison, knowing the invariant term of the comparison, the 7115 // stride and the knowledge of NSW/NUW flags on the recurrence. 7116 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7117 bool IsSigned, bool NoWrap) { 7118 if (NoWrap) return false; 7119 7120 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7121 const SCEV *One = getConstant(Stride->getType(), 1); 7122 7123 if (IsSigned) { 7124 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7125 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7126 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7127 .getSignedMax(); 7128 7129 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7130 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7131 } 7132 7133 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7134 APInt MaxValue = APInt::getMaxValue(BitWidth); 7135 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7136 .getUnsignedMax(); 7137 7138 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7139 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7140 } 7141 7142 // Verify if an linear IV with negative stride can overflow when in a 7143 // greater-than comparison, knowing the invariant term of the comparison, 7144 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7145 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7146 bool IsSigned, bool NoWrap) { 7147 if (NoWrap) return false; 7148 7149 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7150 const SCEV *One = getConstant(Stride->getType(), 1); 7151 7152 if (IsSigned) { 7153 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7154 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7155 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7156 .getSignedMax(); 7157 7158 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7159 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7160 } 7161 7162 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7163 APInt MinValue = APInt::getMinValue(BitWidth); 7164 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7165 .getUnsignedMax(); 7166 7167 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7168 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7169 } 7170 7171 // Compute the backedge taken count knowing the interval difference, the 7172 // stride and presence of the equality in the comparison. 7173 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7174 bool Equality) { 7175 const SCEV *One = getConstant(Step->getType(), 1); 7176 Delta = Equality ? getAddExpr(Delta, Step) 7177 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7178 return getUDivExpr(Delta, Step); 7179 } 7180 7181 /// HowManyLessThans - Return the number of times a backedge containing the 7182 /// specified less-than comparison will execute. If not computable, return 7183 /// CouldNotCompute. 7184 /// 7185 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7186 /// the branch (loops exits only if condition is true). In this case, we can use 7187 /// NoWrapFlags to skip overflow checks. 7188 ScalarEvolution::ExitLimit 7189 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7190 const Loop *L, bool IsSigned, 7191 bool ControlsExit) { 7192 // We handle only IV < Invariant 7193 if (!isLoopInvariant(RHS, L)) 7194 return getCouldNotCompute(); 7195 7196 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7197 7198 // Avoid weird loops 7199 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7200 return getCouldNotCompute(); 7201 7202 bool NoWrap = ControlsExit && 7203 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7204 7205 const SCEV *Stride = IV->getStepRecurrence(*this); 7206 7207 // Avoid negative or zero stride values 7208 if (!isKnownPositive(Stride)) 7209 return getCouldNotCompute(); 7210 7211 // Avoid proven overflow cases: this will ensure that the backedge taken count 7212 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7213 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7214 // behaviors like the case of C language. 7215 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7216 return getCouldNotCompute(); 7217 7218 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 7219 : ICmpInst::ICMP_ULT; 7220 const SCEV *Start = IV->getStart(); 7221 const SCEV *End = RHS; 7222 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 7223 const SCEV *Diff = getMinusSCEV(RHS, Start); 7224 // If we have NoWrap set, then we can assume that the increment won't 7225 // overflow, in which case if RHS - Start is a constant, we don't need to 7226 // do a max operation since we can just figure it out statically 7227 if (NoWrap && isa<SCEVConstant>(Diff)) { 7228 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7229 if (D.isNegative()) 7230 End = Start; 7231 } else 7232 End = IsSigned ? getSMaxExpr(RHS, Start) 7233 : getUMaxExpr(RHS, Start); 7234 } 7235 7236 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 7237 7238 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 7239 : getUnsignedRange(Start).getUnsignedMin(); 7240 7241 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7242 : getUnsignedRange(Stride).getUnsignedMin(); 7243 7244 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7245 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 7246 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 7247 7248 // Although End can be a MAX expression we estimate MaxEnd considering only 7249 // the case End = RHS. This is safe because in the other case (End - Start) 7250 // is zero, leading to a zero maximum backedge taken count. 