xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 91b5477aadb5f6ed44afb18588a057e308a2fc4c)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/Support/CommandLine.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/ErrorHandling.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include <algorithm>
92 using namespace llvm;
93 
94 #define DEBUG_TYPE "scalar-evolution"
95 
96 STATISTIC(NumArrayLenItCounts,
97           "Number of trip counts computed with array length");
98 STATISTIC(NumTripCountsComputed,
99           "Number of loops with predictable loop counts");
100 STATISTIC(NumTripCountsNotComputed,
101           "Number of loops without predictable loop counts");
102 STATISTIC(NumBruteForceTripCountsComputed,
103           "Number of loops with trip counts computed by force");
104 
105 static cl::opt<unsigned>
106 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107                         cl::desc("Maximum number of iterations SCEV will "
108                                  "symbolically execute a constant "
109                                  "derived loop"),
110                         cl::init(100));
111 
112 // FIXME: Enable this with XDEBUG when the test suite is clean.
113 static cl::opt<bool>
114 VerifySCEV("verify-scev",
115            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116 
117 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118                 "Scalar Evolution Analysis", false, true)
119 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
120 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
122 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
123 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
124                 "Scalar Evolution Analysis", false, true)
125 char ScalarEvolution::ID = 0;
126 
127 //===----------------------------------------------------------------------===//
128 //                           SCEV class definitions
129 //===----------------------------------------------------------------------===//
130 
131 //===----------------------------------------------------------------------===//
132 // Implementation of the SCEV class.
133 //
134 
135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
136 void SCEV::dump() const {
137   print(dbgs());
138   dbgs() << '\n';
139 }
140 #endif
141 
142 void SCEV::print(raw_ostream &OS) const {
143   switch (static_cast<SCEVTypes>(getSCEVType())) {
144   case scConstant:
145     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
146     return;
147   case scTruncate: {
148     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149     const SCEV *Op = Trunc->getOperand();
150     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151        << *Trunc->getType() << ")";
152     return;
153   }
154   case scZeroExtend: {
155     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156     const SCEV *Op = ZExt->getOperand();
157     OS << "(zext " << *Op->getType() << " " << *Op << " to "
158        << *ZExt->getType() << ")";
159     return;
160   }
161   case scSignExtend: {
162     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163     const SCEV *Op = SExt->getOperand();
164     OS << "(sext " << *Op->getType() << " " << *Op << " to "
165        << *SExt->getType() << ")";
166     return;
167   }
168   case scAddRecExpr: {
169     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170     OS << "{" << *AR->getOperand(0);
171     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172       OS << ",+," << *AR->getOperand(i);
173     OS << "}<";
174     if (AR->getNoWrapFlags(FlagNUW))
175       OS << "nuw><";
176     if (AR->getNoWrapFlags(FlagNSW))
177       OS << "nsw><";
178     if (AR->getNoWrapFlags(FlagNW) &&
179         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180       OS << "nw><";
181     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
182     OS << ">";
183     return;
184   }
185   case scAddExpr:
186   case scMulExpr:
187   case scUMaxExpr:
188   case scSMaxExpr: {
189     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
190     const char *OpStr = nullptr;
191     switch (NAry->getSCEVType()) {
192     case scAddExpr: OpStr = " + "; break;
193     case scMulExpr: OpStr = " * "; break;
194     case scUMaxExpr: OpStr = " umax "; break;
195     case scSMaxExpr: OpStr = " smax "; break;
196     }
197     OS << "(";
198     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199          I != E; ++I) {
200       OS << **I;
201       if (std::next(I) != E)
202         OS << OpStr;
203     }
204     OS << ")";
205     switch (NAry->getSCEVType()) {
206     case scAddExpr:
207     case scMulExpr:
208       if (NAry->getNoWrapFlags(FlagNUW))
209         OS << "<nuw>";
210       if (NAry->getNoWrapFlags(FlagNSW))
211         OS << "<nsw>";
212     }
213     return;
214   }
215   case scUDivExpr: {
216     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218     return;
219   }
220   case scUnknown: {
221     const SCEVUnknown *U = cast<SCEVUnknown>(this);
222     Type *AllocTy;
223     if (U->isSizeOf(AllocTy)) {
224       OS << "sizeof(" << *AllocTy << ")";
225       return;
226     }
227     if (U->isAlignOf(AllocTy)) {
228       OS << "alignof(" << *AllocTy << ")";
229       return;
230     }
231 
232     Type *CTy;
233     Constant *FieldNo;
234     if (U->isOffsetOf(CTy, FieldNo)) {
235       OS << "offsetof(" << *CTy << ", ";
236       FieldNo->printAsOperand(OS, false);
237       OS << ")";
238       return;
239     }
240 
241     // Otherwise just print it normally.
242     U->getValue()->printAsOperand(OS, false);
243     return;
244   }
245   case scCouldNotCompute:
246     OS << "***COULDNOTCOMPUTE***";
247     return;
248   }
249   llvm_unreachable("Unknown SCEV kind!");
250 }
251 
252 Type *SCEV::getType() const {
253   switch (static_cast<SCEVTypes>(getSCEVType())) {
254   case scConstant:
255     return cast<SCEVConstant>(this)->getType();
256   case scTruncate:
257   case scZeroExtend:
258   case scSignExtend:
259     return cast<SCEVCastExpr>(this)->getType();
260   case scAddRecExpr:
261   case scMulExpr:
262   case scUMaxExpr:
263   case scSMaxExpr:
264     return cast<SCEVNAryExpr>(this)->getType();
265   case scAddExpr:
266     return cast<SCEVAddExpr>(this)->getType();
267   case scUDivExpr:
268     return cast<SCEVUDivExpr>(this)->getType();
269   case scUnknown:
270     return cast<SCEVUnknown>(this)->getType();
271   case scCouldNotCompute:
272     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
273   }
274   llvm_unreachable("Unknown SCEV kind!");
275 }
276 
277 bool SCEV::isZero() const {
278   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279     return SC->getValue()->isZero();
280   return false;
281 }
282 
283 bool SCEV::isOne() const {
284   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285     return SC->getValue()->isOne();
286   return false;
287 }
288 
289 bool SCEV::isAllOnesValue() const {
290   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291     return SC->getValue()->isAllOnesValue();
292   return false;
293 }
294 
295 /// isNonConstantNegative - Return true if the specified scev is negated, but
296 /// not a constant.
297 bool SCEV::isNonConstantNegative() const {
298   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299   if (!Mul) return false;
300 
301   // If there is a constant factor, it will be first.
302   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303   if (!SC) return false;
304 
305   // Return true if the value is negative, this matches things like (-42 * V).
306   return SC->getValue()->getValue().isNegative();
307 }
308 
309 SCEVCouldNotCompute::SCEVCouldNotCompute() :
310   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
311 
312 bool SCEVCouldNotCompute::classof(const SCEV *S) {
313   return S->getSCEVType() == scCouldNotCompute;
314 }
315 
316 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
317   FoldingSetNodeID ID;
318   ID.AddInteger(scConstant);
319   ID.AddPointer(V);
320   void *IP = nullptr;
321   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
322   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
323   UniqueSCEVs.InsertNode(S, IP);
324   return S;
325 }
326 
327 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
328   return getConstant(ConstantInt::get(getContext(), Val));
329 }
330 
331 const SCEV *
332 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
334   return getConstant(ConstantInt::get(ITy, V, isSigned));
335 }
336 
337 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
338                            unsigned SCEVTy, const SCEV *op, Type *ty)
339   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
340 
341 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
342                                    const SCEV *op, Type *ty)
343   : SCEVCastExpr(ID, scTruncate, op, ty) {
344   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
346          "Cannot truncate non-integer value!");
347 }
348 
349 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
350                                        const SCEV *op, Type *ty)
351   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
352   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
354          "Cannot zero extend non-integer value!");
355 }
356 
357 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
358                                        const SCEV *op, Type *ty)
359   : SCEVCastExpr(ID, scSignExtend, op, ty) {
360   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
362          "Cannot sign extend non-integer value!");
363 }
364 
365 void SCEVUnknown::deleted() {
366   // Clear this SCEVUnknown from various maps.
367   SE->forgetMemoizedResults(this);
368 
369   // Remove this SCEVUnknown from the uniquing map.
370   SE->UniqueSCEVs.RemoveNode(this);
371 
372   // Release the value.
373   setValPtr(nullptr);
374 }
375 
376 void SCEVUnknown::allUsesReplacedWith(Value *New) {
377   // Clear this SCEVUnknown from various maps.
378   SE->forgetMemoizedResults(this);
379 
380   // Remove this SCEVUnknown from the uniquing map.
381   SE->UniqueSCEVs.RemoveNode(this);
382 
383   // Update this SCEVUnknown to point to the new value. This is needed
384   // because there may still be outstanding SCEVs which still point to
385   // this SCEVUnknown.
386   setValPtr(New);
387 }
388 
389 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
390   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
391     if (VCE->getOpcode() == Instruction::PtrToInt)
392       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
393         if (CE->getOpcode() == Instruction::GetElementPtr &&
394             CE->getOperand(0)->isNullValue() &&
395             CE->getNumOperands() == 2)
396           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397             if (CI->isOne()) {
398               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399                                  ->getElementType();
400               return true;
401             }
402 
403   return false;
404 }
405 
406 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
407   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
408     if (VCE->getOpcode() == Instruction::PtrToInt)
409       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
410         if (CE->getOpcode() == Instruction::GetElementPtr &&
411             CE->getOperand(0)->isNullValue()) {
412           Type *Ty =
413             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
414           if (StructType *STy = dyn_cast<StructType>(Ty))
415             if (!STy->isPacked() &&
416                 CE->getNumOperands() == 3 &&
417                 CE->getOperand(1)->isNullValue()) {
418               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419                 if (CI->isOne() &&
420                     STy->getNumElements() == 2 &&
421                     STy->getElementType(0)->isIntegerTy(1)) {
422                   AllocTy = STy->getElementType(1);
423                   return true;
424                 }
425             }
426         }
427 
428   return false;
429 }
430 
431 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
432   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
433     if (VCE->getOpcode() == Instruction::PtrToInt)
434       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435         if (CE->getOpcode() == Instruction::GetElementPtr &&
436             CE->getNumOperands() == 3 &&
437             CE->getOperand(0)->isNullValue() &&
438             CE->getOperand(1)->isNullValue()) {
439           Type *Ty =
440             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441           // Ignore vector types here so that ScalarEvolutionExpander doesn't
442           // emit getelementptrs that index into vectors.
443           if (Ty->isStructTy() || Ty->isArrayTy()) {
444             CTy = Ty;
445             FieldNo = CE->getOperand(2);
446             return true;
447           }
448         }
449 
450   return false;
451 }
452 
453 //===----------------------------------------------------------------------===//
454 //                               SCEV Utilities
455 //===----------------------------------------------------------------------===//
456 
457 namespace {
458   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459   /// than the complexity of the RHS.  This comparator is used to canonicalize
460   /// expressions.
461   class SCEVComplexityCompare {
462     const LoopInfo *const LI;
463   public:
464     explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
465 
466     // Return true or false if LHS is less than, or at least RHS, respectively.
467     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
468       return compare(LHS, RHS) < 0;
469     }
470 
471     // Return negative, zero, or positive, if LHS is less than, equal to, or
472     // greater than RHS, respectively. A three-way result allows recursive
473     // comparisons to be more efficient.
474     int compare(const SCEV *LHS, const SCEV *RHS) const {
475       // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476       if (LHS == RHS)
477         return 0;
478 
479       // Primarily, sort the SCEVs by their getSCEVType().
480       unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481       if (LType != RType)
482         return (int)LType - (int)RType;
483 
484       // Aside from the getSCEVType() ordering, the particular ordering
485       // isn't very important except that it's beneficial to be consistent,
486       // so that (a + b) and (b + a) don't end up as different expressions.
487       switch (static_cast<SCEVTypes>(LType)) {
488       case scUnknown: {
489         const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
490         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
491 
492         // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493         // not as complete as it could be.
494         const Value *LV = LU->getValue(), *RV = RU->getValue();
495 
496         // Order pointer values after integer values. This helps SCEVExpander
497         // form GEPs.
498         bool LIsPointer = LV->getType()->isPointerTy(),
499              RIsPointer = RV->getType()->isPointerTy();
500         if (LIsPointer != RIsPointer)
501           return (int)LIsPointer - (int)RIsPointer;
502 
503         // Compare getValueID values.
504         unsigned LID = LV->getValueID(),
505                  RID = RV->getValueID();
506         if (LID != RID)
507           return (int)LID - (int)RID;
508 
509         // Sort arguments by their position.
510         if (const Argument *LA = dyn_cast<Argument>(LV)) {
511           const Argument *RA = cast<Argument>(RV);
512           unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513           return (int)LArgNo - (int)RArgNo;
514         }
515 
516         // For instructions, compare their loop depth, and their operand
517         // count.  This is pretty loose.
518         if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519           const Instruction *RInst = cast<Instruction>(RV);
520 
521           // Compare loop depths.
522           const BasicBlock *LParent = LInst->getParent(),
523                            *RParent = RInst->getParent();
524           if (LParent != RParent) {
525             unsigned LDepth = LI->getLoopDepth(LParent),
526                      RDepth = LI->getLoopDepth(RParent);
527             if (LDepth != RDepth)
528               return (int)LDepth - (int)RDepth;
529           }
530 
531           // Compare the number of operands.
532           unsigned LNumOps = LInst->getNumOperands(),
533                    RNumOps = RInst->getNumOperands();
534           return (int)LNumOps - (int)RNumOps;
535         }
536 
537         return 0;
538       }
539 
540       case scConstant: {
541         const SCEVConstant *LC = cast<SCEVConstant>(LHS);
542         const SCEVConstant *RC = cast<SCEVConstant>(RHS);
543 
544         // Compare constant values.
545         const APInt &LA = LC->getValue()->getValue();
546         const APInt &RA = RC->getValue()->getValue();
547         unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
548         if (LBitWidth != RBitWidth)
549           return (int)LBitWidth - (int)RBitWidth;
550         return LA.ult(RA) ? -1 : 1;
551       }
552 
553       case scAddRecExpr: {
554         const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
555         const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
556 
557         // Compare addrec loop depths.
558         const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559         if (LLoop != RLoop) {
560           unsigned LDepth = LLoop->getLoopDepth(),
561                    RDepth = RLoop->getLoopDepth();
562           if (LDepth != RDepth)
563             return (int)LDepth - (int)RDepth;
564         }
565 
566         // Addrec complexity grows with operand count.
567         unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568         if (LNumOps != RNumOps)
569           return (int)LNumOps - (int)RNumOps;
570 
571         // Lexicographically compare.
572         for (unsigned i = 0; i != LNumOps; ++i) {
573           long X = compare(LA->getOperand(i), RA->getOperand(i));
574           if (X != 0)
575             return X;
576         }
577 
578         return 0;
579       }
580 
581       case scAddExpr:
582       case scMulExpr:
583       case scSMaxExpr:
584       case scUMaxExpr: {
585         const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
586         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
587 
588         // Lexicographically compare n-ary expressions.
589         unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
590         if (LNumOps != RNumOps)
591           return (int)LNumOps - (int)RNumOps;
592 
593         for (unsigned i = 0; i != LNumOps; ++i) {
594           if (i >= RNumOps)
595             return 1;
596           long X = compare(LC->getOperand(i), RC->getOperand(i));
597           if (X != 0)
598             return X;
599         }
600         return (int)LNumOps - (int)RNumOps;
601       }
602 
603       case scUDivExpr: {
604         const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
605         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
606 
607         // Lexicographically compare udiv expressions.
608         long X = compare(LC->getLHS(), RC->getLHS());
609         if (X != 0)
610           return X;
611         return compare(LC->getRHS(), RC->getRHS());
612       }
613 
614       case scTruncate:
615       case scZeroExtend:
616       case scSignExtend: {
617         const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
618         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
619 
620         // Compare cast expressions by operand.
621         return compare(LC->getOperand(), RC->getOperand());
622       }
623 
624       case scCouldNotCompute:
625         llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
626       }
627       llvm_unreachable("Unknown SCEV kind!");
628     }
629   };
630 }
631 
632 /// GroupByComplexity - Given a list of SCEV objects, order them by their
633 /// complexity, and group objects of the same complexity together by value.
634 /// When this routine is finished, we know that any duplicates in the vector are
635 /// consecutive and that complexity is monotonically increasing.
636 ///
637 /// Note that we go take special precautions to ensure that we get deterministic
638 /// results from this routine.  In other words, we don't want the results of
639 /// this to depend on where the addresses of various SCEV objects happened to
640 /// land in memory.
641 ///
642 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
643                               LoopInfo *LI) {
644   if (Ops.size() < 2) return;  // Noop
645   if (Ops.size() == 2) {
646     // This is the common case, which also happens to be trivially simple.
647     // Special case it.
648     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649     if (SCEVComplexityCompare(LI)(RHS, LHS))
650       std::swap(LHS, RHS);
651     return;
652   }
653 
654   // Do the rough sort by complexity.
655   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656 
657   // Now that we are sorted by complexity, group elements of the same
658   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
659   // be extremely short in practice.  Note that we take this approach because we
660   // do not want to depend on the addresses of the objects we are grouping.
661   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662     const SCEV *S = Ops[i];
663     unsigned Complexity = S->getSCEVType();
664 
665     // If there are any objects of the same complexity and same value as this
666     // one, group them.
667     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668       if (Ops[j] == S) { // Found a duplicate.
669         // Move it to immediately after i'th element.
670         std::swap(Ops[i+1], Ops[j]);
671         ++i;   // no need to rescan it.
672         if (i == e-2) return;  // Done!
673       }
674     }
675   }
676 }
677 
678 namespace {
679 struct FindSCEVSize {
680   int Size;
681   FindSCEVSize() : Size(0) {}
682 
683   bool follow(const SCEV *S) {
684     ++Size;
685     // Keep looking at all operands of S.
686     return true;
687   }
688   bool isDone() const {
689     return false;
690   }
691 };
692 }
693 
694 // Returns the size of the SCEV S.
695 static inline int sizeOfSCEV(const SCEV *S) {
696   FindSCEVSize F;
697   SCEVTraversal<FindSCEVSize> ST(F);
698   ST.visitAll(S);
699   return F.Size;
700 }
701 
702 namespace {
703 
704 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
705 public:
706   // Computes the Quotient and Remainder of the division of Numerator by
707   // Denominator.
708   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
709                      const SCEV *Denominator, const SCEV **Quotient,
710                      const SCEV **Remainder) {
711     assert(Numerator && Denominator && "Uninitialized SCEV");
712 
713     SCEVDivision D(SE, Numerator, Denominator);
714 
715     // Check for the trivial case here to avoid having to check for it in the
716     // rest of the code.
717     if (Numerator == Denominator) {
718       *Quotient = D.One;
719       *Remainder = D.Zero;
720       return;
721     }
722 
723     if (Numerator->isZero()) {
724       *Quotient = D.Zero;
725       *Remainder = D.Zero;
726       return;
727     }
728 
729     // Split the Denominator when it is a product.
730     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731       const SCEV *Q, *R;
732       *Quotient = Numerator;
733       for (const SCEV *Op : T->operands()) {
734         divide(SE, *Quotient, Op, &Q, &R);
735         *Quotient = Q;
736 
737         // Bail out when the Numerator is not divisible by one of the terms of
738         // the Denominator.
739         if (!R->isZero()) {
740           *Quotient = D.Zero;
741           *Remainder = Numerator;
742           return;
743         }
744       }
745       *Remainder = D.Zero;
746       return;
747     }
748 
749     D.visit(Numerator);
750     *Quotient = D.Quotient;
751     *Remainder = D.Remainder;
752   }
753 
754   // Except in the trivial case described above, we do not know how to divide
755   // Expr by Denominator for the following functions with empty implementation.
756   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762   void visitUnknown(const SCEVUnknown *Numerator) {}
763   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764 
765   void visitConstant(const SCEVConstant *Numerator) {
766     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767       APInt NumeratorVal = Numerator->getValue()->getValue();
768       APInt DenominatorVal = D->getValue()->getValue();
769       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771 
772       if (NumeratorBW > DenominatorBW)
773         DenominatorVal = DenominatorVal.sext(NumeratorBW);
774       else if (NumeratorBW < DenominatorBW)
775         NumeratorVal = NumeratorVal.sext(DenominatorBW);
776 
777       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780       Quotient = SE.getConstant(QuotientVal);
781       Remainder = SE.getConstant(RemainderVal);
782       return;
783     }
784   }
785 
786   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787     const SCEV *StartQ, *StartR, *StepQ, *StepR;
788     assert(Numerator->isAffine() && "Numerator should be affine");
789     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
790     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
791     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
792                                 Numerator->getNoWrapFlags());
793     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
794                                  Numerator->getNoWrapFlags());
795   }
796 
797   void visitAddExpr(const SCEVAddExpr *Numerator) {
798     SmallVector<const SCEV *, 2> Qs, Rs;
799     Type *Ty = Denominator->getType();
800 
801     for (const SCEV *Op : Numerator->operands()) {
802       const SCEV *Q, *R;
803       divide(SE, Op, Denominator, &Q, &R);
804 
805       // Bail out if types do not match.
806       if (Ty != Q->getType() || Ty != R->getType()) {
807         Quotient = Zero;
808         Remainder = Numerator;
809         return;
810       }
811 
812       Qs.push_back(Q);
813       Rs.push_back(R);
814     }
815 
816     if (Qs.size() == 1) {
817       Quotient = Qs[0];
818       Remainder = Rs[0];
819       return;
820     }
821 
822     Quotient = SE.getAddExpr(Qs);
823     Remainder = SE.getAddExpr(Rs);
824   }
825 
826   void visitMulExpr(const SCEVMulExpr *Numerator) {
827     SmallVector<const SCEV *, 2> Qs;
828     Type *Ty = Denominator->getType();
829 
830     bool FoundDenominatorTerm = false;
831     for (const SCEV *Op : Numerator->operands()) {
832       // Bail out if types do not match.
833       if (Ty != Op->getType()) {
834         Quotient = Zero;
835         Remainder = Numerator;
836         return;
837       }
838 
839       if (FoundDenominatorTerm) {
840         Qs.push_back(Op);
841         continue;
842       }
843 
844       // Check whether Denominator divides one of the product operands.
845       const SCEV *Q, *R;
846       divide(SE, Op, Denominator, &Q, &R);
847       if (!R->isZero()) {
848         Qs.push_back(Op);
849         continue;
850       }
851 
852       // Bail out if types do not match.
853       if (Ty != Q->getType()) {
854         Quotient = Zero;
855         Remainder = Numerator;
856         return;
857       }
858 
859       FoundDenominatorTerm = true;
860       Qs.push_back(Q);
861     }
862 
863     if (FoundDenominatorTerm) {
864       Remainder = Zero;
865       if (Qs.size() == 1)
866         Quotient = Qs[0];
867       else
868         Quotient = SE.getMulExpr(Qs);
869       return;
870     }
871 
872     if (!isa<SCEVUnknown>(Denominator)) {
873       Quotient = Zero;
874       Remainder = Numerator;
875       return;
876     }
877 
878     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
879     ValueToValueMap RewriteMap;
880     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881         cast<SCEVConstant>(Zero)->getValue();
882     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
883 
884     if (Remainder->isZero()) {
885       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
886       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
887           cast<SCEVConstant>(One)->getValue();
888       Quotient =
889           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
890       return;
891     }
892 
893     // Quotient is (Numerator - Remainder) divided by Denominator.
894     const SCEV *Q, *R;
895     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
896     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
897       // This SCEV does not seem to simplify: fail the division here.
898       Quotient = Zero;
899       Remainder = Numerator;
900       return;
901     }
902     divide(SE, Diff, Denominator, &Q, &R);
903     assert(R == Zero &&
904            "(Numerator - Remainder) should evenly divide Denominator");
905     Quotient = Q;
906   }
907 
908 private:
909   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
910                const SCEV *Denominator)
911       : SE(S), Denominator(Denominator) {
912     Zero = SE.getConstant(Denominator->getType(), 0);
913     One = SE.getConstant(Denominator->getType(), 1);
914 
915     // By default, we don't know how to divide Expr by Denominator.
916     // Providing the default here simplifies the rest of the code.
917     Quotient = Zero;
918     Remainder = Numerator;
919   }
920 
921   ScalarEvolution &SE;
922   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
923 };
924 
925 }
926 
927 //===----------------------------------------------------------------------===//
928 //                      Simple SCEV method implementations
929 //===----------------------------------------------------------------------===//
930 
931 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
932 /// Assume, K > 0.
933 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
934                                        ScalarEvolution &SE,
935                                        Type *ResultTy) {
936   // Handle the simplest case efficiently.
937   if (K == 1)
938     return SE.getTruncateOrZeroExtend(It, ResultTy);
939 
940   // We are using the following formula for BC(It, K):
941   //
942   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
943   //
944   // Suppose, W is the bitwidth of the return value.  We must be prepared for
945   // overflow.  Hence, we must assure that the result of our computation is
946   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
947   // safe in modular arithmetic.
948   //
949   // However, this code doesn't use exactly that formula; the formula it uses
950   // is something like the following, where T is the number of factors of 2 in
951   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
952   // exponentiation:
953   //
954   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
955   //
956   // This formula is trivially equivalent to the previous formula.  However,
957   // this formula can be implemented much more efficiently.  The trick is that
958   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
959   // arithmetic.  To do exact division in modular arithmetic, all we have
960   // to do is multiply by the inverse.  Therefore, this step can be done at
961   // width W.
962   //
963   // The next issue is how to safely do the division by 2^T.  The way this
964   // is done is by doing the multiplication step at a width of at least W + T
965   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
966   // when we perform the division by 2^T (which is equivalent to a right shift
967   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
968   // truncated out after the division by 2^T.
969   //
970   // In comparison to just directly using the first formula, this technique
971   // is much more efficient; using the first formula requires W * K bits,
972   // but this formula less than W + K bits. Also, the first formula requires
973   // a division step, whereas this formula only requires multiplies and shifts.
974   //
975   // It doesn't matter whether the subtraction step is done in the calculation
976   // width or the input iteration count's width; if the subtraction overflows,
977   // the result must be zero anyway.  We prefer here to do it in the width of
978   // the induction variable because it helps a lot for certain cases; CodeGen
979   // isn't smart enough to ignore the overflow, which leads to much less
980   // efficient code if the width of the subtraction is wider than the native
981   // register width.
982   //
983   // (It's possible to not widen at all by pulling out factors of 2 before
984   // the multiplication; for example, K=2 can be calculated as
985   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
986   // extra arithmetic, so it's not an obvious win, and it gets
987   // much more complicated for K > 3.)
988 
989   // Protection from insane SCEVs; this bound is conservative,
990   // but it probably doesn't matter.
991   if (K > 1000)
992     return SE.getCouldNotCompute();
993 
994   unsigned W = SE.getTypeSizeInBits(ResultTy);
995 
996   // Calculate K! / 2^T and T; we divide out the factors of two before
997   // multiplying for calculating K! / 2^T to avoid overflow.
998   // Other overflow doesn't matter because we only care about the bottom
999   // W bits of the result.
1000   APInt OddFactorial(W, 1);
1001   unsigned T = 1;
1002   for (unsigned i = 3; i <= K; ++i) {
1003     APInt Mult(W, i);
1004     unsigned TwoFactors = Mult.countTrailingZeros();
1005     T += TwoFactors;
1006     Mult = Mult.lshr(TwoFactors);
1007     OddFactorial *= Mult;
1008   }
1009 
1010   // We need at least W + T bits for the multiplication step
1011   unsigned CalculationBits = W + T;
1012 
1013   // Calculate 2^T, at width T+W.
1014   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1015 
1016   // Calculate the multiplicative inverse of K! / 2^T;
1017   // this multiplication factor will perform the exact division by
1018   // K! / 2^T.
1019   APInt Mod = APInt::getSignedMinValue(W+1);
1020   APInt MultiplyFactor = OddFactorial.zext(W+1);
1021   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1022   MultiplyFactor = MultiplyFactor.trunc(W);
1023 
1024   // Calculate the product, at width T+W
1025   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1026                                                       CalculationBits);
1027   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1028   for (unsigned i = 1; i != K; ++i) {
1029     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1030     Dividend = SE.getMulExpr(Dividend,
1031                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1032   }
1033 
1034   // Divide by 2^T
1035   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1036 
1037   // Truncate the result, and divide by K! / 2^T.
1038 
1039   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1040                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1041 }
1042 
1043 /// evaluateAtIteration - Return the value of this chain of recurrences at
1044 /// the specified iteration number.  We can evaluate this recurrence by
1045 /// multiplying each element in the chain by the binomial coefficient
1046 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
1047 ///
1048 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1049 ///
1050 /// where BC(It, k) stands for binomial coefficient.
1051 ///
1052 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1053                                                 ScalarEvolution &SE) const {
1054   const SCEV *Result = getStart();
1055   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1056     // The computation is correct in the face of overflow provided that the
1057     // multiplication is performed _after_ the evaluation of the binomial
1058     // coefficient.
1059     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1060     if (isa<SCEVCouldNotCompute>(Coeff))
1061       return Coeff;
1062 
1063     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1064   }
1065   return Result;
1066 }
1067 
1068 //===----------------------------------------------------------------------===//
1069 //                    SCEV Expression folder implementations
1070 //===----------------------------------------------------------------------===//
1071 
1072 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1073                                              Type *Ty) {
1074   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1075          "This is not a truncating conversion!");
1076   assert(isSCEVable(Ty) &&
1077          "This is not a conversion to a SCEVable type!");
1078   Ty = getEffectiveSCEVType(Ty);
1079 
1080   FoldingSetNodeID ID;
1081   ID.AddInteger(scTruncate);
1082   ID.AddPointer(Op);
1083   ID.AddPointer(Ty);
1084   void *IP = nullptr;
1085   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1086 
1087   // Fold if the operand is constant.
1088   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1089     return getConstant(
1090       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1091 
1092   // trunc(trunc(x)) --> trunc(x)
1093   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1094     return getTruncateExpr(ST->getOperand(), Ty);
1095 
1096   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1097   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1098     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1099 
1100   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1101   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1102     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1103 
1104   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1105   // eliminate all the truncates.
1106   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1107     SmallVector<const SCEV *, 4> Operands;
1108     bool hasTrunc = false;
1109     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1110       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1111       hasTrunc = isa<SCEVTruncateExpr>(S);
1112       Operands.push_back(S);
1113     }
1114     if (!hasTrunc)
1115       return getAddExpr(Operands);
1116     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1117   }
1118 
1119   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1120   // eliminate all the truncates.
1121   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1122     SmallVector<const SCEV *, 4> Operands;
1123     bool hasTrunc = false;
1124     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1125       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1126       hasTrunc = isa<SCEVTruncateExpr>(S);
1127       Operands.push_back(S);
1128     }
1129     if (!hasTrunc)
1130       return getMulExpr(Operands);
1131     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1132   }
1133 
1134   // If the input value is a chrec scev, truncate the chrec's operands.
1135   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1136     SmallVector<const SCEV *, 4> Operands;
1137     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1138       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
1139     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1140   }
1141 
1142   // The cast wasn't folded; create an explicit cast node. We can reuse
1143   // the existing insert position since if we get here, we won't have
1144   // made any changes which would invalidate it.
1145   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146                                                  Op, Ty);
1147   UniqueSCEVs.InsertNode(S, IP);
1148   return S;
1149 }
1150 
1151 // Get the limit of a recurrence such that incrementing by Step cannot cause
1152 // signed overflow as long as the value of the recurrence within the
1153 // loop does not exceed this limit before incrementing.
1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155                                                  ICmpInst::Predicate *Pred,
1156                                                  ScalarEvolution *SE) {
1157   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158   if (SE->isKnownPositive(Step)) {
1159     *Pred = ICmpInst::ICMP_SLT;
1160     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161                            SE->getSignedRange(Step).getSignedMax());
1162   }
1163   if (SE->isKnownNegative(Step)) {
1164     *Pred = ICmpInst::ICMP_SGT;
1165     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166                            SE->getSignedRange(Step).getSignedMin());
1167   }
1168   return nullptr;
1169 }
1170 
1171 // Get the limit of a recurrence such that incrementing by Step cannot cause
1172 // unsigned overflow as long as the value of the recurrence within the loop does
1173 // not exceed this limit before incrementing.
1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175                                                    ICmpInst::Predicate *Pred,
1176                                                    ScalarEvolution *SE) {
1177   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178   *Pred = ICmpInst::ICMP_ULT;
1179 
1180   return SE->getConstant(APInt::getMinValue(BitWidth) -
1181                          SE->getUnsignedRange(Step).getUnsignedMax());
1182 }
1183 
1184 namespace {
1185 
1186 struct ExtendOpTraitsBase {
1187   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188 };
1189 
1190 // Used to make code generic over signed and unsigned overflow.
