xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 8dff03911c5efa7a3abd6fb43f09233758075b20)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/ScopeExit.h"
65 #include "llvm/ADT/Sequence.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/Statistic.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/ConstantFolding.h"
70 #include "llvm/Analysis/InstructionSimplify.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
73 #include "llvm/Analysis/TargetLibraryInfo.h"
74 #include "llvm/Analysis/ValueTracking.h"
75 #include "llvm/IR/ConstantRange.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalVariable.h"
83 #include "llvm/IR/InstIterator.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/LLVMContext.h"
86 #include "llvm/IR/Metadata.h"
87 #include "llvm/IR/Operator.h"
88 #include "llvm/IR/PatternMatch.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/ErrorHandling.h"
92 #include "llvm/Support/MathExtras.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include "llvm/Support/SaveAndRestore.h"
95 #include <algorithm>
96 using namespace llvm;
97 
98 #define DEBUG_TYPE "scalar-evolution"
99 
100 STATISTIC(NumArrayLenItCounts,
101           "Number of trip counts computed with array length");
102 STATISTIC(NumTripCountsComputed,
103           "Number of loops with predictable loop counts");
104 STATISTIC(NumTripCountsNotComputed,
105           "Number of loops without predictable loop counts");
106 STATISTIC(NumBruteForceTripCountsComputed,
107           "Number of loops with trip counts computed by force");
108 
109 static cl::opt<unsigned>
110 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
111                         cl::desc("Maximum number of iterations SCEV will "
112                                  "symbolically execute a constant "
113                                  "derived loop"),
114                         cl::init(100));
115 
116 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
117 static cl::opt<bool>
118 VerifySCEV("verify-scev",
119            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
120 static cl::opt<bool>
121     VerifySCEVMap("verify-scev-maps",
122                   cl::desc("Verify no dangling value in ScalarEvolution's "
123                            "ExprValueMap (slow)"));
124 
125 static cl::opt<unsigned> MulOpsInlineThreshold(
126     "scev-mulops-inline-threshold", cl::Hidden,
127     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
128     cl::init(1000));
129 
130 //===----------------------------------------------------------------------===//
131 //                           SCEV class definitions
132 //===----------------------------------------------------------------------===//
133 
134 //===----------------------------------------------------------------------===//
135 // Implementation of the SCEV class.
136 //
137 
138 LLVM_DUMP_METHOD
139 void SCEV::dump() const {
140   print(dbgs());
141   dbgs() << '\n';
142 }
143 
144 void SCEV::print(raw_ostream &OS) const {
145   switch (static_cast<SCEVTypes>(getSCEVType())) {
146   case scConstant:
147     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
148     return;
149   case scTruncate: {
150     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
151     const SCEV *Op = Trunc->getOperand();
152     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
153        << *Trunc->getType() << ")";
154     return;
155   }
156   case scZeroExtend: {
157     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
158     const SCEV *Op = ZExt->getOperand();
159     OS << "(zext " << *Op->getType() << " " << *Op << " to "
160        << *ZExt->getType() << ")";
161     return;
162   }
163   case scSignExtend: {
164     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
165     const SCEV *Op = SExt->getOperand();
166     OS << "(sext " << *Op->getType() << " " << *Op << " to "
167        << *SExt->getType() << ")";
168     return;
169   }
170   case scAddRecExpr: {
171     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
172     OS << "{" << *AR->getOperand(0);
173     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
174       OS << ",+," << *AR->getOperand(i);
175     OS << "}<";
176     if (AR->hasNoUnsignedWrap())
177       OS << "nuw><";
178     if (AR->hasNoSignedWrap())
179       OS << "nsw><";
180     if (AR->hasNoSelfWrap() &&
181         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
182       OS << "nw><";
183     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
184     OS << ">";
185     return;
186   }
187   case scAddExpr:
188   case scMulExpr:
189   case scUMaxExpr:
190   case scSMaxExpr: {
191     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
192     const char *OpStr = nullptr;
193     switch (NAry->getSCEVType()) {
194     case scAddExpr: OpStr = " + "; break;
195     case scMulExpr: OpStr = " * "; break;
196     case scUMaxExpr: OpStr = " umax "; break;
197     case scSMaxExpr: OpStr = " smax "; break;
198     }
199     OS << "(";
200     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
201          I != E; ++I) {
202       OS << **I;
203       if (std::next(I) != E)
204         OS << OpStr;
205     }
206     OS << ")";
207     switch (NAry->getSCEVType()) {
208     case scAddExpr:
209     case scMulExpr:
210       if (NAry->hasNoUnsignedWrap())
211         OS << "<nuw>";
212       if (NAry->hasNoSignedWrap())
213         OS << "<nsw>";
214     }
215     return;
216   }
217   case scUDivExpr: {
218     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
219     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
220     return;
221   }
222   case scUnknown: {
223     const SCEVUnknown *U = cast<SCEVUnknown>(this);
224     Type *AllocTy;
225     if (U->isSizeOf(AllocTy)) {
226       OS << "sizeof(" << *AllocTy << ")";
227       return;
228     }
229     if (U->isAlignOf(AllocTy)) {
230       OS << "alignof(" << *AllocTy << ")";
231       return;
232     }
233 
234     Type *CTy;
235     Constant *FieldNo;
236     if (U->isOffsetOf(CTy, FieldNo)) {
237       OS << "offsetof(" << *CTy << ", ";
238       FieldNo->printAsOperand(OS, false);
239       OS << ")";
240       return;
241     }
242 
243     // Otherwise just print it normally.
244     U->getValue()->printAsOperand(OS, false);
245     return;
246   }
247   case scCouldNotCompute:
248     OS << "***COULDNOTCOMPUTE***";
249     return;
250   }
251   llvm_unreachable("Unknown SCEV kind!");
252 }
253 
254 Type *SCEV::getType() const {
255   switch (static_cast<SCEVTypes>(getSCEVType())) {
256   case scConstant:
257     return cast<SCEVConstant>(this)->getType();
258   case scTruncate:
259   case scZeroExtend:
260   case scSignExtend:
261     return cast<SCEVCastExpr>(this)->getType();
262   case scAddRecExpr:
263   case scMulExpr:
264   case scUMaxExpr:
265   case scSMaxExpr:
266     return cast<SCEVNAryExpr>(this)->getType();
267   case scAddExpr:
268     return cast<SCEVAddExpr>(this)->getType();
269   case scUDivExpr:
270     return cast<SCEVUDivExpr>(this)->getType();
271   case scUnknown:
272     return cast<SCEVUnknown>(this)->getType();
273   case scCouldNotCompute:
274     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
275   }
276   llvm_unreachable("Unknown SCEV kind!");
277 }
278 
279 bool SCEV::isZero() const {
280   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281     return SC->getValue()->isZero();
282   return false;
283 }
284 
285 bool SCEV::isOne() const {
286   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
287     return SC->getValue()->isOne();
288   return false;
289 }
290 
291 bool SCEV::isAllOnesValue() const {
292   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
293     return SC->getValue()->isAllOnesValue();
294   return false;
295 }
296 
297 bool SCEV::isNonConstantNegative() const {
298   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299   if (!Mul) return false;
300 
301   // If there is a constant factor, it will be first.
302   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303   if (!SC) return false;
304 
305   // Return true if the value is negative, this matches things like (-42 * V).
306   return SC->getAPInt().isNegative();
307 }
308 
309 SCEVCouldNotCompute::SCEVCouldNotCompute() :
310   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
311 
312 bool SCEVCouldNotCompute::classof(const SCEV *S) {
313   return S->getSCEVType() == scCouldNotCompute;
314 }
315 
316 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
317   FoldingSetNodeID ID;
318   ID.AddInteger(scConstant);
319   ID.AddPointer(V);
320   void *IP = nullptr;
321   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
322   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
323   UniqueSCEVs.InsertNode(S, IP);
324   return S;
325 }
326 
327 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
328   return getConstant(ConstantInt::get(getContext(), Val));
329 }
330 
331 const SCEV *
332 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
334   return getConstant(ConstantInt::get(ITy, V, isSigned));
335 }
336 
337 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
338                            unsigned SCEVTy, const SCEV *op, Type *ty)
339   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
340 
341 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
342                                    const SCEV *op, Type *ty)
343   : SCEVCastExpr(ID, scTruncate, op, ty) {
344   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
346          "Cannot truncate non-integer value!");
347 }
348 
349 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
350                                        const SCEV *op, Type *ty)
351   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
352   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
354          "Cannot zero extend non-integer value!");
355 }
356 
357 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
358                                        const SCEV *op, Type *ty)
359   : SCEVCastExpr(ID, scSignExtend, op, ty) {
360   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
362          "Cannot sign extend non-integer value!");
363 }
364 
365 void SCEVUnknown::deleted() {
366   // Clear this SCEVUnknown from various maps.
367   SE->forgetMemoizedResults(this);
368 
369   // Remove this SCEVUnknown from the uniquing map.
370   SE->UniqueSCEVs.RemoveNode(this);
371 
372   // Release the value.
373   setValPtr(nullptr);
374 }
375 
376 void SCEVUnknown::allUsesReplacedWith(Value *New) {
377   // Clear this SCEVUnknown from various maps.
378   SE->forgetMemoizedResults(this);
379 
380   // Remove this SCEVUnknown from the uniquing map.
381   SE->UniqueSCEVs.RemoveNode(this);
382 
383   // Update this SCEVUnknown to point to the new value. This is needed
384   // because there may still be outstanding SCEVs which still point to
385   // this SCEVUnknown.
386   setValPtr(New);
387 }
388 
389 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
390   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
391     if (VCE->getOpcode() == Instruction::PtrToInt)
392       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
393         if (CE->getOpcode() == Instruction::GetElementPtr &&
394             CE->getOperand(0)->isNullValue() &&
395             CE->getNumOperands() == 2)
396           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397             if (CI->isOne()) {
398               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399                                  ->getElementType();
400               return true;
401             }
402 
403   return false;
404 }
405 
406 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
407   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
408     if (VCE->getOpcode() == Instruction::PtrToInt)
409       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
410         if (CE->getOpcode() == Instruction::GetElementPtr &&
411             CE->getOperand(0)->isNullValue()) {
412           Type *Ty =
413             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
414           if (StructType *STy = dyn_cast<StructType>(Ty))
415             if (!STy->isPacked() &&
416                 CE->getNumOperands() == 3 &&
417                 CE->getOperand(1)->isNullValue()) {
418               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419                 if (CI->isOne() &&
420                     STy->getNumElements() == 2 &&
421                     STy->getElementType(0)->isIntegerTy(1)) {
422                   AllocTy = STy->getElementType(1);
423                   return true;
424                 }
425             }
426         }
427 
428   return false;
429 }
430 
431 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
432   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
433     if (VCE->getOpcode() == Instruction::PtrToInt)
434       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435         if (CE->getOpcode() == Instruction::GetElementPtr &&
436             CE->getNumOperands() == 3 &&
437             CE->getOperand(0)->isNullValue() &&
438             CE->getOperand(1)->isNullValue()) {
439           Type *Ty =
440             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441           // Ignore vector types here so that ScalarEvolutionExpander doesn't
442           // emit getelementptrs that index into vectors.
443           if (Ty->isStructTy() || Ty->isArrayTy()) {
444             CTy = Ty;
445             FieldNo = CE->getOperand(2);
446             return true;
447           }
448         }
449 
450   return false;
451 }
452 
453 //===----------------------------------------------------------------------===//
454 //                               SCEV Utilities
455 //===----------------------------------------------------------------------===//
456 
457 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
458 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
459 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
460 /// have been previously deemed to be "equally complex" by this routine.  It is
461 /// intended to avoid exponential time complexity in cases like:
462 ///
463 ///   %a = f(%x, %y)
464 ///   %b = f(%a, %a)
465 ///   %c = f(%b, %b)
466 ///
467 ///   %d = f(%x, %y)
468 ///   %e = f(%d, %d)
469 ///   %f = f(%e, %e)
470 ///
471 ///   CompareValueComplexity(%f, %c)
472 ///
473 /// Since we do not continue running this routine on expression trees once we
474 /// have seen unequal values, there is no need to track them in the cache.
475 static int
476 CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache,
477                        const LoopInfo *const LI, Value *LV, Value *RV,
478                        unsigned DepthLeft = 2) {
479   if (DepthLeft == 0 || EqCache.count({LV, RV}))
480     return 0;
481 
482   // Order pointer values after integer values. This helps SCEVExpander form
483   // GEPs.
484   bool LIsPointer = LV->getType()->isPointerTy(),
485        RIsPointer = RV->getType()->isPointerTy();
486   if (LIsPointer != RIsPointer)
487     return (int)LIsPointer - (int)RIsPointer;
488 
489   // Compare getValueID values.
490   unsigned LID = LV->getValueID(), RID = RV->getValueID();
491   if (LID != RID)
492     return (int)LID - (int)RID;
493 
494   // Sort arguments by their position.
495   if (const auto *LA = dyn_cast<Argument>(LV)) {
496     const auto *RA = cast<Argument>(RV);
497     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
498     return (int)LArgNo - (int)RArgNo;
499   }
500 
501   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
502     const auto *RGV = cast<GlobalValue>(RV);
503 
504     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
505       auto LT = GV->getLinkage();
506       return !(GlobalValue::isPrivateLinkage(LT) ||
507                GlobalValue::isInternalLinkage(LT));
508     };
509 
510     // Use the names to distinguish the two values, but only if the
511     // names are semantically important.
512     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
513       return LGV->getName().compare(RGV->getName());
514   }
515 
516   // For instructions, compare their loop depth, and their operand count.  This
517   // is pretty loose.
518   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
519     const auto *RInst = cast<Instruction>(RV);
520 
521     // Compare loop depths.
522     const BasicBlock *LParent = LInst->getParent(),
523                      *RParent = RInst->getParent();
524     if (LParent != RParent) {
525       unsigned LDepth = LI->getLoopDepth(LParent),
526                RDepth = LI->getLoopDepth(RParent);
527       if (LDepth != RDepth)
528         return (int)LDepth - (int)RDepth;
529     }
530 
531     // Compare the number of operands.
532     unsigned LNumOps = LInst->getNumOperands(),
533              RNumOps = RInst->getNumOperands();
534     if (LNumOps != RNumOps)
535       return (int)LNumOps - (int)RNumOps;
536 
537     for (unsigned Idx : seq(0u, LNumOps)) {
538       int Result =
539           CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx),
540                                  RInst->getOperand(Idx), DepthLeft - 1);
541       if (Result != 0)
542 	return Result;
543       EqCache.insert({LV, RV});
544     }
545   }
546 
547   return 0;
548 }
549 
550 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
551 // than RHS, respectively. A three-way result allows recursive comparisons to be
552 // more efficient.
553 static int CompareSCEVComplexity(const LoopInfo *const LI, const SCEV *LHS,
554                                  const SCEV *RHS) {
555   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
556   if (LHS == RHS)
557     return 0;
558 
559   // Primarily, sort the SCEVs by their getSCEVType().