7251 APInt MaxEnd = 7252 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 7253 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 7254 7255 const SCEV *MaxBECount; 7256 if (isa<SCEVConstant>(BECount)) 7257 MaxBECount = BECount; 7258 else 7259 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 7260 getConstant(MinStride), false); 7261 7262 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7263 MaxBECount = BECount; 7264 7265 return ExitLimit(BECount, MaxBECount); 7266 } 7267 7268 ScalarEvolution::ExitLimit 7269 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 7270 const Loop *L, bool IsSigned, 7271 bool ControlsExit) { 7272 // We handle only IV > Invariant 7273 if (!isLoopInvariant(RHS, L)) 7274 return getCouldNotCompute(); 7275 7276 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7277 7278 // Avoid weird loops 7279 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7280 return getCouldNotCompute(); 7281 7282 bool NoWrap = ControlsExit && 7283 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7284 7285 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 7286 7287 // Avoid negative or zero stride values 7288 if (!isKnownPositive(Stride)) 7289 return getCouldNotCompute(); 7290 7291 // Avoid proven overflow cases: this will ensure that the backedge taken count 7292 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7293 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7294 // behaviors like the case of C language. 7295 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 7296 return getCouldNotCompute(); 7297 7298 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 7299 : ICmpInst::ICMP_UGT; 7300 7301 const SCEV *Start = IV->getStart(); 7302 const SCEV *End = RHS; 7303 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 7304 const SCEV *Diff = getMinusSCEV(RHS, Start); 7305 // If we have NoWrap set, then we can assume that the increment won't 7306 // overflow, in which case if RHS - Start is a constant, we don't need to 7307 // do a max operation since we can just figure it out statically 7308 if (NoWrap && isa<SCEVConstant>(Diff)) { 7309 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7310 if (!D.isNegative()) 7311 End = Start; 7312 } else 7313 End = IsSigned ? getSMinExpr(RHS, Start) 7314 : getUMinExpr(RHS, Start); 7315 } 7316 7317 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 7318 7319 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 7320 : getUnsignedRange(Start).getUnsignedMax(); 7321 7322 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7323 : getUnsignedRange(Stride).getUnsignedMin(); 7324 7325 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7326 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 7327 : APInt::getMinValue(BitWidth) + (MinStride - 1); 7328 7329 // Although End can be a MIN expression we estimate MinEnd considering only 7330 // the case End = RHS. This is safe because in the other case (Start - End) 7331 // is zero, leading to a zero maximum backedge taken count. 7332 APInt MinEnd = 7333 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 7334 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 7335 7336 7337 const SCEV *MaxBECount = getCouldNotCompute(); 7338 if (isa<SCEVConstant>(BECount)) 7339 MaxBECount = BECount; 7340 else 7341 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 7342 getConstant(MinStride), false); 7343 7344 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7345 MaxBECount = BECount; 7346 7347 return ExitLimit(BECount, MaxBECount); 7348 } 7349 7350 /// getNumIterationsInRange - Return the number of iterations of this loop that 7351 /// produce values in the specified constant range. Another way of looking at 7352 /// this is that it returns the first iteration number where the value is not in 7353 /// the condition, thus computing the exit count. If the iteration count can't 7354 /// be computed, an instance of SCEVCouldNotCompute is returned. 7355 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 7356 ScalarEvolution &SE) const { 7357 if (Range.isFullSet()) // Infinite loop. 7358 return SE.getCouldNotCompute(); 7359 7360 // If the start is a non-zero constant, shift the range to simplify things. 7361 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 7362 if (!SC->getValue()->isZero()) { 7363 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 7364 Operands[0] = SE.getConstant(SC->getType(), 0); 7365 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 7366 getNoWrapFlags(FlagNW)); 7367 if (const SCEVAddRecExpr *ShiftedAddRec = 7368 dyn_cast<SCEVAddRecExpr>(Shifted)) 7369 return ShiftedAddRec->getNumIterationsInRange( 7370 Range.subtract(SC->getValue()->getValue()), SE); 7371 // This is strange and shouldn't happen. 7372 return SE.getCouldNotCompute(); 7373 } 7374 7375 // The only time we can solve this is when we have all constant indices. 7376 // Otherwise, we cannot determine the overflow conditions. 7377 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 7378 if (!isa<SCEVConstant>(getOperand(i))) 7379 return SE.getCouldNotCompute(); 7380 7381 7382 // Okay at this point we know that all elements of the chrec are constants and 7383 // that the start element is zero. 7384 7385 // First check to see if the range contains zero. If not, the first 7386 // iteration exits. 7387 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 7388 if (!Range.contains(APInt(BitWidth, 0))) 7389 return SE.getConstant(getType(), 0); 7390 7391 if (isAffine()) { 7392 // If this is an affine expression then we have this situation: 7393 // Solve {0,+,A} in Range === Ax in Range 7394 7395 // We know that zero is in the range. If A is positive then we know that 7396 // the upper value of the range must be the first possible exit value. 7397 // If A is negative then the lower of the range is the last possible loop 7398 // value. Also note that we already checked for a full range. 