1191 template <typename ExtendOp> struct ExtendOpTraits {
1192   // Members present:
1193   //
1194   // static const SCEV::NoWrapFlags WrapType;
1195   //
1196   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197   //
1198   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199   //                                           ICmpInst::Predicate *Pred,
1200   //                                           ScalarEvolution *SE);
1201 };
1202 
1203 template <>
1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206 
1207   static const GetExtendExprTy GetExtendExpr;
1208 
1209   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210                                              ICmpInst::Predicate *Pred,
1211                                              ScalarEvolution *SE) {
1212     return getSignedOverflowLimitForStep(Step, Pred, SE);
1213   }
1214 };
1215 
1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1217     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218 
1219 template <>
1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222 
1223   static const GetExtendExprTy GetExtendExpr;
1224 
1225   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226                                              ICmpInst::Predicate *Pred,
1227                                              ScalarEvolution *SE) {
1228     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229   }
1230 };
1231 
1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1233     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1234 }
1235 
1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241 // expression "Step + sext/zext(PreIncAR)" is congruent with
1242 // "sext/zext(PostIncAR)"
1243 template <typename ExtendOpTy>
1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245                                         ScalarEvolution *SE) {
1246   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248 
1249   const Loop *L = AR->getLoop();
1250   const SCEV *Start = AR->getStart();
1251   const SCEV *Step = AR->getStepRecurrence(*SE);
1252 
1253   // Check for a simple looking step prior to loop entry.
1254   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255   if (!SA)
1256     return nullptr;
1257 
1258   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259   // subtraction is expensive. For this purpose, perform a quick and dirty
1260   // difference, by checking for Step in the operand list.
1261   SmallVector<const SCEV *, 4> DiffOps;
1262   for (const SCEV *Op : SA->operands())
1263     if (Op != Step)
1264       DiffOps.push_back(Op);
1265 
1266   if (DiffOps.size() == SA->getNumOperands())
1267     return nullptr;
1268 
1269   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270   // `Step`:
1271 
1272   // 1. NSW/NUW flags on the step increment.
1273   const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1274   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1275       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1276 
1277   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1278   // "S+X does not sign/unsign-overflow".
1279   //
1280 
1281   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1282   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1283       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1284     return PreStart;
1285 
1286   // 2. Direct overflow check on the step operation's expression.
1287   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1288   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1289   const SCEV *OperandExtendedStart =
1290       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1291                      (SE->*GetExtendExpr)(Step, WideTy));
1292   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1293     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1294       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1295       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1296       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1297       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1298     }
1299     return PreStart;
1300   }
1301 
1302   // 3. Loop precondition.
1303   ICmpInst::Predicate Pred;
1304   const SCEV *OverflowLimit =
1305       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1306 
1307   if (OverflowLimit &&
1308       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1309     return PreStart;
1310   }
1311   return nullptr;
1312 }
1313 
1314 // Get the normalized zero or sign extended expression for this AddRec's Start.
1315 template <typename ExtendOpTy>
1316 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1317                                         ScalarEvolution *SE) {
1318   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1319 
1320   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1321   if (!PreStart)
1322     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1323 
1324   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1325                         (SE->*GetExtendExpr)(PreStart, Ty));
1326 }
1327 
1328 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1329 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1330 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1331 //
1332 // Formally:
1333 //
1334 //     {S,+,X} == {S-T,+,X} + T
1335 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1336 //
1337 // If ({S-T,+,X} + T) does not overflow  ... (1)
1338 //
1339 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1340 //
1341 // If {S-T,+,X} does not overflow  ... (2)
1342 //
1343 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1344 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1345 //
1346 // If (S-T)+T does not overflow  ... (3)
1347 //
1348 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1349 //      == {Ext(S),+,Ext(X)} == LHS
1350 //
1351 // Thus, if (1), (2) and (3) are true for some T, then
1352 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1353 //
1354 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1355 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1356 // to check for (1) and (2).
1357 //
1358 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1359 // is `Delta` (defined below).
1360 //
1361 template <typename ExtendOpTy>
1362 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1363                                                 const SCEV *Step,
1364                                                 const Loop *L) {
1365   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1366 
1367   // We restrict `Start` to a constant to prevent SCEV from spending too much
1368   // time here.  It is correct (but more expensive) to continue with a
1369   // non-constant `Start` and do a general SCEV subtraction to compute
1370   // `PreStart` below.
1371   //
1372   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1373   if (!StartC)
1374     return false;
1375 
1376   APInt StartAI = StartC->getValue()->getValue();
1377 
1378   for (unsigned Delta : {-2, -1, 1, 2}) {
1379     const SCEV *PreStart = getConstant(StartAI - Delta);
1380 
1381     // Give up if we don't already have the add recurrence we need because
1382     // actually constructing an add recurrence is relatively expensive.
1383     const SCEVAddRecExpr *PreAR = [&]() {
1384       FoldingSetNodeID ID;
1385       ID.AddInteger(scAddRecExpr);
1386       ID.AddPointer(PreStart);
1387       ID.AddPointer(Step);
1388       ID.AddPointer(L);
1389       void *IP = nullptr;
1390       return static_cast<SCEVAddRecExpr *>(
1391           this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1392     }();
1393 
1394     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1395       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398           DeltaS, &Pred, this);
1399       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1400         return true;
1401     }
1402   }
1403 
1404   return false;
1405 }
1406 
1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1408                                                Type *Ty) {
1409   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1410          "This is not an extending conversion!");
1411   assert(isSCEVable(Ty) &&
1412          "This is not a conversion to a SCEVable type!");
1413   Ty = getEffectiveSCEVType(Ty);
1414 
1415   // Fold if the operand is constant.
1416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417     return getConstant(
1418       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1419 
1420   // zext(zext(x)) --> zext(x)
1421   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1422     return getZeroExtendExpr(SZ->getOperand(), Ty);
1423 
1424   // Before doing any expensive analysis, check to see if we've already
1425   // computed a SCEV for this Op and Ty.
1426   FoldingSetNodeID ID;
1427   ID.AddInteger(scZeroExtend);
1428   ID.AddPointer(Op);
1429   ID.AddPointer(Ty);
1430   void *IP = nullptr;
1431   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432 
1433   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435     // It's possible the bits taken off by the truncate were all zero bits. If
1436     // so, we should be able to simplify this further.
1437     const SCEV *X = ST->getOperand();
1438     ConstantRange CR = getUnsignedRange(X);
1439     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440     unsigned NewBits = getTypeSizeInBits(Ty);
1441     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1442             CR.zextOrTrunc(NewBits)))
1443       return getTruncateOrZeroExtend(X, Ty);
1444   }
1445 
1446   // If the input value is a chrec scev, and we can prove that the value
1447   // did not overflow the old, smaller, value, we can zero extend all of the
1448   // operands (often constants).  This allows analysis of something like
1449   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1450   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1451     if (AR->isAffine()) {
1452       const SCEV *Start = AR->getStart();
1453       const SCEV *Step = AR->getStepRecurrence(*this);
1454       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455       const Loop *L = AR->getLoop();
1456 
1457       // If we have special knowledge that this addrec won't overflow,
1458       // we don't need to do any further analysis.
1459       if (AR->getNoWrapFlags(SCEV::FlagNUW))
1460         return getAddRecExpr(
1461             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1462             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1463 
1464       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1465       // Note that this serves two purposes: It filters out loops that are
1466       // simply not analyzable, and it covers the case where this code is
1467       // being called from within backedge-taken count analysis, such that
1468       // attempting to ask for the backedge-taken count would likely result
1469       // in infinite recursion. In the later case, the analysis code will
1470       // cope with a conservative value, and it will take care to purge
1471       // that value once it has finished.
1472       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1473       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1474         // Manually compute the final value for AR, checking for
1475         // overflow.
1476 
1477         // Check whether the backedge-taken count can be losslessly casted to
1478         // the addrec's type. The count is always unsigned.
1479         const SCEV *CastedMaxBECount =
1480           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1481         const SCEV *RecastedMaxBECount =
1482           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1483         if (MaxBECount == RecastedMaxBECount) {
1484           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1485           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1486           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1487           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1488           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1489           const SCEV *WideMaxBECount =
1490             getZeroExtendExpr(CastedMaxBECount, WideTy);
1491           const SCEV *OperandExtendedAdd =
1492             getAddExpr(WideStart,
1493                        getMulExpr(WideMaxBECount,
1494                                   getZeroExtendExpr(Step, WideTy)));
1495           if (ZAdd == OperandExtendedAdd) {
1496             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1497             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1498             // Return the expression with the addrec on the outside.
1499             return getAddRecExpr(
1500                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1501                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1502           }
1503           // Similar to above, only this time treat the step value as signed.
1504           // This covers loops that count down.
1505           OperandExtendedAdd =
1506             getAddExpr(WideStart,
1507                        getMulExpr(WideMaxBECount,
1508                                   getSignExtendExpr(Step, WideTy)));
1509           if (ZAdd == OperandExtendedAdd) {
1510             // Cache knowledge of AR NW, which is propagated to this AddRec.
1511             // Negative step causes unsigned wrap, but it still can't self-wrap.
1512             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1513             // Return the expression with the addrec on the outside.
1514             return getAddRecExpr(
1515                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1516                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1517           }
1518         }
1519 
1520         // If the backedge is guarded by a comparison with the pre-inc value
1521         // the addrec is safe. Also, if the entry is guarded by a comparison
1522         // with the start value and the backedge is guarded by a comparison
1523         // with the post-inc value, the addrec is safe.
1524         if (isKnownPositive(Step)) {
1525           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1526                                       getUnsignedRange(Step).getUnsignedMax());
1527           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1528               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1529                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1530                                            AR->getPostIncExpr(*this), N))) {
1531             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1532             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1533             // Return the expression with the addrec on the outside.
1534             return getAddRecExpr(
1535                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1536                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1537           }
1538         } else if (isKnownNegative(Step)) {
1539           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1540                                       getSignedRange(Step).getSignedMin());
1541           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1542               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1543                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1544                                            AR->getPostIncExpr(*this), N))) {
1545             // Cache knowledge of AR NW, which is propagated to this AddRec.
1546             // Negative step causes unsigned wrap, but it still can't self-wrap.
1547             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1548             // Return the expression with the addrec on the outside.
1549             return getAddRecExpr(
1550                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1551                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1552           }
1553         }
1554       }
1555 
1556       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1557         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1558         return getAddRecExpr(
1559             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1560             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1561       }
1562     }
1563 
1564   // The cast wasn't folded; create an explicit cast node.
1565   // Recompute the insert position, as it may have been invalidated.
1566   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1567   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1568                                                    Op, Ty);
1569   UniqueSCEVs.InsertNode(S, IP);
1570   return S;
1571 }
1572 
1573 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1574                                                Type *Ty) {
1575   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1576          "This is not an extending conversion!");
1577   assert(isSCEVable(Ty) &&
1578          "This is not a conversion to a SCEVable type!");
1579   Ty = getEffectiveSCEVType(Ty);
1580 
1581   // Fold if the operand is constant.
1582   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1583     return getConstant(
1584       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1585 
1586   // sext(sext(x)) --> sext(x)
1587   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1588     return getSignExtendExpr(SS->getOperand(), Ty);
1589 
1590   // sext(zext(x)) --> zext(x)
1591   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1592     return getZeroExtendExpr(SZ->getOperand(), Ty);
1593 
1594   // Before doing any expensive analysis, check to see if we've already
1595   // computed a SCEV for this Op and Ty.
1596   FoldingSetNodeID ID;
1597   ID.AddInteger(scSignExtend);
1598   ID.AddPointer(Op);
1599   ID.AddPointer(Ty);
1600   void *IP = nullptr;
1601   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1602 
1603   // If the input value is provably positive, build a zext instead.
1604   if (isKnownNonNegative(Op))
1605     return getZeroExtendExpr(Op, Ty);
1606 
1607   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1608   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1609     // It's possible the bits taken off by the truncate were all sign bits. If
1610     // so, we should be able to simplify this further.
1611     const SCEV *X = ST->getOperand();
1612     ConstantRange CR = getSignedRange(X);
1613     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1614     unsigned NewBits = getTypeSizeInBits(Ty);
1615     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1616             CR.sextOrTrunc(NewBits)))
1617       return getTruncateOrSignExtend(X, Ty);
1618   }
1619 
1620   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1621   if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1622     if (SA->getNumOperands() == 2) {
1623       auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1624       auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1625       if (SMul && SC1) {
1626         if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1627           const APInt &C1 = SC1->getValue()->getValue();
1628           const APInt &C2 = SC2->getValue()->getValue();
1629           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1630               C2.ugt(C1) && C2.isPowerOf2())
1631             return getAddExpr(getSignExtendExpr(SC1, Ty),
1632                               getSignExtendExpr(SMul, Ty));
1633         }
1634       }
1635     }
1636   }
1637   // If the input value is a chrec scev, and we can prove that the value
1638   // did not overflow the old, smaller, value, we can sign extend all of the
1639   // operands (often constants).  This allows analysis of something like
1640   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1641   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1642     if (AR->isAffine()) {
1643       const SCEV *Start = AR->getStart();
1644       const SCEV *Step = AR->getStepRecurrence(*this);
1645       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1646       const Loop *L = AR->getLoop();
1647 
1648       // If we have special knowledge that this addrec won't overflow,
1649       // we don't need to do any further analysis.
1650       if (AR->getNoWrapFlags(SCEV::FlagNSW))
1651         return getAddRecExpr(
1652             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1653             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1654 
1655       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1656       // Note that this serves two purposes: It filters out loops that are
1657       // simply not analyzable, and it covers the case where this code is
1658       // being called from within backedge-taken count analysis, such that
1659       // attempting to ask for the backedge-taken count would likely result
1660       // in infinite recursion. In the later case, the analysis code will
1661       // cope with a conservative value, and it will take care to purge
1662       // that value once it has finished.
1663       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1664       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1665         // Manually compute the final value for AR, checking for
1666         // overflow.
1667 
1668         // Check whether the backedge-taken count can be losslessly casted to
1669         // the addrec's type. The count is always unsigned.
1670         const SCEV *CastedMaxBECount =
1671           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1672         const SCEV *RecastedMaxBECount =
1673           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1674         if (MaxBECount == RecastedMaxBECount) {
1675           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1676           // Check whether Start+Step*MaxBECount has no signed overflow.
1677           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1678           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1679           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1680           const SCEV *WideMaxBECount =
1681             getZeroExtendExpr(CastedMaxBECount, WideTy);
1682           const SCEV *OperandExtendedAdd =
1683             getAddExpr(WideStart,
1684                        getMulExpr(WideMaxBECount,
1685                                   getSignExtendExpr(Step, WideTy)));
1686           if (SAdd == OperandExtendedAdd) {
1687             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1688             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1689             // Return the expression with the addrec on the outside.
1690             return getAddRecExpr(
1691                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1692                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1693           }
1694           // Similar to above, only this time treat the step value as unsigned.
1695           // This covers loops that count up with an unsigned step.
1696           OperandExtendedAdd =
1697             getAddExpr(WideStart,
1698                        getMulExpr(WideMaxBECount,
1699                                   getZeroExtendExpr(Step, WideTy)));
1700           if (SAdd == OperandExtendedAdd) {
1701             // If AR wraps around then
1702             //
1703             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1704             // => SAdd != OperandExtendedAdd
1705             //
1706             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1707             // (SAdd == OperandExtendedAdd => AR is NW)
1708 
1709             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1710 
1711             // Return the expression with the addrec on the outside.
1712             return getAddRecExpr(
1713                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1714                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1715           }
1716         }
1717 
1718         // If the backedge is guarded by a comparison with the pre-inc value
1719         // the addrec is safe. Also, if the entry is guarded by a comparison
1720         // with the start value and the backedge is guarded by a comparison
1721         // with the post-inc value, the addrec is safe.
1722         ICmpInst::Predicate Pred;
1723         const SCEV *OverflowLimit =
1724             getSignedOverflowLimitForStep(Step, &Pred, this);
1725         if (OverflowLimit &&
1726             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1727              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1728               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1729                                           OverflowLimit)))) {
1730           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1731           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1732           return getAddRecExpr(
1733               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1734               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1735         }
1736       }
1737       // If Start and Step are constants, check if we can apply this
1738       // transformation:
1739       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1740       auto SC1 = dyn_cast<SCEVConstant>(Start);
1741       auto SC2 = dyn_cast<SCEVConstant>(Step);
1742       if (SC1 && SC2) {
1743         const APInt &C1 = SC1->getValue()->getValue();
1744         const APInt &C2 = SC2->getValue()->getValue();
1745         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1746             C2.isPowerOf2()) {
1747           Start = getSignExtendExpr(Start, Ty);
1748           const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1749                                             L, AR->getNoWrapFlags());
1750           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1751         }
1752       }
1753 
1754       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1755         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1756         return getAddRecExpr(
1757             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1758             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1759       }
1760     }
1761 
1762   // The cast wasn't folded; create an explicit cast node.
1763   // Recompute the insert position, as it may have been invalidated.
1764   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1765   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1766                                                    Op, Ty);
1767   UniqueSCEVs.InsertNode(S, IP);
1768   return S;
1769 }
1770 
1771 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1772 /// unspecified bits out to the given type.
1773 ///
1774 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1775                                               Type *Ty) {
1776   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1777          "This is not an extending conversion!");
1778   assert(isSCEVable(Ty) &&
1779          "This is not a conversion to a SCEVable type!");
1780   Ty = getEffectiveSCEVType(Ty);
1781 
1782   // Sign-extend negative constants.
1783   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1784     if (SC->getValue()->getValue().isNegative())
1785       return getSignExtendExpr(Op, Ty);
1786 
1787   // Peel off a truncate cast.
1788   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1789     const SCEV *NewOp = T->getOperand();
1790     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1791       return getAnyExtendExpr(NewOp, Ty);
1792     return getTruncateOrNoop(NewOp, Ty);
1793   }
1794 
1795   // Next try a zext cast. If the cast is folded, use it.
1796   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1797   if (!isa<SCEVZeroExtendExpr>(ZExt))
1798     return ZExt;
1799 
1800   // Next try a sext cast. If the cast is folded, use it.
1801   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1802   if (!isa<SCEVSignExtendExpr>(SExt))
1803     return SExt;
1804 
1805   // Force the cast to be folded into the operands of an addrec.
1806   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1807     SmallVector<const SCEV *, 4> Ops;
1808     for (const SCEV *Op : AR->operands())
1809       Ops.push_back(getAnyExtendExpr(Op, Ty));
1810     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1811   }
1812 
1813   // If the expression is obviously signed, use the sext cast value.
1814   if (isa<SCEVSMaxExpr>(Op))
1815     return SExt;
1816 
1817   // Absent any other information, use the zext cast value.
1818   return ZExt;
1819 }
1820 
1821 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1822 /// a list of operands to be added under the given scale, update the given
1823 /// map. This is a helper function for getAddRecExpr. As an example of
1824 /// what it does, given a sequence of operands that would form an add
1825 /// expression like this:
1826 ///
1827 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1828 ///
1829 /// where A and B are constants, update the map with these values:
1830 ///
1831 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1832 ///
1833 /// and add 13 + A*B*29 to AccumulatedConstant.
1834 /// This will allow getAddRecExpr to produce this:
1835 ///
1836 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1837 ///
1838 /// This form often exposes folding opportunities that are hidden in
1839 /// the original operand list.
1840 ///
1841 /// Return true iff it appears that any interesting folding opportunities
1842 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1843 /// the common case where no interesting opportunities are present, and
1844 /// is also used as a check to avoid infinite recursion.
1845 ///
1846 static bool
1847 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1848                              SmallVectorImpl<const SCEV *> &NewOps,
1849                              APInt &AccumulatedConstant,
1850                              const SCEV *const *Ops, size_t NumOperands,
1851                              const APInt &Scale,
1852                              ScalarEvolution &SE) {
1853   bool Interesting = false;
1854 
1855   // Iterate over the add operands. They are sorted, with constants first.
1856   unsigned i = 0;
1857   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1858     ++i;
1859     // Pull a buried constant out to the outside.
1860     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1861       Interesting = true;
1862     AccumulatedConstant += Scale * C->getValue()->getValue();
1863   }
1864 
1865   // Next comes everything else. We're especially interested in multiplies
1866   // here, but they're in the middle, so just visit the rest with one loop.
1867   for (; i != NumOperands; ++i) {
1868     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1869     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1870       APInt NewScale =
1871         Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1872       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1873         // A multiplication of a constant with another add; recurse.
1874         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1875         Interesting |=
1876           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1877                                        Add->op_begin(), Add->getNumOperands(),
1878                                        NewScale, SE);
1879       } else {
1880         // A multiplication of a constant with some other value. Update
1881         // the map.
1882         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1883         const SCEV *Key = SE.getMulExpr(MulOps);
1884         std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1885           M.insert(std::make_pair(Key, NewScale));
1886         if (Pair.second) {
1887           NewOps.push_back(Pair.first->first);
1888         } else {
1889           Pair.first->second += NewScale;
1890           // The map already had an entry for this value, which may indicate
1891           // a folding opportunity.
1892           Interesting = true;
1893         }
1894       }
1895     } else {
1896       // An ordinary operand. Update the map.
1897       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1898         M.insert(std::make_pair(Ops[i], Scale));
1899       if (Pair.second) {
1900         NewOps.push_back(Pair.first->first);
1901       } else {
1902         Pair.first->second += Scale;
1903         // The map already had an entry for this value, which may indicate
1904         // a folding opportunity.
1905         Interesting = true;
1906       }
1907     }
1908   }
1909 
1910   return Interesting;
1911 }
1912 
1913 namespace {
1914   struct APIntCompare {
1915     bool operator()(const APInt &LHS, const APInt &RHS) const {
1916       return LHS.ult(RHS);
1917     }
1918   };
1919 }
1920 
1921 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1922 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1923 // can't-overflow flags for the operation if possible.
1924 static SCEV::NoWrapFlags
1925 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1926                       const SmallVectorImpl<const SCEV *> &Ops,
1927                       SCEV::NoWrapFlags OldFlags) {
1928   using namespace std::placeholders;
1929 
1930   bool CanAnalyze =
1931       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1932   (void)CanAnalyze;
1933   assert(CanAnalyze && "don't call from other places!");
1934 
1935   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1936   SCEV::NoWrapFlags SignOrUnsignWrap =
1937       ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1938 
1939   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1940   auto IsKnownNonNegative =
1941     std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1942 
1943   if (SignOrUnsignWrap == SCEV::FlagNSW &&
1944       std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1945     return ScalarEvolution::setFlags(OldFlags,
1946                                      (SCEV::NoWrapFlags)SignOrUnsignMask);
1947 
1948   return OldFlags;
1949 }
1950 
1951 /// getAddExpr - Get a canonical add expression, or something simpler if
1952 /// possible.
1953 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1954                                         SCEV::NoWrapFlags Flags) {
1955   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1956          "only nuw or nsw allowed");
1957   assert(!Ops.empty() && "Cannot get empty add!");
1958   if (Ops.size() == 1) return Ops[0];
1959 #ifndef NDEBUG
1960   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1961   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1962     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1963            "SCEVAddExpr operand types don't match!");
1964 #endif
1965 
1966   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
1967 
1968   // Sort by complexity, this groups all similar expression types together.
1969   GroupByComplexity(Ops, LI);
1970 
1971   // If there are any constants, fold them together.
1972   unsigned Idx = 0;
1973   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1974     ++Idx;
1975     assert(Idx < Ops.size());
1976     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1977       // We found two constants, fold them together!
1978       Ops[0] = getConstant(LHSC->getValue()->getValue() +
1979                            RHSC->getValue()->getValue());
1980       if (Ops.size() == 2) return Ops[0];
1981       Ops.erase(Ops.begin()+1);  // Erase the folded element
1982       LHSC = cast<SCEVConstant>(Ops[0]);
1983     }
1984 
1985     // If we are left with a constant zero being added, strip it off.
1986     if (LHSC->getValue()->isZero()) {
1987       Ops.erase(Ops.begin());
1988       --Idx;
1989     }
1990 
1991     if (Ops.size() == 1) return Ops[0];
1992   }
1993 
1994   // Okay, check to see if the same value occurs in the operand list more than
1995   // once.  If so, merge them together into an multiply expression.  Since we
1996   // sorted the list, these values are required to be adjacent.
1997   Type *Ty = Ops[0]->getType();
1998   bool FoundMatch = false;
1999   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2000     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2001       // Scan ahead to count how many equal operands there are.
2002       unsigned Count = 2;
2003       while (i+Count != e && Ops[i+Count] == Ops[i])
2004         ++Count;
2005       // Merge the values into a multiply.
2006       const SCEV *Scale = getConstant(Ty, Count);
2007       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2008       if (Ops.size() == Count)
2009         return Mul;
2010       Ops[i] = Mul;
2011       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2012       --i; e -= Count - 1;
2013       FoundMatch = true;
2014     }
2015   if (FoundMatch)
2016     return getAddExpr(Ops, Flags);
2017 
2018   // Check for truncates. If all the operands are truncated from the same
2019   // type, see if factoring out the truncate would permit the result to be
2020   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2021   // if the contents of the resulting outer trunc fold to something simple.
2022   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2023     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2024     Type *DstType = Trunc->getType();
2025     Type *SrcType = Trunc->getOperand()->getType();
2026     SmallVector<const SCEV *, 8> LargeOps;
2027     bool Ok = true;
2028     // Check all the operands to see if they can be represented in the
2029     // source type of the truncate.
2030     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2031       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2032         if (T->getOperand()->getType() != SrcType) {
2033           Ok = false;
2034           break;
2035         }
2036         LargeOps.push_back(T->getOperand());
2037       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2038         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2039       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2040         SmallVector<const SCEV *, 8> LargeMulOps;
2041         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2042           if (const SCEVTruncateExpr *T =
2043                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2044             if (T->getOperand()->getType() != SrcType) {
2045               Ok = false;
2046               break;
2047             }
2048             LargeMulOps.push_back(T->getOperand());
2049           } else if (const SCEVConstant *C =
2050                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
2051             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2052           } else {
2053             Ok = false;
2054             break;
2055           }
2056         }
2057         if (Ok)
2058           LargeOps.push_back(getMulExpr(LargeMulOps));
2059       } else {
2060         Ok = false;
2061         break;
2062       }
2063     }
2064     if (Ok) {
2065       // Evaluate the expression in the larger type.
2066       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2067       // If it folds to something simple, use it. Otherwise, don't.
2068       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2069         return getTruncateExpr(Fold, DstType);
2070     }
2071   }
2072 
2073   // Skip past any other cast SCEVs.
2074   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2075     ++Idx;
2076 
2077   // If there are add operands they would be next.
2078   if (Idx < Ops.size()) {
2079     bool DeletedAdd = false;
2080     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2081       // If we have an add, expand the add operands onto the end of the operands
2082       // list.
2083       Ops.erase(Ops.begin()+Idx);
2084       Ops.append(Add->op_begin(), Add->op_end());
2085       DeletedAdd = true;
2086     }
2087 
2088     // If we deleted at least one add, we added operands to the end of the list,
2089     // and they are not necessarily sorted.  Recurse to resort and resimplify
2090     // any operands we just acquired.
2091     if (DeletedAdd)
2092       return getAddExpr(Ops);
2093   }
2094 
2095   // Skip over the add expression until we get to a multiply.
2096   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2097     ++Idx;
2098 
2099   // Check to see if there are any folding opportunities present with
2100   // operands multiplied by constant values.
2101   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2102     uint64_t BitWidth = getTypeSizeInBits(Ty);
2103     DenseMap<const SCEV *, APInt> M;
2104     SmallVector<const SCEV *, 8> NewOps;
2105     APInt AccumulatedConstant(BitWidth, 0);
2106     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2107                                      Ops.data(), Ops.size(),
2108                                      APInt(BitWidth, 1), *this)) {
2109       // Some interesting folding opportunity is present, so its worthwhile to
2110       // re-generate the operands list. Group the operands by constant scale,
2111       // to avoid multiplying by the same constant scale multiple times.
2112       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2113       for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
2114            E = NewOps.end(); I != E; ++I)
2115         MulOpLists[M.find(*I)->second].push_back(*I);
2116       // Re-generate the operands list.
2117       Ops.clear();
2118       if (AccumulatedConstant != 0)
2119         Ops.push_back(getConstant(AccumulatedConstant));
2120       for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2121            I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
2122         if (I->first != 0)
2123           Ops.push_back(getMulExpr(getConstant(I->first),
2124                                    getAddExpr(I->second)));
2125       if (Ops.empty())
2126         return getConstant(Ty, 0);
2127       if (Ops.size() == 1)
2128         return Ops[0];
2129       return getAddExpr(Ops);
2130     }
2131   }
2132 
2133   // If we are adding something to a multiply expression, make sure the
2134   // something is not already an operand of the multiply.  If so, merge it into
2135   // the multiply.
2136   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2137     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2138     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2139       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2140       if (isa<SCEVConstant>(MulOpSCEV))
2141         continue;
2142       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2143         if (MulOpSCEV == Ops[AddOp]) {
2144           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2145           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2146           if (Mul->getNumOperands() != 2) {
2147             // If the multiply has more than two operands, we must get the
2148             // Y*Z term.
2149             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2150                                                 Mul->op_begin()+MulOp);
2151             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2152             InnerMul = getMulExpr(MulOps);
2153           }
2154           const SCEV *One = getConstant(Ty, 1);
2155           const SCEV *AddOne = getAddExpr(One, InnerMul);
2156           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2157           if (Ops.size() == 2) return OuterMul;
2158           if (AddOp < Idx) {
2159             Ops.erase(Ops.begin()+AddOp);
2160             Ops.erase(Ops.begin()+Idx-1);
2161           } else {
2162             Ops.erase(Ops.begin()+Idx);
2163             Ops.erase(Ops.begin()+AddOp-1);
2164           }
2165           Ops.push_back(OuterMul);
2166           return getAddExpr(Ops);
2167         }
2168 
2169       // Check this multiply against other multiplies being added together.
2170       for (unsigned OtherMulIdx = Idx+1;
2171            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2172            ++OtherMulIdx) {
2173         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2174         // If MulOp occurs in OtherMul, we can fold the two multiplies
2175         // together.
2176         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2177              OMulOp != e; ++OMulOp)
2178           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2179             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2180             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2181             if (Mul->getNumOperands() != 2) {
2182               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2183                                                   Mul->op_begin()+MulOp);
2184               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2185               InnerMul1 = getMulExpr(MulOps);
2186             }
2187             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2188             if (OtherMul->getNumOperands() != 2) {
2189               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2190                                                   OtherMul->op_begin()+OMulOp);
2191               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2192               InnerMul2 = getMulExpr(MulOps);
2193             }
2194             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2195             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2196             if (Ops.size() == 2) return OuterMul;
2197             Ops.erase(Ops.begin()+Idx);
2198             Ops.erase(Ops.begin()+OtherMulIdx-1);
2199             Ops.push_back(OuterMul);
2200             return getAddExpr(Ops);
2201           }
2202       }
2203     }
2204   }
2205 
2206   // If there are any add recurrences in the operands list, see if any other
2207   // added values are loop invariant.  If so, we can fold them into the
2208   // recurrence.
2209   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2210     ++Idx;
2211 
2212   // Scan over all recurrences, trying to fold loop invariants into them.
2213   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2214     // Scan all of the other operands to this add and add them to the vector if
2215     // they are loop invariant w.r.t. the recurrence.
2216     SmallVector<const SCEV *, 8> LIOps;
2217     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2218     const Loop *AddRecLoop = AddRec->getLoop();
2219     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2220       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2221         LIOps.push_back(Ops[i]);
2222         Ops.erase(Ops.begin()+i);
2223         --i; --e;
2224       }
2225 
2226     // If we found some loop invariants, fold them into the recurrence.
2227     if (!LIOps.empty()) {
2228       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2229       LIOps.push_back(AddRec->getStart());
2230 
2231       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2232                                              AddRec->op_end());
2233       AddRecOps[0] = getAddExpr(LIOps);
2234 
2235       // Build the new addrec. Propagate the NUW and NSW flags if both the
2236       // outer add and the inner addrec are guaranteed to have no overflow.
2237       // Always propagate NW.
2238       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2239       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2240 
2241       // If all of the other operands were loop invariant, we are done.
2242       if (Ops.size() == 1) return NewRec;
2243 
2244       // Otherwise, add the folded AddRec by the non-invariant parts.
2245       for (unsigned i = 0;; ++i)
2246         if (Ops[i] == AddRec) {
2247           Ops[i] = NewRec;
2248           break;
2249         }
2250       return getAddExpr(Ops);
2251     }
2252 
2253     // Okay, if there weren't any loop invariants to be folded, check to see if
2254     // there are multiple AddRec's with the same loop induction variable being
2255     // added together.  If so, we can fold them.
2256     for (unsigned OtherIdx = Idx+1;
2257          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2258          ++OtherIdx)
2259       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2260         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2261         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2262                                                AddRec->op_end());
2263         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2264              ++OtherIdx)
2265           if (const SCEVAddRecExpr *OtherAddRec =
2266                 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2267             if (OtherAddRec->getLoop() == AddRecLoop) {
2268               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2269                    i != e; ++i) {
2270                 if (i >= AddRecOps.size()) {
2271                   AddRecOps.append(OtherAddRec->op_begin()+i,
2272                                    OtherAddRec->op_end());
2273                   break;
2274                 }
2275                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2276                                           OtherAddRec->getOperand(i));
2277               }
2278               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2279             }
2280         // Step size has changed, so we cannot guarantee no self-wraparound.
2281         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2282         return getAddExpr(Ops);
2283       }
2284 
2285     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2286     // next one.