560   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
561   if (LType != RType)
562     return (int)LType - (int)RType;
563 
564   // Aside from the getSCEVType() ordering, the particular ordering
565   // isn't very important except that it's beneficial to be consistent,
566   // so that (a + b) and (b + a) don't end up as different expressions.
567   switch (static_cast<SCEVTypes>(LType)) {
568   case scUnknown: {
569     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
570     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
571 
572     SmallSet<std::pair<Value *, Value *>, 8> EqCache;
573     return CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue());
574   }
575 
576   case scConstant: {
577     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
578     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
579 
580     // Compare constant values.
581     const APInt &LA = LC->getAPInt();
582     const APInt &RA = RC->getAPInt();
583     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
584     if (LBitWidth != RBitWidth)
585       return (int)LBitWidth - (int)RBitWidth;
586     return LA.ult(RA) ? -1 : 1;
587   }
588 
589   case scAddRecExpr: {
590     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
591     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
592 
593     // Compare addrec loop depths.
594     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
595     if (LLoop != RLoop) {
596       unsigned LDepth = LLoop->getLoopDepth(), RDepth = RLoop->getLoopDepth();
597       if (LDepth != RDepth)
598         return (int)LDepth - (int)RDepth;
599     }
600 
601     // Addrec complexity grows with operand count.
602     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
603     if (LNumOps != RNumOps)
604       return (int)LNumOps - (int)RNumOps;
605 
606     // Lexicographically compare.
607     for (unsigned i = 0; i != LNumOps; ++i) {
608       long X = CompareSCEVComplexity(LI, LA->getOperand(i), RA->getOperand(i));
609       if (X != 0)
610         return X;
611     }
612 
613     return 0;
614   }
615 
616   case scAddExpr:
617   case scMulExpr:
618   case scSMaxExpr:
619   case scUMaxExpr: {
620     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
621     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
622 
623     // Lexicographically compare n-ary expressions.
624     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
625     if (LNumOps != RNumOps)
626       return (int)LNumOps - (int)RNumOps;
627 
628     for (unsigned i = 0; i != LNumOps; ++i) {
629       if (i >= RNumOps)
630         return 1;
631       long X = CompareSCEVComplexity(LI, LC->getOperand(i), RC->getOperand(i));
632       if (X != 0)
633         return X;
634     }
635     return (int)LNumOps - (int)RNumOps;
636   }
637 
638   case scUDivExpr: {
639     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
640     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
641 
642     // Lexicographically compare udiv expressions.
643     long X = CompareSCEVComplexity(LI, LC->getLHS(), RC->getLHS());
644     if (X != 0)
645       return X;
646     return CompareSCEVComplexity(LI, LC->getRHS(), RC->getRHS());
647   }
648 
649   case scTruncate:
650   case scZeroExtend:
651   case scSignExtend: {
652     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
653     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
654 
655     // Compare cast expressions by operand.
656     return CompareSCEVComplexity(LI, LC->getOperand(), RC->getOperand());
657   }
658 
659   case scCouldNotCompute:
660     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
661   }
662   llvm_unreachable("Unknown SCEV kind!");
663 }
664 
665 /// Given a list of SCEV objects, order them by their complexity, and group
666 /// objects of the same complexity together by value.  When this routine is
667 /// finished, we know that any duplicates in the vector are consecutive and that
668 /// complexity is monotonically increasing.
669 ///
670 /// Note that we go take special precautions to ensure that we get deterministic
671 /// results from this routine.  In other words, we don't want the results of
672 /// this to depend on where the addresses of various SCEV objects happened to
673 /// land in memory.
674 ///
675 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
676                               LoopInfo *LI) {
677   if (Ops.size() < 2) return;  // Noop
678   if (Ops.size() == 2) {
679     // This is the common case, which also happens to be trivially simple.
680     // Special case it.
681     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
682     if (CompareSCEVComplexity(LI, RHS, LHS) < 0)
683       std::swap(LHS, RHS);
684     return;
685   }
686 
687   // Do the rough sort by complexity.
688   std::stable_sort(Ops.begin(), Ops.end(),
689                    [LI](const SCEV *LHS, const SCEV *RHS) {
690                      return CompareSCEVComplexity(LI, LHS, RHS) < 0;
691                    });
692 
693   // Now that we are sorted by complexity, group elements of the same
694   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
695   // be extremely short in practice.  Note that we take this approach because we
696   // do not want to depend on the addresses of the objects we are grouping.
697   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
698     const SCEV *S = Ops[i];
699     unsigned Complexity = S->getSCEVType();
700 
701     // If there are any objects of the same complexity and same value as this
702     // one, group them.
703     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
704       if (Ops[j] == S) { // Found a duplicate.
705         // Move it to immediately after i'th element.
706         std::swap(Ops[i+1], Ops[j]);
707         ++i;   // no need to rescan it.
708         if (i == e-2) return;  // Done!
709       }
710     }
711   }
712 }
713 
714 // Returns the size of the SCEV S.
715 static inline int sizeOfSCEV(const SCEV *S) {
716   struct FindSCEVSize {
717     int Size;
718     FindSCEVSize() : Size(0) {}
719 
720     bool follow(const SCEV *S) {
721       ++Size;
722       // Keep looking at all operands of S.
723       return true;
724     }
725     bool isDone() const {
726       return false;
727     }
728   };
729 
730   FindSCEVSize F;
731   SCEVTraversal<FindSCEVSize> ST(F);
732   ST.visitAll(S);
733   return F.Size;
734 }
735 
736 namespace {
737 
738 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
739 public:
740   // Computes the Quotient and Remainder of the division of Numerator by
741   // Denominator.
742   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
743                      const SCEV *Denominator, const SCEV **Quotient,
744                      const SCEV **Remainder) {
745     assert(Numerator && Denominator && "Uninitialized SCEV");
746 
747     SCEVDivision D(SE, Numerator, Denominator);
748 
749     // Check for the trivial case here to avoid having to check for it in the
750     // rest of the code.
751     if (Numerator == Denominator) {
752       *Quotient = D.One;
753       *Remainder = D.Zero;
754       return;
755     }
756 
757     if (Numerator->isZero()) {
758       *Quotient = D.Zero;
759       *Remainder = D.Zero;
760       return;
761     }
762 
763     // A simple case when N/1. The quotient is N.
764     if (Denominator->isOne()) {
765       *Quotient = Numerator;
766       *Remainder = D.Zero;
767       return;
768     }
769 
770     // Split the Denominator when it is a product.
771     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
772       const SCEV *Q, *R;
773       *Quotient = Numerator;
774       for (const SCEV *Op : T->operands()) {
775         divide(SE, *Quotient, Op, &Q, &R);
776         *Quotient = Q;
777 
778         // Bail out when the Numerator is not divisible by one of the terms of
779         // the Denominator.
780         if (!R->isZero()) {
781           *Quotient = D.Zero;
782           *Remainder = Numerator;
783           return;
784         }
785       }
786       *Remainder = D.Zero;
787       return;
788     }
789 
790     D.visit(Numerator);
791     *Quotient = D.Quotient;
792     *Remainder = D.Remainder;
793   }
794 
795   // Except in the trivial case described above, we do not know how to divide
796   // Expr by Denominator for the following functions with empty implementation.
797   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
798   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
799   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
800   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
801   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
802   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
803   void visitUnknown(const SCEVUnknown *Numerator) {}
804   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
805 
806   void visitConstant(const SCEVConstant *Numerator) {
807     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
808       APInt NumeratorVal = Numerator->getAPInt();
809       APInt DenominatorVal = D->getAPInt();
810       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
811       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
812 
813       if (NumeratorBW > DenominatorBW)
814         DenominatorVal = DenominatorVal.sext(NumeratorBW);
815       else if (NumeratorBW < DenominatorBW)
816         NumeratorVal = NumeratorVal.sext(DenominatorBW);
817 
818       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
819       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
820       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
821       Quotient = SE.getConstant(QuotientVal);
822       Remainder = SE.getConstant(RemainderVal);
823       return;
824     }
825   }
826 
827   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
828     const SCEV *StartQ, *StartR, *StepQ, *StepR;
829     if (!Numerator->isAffine())
830       return cannotDivide(Numerator);
831     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
832     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
833     // Bail out if the types do not match.
834     Type *Ty = Denominator->getType();
835     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
836         Ty != StepQ->getType() || Ty != StepR->getType())
837       return cannotDivide(Numerator);
838     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
839                                 Numerator->getNoWrapFlags());
840     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
841                                  Numerator->getNoWrapFlags());
842   }
843 
844   void visitAddExpr(const SCEVAddExpr *Numerator) {
845     SmallVector<const SCEV *, 2> Qs, Rs;
846     Type *Ty = Denominator->getType();
847 
848     for (const SCEV *Op : Numerator->operands()) {
849       const SCEV *Q, *R;
850       divide(SE, Op, Denominator, &Q, &R);
851 
852       // Bail out if types do not match.
853       if (Ty != Q->getType() || Ty != R->getType())
854         return cannotDivide(Numerator);
855 
856       Qs.push_back(Q);
857       Rs.push_back(R);
858     }
859 
860     if (Qs.size() == 1) {
861       Quotient = Qs[0];
862       Remainder = Rs[0];
863       return;
864     }
865 
866     Quotient = SE.getAddExpr(Qs);
867     Remainder = SE.getAddExpr(Rs);
868   }
869 
870   void visitMulExpr(const SCEVMulExpr *Numerator) {
871     SmallVector<const SCEV *, 2> Qs;
872     Type *Ty = Denominator->getType();
873 
874     bool FoundDenominatorTerm = false;
875     for (const SCEV *Op : Numerator->operands()) {
876       // Bail out if types do not match.
877       if (Ty != Op->getType())
878         return cannotDivide(Numerator);
879 
880       if (FoundDenominatorTerm) {
881         Qs.push_back(Op);
882         continue;
883       }
884 
885       // Check whether Denominator divides one of the product operands.
886       const SCEV *Q, *R;
887       divide(SE, Op, Denominator, &Q, &R);
888       if (!R->isZero()) {
889         Qs.push_back(Op);
890         continue;
891       }
892 
893       // Bail out if types do not match.
894       if (Ty != Q->getType())
895         return cannotDivide(Numerator);
896 
897       FoundDenominatorTerm = true;
898       Qs.push_back(Q);
899     }
900 
901     if (FoundDenominatorTerm) {
902       Remainder = Zero;
903       if (Qs.size() == 1)
904         Quotient = Qs[0];
905       else
906         Quotient = SE.getMulExpr(Qs);
907       return;
908     }
909 
910     if (!isa<SCEVUnknown>(Denominator))
911       return cannotDivide(Numerator);
912 
913     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
914     ValueToValueMap RewriteMap;
915     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
916         cast<SCEVConstant>(Zero)->getValue();
917     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
918 
919     if (Remainder->isZero()) {
920       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
921       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
922           cast<SCEVConstant>(One)->getValue();
923       Quotient =
924           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
925       return;
926     }
927 
928     // Quotient is (Numerator - Remainder) divided by Denominator.
929     const SCEV *Q, *R;
930     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
931     // This SCEV does not seem to simplify: fail the division here.
932     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
933       return cannotDivide(Numerator);
934     divide(SE, Diff, Denominator, &Q, &R);
935     if (R != Zero)
936       return cannotDivide(Numerator);
937     Quotient = Q;
938   }
939 
940 private:
941   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
942                const SCEV *Denominator)
943       : SE(S), Denominator(Denominator) {
944     Zero = SE.getZero(Denominator->getType());
945     One = SE.getOne(Denominator->getType());
946 
947     // We generally do not know how to divide Expr by Denominator. We
948     // initialize the division to a "cannot divide" state to simplify the rest
949     // of the code.
950     cannotDivide(Numerator);
951   }
952 
953   // Convenience function for giving up on the division. We set the quotient to
954   // be equal to zero and the remainder to be equal to the numerator.
955   void cannotDivide(const SCEV *Numerator) {
956     Quotient = Zero;
957     Remainder = Numerator;
958   }
959 
960   ScalarEvolution &SE;
961   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
962 };
963 
964 }
965 
966 //===----------------------------------------------------------------------===//
967 //                      Simple SCEV method implementations
968 //===----------------------------------------------------------------------===//
969 
970 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
971 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
972                                        ScalarEvolution &SE,
973                                        Type *ResultTy) {
974   // Handle the simplest case efficiently.
975   if (K == 1)
976     return SE.getTruncateOrZeroExtend(It, ResultTy);
977 
978   // We are using the following formula for BC(It, K):
979   //
980   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
981   //
982   // Suppose, W is the bitwidth of the return value.  We must be prepared for
983   // overflow.  Hence, we must assure that the result of our computation is
984   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
985   // safe in modular arithmetic.
986   //
987   // However, this code doesn't use exactly that formula; the formula it uses
988   // is something like the following, where T is the number of factors of 2 in
989   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
990   // exponentiation:
991   //
992   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
993   //
994   // This formula is trivially equivalent to the previous formula.  However,
995   // this formula can be implemented much more efficiently.  The trick is that
996   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
997   // arithmetic.  To do exact division in modular arithmetic, all we have
998   // to do is multiply by the inverse.  Therefore, this step can be done at
999   // width W.
1000   //
1001   // The next issue is how to safely do the division by 2^T.  The way this
1002   // is done is by doing the multiplication step at a width of at least W + T
1003   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1004   // when we perform the division by 2^T (which is equivalent to a right shift
1005   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1006   // truncated out after the division by 2^T.
1007   //
1008   // In comparison to just directly using the first formula, this technique
1009   // is much more efficient; using the first formula requires W * K bits,
1010   // but this formula less than W + K bits. Also, the first formula requires
1011   // a division step, whereas this formula only requires multiplies and shifts.
1012   //
1013   // It doesn't matter whether the subtraction step is done in the calculation
1014   // width or the input iteration count's width; if the subtraction overflows,
1015   // the result must be zero anyway.  We prefer here to do it in the width of
1016   // the induction variable because it helps a lot for certain cases; CodeGen
1017   // isn't smart enough to ignore the overflow, which leads to much less
1018   // efficient code if the width of the subtraction is wider than the native
1019   // register width.
1020   //
1021   // (It's possible to not widen at all by pulling out factors of 2 before
1022   // the multiplication; for example, K=2 can be calculated as
1023   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1024   // extra arithmetic, so it's not an obvious win, and it gets
1025   // much more complicated for K > 3.)
1026 
1027   // Protection from insane SCEVs; this bound is conservative,
1028   // but it probably doesn't matter.
1029   if (K > 1000)
1030     return SE.getCouldNotCompute();
1031 
1032   unsigned W = SE.getTypeSizeInBits(ResultTy);
1033 
1034   // Calculate K! / 2^T and T; we divide out the factors of two before
1035   // multiplying for calculating K! / 2^T to avoid overflow.