7399 APInt One(BitWidth,1); 7400 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 7401 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 7402 7403 // The exit value should be (End+A)/A. 7404 APInt ExitVal = (End + A).udiv(A); 7405 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 7406 7407 // Evaluate at the exit value. If we really did fall out of the valid 7408 // range, then we computed our trip count, otherwise wrap around or other 7409 // things must have happened. 7410 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 7411 if (Range.contains(Val->getValue())) 7412 return SE.getCouldNotCompute(); // Something strange happened 7413 7414 // Ensure that the previous value is in the range. This is a sanity check. 7415 assert(Range.contains( 7416 EvaluateConstantChrecAtConstant(this, 7417 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 7418 "Linear scev computation is off in a bad way!"); 7419 return SE.getConstant(ExitValue); 7420 } else if (isQuadratic()) { 7421 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 7422 // quadratic equation to solve it. To do this, we must frame our problem in 7423 // terms of figuring out when zero is crossed, instead of when 7424 // Range.getUpper() is crossed. 7425 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 7426 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 7427 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 7428 // getNoWrapFlags(FlagNW) 7429 FlagAnyWrap); 7430 7431 // Next, solve the constructed addrec 7432 std::pair<const SCEV *,const SCEV *> Roots = 7433 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 7434 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 7435 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 7436 if (R1) { 7437 // Pick the smallest positive root value. 7438 if (ConstantInt *CB = 7439 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 7440 R1->getValue(), R2->getValue()))) { 7441 if (!CB->getZExtValue()) 7442 std::swap(R1, R2); // R1 is the minimum root now. 7443 7444 // Make sure the root is not off by one. The returned iteration should 7445 // not be in the range, but the previous one should be. When solving 7446 // for "X*X < 5", for example, we should not return a root of 2. 7447 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 7448 R1->getValue(), 7449 SE); 7450 if (Range.contains(R1Val->getValue())) { 7451 // The next iteration must be out of the range... 7452 ConstantInt *NextVal = 7453 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 7454 7455 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7456 if (!Range.contains(R1Val->getValue())) 7457 return SE.getConstant(NextVal); 7458 return SE.getCouldNotCompute(); // Something strange happened 7459 } 7460 7461 // If R1 was not in the range, then it is a good return value. Make 7462 // sure that R1-1 WAS in the range though, just in case. 7463 ConstantInt *NextVal = 7464 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 7465 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7466 if (Range.contains(R1Val->getValue())) 7467 return R1; 7468 return SE.getCouldNotCompute(); // Something strange happened 7469 } 7470 } 7471 } 7472 7473 return SE.getCouldNotCompute(); 7474 } 7475 7476 namespace { 7477 struct FindUndefs { 7478 bool Found; 7479 FindUndefs() : Found(false) {} 7480 7481 bool follow(const SCEV *S) { 7482 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 7483 if (isa<UndefValue>(C->getValue())) 7484 Found = true; 7485 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 7486 if (isa<UndefValue>(C->getValue())) 7487 Found = true; 7488 } 7489 7490 // Keep looking if we haven't found it yet. 7491 return !Found; 7492 } 7493 bool isDone() const { 7494 // Stop recursion if we have found an undef. 7495 return Found; 7496 } 7497 }; 7498 } 7499 7500 // Return true when S contains at least an undef value. 7501 static inline bool 7502 containsUndefs(const SCEV *S) { 7503 FindUndefs F; 7504 SCEVTraversal<FindUndefs> ST(F); 7505 ST.visitAll(S); 7506 7507 return F.Found; 7508 } 7509 7510 namespace { 7511 // Collect all steps of SCEV expressions. 7512 struct SCEVCollectStrides { 7513 ScalarEvolution &SE; 7514 SmallVectorImpl<const SCEV *> &Strides; 7515 7516 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 7517 : SE(SE), Strides(S) {} 7518 7519 bool follow(const SCEV *S) { 7520 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 7521 Strides.push_back(AR->getStepRecurrence(SE)); 7522 return true; 7523 } 7524 bool isDone() const { return false; } 7525 }; 7526 7527 // Collect all SCEVUnknown and SCEVMulExpr expressions. 7528 struct SCEVCollectTerms { 7529 SmallVectorImpl<const SCEV *> &Terms; 7530 7531 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 7532 : Terms(T) {} 7533 7534 bool follow(const SCEV *S) { 7535 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 7536 if (!containsUndefs(S)) 7537 Terms.push_back(S); 7538 7539 // Stop recursion: once we collected a term, do not walk its operands. 7540 return false; 7541 } 7542 7543 // Keep looking. 7544 return true; 7545 } 7546 bool isDone() const { return false; } 7547 }; 7548 } 7549 7550 /// Find parametric terms in this SCEVAddRecExpr. 