2287   }
2288 
2289   // Okay, it looks like we really DO need an add expr.  Check to see if we
2290   // already have one, otherwise create a new one.
2291   FoldingSetNodeID ID;
2292   ID.AddInteger(scAddExpr);
2293   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2294     ID.AddPointer(Ops[i]);
2295   void *IP = nullptr;
2296   SCEVAddExpr *S =
2297     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2298   if (!S) {
2299     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2300     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2301     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2302                                         O, Ops.size());
2303     UniqueSCEVs.InsertNode(S, IP);
2304   }
2305   S->setNoWrapFlags(Flags);
2306   return S;
2307 }
2308 
2309 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2310   uint64_t k = i*j;
2311   if (j > 1 && k / j != i) Overflow = true;
2312   return k;
2313 }
2314 
2315 /// Compute the result of "n choose k", the binomial coefficient.  If an
2316 /// intermediate computation overflows, Overflow will be set and the return will
2317 /// be garbage. Overflow is not cleared on absence of overflow.
2318 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2319   // We use the multiplicative formula:
2320   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2321   // At each iteration, we take the n-th term of the numeral and divide by the
2322   // (k-n)th term of the denominator.  This division will always produce an
2323   // integral result, and helps reduce the chance of overflow in the
2324   // intermediate computations. However, we can still overflow even when the
2325   // final result would fit.
2326 
2327   if (n == 0 || n == k) return 1;
2328   if (k > n) return 0;
2329 
2330   if (k > n/2)
2331     k = n-k;
2332 
2333   uint64_t r = 1;
2334   for (uint64_t i = 1; i <= k; ++i) {
2335     r = umul_ov(r, n-(i-1), Overflow);
2336     r /= i;
2337   }
2338   return r;
2339 }
2340 
2341 /// Determine if any of the operands in this SCEV are a constant or if
2342 /// any of the add or multiply expressions in this SCEV contain a constant.
2343 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2344   SmallVector<const SCEV *, 4> Ops;
2345   Ops.push_back(StartExpr);
2346   while (!Ops.empty()) {
2347     const SCEV *CurrentExpr = Ops.pop_back_val();
2348     if (isa<SCEVConstant>(*CurrentExpr))
2349       return true;
2350 
2351     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2352       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2353       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2354     }
2355   }
2356   return false;
2357 }
2358 
2359 /// getMulExpr - Get a canonical multiply expression, or something simpler if
2360 /// possible.
2361 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2362                                         SCEV::NoWrapFlags Flags) {
2363   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2364          "only nuw or nsw allowed");
2365   assert(!Ops.empty() && "Cannot get empty mul!");
2366   if (Ops.size() == 1) return Ops[0];
2367 #ifndef NDEBUG
2368   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2369   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2370     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2371            "SCEVMulExpr operand types don't match!");
2372 #endif
2373 
2374   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2375 
2376   // Sort by complexity, this groups all similar expression types together.
2377   GroupByComplexity(Ops, LI);
2378 
2379   // If there are any constants, fold them together.
2380   unsigned Idx = 0;
2381   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2382 
2383     // C1*(C2+V) -> C1*C2 + C1*V
2384     if (Ops.size() == 2)
2385         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2386           // If any of Add's ops are Adds or Muls with a constant,
2387           // apply this transformation as well.
2388           if (Add->getNumOperands() == 2)
2389             if (containsConstantSomewhere(Add))
2390               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2391                                 getMulExpr(LHSC, Add->getOperand(1)));
2392 
2393     ++Idx;
2394     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2395       // We found two constants, fold them together!
2396       ConstantInt *Fold = ConstantInt::get(getContext(),
2397                                            LHSC->getValue()->getValue() *
2398                                            RHSC->getValue()->getValue());
2399       Ops[0] = getConstant(Fold);
2400       Ops.erase(Ops.begin()+1);  // Erase the folded element
2401       if (Ops.size() == 1) return Ops[0];
2402       LHSC = cast<SCEVConstant>(Ops[0]);
2403     }
2404 
2405     // If we are left with a constant one being multiplied, strip it off.
2406     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2407       Ops.erase(Ops.begin());
2408       --Idx;
2409     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2410       // If we have a multiply of zero, it will always be zero.
2411       return Ops[0];
2412     } else if (Ops[0]->isAllOnesValue()) {
2413       // If we have a mul by -1 of an add, try distributing the -1 among the
2414       // add operands.
2415       if (Ops.size() == 2) {
2416         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2417           SmallVector<const SCEV *, 4> NewOps;
2418           bool AnyFolded = false;
2419           for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2420                  E = Add->op_end(); I != E; ++I) {
2421             const SCEV *Mul = getMulExpr(Ops[0], *I);
2422             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2423             NewOps.push_back(Mul);
2424           }
2425           if (AnyFolded)
2426             return getAddExpr(NewOps);
2427         }
2428         else if (const SCEVAddRecExpr *
2429                  AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2430           // Negation preserves a recurrence's no self-wrap property.
2431           SmallVector<const SCEV *, 4> Operands;
2432           for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2433                  E = AddRec->op_end(); I != E; ++I) {
2434             Operands.push_back(getMulExpr(Ops[0], *I));
2435           }
2436           return getAddRecExpr(Operands, AddRec->getLoop(),
2437                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2438         }
2439       }
2440     }
2441 
2442     if (Ops.size() == 1)
2443       return Ops[0];
2444   }
2445 
2446   // Skip over the add expression until we get to a multiply.
2447   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2448     ++Idx;
2449 
2450   // If there are mul operands inline them all into this expression.
2451   if (Idx < Ops.size()) {
2452     bool DeletedMul = false;
2453     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2454       // If we have an mul, expand the mul operands onto the end of the operands
2455       // list.
2456       Ops.erase(Ops.begin()+Idx);
2457       Ops.append(Mul->op_begin(), Mul->op_end());
2458       DeletedMul = true;
2459     }
2460 
2461     // If we deleted at least one mul, we added operands to the end of the list,
2462     // and they are not necessarily sorted.  Recurse to resort and resimplify
2463     // any operands we just acquired.
2464     if (DeletedMul)
2465       return getMulExpr(Ops);
2466   }
2467 
2468   // If there are any add recurrences in the operands list, see if any other
2469   // added values are loop invariant.  If so, we can fold them into the
2470   // recurrence.
2471   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2472     ++Idx;
2473 
2474   // Scan over all recurrences, trying to fold loop invariants into them.
2475   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2476     // Scan all of the other operands to this mul and add them to the vector if
2477     // they are loop invariant w.r.t. the recurrence.
2478     SmallVector<const SCEV *, 8> LIOps;
2479     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2480     const Loop *AddRecLoop = AddRec->getLoop();
2481     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2482       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2483         LIOps.push_back(Ops[i]);
2484         Ops.erase(Ops.begin()+i);
2485         --i; --e;
2486       }
2487 
2488     // If we found some loop invariants, fold them into the recurrence.
2489     if (!LIOps.empty()) {
2490       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2491       SmallVector<const SCEV *, 4> NewOps;
2492       NewOps.reserve(AddRec->getNumOperands());
2493       const SCEV *Scale = getMulExpr(LIOps);
2494       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2495         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2496 
2497       // Build the new addrec. Propagate the NUW and NSW flags if both the
2498       // outer mul and the inner addrec are guaranteed to have no overflow.
2499       //
2500       // No self-wrap cannot be guaranteed after changing the step size, but
2501       // will be inferred if either NUW or NSW is true.
2502       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2503       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2504 
2505       // If all of the other operands were loop invariant, we are done.
2506       if (Ops.size() == 1) return NewRec;
2507 
2508       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2509       for (unsigned i = 0;; ++i)
2510         if (Ops[i] == AddRec) {
2511           Ops[i] = NewRec;
2512           break;
2513         }
2514       return getMulExpr(Ops);
2515     }
2516 
2517     // Okay, if there weren't any loop invariants to be folded, check to see if
2518     // there are multiple AddRec's with the same loop induction variable being
2519     // multiplied together.  If so, we can fold them.
2520 
2521     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2522     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2523     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2524     //   ]]],+,...up to x=2n}.
2525     // Note that the arguments to choose() are always integers with values
2526     // known at compile time, never SCEV objects.
2527     //
2528     // The implementation avoids pointless extra computations when the two
2529     // addrec's are of different length (mathematically, it's equivalent to
2530     // an infinite stream of zeros on the right).
2531     bool OpsModified = false;
2532     for (unsigned OtherIdx = Idx+1;
2533          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2534          ++OtherIdx) {
2535       const SCEVAddRecExpr *OtherAddRec =
2536         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2537       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2538         continue;
2539 
2540       bool Overflow = false;
2541       Type *Ty = AddRec->getType();
2542       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2543       SmallVector<const SCEV*, 7> AddRecOps;
2544       for (int x = 0, xe = AddRec->getNumOperands() +
2545              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2546         const SCEV *Term = getConstant(Ty, 0);
2547         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2548           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2549           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2550                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2551                z < ze && !Overflow; ++z) {
2552             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2553             uint64_t Coeff;
2554             if (LargerThan64Bits)
2555               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2556             else
2557               Coeff = Coeff1*Coeff2;
2558             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2559             const SCEV *Term1 = AddRec->getOperand(y-z);
2560             const SCEV *Term2 = OtherAddRec->getOperand(z);
2561             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2562           }
2563         }
2564         AddRecOps.push_back(Term);
2565       }
2566       if (!Overflow) {
2567         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2568                                               SCEV::FlagAnyWrap);
2569         if (Ops.size() == 2) return NewAddRec;
2570         Ops[Idx] = NewAddRec;
2571         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2572         OpsModified = true;
2573         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2574         if (!AddRec)
2575           break;
2576       }
2577     }
2578     if (OpsModified)
2579       return getMulExpr(Ops);
2580 
2581     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2582     // next one.
2583   }
2584 
2585   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2586   // already have one, otherwise create a new one.
2587   FoldingSetNodeID ID;
2588   ID.AddInteger(scMulExpr);
2589   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2590     ID.AddPointer(Ops[i]);
2591   void *IP = nullptr;
2592   SCEVMulExpr *S =
2593     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2594   if (!S) {
2595     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2596     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2597     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2598                                         O, Ops.size());
2599     UniqueSCEVs.InsertNode(S, IP);
2600   }
2601   S->setNoWrapFlags(Flags);
2602   return S;
2603 }
2604 
2605 /// getUDivExpr - Get a canonical unsigned division expression, or something
2606 /// simpler if possible.
2607 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2608                                          const SCEV *RHS) {
2609   assert(getEffectiveSCEVType(LHS->getType()) ==
2610          getEffectiveSCEVType(RHS->getType()) &&
2611          "SCEVUDivExpr operand types don't match!");
2612 
2613   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2614     if (RHSC->getValue()->equalsInt(1))
2615       return LHS;                               // X udiv 1 --> x
2616     // If the denominator is zero, the result of the udiv is undefined. Don't
2617     // try to analyze it, because the resolution chosen here may differ from
2618     // the resolution chosen in other parts of the compiler.
2619     if (!RHSC->getValue()->isZero()) {
2620       // Determine if the division can be folded into the operands of
2621       // its operands.
2622       // TODO: Generalize this to non-constants by using known-bits information.
2623       Type *Ty = LHS->getType();
2624       unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2625       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2626       // For non-power-of-two values, effectively round the value up to the
2627       // nearest power of two.
2628       if (!RHSC->getValue()->getValue().isPowerOf2())
2629         ++MaxShiftAmt;
2630       IntegerType *ExtTy =
2631         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2632       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2633         if (const SCEVConstant *Step =
2634             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2635           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2636           const APInt &StepInt = Step->getValue()->getValue();
2637           const APInt &DivInt = RHSC->getValue()->getValue();
2638           if (!StepInt.urem(DivInt) &&
2639               getZeroExtendExpr(AR, ExtTy) ==
2640               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2641                             getZeroExtendExpr(Step, ExtTy),
2642                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2643             SmallVector<const SCEV *, 4> Operands;
2644             for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2645               Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2646             return getAddRecExpr(Operands, AR->getLoop(),
2647                                  SCEV::FlagNW);
2648           }
2649           /// Get a canonical UDivExpr for a recurrence.
2650           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2651           // We can currently only fold X%N if X is constant.
2652           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2653           if (StartC && !DivInt.urem(StepInt) &&
2654               getZeroExtendExpr(AR, ExtTy) ==
2655               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2656                             getZeroExtendExpr(Step, ExtTy),
2657                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2658             const APInt &StartInt = StartC->getValue()->getValue();
2659             const APInt &StartRem = StartInt.urem(StepInt);
2660             if (StartRem != 0)
2661               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2662                                   AR->getLoop(), SCEV::FlagNW);
2663           }
2664         }
2665       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2666       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2667         SmallVector<const SCEV *, 4> Operands;
2668         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2669           Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2670         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2671           // Find an operand that's safely divisible.
2672           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2673             const SCEV *Op = M->getOperand(i);
2674             const SCEV *Div = getUDivExpr(Op, RHSC);
2675             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2676               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2677                                                       M->op_end());
2678               Operands[i] = Div;
2679               return getMulExpr(Operands);
2680             }
2681           }
2682       }
2683       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2684       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2685         SmallVector<const SCEV *, 4> Operands;
2686         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2687           Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2688         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2689           Operands.clear();
2690           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2691             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2692             if (isa<SCEVUDivExpr>(Op) ||
2693                 getMulExpr(Op, RHS) != A->getOperand(i))
2694               break;
2695             Operands.push_back(Op);
2696           }
2697           if (Operands.size() == A->getNumOperands())
2698             return getAddExpr(Operands);
2699         }
2700       }
2701 
2702       // Fold if both operands are constant.
2703       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2704         Constant *LHSCV = LHSC->getValue();
2705         Constant *RHSCV = RHSC->getValue();
2706         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2707                                                                    RHSCV)));
2708       }
2709     }
2710   }
2711 
2712   FoldingSetNodeID ID;
2713   ID.AddInteger(scUDivExpr);
2714   ID.AddPointer(LHS);
2715   ID.AddPointer(RHS);
2716   void *IP = nullptr;
2717   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2718   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2719                                              LHS, RHS);
2720   UniqueSCEVs.InsertNode(S, IP);
2721   return S;
2722 }
2723 
2724 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2725   APInt A = C1->getValue()->getValue().abs();
2726   APInt B = C2->getValue()->getValue().abs();
2727   uint32_t ABW = A.getBitWidth();
2728   uint32_t BBW = B.getBitWidth();
2729 
2730   if (ABW > BBW)
2731     B = B.zext(ABW);
2732   else if (ABW < BBW)
2733     A = A.zext(BBW);
2734 
2735   return APIntOps::GreatestCommonDivisor(A, B);
2736 }
2737 
2738 /// getUDivExactExpr - Get a canonical unsigned division expression, or
2739 /// something simpler if possible. There is no representation for an exact udiv
2740 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2741 /// We can't do this when it's not exact because the udiv may be clearing bits.
2742 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2743                                               const SCEV *RHS) {
2744   // TODO: we could try to find factors in all sorts of things, but for now we
2745   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2746   // end of this file for inspiration.
2747 
2748   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2749   if (!Mul)
2750     return getUDivExpr(LHS, RHS);
2751 
2752   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2753     // If the mulexpr multiplies by a constant, then that constant must be the
2754     // first element of the mulexpr.
2755     if (const SCEVConstant *LHSCst =
2756             dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2757       if (LHSCst == RHSCst) {
2758         SmallVector<const SCEV *, 2> Operands;
2759         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2760         return getMulExpr(Operands);
2761       }
2762 
2763       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2764       // that there's a factor provided by one of the other terms. We need to
2765       // check.
2766       APInt Factor = gcd(LHSCst, RHSCst);
2767       if (!Factor.isIntN(1)) {
2768         LHSCst = cast<SCEVConstant>(
2769             getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2770         RHSCst = cast<SCEVConstant>(
2771             getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2772         SmallVector<const SCEV *, 2> Operands;
2773         Operands.push_back(LHSCst);
2774         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2775         LHS = getMulExpr(Operands);
2776         RHS = RHSCst;
2777         Mul = dyn_cast<SCEVMulExpr>(LHS);
2778         if (!Mul)
2779           return getUDivExactExpr(LHS, RHS);
2780       }
2781     }
2782   }
2783 
2784   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2785     if (Mul->getOperand(i) == RHS) {
2786       SmallVector<const SCEV *, 2> Operands;
2787       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2788       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2789       return getMulExpr(Operands);
2790     }
2791   }
2792 
2793   return getUDivExpr(LHS, RHS);
2794 }
2795 
2796 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2797 /// Simplify the expression as much as possible.
2798 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2799                                            const Loop *L,
2800                                            SCEV::NoWrapFlags Flags) {
2801   SmallVector<const SCEV *, 4> Operands;
2802   Operands.push_back(Start);
2803   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2804     if (StepChrec->getLoop() == L) {
2805       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2806       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2807     }
2808 
2809   Operands.push_back(Step);
2810   return getAddRecExpr(Operands, L, Flags);
2811 }
2812 
2813 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2814 /// Simplify the expression as much as possible.
2815 const SCEV *
2816 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2817                                const Loop *L, SCEV::NoWrapFlags Flags) {
2818   if (Operands.size() == 1) return Operands[0];
2819 #ifndef NDEBUG
2820   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2821   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2822     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2823            "SCEVAddRecExpr operand types don't match!");
2824   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2825     assert(isLoopInvariant(Operands[i], L) &&
2826            "SCEVAddRecExpr operand is not loop-invariant!");
2827 #endif
2828 
2829   if (Operands.back()->isZero()) {
2830     Operands.pop_back();
2831     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2832   }
2833 
2834   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2835   // use that information to infer NUW and NSW flags. However, computing a
2836   // BE count requires calling getAddRecExpr, so we may not yet have a
2837   // meaningful BE count at this point (and if we don't, we'd be stuck
2838   // with a SCEVCouldNotCompute as the cached BE count).
2839 
2840   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2841 
2842   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2843   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2844     const Loop *NestedLoop = NestedAR->getLoop();
2845     if (L->contains(NestedLoop) ?
2846         (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2847         (!NestedLoop->contains(L) &&
2848          DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2849       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2850                                                   NestedAR->op_end());
2851       Operands[0] = NestedAR->getStart();
2852       // AddRecs require their operands be loop-invariant with respect to their
2853       // loops. Don't perform this transformation if it would break this
2854       // requirement.
2855       bool AllInvariant = true;
2856       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2857         if (!isLoopInvariant(Operands[i], L)) {
2858           AllInvariant = false;
2859           break;
2860         }
2861       if (AllInvariant) {
2862         // Create a recurrence for the outer loop with the same step size.
2863         //
2864         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2865         // inner recurrence has the same property.
2866         SCEV::NoWrapFlags OuterFlags =
2867           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2868 
2869         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2870         AllInvariant = true;
2871         for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2872           if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2873             AllInvariant = false;
2874             break;
2875           }
2876         if (AllInvariant) {
2877           // Ok, both add recurrences are valid after the transformation.
2878           //
2879           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2880           // the outer recurrence has the same property.
2881           SCEV::NoWrapFlags InnerFlags =
2882             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2883           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2884         }
2885       }
2886       // Reset Operands to its original state.
2887       Operands[0] = NestedAR;
2888     }
2889   }
2890 
2891   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2892   // already have one, otherwise create a new one.
2893   FoldingSetNodeID ID;
2894   ID.AddInteger(scAddRecExpr);
2895   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2896     ID.AddPointer(Operands[i]);
2897   ID.AddPointer(L);
2898   void *IP = nullptr;
2899   SCEVAddRecExpr *S =
2900     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2901   if (!S) {
2902     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2903     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2904     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2905                                            O, Operands.size(), L);
2906     UniqueSCEVs.InsertNode(S, IP);
2907   }
2908   S->setNoWrapFlags(Flags);
2909   return S;
2910 }
2911 
2912 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2913                                          const SCEV *RHS) {
2914   SmallVector<const SCEV *, 2> Ops;
2915   Ops.push_back(LHS);
2916   Ops.push_back(RHS);
2917   return getSMaxExpr(Ops);
2918 }
2919 
2920 const SCEV *
2921 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2922   assert(!Ops.empty() && "Cannot get empty smax!");
2923   if (Ops.size() == 1) return Ops[0];
2924 #ifndef NDEBUG
2925   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2926   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2927     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2928            "SCEVSMaxExpr operand types don't match!");
2929 #endif
2930 
2931   // Sort by complexity, this groups all similar expression types together.
2932   GroupByComplexity(Ops, LI);
2933 
2934   // If there are any constants, fold them together.
2935   unsigned Idx = 0;
2936   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2937     ++Idx;
2938     assert(Idx < Ops.size());
2939     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2940       // We found two constants, fold them together!
2941       ConstantInt *Fold = ConstantInt::get(getContext(),
2942                               APIntOps::smax(LHSC->getValue()->getValue(),
2943                                              RHSC->getValue()->getValue()));
2944       Ops[0] = getConstant(Fold);
2945       Ops.erase(Ops.begin()+1);  // Erase the folded element
2946       if (Ops.size() == 1) return Ops[0];
2947       LHSC = cast<SCEVConstant>(Ops[0]);
2948     }
2949 
2950     // If we are left with a constant minimum-int, strip it off.
2951     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2952       Ops.erase(Ops.begin());
2953       --Idx;
2954     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2955       // If we have an smax with a constant maximum-int, it will always be
2956       // maximum-int.
2957       return Ops[0];
2958     }
2959 
2960     if (Ops.size() == 1) return Ops[0];
2961   }
2962 
2963   // Find the first SMax
2964   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2965     ++Idx;
2966 
2967   // Check to see if one of the operands is an SMax. If so, expand its operands
2968   // onto our operand list, and recurse to simplify.
2969   if (Idx < Ops.size()) {
2970     bool DeletedSMax = false;
2971     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2972       Ops.erase(Ops.begin()+Idx);
2973       Ops.append(SMax->op_begin(), SMax->op_end());
2974       DeletedSMax = true;
2975     }
2976 
2977     if (DeletedSMax)
2978       return getSMaxExpr(Ops);
2979   }
2980 
2981   // Okay, check to see if the same value occurs in the operand list twice.  If
2982   // so, delete one.  Since we sorted the list, these values are required to
2983   // be adjacent.
2984   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2985     //  X smax Y smax Y  -->  X smax Y
2986     //  X smax Y         -->  X, if X is always greater than Y
2987     if (Ops[i] == Ops[i+1] ||
2988         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2989       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2990       --i; --e;
2991     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2992       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2993       --i; --e;
2994     }
2995 
2996   if (Ops.size() == 1) return Ops[0];
2997 
2998   assert(!Ops.empty() && "Reduced smax down to nothing!");
2999 
3000   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3001   // already have one, otherwise create a new one.
3002   FoldingSetNodeID ID;
3003   ID.AddInteger(scSMaxExpr);
3004   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3005     ID.AddPointer(Ops[i]);
3006   void *IP = nullptr;
3007   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3008   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3009   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3010   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3011                                              O, Ops.size());
3012   UniqueSCEVs.InsertNode(S, IP);
3013   return S;
3014 }
3015 
3016 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3017                                          const SCEV *RHS) {
3018   SmallVector<const SCEV *, 2> Ops;
3019   Ops.push_back(LHS);
3020   Ops.push_back(RHS);
3021   return getUMaxExpr(Ops);
3022 }
3023 
3024 const SCEV *
3025 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3026   assert(!Ops.empty() && "Cannot get empty umax!");
3027   if (Ops.size() == 1) return Ops[0];
3028 #ifndef NDEBUG
3029   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3030   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3031     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3032            "SCEVUMaxExpr operand types don't match!");
3033 #endif
3034 
3035   // Sort by complexity, this groups all similar expression types together.
3036   GroupByComplexity(Ops, LI);
3037 
3038   // If there are any constants, fold them together.
3039   unsigned Idx = 0;
3040   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3041     ++Idx;
3042     assert(Idx < Ops.size());
3043     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3044       // We found two constants, fold them together!
3045       ConstantInt *Fold = ConstantInt::get(getContext(),
3046                               APIntOps::umax(LHSC->getValue()->getValue(),
3047                                              RHSC->getValue()->getValue()));
3048       Ops[0] = getConstant(Fold);
3049       Ops.erase(Ops.begin()+1);  // Erase the folded element
3050       if (Ops.size() == 1) return Ops[0];
3051       LHSC = cast<SCEVConstant>(Ops[0]);
3052     }
3053 
3054     // If we are left with a constant minimum-int, strip it off.
3055     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3056       Ops.erase(Ops.begin());
3057       --Idx;
3058     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3059       // If we have an umax with a constant maximum-int, it will always be
3060       // maximum-int.
3061       return Ops[0];
3062     }
3063 
3064     if (Ops.size() == 1) return Ops[0];
3065   }
3066 
3067   // Find the first UMax
3068   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3069     ++Idx;
3070 
3071   // Check to see if one of the operands is a UMax. If so, expand its operands
3072   // onto our operand list, and recurse to simplify.
3073   if (Idx < Ops.size()) {
3074     bool DeletedUMax = false;
3075     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3076       Ops.erase(Ops.begin()+Idx);
3077       Ops.append(UMax->op_begin(), UMax->op_end());
3078       DeletedUMax = true;
3079     }
3080 
3081     if (DeletedUMax)
3082       return getUMaxExpr(Ops);
3083   }
3084 
3085   // Okay, check to see if the same value occurs in the operand list twice.  If
3086   // so, delete one.  Since we sorted the list, these values are required to
3087   // be adjacent.
3088   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3089     //  X umax Y umax Y  -->  X umax Y
3090     //  X umax Y         -->  X, if X is always greater than Y
3091     if (Ops[i] == Ops[i+1] ||
3092         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3093       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3094       --i; --e;
3095     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3096       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3097       --i; --e;
3098     }
3099 
3100   if (Ops.size() == 1) return Ops[0];
3101 
3102   assert(!Ops.empty() && "Reduced umax down to nothing!");
3103 
3104   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3105   // already have one, otherwise create a new one.
3106   FoldingSetNodeID ID;
3107   ID.AddInteger(scUMaxExpr);
3108   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3109     ID.AddPointer(Ops[i]);
3110   void *IP = nullptr;
3111   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3112   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3113   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3114   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3115                                              O, Ops.size());
3116   UniqueSCEVs.InsertNode(S, IP);
3117   return S;
3118 }
3119 
3120 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3121                                          const SCEV *RHS) {
3122   // ~smax(~x, ~y) == smin(x, y).
3123   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3124 }
3125 
3126 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3127                                          const SCEV *RHS) {
3128   // ~umax(~x, ~y) == umin(x, y)
3129   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3130 }
3131 
3132 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3133   // If we have DataLayout, we can bypass creating a target-independent
3134   // constant expression and then folding it back into a ConstantInt.
3135   // This is just a compile-time optimization.
3136   if (DL)
3137     return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
3138 
3139   Constant *C = ConstantExpr::getSizeOf(AllocTy);
3140   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3141     if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
3142       C = Folded;
3143   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
3144   assert(Ty == IntTy && "Effective SCEV type doesn't match");
3145   return getTruncateOrZeroExtend(getSCEV(C), Ty);
3146 }
3147 
3148 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3149                                              StructType *STy,
3150                                              unsigned FieldNo) {
3151   // If we have DataLayout, we can bypass creating a target-independent
3152   // constant expression and then folding it back into a ConstantInt.
3153   // This is just a compile-time optimization.
3154   if (DL) {
3155     return getConstant(IntTy,
3156                        DL->getStructLayout(STy)->getElementOffset(FieldNo));
3157   }
3158 
3159   Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
3160   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3161     if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
3162       C = Folded;
3163 
3164   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
3165   return getTruncateOrZeroExtend(getSCEV(C), Ty);
3166 }
3167 
3168 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3169   // Don't attempt to do anything other than create a SCEVUnknown object
3170   // here.  createSCEV only calls getUnknown after checking for all other
3171   // interesting possibilities, and any other code that calls getUnknown
3172   // is doing so in order to hide a value from SCEV canonicalization.
3173 
3174   FoldingSetNodeID ID;
3175   ID.AddInteger(scUnknown);
3176   ID.AddPointer(V);
3177   void *IP = nullptr;
3178   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3179     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3180            "Stale SCEVUnknown in uniquing map!");
3181     return S;
3182   }
3183   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3184                                             FirstUnknown);
3185   FirstUnknown = cast<SCEVUnknown>(S);
3186   UniqueSCEVs.InsertNode(S, IP);
3187   return S;
3188 }
3189 
3190 //===----------------------------------------------------------------------===//
3191 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3192 //
3193 
3194 /// isSCEVable - Test if values of the given type are analyzable within
3195 /// the SCEV framework. This primarily includes integer types, and it
3196 /// can optionally include pointer types if the ScalarEvolution class
3197 /// has access to target-specific information.
3198 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3199   // Integers and pointers are always SCEVable.
3200   return Ty->isIntegerTy() || Ty->isPointerTy();
3201 }
3202 
3203 /// getTypeSizeInBits - Return the size in bits of the specified type,
3204 /// for which isSCEVable must return true.
3205 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3206   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3207 
3208   // If we have a DataLayout, use it!
3209   if (DL)
3210     return DL->getTypeSizeInBits(Ty);
3211 
3212   // Integer types have fixed sizes.
3213   if (Ty->isIntegerTy())
3214     return Ty->getPrimitiveSizeInBits();
3215 
3216   // The only other support type is pointer. Without DataLayout, conservatively
3217   // assume pointers are 64-bit.
3218   assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
3219   return 64;
3220 }
3221 
3222 /// getEffectiveSCEVType - Return a type with the same bitwidth as
3223 /// the given type and which represents how SCEV will treat the given
3224 /// type, for which isSCEVable must return true. For pointer types,
3225 /// this is the pointer-sized integer type.
3226 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3227   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3228 
3229   if (Ty->isIntegerTy()) {
3230     return Ty;
3231   }
3232 
3233   // The only other support type is pointer.
3234   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3235 
3236   if (DL)
3237     return DL->getIntPtrType(Ty);
3238 
3239   // Without DataLayout, conservatively assume pointers are 64-bit.
3240   return Type::getInt64Ty(getContext());
3241 }
3242 
3243 const SCEV *ScalarEvolution::getCouldNotCompute() {
3244   return &CouldNotCompute;
3245 }
3246 
3247 namespace {
3248   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3249   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3250   // is set iff if find such SCEVUnknown.
3251   //
3252   struct FindInvalidSCEVUnknown {
3253     bool FindOne;
3254     FindInvalidSCEVUnknown() { FindOne = false; }
3255     bool follow(const SCEV *S) {
3256       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3257       case scConstant:
3258         return false;
3259       case scUnknown:
3260         if (!cast<SCEVUnknown>(S)->getValue())
3261           FindOne = true;
3262         return false;
3263       default:
3264         return true;
3265       }
3266     }
3267     bool isDone() const { return FindOne; }
3268   };
3269 }
3270 
3271 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3272   FindInvalidSCEVUnknown F;
3273   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3274   ST.visitAll(S);
3275 
3276   return !F.FindOne;
3277 }
3278 
3279 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3280 /// expression and create a new one.
3281 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3282   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3283 
3284   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3285   if (I != ValueExprMap.end()) {
3286     const SCEV *S = I->second;
3287     if (checkValidity(S))
3288       return S;
3289     else
3290       ValueExprMap.erase(I);
3291   }
3292   const SCEV *S = createSCEV(V);
3293 
3294   // The process of creating a SCEV for V may have caused other SCEVs
3295   // to have been created, so it's necessary to insert the new entry
3296   // from scratch, rather than trying to remember the insert position
3297   // above.
3298   ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3299   return S;
3300 }
3301 
3302 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3303 ///
3304 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
3305   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3306     return getConstant(
3307                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3308 
3309   Type *Ty = V->getType();
3310   Ty = getEffectiveSCEVType(Ty);
3311   return getMulExpr(V,
3312                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
3313 }
3314 
3315 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3316 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3317   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3318     return getConstant(
3319                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3320 
3321   Type *Ty = V->getType();
3322   Ty = getEffectiveSCEVType(Ty);
3323   const SCEV *AllOnes =
3324                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3325   return getMinusSCEV(AllOnes, V);
3326 }
3327 
3328 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
3329 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3330                                           SCEV::NoWrapFlags Flags) {
3331   assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3332 
3333   // Fast path: X - X --> 0.
3334   if (LHS == RHS)
3335     return getConstant(LHS->getType(), 0);
3336 
3337   // X - Y --> X + -Y.
3338   // X -(nsw || nuw) Y --> X + -Y.
3339   return getAddExpr(LHS, getNegativeSCEV(RHS));
3340 }
3341 
3342 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3343 /// input value to the specified type.  If the type must be extended, it is zero
3344 /// extended.
3345 const SCEV *
3346 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3347   Type *SrcTy = V->getType();
3348   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3349          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3350          "Cannot truncate or zero extend with non-integer arguments!");
3351   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3352     return V;  // No conversion
3353   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3354     return getTruncateExpr(V, Ty);
3355   return getZeroExtendExpr(V, Ty);
3356 }
3357 
3358 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3359 /// input value to the specified type.  If the type must be extended, it is sign
3360 /// extended.