1036   // Other overflow doesn't matter because we only care about the bottom
1037   // W bits of the result.
1038   APInt OddFactorial(W, 1);
1039   unsigned T = 1;
1040   for (unsigned i = 3; i <= K; ++i) {
1041     APInt Mult(W, i);
1042     unsigned TwoFactors = Mult.countTrailingZeros();
1043     T += TwoFactors;
1044     Mult = Mult.lshr(TwoFactors);
1045     OddFactorial *= Mult;
1046   }
1047 
1048   // We need at least W + T bits for the multiplication step
1049   unsigned CalculationBits = W + T;
1050 
1051   // Calculate 2^T, at width T+W.
1052   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1053 
1054   // Calculate the multiplicative inverse of K! / 2^T;
1055   // this multiplication factor will perform the exact division by
1056   // K! / 2^T.
1057   APInt Mod = APInt::getSignedMinValue(W+1);
1058   APInt MultiplyFactor = OddFactorial.zext(W+1);
1059   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1060   MultiplyFactor = MultiplyFactor.trunc(W);
1061 
1062   // Calculate the product, at width T+W
1063   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1064                                                       CalculationBits);
1065   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1066   for (unsigned i = 1; i != K; ++i) {
1067     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1068     Dividend = SE.getMulExpr(Dividend,
1069                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1070   }
1071 
1072   // Divide by 2^T
1073   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1074 
1075   // Truncate the result, and divide by K! / 2^T.
1076 
1077   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1078                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1079 }
1080 
1081 /// Return the value of this chain of recurrences at the specified iteration
1082 /// number.  We can evaluate this recurrence by multiplying each element in the
1083 /// chain by the binomial coefficient corresponding to it.  In other words, we
1084 /// can evaluate {A,+,B,+,C,+,D} as:
1085 ///
1086 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1087 ///
1088 /// where BC(It, k) stands for binomial coefficient.
1089 ///
1090 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1091                                                 ScalarEvolution &SE) const {
1092   const SCEV *Result = getStart();
1093   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1094     // The computation is correct in the face of overflow provided that the
1095     // multiplication is performed _after_ the evaluation of the binomial
1096     // coefficient.
1097     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1098     if (isa<SCEVCouldNotCompute>(Coeff))
1099       return Coeff;
1100 
1101     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1102   }
1103   return Result;
1104 }
1105 
1106 //===----------------------------------------------------------------------===//
1107 //                    SCEV Expression folder implementations
1108 //===----------------------------------------------------------------------===//
1109 
1110 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1111                                              Type *Ty) {
1112   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1113          "This is not a truncating conversion!");
1114   assert(isSCEVable(Ty) &&
1115          "This is not a conversion to a SCEVable type!");
1116   Ty = getEffectiveSCEVType(Ty);
1117 
1118   FoldingSetNodeID ID;
1119   ID.AddInteger(scTruncate);
1120   ID.AddPointer(Op);
1121   ID.AddPointer(Ty);
1122   void *IP = nullptr;
1123   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1124 
1125   // Fold if the operand is constant.
1126   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1127     return getConstant(
1128       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1129 
1130   // trunc(trunc(x)) --> trunc(x)
1131   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1132     return getTruncateExpr(ST->getOperand(), Ty);
1133 
1134   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1135   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1136     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1137 
1138   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1139   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1140     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1141 
1142   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1143   // eliminate all the truncates, or we replace other casts with truncates.
1144   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1145     SmallVector<const SCEV *, 4> Operands;
1146     bool hasTrunc = false;
1147     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1148       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1149       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1150         hasTrunc = isa<SCEVTruncateExpr>(S);
1151       Operands.push_back(S);
1152     }
1153     if (!hasTrunc)
1154       return getAddExpr(Operands);
1155     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1156   }
1157 
1158   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1159   // eliminate all the truncates, or we replace other casts with truncates.
1160   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1161     SmallVector<const SCEV *, 4> Operands;
1162     bool hasTrunc = false;
1163     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1164       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1165       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1166         hasTrunc = isa<SCEVTruncateExpr>(S);
1167       Operands.push_back(S);
1168     }
1169     if (!hasTrunc)
1170       return getMulExpr(Operands);
1171     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1172   }
1173 
1174   // If the input value is a chrec scev, truncate the chrec's operands.
1175   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1176     SmallVector<const SCEV *, 4> Operands;
1177     for (const SCEV *Op : AddRec->operands())
1178       Operands.push_back(getTruncateExpr(Op, Ty));
1179     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1180   }
1181 
1182   // The cast wasn't folded; create an explicit cast node. We can reuse
1183   // the existing insert position since if we get here, we won't have
1184   // made any changes which would invalidate it.
1185   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1186                                                  Op, Ty);
1187   UniqueSCEVs.InsertNode(S, IP);
1188   return S;
1189 }
1190 
1191 // Get the limit of a recurrence such that incrementing by Step cannot cause
1192 // signed overflow as long as the value of the recurrence within the
1193 // loop does not exceed this limit before incrementing.
1194 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1195                                                  ICmpInst::Predicate *Pred,
1196                                                  ScalarEvolution *SE) {
1197   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1198   if (SE->isKnownPositive(Step)) {
1199     *Pred = ICmpInst::ICMP_SLT;
1200     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1201                            SE->getSignedRange(Step).getSignedMax());
1202   }
1203   if (SE->isKnownNegative(Step)) {
1204     *Pred = ICmpInst::ICMP_SGT;
1205     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1206                            SE->getSignedRange(Step).getSignedMin());
1207   }
1208   return nullptr;
1209 }
1210 
1211 // Get the limit of a recurrence such that incrementing by Step cannot cause
1212 // unsigned overflow as long as the value of the recurrence within the loop does
1213 // not exceed this limit before incrementing.
1214 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1215                                                    ICmpInst::Predicate *Pred,
1216                                                    ScalarEvolution *SE) {
1217   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1218   *Pred = ICmpInst::ICMP_ULT;
1219 
1220   return SE->getConstant(APInt::getMinValue(BitWidth) -
1221                          SE->getUnsignedRange(Step).getUnsignedMax());
1222 }
1223 
1224 namespace {
1225 
1226 struct ExtendOpTraitsBase {
1227   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1228 };
1229 
1230 // Used to make code generic over signed and unsigned overflow.
1231 template <typename ExtendOp> struct ExtendOpTraits {
1232   // Members present:
1233   //
1234   // static const SCEV::NoWrapFlags WrapType;
1235   //
1236   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1237   //
1238   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1239   //                                           ICmpInst::Predicate *Pred,
1240   //                                           ScalarEvolution *SE);
1241 };
1242 
1243 template <>
1244 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1245   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1246 
1247   static const GetExtendExprTy GetExtendExpr;
1248 
1249   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1250                                              ICmpInst::Predicate *Pred,
1251                                              ScalarEvolution *SE) {
1252     return getSignedOverflowLimitForStep(Step, Pred, SE);
1253   }
1254 };
1255 
1256 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1257     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1258 
1259 template <>
1260 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1261   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1262 
1263   static const GetExtendExprTy GetExtendExpr;
1264 
1265   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1266                                              ICmpInst::Predicate *Pred,
1267                                              ScalarEvolution *SE) {
1268     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1269   }
1270 };
1271 
1272 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1273     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1274 }
1275 
1276 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1277 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1278 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1279 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1280 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1281 // expression "Step + sext/zext(PreIncAR)" is congruent with
1282 // "sext/zext(PostIncAR)"
1283 template <typename ExtendOpTy>
1284 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1285                                         ScalarEvolution *SE) {
1286   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1287   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1288 
1289   const Loop *L = AR->getLoop();
1290   const SCEV *Start = AR->getStart();
1291   const SCEV *Step = AR->getStepRecurrence(*SE);
1292 
1293   // Check for a simple looking step prior to loop entry.
1294   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1295   if (!SA)
1296     return nullptr;
1297 
1298   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1299   // subtraction is expensive. For this purpose, perform a quick and dirty
1300   // difference, by checking for Step in the operand list.
1301   SmallVector<const SCEV *, 4> DiffOps;
1302   for (const SCEV *Op : SA->operands())
1303     if (Op != Step)
1304       DiffOps.push_back(Op);
1305 
1306   if (DiffOps.size() == SA->getNumOperands())
1307     return nullptr;
1308 
1309   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1310   // `Step`:
1311 
1312   // 1. NSW/NUW flags on the step increment.
1313   auto PreStartFlags =
1314     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1315   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1316   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1317       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1318 
1319   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1320   // "S+X does not sign/unsign-overflow".
1321   //
1322 
1323   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1324   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1325       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1326     return PreStart;
1327 
1328   // 2. Direct overflow check on the step operation's expression.
1329   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1330   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1331   const SCEV *OperandExtendedStart =
1332       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1333                      (SE->*GetExtendExpr)(Step, WideTy));
1334   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1335     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1336       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1337       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1338       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1339       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1340     }
1341     return PreStart;
1342   }
1343 
1344   // 3. Loop precondition.
1345   ICmpInst::Predicate Pred;
1346   const SCEV *OverflowLimit =
1347       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1348 
1349   if (OverflowLimit &&
1350       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1351     return PreStart;
1352 
1353   return nullptr;
1354 }
1355 
1356 // Get the normalized zero or sign extended expression for this AddRec's Start.
1357 template <typename ExtendOpTy>
1358 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1359                                         ScalarEvolution *SE) {
1360   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1361 
1362   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1363   if (!PreStart)
1364     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1365 
1366   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1367                         (SE->*GetExtendExpr)(PreStart, Ty));
1368 }
1369 
1370 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1371 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1372 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1373 //
1374 // Formally:
1375 //
1376 //     {S,+,X} == {S-T,+,X} + T
1377 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1378 //
1379 // If ({S-T,+,X} + T) does not overflow  ... (1)
1380 //
1381 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1382 //
1383 // If {S-T,+,X} does not overflow  ... (2)
1384 //
1385 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1386 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1387 //
1388 // If (S-T)+T does not overflow  ... (3)
1389 //
1390 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1391 //      == {Ext(S),+,Ext(X)} == LHS
1392 //
1393 // Thus, if (1), (2) and (3) are true for some T, then
1394 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1395 //
1396 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1397 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1398 // to check for (1) and (2).
1399 //
1400 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1401 // is `Delta` (defined below).
1402 //
1403 template <typename ExtendOpTy>
1404 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1405                                                 const SCEV *Step,
1406                                                 const Loop *L) {
1407   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1408 
1409   // We restrict `Start` to a constant to prevent SCEV from spending too much
1410   // time here.  It is correct (but more expensive) to continue with a
1411   // non-constant `Start` and do a general SCEV subtraction to compute
1412   // `PreStart` below.
1413   //
1414   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1415   if (!StartC)
1416     return false;
1417 
1418   APInt StartAI = StartC->getAPInt();
1419 
1420   for (unsigned Delta : {-2, -1, 1, 2}) {
1421     const SCEV *PreStart = getConstant(StartAI - Delta);
1422 
1423     FoldingSetNodeID ID;
1424     ID.AddInteger(scAddRecExpr);
1425     ID.AddPointer(PreStart);
1426     ID.AddPointer(Step);
1427     ID.AddPointer(L);
1428     void *IP = nullptr;
1429     const auto *PreAR =
1430       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1431 
1432     // Give up if we don't already have the add recurrence we need because
1433     // actually constructing an add recurrence is relatively expensive.
1434     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1435       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1436       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1437       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1438           DeltaS, &Pred, this);
1439       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1440         return true;
1441     }
1442   }
1443 
1444   return false;
1445 }
1446 
1447 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1448                                                Type *Ty) {
1449   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1450          "This is not an extending conversion!");
1451   assert(isSCEVable(Ty) &&
1452          "This is not a conversion to a SCEVable type!");
1453   Ty = getEffectiveSCEVType(Ty);
1454 
1455   // Fold if the operand is constant.
1456   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1457     return getConstant(
1458       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1459 
1460   // zext(zext(x)) --> zext(x)
1461   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1462     return getZeroExtendExpr(SZ->getOperand(), Ty);
1463 
1464   // Before doing any expensive analysis, check to see if we've already
1465   // computed a SCEV for this Op and Ty.
1466   FoldingSetNodeID ID;
1467   ID.AddInteger(scZeroExtend);
1468   ID.AddPointer(Op);
1469   ID.AddPointer(Ty);
1470   void *IP = nullptr;
1471   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1472 
1473   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1474   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1475     // It's possible the bits taken off by the truncate were all zero bits. If
1476     // so, we should be able to simplify this further.
1477     const SCEV *X = ST->getOperand();
1478     ConstantRange CR = getUnsignedRange(X);
1479     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1480     unsigned NewBits = getTypeSizeInBits(Ty);
1481     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1482             CR.zextOrTrunc(NewBits)))
1483       return getTruncateOrZeroExtend(X, Ty);
1484   }
1485 
1486   // If the input value is a chrec scev, and we can prove that the value
1487   // did not overflow the old, smaller, value, we can zero extend all of the
1488   // operands (often constants).  This allows analysis of something like
1489   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1490   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1491     if (AR->isAffine()) {
1492       const SCEV *Start = AR->getStart();
1493       const SCEV *Step = AR->getStepRecurrence(*this);
1494       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1495       const Loop *L = AR->getLoop();
1496 
1497       if (!AR->hasNoUnsignedWrap()) {
1498         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1499         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1500       }
1501 
1502       // If we have special knowledge that this addrec won't overflow,
1503       // we don't need to do any further analysis.
1504       if (AR->hasNoUnsignedWrap())
1505         return getAddRecExpr(
1506             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1507             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1508 
1509       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1510       // Note that this serves two purposes: It filters out loops that are
1511       // simply not analyzable, and it covers the case where this code is
1512       // being called from within backedge-taken count analysis, such that
1513       // attempting to ask for the backedge-taken count would likely result
1514       // in infinite recursion. In the later case, the analysis code will
1515       // cope with a conservative value, and it will take care to purge
1516       // that value once it has finished.
1517       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1518       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1519         // Manually compute the final value for AR, checking for
1520         // overflow.
1521 
1522         // Check whether the backedge-taken count can be losslessly casted to
1523         // the addrec's type. The count is always unsigned.
1524         const SCEV *CastedMaxBECount =
1525           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1526         const SCEV *RecastedMaxBECount =
1527           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1528         if (MaxBECount == RecastedMaxBECount) {
1529           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1530           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1531           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1532           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1533           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1534           const SCEV *WideMaxBECount =
1535             getZeroExtendExpr(CastedMaxBECount, WideTy);
1536           const SCEV *OperandExtendedAdd =
1537             getAddExpr(WideStart,
1538                        getMulExpr(WideMaxBECount,
1539                                   getZeroExtendExpr(Step, WideTy)));
1540           if (ZAdd == OperandExtendedAdd) {
1541             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1542             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1543             // Return the expression with the addrec on the outside.