7551 void SCEVAddRecExpr::collectParametricTerms( 7552 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const { 7553 SmallVector<const SCEV *, 4> Strides; 7554 SCEVCollectStrides StrideCollector(SE, Strides); 7555 visitAll(this, StrideCollector); 7556 7557 DEBUG({ 7558 dbgs() << "Strides:\n"; 7559 for (const SCEV *S : Strides) 7560 dbgs() << *S << "\n"; 7561 }); 7562 7563 for (const SCEV *S : Strides) { 7564 SCEVCollectTerms TermCollector(Terms); 7565 visitAll(S, TermCollector); 7566 } 7567 7568 DEBUG({ 7569 dbgs() << "Terms:\n"; 7570 for (const SCEV *T : Terms) 7571 dbgs() << *T << "\n"; 7572 }); 7573 } 7574 7575 static bool findArrayDimensionsRec(ScalarEvolution &SE, 7576 SmallVectorImpl<const SCEV *> &Terms, 7577 SmallVectorImpl<const SCEV *> &Sizes) { 7578 int Last = Terms.size() - 1; 7579 const SCEV *Step = Terms[Last]; 7580 7581 // End of recursion. 7582 if (Last == 0) { 7583 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 7584 SmallVector<const SCEV *, 2> Qs; 7585 for (const SCEV *Op : M->operands()) 7586 if (!isa<SCEVConstant>(Op)) 7587 Qs.push_back(Op); 7588 7589 Step = SE.getMulExpr(Qs); 7590 } 7591 7592 Sizes.push_back(Step); 7593 return true; 7594 } 7595 7596 for (const SCEV *&Term : Terms) { 7597 // Normalize the terms before the next call to findArrayDimensionsRec. 7598 const SCEV *Q, *R; 7599 SCEVDivision::divide(SE, Term, Step, &Q, &R); 7600 7601 // Bail out when GCD does not evenly divide one of the terms. 7602 if (!R->isZero()) 7603 return false; 7604 7605 Term = Q; 7606 } 7607 7608 // Remove all SCEVConstants. 7609 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 7610 return isa<SCEVConstant>(E); 7611 }), 7612 Terms.end()); 7613 7614 if (Terms.size() > 0) 7615 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 7616 return false; 7617 7618 Sizes.push_back(Step); 7619 return true; 7620 } 7621 7622 namespace { 7623 struct FindParameter { 7624 bool FoundParameter; 7625 FindParameter() : FoundParameter(false) {} 7626 7627 bool follow(const SCEV *S) { 7628 if (isa<SCEVUnknown>(S)) { 7629 FoundParameter = true; 7630 // Stop recursion: we found a parameter. 7631 return false; 7632 } 7633 // Keep looking. 7634 return true; 7635 } 7636 bool isDone() const { 7637 // Stop recursion if we have found a parameter. 7638 return FoundParameter; 7639 } 7640 }; 7641 } 7642 7643 // Returns true when S contains at least a SCEVUnknown parameter. 7644 static inline bool 7645 containsParameters(const SCEV *S) { 7646 FindParameter F; 7647 SCEVTraversal<FindParameter> ST(F); 7648 ST.visitAll(S); 7649 7650 return F.FoundParameter; 7651 } 7652 7653 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 7654 static inline bool 7655 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 7656 for (const SCEV *T : Terms) 7657 if (containsParameters(T)) 7658 return true; 7659 return false; 7660 } 7661 7662 // Return the number of product terms in S. 7663 static inline int numberOfTerms(const SCEV *S) { 7664 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 7665 return Expr->getNumOperands(); 7666 return 1; 7667 } 7668 7669 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 7670 if (isa<SCEVConstant>(T)) 7671 return nullptr; 7672 7673 if (isa<SCEVUnknown>(T)) 7674 return T; 7675 7676 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 7677 SmallVector<const SCEV *, 2> Factors; 7678 for (const SCEV *Op : M->operands()) 7679 if (!isa<SCEVConstant>(Op)) 7680 Factors.push_back(Op); 7681 7682 return SE.getMulExpr(Factors); 7683 } 7684 7685 return T; 7686 } 7687 7688 /// Return the size of an element read or written by Inst. 7689 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 7690 Type *Ty; 7691 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 7692 Ty = Store->getValueOperand()->getType(); 7693 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 7694 Ty = Load->getType(); 7695 else 7696 return nullptr; 7697 7698 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 7699 return getSizeOfExpr(ETy, Ty); 7700 } 7701 7702 /// Second step of delinearization: compute the array dimensions Sizes from the 7703 /// set of Terms extracted from the memory access function of this SCEVAddRec. 7704 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 7705 SmallVectorImpl<const SCEV *> &Sizes, 7706 const SCEV *ElementSize) const { 7707 7708 if (Terms.size() < 1 || !ElementSize) 7709 return; 7710 7711 // Early return when Terms do not contain parameters: we do not delinearize 7712 // non parametric SCEVs. 7713 if (!containsParameters(Terms)) 7714 return; 7715 7716 DEBUG({ 7717 dbgs() << "Terms:\n"; 7718 for (const SCEV *T : Terms) 7719 dbgs() << *T << "\n"; 7720 }); 7721 7722 // Remove duplicates. 7723 std::sort(Terms.begin(), Terms.end()); 7724 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 7725 7726 // Put larger terms first. 7727 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 7728 return numberOfTerms(LHS) > numberOfTerms(RHS); 7729 }); 7730 7731 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7732 7733 // Divide all terms by the element size. 7734 for (const SCEV *&Term : Terms) { 7735 const SCEV *Q, *R; 7736 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 7737 Term = Q; 7738 } 7739 7740 SmallVector<const SCEV *, 4> NewTerms; 7741 7742 // Remove constant factors. 7743 for (const SCEV *T : Terms) 7744 if (const SCEV *NewT = removeConstantFactors(SE, T)) 7745 NewTerms.push_back(NewT); 7746 7747 DEBUG({ 7748 dbgs() << "Terms after sorting:\n"; 7749 for (const SCEV *T : NewTerms) 7750 dbgs() << *T << "\n"; 7751 }); 7752 7753 if (NewTerms.empty() || 7754 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 7755 Sizes.clear(); 7756 return; 7757 } 7758 7759 // The last element to be pushed into Sizes is the size of an element. 7760 Sizes.push_back(ElementSize); 7761 7762 DEBUG({ 7763 dbgs() << "Sizes:\n"; 7764 for (const SCEV *S : Sizes) 7765 dbgs() << *S << "\n"; 7766 }); 7767 } 7768 7769 /// Third step of delinearization: compute the access functions for the 7770 /// Subscripts based on the dimensions in Sizes. 