3361 const SCEV *
3362 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3363                                          Type *Ty) {
3364   Type *SrcTy = V->getType();
3365   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3366          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3367          "Cannot truncate or zero extend with non-integer arguments!");
3368   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3369     return V;  // No conversion
3370   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3371     return getTruncateExpr(V, Ty);
3372   return getSignExtendExpr(V, Ty);
3373 }
3374 
3375 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3376 /// input value to the specified type.  If the type must be extended, it is zero
3377 /// extended.  The conversion must not be narrowing.
3378 const SCEV *
3379 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3380   Type *SrcTy = V->getType();
3381   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3382          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3383          "Cannot noop or zero extend with non-integer arguments!");
3384   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3385          "getNoopOrZeroExtend cannot truncate!");
3386   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3387     return V;  // No conversion
3388   return getZeroExtendExpr(V, Ty);
3389 }
3390 
3391 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3392 /// input value to the specified type.  If the type must be extended, it is sign
3393 /// extended.  The conversion must not be narrowing.
3394 const SCEV *
3395 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3396   Type *SrcTy = V->getType();
3397   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3398          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3399          "Cannot noop or sign extend with non-integer arguments!");
3400   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3401          "getNoopOrSignExtend cannot truncate!");
3402   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3403     return V;  // No conversion
3404   return getSignExtendExpr(V, Ty);
3405 }
3406 
3407 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3408 /// the input value to the specified type. If the type must be extended,
3409 /// it is extended with unspecified bits. The conversion must not be
3410 /// narrowing.
3411 const SCEV *
3412 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3413   Type *SrcTy = V->getType();
3414   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3415          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3416          "Cannot noop or any extend with non-integer arguments!");
3417   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3418          "getNoopOrAnyExtend cannot truncate!");
3419   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3420     return V;  // No conversion
3421   return getAnyExtendExpr(V, Ty);
3422 }
3423 
3424 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3425 /// input value to the specified type.  The conversion must not be widening.
3426 const SCEV *
3427 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3428   Type *SrcTy = V->getType();
3429   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3430          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3431          "Cannot truncate or noop with non-integer arguments!");
3432   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3433          "getTruncateOrNoop cannot extend!");
3434   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3435     return V;  // No conversion
3436   return getTruncateExpr(V, Ty);
3437 }
3438 
3439 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3440 /// the types using zero-extension, and then perform a umax operation
3441 /// with them.
3442 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3443                                                         const SCEV *RHS) {
3444   const SCEV *PromotedLHS = LHS;
3445   const SCEV *PromotedRHS = RHS;
3446 
3447   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3448     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3449   else
3450     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3451 
3452   return getUMaxExpr(PromotedLHS, PromotedRHS);
3453 }
3454 
3455 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
3456 /// the types using zero-extension, and then perform a umin operation
3457 /// with them.
3458 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3459                                                         const SCEV *RHS) {
3460   const SCEV *PromotedLHS = LHS;
3461   const SCEV *PromotedRHS = RHS;
3462 
3463   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3464     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3465   else
3466     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3467 
3468   return getUMinExpr(PromotedLHS, PromotedRHS);
3469 }
3470 
3471 /// getPointerBase - Transitively follow the chain of pointer-type operands
3472 /// until reaching a SCEV that does not have a single pointer operand. This
3473 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3474 /// but corner cases do exist.
3475 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3476   // A pointer operand may evaluate to a nonpointer expression, such as null.
3477   if (!V->getType()->isPointerTy())
3478     return V;
3479 
3480   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3481     return getPointerBase(Cast->getOperand());
3482   }
3483   else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3484     const SCEV *PtrOp = nullptr;
3485     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3486          I != E; ++I) {
3487       if ((*I)->getType()->isPointerTy()) {
3488         // Cannot find the base of an expression with multiple pointer operands.
3489         if (PtrOp)
3490           return V;
3491         PtrOp = *I;
3492       }
3493     }
3494     if (!PtrOp)
3495       return V;
3496     return getPointerBase(PtrOp);
3497   }
3498   return V;
3499 }
3500 
3501 /// PushDefUseChildren - Push users of the given Instruction
3502 /// onto the given Worklist.
3503 static void
3504 PushDefUseChildren(Instruction *I,
3505                    SmallVectorImpl<Instruction *> &Worklist) {
3506   // Push the def-use children onto the Worklist stack.
3507   for (User *U : I->users())
3508     Worklist.push_back(cast<Instruction>(U));
3509 }
3510 
3511 /// ForgetSymbolicValue - This looks up computed SCEV values for all
3512 /// instructions that depend on the given instruction and removes them from
3513 /// the ValueExprMapType map if they reference SymName. This is used during PHI
3514 /// resolution.
3515 void
3516 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3517   SmallVector<Instruction *, 16> Worklist;
3518   PushDefUseChildren(PN, Worklist);
3519 
3520   SmallPtrSet<Instruction *, 8> Visited;
3521   Visited.insert(PN);
3522   while (!Worklist.empty()) {
3523     Instruction *I = Worklist.pop_back_val();
3524     if (!Visited.insert(I).second)
3525       continue;
3526 
3527     ValueExprMapType::iterator It =
3528       ValueExprMap.find_as(static_cast<Value *>(I));
3529     if (It != ValueExprMap.end()) {
3530       const SCEV *Old = It->second;
3531 
3532       // Short-circuit the def-use traversal if the symbolic name
3533       // ceases to appear in expressions.
3534       if (Old != SymName && !hasOperand(Old, SymName))
3535         continue;
3536 
3537       // SCEVUnknown for a PHI either means that it has an unrecognized
3538       // structure, it's a PHI that's in the progress of being computed
3539       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3540       // additional loop trip count information isn't going to change anything.
3541       // In the second case, createNodeForPHI will perform the necessary
3542       // updates on its own when it gets to that point. In the third, we do
3543       // want to forget the SCEVUnknown.
3544       if (!isa<PHINode>(I) ||
3545           !isa<SCEVUnknown>(Old) ||
3546           (I != PN && Old == SymName)) {
3547         forgetMemoizedResults(Old);
3548         ValueExprMap.erase(It);
3549       }
3550     }
3551 
3552     PushDefUseChildren(I, Worklist);
3553   }
3554 }
3555 
3556 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
3557 /// a loop header, making it a potential recurrence, or it doesn't.
3558 ///
3559 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3560   if (const Loop *L = LI->getLoopFor(PN->getParent()))
3561     if (L->getHeader() == PN->getParent()) {
3562       // The loop may have multiple entrances or multiple exits; we can analyze
3563       // this phi as an addrec if it has a unique entry value and a unique
3564       // backedge value.
3565       Value *BEValueV = nullptr, *StartValueV = nullptr;
3566       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3567         Value *V = PN->getIncomingValue(i);
3568         if (L->contains(PN->getIncomingBlock(i))) {
3569           if (!BEValueV) {
3570             BEValueV = V;
3571           } else if (BEValueV != V) {
3572             BEValueV = nullptr;
3573             break;
3574           }
3575         } else if (!StartValueV) {
3576           StartValueV = V;
3577         } else if (StartValueV != V) {
3578           StartValueV = nullptr;
3579           break;
3580         }
3581       }
3582       if (BEValueV && StartValueV) {
3583         // While we are analyzing this PHI node, handle its value symbolically.
3584         const SCEV *SymbolicName = getUnknown(PN);
3585         assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3586                "PHI node already processed?");
3587         ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3588 
3589         // Using this symbolic name for the PHI, analyze the value coming around
3590         // the back-edge.
3591         const SCEV *BEValue = getSCEV(BEValueV);
3592 
3593         // NOTE: If BEValue is loop invariant, we know that the PHI node just
3594         // has a special value for the first iteration of the loop.
3595 
3596         // If the value coming around the backedge is an add with the symbolic
3597         // value we just inserted, then we found a simple induction variable!
3598         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3599           // If there is a single occurrence of the symbolic value, replace it
3600           // with a recurrence.
3601           unsigned FoundIndex = Add->getNumOperands();
3602           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3603             if (Add->getOperand(i) == SymbolicName)
3604               if (FoundIndex == e) {
3605                 FoundIndex = i;
3606                 break;
3607               }
3608 
3609           if (FoundIndex != Add->getNumOperands()) {
3610             // Create an add with everything but the specified operand.
3611             SmallVector<const SCEV *, 8> Ops;
3612             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3613               if (i != FoundIndex)
3614                 Ops.push_back(Add->getOperand(i));
3615             const SCEV *Accum = getAddExpr(Ops);
3616 
3617             // This is not a valid addrec if the step amount is varying each
3618             // loop iteration, but is not itself an addrec in this loop.
3619             if (isLoopInvariant(Accum, L) ||
3620                 (isa<SCEVAddRecExpr>(Accum) &&
3621                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3622               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3623 
3624               // If the increment doesn't overflow, then neither the addrec nor
3625               // the post-increment will overflow.
3626               if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3627                 if (OBO->hasNoUnsignedWrap())
3628                   Flags = setFlags(Flags, SCEV::FlagNUW);
3629                 if (OBO->hasNoSignedWrap())
3630                   Flags = setFlags(Flags, SCEV::FlagNSW);
3631               } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3632                 // If the increment is an inbounds GEP, then we know the address
3633                 // space cannot be wrapped around. We cannot make any guarantee
3634                 // about signed or unsigned overflow because pointers are
3635                 // unsigned but we may have a negative index from the base
3636                 // pointer. We can guarantee that no unsigned wrap occurs if the
3637                 // indices form a positive value.
3638                 if (GEP->isInBounds()) {
3639                   Flags = setFlags(Flags, SCEV::FlagNW);
3640 
3641                   const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3642                   if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3643                     Flags = setFlags(Flags, SCEV::FlagNUW);
3644                 }
3645 
3646                 // We cannot transfer nuw and nsw flags from subtraction
3647                 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3648                 // for instance.
3649               }
3650 
3651               const SCEV *StartVal = getSCEV(StartValueV);
3652               const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3653 
3654               // Since the no-wrap flags are on the increment, they apply to the
3655               // post-incremented value as well.
3656               if (isLoopInvariant(Accum, L))
3657                 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3658                                     Accum, L, Flags);
3659 
3660               // Okay, for the entire analysis of this edge we assumed the PHI
3661               // to be symbolic.  We now need to go back and purge all of the
3662               // entries for the scalars that use the symbolic expression.
3663               ForgetSymbolicName(PN, SymbolicName);
3664               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3665               return PHISCEV;
3666             }
3667           }
3668         } else if (const SCEVAddRecExpr *AddRec =
3669                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
3670           // Otherwise, this could be a loop like this:
3671           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3672           // In this case, j = {1,+,1}  and BEValue is j.
3673           // Because the other in-value of i (0) fits the evolution of BEValue
3674           // i really is an addrec evolution.
3675           if (AddRec->getLoop() == L && AddRec->isAffine()) {
3676             const SCEV *StartVal = getSCEV(StartValueV);
3677 
3678             // If StartVal = j.start - j.stride, we can use StartVal as the
3679             // initial step of the addrec evolution.
3680             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3681                                          AddRec->getOperand(1))) {
3682               // FIXME: For constant StartVal, we should be able to infer
3683               // no-wrap flags.
3684               const SCEV *PHISCEV =
3685                 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3686                               SCEV::FlagAnyWrap);
3687 
3688               // Okay, for the entire analysis of this edge we assumed the PHI
3689               // to be symbolic.  We now need to go back and purge all of the
3690               // entries for the scalars that use the symbolic expression.
3691               ForgetSymbolicName(PN, SymbolicName);
3692               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3693               return PHISCEV;
3694             }
3695           }
3696         }
3697       }
3698     }
3699 
3700   // If the PHI has a single incoming value, follow that value, unless the
3701   // PHI's incoming blocks are in a different loop, in which case doing so
3702   // risks breaking LCSSA form. Instcombine would normally zap these, but
3703   // it doesn't have DominatorTree information, so it may miss cases.
3704   if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AC))
3705     if (LI->replacementPreservesLCSSAForm(PN, V))
3706       return getSCEV(V);
3707 
3708   // If it's not a loop phi, we can't handle it yet.
3709   return getUnknown(PN);
3710 }
3711 
3712 /// createNodeForGEP - Expand GEP instructions into add and multiply
3713 /// operations. This allows them to be analyzed by regular SCEV code.
3714 ///
3715 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3716   Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3717   Value *Base = GEP->getOperand(0);
3718   // Don't attempt to analyze GEPs over unsized objects.
3719   if (!Base->getType()->getPointerElementType()->isSized())
3720     return getUnknown(GEP);
3721 
3722   // Don't blindly transfer the inbounds flag from the GEP instruction to the
3723   // Add expression, because the Instruction may be guarded by control flow
3724   // and the no-overflow bits may not be valid for the expression in any
3725   // context.
3726   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3727 
3728   const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3729   gep_type_iterator GTI = gep_type_begin(GEP);
3730   for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
3731                                       E = GEP->op_end();
3732        I != E; ++I) {
3733     Value *Index = *I;
3734     // Compute the (potentially symbolic) offset in bytes for this index.
3735     if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3736       // For a struct, add the member offset.
3737       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3738       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3739 
3740       // Add the field offset to the running total offset.
3741       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3742     } else {
3743       // For an array, add the element offset, explicitly scaled.
3744       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
3745       const SCEV *IndexS = getSCEV(Index);
3746       // Getelementptr indices are signed.
3747       IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3748 
3749       // Multiply the index by the element size to compute the element offset.
3750       const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
3751 
3752       // Add the element offset to the running total offset.
3753       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3754     }
3755   }
3756 
3757   // Get the SCEV for the GEP base.
3758   const SCEV *BaseS = getSCEV(Base);
3759 
3760   // Add the total offset from all the GEP indices to the base.
3761   return getAddExpr(BaseS, TotalOffset, Wrap);
3762 }
3763 
3764 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3765 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
3766 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3767 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3768 uint32_t
3769 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3770   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3771     return C->getValue()->getValue().countTrailingZeros();
3772 
3773   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3774     return std::min(GetMinTrailingZeros(T->getOperand()),
3775                     (uint32_t)getTypeSizeInBits(T->getType()));
3776 
3777   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3778     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3779     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3780              getTypeSizeInBits(E->getType()) : OpRes;
3781   }
3782 
3783   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3784     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3785     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3786              getTypeSizeInBits(E->getType()) : OpRes;
3787   }
3788 
3789   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3790     // The result is the min of all operands results.
3791     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3792     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3793       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3794     return MinOpRes;
3795   }
3796 
3797   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3798     // The result is the sum of all operands results.
3799     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3800     uint32_t BitWidth = getTypeSizeInBits(M->getType());
3801     for (unsigned i = 1, e = M->getNumOperands();
3802          SumOpRes != BitWidth && i != e; ++i)
3803       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3804                           BitWidth);
3805     return SumOpRes;
3806   }
3807 
3808   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3809     // The result is the min of all operands results.
3810     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3811     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3812       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3813     return MinOpRes;
3814   }
3815 
3816   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3817     // The result is the min of all operands results.
3818     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3819     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3820       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3821     return MinOpRes;
3822   }
3823 
3824   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3825     // The result is the min of all operands results.
3826     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3827     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3828       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3829     return MinOpRes;
3830   }
3831 
3832   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3833     // For a SCEVUnknown, ask ValueTracking.
3834     unsigned BitWidth = getTypeSizeInBits(U->getType());
3835     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3836     computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
3837     return Zeros.countTrailingOnes();
3838   }
3839 
3840   // SCEVUDivExpr
3841   return 0;
3842 }
3843 
3844 /// GetRangeFromMetadata - Helper method to assign a range to V from
3845 /// metadata present in the IR.
3846 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3847   if (Instruction *I = dyn_cast<Instruction>(V)) {
3848     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
3849       ConstantRange TotalRange(
3850           cast<IntegerType>(I->getType())->getBitWidth(), false);
3851 
3852       unsigned NumRanges = MD->getNumOperands() / 2;
3853       assert(NumRanges >= 1);
3854 
3855       for (unsigned i = 0; i < NumRanges; ++i) {
3856         ConstantInt *Lower =
3857             mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3858         ConstantInt *Upper =
3859             mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
3860         ConstantRange Range(Lower->getValue(), Upper->getValue());
3861         TotalRange = TotalRange.unionWith(Range);
3862       }
3863 
3864       return TotalRange;
3865     }
3866   }
3867 
3868   return None;
3869 }
3870 
3871 /// getRange - Determine the range for a particular SCEV.  If SignHint is
3872 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
3873 /// with a "cleaner" unsigned (resp. signed) representation.
3874 ///
3875 ConstantRange
3876 ScalarEvolution::getRange(const SCEV *S,
3877                           ScalarEvolution::RangeSignHint SignHint) {
3878   DenseMap<const SCEV *, ConstantRange> &Cache =
3879       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
3880                                                        : SignedRanges;
3881 
3882   // See if we've computed this range already.
3883   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
3884   if (I != Cache.end())
3885     return I->second;
3886 
3887   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3888     return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
3889 
3890   unsigned BitWidth = getTypeSizeInBits(S->getType());
3891   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3892 
3893   // If the value has known zeros, the maximum value will have those known zeros
3894   // as well.
3895   uint32_t TZ = GetMinTrailingZeros(S);
3896   if (TZ != 0) {
3897     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
3898       ConservativeResult =
3899           ConstantRange(APInt::getMinValue(BitWidth),
3900                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3901     else
3902       ConservativeResult = ConstantRange(
3903           APInt::getSignedMinValue(BitWidth),
3904           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3905   }
3906 
3907   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3908     ConstantRange X = getRange(Add->getOperand(0), SignHint);
3909     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3910       X = X.add(getRange(Add->getOperand(i), SignHint));
3911     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
3912   }
3913 
3914   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3915     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
3916     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3917       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
3918     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
3919   }
3920 
3921   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3922     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
3923     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3924       X = X.smax(getRange(SMax->getOperand(i), SignHint));
3925     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
3926   }
3927 
3928   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3929     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
3930     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3931       X = X.umax(getRange(UMax->getOperand(i), SignHint));
3932     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
3933   }
3934 
3935   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3936     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
3937     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
3938     return setRange(UDiv, SignHint,
3939                     ConservativeResult.intersectWith(X.udiv(Y)));
3940   }
3941 
3942   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3943     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
3944     return setRange(ZExt, SignHint,
3945                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3946   }
3947 
3948   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3949     ConstantRange X = getRange(SExt->getOperand(), SignHint);
3950     return setRange(SExt, SignHint,
3951                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3952   }
3953 
3954   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3955     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
3956     return setRange(Trunc, SignHint,
3957                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
3958   }
3959 
3960   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3961     // If there's no unsigned wrap, the value will never be less than its
3962     // initial value.
3963     if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3964       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3965         if (!C->getValue()->isZero())
3966           ConservativeResult =
3967             ConservativeResult.intersectWith(
3968               ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3969 
3970     // If there's no signed wrap, and all the operands have the same sign or
3971     // zero, the value won't ever change sign.
3972     if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3973       bool AllNonNeg = true;
3974       bool AllNonPos = true;
3975       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3976         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3977         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3978       }
3979       if (AllNonNeg)
3980         ConservativeResult = ConservativeResult.intersectWith(
3981           ConstantRange(APInt(BitWidth, 0),
3982                         APInt::getSignedMinValue(BitWidth)));
3983       else if (AllNonPos)
3984         ConservativeResult = ConservativeResult.intersectWith(
3985           ConstantRange(APInt::getSignedMinValue(BitWidth),
3986                         APInt(BitWidth, 1)));
3987     }
3988 
3989     // TODO: non-affine addrec
3990     if (AddRec->isAffine()) {
3991       Type *Ty = AddRec->getType();
3992       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3993       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3994           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3995 
3996         // Check for overflow.  This must be done with ConstantRange arithmetic
3997         // because we could be called from within the ScalarEvolution overflow
3998         // checking code.
3999 
4000         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
4001         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4002         ConstantRange ZExtMaxBECountRange =
4003             MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4004 
4005         const SCEV *Start = AddRec->getStart();
4006         const SCEV *Step = AddRec->getStepRecurrence(*this);
4007         ConstantRange StepSRange = getSignedRange(Step);
4008         ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4009 
4010         ConstantRange StartURange = getUnsignedRange(Start);
4011         ConstantRange EndURange =
4012             StartURange.add(MaxBECountRange.multiply(StepSRange));
4013 
4014         // Check for unsigned overflow.
4015         ConstantRange ZExtStartURange =
4016             StartURange.zextOrTrunc(BitWidth * 2 + 1);
4017         ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4018         if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4019             ZExtEndURange) {
4020           APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4021                                      EndURange.getUnsignedMin());
4022           APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4023                                      EndURange.getUnsignedMax());
4024           bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4025           if (!IsFullRange)
4026             ConservativeResult =
4027                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4028         }
4029 
4030         ConstantRange StartSRange = getSignedRange(Start);
4031         ConstantRange EndSRange =
4032             StartSRange.add(MaxBECountRange.multiply(StepSRange));
4033 
4034         // Check for signed overflow. This must be done with ConstantRange
4035         // arithmetic because we could be called from within the ScalarEvolution
4036         // overflow checking code.
4037         ConstantRange SExtStartSRange =
4038             StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4039         ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4040         if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4041             SExtEndSRange) {
4042           APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4043                                      EndSRange.getSignedMin());
4044           APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4045                                      EndSRange.getSignedMax());
4046           bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4047           if (!IsFullRange)
4048             ConservativeResult =
4049                 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4050         }
4051       }
4052     }
4053 
4054     return setRange(AddRec, SignHint, ConservativeResult);
4055   }
4056 
4057   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4058     // Check if the IR explicitly contains !range metadata.
4059     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4060     if (MDRange.hasValue())
4061       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4062 
4063     // Split here to avoid paying the compile-time cost of calling both
4064     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4065     // if needed.
4066 
4067     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4068       // For a SCEVUnknown, ask ValueTracking.
4069       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4070       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
4071       if (Ones != ~Zeros + 1)
4072         ConservativeResult =
4073             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4074     } else {
4075       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4076              "generalize as needed!");
4077       if (U->getValue()->getType()->isIntegerTy() || DL) {
4078         unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
4079         if (NS > 1)
4080           ConservativeResult = ConservativeResult.intersectWith(ConstantRange(
4081               APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4082               APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4083       }
4084     }
4085 
4086     return setRange(U, SignHint, ConservativeResult);
4087   }
4088 
4089   return setRange(S, SignHint, ConservativeResult);
4090 }
4091 
4092 /// createSCEV - We know that there is no SCEV for the specified value.
4093 /// Analyze the expression.
4094 ///
4095 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4096   if (!isSCEVable(V->getType()))
4097     return getUnknown(V);
4098 
4099   unsigned Opcode = Instruction::UserOp1;
4100   if (Instruction *I = dyn_cast<Instruction>(V)) {
4101     Opcode = I->getOpcode();
4102 
4103     // Don't attempt to analyze instructions in blocks that aren't
4104     // reachable. Such instructions don't matter, and they aren't required
4105     // to obey basic rules for definitions dominating uses which this
4106     // analysis depends on.
4107     if (!DT->isReachableFromEntry(I->getParent()))
4108       return getUnknown(V);
4109   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
4110     Opcode = CE->getOpcode();
4111   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4112     return getConstant(CI);
4113   else if (isa<ConstantPointerNull>(V))
4114     return getConstant(V->getType(), 0);
4115   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4116     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
4117   else
4118     return getUnknown(V);
4119 
4120   Operator *U = cast<Operator>(V);
4121   switch (Opcode) {
4122   case Instruction::Add: {
4123     // The simple thing to do would be to just call getSCEV on both operands
4124     // and call getAddExpr with the result. However if we're looking at a
4125     // bunch of things all added together, this can be quite inefficient,
4126     // because it leads to N-1 getAddExpr calls for N ultimate operands.
4127     // Instead, gather up all the operands and make a single getAddExpr call.
4128     // LLVM IR canonical form means we need only traverse the left operands.
4129     //
4130     // Don't apply this instruction's NSW or NUW flags to the new
4131     // expression. The instruction may be guarded by control flow that the
4132     // no-wrap behavior depends on. Non-control-equivalent instructions can be
4133     // mapped to the same SCEV expression, and it would be incorrect to transfer
4134     // NSW/NUW semantics to those operations.
4135     SmallVector<const SCEV *, 4> AddOps;
4136     AddOps.push_back(getSCEV(U->getOperand(1)));
4137     for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4138       unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4139       if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4140         break;
4141       U = cast<Operator>(Op);
4142       const SCEV *Op1 = getSCEV(U->getOperand(1));
4143       if (Opcode == Instruction::Sub)
4144         AddOps.push_back(getNegativeSCEV(Op1));
4145       else
4146         AddOps.push_back(Op1);
4147     }
4148     AddOps.push_back(getSCEV(U->getOperand(0)));
4149     return getAddExpr(AddOps);
4150   }
4151   case Instruction::Mul: {
4152     // Don't transfer NSW/NUW for the same reason as AddExpr.
4153     SmallVector<const SCEV *, 4> MulOps;
4154     MulOps.push_back(getSCEV(U->getOperand(1)));
4155     for (Value *Op = U->getOperand(0);
4156          Op->getValueID() == Instruction::Mul + Value::InstructionVal;
4157          Op = U->getOperand(0)) {
4158       U = cast<Operator>(Op);
4159       MulOps.push_back(getSCEV(U->getOperand(1)));
4160     }
4161     MulOps.push_back(getSCEV(U->getOperand(0)));
4162     return getMulExpr(MulOps);
4163   }
4164   case Instruction::UDiv:
4165     return getUDivExpr(getSCEV(U->getOperand(0)),
4166                        getSCEV(U->getOperand(1)));
4167   case Instruction::Sub:
4168     return getMinusSCEV(getSCEV(U->getOperand(0)),
4169                         getSCEV(U->getOperand(1)));
4170   case Instruction::And:
4171     // For an expression like x&255 that merely masks off the high bits,
4172     // use zext(trunc(x)) as the SCEV expression.
4173     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4174       if (CI->isNullValue())
4175         return getSCEV(U->getOperand(1));
4176       if (CI->isAllOnesValue())
4177         return getSCEV(U->getOperand(0));
4178       const APInt &A = CI->getValue();
4179 
4180       // Instcombine's ShrinkDemandedConstant may strip bits out of
4181       // constants, obscuring what would otherwise be a low-bits mask.
4182       // Use computeKnownBits to compute what ShrinkDemandedConstant
4183       // knew about to reconstruct a low-bits mask value.
4184       unsigned LZ = A.countLeadingZeros();
4185       unsigned TZ = A.countTrailingZeros();
4186       unsigned BitWidth = A.getBitWidth();
4187       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4188       computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, 0, AC,
4189                        nullptr, DT);
4190 
4191       APInt EffectiveMask =
4192           APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4193       if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4194         const SCEV *MulCount = getConstant(
4195             ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4196         return getMulExpr(
4197             getZeroExtendExpr(
4198                 getTruncateExpr(
4199                     getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4200                     IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4201                 U->getType()),
4202             MulCount);
4203       }
4204     }
4205     break;
4206 
4207   case Instruction::Or:
4208     // If the RHS of the Or is a constant, we may have something like:
4209     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
4210     // optimizations will transparently handle this case.
4211     //
4212     // In order for this transformation to be safe, the LHS must be of the
4213     // form X*(2^n) and the Or constant must be less than 2^n.
4214     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4215       const SCEV *LHS = getSCEV(U->getOperand(0));
4216       const APInt &CIVal = CI->getValue();
4217       if (GetMinTrailingZeros(LHS) >=
4218           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4219         // Build a plain add SCEV.
4220         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4221         // If the LHS of the add was an addrec and it has no-wrap flags,
4222         // transfer the no-wrap flags, since an or won't introduce a wrap.
4223         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4224           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4225           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4226             OldAR->getNoWrapFlags());
4227         }
4228         return S;
4229       }
4230     }
4231     break;
4232   case Instruction::Xor:
4233     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4234       // If the RHS of the xor is a signbit, then this is just an add.
4235       // Instcombine turns add of signbit into xor as a strength reduction step.
4236       if (CI->getValue().isSignBit())
4237         return getAddExpr(getSCEV(U->getOperand(0)),
4238                           getSCEV(U->getOperand(1)));
4239 
4240       // If the RHS of xor is -1, then this is a not operation.
4241       if (CI->isAllOnesValue())
4242         return getNotSCEV(getSCEV(U->getOperand(0)));
4243 
4244       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4245       // This is a variant of the check for xor with -1, and it handles
4246       // the case where instcombine has trimmed non-demanded bits out
4247       // of an xor with -1.
4248       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4249         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4250           if (BO->getOpcode() == Instruction::And &&
4251               LCI->getValue() == CI->getValue())
4252             if (const SCEVZeroExtendExpr *Z =
4253                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
4254               Type *UTy = U->getType();
4255               const SCEV *Z0 = Z->getOperand();
4256               Type *Z0Ty = Z0->getType();
4257               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4258 
4259               // If C is a low-bits mask, the zero extend is serving to
4260               // mask off the high bits. Complement the operand and
4261               // re-apply the zext.
4262               if (APIntOps::isMask(Z0TySize, CI->getValue()))
4263                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4264 
4265               // If C is a single bit, it may be in the sign-bit position
4266               // before the zero-extend. In this case, represent the xor
4267               // using an add, which is equivalent, and re-apply the zext.
4268               APInt Trunc = CI->getValue().trunc(Z0TySize);
4269               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
4270                   Trunc.isSignBit())
4271                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4272                                          UTy);
4273             }
4274     }
4275     break;
4276 
4277   case Instruction::Shl:
4278     // Turn shift left of a constant amount into a multiply.
4279     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4280       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4281 
4282       // If the shift count is not less than the bitwidth, the result of
4283       // the shift is undefined. Don't try to analyze it, because the
4284       // resolution chosen here may differ from the resolution chosen in
4285       // other parts of the compiler.
4286       if (SA->getValue().uge(BitWidth))
4287         break;
4288 
4289       Constant *X = ConstantInt::get(getContext(),
4290         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4291       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4292     }
4293     break;
4294 
4295   case Instruction::LShr:
4296     // Turn logical shift right of a constant into a unsigned divide.
4297     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4298       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4299 
4300       // If the shift count is not less than the bitwidth, the result of
4301       // the shift is undefined. Don't try to analyze it, because the
4302       // resolution chosen here may differ from the resolution chosen in
4303       // other parts of the compiler.
4304       if (SA->getValue().uge(BitWidth))
4305         break;
4306 
4307       Constant *X = ConstantInt::get(getContext(),
4308         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4309       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4310     }
4311     break;
4312 
4313   case Instruction::AShr:
4314     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4315     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
4316       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
4317         if (L->getOpcode() == Instruction::Shl &&
4318             L->getOperand(1) == U->getOperand(1)) {
4319           uint64_t BitWidth = getTypeSizeInBits(U->getType());
4320 
4321           // If the shift count is not less than the bitwidth, the result of
4322           // the shift is undefined. Don't try to analyze it, because the
4323           // resolution chosen here may differ from the resolution chosen in
4324           // other parts of the compiler.
4325           if (CI->getValue().uge(BitWidth))
4326             break;
4327 
4328           uint64_t Amt = BitWidth - CI->getZExtValue();
4329           if (Amt == BitWidth)
4330             return getSCEV(L->getOperand(0));       // shift by zero --> noop
4331           return
4332             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
4333                                               IntegerType::get(getContext(),
4334                                                                Amt)),
4335                               U->getType());
4336         }
4337     break;
4338 
4339   case Instruction::Trunc:
4340     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
4341 
4342   case Instruction::ZExt:
4343     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4344 
4345   case Instruction::SExt:
4346     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4347 
4348   case Instruction::BitCast:
4349     // BitCasts are no-op casts so we just eliminate the cast.
4350     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
4351       return getSCEV(U->getOperand(0));
4352     break;
4353 
4354   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4355   // lead to pointer expressions which cannot safely be expanded to GEPs,
4356   // because ScalarEvolution doesn't respect the GEP aliasing rules when
4357   // simplifying integer expressions.
4358 
4359   case Instruction::GetElementPtr:
4360     return createNodeForGEP(cast<GEPOperator>(U));
4361 
4362   case Instruction::PHI:
4363     return createNodeForPHI(cast<PHINode>(U));
4364 
4365   case Instruction::Select:
4366     // This could be a smax or umax that was lowered earlier.
4367     // Try to recover it.