1544             return getAddRecExpr(
1545                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1546                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1547           }
1548           // Similar to above, only this time treat the step value as signed.
1549           // This covers loops that count down.
1550           OperandExtendedAdd =
1551             getAddExpr(WideStart,
1552                        getMulExpr(WideMaxBECount,
1553                                   getSignExtendExpr(Step, WideTy)));
1554           if (ZAdd == OperandExtendedAdd) {
1555             // Cache knowledge of AR NW, which is propagated to this AddRec.
1556             // Negative step causes unsigned wrap, but it still can't self-wrap.
1557             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1558             // Return the expression with the addrec on the outside.
1559             return getAddRecExpr(
1560                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1561                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1562           }
1563         }
1564       }
1565 
1566       // Normally, in the cases we can prove no-overflow via a
1567       // backedge guarding condition, we can also compute a backedge
1568       // taken count for the loop.  The exceptions are assumptions and
1569       // guards present in the loop -- SCEV is not great at exploiting
1570       // these to compute max backedge taken counts, but can still use
1571       // these to prove lack of overflow.  Use this fact to avoid
1572       // doing extra work that may not pay off.
1573       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1574           !AC.assumptions().empty()) {
1575         // If the backedge is guarded by a comparison with the pre-inc
1576         // value the addrec is safe. Also, if the entry is guarded by
1577         // a comparison with the start value and the backedge is
1578         // guarded by a comparison with the post-inc value, the addrec
1579         // is safe.
1580         if (isKnownPositive(Step)) {
1581           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1582                                       getUnsignedRange(Step).getUnsignedMax());
1583           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1584               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1585                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1586                                            AR->getPostIncExpr(*this), N))) {
1587             // Cache knowledge of AR NUW, which is propagated to this
1588             // AddRec.
1589             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1590             // Return the expression with the addrec on the outside.
1591             return getAddRecExpr(
1592                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1593                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1594           }
1595         } else if (isKnownNegative(Step)) {
1596           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1597                                       getSignedRange(Step).getSignedMin());
1598           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1599               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1600                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1601                                            AR->getPostIncExpr(*this), N))) {
1602             // Cache knowledge of AR NW, which is propagated to this
1603             // AddRec.  Negative step causes unsigned wrap, but it
1604             // still can't self-wrap.
1605             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1606             // Return the expression with the addrec on the outside.
1607             return getAddRecExpr(
1608                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1609                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1610           }
1611         }
1612       }
1613 
1614       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1615         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1616         return getAddRecExpr(
1617             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1618             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1619       }
1620     }
1621 
1622   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1623     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1624     if (SA->hasNoUnsignedWrap()) {
1625       // If the addition does not unsign overflow then we can, by definition,
1626       // commute the zero extension with the addition operation.
1627       SmallVector<const SCEV *, 4> Ops;
1628       for (const auto *Op : SA->operands())
1629         Ops.push_back(getZeroExtendExpr(Op, Ty));
1630       return getAddExpr(Ops, SCEV::FlagNUW);
1631     }
1632   }
1633 
1634   // The cast wasn't folded; create an explicit cast node.
1635   // Recompute the insert position, as it may have been invalidated.
1636   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1637   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1638                                                    Op, Ty);
1639   UniqueSCEVs.InsertNode(S, IP);
1640   return S;
1641 }
1642 
1643 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1644                                                Type *Ty) {
1645   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1646          "This is not an extending conversion!");
1647   assert(isSCEVable(Ty) &&
1648          "This is not a conversion to a SCEVable type!");
1649   Ty = getEffectiveSCEVType(Ty);
1650 
1651   // Fold if the operand is constant.
1652   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1653     return getConstant(
1654       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1655 
1656   // sext(sext(x)) --> sext(x)
1657   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1658     return getSignExtendExpr(SS->getOperand(), Ty);
1659 
1660   // sext(zext(x)) --> zext(x)
1661   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1662     return getZeroExtendExpr(SZ->getOperand(), Ty);
1663 
1664   // Before doing any expensive analysis, check to see if we've already
1665   // computed a SCEV for this Op and Ty.
1666   FoldingSetNodeID ID;
1667   ID.AddInteger(scSignExtend);
1668   ID.AddPointer(Op);
1669   ID.AddPointer(Ty);
1670   void *IP = nullptr;
1671   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1672 
1673   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1674   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1675     // It's possible the bits taken off by the truncate were all sign bits. If
1676     // so, we should be able to simplify this further.
1677     const SCEV *X = ST->getOperand();
1678     ConstantRange CR = getSignedRange(X);
1679     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1680     unsigned NewBits = getTypeSizeInBits(Ty);
1681     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1682             CR.sextOrTrunc(NewBits)))
1683       return getTruncateOrSignExtend(X, Ty);
1684   }
1685 
1686   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1687   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1688     if (SA->getNumOperands() == 2) {
1689       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1690       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1691       if (SMul && SC1) {
1692         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1693           const APInt &C1 = SC1->getAPInt();
1694           const APInt &C2 = SC2->getAPInt();
1695           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1696               C2.ugt(C1) && C2.isPowerOf2())
1697             return getAddExpr(getSignExtendExpr(SC1, Ty),
1698                               getSignExtendExpr(SMul, Ty));
1699         }
1700       }
1701     }
1702 
1703     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1704     if (SA->hasNoSignedWrap()) {
1705       // If the addition does not sign overflow then we can, by definition,
1706       // commute the sign extension with the addition operation.
1707       SmallVector<const SCEV *, 4> Ops;
1708       for (const auto *Op : SA->operands())
1709         Ops.push_back(getSignExtendExpr(Op, Ty));
1710       return getAddExpr(Ops, SCEV::FlagNSW);
1711     }
1712   }
1713   // If the input value is a chrec scev, and we can prove that the value
1714   // did not overflow the old, smaller, value, we can sign extend all of the
1715   // operands (often constants).  This allows analysis of something like
1716   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1717   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1718     if (AR->isAffine()) {
1719       const SCEV *Start = AR->getStart();
1720       const SCEV *Step = AR->getStepRecurrence(*this);
1721       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1722       const Loop *L = AR->getLoop();
1723 
1724       if (!AR->hasNoSignedWrap()) {
1725         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1726         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1727       }
1728 
1729       // If we have special knowledge that this addrec won't overflow,
1730       // we don't need to do any further analysis.
1731       if (AR->hasNoSignedWrap())
1732         return getAddRecExpr(
1733             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1734             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1735 
1736       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1737       // Note that this serves two purposes: It filters out loops that are
1738       // simply not analyzable, and it covers the case where this code is
1739       // being called from within backedge-taken count analysis, such that
1740       // attempting to ask for the backedge-taken count would likely result
1741       // in infinite recursion. In the later case, the analysis code will
1742       // cope with a conservative value, and it will take care to purge
1743       // that value once it has finished.
1744       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1745       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1746         // Manually compute the final value for AR, checking for
1747         // overflow.
1748 
1749         // Check whether the backedge-taken count can be losslessly casted to
1750         // the addrec's type. The count is always unsigned.
1751         const SCEV *CastedMaxBECount =
1752           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1753         const SCEV *RecastedMaxBECount =
1754           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1755         if (MaxBECount == RecastedMaxBECount) {
1756           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1757           // Check whether Start+Step*MaxBECount has no signed overflow.
1758           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1759           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1760           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1761           const SCEV *WideMaxBECount =
1762             getZeroExtendExpr(CastedMaxBECount, WideTy);
1763           const SCEV *OperandExtendedAdd =
1764             getAddExpr(WideStart,
1765                        getMulExpr(WideMaxBECount,
1766                                   getSignExtendExpr(Step, WideTy)));
1767           if (SAdd == OperandExtendedAdd) {
1768             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1769             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1770             // Return the expression with the addrec on the outside.
1771             return getAddRecExpr(
1772                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1773                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1774           }
1775           // Similar to above, only this time treat the step value as unsigned.
1776           // This covers loops that count up with an unsigned step.
1777           OperandExtendedAdd =
1778             getAddExpr(WideStart,
1779                        getMulExpr(WideMaxBECount,
1780                                   getZeroExtendExpr(Step, WideTy)));
1781           if (SAdd == OperandExtendedAdd) {
1782             // If AR wraps around then
1783             //
1784             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1785             // => SAdd != OperandExtendedAdd
1786             //
1787             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1788             // (SAdd == OperandExtendedAdd => AR is NW)
1789 
1790             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1791 
1792             // Return the expression with the addrec on the outside.
1793             return getAddRecExpr(
1794                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1795                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1796           }
1797         }
1798       }
1799 
1800       // Normally, in the cases we can prove no-overflow via a
1801       // backedge guarding condition, we can also compute a backedge
1802       // taken count for the loop.  The exceptions are assumptions and
1803       // guards present in the loop -- SCEV is not great at exploiting
1804       // these to compute max backedge taken counts, but can still use
1805       // these to prove lack of overflow.  Use this fact to avoid
1806       // doing extra work that may not pay off.
1807 
1808       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1809           !AC.assumptions().empty()) {
1810         // If the backedge is guarded by a comparison with the pre-inc
1811         // value the addrec is safe. Also, if the entry is guarded by
1812         // a comparison with the start value and the backedge is
1813         // guarded by a comparison with the post-inc value, the addrec
1814         // is safe.
1815         ICmpInst::Predicate Pred;
1816         const SCEV *OverflowLimit =
1817             getSignedOverflowLimitForStep(Step, &Pred, this);
1818         if (OverflowLimit &&
1819             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1820              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1821               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1822                                           OverflowLimit)))) {
1823           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1824           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1825           return getAddRecExpr(
1826               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1827               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1828         }
1829       }
1830 
1831       // If Start and Step are constants, check if we can apply this
1832       // transformation:
1833       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1834       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1835       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1836       if (SC1 && SC2) {
1837         const APInt &C1 = SC1->getAPInt();
1838         const APInt &C2 = SC2->getAPInt();
1839         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1840             C2.isPowerOf2()) {
1841           Start = getSignExtendExpr(Start, Ty);
1842           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1843                                             AR->getNoWrapFlags());
1844           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1845         }
1846       }
1847 
1848       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1849         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1850         return getAddRecExpr(
1851             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1852             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1853       }
1854     }
1855 
1856   // If the input value is provably positive and we could not simplify
1857   // away the sext build a zext instead.
1858   if (isKnownNonNegative(Op))
1859     return getZeroExtendExpr(Op, Ty);
1860 
1861   // The cast wasn't folded; create an explicit cast node.
1862   // Recompute the insert position, as it may have been invalidated.
1863   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1864   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1865                                                    Op, Ty);
1866   UniqueSCEVs.InsertNode(S, IP);
1867   return S;
1868 }
1869 
1870 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1871 /// unspecified bits out to the given type.
1872 ///
1873 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1874                                               Type *Ty) {
1875   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1876          "This is not an extending conversion!");
1877   assert(isSCEVable(Ty) &&
1878          "This is not a conversion to a SCEVable type!");
1879   Ty = getEffectiveSCEVType(Ty);
1880 
1881   // Sign-extend negative constants.
1882   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1883     if (SC->getAPInt().isNegative())
1884       return getSignExtendExpr(Op, Ty);
1885 
1886   // Peel off a truncate cast.
1887   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1888     const SCEV *NewOp = T->getOperand();
1889     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1890       return getAnyExtendExpr(NewOp, Ty);
1891     return getTruncateOrNoop(NewOp, Ty);
1892   }
1893 
1894   // Next try a zext cast. If the cast is folded, use it.
1895   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1896   if (!isa<SCEVZeroExtendExpr>(ZExt))
1897     return ZExt;
1898 
1899   // Next try a sext cast. If the cast is folded, use it.
1900   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1901   if (!isa<SCEVSignExtendExpr>(SExt))
1902     return SExt;
1903 
1904   // Force the cast to be folded into the operands of an addrec.
1905   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1906     SmallVector<const SCEV *, 4> Ops;
1907     for (const SCEV *Op : AR->operands())
1908       Ops.push_back(getAnyExtendExpr(Op, Ty));
1909     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1910   }
1911 
1912   // If the expression is obviously signed, use the sext cast value.
1913   if (isa<SCEVSMaxExpr>(Op))
1914     return SExt;
1915 
1916   // Absent any other information, use the zext cast value.
1917   return ZExt;
1918 }
1919 
1920 /// Process the given Ops list, which is a list of operands to be added under
1921 /// the given scale, update the given map. This is a helper function for
1922 /// getAddRecExpr. As an example of what it does, given a sequence of operands
1923 /// that would form an add expression like this:
1924 ///
1925 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1926 ///
1927 /// where A and B are constants, update the map with these values:
1928 ///
1929 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1930 ///
1931 /// and add 13 + A*B*29 to AccumulatedConstant.
1932 /// This will allow getAddRecExpr to produce this:
1933 ///
1934 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1935 ///
1936 /// This form often exposes folding opportunities that are hidden in
1937 /// the original operand list.
1938 ///
1939 /// Return true iff it appears that any interesting folding opportunities
1940 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1941 /// the common case where no interesting opportunities are present, and
1942 /// is also used as a check to avoid infinite recursion.
1943 ///
1944 static bool
1945 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1946                              SmallVectorImpl<const SCEV *> &NewOps,
1947                              APInt &AccumulatedConstant,
1948                              const SCEV *const *Ops, size_t NumOperands,
1949                              const APInt &Scale,
1950                              ScalarEvolution &SE) {
1951   bool Interesting = false;
1952 
1953   // Iterate over the add operands. They are sorted, with constants first.
1954   unsigned i = 0;
1955   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1956     ++i;
1957     // Pull a buried constant out to the outside.
1958     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1959       Interesting = true;
1960     AccumulatedConstant += Scale * C->getAPInt();
1961   }
1962 
1963   // Next comes everything else. We're especially interested in multiplies
1964   // here, but they're in the middle, so just visit the rest with one loop.
1965   for (; i != NumOperands; ++i) {
1966     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1967     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1968       APInt NewScale =
1969           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1970       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1971         // A multiplication of a constant with another add; recurse.
1972         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1973         Interesting |=
1974           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1975                                        Add->op_begin(), Add->getNumOperands(),
1976                                        NewScale, SE);
1977       } else {
1978         // A multiplication of a constant with some other value. Update
1979         // the map.
1980         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1981         const SCEV *Key = SE.getMulExpr(MulOps);
1982         auto Pair = M.insert({Key, NewScale});
1983         if (Pair.second) {
1984           NewOps.push_back(Pair.first->first);
1985         } else {
1986           Pair.first->second += NewScale;
1987           // The map already had an entry for this value, which may indicate
1988           // a folding opportunity.
1989           Interesting = true;
1990         }
1991       }
1992     } else {
1993       // An ordinary operand. Update the map.
1994       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1995           M.insert({Ops[i], Scale});
1996       if (Pair.second) {
1997         NewOps.push_back(Pair.first->first);
1998       } else {
1999         Pair.first->second += Scale;
2000         // The map already had an entry for this value, which may indicate
2001         // a folding opportunity.