7771 void SCEVAddRecExpr::computeAccessFunctions( 7772 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts, 7773 SmallVectorImpl<const SCEV *> &Sizes) const { 7774 7775 // Early exit in case this SCEV is not an affine multivariate function. 7776 if (Sizes.empty() || !this->isAffine()) 7777 return; 7778 7779 const SCEV *Res = this; 7780 int Last = Sizes.size() - 1; 7781 for (int i = Last; i >= 0; i--) { 7782 const SCEV *Q, *R; 7783 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R); 7784 7785 DEBUG({ 7786 dbgs() << "Res: " << *Res << "\n"; 7787 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 7788 dbgs() << "Res divided by Sizes[i]:\n"; 7789 dbgs() << "Quotient: " << *Q << "\n"; 7790 dbgs() << "Remainder: " << *R << "\n"; 7791 }); 7792 7793 Res = Q; 7794 7795 // Do not record the last subscript corresponding to the size of elements in 7796 // the array. 7797 if (i == Last) { 7798 7799 // Bail out if the remainder is too complex. 7800 if (isa<SCEVAddRecExpr>(R)) { 7801 Subscripts.clear(); 7802 Sizes.clear(); 7803 return; 7804 } 7805 7806 continue; 7807 } 7808 7809 // Record the access function for the current subscript. 7810 Subscripts.push_back(R); 7811 } 7812 7813 // Also push in last position the remainder of the last division: it will be 7814 // the access function of the innermost dimension. 7815 Subscripts.push_back(Res); 7816 7817 std::reverse(Subscripts.begin(), Subscripts.end()); 7818 7819 DEBUG({ 7820 dbgs() << "Subscripts:\n"; 7821 for (const SCEV *S : Subscripts) 7822 dbgs() << *S << "\n"; 7823 }); 7824 } 7825 7826 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 7827 /// sizes of an array access. Returns the remainder of the delinearization that 7828 /// is the offset start of the array. The SCEV->delinearize algorithm computes 7829 /// the multiples of SCEV coefficients: that is a pattern matching of sub 7830 /// expressions in the stride and base of a SCEV corresponding to the 7831 /// computation of a GCD (greatest common divisor) of base and stride. When 7832 /// SCEV->delinearize fails, it returns the SCEV unchanged. 7833 /// 7834 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 7835 /// 7836 /// void foo(long n, long m, long o, double A[n][m][o]) { 7837 /// 7838 /// for (long i = 0; i < n; i++) 7839 /// for (long j = 0; j < m; j++) 7840 /// for (long k = 0; k < o; k++) 7841 /// A[i][j][k] = 1.0; 7842 /// } 7843 /// 7844 /// the delinearization input is the following AddRec SCEV: 7845 /// 7846 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 7847 /// 7848 /// From this SCEV, we are able to say that the base offset of the access is %A 7849 /// because it appears as an offset that does not divide any of the strides in 7850 /// the loops: 7851 /// 7852 /// CHECK: Base offset: %A 7853 /// 7854 /// and then SCEV->delinearize determines the size of some of the dimensions of 7855 /// the array as these are the multiples by which the strides are happening: 7856 /// 7857 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 7858 /// 7859 /// Note that the outermost dimension remains of UnknownSize because there are 7860 /// no strides that would help identifying the size of the last dimension: when 7861 /// the array has been statically allocated, one could compute the size of that 7862 /// dimension by dividing the overall size of the array by the size of the known 7863 /// dimensions: %m * %o * 8. 7864 /// 7865 /// Finally delinearize provides the access functions for the array reference 7866 /// that does correspond to A[i][j][k] of the above C testcase: 7867 /// 7868 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 7869 /// 7870 /// The testcases are checking the output of a function pass: 7871 /// DelinearizationPass that walks through all loads and stores of a function 7872 /// asking for the SCEV of the memory access with respect to all enclosing 7873 /// loops, calling SCEV->delinearize on that and printing the results. 7874 7875 void SCEVAddRecExpr::delinearize(ScalarEvolution &SE, 7876 SmallVectorImpl<const SCEV *> &Subscripts, 7877 SmallVectorImpl<const SCEV *> &Sizes, 7878 const SCEV *ElementSize) const { 7879 // First step: collect parametric terms. 7880 SmallVector<const SCEV *, 4> Terms; 7881 collectParametricTerms(SE, Terms); 7882 7883 if (Terms.empty()) 7884 return; 7885 7886 // Second step: find subscript sizes. 7887 SE.findArrayDimensions(Terms, Sizes, ElementSize); 7888 7889 if (Sizes.empty()) 7890 return; 7891 7892 // Third step: compute the access functions for each subscript. 7893 computeAccessFunctions(SE, Subscripts, Sizes); 7894 7895 if (Subscripts.empty()) 7896 return; 7897 7898 DEBUG({ 7899 dbgs() << "succeeded to delinearize " << *this << "\n"; 7900 dbgs() << "ArrayDecl[UnknownSize]"; 7901 for (const SCEV *S : Sizes) 7902 dbgs() << "[" << *S << "]"; 7903 7904 dbgs() << "\nArrayRef"; 7905 for (const SCEV *S : Subscripts) 7906 dbgs() << "[" << *S << "]"; 7907 dbgs() << "\n"; 7908 }); 7909 } 7910 7911 //===----------------------------------------------------------------------===// 7912 // SCEVCallbackVH Class Implementation 7913 //===----------------------------------------------------------------------===// 7914 7915 void ScalarEvolution::SCEVCallbackVH::deleted() { 7916 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7917 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 7918 SE->ConstantEvolutionLoopExitValue.erase(PN); 7919 SE->ValueExprMap.erase(getValPtr()); 7920 // this now dangles! 7921 } 7922 7923 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 7924 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7925 7926 // Forget all the expressions associated with users of the old value, 7927 // so that future queries will recompute the expressions using the new 7928 // value. 