4368     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4369       Value *LHS = ICI->getOperand(0);
4370       Value *RHS = ICI->getOperand(1);
4371       switch (ICI->getPredicate()) {
4372       case ICmpInst::ICMP_SLT:
4373       case ICmpInst::ICMP_SLE:
4374         std::swap(LHS, RHS);
4375         // fall through
4376       case ICmpInst::ICMP_SGT:
4377       case ICmpInst::ICMP_SGE:
4378         // a >s b ? a+x : b+x  ->  smax(a, b)+x
4379         // a >s b ? b+x : a+x  ->  smin(a, b)+x
4380         if (getTypeSizeInBits(LHS->getType()) <=
4381             getTypeSizeInBits(U->getType())) {
4382           const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
4383           const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
4384           const SCEV *LA = getSCEV(U->getOperand(1));
4385           const SCEV *RA = getSCEV(U->getOperand(2));
4386           const SCEV *LDiff = getMinusSCEV(LA, LS);
4387           const SCEV *RDiff = getMinusSCEV(RA, RS);
4388           if (LDiff == RDiff)
4389             return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4390           LDiff = getMinusSCEV(LA, RS);
4391           RDiff = getMinusSCEV(RA, LS);
4392           if (LDiff == RDiff)
4393             return getAddExpr(getSMinExpr(LS, RS), LDiff);
4394         }
4395         break;
4396       case ICmpInst::ICMP_ULT:
4397       case ICmpInst::ICMP_ULE:
4398         std::swap(LHS, RHS);
4399         // fall through
4400       case ICmpInst::ICMP_UGT:
4401       case ICmpInst::ICMP_UGE:
4402         // a >u b ? a+x : b+x  ->  umax(a, b)+x
4403         // a >u b ? b+x : a+x  ->  umin(a, b)+x
4404         if (getTypeSizeInBits(LHS->getType()) <=
4405             getTypeSizeInBits(U->getType())) {
4406           const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4407           const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
4408           const SCEV *LA = getSCEV(U->getOperand(1));
4409           const SCEV *RA = getSCEV(U->getOperand(2));
4410           const SCEV *LDiff = getMinusSCEV(LA, LS);
4411           const SCEV *RDiff = getMinusSCEV(RA, RS);
4412           if (LDiff == RDiff)
4413             return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4414           LDiff = getMinusSCEV(LA, RS);
4415           RDiff = getMinusSCEV(RA, LS);
4416           if (LDiff == RDiff)
4417             return getAddExpr(getUMinExpr(LS, RS), LDiff);
4418         }
4419         break;
4420       case ICmpInst::ICMP_NE:
4421         // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4422         if (getTypeSizeInBits(LHS->getType()) <=
4423                 getTypeSizeInBits(U->getType()) &&
4424             isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4425           const SCEV *One = getConstant(U->getType(), 1);
4426           const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4427           const SCEV *LA = getSCEV(U->getOperand(1));
4428           const SCEV *RA = getSCEV(U->getOperand(2));
4429           const SCEV *LDiff = getMinusSCEV(LA, LS);
4430           const SCEV *RDiff = getMinusSCEV(RA, One);
4431           if (LDiff == RDiff)
4432             return getAddExpr(getUMaxExpr(One, LS), LDiff);
4433         }
4434         break;
4435       case ICmpInst::ICMP_EQ:
4436         // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4437         if (getTypeSizeInBits(LHS->getType()) <=
4438                 getTypeSizeInBits(U->getType()) &&
4439             isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4440           const SCEV *One = getConstant(U->getType(), 1);
4441           const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4442           const SCEV *LA = getSCEV(U->getOperand(1));
4443           const SCEV *RA = getSCEV(U->getOperand(2));
4444           const SCEV *LDiff = getMinusSCEV(LA, One);
4445           const SCEV *RDiff = getMinusSCEV(RA, LS);
4446           if (LDiff == RDiff)
4447             return getAddExpr(getUMaxExpr(One, LS), LDiff);
4448         }
4449         break;
4450       default:
4451         break;
4452       }
4453     }
4454 
4455   default: // We cannot analyze this expression.
4456     break;
4457   }
4458 
4459   return getUnknown(V);
4460 }
4461 
4462 
4463 
4464 //===----------------------------------------------------------------------===//
4465 //                   Iteration Count Computation Code
4466 //
4467 
4468 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4469   if (BasicBlock *ExitingBB = L->getExitingBlock())
4470     return getSmallConstantTripCount(L, ExitingBB);
4471 
4472   // No trip count information for multiple exits.
4473   return 0;
4474 }
4475 
4476 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
4477 /// normal unsigned value. Returns 0 if the trip count is unknown or not
4478 /// constant. Will also return 0 if the maximum trip count is very large (>=
4479 /// 2^32).
4480 ///
4481 /// This "trip count" assumes that control exits via ExitingBlock. More
4482 /// precisely, it is the number of times that control may reach ExitingBlock
4483 /// before taking the branch. For loops with multiple exits, it may not be the
4484 /// number times that the loop header executes because the loop may exit
4485 /// prematurely via another branch.
4486 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4487                                                     BasicBlock *ExitingBlock) {
4488   assert(ExitingBlock && "Must pass a non-null exiting block!");
4489   assert(L->isLoopExiting(ExitingBlock) &&
4490          "Exiting block must actually branch out of the loop!");
4491   const SCEVConstant *ExitCount =
4492       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
4493   if (!ExitCount)
4494     return 0;
4495 
4496   ConstantInt *ExitConst = ExitCount->getValue();
4497 
4498   // Guard against huge trip counts.
4499   if (ExitConst->getValue().getActiveBits() > 32)
4500     return 0;
4501 
4502   // In case of integer overflow, this returns 0, which is correct.
4503   return ((unsigned)ExitConst->getZExtValue()) + 1;
4504 }
4505 
4506 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4507   if (BasicBlock *ExitingBB = L->getExitingBlock())
4508     return getSmallConstantTripMultiple(L, ExitingBB);
4509 
4510   // No trip multiple information for multiple exits.
4511   return 0;
4512 }
4513 
4514 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4515 /// trip count of this loop as a normal unsigned value, if possible. This
4516 /// means that the actual trip count is always a multiple of the returned
4517 /// value (don't forget the trip count could very well be zero as well!).
4518 ///
4519 /// Returns 1 if the trip count is unknown or not guaranteed to be the
4520 /// multiple of a constant (which is also the case if the trip count is simply
4521 /// constant, use getSmallConstantTripCount for that case), Will also return 1
4522 /// if the trip count is very large (>= 2^32).
4523 ///
4524 /// As explained in the comments for getSmallConstantTripCount, this assumes
4525 /// that control exits the loop via ExitingBlock.
4526 unsigned
4527 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4528                                               BasicBlock *ExitingBlock) {
4529   assert(ExitingBlock && "Must pass a non-null exiting block!");
4530   assert(L->isLoopExiting(ExitingBlock) &&
4531          "Exiting block must actually branch out of the loop!");
4532   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
4533   if (ExitCount == getCouldNotCompute())
4534     return 1;
4535 
4536   // Get the trip count from the BE count by adding 1.
4537   const SCEV *TCMul = getAddExpr(ExitCount,
4538                                  getConstant(ExitCount->getType(), 1));
4539   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4540   // to factor simple cases.
4541   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4542     TCMul = Mul->getOperand(0);
4543 
4544   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4545   if (!MulC)
4546     return 1;
4547 
4548   ConstantInt *Result = MulC->getValue();
4549 
4550   // Guard against huge trip counts (this requires checking
4551   // for zero to handle the case where the trip count == -1 and the
4552   // addition wraps).
4553   if (!Result || Result->getValue().getActiveBits() > 32 ||
4554       Result->getValue().getActiveBits() == 0)
4555     return 1;
4556 
4557   return (unsigned)Result->getZExtValue();
4558 }
4559 
4560 // getExitCount - Get the expression for the number of loop iterations for which
4561 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4562 // SCEVCouldNotCompute.
4563 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4564   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4565 }
4566 
4567 /// getBackedgeTakenCount - If the specified loop has a predictable
4568 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4569 /// object. The backedge-taken count is the number of times the loop header
4570 /// will be branched to from within the loop. This is one less than the
4571 /// trip count of the loop, since it doesn't count the first iteration,
4572 /// when the header is branched to from outside the loop.
4573 ///
4574 /// Note that it is not valid to call this method on a loop without a
4575 /// loop-invariant backedge-taken count (see
4576 /// hasLoopInvariantBackedgeTakenCount).
4577 ///
4578 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4579   return getBackedgeTakenInfo(L).getExact(this);
4580 }
4581 
4582 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4583 /// return the least SCEV value that is known never to be less than the
4584 /// actual backedge taken count.
4585 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4586   return getBackedgeTakenInfo(L).getMax(this);
4587 }
4588 
4589 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
4590 /// onto the given Worklist.
4591 static void
4592 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4593   BasicBlock *Header = L->getHeader();
4594 
4595   // Push all Loop-header PHIs onto the Worklist stack.
4596   for (BasicBlock::iterator I = Header->begin();
4597        PHINode *PN = dyn_cast<PHINode>(I); ++I)
4598     Worklist.push_back(PN);
4599 }
4600 
4601 const ScalarEvolution::BackedgeTakenInfo &
4602 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4603   // Initially insert an invalid entry for this loop. If the insertion
4604   // succeeds, proceed to actually compute a backedge-taken count and
4605   // update the value. The temporary CouldNotCompute value tells SCEV
4606   // code elsewhere that it shouldn't attempt to request a new
4607   // backedge-taken count, which could result in infinite recursion.
4608   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4609     BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4610   if (!Pair.second)
4611     return Pair.first->second;
4612 
4613   // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4614   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4615   // must be cleared in this scope.
4616   BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4617 
4618   if (Result.getExact(this) != getCouldNotCompute()) {
4619     assert(isLoopInvariant(Result.getExact(this), L) &&
4620            isLoopInvariant(Result.getMax(this), L) &&
4621            "Computed backedge-taken count isn't loop invariant for loop!");
4622     ++NumTripCountsComputed;
4623   }
4624   else if (Result.getMax(this) == getCouldNotCompute() &&
4625            isa<PHINode>(L->getHeader()->begin())) {
4626     // Only count loops that have phi nodes as not being computable.
4627     ++NumTripCountsNotComputed;
4628   }
4629 
4630   // Now that we know more about the trip count for this loop, forget any
4631   // existing SCEV values for PHI nodes in this loop since they are only
4632   // conservative estimates made without the benefit of trip count
4633   // information. This is similar to the code in forgetLoop, except that
4634   // it handles SCEVUnknown PHI nodes specially.
4635   if (Result.hasAnyInfo()) {
4636     SmallVector<Instruction *, 16> Worklist;
4637     PushLoopPHIs(L, Worklist);
4638 
4639     SmallPtrSet<Instruction *, 8> Visited;
4640     while (!Worklist.empty()) {
4641       Instruction *I = Worklist.pop_back_val();
4642       if (!Visited.insert(I).second)
4643         continue;
4644 
4645       ValueExprMapType::iterator It =
4646         ValueExprMap.find_as(static_cast<Value *>(I));
4647       if (It != ValueExprMap.end()) {
4648         const SCEV *Old = It->second;
4649 
4650         // SCEVUnknown for a PHI either means that it has an unrecognized
4651         // structure, or it's a PHI that's in the progress of being computed
4652         // by createNodeForPHI.  In the former case, additional loop trip
4653         // count information isn't going to change anything. In the later
4654         // case, createNodeForPHI will perform the necessary updates on its
4655         // own when it gets to that point.
4656         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4657           forgetMemoizedResults(Old);
4658           ValueExprMap.erase(It);
4659         }
4660         if (PHINode *PN = dyn_cast<PHINode>(I))
4661           ConstantEvolutionLoopExitValue.erase(PN);
4662       }
4663 
4664       PushDefUseChildren(I, Worklist);
4665     }
4666   }
4667 
4668   // Re-lookup the insert position, since the call to
4669   // ComputeBackedgeTakenCount above could result in a
4670   // recusive call to getBackedgeTakenInfo (on a different
4671   // loop), which would invalidate the iterator computed
4672   // earlier.
4673   return BackedgeTakenCounts.find(L)->second = Result;
4674 }
4675 
4676 /// forgetLoop - This method should be called by the client when it has
4677 /// changed a loop in a way that may effect ScalarEvolution's ability to
4678 /// compute a trip count, or if the loop is deleted.
4679 void ScalarEvolution::forgetLoop(const Loop *L) {
4680   // Drop any stored trip count value.
4681   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4682     BackedgeTakenCounts.find(L);
4683   if (BTCPos != BackedgeTakenCounts.end()) {
4684     BTCPos->second.clear();
4685     BackedgeTakenCounts.erase(BTCPos);
4686   }
4687 
4688   // Drop information about expressions based on loop-header PHIs.
4689   SmallVector<Instruction *, 16> Worklist;
4690   PushLoopPHIs(L, Worklist);
4691 
4692   SmallPtrSet<Instruction *, 8> Visited;
4693   while (!Worklist.empty()) {
4694     Instruction *I = Worklist.pop_back_val();
4695     if (!Visited.insert(I).second)
4696       continue;
4697 
4698     ValueExprMapType::iterator It =
4699       ValueExprMap.find_as(static_cast<Value *>(I));
4700     if (It != ValueExprMap.end()) {
4701       forgetMemoizedResults(It->second);
4702       ValueExprMap.erase(It);
4703       if (PHINode *PN = dyn_cast<PHINode>(I))
4704         ConstantEvolutionLoopExitValue.erase(PN);
4705     }
4706 
4707     PushDefUseChildren(I, Worklist);
4708   }
4709 
4710   // Forget all contained loops too, to avoid dangling entries in the
4711   // ValuesAtScopes map.
4712   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4713     forgetLoop(*I);
4714 }
4715 
4716 /// forgetValue - This method should be called by the client when it has
4717 /// changed a value in a way that may effect its value, or which may
4718 /// disconnect it from a def-use chain linking it to a loop.
4719 void ScalarEvolution::forgetValue(Value *V) {
4720   Instruction *I = dyn_cast<Instruction>(V);
4721   if (!I) return;
4722 
4723   // Drop information about expressions based on loop-header PHIs.
4724   SmallVector<Instruction *, 16> Worklist;
4725   Worklist.push_back(I);
4726 
4727   SmallPtrSet<Instruction *, 8> Visited;
4728   while (!Worklist.empty()) {
4729     I = Worklist.pop_back_val();
4730     if (!Visited.insert(I).second)
4731       continue;
4732 
4733     ValueExprMapType::iterator It =
4734       ValueExprMap.find_as(static_cast<Value *>(I));
4735     if (It != ValueExprMap.end()) {
4736       forgetMemoizedResults(It->second);
4737       ValueExprMap.erase(It);
4738       if (PHINode *PN = dyn_cast<PHINode>(I))
4739         ConstantEvolutionLoopExitValue.erase(PN);
4740     }
4741 
4742     PushDefUseChildren(I, Worklist);
4743   }
4744 }
4745 
4746 /// getExact - Get the exact loop backedge taken count considering all loop
4747 /// exits. A computable result can only be return for loops with a single exit.
4748 /// Returning the minimum taken count among all exits is incorrect because one
4749 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4750 /// the limit of each loop test is never skipped. This is a valid assumption as
4751 /// long as the loop exits via that test. For precise results, it is the
4752 /// caller's responsibility to specify the relevant loop exit using
4753 /// getExact(ExitingBlock, SE).
4754 const SCEV *
4755 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4756   // If any exits were not computable, the loop is not computable.
4757   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4758 
4759   // We need exactly one computable exit.
4760   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4761   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4762 
4763   const SCEV *BECount = nullptr;
4764   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4765        ENT != nullptr; ENT = ENT->getNextExit()) {
4766 
4767     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4768 
4769     if (!BECount)
4770       BECount = ENT->ExactNotTaken;
4771     else if (BECount != ENT->ExactNotTaken)
4772       return SE->getCouldNotCompute();
4773   }
4774   assert(BECount && "Invalid not taken count for loop exit");
4775   return BECount;
4776 }
4777 
4778 /// getExact - Get the exact not taken count for this loop exit.
4779 const SCEV *
4780 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4781                                              ScalarEvolution *SE) const {
4782   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4783        ENT != nullptr; ENT = ENT->getNextExit()) {
4784 
4785     if (ENT->ExitingBlock == ExitingBlock)
4786       return ENT->ExactNotTaken;
4787   }
4788   return SE->getCouldNotCompute();
4789 }
4790 
4791 /// getMax - Get the max backedge taken count for the loop.
4792 const SCEV *
4793 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4794   return Max ? Max : SE->getCouldNotCompute();
4795 }
4796 
4797 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4798                                                     ScalarEvolution *SE) const {
4799   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4800     return true;
4801 
4802   if (!ExitNotTaken.ExitingBlock)
4803     return false;
4804 
4805   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4806        ENT != nullptr; ENT = ENT->getNextExit()) {
4807 
4808     if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4809         && SE->hasOperand(ENT->ExactNotTaken, S)) {
4810       return true;
4811     }
4812   }
4813   return false;
4814 }
4815 
4816 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4817 /// computable exit into a persistent ExitNotTakenInfo array.
4818 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4819   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4820   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4821 
4822   if (!Complete)
4823     ExitNotTaken.setIncomplete();
4824 
4825   unsigned NumExits = ExitCounts.size();
4826   if (NumExits == 0) return;
4827 
4828   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4829   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4830   if (NumExits == 1) return;
4831 
4832   // Handle the rare case of multiple computable exits.
4833   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4834 
4835   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4836   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4837     PrevENT->setNextExit(ENT);
4838     ENT->ExitingBlock = ExitCounts[i].first;
4839     ENT->ExactNotTaken = ExitCounts[i].second;
4840   }
4841 }
4842 
4843 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
4844 void ScalarEvolution::BackedgeTakenInfo::clear() {
4845   ExitNotTaken.ExitingBlock = nullptr;
4846   ExitNotTaken.ExactNotTaken = nullptr;
4847   delete[] ExitNotTaken.getNextExit();
4848 }
4849 
4850 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
4851 /// of the specified loop will execute.
4852 ScalarEvolution::BackedgeTakenInfo
4853 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4854   SmallVector<BasicBlock *, 8> ExitingBlocks;
4855   L->getExitingBlocks(ExitingBlocks);
4856 
4857   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4858   bool CouldComputeBECount = true;
4859   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
4860   const SCEV *MustExitMaxBECount = nullptr;
4861   const SCEV *MayExitMaxBECount = nullptr;
4862 
4863   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4864   // and compute maxBECount.
4865   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4866     BasicBlock *ExitBB = ExitingBlocks[i];
4867     ExitLimit EL = ComputeExitLimit(L, ExitBB);
4868 
4869     // 1. For each exit that can be computed, add an entry to ExitCounts.
4870     // CouldComputeBECount is true only if all exits can be computed.
4871     if (EL.Exact == getCouldNotCompute())
4872       // We couldn't compute an exact value for this exit, so
4873       // we won't be able to compute an exact value for the loop.
4874       CouldComputeBECount = false;
4875     else
4876       ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
4877 
4878     // 2. Derive the loop's MaxBECount from each exit's max number of
4879     // non-exiting iterations. Partition the loop exits into two kinds:
4880     // LoopMustExits and LoopMayExits.
4881     //
4882     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4883     // is a LoopMayExit.  If any computable LoopMustExit is found, then
4884     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4885     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4886     // considered greater than any computable EL.Max.
4887     if (EL.Max != getCouldNotCompute() && Latch &&
4888         DT->dominates(ExitBB, Latch)) {
4889       if (!MustExitMaxBECount)
4890         MustExitMaxBECount = EL.Max;
4891       else {
4892         MustExitMaxBECount =
4893           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
4894       }
4895     } else if (MayExitMaxBECount != getCouldNotCompute()) {
4896       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4897         MayExitMaxBECount = EL.Max;
4898       else {
4899         MayExitMaxBECount =
4900           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4901       }
4902     }
4903   }
4904   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4905     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
4906   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4907 }
4908 
4909 /// ComputeExitLimit - Compute the number of times the backedge of the specified
4910 /// loop will execute if it exits via the specified block.
4911 ScalarEvolution::ExitLimit
4912 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4913 
4914   // Okay, we've chosen an exiting block.  See what condition causes us to
4915   // exit at this block and remember the exit block and whether all other targets
4916   // lead to the loop header.
4917   bool MustExecuteLoopHeader = true;
4918   BasicBlock *Exit = nullptr;
4919   for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4920        SI != SE; ++SI)
4921     if (!L->contains(*SI)) {
4922       if (Exit) // Multiple exit successors.
4923         return getCouldNotCompute();
4924       Exit = *SI;
4925     } else if (*SI != L->getHeader()) {
4926       MustExecuteLoopHeader = false;
4927     }
4928 
4929   // At this point, we know we have a conditional branch that determines whether
4930   // the loop is exited.  However, we don't know if the branch is executed each
4931   // time through the loop.  If not, then the execution count of the branch will
4932   // not be equal to the trip count of the loop.
4933   //
4934   // Currently we check for this by checking to see if the Exit branch goes to
4935   // the loop header.  If so, we know it will always execute the same number of
4936   // times as the loop.  We also handle the case where the exit block *is* the
4937   // loop header.  This is common for un-rotated loops.
4938   //
4939   // If both of those tests fail, walk up the unique predecessor chain to the
4940   // header, stopping if there is an edge that doesn't exit the loop. If the
4941   // header is reached, the execution count of the branch will be equal to the
4942   // trip count of the loop.
4943   //
4944   //  More extensive analysis could be done to handle more cases here.
4945   //
4946   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
4947     // The simple checks failed, try climbing the unique predecessor chain
4948     // up to the header.
4949     bool Ok = false;
4950     for (BasicBlock *BB = ExitingBlock; BB; ) {
4951       BasicBlock *Pred = BB->getUniquePredecessor();
4952       if (!Pred)
4953         return getCouldNotCompute();
4954       TerminatorInst *PredTerm = Pred->getTerminator();
4955       for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4956         BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4957         if (PredSucc == BB)
4958           continue;
4959         // If the predecessor has a successor that isn't BB and isn't
4960         // outside the loop, assume the worst.
4961         if (L->contains(PredSucc))
4962           return getCouldNotCompute();
4963       }
4964       if (Pred == L->getHeader()) {
4965         Ok = true;
4966         break;
4967       }
4968       BB = Pred;
4969     }
4970     if (!Ok)
4971       return getCouldNotCompute();
4972   }
4973 
4974   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
4975   TerminatorInst *Term = ExitingBlock->getTerminator();
4976   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4977     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4978     // Proceed to the next level to examine the exit condition expression.
4979     return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4980                                     BI->getSuccessor(1),
4981                                     /*ControlsExit=*/IsOnlyExit);
4982   }
4983 
4984   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4985     return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4986                                                 /*ControlsExit=*/IsOnlyExit);
4987 
4988   return getCouldNotCompute();
4989 }
4990 
4991 /// ComputeExitLimitFromCond - Compute the number of times the
4992 /// backedge of the specified loop will execute if its exit condition
4993 /// were a conditional branch of ExitCond, TBB, and FBB.
4994 ///
4995 /// @param ControlsExit is true if ExitCond directly controls the exit
4996 /// branch. In this case, we can assume that the loop exits only if the
4997 /// condition is true and can infer that failing to meet the condition prior to
4998 /// integer wraparound results in undefined behavior.
4999 ScalarEvolution::ExitLimit
5000 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
5001                                           Value *ExitCond,
5002                                           BasicBlock *TBB,
5003                                           BasicBlock *FBB,
5004                                           bool ControlsExit) {
5005   // Check if the controlling expression for this loop is an And or Or.
5006   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5007     if (BO->getOpcode() == Instruction::And) {
5008       // Recurse on the operands of the and.
5009       bool EitherMayExit = L->contains(TBB);
5010       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5011                                                ControlsExit && !EitherMayExit);
5012       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5013                                                ControlsExit && !EitherMayExit);
5014       const SCEV *BECount = getCouldNotCompute();
5015       const SCEV *MaxBECount = getCouldNotCompute();
5016       if (EitherMayExit) {
5017         // Both conditions must be true for the loop to continue executing.
5018         // Choose the less conservative count.
5019         if (EL0.Exact == getCouldNotCompute() ||
5020             EL1.Exact == getCouldNotCompute())
5021           BECount = getCouldNotCompute();
5022         else
5023           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5024         if (EL0.Max == getCouldNotCompute())
5025           MaxBECount = EL1.Max;
5026         else if (EL1.Max == getCouldNotCompute())
5027           MaxBECount = EL0.Max;
5028         else
5029           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5030       } else {
5031         // Both conditions must be true at the same time for the loop to exit.
5032         // For now, be conservative.
5033         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5034         if (EL0.Max == EL1.Max)
5035           MaxBECount = EL0.Max;
5036         if (EL0.Exact == EL1.Exact)
5037           BECount = EL0.Exact;
5038       }
5039 
5040       return ExitLimit(BECount, MaxBECount);
5041     }
5042     if (BO->getOpcode() == Instruction::Or) {
5043       // Recurse on the operands of the or.
5044       bool EitherMayExit = L->contains(FBB);
5045       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5046                                                ControlsExit && !EitherMayExit);
5047       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5048                                                ControlsExit && !EitherMayExit);
5049       const SCEV *BECount = getCouldNotCompute();
5050       const SCEV *MaxBECount = getCouldNotCompute();
5051       if (EitherMayExit) {
5052         // Both conditions must be false for the loop to continue executing.
5053         // Choose the less conservative count.
5054         if (EL0.Exact == getCouldNotCompute() ||
5055             EL1.Exact == getCouldNotCompute())
5056           BECount = getCouldNotCompute();
5057         else
5058           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5059         if (EL0.Max == getCouldNotCompute())
5060           MaxBECount = EL1.Max;
5061         else if (EL1.Max == getCouldNotCompute())
5062           MaxBECount = EL0.Max;
5063         else
5064           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5065       } else {
5066         // Both conditions must be false at the same time for the loop to exit.
5067         // For now, be conservative.
5068         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5069         if (EL0.Max == EL1.Max)
5070           MaxBECount = EL0.Max;
5071         if (EL0.Exact == EL1.Exact)
5072           BECount = EL0.Exact;
5073       }
5074 
5075       return ExitLimit(BECount, MaxBECount);
5076     }
5077   }
5078 
5079   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5080   // Proceed to the next level to examine the icmp.
5081   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
5082     return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5083 
5084   // Check for a constant condition. These are normally stripped out by
5085   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5086   // preserve the CFG and is temporarily leaving constant conditions
5087   // in place.
5088   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5089     if (L->contains(FBB) == !CI->getZExtValue())
5090       // The backedge is always taken.
5091       return getCouldNotCompute();
5092     else
5093       // The backedge is never taken.
5094       return getConstant(CI->getType(), 0);
5095   }
5096 
5097   // If it's not an integer or pointer comparison then compute it the hard way.
5098   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5099 }
5100 
5101 /// ComputeExitLimitFromICmp - Compute the number of times the
5102 /// backedge of the specified loop will execute if its exit condition
5103 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
5104 ScalarEvolution::ExitLimit
5105 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5106                                           ICmpInst *ExitCond,
5107                                           BasicBlock *TBB,
5108                                           BasicBlock *FBB,
5109                                           bool ControlsExit) {
5110 
5111   // If the condition was exit on true, convert the condition to exit on false
5112   ICmpInst::Predicate Cond;
5113   if (!L->contains(FBB))
5114     Cond = ExitCond->getPredicate();
5115   else
5116     Cond = ExitCond->getInversePredicate();
5117 
5118   // Handle common loops like: for (X = "string"; *X; ++X)
5119   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5120     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5121       ExitLimit ItCnt =
5122         ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5123       if (ItCnt.hasAnyInfo())
5124         return ItCnt;
5125     }
5126 
5127   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5128   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5129 
5130   // Try to evaluate any dependencies out of the loop.
5131   LHS = getSCEVAtScope(LHS, L);
5132   RHS = getSCEVAtScope(RHS, L);
5133 
5134   // At this point, we would like to compute how many iterations of the
5135   // loop the predicate will return true for these inputs.
5136   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5137     // If there is a loop-invariant, force it into the RHS.
5138     std::swap(LHS, RHS);
5139     Cond = ICmpInst::getSwappedPredicate(Cond);
5140   }
5141 
5142   // Simplify the operands before analyzing them.
5143   (void)SimplifyICmpOperands(Cond, LHS, RHS);
5144 
5145   // If we have a comparison of a chrec against a constant, try to use value
5146   // ranges to answer this query.
5147   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5148     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5149       if (AddRec->getLoop() == L) {
5150         // Form the constant range.
5151         ConstantRange CompRange(
5152             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
5153 
5154         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5155         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5156       }
5157 
5158   switch (Cond) {
5159   case ICmpInst::ICMP_NE: {                     // while (X != Y)
5160     // Convert to: while (X-Y != 0)
5161     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5162     if (EL.hasAnyInfo()) return EL;
5163     break;
5164   }
5165   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
5166     // Convert to: while (X-Y == 0)
5167     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5168     if (EL.hasAnyInfo()) return EL;
5169     break;
5170   }
5171   case ICmpInst::ICMP_SLT:
5172   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
5173     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5174     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
5175     if (EL.hasAnyInfo()) return EL;
5176     break;
5177   }
5178   case ICmpInst::ICMP_SGT:
5179   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
5180     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5181     ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
5182     if (EL.hasAnyInfo()) return EL;
5183     break;
5184   }
5185   default:
5186 #if 0
5187     dbgs() << "ComputeBackedgeTakenCount ";
5188     if (ExitCond->getOperand(0)->getType()->isUnsigned())
5189       dbgs() << "[unsigned] ";
5190     dbgs() << *LHS << "   "
5191          << Instruction::getOpcodeName(Instruction::ICmp)
5192          << "   " << *RHS << "\n";
5193 #endif
5194     break;
5195   }
5196   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5197 }
5198 
5199 ScalarEvolution::ExitLimit
5200 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5201                                                       SwitchInst *Switch,
5202                                                       BasicBlock *ExitingBlock,
5203                                                       bool ControlsExit) {
5204   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5205 
5206   // Give up if the exit is the default dest of a switch.
5207   if (Switch->getDefaultDest() == ExitingBlock)
5208     return getCouldNotCompute();
5209 
5210   assert(L->contains(Switch->getDefaultDest()) &&
5211          "Default case must not exit the loop!");
5212   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5213   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5214 
5215   // while (X != Y) --> while (X-Y != 0)
5216   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5217   if (EL.hasAnyInfo())
5218     return EL;
5219 
5220   return getCouldNotCompute();
5221 }
5222 
5223 static ConstantInt *
5224 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5225                                 ScalarEvolution &SE) {
5226   const SCEV *InVal = SE.getConstant(C);
5227   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
5228   assert(isa<SCEVConstant>(Val) &&
5229          "Evaluation of SCEV at constant didn't fold correctly?");
5230   return cast<SCEVConstant>(Val)->getValue();
5231 }
5232 
5233 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
5234 /// 'icmp op load X, cst', try to see if we can compute the backedge
5235 /// execution count.
5236 ScalarEvolution::ExitLimit
5237 ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5238   LoadInst *LI,
5239   Constant *RHS,
5240   const Loop *L,
5241   ICmpInst::Predicate predicate) {
5242 
5243   if (LI->isVolatile()) return getCouldNotCompute();
5244 
5245   // Check to see if the loaded pointer is a getelementptr of a global.
5246   // TODO: Use SCEV instead of manually grubbing with GEPs.
5247   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
5248   if (!GEP) return getCouldNotCompute();
5249 
5250   // Make sure that it is really a constant global we are gepping, with an
5251   // initializer, and make sure the first IDX is really 0.
5252   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
5253   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
5254       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5255       !cast<Constant>(GEP->getOperand(1))->isNullValue())
5256     return getCouldNotCompute();
5257 
5258   // Okay, we allow one non-constant index into the GEP instruction.
5259   Value *VarIdx = nullptr;
5260   std::vector<Constant*> Indexes;
5261   unsigned VarIdxNum = 0;
5262   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5263     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5264       Indexes.push_back(CI);
5265     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
5266       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
5267       VarIdx = GEP->getOperand(i);
5268       VarIdxNum = i-2;
5269       Indexes.push_back(nullptr);
5270     }
5271 
5272   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5273   if (!VarIdx)
5274     return getCouldNotCompute();
5275 
5276   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5277   // Check to see if X is a loop variant variable value now.
5278   const SCEV *Idx = getSCEV(VarIdx);
5279   Idx = getSCEVAtScope(Idx, L);
5280 
5281   // We can only recognize very limited forms of loop index expressions, in
5282   // particular, only affine AddRec's like {C1,+,C2}.
5283   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
5284   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
5285       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5286       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
5287     return getCouldNotCompute();
5288 
5289   unsigned MaxSteps = MaxBruteForceIterations;
5290   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
5291     ConstantInt *ItCst = ConstantInt::get(
5292                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
5293     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
5294 
5295     // Form the GEP offset.
5296     Indexes[VarIdxNum] = Val;
5297 
5298     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5299                                                          Indexes);
5300     if (!Result) break;  // Cannot compute!
5301 
5302     // Evaluate the condition for this iteration.
5303     Result = ConstantExpr::getICmp(predicate, Result, RHS);
5304     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
5305     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
5306 #if 0
5307       dbgs() << "\n***\n*** Computed loop count " << *ItCst
5308              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5309              << "***\n";
5310 #endif
5311       ++NumArrayLenItCounts;
5312       return getConstant(ItCst);   // Found terminating iteration!
5313     }
5314   }
5315   return getCouldNotCompute();
5316 }
5317 
5318 
5319 /// CanConstantFold - Return true if we can constant fold an instruction of the
5320 /// specified type, assuming that all operands were constants.
5321 static bool CanConstantFold(const Instruction *I) {
5322   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
5323       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5324       isa<LoadInst>(I))
5325     return true;
5326 
5327   if (const CallInst *CI = dyn_cast<CallInst>(I))
5328     if (const Function *F = CI->getCalledFunction())
5329       return canConstantFoldCallTo(F);
5330   return false;
5331 }
5332 
5333 /// Determine whether this instruction can constant evolve within this loop
5334 /// assuming its operands can all constant evolve.