2002         Interesting = true;
2003       }
2004     }
2005   }
2006 
2007   return Interesting;
2008 }
2009 
2010 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2011 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2012 // can't-overflow flags for the operation if possible.
2013 static SCEV::NoWrapFlags
2014 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2015                       const SmallVectorImpl<const SCEV *> &Ops,
2016                       SCEV::NoWrapFlags Flags) {
2017   using namespace std::placeholders;
2018   typedef OverflowingBinaryOperator OBO;
2019 
2020   bool CanAnalyze =
2021       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2022   (void)CanAnalyze;
2023   assert(CanAnalyze && "don't call from other places!");
2024 
2025   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2026   SCEV::NoWrapFlags SignOrUnsignWrap =
2027       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2028 
2029   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2030   auto IsKnownNonNegative = [&](const SCEV *S) {
2031     return SE->isKnownNonNegative(S);
2032   };
2033 
2034   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2035     Flags =
2036         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2037 
2038   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2039 
2040   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
2041       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
2042 
2043     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2044     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2045 
2046     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2047     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2048       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2049           Instruction::Add, C, OBO::NoSignedWrap);
2050       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2051         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2052     }
2053     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2054       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2055           Instruction::Add, C, OBO::NoUnsignedWrap);
2056       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2057         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2058     }
2059   }
2060 
2061   return Flags;
2062 }
2063 
2064 /// Get a canonical add expression, or something simpler if possible.
2065 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2066                                         SCEV::NoWrapFlags Flags) {
2067   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2068          "only nuw or nsw allowed");
2069   assert(!Ops.empty() && "Cannot get empty add!");
2070   if (Ops.size() == 1) return Ops[0];
2071 #ifndef NDEBUG
2072   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2073   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2074     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2075            "SCEVAddExpr operand types don't match!");
2076 #endif
2077 
2078   // Sort by complexity, this groups all similar expression types together.
2079   GroupByComplexity(Ops, &LI);
2080 
2081   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2082 
2083   // If there are any constants, fold them together.
2084   unsigned Idx = 0;
2085   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2086     ++Idx;
2087     assert(Idx < Ops.size());
2088     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2089       // We found two constants, fold them together!
2090       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2091       if (Ops.size() == 2) return Ops[0];
2092       Ops.erase(Ops.begin()+1);  // Erase the folded element
2093       LHSC = cast<SCEVConstant>(Ops[0]);
2094     }
2095 
2096     // If we are left with a constant zero being added, strip it off.
2097     if (LHSC->getValue()->isZero()) {
2098       Ops.erase(Ops.begin());
2099       --Idx;
2100     }
2101 
2102     if (Ops.size() == 1) return Ops[0];
2103   }
2104 
2105   // Okay, check to see if the same value occurs in the operand list more than
2106   // once.  If so, merge them together into an multiply expression.  Since we
2107   // sorted the list, these values are required to be adjacent.
2108   Type *Ty = Ops[0]->getType();
2109   bool FoundMatch = false;
2110   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2111     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2112       // Scan ahead to count how many equal operands there are.
2113       unsigned Count = 2;
2114       while (i+Count != e && Ops[i+Count] == Ops[i])
2115         ++Count;
2116       // Merge the values into a multiply.
2117       const SCEV *Scale = getConstant(Ty, Count);
2118       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2119       if (Ops.size() == Count)
2120         return Mul;
2121       Ops[i] = Mul;
2122       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2123       --i; e -= Count - 1;
2124       FoundMatch = true;
2125     }
2126   if (FoundMatch)
2127     return getAddExpr(Ops, Flags);
2128 
2129   // Check for truncates. If all the operands are truncated from the same
2130   // type, see if factoring out the truncate would permit the result to be
2131   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2132   // if the contents of the resulting outer trunc fold to something simple.
2133   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2134     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2135     Type *DstType = Trunc->getType();
2136     Type *SrcType = Trunc->getOperand()->getType();
2137     SmallVector<const SCEV *, 8> LargeOps;
2138     bool Ok = true;
2139     // Check all the operands to see if they can be represented in the
2140     // source type of the truncate.
2141     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2142       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2143         if (T->getOperand()->getType() != SrcType) {
2144           Ok = false;
2145           break;
2146         }
2147         LargeOps.push_back(T->getOperand());
2148       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2149         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2150       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2151         SmallVector<const SCEV *, 8> LargeMulOps;
2152         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2153           if (const SCEVTruncateExpr *T =
2154                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2155             if (T->getOperand()->getType() != SrcType) {
2156               Ok = false;
2157               break;
2158             }
2159             LargeMulOps.push_back(T->getOperand());
2160           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2161             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2162           } else {
2163             Ok = false;
2164             break;
2165           }
2166         }
2167         if (Ok)
2168           LargeOps.push_back(getMulExpr(LargeMulOps));
2169       } else {
2170         Ok = false;
2171         break;
2172       }
2173     }
2174     if (Ok) {
2175       // Evaluate the expression in the larger type.
2176       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2177       // If it folds to something simple, use it. Otherwise, don't.
2178       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2179         return getTruncateExpr(Fold, DstType);
2180     }
2181   }
2182 
2183   // Skip past any other cast SCEVs.
2184   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2185     ++Idx;
2186 
2187   // If there are add operands they would be next.
2188   if (Idx < Ops.size()) {
2189     bool DeletedAdd = false;
2190     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2191       // If we have an add, expand the add operands onto the end of the operands
2192       // list.
2193       Ops.erase(Ops.begin()+Idx);
2194       Ops.append(Add->op_begin(), Add->op_end());
2195       DeletedAdd = true;
2196     }
2197 
2198     // If we deleted at least one add, we added operands to the end of the list,
2199     // and they are not necessarily sorted.  Recurse to resort and resimplify
2200     // any operands we just acquired.
2201     if (DeletedAdd)
2202       return getAddExpr(Ops);
2203   }
2204 
2205   // Skip over the add expression until we get to a multiply.
2206   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2207     ++Idx;
2208 
2209   // Check to see if there are any folding opportunities present with
2210   // operands multiplied by constant values.
2211   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2212     uint64_t BitWidth = getTypeSizeInBits(Ty);
2213     DenseMap<const SCEV *, APInt> M;
2214     SmallVector<const SCEV *, 8> NewOps;
2215     APInt AccumulatedConstant(BitWidth, 0);
2216     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2217                                      Ops.data(), Ops.size(),
2218                                      APInt(BitWidth, 1), *this)) {
2219       struct APIntCompare {
2220         bool operator()(const APInt &LHS, const APInt &RHS) const {
2221           return LHS.ult(RHS);
2222         }
2223       };
2224 
2225       // Some interesting folding opportunity is present, so its worthwhile to
2226       // re-generate the operands list. Group the operands by constant scale,
2227       // to avoid multiplying by the same constant scale multiple times.
2228       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2229       for (const SCEV *NewOp : NewOps)
2230         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2231       // Re-generate the operands list.
2232       Ops.clear();
2233       if (AccumulatedConstant != 0)
2234         Ops.push_back(getConstant(AccumulatedConstant));
2235       for (auto &MulOp : MulOpLists)
2236         if (MulOp.first != 0)
2237           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2238                                    getAddExpr(MulOp.second)));
2239       if (Ops.empty())
2240         return getZero(Ty);
2241       if (Ops.size() == 1)
2242         return Ops[0];
2243       return getAddExpr(Ops);
2244     }
2245   }
2246 
2247   // If we are adding something to a multiply expression, make sure the
2248   // something is not already an operand of the multiply.  If so, merge it into
2249   // the multiply.
2250   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2251     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2252     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2253       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2254       if (isa<SCEVConstant>(MulOpSCEV))
2255         continue;
2256       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2257         if (MulOpSCEV == Ops[AddOp]) {
2258           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2259           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2260           if (Mul->getNumOperands() != 2) {
2261             // If the multiply has more than two operands, we must get the
2262             // Y*Z term.
2263             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2264                                                 Mul->op_begin()+MulOp);
2265             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2266             InnerMul = getMulExpr(MulOps);
2267           }
2268           const SCEV *One = getOne(Ty);
2269           const SCEV *AddOne = getAddExpr(One, InnerMul);
2270           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2271           if (Ops.size() == 2) return OuterMul;
2272           if (AddOp < Idx) {
2273             Ops.erase(Ops.begin()+AddOp);
2274             Ops.erase(Ops.begin()+Idx-1);
2275           } else {
2276             Ops.erase(Ops.begin()+Idx);
2277             Ops.erase(Ops.begin()+AddOp-1);
2278           }
2279           Ops.push_back(OuterMul);
2280           return getAddExpr(Ops);
2281         }
2282 
2283       // Check this multiply against other multiplies being added together.
2284       for (unsigned OtherMulIdx = Idx+1;
2285            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2286            ++OtherMulIdx) {
2287         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2288         // If MulOp occurs in OtherMul, we can fold the two multiplies
2289         // together.
2290         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2291              OMulOp != e; ++OMulOp)
2292           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2293             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2294             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2295             if (Mul->getNumOperands() != 2) {
2296               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2297                                                   Mul->op_begin()+MulOp);
2298               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2299               InnerMul1 = getMulExpr(MulOps);
2300             }
2301             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2302             if (OtherMul->getNumOperands() != 2) {
2303               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2304                                                   OtherMul->op_begin()+OMulOp);
2305               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2306               InnerMul2 = getMulExpr(MulOps);
2307             }
2308             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2309             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2310             if (Ops.size() == 2) return OuterMul;
2311             Ops.erase(Ops.begin()+Idx);
2312             Ops.erase(Ops.begin()+OtherMulIdx-1);
2313             Ops.push_back(OuterMul);
2314             return getAddExpr(Ops);
2315           }
2316       }
2317     }
2318   }
2319 
2320   // If there are any add recurrences in the operands list, see if any other
2321   // added values are loop invariant.  If so, we can fold them into the
2322   // recurrence.
2323   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2324     ++Idx;
2325 
2326   // Scan over all recurrences, trying to fold loop invariants into them.
2327   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2328     // Scan all of the other operands to this add and add them to the vector if
2329     // they are loop invariant w.r.t. the recurrence.
2330     SmallVector<const SCEV *, 8> LIOps;
2331     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2332     const Loop *AddRecLoop = AddRec->getLoop();
2333     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2334       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2335         LIOps.push_back(Ops[i]);
2336         Ops.erase(Ops.begin()+i);
2337         --i; --e;
2338       }
2339 
2340     // If we found some loop invariants, fold them into the recurrence.
2341     if (!LIOps.empty()) {
2342       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2343       LIOps.push_back(AddRec->getStart());
2344 
2345       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2346                                              AddRec->op_end());
2347       // This follows from the fact that the no-wrap flags on the outer add
2348       // expression are applicable on the 0th iteration, when the add recurrence
2349       // will be equal to its start value.
2350       AddRecOps[0] = getAddExpr(LIOps, Flags);
2351 
2352       // Build the new addrec. Propagate the NUW and NSW flags if both the
2353       // outer add and the inner addrec are guaranteed to have no overflow.
2354       // Always propagate NW.
2355       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2356       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2357 
2358       // If all of the other operands were loop invariant, we are done.
2359       if (Ops.size() == 1) return NewRec;
2360 
2361       // Otherwise, add the folded AddRec by the non-invariant parts.
2362       for (unsigned i = 0;; ++i)
2363         if (Ops[i] == AddRec) {
2364           Ops[i] = NewRec;
2365           break;
2366         }
2367       return getAddExpr(Ops);
2368     }
2369 
2370     // Okay, if there weren't any loop invariants to be folded, check to see if
2371     // there are multiple AddRec's with the same loop induction variable being
2372     // added together.  If so, we can fold them.
2373     for (unsigned OtherIdx = Idx+1;
2374          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2375          ++OtherIdx)
2376       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2377         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2378         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2379                                                AddRec->op_end());
2380         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2381              ++OtherIdx)
2382           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2383             if (OtherAddRec->getLoop() == AddRecLoop) {
2384               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2385                    i != e; ++i) {
2386                 if (i >= AddRecOps.size()) {
2387                   AddRecOps.append(OtherAddRec->op_begin()+i,
2388                                    OtherAddRec->op_end());
2389                   break;
2390                 }
2391                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2392                                           OtherAddRec->getOperand(i));
2393               }
2394               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2395             }
2396         // Step size has changed, so we cannot guarantee no self-wraparound.
2397         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2398         return getAddExpr(Ops);
2399       }
2400 
2401     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2402     // next one.
2403   }
2404 
2405   // Okay, it looks like we really DO need an add expr.  Check to see if we
2406   // already have one, otherwise create a new one.
2407   FoldingSetNodeID ID;
2408   ID.AddInteger(scAddExpr);
2409   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2410     ID.AddPointer(Ops[i]);
2411   void *IP = nullptr;
2412   SCEVAddExpr *S =
2413     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2414   if (!S) {
2415     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2416     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2417     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2418                                         O, Ops.size());
2419     UniqueSCEVs.InsertNode(S, IP);
2420   }
2421   S->setNoWrapFlags(Flags);
2422   return S;
2423 }
2424 
2425 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2426   uint64_t k = i*j;
2427   if (j > 1 && k / j != i) Overflow = true;
2428   return k;
2429 }
2430 
2431 /// Compute the result of "n choose k", the binomial coefficient.  If an
2432 /// intermediate computation overflows, Overflow will be set and the return will
2433 /// be garbage. Overflow is not cleared on absence of overflow.
2434 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2435   // We use the multiplicative formula:
2436   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2437   // At each iteration, we take the n-th term of the numeral and divide by the
2438   // (k-n)th term of the denominator.  This division will always produce an
2439   // integral result, and helps reduce the chance of overflow in the
2440   // intermediate computations. However, we can still overflow even when the
2441   // final result would fit.
2442 
2443   if (n == 0 || n == k) return 1;
2444   if (k > n) return 0;
2445 
2446   if (k > n/2)
2447     k = n-k;
2448 
2449   uint64_t r = 1;
2450   for (uint64_t i = 1; i <= k; ++i) {
2451     r = umul_ov(r, n-(i-1), Overflow);
2452     r /= i;
2453   }
2454   return r;
2455 }
2456 
2457 /// Determine if any of the operands in this SCEV are a constant or if
2458 /// any of the add or multiply expressions in this SCEV contain a constant.
2459 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2460   SmallVector<const SCEV *, 4> Ops;
2461   Ops.push_back(StartExpr);
2462   while (!Ops.empty()) {
2463     const SCEV *CurrentExpr = Ops.pop_back_val();
2464     if (isa<SCEVConstant>(*CurrentExpr))
2465       return true;
2466 
2467     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2468       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2469       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2470     }
2471   }
2472   return false;
2473 }
2474 
2475 /// Get a canonical multiply expression, or something simpler if possible.