7929 Value *Old = getValPtr(); 7930 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 7931 SmallPtrSet<User *, 8> Visited; 7932 while (!Worklist.empty()) { 7933 User *U = Worklist.pop_back_val(); 7934 // Deleting the Old value will cause this to dangle. Postpone 7935 // that until everything else is done. 7936 if (U == Old) 7937 continue; 7938 if (!Visited.insert(U).second) 7939 continue; 7940 if (PHINode *PN = dyn_cast<PHINode>(U)) 7941 SE->ConstantEvolutionLoopExitValue.erase(PN); 7942 SE->ValueExprMap.erase(U); 7943 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 7944 } 7945 // Delete the Old value. 7946 if (PHINode *PN = dyn_cast<PHINode>(Old)) 7947 SE->ConstantEvolutionLoopExitValue.erase(PN); 7948 SE->ValueExprMap.erase(Old); 7949 // this now dangles! 7950 } 7951 7952 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 7953 : CallbackVH(V), SE(se) {} 7954 7955 //===----------------------------------------------------------------------===// 7956 // ScalarEvolution Class Implementation 7957 //===----------------------------------------------------------------------===// 7958 7959 ScalarEvolution::ScalarEvolution() 7960 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), 7961 BlockDispositions(64), FirstUnknown(nullptr) { 7962 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 7963 } 7964 7965 bool ScalarEvolution::runOnFunction(Function &F) { 7966 this->F = &F; 7967 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7968 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7969 DL = &F.getParent()->getDataLayout(); 7970 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 7971 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7972 return false; 7973 } 7974 7975 void ScalarEvolution::releaseMemory() { 7976 // Iterate through all the SCEVUnknown instances and call their 7977 // destructors, so that they release their references to their values. 7978 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 7979 U->~SCEVUnknown(); 7980 FirstUnknown = nullptr; 7981 7982 ValueExprMap.clear(); 7983 7984 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 7985 // that a loop had multiple computable exits. 7986 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7987 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 7988 I != E; ++I) { 7989 I->second.clear(); 7990 } 7991 7992 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 7993 7994 BackedgeTakenCounts.clear(); 7995 ConstantEvolutionLoopExitValue.clear(); 7996 ValuesAtScopes.clear(); 7997 LoopDispositions.clear(); 7998 BlockDispositions.clear(); 7999 UnsignedRanges.clear(); 8000 SignedRanges.clear(); 8001 UniqueSCEVs.clear(); 8002 SCEVAllocator.Reset(); 8003 } 8004 8005 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 8006 AU.setPreservesAll(); 8007 AU.addRequired<AssumptionCacheTracker>(); 8008 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 8009 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 8010 AU.addRequired<TargetLibraryInfoWrapperPass>(); 8011 } 8012 8013 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8014 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8015 } 8016 8017 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8018 const Loop *L) { 8019 // Print all inner loops first 8020 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8021 PrintLoopInfo(OS, SE, *I); 8022 8023 OS << "Loop "; 8024 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8025 OS << ": "; 8026 8027 SmallVector<BasicBlock *, 8> ExitBlocks; 8028 L->getExitBlocks(ExitBlocks); 8029 if (ExitBlocks.size() != 1) 8030 OS << "<multiple exits> "; 8031 8032 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8033 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8034 } else { 8035 OS << "Unpredictable backedge-taken count. "; 8036 } 8037 8038 OS << "\n" 8039 "Loop "; 8040 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8041 OS << ": "; 8042 8043 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8044 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8045 } else { 8046 OS << "Unpredictable max backedge-taken count. "; 8047 } 8048 8049 OS << "\n"; 8050 } 8051 8052 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 8053 // ScalarEvolution's implementation of the print method is to print 8054 // out SCEV values of all instructions that are interesting. Doing 8055 // this potentially causes it to create new SCEV objects though, 8056 // which technically conflicts with the const qualifier. This isn't 8057 // observable from outside the class though, so casting away the 8058 // const isn't dangerous. 8059 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8060 8061 OS << "Classifying expressions for: "; 8062 F->printAsOperand(OS, /*PrintType=*/false); 8063 OS << "\n"; 8064 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 8065 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 8066 OS << *I << '\n'; 8067 OS << " --> "; 8068 const SCEV *SV = SE.getSCEV(&*I); 8069 SV->print(OS); 8070 if (!isa<SCEVCouldNotCompute>(SV)) { 8071 OS << " U: "; 8072 SE.getUnsignedRange(SV).print(OS); 8073 OS << " S: "; 8074 SE.getSignedRange(SV).print(OS); 8075 } 8076 8077 const Loop *L = LI->getLoopFor((*I).getParent()); 8078 8079 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8080 if (AtUse != SV) { 8081 OS << " --> "; 8082 AtUse->print(OS); 8083 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8084 OS << " U: "; 8085 SE.getUnsignedRange(AtUse).print(OS); 8086 OS << " S: "; 8087 SE.getSignedRange(AtUse).print(OS); 8088 } 8089 } 8090 8091 if (L) { 8092 OS << "\t\t" "Exits: "; 8093 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8094 