5335 static bool canConstantEvolve(Instruction *I, const Loop *L) {
5336   // An instruction outside of the loop can't be derived from a loop PHI.
5337   if (!L->contains(I)) return false;
5338 
5339   if (isa<PHINode>(I)) {
5340     if (L->getHeader() == I->getParent())
5341       return true;
5342     else
5343       // We don't currently keep track of the control flow needed to evaluate
5344       // PHIs, so we cannot handle PHIs inside of loops.
5345       return false;
5346   }
5347 
5348   // If we won't be able to constant fold this expression even if the operands
5349   // are constants, bail early.
5350   return CanConstantFold(I);
5351 }
5352 
5353 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5354 /// recursing through each instruction operand until reaching a loop header phi.
5355 static PHINode *
5356 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
5357                                DenseMap<Instruction *, PHINode *> &PHIMap) {
5358 
5359   // Otherwise, we can evaluate this instruction if all of its operands are
5360   // constant or derived from a PHI node themselves.
5361   PHINode *PHI = nullptr;
5362   for (Instruction::op_iterator OpI = UseInst->op_begin(),
5363          OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5364 
5365     if (isa<Constant>(*OpI)) continue;
5366 
5367     Instruction *OpInst = dyn_cast<Instruction>(*OpI);
5368     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
5369 
5370     PHINode *P = dyn_cast<PHINode>(OpInst);
5371     if (!P)
5372       // If this operand is already visited, reuse the prior result.
5373       // We may have P != PHI if this is the deepest point at which the
5374       // inconsistent paths meet.
5375       P = PHIMap.lookup(OpInst);
5376     if (!P) {
5377       // Recurse and memoize the results, whether a phi is found or not.
5378       // This recursive call invalidates pointers into PHIMap.
5379       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5380       PHIMap[OpInst] = P;
5381     }
5382     if (!P)
5383       return nullptr;  // Not evolving from PHI
5384     if (PHI && PHI != P)
5385       return nullptr;  // Evolving from multiple different PHIs.
5386     PHI = P;
5387   }
5388   // This is a expression evolving from a constant PHI!
5389   return PHI;
5390 }
5391 
5392 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5393 /// in the loop that V is derived from.  We allow arbitrary operations along the
5394 /// way, but the operands of an operation must either be constants or a value
5395 /// derived from a constant PHI.  If this expression does not fit with these
5396 /// constraints, return null.
5397 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
5398   Instruction *I = dyn_cast<Instruction>(V);
5399   if (!I || !canConstantEvolve(I, L)) return nullptr;
5400 
5401   if (PHINode *PN = dyn_cast<PHINode>(I)) {
5402     return PN;
5403   }
5404 
5405   // Record non-constant instructions contained by the loop.
5406   DenseMap<Instruction *, PHINode *> PHIMap;
5407   return getConstantEvolvingPHIOperands(I, L, PHIMap);
5408 }
5409 
5410 /// EvaluateExpression - Given an expression that passes the
5411 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5412 /// in the loop has the value PHIVal.  If we can't fold this expression for some
5413 /// reason, return null.
5414 static Constant *EvaluateExpression(Value *V, const Loop *L,
5415                                     DenseMap<Instruction *, Constant *> &Vals,
5416                                     const DataLayout *DL,
5417                                     const TargetLibraryInfo *TLI) {
5418   // Convenient constant check, but redundant for recursive calls.
5419   if (Constant *C = dyn_cast<Constant>(V)) return C;
5420   Instruction *I = dyn_cast<Instruction>(V);
5421   if (!I) return nullptr;
5422 
5423   if (Constant *C = Vals.lookup(I)) return C;
5424 
5425   // An instruction inside the loop depends on a value outside the loop that we
5426   // weren't given a mapping for, or a value such as a call inside the loop.
5427   if (!canConstantEvolve(I, L)) return nullptr;
5428 
5429   // An unmapped PHI can be due to a branch or another loop inside this loop,
5430   // or due to this not being the initial iteration through a loop where we
5431   // couldn't compute the evolution of this particular PHI last time.
5432   if (isa<PHINode>(I)) return nullptr;
5433 
5434   std::vector<Constant*> Operands(I->getNumOperands());
5435 
5436   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5437     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5438     if (!Operand) {
5439       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
5440       if (!Operands[i]) return nullptr;
5441       continue;
5442     }
5443     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
5444     Vals[Operand] = C;
5445     if (!C) return nullptr;
5446     Operands[i] = C;
5447   }
5448 
5449   if (CmpInst *CI = dyn_cast<CmpInst>(I))
5450     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5451                                            Operands[1], DL, TLI);
5452   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5453     if (!LI->isVolatile())
5454       return ConstantFoldLoadFromConstPtr(Operands[0], DL);
5455   }
5456   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
5457                                   TLI);
5458 }
5459 
5460 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5461 /// in the header of its containing loop, we know the loop executes a
5462 /// constant number of times, and the PHI node is just a recurrence
5463 /// involving constants, fold it.
5464 Constant *
5465 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
5466                                                    const APInt &BEs,
5467                                                    const Loop *L) {
5468   DenseMap<PHINode*, Constant*>::const_iterator I =
5469     ConstantEvolutionLoopExitValue.find(PN);
5470   if (I != ConstantEvolutionLoopExitValue.end())
5471     return I->second;
5472 
5473   if (BEs.ugt(MaxBruteForceIterations))
5474     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
5475 
5476   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5477 
5478   DenseMap<Instruction *, Constant *> CurrentIterVals;
5479   BasicBlock *Header = L->getHeader();
5480   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5481 
5482   // Since the loop is canonicalized, the PHI node must have two entries.  One
5483   // entry must be a constant (coming in from outside of the loop), and the
5484   // second must be derived from the same PHI.
5485   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5486   PHINode *PHI = nullptr;
5487   for (BasicBlock::iterator I = Header->begin();
5488        (PHI = dyn_cast<PHINode>(I)); ++I) {
5489     Constant *StartCST =
5490       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5491     if (!StartCST) continue;
5492     CurrentIterVals[PHI] = StartCST;
5493   }
5494   if (!CurrentIterVals.count(PN))
5495     return RetVal = nullptr;
5496 
5497   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
5498 
5499   // Execute the loop symbolically to determine the exit value.
5500   if (BEs.getActiveBits() >= 32)
5501     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
5502 
5503   unsigned NumIterations = BEs.getZExtValue(); // must be in range
5504   unsigned IterationNum = 0;
5505   for (; ; ++IterationNum) {
5506     if (IterationNum == NumIterations)
5507       return RetVal = CurrentIterVals[PN];  // Got exit value!
5508 
5509     // Compute the value of the PHIs for the next iteration.
5510     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
5511     DenseMap<Instruction *, Constant *> NextIterVals;
5512     Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
5513                                            TLI);
5514     if (!NextPHI)
5515       return nullptr;        // Couldn't evaluate!
5516     NextIterVals[PN] = NextPHI;
5517 
5518     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5519 
5520     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
5521     // cease to be able to evaluate one of them or if they stop evolving,
5522     // because that doesn't necessarily prevent us from computing PN.
5523     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
5524     for (DenseMap<Instruction *, Constant *>::const_iterator
5525            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5526       PHINode *PHI = dyn_cast<PHINode>(I->first);
5527       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
5528       PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5529     }
5530     // We use two distinct loops because EvaluateExpression may invalidate any
5531     // iterators into CurrentIterVals.
5532     for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5533              I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5534       PHINode *PHI = I->first;
5535       Constant *&NextPHI = NextIterVals[PHI];
5536       if (!NextPHI) {   // Not already computed.
5537         Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5538         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5539       }
5540       if (NextPHI != I->second)
5541         StoppedEvolving = false;
5542     }
5543 
5544     // If all entries in CurrentIterVals == NextIterVals then we can stop
5545     // iterating, the loop can't continue to change.
5546     if (StoppedEvolving)
5547       return RetVal = CurrentIterVals[PN];
5548 
5549     CurrentIterVals.swap(NextIterVals);
5550   }
5551 }
5552 
5553 /// ComputeExitCountExhaustively - If the loop is known to execute a
5554 /// constant number of times (the condition evolves only from constants),
5555 /// try to evaluate a few iterations of the loop until we get the exit
5556 /// condition gets a value of ExitWhen (true or false).  If we cannot
5557 /// evaluate the trip count of the loop, return getCouldNotCompute().
5558 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5559                                                           Value *Cond,
5560                                                           bool ExitWhen) {
5561   PHINode *PN = getConstantEvolvingPHI(Cond, L);
5562   if (!PN) return getCouldNotCompute();
5563 
5564   // If the loop is canonicalized, the PHI will have exactly two entries.
5565   // That's the only form we support here.
5566   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5567 
5568   DenseMap<Instruction *, Constant *> CurrentIterVals;
5569   BasicBlock *Header = L->getHeader();
5570   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5571 
5572   // One entry must be a constant (coming in from outside of the loop), and the
5573   // second must be derived from the same PHI.
5574   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5575   PHINode *PHI = nullptr;
5576   for (BasicBlock::iterator I = Header->begin();
5577        (PHI = dyn_cast<PHINode>(I)); ++I) {
5578     Constant *StartCST =
5579       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5580     if (!StartCST) continue;
5581     CurrentIterVals[PHI] = StartCST;
5582   }
5583   if (!CurrentIterVals.count(PN))
5584     return getCouldNotCompute();
5585 
5586   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
5587   // the loop symbolically to determine when the condition gets a value of
5588   // "ExitWhen".
5589 
5590   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
5591   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
5592     ConstantInt *CondVal =
5593       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
5594                                                        DL, TLI));
5595 
5596     // Couldn't symbolically evaluate.
5597     if (!CondVal) return getCouldNotCompute();
5598 
5599     if (CondVal->getValue() == uint64_t(ExitWhen)) {
5600       ++NumBruteForceTripCountsComputed;
5601       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
5602     }
5603 
5604     // Update all the PHI nodes for the next iteration.
5605     DenseMap<Instruction *, Constant *> NextIterVals;
5606 
5607     // Create a list of which PHIs we need to compute. We want to do this before
5608     // calling EvaluateExpression on them because that may invalidate iterators
5609     // into CurrentIterVals.
5610     SmallVector<PHINode *, 8> PHIsToCompute;
5611     for (DenseMap<Instruction *, Constant *>::const_iterator
5612            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5613       PHINode *PHI = dyn_cast<PHINode>(I->first);
5614       if (!PHI || PHI->getParent() != Header) continue;
5615       PHIsToCompute.push_back(PHI);
5616     }
5617     for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5618              E = PHIsToCompute.end(); I != E; ++I) {
5619       PHINode *PHI = *I;
5620       Constant *&NextPHI = NextIterVals[PHI];
5621       if (NextPHI) continue;    // Already computed!
5622 
5623       Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5624       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5625     }
5626     CurrentIterVals.swap(NextIterVals);
5627   }
5628 
5629   // Too many iterations were needed to evaluate.
5630   return getCouldNotCompute();
5631 }
5632 
5633 /// getSCEVAtScope - Return a SCEV expression for the specified value
5634 /// at the specified scope in the program.  The L value specifies a loop
5635 /// nest to evaluate the expression at, where null is the top-level or a
5636 /// specified loop is immediately inside of the loop.
5637 ///
5638 /// This method can be used to compute the exit value for a variable defined
5639 /// in a loop by querying what the value will hold in the parent loop.
5640 ///
5641 /// In the case that a relevant loop exit value cannot be computed, the
5642 /// original value V is returned.
5643 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
5644   // Check to see if we've folded this expression at this loop before.
5645   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5646   for (unsigned u = 0; u < Values.size(); u++) {
5647     if (Values[u].first == L)
5648       return Values[u].second ? Values[u].second : V;
5649   }
5650   Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
5651   // Otherwise compute it.
5652   const SCEV *C = computeSCEVAtScope(V, L);
5653   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5654   for (unsigned u = Values2.size(); u > 0; u--) {
5655     if (Values2[u - 1].first == L) {
5656       Values2[u - 1].second = C;
5657       break;
5658     }
5659   }
5660   return C;
5661 }
5662 
5663 /// This builds up a Constant using the ConstantExpr interface.  That way, we
5664 /// will return Constants for objects which aren't represented by a
5665 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5666 /// Returns NULL if the SCEV isn't representable as a Constant.
5667 static Constant *BuildConstantFromSCEV(const SCEV *V) {
5668   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
5669     case scCouldNotCompute:
5670     case scAddRecExpr:
5671       break;
5672     case scConstant:
5673       return cast<SCEVConstant>(V)->getValue();
5674     case scUnknown:
5675       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5676     case scSignExtend: {
5677       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5678       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5679         return ConstantExpr::getSExt(CastOp, SS->getType());
5680       break;
5681     }
5682     case scZeroExtend: {
5683       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5684       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5685         return ConstantExpr::getZExt(CastOp, SZ->getType());
5686       break;
5687     }
5688     case scTruncate: {
5689       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5690       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5691         return ConstantExpr::getTrunc(CastOp, ST->getType());
5692       break;
5693     }
5694     case scAddExpr: {
5695       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5696       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5697         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5698           unsigned AS = PTy->getAddressSpace();
5699           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5700           C = ConstantExpr::getBitCast(C, DestPtrTy);
5701         }
5702         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5703           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5704           if (!C2) return nullptr;
5705 
5706           // First pointer!
5707           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5708             unsigned AS = C2->getType()->getPointerAddressSpace();
5709             std::swap(C, C2);
5710             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5711             // The offsets have been converted to bytes.  We can add bytes to an
5712             // i8* by GEP with the byte count in the first index.
5713             C = ConstantExpr::getBitCast(C, DestPtrTy);
5714           }
5715 
5716           // Don't bother trying to sum two pointers. We probably can't
5717           // statically compute a load that results from it anyway.
5718           if (C2->getType()->isPointerTy())
5719             return nullptr;
5720 
5721           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5722             if (PTy->getElementType()->isStructTy())
5723               C2 = ConstantExpr::getIntegerCast(
5724                   C2, Type::getInt32Ty(C->getContext()), true);
5725             C = ConstantExpr::getGetElementPtr(C, C2);
5726           } else
5727             C = ConstantExpr::getAdd(C, C2);
5728         }
5729         return C;
5730       }
5731       break;
5732     }
5733     case scMulExpr: {
5734       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5735       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5736         // Don't bother with pointers at all.
5737         if (C->getType()->isPointerTy()) return nullptr;
5738         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5739           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5740           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
5741           C = ConstantExpr::getMul(C, C2);
5742         }
5743         return C;
5744       }
5745       break;
5746     }
5747     case scUDivExpr: {
5748       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5749       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5750         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5751           if (LHS->getType() == RHS->getType())
5752             return ConstantExpr::getUDiv(LHS, RHS);
5753       break;
5754     }
5755     case scSMaxExpr:
5756     case scUMaxExpr:
5757       break; // TODO: smax, umax.
5758   }
5759   return nullptr;
5760 }
5761 
5762 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5763   if (isa<SCEVConstant>(V)) return V;
5764 
5765   // If this instruction is evolved from a constant-evolving PHI, compute the
5766   // exit value from the loop without using SCEVs.
5767   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5768     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5769       const Loop *LI = (*this->LI)[I->getParent()];
5770       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
5771         if (PHINode *PN = dyn_cast<PHINode>(I))
5772           if (PN->getParent() == LI->getHeader()) {
5773             // Okay, there is no closed form solution for the PHI node.  Check
5774             // to see if the loop that contains it has a known backedge-taken
5775             // count.  If so, we may be able to force computation of the exit
5776             // value.
5777             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5778             if (const SCEVConstant *BTCC =
5779                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5780               // Okay, we know how many times the containing loop executes.  If
5781               // this is a constant evolving PHI node, get the final value at
5782               // the specified iteration number.
5783               Constant *RV = getConstantEvolutionLoopExitValue(PN,
5784                                                    BTCC->getValue()->getValue(),
5785                                                                LI);
5786               if (RV) return getSCEV(RV);
5787             }
5788           }
5789 
5790       // Okay, this is an expression that we cannot symbolically evaluate
5791       // into a SCEV.  Check to see if it's possible to symbolically evaluate
5792       // the arguments into constants, and if so, try to constant propagate the
5793       // result.  This is particularly useful for computing loop exit values.
5794       if (CanConstantFold(I)) {
5795         SmallVector<Constant *, 4> Operands;
5796         bool MadeImprovement = false;
5797         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5798           Value *Op = I->getOperand(i);
5799           if (Constant *C = dyn_cast<Constant>(Op)) {
5800             Operands.push_back(C);
5801             continue;
5802           }
5803 
5804           // If any of the operands is non-constant and if they are
5805           // non-integer and non-pointer, don't even try to analyze them
5806           // with scev techniques.
5807           if (!isSCEVable(Op->getType()))
5808             return V;
5809 
5810           const SCEV *OrigV = getSCEV(Op);
5811           const SCEV *OpV = getSCEVAtScope(OrigV, L);
5812           MadeImprovement |= OrigV != OpV;
5813 
5814           Constant *C = BuildConstantFromSCEV(OpV);
5815           if (!C) return V;
5816           if (C->getType() != Op->getType())
5817             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5818                                                               Op->getType(),
5819                                                               false),
5820                                       C, Op->getType());
5821           Operands.push_back(C);
5822         }
5823 
5824         // Check to see if getSCEVAtScope actually made an improvement.
5825         if (MadeImprovement) {
5826           Constant *C = nullptr;
5827           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5828             C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5829                                                 Operands[0], Operands[1], DL,
5830                                                 TLI);
5831           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5832             if (!LI->isVolatile())
5833               C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
5834           } else
5835             C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5836                                          Operands, DL, TLI);
5837           if (!C) return V;
5838           return getSCEV(C);
5839         }
5840       }
5841     }
5842 
5843     // This is some other type of SCEVUnknown, just return it.
5844     return V;
5845   }
5846 
5847   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5848     // Avoid performing the look-up in the common case where the specified
5849     // expression has no loop-variant portions.
5850     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5851       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5852       if (OpAtScope != Comm->getOperand(i)) {
5853         // Okay, at least one of these operands is loop variant but might be
5854         // foldable.  Build a new instance of the folded commutative expression.
5855         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5856                                             Comm->op_begin()+i);
5857         NewOps.push_back(OpAtScope);
5858 
5859         for (++i; i != e; ++i) {
5860           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5861           NewOps.push_back(OpAtScope);
5862         }
5863         if (isa<SCEVAddExpr>(Comm))
5864           return getAddExpr(NewOps);
5865         if (isa<SCEVMulExpr>(Comm))
5866           return getMulExpr(NewOps);
5867         if (isa<SCEVSMaxExpr>(Comm))
5868           return getSMaxExpr(NewOps);
5869         if (isa<SCEVUMaxExpr>(Comm))
5870           return getUMaxExpr(NewOps);
5871         llvm_unreachable("Unknown commutative SCEV type!");
5872       }
5873     }
5874     // If we got here, all operands are loop invariant.
5875     return Comm;
5876   }
5877 
5878   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5879     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5880     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5881     if (LHS == Div->getLHS() && RHS == Div->getRHS())
5882       return Div;   // must be loop invariant
5883     return getUDivExpr(LHS, RHS);
5884   }
5885 
5886   // If this is a loop recurrence for a loop that does not contain L, then we
5887   // are dealing with the final value computed by the loop.
5888   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5889     // First, attempt to evaluate each operand.
5890     // Avoid performing the look-up in the common case where the specified
5891     // expression has no loop-variant portions.
5892     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5893       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5894       if (OpAtScope == AddRec->getOperand(i))
5895         continue;
5896 
5897       // Okay, at least one of these operands is loop variant but might be
5898       // foldable.  Build a new instance of the folded commutative expression.
5899       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5900                                           AddRec->op_begin()+i);
5901       NewOps.push_back(OpAtScope);
5902       for (++i; i != e; ++i)
5903         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5904 
5905       const SCEV *FoldedRec =
5906         getAddRecExpr(NewOps, AddRec->getLoop(),
5907                       AddRec->getNoWrapFlags(SCEV::FlagNW));
5908       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5909       // The addrec may be folded to a nonrecurrence, for example, if the
5910       // induction variable is multiplied by zero after constant folding. Go
5911       // ahead and return the folded value.
5912       if (!AddRec)
5913         return FoldedRec;
5914       break;
5915     }
5916 
5917     // If the scope is outside the addrec's loop, evaluate it by using the
5918     // loop exit value of the addrec.
5919     if (!AddRec->getLoop()->contains(L)) {
5920       // To evaluate this recurrence, we need to know how many times the AddRec
5921       // loop iterates.  Compute this now.
5922       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5923       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5924 
5925       // Then, evaluate the AddRec.
5926       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5927     }
5928 
5929     return AddRec;
5930   }
5931 
5932   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5933     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5934     if (Op == Cast->getOperand())
5935       return Cast;  // must be loop invariant
5936     return getZeroExtendExpr(Op, Cast->getType());
5937   }
5938 
5939   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5940     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5941     if (Op == Cast->getOperand())
5942       return Cast;  // must be loop invariant
5943     return getSignExtendExpr(Op, Cast->getType());
5944   }
5945 
5946   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5947     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5948     if (Op == Cast->getOperand())
5949       return Cast;  // must be loop invariant
5950     return getTruncateExpr(Op, Cast->getType());
5951   }
5952 
5953   llvm_unreachable("Unknown SCEV type!");
5954 }
5955 
5956 /// getSCEVAtScope - This is a convenience function which does
5957 /// getSCEVAtScope(getSCEV(V), L).
5958 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5959   return getSCEVAtScope(getSCEV(V), L);
5960 }
5961 
5962 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5963 /// following equation:
5964 ///
5965 ///     A * X = B (mod N)
5966 ///
5967 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5968 /// A and B isn't important.
5969 ///
5970 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5971 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5972                                                ScalarEvolution &SE) {
5973   uint32_t BW = A.getBitWidth();
5974   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5975   assert(A != 0 && "A must be non-zero.");
5976 
5977   // 1. D = gcd(A, N)
5978   //
5979   // The gcd of A and N may have only one prime factor: 2. The number of
5980   // trailing zeros in A is its multiplicity
5981   uint32_t Mult2 = A.countTrailingZeros();
5982   // D = 2^Mult2
5983 
5984   // 2. Check if B is divisible by D.
5985   //
5986   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5987   // is not less than multiplicity of this prime factor for D.
5988   if (B.countTrailingZeros() < Mult2)
5989     return SE.getCouldNotCompute();
5990 
5991   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5992   // modulo (N / D).
5993   //
5994   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5995   // bit width during computations.
5996   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5997   APInt Mod(BW + 1, 0);
5998   Mod.setBit(BW - Mult2);  // Mod = N / D
5999   APInt I = AD.multiplicativeInverse(Mod);
6000 
6001   // 4. Compute the minimum unsigned root of the equation:
6002   // I * (B / D) mod (N / D)
6003   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6004 
6005   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6006   // bits.
6007   return SE.getConstant(Result.trunc(BW));
6008 }
6009 
6010 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6011 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
6012 /// might be the same) or two SCEVCouldNotCompute objects.
6013 ///
6014 static std::pair<const SCEV *,const SCEV *>
6015 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
6016   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
6017   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6018   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6019   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
6020 
6021   // We currently can only solve this if the coefficients are constants.
6022   if (!LC || !MC || !NC) {
6023     const SCEV *CNC = SE.getCouldNotCompute();
6024     return std::make_pair(CNC, CNC);
6025   }
6026 
6027   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
6028   const APInt &L = LC->getValue()->getValue();
6029   const APInt &M = MC->getValue()->getValue();
6030   const APInt &N = NC->getValue()->getValue();
6031   APInt Two(BitWidth, 2);
6032   APInt Four(BitWidth, 4);
6033 
6034   {
6035     using namespace APIntOps;
6036     const APInt& C = L;
6037     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6038     // The B coefficient is M-N/2
6039     APInt B(M);
6040     B -= sdiv(N,Two);
6041 
6042     // The A coefficient is N/2
6043     APInt A(N.sdiv(Two));
6044 
6045     // Compute the B^2-4ac term.
6046     APInt SqrtTerm(B);
6047     SqrtTerm *= B;
6048     SqrtTerm -= Four * (A * C);
6049 
6050     if (SqrtTerm.isNegative()) {
6051       // The loop is provably infinite.
6052       const SCEV *CNC = SE.getCouldNotCompute();
6053       return std::make_pair(CNC, CNC);
6054     }
6055 
6056     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6057     // integer value or else APInt::sqrt() will assert.
6058     APInt SqrtVal(SqrtTerm.sqrt());
6059 
6060     // Compute the two solutions for the quadratic formula.
6061     // The divisions must be performed as signed divisions.
6062     APInt NegB(-B);
6063     APInt TwoA(A << 1);
6064     if (TwoA.isMinValue()) {
6065       const SCEV *CNC = SE.getCouldNotCompute();
6066       return std::make_pair(CNC, CNC);
6067     }
6068 
6069     LLVMContext &Context = SE.getContext();
6070 
6071     ConstantInt *Solution1 =
6072       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
6073     ConstantInt *Solution2 =
6074       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
6075 
6076     return std::make_pair(SE.getConstant(Solution1),
6077                           SE.getConstant(Solution2));
6078   } // end APIntOps namespace
6079 }
6080 
6081 /// HowFarToZero - Return the number of times a backedge comparing the specified
6082 /// value to zero will execute.  If not computable, return CouldNotCompute.
6083 ///
6084 /// This is only used for loops with a "x != y" exit test. The exit condition is
6085 /// now expressed as a single expression, V = x-y. So the exit test is
6086 /// effectively V != 0.  We know and take advantage of the fact that this
6087 /// expression only being used in a comparison by zero context.
6088 ScalarEvolution::ExitLimit
6089 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
6090   // If the value is a constant
6091   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6092     // If the value is already zero, the branch will execute zero times.
6093     if (C->getValue()->isZero()) return C;
6094     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6095   }
6096 
6097   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
6098   if (!AddRec || AddRec->getLoop() != L)
6099     return getCouldNotCompute();
6100 
6101   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6102   // the quadratic equation to solve it.
6103   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6104     std::pair<const SCEV *,const SCEV *> Roots =
6105       SolveQuadraticEquation(AddRec, *this);
6106     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6107     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6108     if (R1 && R2) {
6109 #if 0
6110       dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
6111              << "  sol#2: " << *R2 << "\n";
6112 #endif
6113       // Pick the smallest positive root value.
6114       if (ConstantInt *CB =
6115           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6116                                                       R1->getValue(),
6117                                                       R2->getValue()))) {
6118         if (!CB->getZExtValue())
6119           std::swap(R1, R2);   // R1 is the minimum root now.
6120 
6121         // We can only use this value if the chrec ends up with an exact zero
6122         // value at this index.  When solving for "X*X != 5", for example, we
6123         // should not accept a root of 2.
6124         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
6125         if (Val->isZero())
6126           return R1;  // We found a quadratic root!
6127       }
6128     }
6129     return getCouldNotCompute();
6130   }
6131 
6132   // Otherwise we can only handle this if it is affine.
6133   if (!AddRec->isAffine())
6134     return getCouldNotCompute();
6135 
6136   // If this is an affine expression, the execution count of this branch is
6137   // the minimum unsigned root of the following equation:
6138   //
6139   //     Start + Step*N = 0 (mod 2^BW)
6140   //
6141   // equivalent to:
6142   //
6143   //             Step*N = -Start (mod 2^BW)
6144   //
6145   // where BW is the common bit width of Start and Step.
6146 
6147   // Get the initial value for the loop.
6148   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6149   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6150 
6151   // For now we handle only constant steps.
6152   //
6153   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6154   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6155   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6156   // We have not yet seen any such cases.
6157   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
6158   if (!StepC || StepC->getValue()->equalsInt(0))
6159     return getCouldNotCompute();
6160 
6161   // For positive steps (counting up until unsigned overflow):
6162   //   N = -Start/Step (as unsigned)
6163   // For negative steps (counting down to zero):
6164   //   N = Start/-Step
6165   // First compute the unsigned distance from zero in the direction of Step.
6166   bool CountDown = StepC->getValue()->getValue().isNegative();
6167   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
6168 
6169   // Handle unitary steps, which cannot wraparound.
6170   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6171   //   N = Distance (as unsigned)
6172   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6173     ConstantRange CR = getUnsignedRange(Start);
6174     const SCEV *MaxBECount;
6175     if (!CountDown && CR.getUnsignedMin().isMinValue())
6176       // When counting up, the worst starting value is 1, not 0.
6177       MaxBECount = CR.getUnsignedMax().isMinValue()
6178         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6179         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6180     else
6181       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6182                                          : -CR.getUnsignedMin());
6183     return ExitLimit(Distance, MaxBECount);
6184   }
6185 
6186   // As a special case, handle the instance where Step is a positive power of
6187   // two. In this case, determining whether Step divides Distance evenly can be
6188   // done by counting and comparing the number of trailing zeros of Step and
6189   // Distance.
6190   if (!CountDown) {
6191     const APInt &StepV = StepC->getValue()->getValue();
6192     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
6193     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6194     // case is not handled as this code is guarded by !CountDown.
6195     if (StepV.isPowerOf2() &&
6196         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
6197       return getUDivExactExpr(Distance, Step);
6198   }
6199 
6200   // If the condition controls loop exit (the loop exits only if the expression
6201   // is true) and the addition is no-wrap we can use unsigned divide to
6202   // compute the backedge count.  In this case, the step may not divide the
6203   // distance, but we don't care because if the condition is "missed" the loop
6204   // will have undefined behavior due to wrapping.
6205   if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6206     const SCEV *Exact =
6207         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6208     return ExitLimit(Exact, Exact);
6209   }
6210 
6211   // Then, try to solve the above equation provided that Start is constant.
6212   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6213     return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6214                                         -StartC->getValue()->getValue(),
6215                                         *this);
6216   return getCouldNotCompute();
6217 }
6218 
6219 /// HowFarToNonZero - Return the number of times a backedge checking the
6220 /// specified value for nonzero will execute.  If not computable, return
6221 /// CouldNotCompute
6222 ScalarEvolution::ExitLimit
6223 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
6224   // Loops that look like: while (X == 0) are very strange indeed.  We don't
6225   // handle them yet except for the trivial case.  This could be expanded in the
6226   // future as needed.
6227 
6228   // If the value is a constant, check to see if it is known to be non-zero
6229   // already.  If so, the backedge will execute zero times.
6230   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6231     if (!C->getValue()->isNullValue())
6232       return getConstant(C->getType(), 0);
6233     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6234   }
6235 
6236   // We could implement others, but I really doubt anyone writes loops like
6237   // this, and if they did, they would already be constant folded.
6238   return getCouldNotCompute();
6239 }
6240 
6241 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6242 /// (which may not be an immediate predecessor) which has exactly one
6243 /// successor from which BB is reachable, or null if no such block is
6244 /// found.
6245 ///
6246 std::pair<BasicBlock *, BasicBlock *>
6247 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
6248   // If the block has a unique predecessor, then there is no path from the
6249   // predecessor to the block that does not go through the direct edge
6250   // from the predecessor to the block.
6251   if (BasicBlock *Pred = BB->getSinglePredecessor())
6252     return std::make_pair(Pred, BB);
6253 
6254   // A loop's header is defined to be a block that dominates the loop.
6255   // If the header has a unique predecessor outside the loop, it must be
6256   // a block that has exactly one successor that can reach the loop.
6257   if (Loop *L = LI->getLoopFor(BB))
6258     return std::make_pair(L->getLoopPredecessor(), L->getHeader());
6259 
6260   return std::pair<BasicBlock *, BasicBlock *>();
6261 }
6262 
6263 /// HasSameValue - SCEV structural equivalence is usually sufficient for
6264 /// testing whether two expressions are equal, however for the purposes of
6265 /// looking for a condition guarding a loop, it can be useful to be a little
6266 /// more general, since a front-end may have replicated the controlling
6267 /// expression.
6268 ///
6269 static bool HasSameValue(const SCEV *A, const SCEV *B) {
6270   // Quick check to see if they are the same SCEV.
6271   if (A == B) return true;
6272 
6273   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6274   // two different instructions with the same value. Check for this case.
6275   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6276     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6277       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6278         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
6279           if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
6280             return true;
6281 
6282   // Otherwise assume they may have a different value.
6283   return false;
6284 }
6285 
6286 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
6287 /// predicate Pred. Return true iff any changes were made.
6288 ///
6289 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
6290                                            const SCEV *&LHS, const SCEV *&RHS,
6291                                            unsigned Depth) {
6292   bool Changed = false;
6293 
6294   // If we hit the max recursion limit bail out.
6295   if (Depth >= 3)
6296     return false;
6297 
6298   // Canonicalize a constant to the right side.
6299   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6300     // Check for both operands constant.
6301     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6302       if (ConstantExpr::getICmp(Pred,
6303                                 LHSC->getValue(),
6304                                 RHSC->getValue())->isNullValue())
6305         goto trivially_false;
6306       else
6307         goto trivially_true;
6308     }
6309     // Otherwise swap the operands to put the constant on the right.
6310     std::swap(LHS, RHS);
6311     Pred = ICmpInst::getSwappedPredicate(Pred);
6312     Changed = true;
6313   }
6314 
6315   // If we're comparing an addrec with a value which is loop-invariant in the
6316   // addrec's loop, put the addrec on the left. Also make a dominance check,
6317   // as both operands could be addrecs loop-invariant in each other's loop.