2476 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2477                                         SCEV::NoWrapFlags Flags) {
2478   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2479          "only nuw or nsw allowed");
2480   assert(!Ops.empty() && "Cannot get empty mul!");
2481   if (Ops.size() == 1) return Ops[0];
2482 #ifndef NDEBUG
2483   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2484   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2485     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2486            "SCEVMulExpr operand types don't match!");
2487 #endif
2488 
2489   // Sort by complexity, this groups all similar expression types together.
2490   GroupByComplexity(Ops, &LI);
2491 
2492   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2493 
2494   // If there are any constants, fold them together.
2495   unsigned Idx = 0;
2496   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2497 
2498     // C1*(C2+V) -> C1*C2 + C1*V
2499     if (Ops.size() == 2)
2500         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2501           // If any of Add's ops are Adds or Muls with a constant,
2502           // apply this transformation as well.
2503           if (Add->getNumOperands() == 2)
2504             if (containsConstantSomewhere(Add))
2505               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2506                                 getMulExpr(LHSC, Add->getOperand(1)));
2507 
2508     ++Idx;
2509     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2510       // We found two constants, fold them together!
2511       ConstantInt *Fold =
2512           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2513       Ops[0] = getConstant(Fold);
2514       Ops.erase(Ops.begin()+1);  // Erase the folded element
2515       if (Ops.size() == 1) return Ops[0];
2516       LHSC = cast<SCEVConstant>(Ops[0]);
2517     }
2518 
2519     // If we are left with a constant one being multiplied, strip it off.
2520     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2521       Ops.erase(Ops.begin());
2522       --Idx;
2523     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2524       // If we have a multiply of zero, it will always be zero.
2525       return Ops[0];
2526     } else if (Ops[0]->isAllOnesValue()) {
2527       // If we have a mul by -1 of an add, try distributing the -1 among the
2528       // add operands.
2529       if (Ops.size() == 2) {
2530         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2531           SmallVector<const SCEV *, 4> NewOps;
2532           bool AnyFolded = false;
2533           for (const SCEV *AddOp : Add->operands()) {
2534             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2535             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2536             NewOps.push_back(Mul);
2537           }
2538           if (AnyFolded)
2539             return getAddExpr(NewOps);
2540         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2541           // Negation preserves a recurrence's no self-wrap property.
2542           SmallVector<const SCEV *, 4> Operands;
2543           for (const SCEV *AddRecOp : AddRec->operands())
2544             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2545 
2546           return getAddRecExpr(Operands, AddRec->getLoop(),
2547                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2548         }
2549       }
2550     }
2551 
2552     if (Ops.size() == 1)
2553       return Ops[0];
2554   }
2555 
2556   // Skip over the add expression until we get to a multiply.
2557   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2558     ++Idx;
2559 
2560   // If there are mul operands inline them all into this expression.
2561   if (Idx < Ops.size()) {
2562     bool DeletedMul = false;
2563     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2564       if (Ops.size() > MulOpsInlineThreshold)
2565         break;
2566       // If we have an mul, expand the mul operands onto the end of the operands
2567       // list.
2568       Ops.erase(Ops.begin()+Idx);
2569       Ops.append(Mul->op_begin(), Mul->op_end());
2570       DeletedMul = true;
2571     }
2572 
2573     // If we deleted at least one mul, we added operands to the end of the list,
2574     // and they are not necessarily sorted.  Recurse to resort and resimplify
2575     // any operands we just acquired.
2576     if (DeletedMul)
2577       return getMulExpr(Ops);
2578   }
2579 
2580   // If there are any add recurrences in the operands list, see if any other
2581   // added values are loop invariant.  If so, we can fold them into the
2582   // recurrence.
2583   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2584     ++Idx;
2585 
2586   // Scan over all recurrences, trying to fold loop invariants into them.
2587   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2588     // Scan all of the other operands to this mul and add them to the vector if
2589     // they are loop invariant w.r.t. the recurrence.
2590     SmallVector<const SCEV *, 8> LIOps;
2591     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2592     const Loop *AddRecLoop = AddRec->getLoop();
2593     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2594       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2595         LIOps.push_back(Ops[i]);
2596         Ops.erase(Ops.begin()+i);
2597         --i; --e;
2598       }
2599 
2600     // If we found some loop invariants, fold them into the recurrence.
2601     if (!LIOps.empty()) {
2602       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2603       SmallVector<const SCEV *, 4> NewOps;
2604       NewOps.reserve(AddRec->getNumOperands());
2605       const SCEV *Scale = getMulExpr(LIOps);
2606       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2607         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2608 
2609       // Build the new addrec. Propagate the NUW and NSW flags if both the
2610       // outer mul and the inner addrec are guaranteed to have no overflow.
2611       //
2612       // No self-wrap cannot be guaranteed after changing the step size, but
2613       // will be inferred if either NUW or NSW is true.
2614       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2615       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2616 
2617       // If all of the other operands were loop invariant, we are done.
2618       if (Ops.size() == 1) return NewRec;
2619 
2620       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2621       for (unsigned i = 0;; ++i)
2622         if (Ops[i] == AddRec) {
2623           Ops[i] = NewRec;
2624           break;
2625         }
2626       return getMulExpr(Ops);
2627     }
2628 
2629     // Okay, if there weren't any loop invariants to be folded, check to see if
2630     // there are multiple AddRec's with the same loop induction variable being
2631     // multiplied together.  If so, we can fold them.
2632 
2633     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2634     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2635     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2636     //   ]]],+,...up to x=2n}.
2637     // Note that the arguments to choose() are always integers with values
2638     // known at compile time, never SCEV objects.
2639     //
2640     // The implementation avoids pointless extra computations when the two
2641     // addrec's are of different length (mathematically, it's equivalent to
2642     // an infinite stream of zeros on the right).
2643     bool OpsModified = false;
2644     for (unsigned OtherIdx = Idx+1;
2645          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2646          ++OtherIdx) {
2647       const SCEVAddRecExpr *OtherAddRec =
2648         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2649       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2650         continue;
2651 
2652       bool Overflow = false;
2653       Type *Ty = AddRec->getType();
2654       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2655       SmallVector<const SCEV*, 7> AddRecOps;
2656       for (int x = 0, xe = AddRec->getNumOperands() +
2657              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2658         const SCEV *Term = getZero(Ty);
2659         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2660           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2661           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2662                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2663                z < ze && !Overflow; ++z) {
2664             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2665             uint64_t Coeff;
2666             if (LargerThan64Bits)
2667               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2668             else
2669               Coeff = Coeff1*Coeff2;
2670             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2671             const SCEV *Term1 = AddRec->getOperand(y-z);
2672             const SCEV *Term2 = OtherAddRec->getOperand(z);
2673             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2674           }
2675         }
2676         AddRecOps.push_back(Term);
2677       }
2678       if (!Overflow) {
2679         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2680                                               SCEV::FlagAnyWrap);
2681         if (Ops.size() == 2) return NewAddRec;
2682         Ops[Idx] = NewAddRec;
2683         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2684         OpsModified = true;
2685         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2686         if (!AddRec)
2687           break;
2688       }
2689     }
2690     if (OpsModified)
2691       return getMulExpr(Ops);
2692 
2693     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2694     // next one.
2695   }
2696 
2697   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2698   // already have one, otherwise create a new one.
2699   FoldingSetNodeID ID;
2700   ID.AddInteger(scMulExpr);
2701   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2702     ID.AddPointer(Ops[i]);
2703   void *IP = nullptr;
2704   SCEVMulExpr *S =
2705     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2706   if (!S) {
2707     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2708     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2709     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2710                                         O, Ops.size());
2711     UniqueSCEVs.InsertNode(S, IP);
2712   }
2713   S->setNoWrapFlags(Flags);
2714   return S;
2715 }
2716 
2717 /// Get a canonical unsigned division expression, or something simpler if
2718 /// possible.
2719 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2720                                          const SCEV *RHS) {
2721   assert(getEffectiveSCEVType(LHS->getType()) ==
2722          getEffectiveSCEVType(RHS->getType()) &&
2723          "SCEVUDivExpr operand types don't match!");
2724 
2725   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2726     if (RHSC->getValue()->equalsInt(1))
2727       return LHS;                               // X udiv 1 --> x
2728     // If the denominator is zero, the result of the udiv is undefined. Don't
2729     // try to analyze it, because the resolution chosen here may differ from
2730     // the resolution chosen in other parts of the compiler.
2731     if (!RHSC->getValue()->isZero()) {
2732       // Determine if the division can be folded into the operands of
2733       // its operands.
2734       // TODO: Generalize this to non-constants by using known-bits information.
2735       Type *Ty = LHS->getType();
2736       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2737       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2738       // For non-power-of-two values, effectively round the value up to the
2739       // nearest power of two.
2740       if (!RHSC->getAPInt().isPowerOf2())
2741         ++MaxShiftAmt;
2742       IntegerType *ExtTy =
2743         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2744       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2745         if (const SCEVConstant *Step =
2746             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2747           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2748           const APInt &StepInt = Step->getAPInt();
2749           const APInt &DivInt = RHSC->getAPInt();
2750           if (!StepInt.urem(DivInt) &&
2751               getZeroExtendExpr(AR, ExtTy) ==
2752               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2753                             getZeroExtendExpr(Step, ExtTy),
2754                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2755             SmallVector<const SCEV *, 4> Operands;
2756             for (const SCEV *Op : AR->operands())
2757               Operands.push_back(getUDivExpr(Op, RHS));
2758             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2759           }
2760           /// Get a canonical UDivExpr for a recurrence.
2761           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2762           // We can currently only fold X%N if X is constant.
2763           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2764           if (StartC && !DivInt.urem(StepInt) &&
2765               getZeroExtendExpr(AR, ExtTy) ==
2766               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2767                             getZeroExtendExpr(Step, ExtTy),
2768                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2769             const APInt &StartInt = StartC->getAPInt();
2770             const APInt &StartRem = StartInt.urem(StepInt);
2771             if (StartRem != 0)
2772               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2773                                   AR->getLoop(), SCEV::FlagNW);
2774           }
2775         }
2776       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2777       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2778         SmallVector<const SCEV *, 4> Operands;
2779         for (const SCEV *Op : M->operands())
2780           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2781         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2782           // Find an operand that's safely divisible.
2783           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2784             const SCEV *Op = M->getOperand(i);
2785             const SCEV *Div = getUDivExpr(Op, RHSC);
2786             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2787               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2788                                                       M->op_end());
2789               Operands[i] = Div;
2790               return getMulExpr(Operands);
2791             }
2792           }
2793       }
2794       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2795       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2796         SmallVector<const SCEV *, 4> Operands;
2797         for (const SCEV *Op : A->operands())
2798           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2799         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2800           Operands.clear();
2801           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2802             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2803             if (isa<SCEVUDivExpr>(Op) ||
2804                 getMulExpr(Op, RHS) != A->getOperand(i))
2805               break;
2806             Operands.push_back(Op);
2807           }
2808           if (Operands.size() == A->getNumOperands())
2809             return getAddExpr(Operands);
2810         }
2811       }
2812 
2813       // Fold if both operands are constant.
2814       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2815         Constant *LHSCV = LHSC->getValue();
2816         Constant *RHSCV = RHSC->getValue();
2817         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2818                                                                    RHSCV)));
2819       }
2820     }
2821   }
2822 
2823   FoldingSetNodeID ID;
2824   ID.AddInteger(scUDivExpr);
2825   ID.AddPointer(LHS);
2826   ID.AddPointer(RHS);
2827   void *IP = nullptr;
2828   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2829   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2830                                              LHS, RHS);
2831   UniqueSCEVs.InsertNode(S, IP);
2832   return S;
2833 }
2834 
2835 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2836   APInt A = C1->getAPInt().abs();
2837   APInt B = C2->getAPInt().abs();
2838   uint32_t ABW = A.getBitWidth();
2839   uint32_t BBW = B.getBitWidth();
2840 
2841   if (ABW > BBW)
2842     B = B.zext(ABW);
2843   else if (ABW < BBW)
2844     A = A.zext(BBW);
2845 
2846   return APIntOps::GreatestCommonDivisor(A, B);
2847 }
2848 
2849 /// Get a canonical unsigned division expression, or something simpler if
2850 /// possible. There is no representation for an exact udiv in SCEV IR, but we
2851 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
2852 /// it's not exact because the udiv may be clearing bits.
2853 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2854                                               const SCEV *RHS) {
2855   // TODO: we could try to find factors in all sorts of things, but for now we
2856   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2857   // end of this file for inspiration.
2858 
2859   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2860   if (!Mul)
2861     return getUDivExpr(LHS, RHS);
2862 
2863   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2864     // If the mulexpr multiplies by a constant, then that constant must be the
2865     // first element of the mulexpr.
2866     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2867       if (LHSCst == RHSCst) {
2868         SmallVector<const SCEV *, 2> Operands;
2869         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2870         return getMulExpr(Operands);
2871       }
2872 
2873       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2874       // that there's a factor provided by one of the other terms. We need to
2875       // check.
2876       APInt Factor = gcd(LHSCst, RHSCst);
2877       if (!Factor.isIntN(1)) {
2878         LHSCst =
2879             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2880         RHSCst =
2881             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2882         SmallVector<const SCEV *, 2> Operands;
2883         Operands.push_back(LHSCst);
2884         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2885         LHS = getMulExpr(Operands);
2886         RHS = RHSCst;
2887         Mul = dyn_cast<SCEVMulExpr>(LHS);
2888         if (!Mul)
2889           return getUDivExactExpr(LHS, RHS);
2890       }
2891     }
2892   }
2893 
2894   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2895     if (Mul->getOperand(i) == RHS) {
2896       SmallVector<const SCEV *, 2> Operands;
2897       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2898       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2899       return getMulExpr(Operands);
2900     }
2901   }
2902 
2903   return getUDivExpr(LHS, RHS);
2904 }
2905 
2906 /// Get an add recurrence expression for the specified loop.  Simplify the
2907 /// expression as much as possible.
2908 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2909                                            const Loop *L,
2910                                            SCEV::NoWrapFlags Flags) {
2911   SmallVector<const SCEV *, 4> Operands;
2912   Operands.push_back(Start);
2913   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2914     if (StepChrec->getLoop() == L) {
2915       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2916       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2917     }
2918 
2919   Operands.push_back(Step);
2920   return getAddRecExpr(Operands, L, Flags);
2921 }
2922 
2923 /// Get an add recurrence expression for the specified loop.  Simplify the
2924 /// expression as much as possible.