if (!SE.isLoopInvariant(ExitValue, L)) { 8095 OS << "<<Unknown>>"; 8096 } else { 8097 OS << *ExitValue; 8098 } 8099 } 8100 8101 OS << "\n"; 8102 } 8103 8104 OS << "Determining loop execution counts for: "; 8105 F->printAsOperand(OS, /*PrintType=*/false); 8106 OS << "\n"; 8107 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 8108 PrintLoopInfo(OS, &SE, *I); 8109 } 8110 8111 ScalarEvolution::LoopDisposition 8112 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8113 auto &Values = LoopDispositions[S]; 8114 for (auto &V : Values) { 8115 if (V.getPointer() == L) 8116 return V.getInt(); 8117 } 8118 Values.emplace_back(L, LoopVariant); 8119 LoopDisposition D = computeLoopDisposition(S, L); 8120 auto &Values2 = LoopDispositions[S]; 8121 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8122 if (V.getPointer() == L) { 8123 V.setInt(D); 8124 break; 8125 } 8126 } 8127 return D; 8128 } 8129 8130 ScalarEvolution::LoopDisposition 8131 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8132 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8133 case scConstant: 8134 return LoopInvariant; 8135 case scTruncate: 8136 case scZeroExtend: 8137 case scSignExtend: 8138 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8139 case scAddRecExpr: { 8140 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8141 8142 // If L is the addrec's loop, it's computable. 8143 if (AR->getLoop() == L) 8144 return LoopComputable; 8145 8146 // Add recurrences are never invariant in the function-body (null loop). 8147 if (!L) 8148 return LoopVariant; 8149 8150 // This recurrence is variant w.r.t. L if L contains AR's loop. 8151 if (L->contains(AR->getLoop())) 8152 return LoopVariant; 8153 8154 // This recurrence is invariant w.r.t. L if AR's loop contains L. 8155 if (AR->getLoop()->contains(L)) 8156 return LoopInvariant; 8157 8158 // This recurrence is variant w.r.t. L if any of its operands 8159 // are variant. 8160 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 8161 I != E; ++I) 8162 if (!isLoopInvariant(*I, L)) 8163 return LoopVariant; 8164 8165 // Otherwise it's loop-invariant. 8166 return LoopInvariant; 8167 } 8168 case scAddExpr: 8169 case scMulExpr: 8170 case scUMaxExpr: 8171 case scSMaxExpr: { 8172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8173 bool HasVarying = false; 8174 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8175 I != E; ++I) { 8176 LoopDisposition D = getLoopDisposition(*I, L); 8177 if (D == LoopVariant) 8178 return LoopVariant; 8179 if (D == LoopComputable) 8180 HasVarying = true; 8181 } 8182 return HasVarying ? LoopComputable : LoopInvariant; 8183 } 8184 case scUDivExpr: { 8185 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8186 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 8187 if (LD == LoopVariant) 8188 return LoopVariant; 8189 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 8190 if (RD == LoopVariant) 8191 return LoopVariant; 8192 return (LD == LoopInvariant && RD == LoopInvariant) ? 8193 LoopInvariant : LoopComputable; 8194 } 8195 case scUnknown: 8196 // All non-instruction values are loop invariant. All instructions are loop 8197 // invariant if they are not contained in the specified loop. 8198 // Instructions are never considered invariant in the function body 8199 // (null loop) because they are defined within the "loop". 8200 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 8201 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 8202 return LoopInvariant; 8203 case scCouldNotCompute: 8204 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8205 } 8206 llvm_unreachable("Unknown SCEV kind!"); 8207 } 8208 8209 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 8210 return getLoopDisposition(S, L) == LoopInvariant; 8211 } 8212 8213 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 8214 return getLoopDisposition(S, L) == LoopComputable; 8215 } 8216 8217 ScalarEvolution::BlockDisposition 8218 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8219 auto &Values = BlockDispositions[S]; 8220 for (auto &V : Values) { 8221 if (V.getPointer() == BB) 8222 return V.getInt(); 8223 } 8224 Values.emplace_back(BB, DoesNotDominateBlock); 8225 BlockDisposition D = computeBlockDisposition(S, BB); 8226 auto &Values2 = BlockDispositions[S]; 8227 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8228 if (V.getPointer() == BB) { 8229 V.setInt(D); 8230 break; 8231 } 8232 } 8233 return D; 8234 } 8235 8236 ScalarEvolution::BlockDisposition 8237 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8238 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8239 case scConstant: 8240 return ProperlyDominatesBlock; 8241 case scTruncate: 8242 case scZeroExtend: 8243 case scSignExtend: 8244 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 8245 case scAddRecExpr: { 8246 // This uses a "dominates" query instead of "properly dominates" query 8247 // to test for proper dominance too, because the instruction which 8248 // produces the addrec's value is a PHI, and a PHI effectively properly 8249 // dominates its entire containing block. 8250 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8251 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 8252 return DoesNotDominateBlock; 8253 } 8254 // FALL THROUGH into SCEVNAryExpr handling. 