6318   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6319     const Loop *L = AR->getLoop();
6320     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
6321       std::swap(LHS, RHS);
6322       Pred = ICmpInst::getSwappedPredicate(Pred);
6323       Changed = true;
6324     }
6325   }
6326 
6327   // If there's a constant operand, canonicalize comparisons with boundary
6328   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6329   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6330     const APInt &RA = RC->getValue()->getValue();
6331     switch (Pred) {
6332     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6333     case ICmpInst::ICMP_EQ:
6334     case ICmpInst::ICMP_NE:
6335       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6336       if (!RA)
6337         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6338           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
6339             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6340                 ME->getOperand(0)->isAllOnesValue()) {
6341               RHS = AE->getOperand(1);
6342               LHS = ME->getOperand(1);
6343               Changed = true;
6344             }
6345       break;
6346     case ICmpInst::ICMP_UGE:
6347       if ((RA - 1).isMinValue()) {
6348         Pred = ICmpInst::ICMP_NE;
6349         RHS = getConstant(RA - 1);
6350         Changed = true;
6351         break;
6352       }
6353       if (RA.isMaxValue()) {
6354         Pred = ICmpInst::ICMP_EQ;
6355         Changed = true;
6356         break;
6357       }
6358       if (RA.isMinValue()) goto trivially_true;
6359 
6360       Pred = ICmpInst::ICMP_UGT;
6361       RHS = getConstant(RA - 1);
6362       Changed = true;
6363       break;
6364     case ICmpInst::ICMP_ULE:
6365       if ((RA + 1).isMaxValue()) {
6366         Pred = ICmpInst::ICMP_NE;
6367         RHS = getConstant(RA + 1);
6368         Changed = true;
6369         break;
6370       }
6371       if (RA.isMinValue()) {
6372         Pred = ICmpInst::ICMP_EQ;
6373         Changed = true;
6374         break;
6375       }
6376       if (RA.isMaxValue()) goto trivially_true;
6377 
6378       Pred = ICmpInst::ICMP_ULT;
6379       RHS = getConstant(RA + 1);
6380       Changed = true;
6381       break;
6382     case ICmpInst::ICMP_SGE:
6383       if ((RA - 1).isMinSignedValue()) {
6384         Pred = ICmpInst::ICMP_NE;
6385         RHS = getConstant(RA - 1);
6386         Changed = true;
6387         break;
6388       }
6389       if (RA.isMaxSignedValue()) {
6390         Pred = ICmpInst::ICMP_EQ;
6391         Changed = true;
6392         break;
6393       }
6394       if (RA.isMinSignedValue()) goto trivially_true;
6395 
6396       Pred = ICmpInst::ICMP_SGT;
6397       RHS = getConstant(RA - 1);
6398       Changed = true;
6399       break;
6400     case ICmpInst::ICMP_SLE:
6401       if ((RA + 1).isMaxSignedValue()) {
6402         Pred = ICmpInst::ICMP_NE;
6403         RHS = getConstant(RA + 1);
6404         Changed = true;
6405         break;
6406       }
6407       if (RA.isMinSignedValue()) {
6408         Pred = ICmpInst::ICMP_EQ;
6409         Changed = true;
6410         break;
6411       }
6412       if (RA.isMaxSignedValue()) goto trivially_true;
6413 
6414       Pred = ICmpInst::ICMP_SLT;
6415       RHS = getConstant(RA + 1);
6416       Changed = true;
6417       break;
6418     case ICmpInst::ICMP_UGT:
6419       if (RA.isMinValue()) {
6420         Pred = ICmpInst::ICMP_NE;
6421         Changed = true;
6422         break;
6423       }
6424       if ((RA + 1).isMaxValue()) {
6425         Pred = ICmpInst::ICMP_EQ;
6426         RHS = getConstant(RA + 1);
6427         Changed = true;
6428         break;
6429       }
6430       if (RA.isMaxValue()) goto trivially_false;
6431       break;
6432     case ICmpInst::ICMP_ULT:
6433       if (RA.isMaxValue()) {
6434         Pred = ICmpInst::ICMP_NE;
6435         Changed = true;
6436         break;
6437       }
6438       if ((RA - 1).isMinValue()) {
6439         Pred = ICmpInst::ICMP_EQ;
6440         RHS = getConstant(RA - 1);
6441         Changed = true;
6442         break;
6443       }
6444       if (RA.isMinValue()) goto trivially_false;
6445       break;
6446     case ICmpInst::ICMP_SGT:
6447       if (RA.isMinSignedValue()) {
6448         Pred = ICmpInst::ICMP_NE;
6449         Changed = true;
6450         break;
6451       }
6452       if ((RA + 1).isMaxSignedValue()) {
6453         Pred = ICmpInst::ICMP_EQ;
6454         RHS = getConstant(RA + 1);
6455         Changed = true;
6456         break;
6457       }
6458       if (RA.isMaxSignedValue()) goto trivially_false;
6459       break;
6460     case ICmpInst::ICMP_SLT:
6461       if (RA.isMaxSignedValue()) {
6462         Pred = ICmpInst::ICMP_NE;
6463         Changed = true;
6464         break;
6465       }
6466       if ((RA - 1).isMinSignedValue()) {
6467        Pred = ICmpInst::ICMP_EQ;
6468        RHS = getConstant(RA - 1);
6469         Changed = true;
6470        break;
6471       }
6472       if (RA.isMinSignedValue()) goto trivially_false;
6473       break;
6474     }
6475   }
6476 
6477   // Check for obvious equality.
6478   if (HasSameValue(LHS, RHS)) {
6479     if (ICmpInst::isTrueWhenEqual(Pred))
6480       goto trivially_true;
6481     if (ICmpInst::isFalseWhenEqual(Pred))
6482       goto trivially_false;
6483   }
6484 
6485   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6486   // adding or subtracting 1 from one of the operands.
6487   switch (Pred) {
6488   case ICmpInst::ICMP_SLE:
6489     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6490       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6491                        SCEV::FlagNSW);
6492       Pred = ICmpInst::ICMP_SLT;
6493       Changed = true;
6494     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
6495       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6496                        SCEV::FlagNSW);
6497       Pred = ICmpInst::ICMP_SLT;
6498       Changed = true;
6499     }
6500     break;
6501   case ICmpInst::ICMP_SGE:
6502     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
6503       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6504                        SCEV::FlagNSW);
6505       Pred = ICmpInst::ICMP_SGT;
6506       Changed = true;
6507     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6508       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6509                        SCEV::FlagNSW);
6510       Pred = ICmpInst::ICMP_SGT;
6511       Changed = true;
6512     }
6513     break;
6514   case ICmpInst::ICMP_ULE:
6515     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
6516       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6517                        SCEV::FlagNUW);
6518       Pred = ICmpInst::ICMP_ULT;
6519       Changed = true;
6520     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
6521       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6522                        SCEV::FlagNUW);
6523       Pred = ICmpInst::ICMP_ULT;
6524       Changed = true;
6525     }
6526     break;
6527   case ICmpInst::ICMP_UGE:
6528     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
6529       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6530                        SCEV::FlagNUW);
6531       Pred = ICmpInst::ICMP_UGT;
6532       Changed = true;
6533     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
6534       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6535                        SCEV::FlagNUW);
6536       Pred = ICmpInst::ICMP_UGT;
6537       Changed = true;
6538     }
6539     break;
6540   default:
6541     break;
6542   }
6543 
6544   // TODO: More simplifications are possible here.
6545 
6546   // Recursively simplify until we either hit a recursion limit or nothing
6547   // changes.
6548   if (Changed)
6549     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6550 
6551   return Changed;
6552 
6553 trivially_true:
6554   // Return 0 == 0.
6555   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6556   Pred = ICmpInst::ICMP_EQ;
6557   return true;
6558 
6559 trivially_false:
6560   // Return 0 != 0.
6561   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6562   Pred = ICmpInst::ICMP_NE;
6563   return true;
6564 }
6565 
6566 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6567   return getSignedRange(S).getSignedMax().isNegative();
6568 }
6569 
6570 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6571   return getSignedRange(S).getSignedMin().isStrictlyPositive();
6572 }
6573 
6574 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6575   return !getSignedRange(S).getSignedMin().isNegative();
6576 }
6577 
6578 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6579   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6580 }
6581 
6582 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6583   return isKnownNegative(S) || isKnownPositive(S);
6584 }
6585 
6586 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6587                                        const SCEV *LHS, const SCEV *RHS) {
6588   // Canonicalize the inputs first.
6589   (void)SimplifyICmpOperands(Pred, LHS, RHS);
6590 
6591   // If LHS or RHS is an addrec, check to see if the condition is true in
6592   // every iteration of the loop.
6593   // If LHS and RHS are both addrec, both conditions must be true in
6594   // every iteration of the loop.
6595   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6596   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6597   bool LeftGuarded = false;
6598   bool RightGuarded = false;
6599   if (LAR) {
6600     const Loop *L = LAR->getLoop();
6601     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6602         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6603       if (!RAR) return true;
6604       LeftGuarded = true;
6605     }
6606   }
6607   if (RAR) {
6608     const Loop *L = RAR->getLoop();
6609     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6610         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6611       if (!LAR) return true;
6612       RightGuarded = true;
6613     }
6614   }
6615   if (LeftGuarded && RightGuarded)
6616     return true;
6617 
6618   // Otherwise see what can be done with known constant ranges.
6619   return isKnownPredicateWithRanges(Pred, LHS, RHS);
6620 }
6621 
6622 bool
6623 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6624                                             const SCEV *LHS, const SCEV *RHS) {
6625   if (HasSameValue(LHS, RHS))
6626     return ICmpInst::isTrueWhenEqual(Pred);
6627 
6628   // This code is split out from isKnownPredicate because it is called from
6629   // within isLoopEntryGuardedByCond.
6630   switch (Pred) {
6631   default:
6632     llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6633   case ICmpInst::ICMP_SGT:
6634     std::swap(LHS, RHS);
6635   case ICmpInst::ICMP_SLT: {
6636     ConstantRange LHSRange = getSignedRange(LHS);
6637     ConstantRange RHSRange = getSignedRange(RHS);
6638     if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6639       return true;
6640     if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6641       return false;
6642     break;
6643   }
6644   case ICmpInst::ICMP_SGE:
6645     std::swap(LHS, RHS);
6646   case ICmpInst::ICMP_SLE: {
6647     ConstantRange LHSRange = getSignedRange(LHS);
6648     ConstantRange RHSRange = getSignedRange(RHS);
6649     if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6650       return true;
6651     if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6652       return false;
6653     break;
6654   }
6655   case ICmpInst::ICMP_UGT:
6656     std::swap(LHS, RHS);
6657   case ICmpInst::ICMP_ULT: {
6658     ConstantRange LHSRange = getUnsignedRange(LHS);
6659     ConstantRange RHSRange = getUnsignedRange(RHS);
6660     if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6661       return true;
6662     if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6663       return false;
6664     break;
6665   }
6666   case ICmpInst::ICMP_UGE:
6667     std::swap(LHS, RHS);
6668   case ICmpInst::ICMP_ULE: {
6669     ConstantRange LHSRange = getUnsignedRange(LHS);
6670     ConstantRange RHSRange = getUnsignedRange(RHS);
6671     if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6672       return true;
6673     if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6674       return false;
6675     break;
6676   }
6677   case ICmpInst::ICMP_NE: {
6678     if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6679       return true;
6680     if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6681       return true;
6682 
6683     const SCEV *Diff = getMinusSCEV(LHS, RHS);
6684     if (isKnownNonZero(Diff))
6685       return true;
6686     break;
6687   }
6688   case ICmpInst::ICMP_EQ:
6689     // The check at the top of the function catches the case where
6690     // the values are known to be equal.
6691     break;
6692   }
6693   return false;
6694 }
6695 
6696 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6697 /// protected by a conditional between LHS and RHS.  This is used to
6698 /// to eliminate casts.
6699 bool
6700 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6701                                              ICmpInst::Predicate Pred,
6702                                              const SCEV *LHS, const SCEV *RHS) {
6703   // Interpret a null as meaning no loop, where there is obviously no guard
6704   // (interprocedural conditions notwithstanding).
6705   if (!L) return true;
6706 
6707   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6708 
6709   BasicBlock *Latch = L->getLoopLatch();
6710   if (!Latch)
6711     return false;
6712 
6713   BranchInst *LoopContinuePredicate =
6714     dyn_cast<BranchInst>(Latch->getTerminator());
6715   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6716       isImpliedCond(Pred, LHS, RHS,
6717                     LoopContinuePredicate->getCondition(),
6718                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6719     return true;
6720 
6721   // Check conditions due to any @llvm.assume intrinsics.
6722   for (auto &AssumeVH : AC->assumptions()) {
6723     if (!AssumeVH)
6724       continue;
6725     auto *CI = cast<CallInst>(AssumeVH);
6726     if (!DT->dominates(CI, Latch->getTerminator()))
6727       continue;
6728 
6729     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6730       return true;
6731   }
6732 
6733   return false;
6734 }
6735 
6736 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6737 /// by a conditional between LHS and RHS.  This is used to help avoid max
6738 /// expressions in loop trip counts, and to eliminate casts.
6739 bool
6740 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6741                                           ICmpInst::Predicate Pred,
6742                                           const SCEV *LHS, const SCEV *RHS) {
6743   // Interpret a null as meaning no loop, where there is obviously no guard
6744   // (interprocedural conditions notwithstanding).
6745   if (!L) return false;
6746 
6747   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6748 
6749   // Starting at the loop predecessor, climb up the predecessor chain, as long
6750   // as there are predecessors that can be found that have unique successors
6751   // leading to the original header.
6752   for (std::pair<BasicBlock *, BasicBlock *>
6753          Pair(L->getLoopPredecessor(), L->getHeader());
6754        Pair.first;
6755        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6756 
6757     BranchInst *LoopEntryPredicate =
6758       dyn_cast<BranchInst>(Pair.first->getTerminator());
6759     if (!LoopEntryPredicate ||
6760         LoopEntryPredicate->isUnconditional())
6761       continue;
6762 
6763     if (isImpliedCond(Pred, LHS, RHS,
6764                       LoopEntryPredicate->getCondition(),
6765                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
6766       return true;
6767   }
6768 
6769   // Check conditions due to any @llvm.assume intrinsics.
6770   for (auto &AssumeVH : AC->assumptions()) {
6771     if (!AssumeVH)
6772       continue;
6773     auto *CI = cast<CallInst>(AssumeVH);
6774     if (!DT->dominates(CI, L->getHeader()))
6775       continue;
6776 
6777     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6778       return true;
6779   }
6780 
6781   return false;
6782 }
6783 
6784 /// RAII wrapper to prevent recursive application of isImpliedCond.
6785 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6786 /// currently evaluating isImpliedCond.
6787 struct MarkPendingLoopPredicate {
6788   Value *Cond;
6789   DenseSet<Value*> &LoopPreds;
6790   bool Pending;
6791 
6792   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6793     : Cond(C), LoopPreds(LP) {
6794     Pending = !LoopPreds.insert(Cond).second;
6795   }
6796   ~MarkPendingLoopPredicate() {
6797     if (!Pending)
6798       LoopPreds.erase(Cond);
6799   }
6800 };
6801 
6802 /// isImpliedCond - Test whether the condition described by Pred, LHS,
6803 /// and RHS is true whenever the given Cond value evaluates to true.
6804 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6805                                     const SCEV *LHS, const SCEV *RHS,
6806                                     Value *FoundCondValue,
6807                                     bool Inverse) {
6808   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6809   if (Mark.Pending)
6810     return false;
6811 
6812   // Recursively handle And and Or conditions.
6813   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6814     if (BO->getOpcode() == Instruction::And) {
6815       if (!Inverse)
6816         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6817                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6818     } else if (BO->getOpcode() == Instruction::Or) {
6819       if (Inverse)
6820         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6821                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6822     }
6823   }
6824 
6825   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6826   if (!ICI) return false;
6827 
6828   // Bail if the ICmp's operands' types are wider than the needed type
6829   // before attempting to call getSCEV on them. This avoids infinite
6830   // recursion, since the analysis of widening casts can require loop
6831   // exit condition information for overflow checking, which would
6832   // lead back here.
6833   if (getTypeSizeInBits(LHS->getType()) <
6834       getTypeSizeInBits(ICI->getOperand(0)->getType()))
6835     return false;
6836 
6837   // Now that we found a conditional branch that dominates the loop or controls
6838   // the loop latch. Check to see if it is the comparison we are looking for.
6839   ICmpInst::Predicate FoundPred;
6840   if (Inverse)
6841     FoundPred = ICI->getInversePredicate();
6842   else
6843     FoundPred = ICI->getPredicate();
6844 
6845   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6846   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6847 
6848   // Balance the types. The case where FoundLHS' type is wider than
6849   // LHS' type is checked for above.
6850   if (getTypeSizeInBits(LHS->getType()) >
6851       getTypeSizeInBits(FoundLHS->getType())) {
6852     if (CmpInst::isSigned(FoundPred)) {
6853       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6854       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6855     } else {
6856       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6857       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6858     }
6859   }
6860 
6861   // Canonicalize the query to match the way instcombine will have
6862   // canonicalized the comparison.
6863   if (SimplifyICmpOperands(Pred, LHS, RHS))
6864     if (LHS == RHS)
6865       return CmpInst::isTrueWhenEqual(Pred);
6866   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6867     if (FoundLHS == FoundRHS)
6868       return CmpInst::isFalseWhenEqual(FoundPred);
6869 
6870   // Check to see if we can make the LHS or RHS match.
6871   if (LHS == FoundRHS || RHS == FoundLHS) {
6872     if (isa<SCEVConstant>(RHS)) {
6873       std::swap(FoundLHS, FoundRHS);
6874       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6875     } else {
6876       std::swap(LHS, RHS);
6877       Pred = ICmpInst::getSwappedPredicate(Pred);
6878     }
6879   }
6880 
6881   // Check whether the found predicate is the same as the desired predicate.
6882   if (FoundPred == Pred)
6883     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6884 
6885   // Check whether swapping the found predicate makes it the same as the
6886   // desired predicate.
6887   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6888     if (isa<SCEVConstant>(RHS))
6889       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6890     else
6891       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6892                                    RHS, LHS, FoundLHS, FoundRHS);
6893   }
6894 
6895   // Check if we can make progress by sharpening ranges.
6896   if (FoundPred == ICmpInst::ICMP_NE &&
6897       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6898 
6899     const SCEVConstant *C = nullptr;
6900     const SCEV *V = nullptr;
6901 
6902     if (isa<SCEVConstant>(FoundLHS)) {
6903       C = cast<SCEVConstant>(FoundLHS);
6904       V = FoundRHS;
6905     } else {
6906       C = cast<SCEVConstant>(FoundRHS);
6907       V = FoundLHS;
6908     }
6909 
6910     // The guarding predicate tells us that C != V. If the known range
6911     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
6912     // range we consider has to correspond to same signedness as the
6913     // predicate we're interested in folding.
6914 
6915     APInt Min = ICmpInst::isSigned(Pred) ?
6916         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6917 
6918     if (Min == C->getValue()->getValue()) {
6919       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6920       // This is true even if (Min + 1) wraps around -- in case of
6921       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6922 
6923       APInt SharperMin = Min + 1;
6924 
6925       switch (Pred) {
6926         case ICmpInst::ICMP_SGE:
6927         case ICmpInst::ICMP_UGE:
6928           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
6929           // RHS, we're done.
6930           if (isImpliedCondOperands(Pred, LHS, RHS, V,
6931                                     getConstant(SharperMin)))
6932             return true;
6933 
6934         case ICmpInst::ICMP_SGT:
6935         case ICmpInst::ICMP_UGT:
6936           // We know from the range information that (V `Pred` Min ||
6937           // V == Min).  We know from the guarding condition that !(V
6938           // == Min).  This gives us
6939           //
6940           //       V `Pred` Min || V == Min && !(V == Min)
6941           //   =>  V `Pred` Min
6942           //
6943           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6944 
6945           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6946             return true;
6947 
6948         default:
6949           // No change
6950           break;
6951       }
6952     }
6953   }
6954 
6955   // Check whether the actual condition is beyond sufficient.
6956   if (FoundPred == ICmpInst::ICMP_EQ)
6957     if (ICmpInst::isTrueWhenEqual(Pred))
6958       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6959         return true;
6960   if (Pred == ICmpInst::ICMP_NE)
6961     if (!ICmpInst::isTrueWhenEqual(FoundPred))
6962       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6963         return true;
6964 
6965   // Otherwise assume the worst.
6966   return false;
6967 }
6968 
6969 /// isImpliedCondOperands - Test whether the condition described by Pred,
6970 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6971 /// and FoundRHS is true.
6972 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6973                                             const SCEV *LHS, const SCEV *RHS,
6974                                             const SCEV *FoundLHS,
6975                                             const SCEV *FoundRHS) {
6976   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6977                                      FoundLHS, FoundRHS) ||
6978          // ~x < ~y --> x > y
6979          isImpliedCondOperandsHelper(Pred, LHS, RHS,
6980                                      getNotSCEV(FoundRHS),
6981                                      getNotSCEV(FoundLHS));
6982 }
6983 
6984 
6985 /// If Expr computes ~A, return A else return nullptr
6986 static const SCEV *MatchNotExpr(const SCEV *Expr) {
6987   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
6988   if (!Add || Add->getNumOperands() != 2) return nullptr;
6989 
6990   const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
6991   if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
6992     return nullptr;
6993 
6994   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
6995   if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
6996 
6997   const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
6998   if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
6999     return nullptr;
7000 
7001   return AddRHS->getOperand(1);
7002 }
7003 
7004 
7005 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7006 template<typename MaxExprType>
7007 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7008                               const SCEV *Candidate) {
7009   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7010   if (!MaxExpr) return false;
7011 
7012   auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
7013   return It != MaxExpr->op_end();
7014 }
7015 
7016 
7017 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7018 template<typename MaxExprType>
7019 static bool IsMinConsistingOf(ScalarEvolution &SE,
7020                               const SCEV *MaybeMinExpr,
7021                               const SCEV *Candidate) {
7022   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7023   if (!MaybeMaxExpr)
7024     return false;
7025 
7026   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7027 }
7028 
7029 
7030 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7031 /// expression?
7032 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7033                                         ICmpInst::Predicate Pred,
7034                                         const SCEV *LHS, const SCEV *RHS) {
7035   switch (Pred) {
7036   default:
7037     return false;
7038 
7039   case ICmpInst::ICMP_SGE:
7040     std::swap(LHS, RHS);
7041     // fall through
7042   case ICmpInst::ICMP_SLE:
7043     return
7044       // min(A, ...) <= A
7045       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7046       // A <= max(A, ...)
7047       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7048 
7049   case ICmpInst::ICMP_UGE:
7050     std::swap(LHS, RHS);
7051     // fall through
7052   case ICmpInst::ICMP_ULE:
7053     return
7054       // min(A, ...) <= A
7055       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7056       // A <= max(A, ...)
7057       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7058   }
7059 
7060   llvm_unreachable("covered switch fell through?!");
7061 }
7062 
7063 /// isImpliedCondOperandsHelper - Test whether the condition described by
7064 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
7065 /// FoundLHS, and FoundRHS is true.
7066 bool
7067 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7068                                              const SCEV *LHS, const SCEV *RHS,
7069                                              const SCEV *FoundLHS,
7070                                              const SCEV *FoundRHS) {
7071   auto IsKnownPredicateFull =
7072       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7073     return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
7074         IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
7075   };
7076 
7077   switch (Pred) {
7078   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7079   case ICmpInst::ICMP_EQ:
7080   case ICmpInst::ICMP_NE:
7081     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7082       return true;
7083     break;
7084   case ICmpInst::ICMP_SLT:
7085   case ICmpInst::ICMP_SLE:
7086     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7087         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
7088       return true;
7089     break;
7090   case ICmpInst::ICMP_SGT:
7091   case ICmpInst::ICMP_SGE:
7092     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7093         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
7094       return true;
7095     break;
7096   case ICmpInst::ICMP_ULT:
7097   case ICmpInst::ICMP_ULE:
7098     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7099         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
7100       return true;
7101     break;
7102   case ICmpInst::ICMP_UGT:
7103   case ICmpInst::ICMP_UGE:
7104     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7105         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
7106       return true;
7107     break;
7108   }
7109 
7110   return false;
7111 }
7112 
7113 // Verify if an linear IV with positive stride can overflow when in a
7114 // less-than comparison, knowing the invariant term of the comparison, the
7115 // stride and the knowledge of NSW/NUW flags on the recurrence.
7116 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7117                                          bool IsSigned, bool NoWrap) {
7118   if (NoWrap) return false;
7119 
7120   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7121   const SCEV *One = getConstant(Stride->getType(), 1);
7122 
7123   if (IsSigned) {
7124     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7125     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7126     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7127                                 .getSignedMax();
7128 
7129     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7130     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
7131   }
7132 
7133   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7134   APInt MaxValue = APInt::getMaxValue(BitWidth);
7135   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7136                               .getUnsignedMax();
7137 
7138   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7139   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7140 }
7141 
7142 // Verify if an linear IV with negative stride can overflow when in a
7143 // greater-than comparison, knowing the invariant term of the comparison,
7144 // the stride and the knowledge of NSW/NUW flags on the recurrence.
7145 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7146                                          bool IsSigned, bool NoWrap) {
7147   if (NoWrap) return false;
7148 
7149   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7150   const SCEV *One = getConstant(Stride->getType(), 1);
7151 
7152   if (IsSigned) {
7153     APInt MinRHS = getSignedRange(RHS).getSignedMin();
7154     APInt MinValue = APInt::getSignedMinValue(BitWidth);
7155     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7156                                .getSignedMax();
7157 
7158     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7159     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7160   }
7161 
7162   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7163   APInt MinValue = APInt::getMinValue(BitWidth);
7164   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7165                             .getUnsignedMax();
7166 
7167   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7168   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7169 }
7170 
7171 // Compute the backedge taken count knowing the interval difference, the
7172 // stride and presence of the equality in the comparison.
7173 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
7174                                             bool Equality) {
7175   const SCEV *One = getConstant(Step->getType(), 1);
7176   Delta = Equality ? getAddExpr(Delta, Step)
7177                    : getAddExpr(Delta, getMinusSCEV(Step, One));
7178   return getUDivExpr(Delta, Step);
7179 }
7180 
7181 /// HowManyLessThans - Return the number of times a backedge containing the
7182 /// specified less-than comparison will execute.  If not computable, return
7183 /// CouldNotCompute.
7184 ///
7185 /// @param ControlsExit is true when the LHS < RHS condition directly controls
7186 /// the branch (loops exits only if condition is true). In this case, we can use
7187 /// NoWrapFlags to skip overflow checks.
7188 ScalarEvolution::ExitLimit
7189 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
7190                                   const Loop *L, bool IsSigned,
7191                                   bool ControlsExit) {
7192   // We handle only IV < Invariant
7193   if (!isLoopInvariant(RHS, L))
7194     return getCouldNotCompute();
7195 
7196   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7197 
7198   // Avoid weird loops
7199   if (!IV || IV->getLoop() != L || !IV->isAffine())
7200     return getCouldNotCompute();
7201 
7202   bool NoWrap = ControlsExit &&
7203                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7204 
7205   const SCEV *Stride = IV->getStepRecurrence(*this);
7206 
7207   // Avoid negative or zero stride values
7208   if (!isKnownPositive(Stride))
7209     return getCouldNotCompute();
7210 
7211   // Avoid proven overflow cases: this will ensure that the backedge taken count
7212   // will not generate any unsigned overflow. Relaxed no-overflow conditions
7213   // exploit NoWrapFlags, allowing to optimize in presence of undefined
7214   // behaviors like the case of C language.
7215   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7216     return getCouldNotCompute();
7217 
7218   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7219                                       : ICmpInst::ICMP_ULT;
7220   const SCEV *Start = IV->getStart();
7221   const SCEV *End = RHS;
7222   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7223     const SCEV *Diff = getMinusSCEV(RHS, Start);
7224     // If we have NoWrap set, then we can assume that the increment won't
7225     // overflow, in which case if RHS - Start is a constant, we don't need to
7226     // do a max operation since we can just figure it out statically
7227     if (NoWrap && isa<SCEVConstant>(Diff)) {
7228       APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7229       if (D.isNegative())
7230         End = Start;
7231     } else
7232       End = IsSigned ? getSMaxExpr(RHS, Start)
7233                      : getUMaxExpr(RHS, Start);
7234   }
7235 
7236   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
7237 
7238   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7239                             : getUnsignedRange(Start).getUnsignedMin();
7240 
7241   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7242                              : getUnsignedRange(Stride).getUnsignedMin();
7243 
7244   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7245   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7246                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
7247 
7248   // Although End can be a MAX expression we estimate MaxEnd considering only
7249   // the case End = RHS. This is safe because in the other case (End - Start)
7250   // is zero, leading to a zero maximum backedge taken count.
7251   APInt MaxEnd =
7252     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7253              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7254 
7255   const SCEV *MaxBECount;
7256   if (isa<SCEVConstant>(BECount))
7257     MaxBECount = BECount;
7258   else
7259     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7260                                 getConstant(MinStride), false);
7261 
7262   if (isa<SCEVCouldNotCompute>(MaxBECount))
7263     MaxBECount = BECount;
7264 
7265   return ExitLimit(BECount, MaxBECount);
7266 }
7267 
7268 ScalarEvolution::ExitLimit
7269 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7270                                      const Loop *L, bool IsSigned,
7271                                      bool ControlsExit) {
7272   // We handle only IV > Invariant
7273   if (!isLoopInvariant(RHS, L))
7274     return getCouldNotCompute();
7275 
7276   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7277 
7278   // Avoid weird loops
7279   if (!IV || IV->getLoop() != L || !IV->isAffine())
7280     return getCouldNotCompute();
7281 
7282   bool NoWrap = ControlsExit &&
7283                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7284 
7285   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7286 
7287   // Avoid negative or zero stride values
7288   if (!isKnownPositive(Stride))
7289     return getCouldNotCompute();
7290 
7291   // Avoid proven overflow cases: this will ensure that the backedge taken count
7292   // will not generate any unsigned overflow. Relaxed no-overflow conditions
7293   // exploit NoWrapFlags, allowing to optimize in presence of undefined
7294   // behaviors like the case of C language.
7295   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7296     return getCouldNotCompute();
7297 
7298   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7299                                       : ICmpInst::ICMP_UGT;
7300 
7301   const SCEV *Start = IV->getStart();
7302   const SCEV *End = RHS;
7303   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7304     const SCEV *Diff = getMinusSCEV(RHS, Start);
7305     // If we have NoWrap set, then we can assume that the increment won't
7306     // overflow, in which case if RHS - Start is a constant, we don't need to
7307     // do a max operation since we can just figure it out statically
7308     if (NoWrap && isa<SCEVConstant>(Diff)) {
7309       APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7310       if (!D.isNegative())
7311         End = Start;
7312     } else
7313       End = IsSigned ? getSMinExpr(RHS, Start)
7314                      : getUMinExpr(RHS, Start);
7315   }
7316 
7317   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7318 
7319   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7320                             : getUnsignedRange(Start).getUnsignedMax();
7321 
7322   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7323                              : getUnsignedRange(Stride).getUnsignedMin();
7324 
7325   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7326   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7327                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
7328 
7329   // Although End can be a MIN expression we estimate MinEnd considering only
7330   // the case End = RHS. This is safe because in the other case (Start - End)
7331   // is zero, leading to a zero maximum backedge taken count.
7332   APInt MinEnd =
7333     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7334              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7335 
7336 
7337   const SCEV *MaxBECount = getCouldNotCompute();
7338   if (isa<SCEVConstant>(BECount))
7339     MaxBECount = BECount;
7340   else
7341     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
7342                                 getConstant(MinStride), false);
7343 
7344   if (isa<SCEVCouldNotCompute>(MaxBECount))
7345     MaxBECount = BECount;
7346 
7347   return ExitLimit(BECount, MaxBECount);
7348 }
7349 
7350 /// getNumIterationsInRange - Return the number of iterations of this loop that
7351 /// produce values in the specified constant range.  Another way of looking at
7352 /// this is that it returns the first iteration number where the value is not in
7353 /// the condition, thus computing the exit count. If the iteration count can't
7354 /// be computed, an instance of SCEVCouldNotCompute is returned.
7355 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
7356                                                     ScalarEvolution &SE) const {
7357   if (Range.isFullSet())  // Infinite loop.
7358     return SE.getCouldNotCompute();
7359 
7360   // If the start is a non-zero constant, shift the range to simplify things.
7361   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
7362     if (!SC->getValue()->isZero()) {
7363       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
7364       Operands[0] = SE.getConstant(SC->getType(), 0);
7365       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
7366                                              getNoWrapFlags(FlagNW));
7367       if (const SCEVAddRecExpr *ShiftedAddRec =
7368             dyn_cast<SCEVAddRecExpr>(Shifted))
7369         return ShiftedAddRec->getNumIterationsInRange(
7370                            Range.subtract(SC->getValue()->getValue()), SE);
7371       // This is strange and shouldn't happen.
7372       return SE.getCouldNotCompute();
7373     }
7374 
7375   // The only time we can solve this is when we have all constant indices.
7376   // Otherwise, we cannot determine the overflow conditions.