2925 const SCEV *
2926 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2927                                const Loop *L, SCEV::NoWrapFlags Flags) {
2928   if (Operands.size() == 1) return Operands[0];
2929 #ifndef NDEBUG
2930   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2931   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2932     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2933            "SCEVAddRecExpr operand types don't match!");
2934   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2935     assert(isLoopInvariant(Operands[i], L) &&
2936            "SCEVAddRecExpr operand is not loop-invariant!");
2937 #endif
2938 
2939   if (Operands.back()->isZero()) {
2940     Operands.pop_back();
2941     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2942   }
2943 
2944   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2945   // use that information to infer NUW and NSW flags. However, computing a
2946   // BE count requires calling getAddRecExpr, so we may not yet have a
2947   // meaningful BE count at this point (and if we don't, we'd be stuck
2948   // with a SCEVCouldNotCompute as the cached BE count).
2949 
2950   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2951 
2952   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2953   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2954     const Loop *NestedLoop = NestedAR->getLoop();
2955     if (L->contains(NestedLoop)
2956             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2957             : (!NestedLoop->contains(L) &&
2958                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2959       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2960                                                   NestedAR->op_end());
2961       Operands[0] = NestedAR->getStart();
2962       // AddRecs require their operands be loop-invariant with respect to their
2963       // loops. Don't perform this transformation if it would break this
2964       // requirement.
2965       bool AllInvariant = all_of(
2966           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2967 
2968       if (AllInvariant) {
2969         // Create a recurrence for the outer loop with the same step size.
2970         //
2971         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2972         // inner recurrence has the same property.
2973         SCEV::NoWrapFlags OuterFlags =
2974           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2975 
2976         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2977         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2978           return isLoopInvariant(Op, NestedLoop);
2979         });
2980 
2981         if (AllInvariant) {
2982           // Ok, both add recurrences are valid after the transformation.
2983           //
2984           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2985           // the outer recurrence has the same property.
2986           SCEV::NoWrapFlags InnerFlags =
2987             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2988           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2989         }
2990       }
2991       // Reset Operands to its original state.
2992       Operands[0] = NestedAR;
2993     }
2994   }
2995 
2996   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2997   // already have one, otherwise create a new one.
2998   FoldingSetNodeID ID;
2999   ID.AddInteger(scAddRecExpr);
3000   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3001     ID.AddPointer(Operands[i]);
3002   ID.AddPointer(L);
3003   void *IP = nullptr;
3004   SCEVAddRecExpr *S =
3005     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3006   if (!S) {
3007     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
3008     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
3009     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
3010                                            O, Operands.size(), L);
3011     UniqueSCEVs.InsertNode(S, IP);
3012   }
3013   S->setNoWrapFlags(Flags);
3014   return S;
3015 }
3016 
3017 const SCEV *
3018 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3019                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3020   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3021   // getSCEV(Base)->getType() has the same address space as Base->getType()
3022   // because SCEV::getType() preserves the address space.
3023   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3024   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3025   // instruction to its SCEV, because the Instruction may be guarded by control
3026   // flow and the no-overflow bits may not be valid for the expression in any
3027   // context. This can be fixed similarly to how these flags are handled for
3028   // adds.
3029   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3030                                              : SCEV::FlagAnyWrap;
3031 
3032   const SCEV *TotalOffset = getZero(IntPtrTy);
3033   // The address space is unimportant. The first thing we do on CurTy is getting
3034   // its element type.
3035   Type *CurTy = PointerType::getUnqual(GEP->getSourceElementType());
3036   for (const SCEV *IndexExpr : IndexExprs) {
3037     // Compute the (potentially symbolic) offset in bytes for this index.
3038     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3039       // For a struct, add the member offset.
3040       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3041       unsigned FieldNo = Index->getZExtValue();
3042       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3043 
3044       // Add the field offset to the running total offset.
3045       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3046 
3047       // Update CurTy to the type of the field at Index.
3048       CurTy = STy->getTypeAtIndex(Index);
3049     } else {
3050       // Update CurTy to its element type.
3051       CurTy = cast<SequentialType>(CurTy)->getElementType();
3052       // For an array, add the element offset, explicitly scaled.
3053       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3054       // Getelementptr indices are signed.
3055       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3056 
3057       // Multiply the index by the element size to compute the element offset.
3058       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3059 
3060       // Add the element offset to the running total offset.
3061       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3062     }
3063   }
3064 
3065   // Add the total offset from all the GEP indices to the base.
3066   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3067 }
3068 
3069 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3070                                          const SCEV *RHS) {
3071   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3072   return getSMaxExpr(Ops);
3073 }
3074 
3075 const SCEV *
3076 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3077   assert(!Ops.empty() && "Cannot get empty smax!");
3078   if (Ops.size() == 1) return Ops[0];
3079 #ifndef NDEBUG
3080   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3081   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3082     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3083            "SCEVSMaxExpr operand types don't match!");
3084 #endif
3085 
3086   // Sort by complexity, this groups all similar expression types together.
3087   GroupByComplexity(Ops, &LI);
3088 
3089   // If there are any constants, fold them together.
3090   unsigned Idx = 0;
3091   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3092     ++Idx;
3093     assert(Idx < Ops.size());
3094     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3095       // We found two constants, fold them together!
3096       ConstantInt *Fold = ConstantInt::get(
3097           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3098       Ops[0] = getConstant(Fold);
3099       Ops.erase(Ops.begin()+1);  // Erase the folded element
3100       if (Ops.size() == 1) return Ops[0];
3101       LHSC = cast<SCEVConstant>(Ops[0]);
3102     }
3103 
3104     // If we are left with a constant minimum-int, strip it off.
3105     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3106       Ops.erase(Ops.begin());
3107       --Idx;
3108     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3109       // If we have an smax with a constant maximum-int, it will always be
3110       // maximum-int.
3111       return Ops[0];
3112     }
3113 
3114     if (Ops.size() == 1) return Ops[0];
3115   }
3116 
3117   // Find the first SMax
3118   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3119     ++Idx;
3120 
3121   // Check to see if one of the operands is an SMax. If so, expand its operands
3122   // onto our operand list, and recurse to simplify.
3123   if (Idx < Ops.size()) {
3124     bool DeletedSMax = false;
3125     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3126       Ops.erase(Ops.begin()+Idx);
3127       Ops.append(SMax->op_begin(), SMax->op_end());
3128       DeletedSMax = true;
3129     }
3130 
3131     if (DeletedSMax)
3132       return getSMaxExpr(Ops);
3133   }
3134 
3135   // Okay, check to see if the same value occurs in the operand list twice.  If
3136   // so, delete one.  Since we sorted the list, these values are required to
3137   // be adjacent.
3138   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3139     //  X smax Y smax Y  -->  X smax Y
3140     //  X smax Y         -->  X, if X is always greater than Y
3141     if (Ops[i] == Ops[i+1] ||
3142         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3143       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3144       --i; --e;
3145     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3146       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3147       --i; --e;
3148     }
3149 
3150   if (Ops.size() == 1) return Ops[0];
3151 
3152   assert(!Ops.empty() && "Reduced smax down to nothing!");
3153 
3154   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3155   // already have one, otherwise create a new one.
3156   FoldingSetNodeID ID;
3157   ID.AddInteger(scSMaxExpr);
3158   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3159     ID.AddPointer(Ops[i]);
3160   void *IP = nullptr;
3161   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3162   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3163   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3164   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3165                                              O, Ops.size());
3166   UniqueSCEVs.InsertNode(S, IP);
3167   return S;
3168 }
3169 
3170 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3171                                          const SCEV *RHS) {
3172   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3173   return getUMaxExpr(Ops);
3174 }
3175 
3176 const SCEV *
3177 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3178   assert(!Ops.empty() && "Cannot get empty umax!");
3179   if (Ops.size() == 1) return Ops[0];
3180 #ifndef NDEBUG
3181   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3182   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3183     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3184            "SCEVUMaxExpr operand types don't match!");
3185 #endif
3186 
3187   // Sort by complexity, this groups all similar expression types together.
3188   GroupByComplexity(Ops, &LI);
3189 
3190   // If there are any constants, fold them together.
3191   unsigned Idx = 0;
3192   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3193     ++Idx;
3194     assert(Idx < Ops.size());
3195     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3196       // We found two constants, fold them together!
3197       ConstantInt *Fold = ConstantInt::get(
3198           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3199       Ops[0] = getConstant(Fold);
3200       Ops.erase(Ops.begin()+1);  // Erase the folded element
3201       if (Ops.size() == 1) return Ops[0];
3202       LHSC = cast<SCEVConstant>(Ops[0]);
3203     }
3204 
3205     // If we are left with a constant minimum-int, strip it off.
3206     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3207       Ops.erase(Ops.begin());
3208       --Idx;
3209     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3210       // If we have an umax with a constant maximum-int, it will always be
3211       // maximum-int.
3212       return Ops[0];
3213     }
3214 
3215     if (Ops.size() == 1) return Ops[0];
3216   }
3217 
3218   // Find the first UMax
3219   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3220     ++Idx;
3221 
3222   // Check to see if one of the operands is a UMax. If so, expand its operands
3223   // onto our operand list, and recurse to simplify.
3224   if (Idx < Ops.size()) {
3225     bool DeletedUMax = false;
3226     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3227       Ops.erase(Ops.begin()+Idx);
3228       Ops.append(UMax->op_begin(), UMax->op_end());
3229       DeletedUMax = true;
3230     }
3231 
3232     if (DeletedUMax)
3233       return getUMaxExpr(Ops);
3234   }
3235 
3236   // Okay, check to see if the same value occurs in the operand list twice.  If
3237   // so, delete one.  Since we sorted the list, these values are required to
3238   // be adjacent.
3239   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3240     //  X umax Y umax Y  -->  X umax Y
3241     //  X umax Y         -->  X, if X is always greater than Y
3242     if (Ops[i] == Ops[i+1] ||
3243         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3244       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3245       --i; --e;
3246     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3247       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3248       --i; --e;
3249     }
3250 
3251   if (Ops.size() == 1) return Ops[0];
3252 
3253   assert(!Ops.empty() && "Reduced umax down to nothing!");
3254 
3255   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3256   // already have one, otherwise create a new one.
3257   FoldingSetNodeID ID;
3258   ID.AddInteger(scUMaxExpr);
3259   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3260     ID.AddPointer(Ops[i]);
3261   void *IP = nullptr;
3262   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3263   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3264   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3265   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3266                                              O, Ops.size());
3267   UniqueSCEVs.InsertNode(S, IP);
3268   return S;
3269 }
3270 
3271 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3272                                          const SCEV *RHS) {
3273   // ~smax(~x, ~y) == smin(x, y).
3274   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3275 }
3276 
3277 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3278                                          const SCEV *RHS) {
3279   // ~umax(~x, ~y) == umin(x, y)
3280   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3281 }
3282 
3283 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3284   // We can bypass creating a target-independent
3285   // constant expression and then folding it back into a ConstantInt.
3286   // This is just a compile-time optimization.
3287   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3288 }
3289 
3290 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3291                                              StructType *STy,
3292                                              unsigned FieldNo) {
3293   // We can bypass creating a target-independent
3294   // constant expression and then folding it back into a ConstantInt.
3295   // This is just a compile-time optimization.
3296   return getConstant(
3297       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3298 }
3299 
3300 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3301   // Don't attempt to do anything other than create a SCEVUnknown object
3302   // here.  createSCEV only calls getUnknown after checking for all other
3303   // interesting possibilities, and any other code that calls getUnknown
3304   // is doing so in order to hide a value from SCEV canonicalization.
3305 
3306   FoldingSetNodeID ID;
3307   ID.AddInteger(scUnknown);
3308   ID.AddPointer(V);
3309   void *IP = nullptr;
3310   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3311     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3312            "Stale SCEVUnknown in uniquing map!");
3313     return S;
3314   }
3315   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3316                                             FirstUnknown);
3317   FirstUnknown = cast<SCEVUnknown>(S);
3318   UniqueSCEVs.InsertNode(S, IP);
3319   return S;
3320 }
3321 
3322 //===----------------------------------------------------------------------===//
3323 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3324 //
3325 
3326 /// Test if values of the given type are analyzable within the SCEV
3327 /// framework. This primarily includes integer types, and it can optionally
3328 /// include pointer types if the ScalarEvolution class has access to
3329 /// target-specific information.
3330 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3331   // Integers and pointers are always SCEVable.
3332   return Ty->isIntegerTy() || Ty->isPointerTy();
3333 }
3334 
3335 /// Return the size in bits of the specified type, for which isSCEVable must
3336 /// return true.
3337 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3338   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3339   return getDataLayout().getTypeSizeInBits(Ty);
3340 }
3341 
3342 /// Return a type with the same bitwidth as the given type and which represents
3343 /// how SCEV will treat the given type, for which isSCEVable must return
3344 /// true. For pointer types, this is the pointer-sized integer type.
3345 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3346   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3347 
3348   if (Ty->isIntegerTy())
3349     return Ty;
3350 
3351   // The only other support type is pointer.
3352   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3353   return getDataLayout().getIntPtrType(Ty);
3354 }
3355 
3356 const SCEV *ScalarEvolution::getCouldNotCompute() {
3357   return CouldNotCompute.get();
3358 }
3359 
3360 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3361   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3362     auto *SU = dyn_cast<SCEVUnknown>(S);
3363     return SU && SU->getValue() == nullptr;
3364   });
3365 
3366   return !ContainsNulls;
3367 }
3368 
3369 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3370   HasRecMapType::iterator I = HasRecMap.find(S);
3371   if (I != HasRecMap.end())
3372     return I->second;
3373 
3374   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3375   HasRecMap.insert({S, FoundAddRec});
3376   return FoundAddRec;
3377 }
3378 
3379 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3380 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3381 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3382 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3383   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3384   if (!Add)
3385     return {S, nullptr};
3386 
3387   if (Add->getNumOperands() != 2)
3388     return {S, nullptr};
3389 
3390   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3391   if (!ConstOp)
3392     return {S, nullptr};
3393 
3394   return {Add->getOperand(1), ConstOp->getValue()};
3395 }
3396 
3397 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3398 /// by the value and offset from any ValueOffsetPair in the set.
3399 SetVector<ScalarEvolution::ValueOffsetPair> *
3400 ScalarEvolution::getSCEVValues(const SCEV *S) {
3401   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3402   if (SI == ExprValueMap.end())
3403     return nullptr;
3404 #ifndef NDEBUG
3405   if (VerifySCEVMap) {
3406     // Check there is no dangling Value in the set returned.
3407     for (const auto &VE : SI->second)
3408       assert(ValueExprMap.count(VE.first));
3409   }
3410 #endif
3411   return &SI->second;
3412 }
3413 
3414 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3415 /// cannot be used separately. eraseValueFromMap should be used to remove
3416 /// V from ValueExprMap and ExprValueMap at the same time.
3417 void ScalarEvolution::eraseValueFromMap(Value *V) {
3418   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3419   if (I != ValueExprMap.end()) {
3420     const SCEV *S = I->second;
3421     // Remove {V, 0} from the set of ExprValueMap[S]
3422     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3423       SV->remove({V, nullptr});
3424 
3425     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3426     const SCEV *Stripped;
3427     ConstantInt *Offset;
3428     std::tie(Stripped, Offset) = splitAddExpr(S);
3429     if (Offset != nullptr) {
3430       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3431         SV->remove({V, Offset});
3432     }
3433     ValueExprMap.erase(V);
3434   }
3435 }
3436 
3437 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3438 /// create a new one.