8255 case scAddExpr: 8256 case scMulExpr: 8257 case scUMaxExpr: 8258 case scSMaxExpr: { 8259 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8260 bool Proper = true; 8261 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8262 I != E; ++I) { 8263 BlockDisposition D = getBlockDisposition(*I, BB); 8264 if (D == DoesNotDominateBlock) 8265 return DoesNotDominateBlock; 8266 if (D == DominatesBlock) 8267 Proper = false; 8268 } 8269 return Proper ? ProperlyDominatesBlock : DominatesBlock; 8270 } 8271 case scUDivExpr: { 8272 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8273 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 8274 BlockDisposition LD = getBlockDisposition(LHS, BB); 8275 if (LD == DoesNotDominateBlock) 8276 return DoesNotDominateBlock; 8277 BlockDisposition RD = getBlockDisposition(RHS, BB); 8278 if (RD == DoesNotDominateBlock) 8279 return DoesNotDominateBlock; 8280 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 8281 ProperlyDominatesBlock : DominatesBlock; 8282 } 8283 case scUnknown: 8284 if (Instruction *I = 8285 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 8286 if (I->getParent() == BB) 8287 return DominatesBlock; 8288 if (DT->properlyDominates(I->getParent(), BB)) 8289 return ProperlyDominatesBlock; 8290 return DoesNotDominateBlock; 8291 } 8292 return ProperlyDominatesBlock; 8293 case scCouldNotCompute: 8294 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8295 } 8296 llvm_unreachable("Unknown SCEV kind!"); 8297 } 8298 8299 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 8300 return getBlockDisposition(S, BB) >= DominatesBlock; 8301 } 8302 8303 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 8304 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 8305 } 8306 8307 namespace { 8308 // Search for a SCEV expression node within an expression tree. 8309 // Implements SCEVTraversal::Visitor. 8310 struct SCEVSearch { 8311 const SCEV *Node; 8312 bool IsFound; 8313 8314 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 8315 8316 bool follow(const SCEV *S) { 8317 IsFound |= (S == Node); 8318 return !IsFound; 8319 } 8320 bool isDone() const { return IsFound; } 8321 }; 8322 } 8323 8324 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 8325 SCEVSearch Search(Op); 8326 visitAll(S, Search); 8327 return Search.IsFound; 8328 } 8329 8330 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 8331 ValuesAtScopes.erase(S); 8332 LoopDispositions.erase(S); 8333 BlockDispositions.erase(S); 8334 UnsignedRanges.erase(S); 8335 SignedRanges.erase(S); 8336 8337 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8338 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 8339 BackedgeTakenInfo &BEInfo = I->second; 8340 if (BEInfo.hasOperand(S, this)) { 8341 BEInfo.clear(); 8342 BackedgeTakenCounts.erase(I++); 8343 } 8344 else 8345 ++I; 8346 } 8347 } 8348 8349 typedef DenseMap<const Loop *, std::string> VerifyMap; 8350 8351 /// replaceSubString - Replaces all occurrences of From in Str with To. 8352 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 8353 size_t Pos = 0; 8354 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 8355 Str.replace(Pos, From.size(), To.data(), To.size()); 8356 Pos += To.size(); 8357 } 8358 } 8359 8360 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 8361 static void 8362 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 8363 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 8364 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 8365 8366 std::string &S = Map[L]; 8367 if (S.empty()) { 8368 raw_string_ostream OS(S); 8369 SE.getBackedgeTakenCount(L)->print(OS); 8370 8371 // false and 0 are semantically equivalent. This can happen in dead loops. 8372 replaceSubString(OS.str(), "false", "0"); 8373 // Remove wrap flags, their use in SCEV is highly fragile. 8374 // FIXME: Remove this when SCEV gets smarter about them. 8375 replaceSubString(OS.str(), "<nw>", ""); 8376 replaceSubString(OS.str(), "<nsw>", ""); 8377 replaceSubString(OS.str(), "<nuw>", ""); 8378 } 8379 } 8380 } 8381 8382 void ScalarEvolution::verifyAnalysis() const { 8383 if (!VerifySCEV) 8384 return; 8385 8386 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8387 8388 // Gather stringified backedge taken counts for all loops using SCEV's caches. 8389 // FIXME: It would be much better to store actual values instead of strings, 8390 // but SCEV pointers will change if we drop the caches. 8391 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 8392 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8393 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 8394 8395 // Gather stringified backedge taken counts for all loops without using 8396 // SCEV's caches. 8397 SE.releaseMemory(); 8398 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8399 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 8400 8401 // Now compare whether they're the same with and without caches. This allows 8402 // verifying that no pass changed the cache. 8403 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 8404 "New loops suddenly appeared!"); 8405 8406 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 8407 OldE = BackedgeDumpsOld.end(), 8408 NewI = BackedgeDumpsNew.begin(); 8409 OldI != OldE; ++OldI, ++NewI) { 8410 assert(OldI->first == NewI->first && "Loop order changed!"); 8411 8412 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 8413 // changes. 8414 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 8415 // means that a pass is buggy or SCEV has to learn a new pattern but is 8416 // usually not harmful. 8417 if (OldI->second != NewI->second && 8418 OldI->second.find("undef") == std::string::npos && 8419 NewI->second.find("undef") == std::string::npos && 8420 OldI->second != "***COULDNOTCOMPUTE***" && 8421 NewI->second != "***COULDNOTCOMPUTE***") { 8422 dbgs() << "SCEVValidator: SCEV for loop '" 8423 << OldI->first->getHeader()->getName() 8424 << "' changed from '" << OldI->second 8425 << "' to '" << NewI->second << "'!\n"; 8426 std::abort(); 8427 } 8428 } 8429 8430 // TODO: Verify more things. 8431 } 8432