7377   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7378     if (!isa<SCEVConstant>(getOperand(i)))
7379       return SE.getCouldNotCompute();
7380 
7381 
7382   // Okay at this point we know that all elements of the chrec are constants and
7383   // that the start element is zero.
7384 
7385   // First check to see if the range contains zero.  If not, the first
7386   // iteration exits.
7387   unsigned BitWidth = SE.getTypeSizeInBits(getType());
7388   if (!Range.contains(APInt(BitWidth, 0)))
7389     return SE.getConstant(getType(), 0);
7390 
7391   if (isAffine()) {
7392     // If this is an affine expression then we have this situation:
7393     //   Solve {0,+,A} in Range  ===  Ax in Range
7394 
7395     // We know that zero is in the range.  If A is positive then we know that
7396     // the upper value of the range must be the first possible exit value.
7397     // If A is negative then the lower of the range is the last possible loop
7398     // value.  Also note that we already checked for a full range.
7399     APInt One(BitWidth,1);
7400     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7401     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
7402 
7403     // The exit value should be (End+A)/A.
7404     APInt ExitVal = (End + A).udiv(A);
7405     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
7406 
7407     // Evaluate at the exit value.  If we really did fall out of the valid
7408     // range, then we computed our trip count, otherwise wrap around or other
7409     // things must have happened.
7410     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
7411     if (Range.contains(Val->getValue()))
7412       return SE.getCouldNotCompute();  // Something strange happened
7413 
7414     // Ensure that the previous value is in the range.  This is a sanity check.
7415     assert(Range.contains(
7416            EvaluateConstantChrecAtConstant(this,
7417            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
7418            "Linear scev computation is off in a bad way!");
7419     return SE.getConstant(ExitValue);
7420   } else if (isQuadratic()) {
7421     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7422     // quadratic equation to solve it.  To do this, we must frame our problem in
7423     // terms of figuring out when zero is crossed, instead of when
7424     // Range.getUpper() is crossed.
7425     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
7426     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
7427     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7428                                              // getNoWrapFlags(FlagNW)
7429                                              FlagAnyWrap);
7430 
7431     // Next, solve the constructed addrec
7432     std::pair<const SCEV *,const SCEV *> Roots =
7433       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
7434     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7435     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
7436     if (R1) {
7437       // Pick the smallest positive root value.
7438       if (ConstantInt *CB =
7439           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
7440                          R1->getValue(), R2->getValue()))) {
7441         if (!CB->getZExtValue())
7442           std::swap(R1, R2);   // R1 is the minimum root now.
7443 
7444         // Make sure the root is not off by one.  The returned iteration should
7445         // not be in the range, but the previous one should be.  When solving
7446         // for "X*X < 5", for example, we should not return a root of 2.
7447         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
7448                                                              R1->getValue(),
7449                                                              SE);
7450         if (Range.contains(R1Val->getValue())) {
7451           // The next iteration must be out of the range...
7452           ConstantInt *NextVal =
7453                 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
7454 
7455           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
7456           if (!Range.contains(R1Val->getValue()))
7457             return SE.getConstant(NextVal);
7458           return SE.getCouldNotCompute();  // Something strange happened
7459         }
7460 
7461         // If R1 was not in the range, then it is a good return value.  Make
7462         // sure that R1-1 WAS in the range though, just in case.
7463         ConstantInt *NextVal =
7464                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
7465         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
7466         if (Range.contains(R1Val->getValue()))
7467           return R1;
7468         return SE.getCouldNotCompute();  // Something strange happened
7469       }
7470     }
7471   }
7472 
7473   return SE.getCouldNotCompute();
7474 }
7475 
7476 namespace {
7477 struct FindUndefs {
7478   bool Found;
7479   FindUndefs() : Found(false) {}
7480 
7481   bool follow(const SCEV *S) {
7482     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7483       if (isa<UndefValue>(C->getValue()))
7484         Found = true;
7485     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7486       if (isa<UndefValue>(C->getValue()))
7487         Found = true;
7488     }
7489 
7490     // Keep looking if we haven't found it yet.
7491     return !Found;
7492   }
7493   bool isDone() const {
7494     // Stop recursion if we have found an undef.
7495     return Found;
7496   }
7497 };
7498 }
7499 
7500 // Return true when S contains at least an undef value.
7501 static inline bool
7502 containsUndefs(const SCEV *S) {
7503   FindUndefs F;
7504   SCEVTraversal<FindUndefs> ST(F);
7505   ST.visitAll(S);
7506 
7507   return F.Found;
7508 }
7509 
7510 namespace {
7511 // Collect all steps of SCEV expressions.
7512 struct SCEVCollectStrides {
7513   ScalarEvolution &SE;
7514   SmallVectorImpl<const SCEV *> &Strides;
7515 
7516   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7517       : SE(SE), Strides(S) {}
7518 
7519   bool follow(const SCEV *S) {
7520     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7521       Strides.push_back(AR->getStepRecurrence(SE));
7522     return true;
7523   }
7524   bool isDone() const { return false; }
7525 };
7526 
7527 // Collect all SCEVUnknown and SCEVMulExpr expressions.
7528 struct SCEVCollectTerms {
7529   SmallVectorImpl<const SCEV *> &Terms;
7530 
7531   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7532       : Terms(T) {}
7533 
7534   bool follow(const SCEV *S) {
7535     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
7536       if (!containsUndefs(S))
7537         Terms.push_back(S);
7538 
7539       // Stop recursion: once we collected a term, do not walk its operands.
7540       return false;
7541     }
7542 
7543     // Keep looking.
7544     return true;
7545   }
7546   bool isDone() const { return false; }
7547 };
7548 }
7549 
7550 /// Find parametric terms in this SCEVAddRecExpr.
7551 void SCEVAddRecExpr::collectParametricTerms(
7552     ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7553   SmallVector<const SCEV *, 4> Strides;
7554   SCEVCollectStrides StrideCollector(SE, Strides);
7555   visitAll(this, StrideCollector);
7556 
7557   DEBUG({
7558       dbgs() << "Strides:\n";
7559       for (const SCEV *S : Strides)
7560         dbgs() << *S << "\n";
7561     });
7562 
7563   for (const SCEV *S : Strides) {
7564     SCEVCollectTerms TermCollector(Terms);
7565     visitAll(S, TermCollector);
7566   }
7567 
7568   DEBUG({
7569       dbgs() << "Terms:\n";
7570       for (const SCEV *T : Terms)
7571         dbgs() << *T << "\n";
7572     });
7573 }
7574 
7575 static bool findArrayDimensionsRec(ScalarEvolution &SE,
7576                                    SmallVectorImpl<const SCEV *> &Terms,
7577                                    SmallVectorImpl<const SCEV *> &Sizes) {
7578   int Last = Terms.size() - 1;
7579   const SCEV *Step = Terms[Last];
7580 
7581   // End of recursion.
7582   if (Last == 0) {
7583     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
7584       SmallVector<const SCEV *, 2> Qs;
7585       for (const SCEV *Op : M->operands())
7586         if (!isa<SCEVConstant>(Op))
7587           Qs.push_back(Op);
7588 
7589       Step = SE.getMulExpr(Qs);
7590     }
7591 
7592     Sizes.push_back(Step);
7593     return true;
7594   }
7595 
7596   for (const SCEV *&Term : Terms) {
7597     // Normalize the terms before the next call to findArrayDimensionsRec.
7598     const SCEV *Q, *R;
7599     SCEVDivision::divide(SE, Term, Step, &Q, &R);
7600 
7601     // Bail out when GCD does not evenly divide one of the terms.
7602     if (!R->isZero())
7603       return false;
7604 
7605     Term = Q;
7606   }
7607 
7608   // Remove all SCEVConstants.
7609   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7610                 return isa<SCEVConstant>(E);
7611               }),
7612               Terms.end());
7613 
7614   if (Terms.size() > 0)
7615     if (!findArrayDimensionsRec(SE, Terms, Sizes))
7616       return false;
7617 
7618   Sizes.push_back(Step);
7619   return true;
7620 }
7621 
7622 namespace {
7623 struct FindParameter {
7624   bool FoundParameter;
7625   FindParameter() : FoundParameter(false) {}
7626 
7627   bool follow(const SCEV *S) {
7628     if (isa<SCEVUnknown>(S)) {
7629       FoundParameter = true;
7630       // Stop recursion: we found a parameter.
7631       return false;
7632     }
7633     // Keep looking.
7634     return true;
7635   }
7636   bool isDone() const {
7637     // Stop recursion if we have found a parameter.
7638     return FoundParameter;
7639   }
7640 };
7641 }
7642 
7643 // Returns true when S contains at least a SCEVUnknown parameter.
7644 static inline bool
7645 containsParameters(const SCEV *S) {
7646   FindParameter F;
7647   SCEVTraversal<FindParameter> ST(F);
7648   ST.visitAll(S);
7649 
7650   return F.FoundParameter;
7651 }
7652 
7653 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7654 static inline bool
7655 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7656   for (const SCEV *T : Terms)
7657     if (containsParameters(T))
7658       return true;
7659   return false;
7660 }
7661 
7662 // Return the number of product terms in S.
7663 static inline int numberOfTerms(const SCEV *S) {
7664   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7665     return Expr->getNumOperands();
7666   return 1;
7667 }
7668 
7669 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7670   if (isa<SCEVConstant>(T))
7671     return nullptr;
7672 
7673   if (isa<SCEVUnknown>(T))
7674     return T;
7675 
7676   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7677     SmallVector<const SCEV *, 2> Factors;
7678     for (const SCEV *Op : M->operands())
7679       if (!isa<SCEVConstant>(Op))
7680         Factors.push_back(Op);
7681 
7682     return SE.getMulExpr(Factors);
7683   }
7684 
7685   return T;
7686 }
7687 
7688 /// Return the size of an element read or written by Inst.
7689 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7690   Type *Ty;
7691   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7692     Ty = Store->getValueOperand()->getType();
7693   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
7694     Ty = Load->getType();
7695   else
7696     return nullptr;
7697 
7698   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7699   return getSizeOfExpr(ETy, Ty);
7700 }
7701 
7702 /// Second step of delinearization: compute the array dimensions Sizes from the
7703 /// set of Terms extracted from the memory access function of this SCEVAddRec.
7704 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7705                                           SmallVectorImpl<const SCEV *> &Sizes,
7706                                           const SCEV *ElementSize) const {
7707 
7708   if (Terms.size() < 1 || !ElementSize)
7709     return;
7710 
7711   // Early return when Terms do not contain parameters: we do not delinearize
7712   // non parametric SCEVs.
7713   if (!containsParameters(Terms))
7714     return;
7715 
7716   DEBUG({
7717       dbgs() << "Terms:\n";
7718       for (const SCEV *T : Terms)
7719         dbgs() << *T << "\n";
7720     });
7721 
7722   // Remove duplicates.
7723   std::sort(Terms.begin(), Terms.end());
7724   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7725 
7726   // Put larger terms first.
7727   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7728     return numberOfTerms(LHS) > numberOfTerms(RHS);
7729   });
7730 
7731   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7732 
7733   // Divide all terms by the element size.
7734   for (const SCEV *&Term : Terms) {
7735     const SCEV *Q, *R;
7736     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
7737     Term = Q;
7738   }
7739 
7740   SmallVector<const SCEV *, 4> NewTerms;
7741 
7742   // Remove constant factors.
7743   for (const SCEV *T : Terms)
7744     if (const SCEV *NewT = removeConstantFactors(SE, T))
7745       NewTerms.push_back(NewT);
7746 
7747   DEBUG({
7748       dbgs() << "Terms after sorting:\n";
7749       for (const SCEV *T : NewTerms)
7750         dbgs() << *T << "\n";
7751     });
7752 
7753   if (NewTerms.empty() ||
7754       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
7755     Sizes.clear();
7756     return;
7757   }
7758 
7759   // The last element to be pushed into Sizes is the size of an element.
7760   Sizes.push_back(ElementSize);
7761 
7762   DEBUG({
7763       dbgs() << "Sizes:\n";
7764       for (const SCEV *S : Sizes)
7765         dbgs() << *S << "\n";
7766     });
7767 }
7768 
7769 /// Third step of delinearization: compute the access functions for the
7770 /// Subscripts based on the dimensions in Sizes.
7771 void SCEVAddRecExpr::computeAccessFunctions(
7772     ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7773     SmallVectorImpl<const SCEV *> &Sizes) const {
7774 
7775   // Early exit in case this SCEV is not an affine multivariate function.
7776   if (Sizes.empty() || !this->isAffine())
7777     return;
7778 
7779   const SCEV *Res = this;
7780   int Last = Sizes.size() - 1;
7781   for (int i = Last; i >= 0; i--) {
7782     const SCEV *Q, *R;
7783     SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
7784 
7785     DEBUG({
7786         dbgs() << "Res: " << *Res << "\n";
7787         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7788         dbgs() << "Res divided by Sizes[i]:\n";
7789         dbgs() << "Quotient: " << *Q << "\n";
7790         dbgs() << "Remainder: " << *R << "\n";
7791       });
7792 
7793     Res = Q;
7794 
7795     // Do not record the last subscript corresponding to the size of elements in
7796     // the array.
7797     if (i == Last) {
7798 
7799       // Bail out if the remainder is too complex.
7800       if (isa<SCEVAddRecExpr>(R)) {
7801         Subscripts.clear();
7802         Sizes.clear();
7803         return;
7804       }
7805 
7806       continue;
7807     }
7808 
7809     // Record the access function for the current subscript.
7810     Subscripts.push_back(R);
7811   }
7812 
7813   // Also push in last position the remainder of the last division: it will be
7814   // the access function of the innermost dimension.
7815   Subscripts.push_back(Res);
7816 
7817   std::reverse(Subscripts.begin(), Subscripts.end());
7818 
7819   DEBUG({
7820       dbgs() << "Subscripts:\n";
7821       for (const SCEV *S : Subscripts)
7822         dbgs() << *S << "\n";
7823     });
7824 }
7825 
7826 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7827 /// sizes of an array access. Returns the remainder of the delinearization that
7828 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
7829 /// the multiples of SCEV coefficients: that is a pattern matching of sub
7830 /// expressions in the stride and base of a SCEV corresponding to the
7831 /// computation of a GCD (greatest common divisor) of base and stride.  When
7832 /// SCEV->delinearize fails, it returns the SCEV unchanged.
7833 ///
7834 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
7835 ///
7836 ///  void foo(long n, long m, long o, double A[n][m][o]) {
7837 ///
7838 ///    for (long i = 0; i < n; i++)
7839 ///      for (long j = 0; j < m; j++)
7840 ///        for (long k = 0; k < o; k++)
7841 ///          A[i][j][k] = 1.0;
7842 ///  }
7843 ///
7844 /// the delinearization input is the following AddRec SCEV:
7845 ///
7846 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7847 ///
7848 /// From this SCEV, we are able to say that the base offset of the access is %A
7849 /// because it appears as an offset that does not divide any of the strides in
7850 /// the loops:
7851 ///
7852 ///  CHECK: Base offset: %A
7853 ///
7854 /// and then SCEV->delinearize determines the size of some of the dimensions of
7855 /// the array as these are the multiples by which the strides are happening:
7856 ///
7857 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7858 ///
7859 /// Note that the outermost dimension remains of UnknownSize because there are
7860 /// no strides that would help identifying the size of the last dimension: when
7861 /// the array has been statically allocated, one could compute the size of that
7862 /// dimension by dividing the overall size of the array by the size of the known
7863 /// dimensions: %m * %o * 8.
7864 ///
7865 /// Finally delinearize provides the access functions for the array reference
7866 /// that does correspond to A[i][j][k] of the above C testcase:
7867 ///
7868 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7869 ///
7870 /// The testcases are checking the output of a function pass:
7871 /// DelinearizationPass that walks through all loads and stores of a function
7872 /// asking for the SCEV of the memory access with respect to all enclosing
7873 /// loops, calling SCEV->delinearize on that and printing the results.
7874 
7875 void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7876                                  SmallVectorImpl<const SCEV *> &Subscripts,
7877                                  SmallVectorImpl<const SCEV *> &Sizes,
7878                                  const SCEV *ElementSize) const {
7879   // First step: collect parametric terms.
7880   SmallVector<const SCEV *, 4> Terms;
7881   collectParametricTerms(SE, Terms);
7882 
7883   if (Terms.empty())
7884     return;
7885 
7886   // Second step: find subscript sizes.
7887   SE.findArrayDimensions(Terms, Sizes, ElementSize);
7888 
7889   if (Sizes.empty())
7890     return;
7891 
7892   // Third step: compute the access functions for each subscript.
7893   computeAccessFunctions(SE, Subscripts, Sizes);
7894 
7895   if (Subscripts.empty())
7896     return;
7897 
7898   DEBUG({
7899       dbgs() << "succeeded to delinearize " << *this << "\n";
7900       dbgs() << "ArrayDecl[UnknownSize]";
7901       for (const SCEV *S : Sizes)
7902         dbgs() << "[" << *S << "]";
7903 
7904       dbgs() << "\nArrayRef";
7905       for (const SCEV *S : Subscripts)
7906         dbgs() << "[" << *S << "]";
7907       dbgs() << "\n";
7908     });
7909 }
7910 
7911 //===----------------------------------------------------------------------===//
7912 //                   SCEVCallbackVH Class Implementation
7913 //===----------------------------------------------------------------------===//
7914 
7915 void ScalarEvolution::SCEVCallbackVH::deleted() {
7916   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7917   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7918     SE->ConstantEvolutionLoopExitValue.erase(PN);
7919   SE->ValueExprMap.erase(getValPtr());
7920   // this now dangles!
7921 }
7922 
7923 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
7924   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7925 
7926   // Forget all the expressions associated with users of the old value,
7927   // so that future queries will recompute the expressions using the new
7928   // value.
7929   Value *Old = getValPtr();
7930   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
7931   SmallPtrSet<User *, 8> Visited;
7932   while (!Worklist.empty()) {
7933     User *U = Worklist.pop_back_val();
7934     // Deleting the Old value will cause this to dangle. Postpone
7935     // that until everything else is done.
7936     if (U == Old)
7937       continue;
7938     if (!Visited.insert(U).second)
7939       continue;
7940     if (PHINode *PN = dyn_cast<PHINode>(U))
7941       SE->ConstantEvolutionLoopExitValue.erase(PN);
7942     SE->ValueExprMap.erase(U);
7943     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
7944   }
7945   // Delete the Old value.
7946   if (PHINode *PN = dyn_cast<PHINode>(Old))
7947     SE->ConstantEvolutionLoopExitValue.erase(PN);
7948   SE->ValueExprMap.erase(Old);
7949   // this now dangles!
7950 }
7951 
7952 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
7953   : CallbackVH(V), SE(se) {}
7954 
7955 //===----------------------------------------------------------------------===//
7956 //                   ScalarEvolution Class Implementation
7957 //===----------------------------------------------------------------------===//
7958 
7959 ScalarEvolution::ScalarEvolution()
7960   : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7961     BlockDispositions(64), FirstUnknown(nullptr) {
7962   initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
7963 }
7964 
7965 bool ScalarEvolution::runOnFunction(Function &F) {
7966   this->F = &F;
7967   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
7968   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
7969   DL = &F.getParent()->getDataLayout();
7970   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
7971   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7972   return false;
7973 }
7974 
7975 void ScalarEvolution::releaseMemory() {
7976   // Iterate through all the SCEVUnknown instances and call their
7977   // destructors, so that they release their references to their values.
7978   for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7979     U->~SCEVUnknown();
7980   FirstUnknown = nullptr;
7981 
7982   ValueExprMap.clear();
7983 
7984   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7985   // that a loop had multiple computable exits.
7986   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7987          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7988        I != E; ++I) {
7989     I->second.clear();
7990   }
7991 
7992   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7993 
7994   BackedgeTakenCounts.clear();
7995   ConstantEvolutionLoopExitValue.clear();
7996   ValuesAtScopes.clear();
7997   LoopDispositions.clear();
7998   BlockDispositions.clear();
7999   UnsignedRanges.clear();
8000   SignedRanges.clear();
8001   UniqueSCEVs.clear();
8002   SCEVAllocator.Reset();
8003 }
8004 
8005 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
8006   AU.setPreservesAll();
8007   AU.addRequired<AssumptionCacheTracker>();
8008   AU.addRequiredTransitive<LoopInfoWrapperPass>();
8009   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
8010   AU.addRequired<TargetLibraryInfoWrapperPass>();
8011 }
8012 
8013 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
8014   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
8015 }
8016 
8017 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
8018                           const Loop *L) {
8019   // Print all inner loops first
8020   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8021     PrintLoopInfo(OS, SE, *I);
8022 
8023   OS << "Loop ";
8024   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
8025   OS << ": ";
8026 
8027   SmallVector<BasicBlock *, 8> ExitBlocks;
8028   L->getExitBlocks(ExitBlocks);
8029   if (ExitBlocks.size() != 1)
8030     OS << "<multiple exits> ";
8031 
8032   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8033     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
8034   } else {
8035     OS << "Unpredictable backedge-taken count. ";
8036   }
8037 
8038   OS << "\n"
8039         "Loop ";
8040   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
8041   OS << ": ";
8042 
8043   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8044     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8045   } else {
8046     OS << "Unpredictable max backedge-taken count. ";
8047   }
8048 
8049   OS << "\n";
8050 }
8051 
8052 void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
8053   // ScalarEvolution's implementation of the print method is to print
8054   // out SCEV values of all instructions that are interesting. Doing
8055   // this potentially causes it to create new SCEV objects though,
8056   // which technically conflicts with the const qualifier. This isn't
8057   // observable from outside the class though, so casting away the
8058   // const isn't dangerous.
8059   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8060 
8061   OS << "Classifying expressions for: ";
8062   F->printAsOperand(OS, /*PrintType=*/false);
8063   OS << "\n";
8064   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
8065     if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
8066       OS << *I << '\n';
8067       OS << "  -->  ";
8068       const SCEV *SV = SE.getSCEV(&*I);
8069       SV->print(OS);
8070       if (!isa<SCEVCouldNotCompute>(SV)) {
8071         OS << " U: ";
8072         SE.getUnsignedRange(SV).print(OS);
8073         OS << " S: ";
8074         SE.getSignedRange(SV).print(OS);
8075       }
8076 
8077       const Loop *L = LI->getLoopFor((*I).getParent());
8078 
8079       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
8080       if (AtUse != SV) {
8081         OS << "  -->  ";
8082         AtUse->print(OS);
8083         if (!isa<SCEVCouldNotCompute>(AtUse)) {
8084           OS << " U: ";
8085           SE.getUnsignedRange(AtUse).print(OS);
8086           OS << " S: ";
8087           SE.getSignedRange(AtUse).print(OS);
8088         }
8089       }
8090 
8091       if (L) {
8092         OS << "\t\t" "Exits: ";
8093         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
8094         if (!SE.isLoopInvariant(ExitValue, L)) {
8095           OS << "<<Unknown>>";
8096         } else {
8097           OS << *ExitValue;
8098         }
8099       }
8100 
8101       OS << "\n";
8102     }
8103 
8104   OS << "Determining loop execution counts for: ";
8105   F->printAsOperand(OS, /*PrintType=*/false);
8106   OS << "\n";
8107   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
8108     PrintLoopInfo(OS, &SE, *I);
8109 }
8110 
8111 ScalarEvolution::LoopDisposition
8112 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
8113   auto &Values = LoopDispositions[S];
8114   for (auto &V : Values) {
8115     if (V.getPointer() == L)
8116       return V.getInt();
8117   }
8118   Values.emplace_back(L, LoopVariant);
8119   LoopDisposition D = computeLoopDisposition(S, L);
8120   auto &Values2 = LoopDispositions[S];
8121   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8122     if (V.getPointer() == L) {
8123       V.setInt(D);
8124       break;
8125     }
8126   }
8127   return D;
8128 }
8129 
8130 ScalarEvolution::LoopDisposition
8131 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
8132   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
8133   case scConstant:
8134     return LoopInvariant;
8135   case scTruncate:
8136   case scZeroExtend:
8137   case scSignExtend:
8138     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
8139   case scAddRecExpr: {
8140     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8141 
8142     // If L is the addrec's loop, it's computable.
8143     if (AR->getLoop() == L)
8144       return LoopComputable;
8145 
8146     // Add recurrences are never invariant in the function-body (null loop).
8147     if (!L)
8148       return LoopVariant;
8149 
8150     // This recurrence is variant w.r.t. L if L contains AR's loop.
8151     if (L->contains(AR->getLoop()))
8152       return LoopVariant;
8153 
8154     // This recurrence is invariant w.r.t. L if AR's loop contains L.
8155     if (AR->getLoop()->contains(L))
8156       return LoopInvariant;
8157 
8158     // This recurrence is variant w.r.t. L if any of its operands
8159     // are variant.
8160     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8161          I != E; ++I)
8162       if (!isLoopInvariant(*I, L))
8163         return LoopVariant;
8164 
8165     // Otherwise it's loop-invariant.
8166     return LoopInvariant;
8167   }
8168   case scAddExpr:
8169   case scMulExpr:
8170   case scUMaxExpr:
8171   case scSMaxExpr: {
8172     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
8173     bool HasVarying = false;
8174     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8175          I != E; ++I) {
8176       LoopDisposition D = getLoopDisposition(*I, L);
8177       if (D == LoopVariant)
8178         return LoopVariant;
8179       if (D == LoopComputable)
8180         HasVarying = true;
8181     }
8182     return HasVarying ? LoopComputable : LoopInvariant;
8183   }
8184   case scUDivExpr: {
8185     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
8186     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8187     if (LD == LoopVariant)
8188       return LoopVariant;
8189     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8190     if (RD == LoopVariant)
8191       return LoopVariant;
8192     return (LD == LoopInvariant && RD == LoopInvariant) ?
8193            LoopInvariant : LoopComputable;
8194   }
8195   case scUnknown:
8196     // All non-instruction values are loop invariant.  All instructions are loop
8197     // invariant if they are not contained in the specified loop.
8198     // Instructions are never considered invariant in the function body
8199     // (null loop) because they are defined within the "loop".
8200     if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8201       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8202     return LoopInvariant;
8203   case scCouldNotCompute:
8204     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
8205   }
8206   llvm_unreachable("Unknown SCEV kind!");
8207 }
8208 
8209 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8210   return getLoopDisposition(S, L) == LoopInvariant;
8211 }
8212 
8213 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8214   return getLoopDisposition(S, L) == LoopComputable;
8215 }
8216 
8217 ScalarEvolution::BlockDisposition
8218 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
8219   auto &Values = BlockDispositions[S];
8220   for (auto &V : Values) {
8221     if (V.getPointer() == BB)
8222       return V.getInt();
8223   }
8224   Values.emplace_back(BB, DoesNotDominateBlock);
8225   BlockDisposition D = computeBlockDisposition(S, BB);
8226   auto &Values2 = BlockDispositions[S];
8227   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8228     if (V.getPointer() == BB) {
8229       V.setInt(D);
8230       break;
8231     }
8232   }
8233   return D;
8234 }
8235 
8236 ScalarEvolution::BlockDisposition
8237 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
8238   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
8239   case scConstant:
8240     return ProperlyDominatesBlock;
8241   case scTruncate:
8242   case scZeroExtend:
8243   case scSignExtend:
8244     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
8245   case scAddRecExpr: {
8246     // This uses a "dominates" query instead of "properly dominates" query
8247     // to test for proper dominance too, because the instruction which
8248     // produces the addrec's value is a PHI, and a PHI effectively properly
8249     // dominates its entire containing block.
8250     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8251     if (!DT->dominates(AR->getLoop()->getHeader(), BB))
8252       return DoesNotDominateBlock;
8253   }
8254   // FALL THROUGH into SCEVNAryExpr handling.
8255   case scAddExpr:
8256   case scMulExpr:
8257   case scUMaxExpr:
8258   case scSMaxExpr: {
8259     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
8260     bool Proper = true;
8261     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8262          I != E; ++I) {
8263       BlockDisposition D = getBlockDisposition(*I, BB);
8264       if (D == DoesNotDominateBlock)
8265         return DoesNotDominateBlock;
8266       if (D == DominatesBlock)
8267         Proper = false;
8268     }
8269     return Proper ? ProperlyDominatesBlock : DominatesBlock;
8270   }
8271   case scUDivExpr: {
8272     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
8273     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8274     BlockDisposition LD = getBlockDisposition(LHS, BB);
8275     if (LD == DoesNotDominateBlock)
8276       return DoesNotDominateBlock;
8277     BlockDisposition RD = getBlockDisposition(RHS, BB);
8278     if (RD == DoesNotDominateBlock)
8279       return DoesNotDominateBlock;
8280     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8281       ProperlyDominatesBlock : DominatesBlock;
8282   }
8283   case scUnknown:
8284     if (Instruction *I =
8285           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8286       if (I->getParent() == BB)
8287         return DominatesBlock;
8288       if (DT->properlyDominates(I->getParent(), BB))
8289         return ProperlyDominatesBlock;
8290       return DoesNotDominateBlock;
8291     }
8292     return ProperlyDominatesBlock;
8293   case scCouldNotCompute:
8294     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
8295   }
8296   llvm_unreachable("Unknown SCEV kind!");
8297 }
8298 
8299 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8300   return getBlockDisposition(S, BB) >= DominatesBlock;
8301 }
8302 
8303 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8304   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
8305 }
8306 
8307 namespace {
8308 // Search for a SCEV expression node within an expression tree.
8309 // Implements SCEVTraversal::Visitor.
8310 struct SCEVSearch {
8311   const SCEV *Node;
8312   bool IsFound;
8313 
8314   SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8315 
8316   bool follow(const SCEV *S) {
8317     IsFound |= (S == Node);
8318     return !IsFound;
8319   }
8320   bool isDone() const { return IsFound; }
8321 };
8322 }
8323 
8324 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
8325   SCEVSearch Search(Op);
8326   visitAll(S, Search);
8327   return Search.IsFound;
8328 }
8329 
8330 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8331   ValuesAtScopes.erase(S);
8332   LoopDispositions.erase(S);
8333   BlockDispositions.erase(S);
8334   UnsignedRanges.erase(S);
8335   SignedRanges.erase(S);
8336 
8337   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8338          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8339     BackedgeTakenInfo &BEInfo = I->second;
8340     if (BEInfo.hasOperand(S, this)) {
8341       BEInfo.clear();
8342       BackedgeTakenCounts.erase(I++);
8343     }
8344     else
8345       ++I;
8346   }
8347 }
8348 
8349 typedef DenseMap<const Loop *, std::string> VerifyMap;
8350 
8351 /// replaceSubString - Replaces all occurrences of From in Str with To.
8352 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8353   size_t Pos = 0;
8354   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8355     Str.replace(Pos, From.size(), To.data(), To.size());
8356     Pos += To.size();
8357   }
8358 }
8359 
8360 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8361 static void
8362 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8363   for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8364     getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8365 
8366     std::string &S = Map[L];
8367     if (S.empty()) {
8368       raw_string_ostream OS(S);
8369       SE.getBackedgeTakenCount(L)->print(OS);
8370 
8371       // false and 0 are semantically equivalent. This can happen in dead loops.
8372       replaceSubString(OS.str(), "false", "0");
8373       // Remove wrap flags, their use in SCEV is highly fragile.
8374       // FIXME: Remove this when SCEV gets smarter about them.
8375       replaceSubString(OS.str(), "<nw>", "");
8376       replaceSubString(OS.str(), "<nsw>", "");
8377       replaceSubString(OS.str(), "<nuw>", "");
8378     }
8379   }
8380 }
8381 
8382 void ScalarEvolution::verifyAnalysis() const {
8383   if (!VerifySCEV)
8384     return;
8385 
8386   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8387 
8388   // Gather stringified backedge taken counts for all loops using SCEV's caches.
8389   // FIXME: It would be much better to store actual values instead of strings,
8390   //        but SCEV pointers will change if we drop the caches.
8391   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8392   for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8393     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8394 
8395   // Gather stringified backedge taken counts for all loops without using
8396   // SCEV's caches.
8397   SE.releaseMemory();
8398   for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8399     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8400 
8401   // Now compare whether they're the same with and without caches. This allows
8402   // verifying that no pass changed the cache.
8403   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8404          "New loops suddenly appeared!");
8405 
8406   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8407                            OldE = BackedgeDumpsOld.end(),
8408                            NewI = BackedgeDumpsNew.begin();
8409        OldI != OldE; ++OldI, ++NewI) {
8410     assert(OldI->first == NewI->first && "Loop order changed!");
8411 
8412     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8413     // changes.
8414     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
8415     // means that a pass is buggy or SCEV has to learn a new pattern but is
8416     // usually not harmful.
8417     if (OldI->second != NewI->second &&
8418         OldI->second.find("undef") == std::string::npos &&
8419         NewI->second.find("undef") == std::string::npos &&
8420         OldI->second != "***COULDNOTCOMPUTE***" &&
8421         NewI->second != "***COULDNOTCOMPUTE***") {
8422       dbgs() << "SCEVValidator: SCEV for loop '"
8423              << OldI->first->getHeader()->getName()
8424              << "' changed from '" << OldI->second
8425              << "' to '" << NewI->second << "'!\n";
8426       std::abort();
8427     }
8428   }
8429 
8430   // TODO: Verify more things.
8431 }
8432