3439 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3440   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3441 
3442   const SCEV *S = getExistingSCEV(V);
3443   if (S == nullptr) {
3444     S = createSCEV(V);
3445     // During PHI resolution, it is possible to create two SCEVs for the same
3446     // V, so it is needed to double check whether V->S is inserted into
3447     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3448     std::pair<ValueExprMapType::iterator, bool> Pair =
3449         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3450     if (Pair.second) {
3451       ExprValueMap[S].insert({V, nullptr});
3452 
3453       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3454       // ExprValueMap.
3455       const SCEV *Stripped = S;
3456       ConstantInt *Offset = nullptr;
3457       std::tie(Stripped, Offset) = splitAddExpr(S);
3458       // If stripped is SCEVUnknown, don't bother to save
3459       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3460       // increase the complexity of the expansion code.
3461       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3462       // because it may generate add/sub instead of GEP in SCEV expansion.
3463       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3464           !isa<GetElementPtrInst>(V))
3465         ExprValueMap[Stripped].insert({V, Offset});
3466     }
3467   }
3468   return S;
3469 }
3470 
3471 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3472   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3473 
3474   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3475   if (I != ValueExprMap.end()) {
3476     const SCEV *S = I->second;
3477     if (checkValidity(S))
3478       return S;
3479     eraseValueFromMap(V);
3480     forgetMemoizedResults(S);
3481   }
3482   return nullptr;
3483 }
3484 
3485 /// Return a SCEV corresponding to -V = -1*V
3486 ///
3487 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3488                                              SCEV::NoWrapFlags Flags) {
3489   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3490     return getConstant(
3491                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3492 
3493   Type *Ty = V->getType();
3494   Ty = getEffectiveSCEVType(Ty);
3495   return getMulExpr(
3496       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3497 }
3498 
3499 /// Return a SCEV corresponding to ~V = -1-V
3500 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3501   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3502     return getConstant(
3503                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3504 
3505   Type *Ty = V->getType();
3506   Ty = getEffectiveSCEVType(Ty);
3507   const SCEV *AllOnes =
3508                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3509   return getMinusSCEV(AllOnes, V);
3510 }
3511 
3512 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3513                                           SCEV::NoWrapFlags Flags) {
3514   // Fast path: X - X --> 0.
3515   if (LHS == RHS)
3516     return getZero(LHS->getType());
3517 
3518   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3519   // makes it so that we cannot make much use of NUW.
3520   auto AddFlags = SCEV::FlagAnyWrap;
3521   const bool RHSIsNotMinSigned =
3522       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3523   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3524     // Let M be the minimum representable signed value. Then (-1)*RHS
3525     // signed-wraps if and only if RHS is M. That can happen even for
3526     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3527     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3528     // (-1)*RHS, we need to prove that RHS != M.
3529     //
3530     // If LHS is non-negative and we know that LHS - RHS does not
3531     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3532     // either by proving that RHS > M or that LHS >= 0.
3533     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3534       AddFlags = SCEV::FlagNSW;
3535     }
3536   }
3537 
3538   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3539   // RHS is NSW and LHS >= 0.
3540   //
3541   // The difficulty here is that the NSW flag may have been proven
3542   // relative to a loop that is to be found in a recurrence in LHS and
3543   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3544   // larger scope than intended.
3545   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3546 
3547   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3548 }
3549 
3550 const SCEV *
3551 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3552   Type *SrcTy = V->getType();
3553   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3554          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3555          "Cannot truncate or zero extend with non-integer arguments!");
3556   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3557     return V;  // No conversion
3558   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3559     return getTruncateExpr(V, Ty);
3560   return getZeroExtendExpr(V, Ty);
3561 }
3562 
3563 const SCEV *
3564 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3565                                          Type *Ty) {
3566   Type *SrcTy = V->getType();
3567   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3568          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3569          "Cannot truncate or zero extend with non-integer arguments!");
3570   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3571     return V;  // No conversion
3572   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3573     return getTruncateExpr(V, Ty);
3574   return getSignExtendExpr(V, Ty);
3575 }
3576 
3577 const SCEV *
3578 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3579   Type *SrcTy = V->getType();
3580   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3581          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3582          "Cannot noop or zero extend with non-integer arguments!");
3583   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3584          "getNoopOrZeroExtend cannot truncate!");
3585   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3586     return V;  // No conversion
3587   return getZeroExtendExpr(V, Ty);
3588 }
3589 
3590 const SCEV *
3591 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3592   Type *SrcTy = V->getType();
3593   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3594          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3595          "Cannot noop or sign extend with non-integer arguments!");
3596   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3597          "getNoopOrSignExtend cannot truncate!");
3598   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3599     return V;  // No conversion
3600   return getSignExtendExpr(V, Ty);
3601 }
3602 
3603 const SCEV *
3604 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3605   Type *SrcTy = V->getType();
3606   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3607          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3608          "Cannot noop or any extend with non-integer arguments!");
3609   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3610          "getNoopOrAnyExtend cannot truncate!");
3611   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3612     return V;  // No conversion
3613   return getAnyExtendExpr(V, Ty);
3614 }
3615 
3616 const SCEV *
3617 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3618   Type *SrcTy = V->getType();
3619   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3620          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3621          "Cannot truncate or noop with non-integer arguments!");
3622   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3623          "getTruncateOrNoop cannot extend!");
3624   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3625     return V;  // No conversion
3626   return getTruncateExpr(V, Ty);
3627 }
3628 
3629 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3630                                                         const SCEV *RHS) {
3631   const SCEV *PromotedLHS = LHS;
3632   const SCEV *PromotedRHS = RHS;
3633 
3634   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3635     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3636   else
3637     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3638 
3639   return getUMaxExpr(PromotedLHS, PromotedRHS);
3640 }
3641 
3642 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3643                                                         const SCEV *RHS) {
3644   const SCEV *PromotedLHS = LHS;
3645   const SCEV *PromotedRHS = RHS;
3646 
3647   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3648     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3649   else
3650     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3651 
3652   return getUMinExpr(PromotedLHS, PromotedRHS);
3653 }
3654 
3655 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3656   // A pointer operand may evaluate to a nonpointer expression, such as null.
3657   if (!V->getType()->isPointerTy())
3658     return V;
3659 
3660   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3661     return getPointerBase(Cast->getOperand());
3662   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3663     const SCEV *PtrOp = nullptr;
3664     for (const SCEV *NAryOp : NAry->operands()) {
3665       if (NAryOp->getType()->isPointerTy()) {
3666         // Cannot find the base of an expression with multiple pointer operands.
3667         if (PtrOp)
3668           return V;
3669         PtrOp = NAryOp;
3670       }
3671     }
3672     if (!PtrOp)
3673       return V;
3674     return getPointerBase(PtrOp);
3675   }
3676   return V;
3677 }
3678 
3679 /// Push users of the given Instruction onto the given Worklist.
3680 static void
3681 PushDefUseChildren(Instruction *I,
3682                    SmallVectorImpl<Instruction *> &Worklist) {
3683   // Push the def-use children onto the Worklist stack.
3684   for (User *U : I->users())
3685     Worklist.push_back(cast<Instruction>(U));
3686 }
3687 
3688 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3689   SmallVector<Instruction *, 16> Worklist;
3690   PushDefUseChildren(PN, Worklist);
3691 
3692   SmallPtrSet<Instruction *, 8> Visited;
3693   Visited.insert(PN);
3694   while (!Worklist.empty()) {
3695     Instruction *I = Worklist.pop_back_val();
3696     if (!Visited.insert(I).second)
3697       continue;
3698 
3699     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3700     if (It != ValueExprMap.end()) {
3701       const SCEV *Old = It->second;
3702 
3703       // Short-circuit the def-use traversal if the symbolic name
3704       // ceases to appear in expressions.
3705       if (Old != SymName && !hasOperand(Old, SymName))
3706         continue;
3707 
3708       // SCEVUnknown for a PHI either means that it has an unrecognized
3709       // structure, it's a PHI that's in the progress of being computed
3710       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3711       // additional loop trip count information isn't going to change anything.
3712       // In the second case, createNodeForPHI will perform the necessary
3713       // updates on its own when it gets to that point. In the third, we do
3714       // want to forget the SCEVUnknown.
3715       if (!isa<PHINode>(I) ||
3716           !isa<SCEVUnknown>(Old) ||
3717           (I != PN && Old == SymName)) {
3718         eraseValueFromMap(It->first);
3719         forgetMemoizedResults(Old);
3720       }
3721     }
3722 
3723     PushDefUseChildren(I, Worklist);
3724   }
3725 }
3726 
3727 namespace {
3728 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3729 public:
3730   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3731                              ScalarEvolution &SE) {
3732     SCEVInitRewriter Rewriter(L, SE);
3733     const SCEV *Result = Rewriter.visit(S);
3734     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3735   }
3736 
3737   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3738       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3739 
3740   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3741     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3742       Valid = false;
3743     return Expr;
3744   }
3745 
3746   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3747     // Only allow AddRecExprs for this loop.
3748     if (Expr->getLoop() == L)
3749       return Expr->getStart();
3750     Valid = false;
3751     return Expr;
3752   }
3753 
3754   bool isValid() { return Valid; }
3755 
3756 private:
3757   const Loop *L;
3758   bool Valid;
3759 };
3760 
3761 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3762 public:
3763   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3764                              ScalarEvolution &SE) {
3765     SCEVShiftRewriter Rewriter(L, SE);
3766     const SCEV *Result = Rewriter.visit(S);
3767     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3768   }
3769 
3770   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3771       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3772 
3773   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3774     // Only allow AddRecExprs for this loop.
3775     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3776       Valid = false;
3777     return Expr;
3778   }
3779 
3780   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3781     if (Expr->getLoop() == L && Expr->isAffine())
3782       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3783     Valid = false;
3784     return Expr;
3785   }
3786   bool isValid() { return Valid; }
3787 
3788 private:
3789   const Loop *L;
3790   bool Valid;
3791 };
3792 } // end anonymous namespace
3793 
3794 SCEV::NoWrapFlags
3795 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3796   if (!AR->isAffine())
3797     return SCEV::FlagAnyWrap;
3798 
3799   typedef OverflowingBinaryOperator OBO;
3800   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3801 
3802   if (!AR->hasNoSignedWrap()) {
3803     ConstantRange AddRecRange = getSignedRange(AR);
3804     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3805 
3806     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3807         Instruction::Add, IncRange, OBO::NoSignedWrap);
3808     if (NSWRegion.contains(AddRecRange))
3809       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3810   }
3811 
3812   if (!AR->hasNoUnsignedWrap()) {
3813     ConstantRange AddRecRange = getUnsignedRange(AR);
3814     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3815 
3816     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3817         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3818     if (NUWRegion.contains(AddRecRange))
3819       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3820   }
3821 
3822   return Result;
3823 }
3824 
3825 namespace {
3826 /// Represents an abstract binary operation.  This may exist as a
3827 /// normal instruction or constant expression, or may have been
3828 /// derived from an expression tree.
3829 struct BinaryOp {
3830   unsigned Opcode;
3831   Value *LHS;
3832   Value *RHS;
3833   bool IsNSW;
3834   bool IsNUW;
3835 
3836   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3837   /// constant expression.
3838   Operator *Op;
3839 
3840   explicit BinaryOp(Operator *Op)
3841       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3842         IsNSW(false), IsNUW(false), Op(Op) {
3843     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3844       IsNSW = OBO->hasNoSignedWrap();
3845       IsNUW = OBO->hasNoUnsignedWrap();
3846     }
3847   }
3848 
3849   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3850                     bool IsNUW = false)
3851       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3852         Op(nullptr) {}
3853 };
3854 }
3855 
3856 
3857 /// Try to map \p V into a BinaryOp, and return \c None on failure.
3858 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
3859   auto *Op = dyn_cast<Operator>(V);
3860   if (!Op)
3861     return None;
3862 
3863   // Implementation detail: all the cleverness here should happen without
3864   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3865   // SCEV expressions when possible, and we should not break that.
3866 
3867   switch (Op->getOpcode()) {
3868   case Instruction::Add:
3869   case Instruction::Sub:
3870   case Instruction::Mul:
3871   case Instruction::UDiv:
3872   case Instruction::And:
3873   case Instruction::Or:
3874   case Instruction::AShr:
3875   case Instruction::Shl:
3876     return BinaryOp(Op);
3877 
3878   case Instruction::Xor:
3879     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3880       // If the RHS of the xor is a signbit, then this is just an add.
3881       // Instcombine turns add of signbit into xor as a strength reduction step.
3882       if (RHSC->getValue().isSignBit())
3883         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3884     return BinaryOp(Op);
3885 
3886   case Instruction::LShr:
3887     // Turn logical shift right of a constant into a unsigned divide.
3888     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3889       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3890 
3891       // If the shift count is not less than the bitwidth, the result of
3892       // the shift is undefined. Don't try to analyze it, because the
3893       // resolution chosen here may differ from the resolution chosen in
3894       // other parts of the compiler.
3895       if (SA->getValue().ult(BitWidth)) {
3896         Constant *X =
3897             ConstantInt::get(SA->getContext(),
3898                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3899         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3900       }
3901     }
3902     return BinaryOp(Op);
3903 
3904   case Instruction::ExtractValue: {
3905     auto *EVI = cast<ExtractValueInst>(Op);
3906     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
3907       break;
3908 
3909     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
3910     if (!CI)
3911       break;
3912 
3913     if (auto *F = CI->getCalledFunction())
3914       switch (F->getIntrinsicID()) {
3915       case Intrinsic::sadd_with_overflow:
3916       case Intrinsic::uadd_with_overflow: {
3917         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
3918           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3919                           CI->getArgOperand(1));
3920 
3921         // Now that we know that all uses of the arithmetic-result component of
3922         // CI are guarded by the overflow check, we can go ahead and pretend
3923         // that the arithmetic is non-overflowing.
3924         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
3925           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3926                           CI->getArgOperand(1), /* IsNSW = */ true,
3927                           /* IsNUW = */ false);
3928         else
3929           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3930                           CI->getArgOperand(1), /* IsNSW = */ false,
3931                           /* IsNUW*/ true);
3932       }
3933 
3934       case Intrinsic::ssub_with_overflow:
3935       case Intrinsic::usub_with_overflow:
3936         return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
3937                         CI->getArgOperand(1));
3938 
3939       case Intrinsic::smul_with_overflow:
3940       case Intrinsic::umul_with_overflow:
3941         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
3942                         CI->getArgOperand(1));
3943       default:
3944         break;
3945       }
3946   }
3947 
3948   default:
3949     break;
3950   }
3951 
3952   return None;
3953 }
3954 
3955 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3956   const Loop *L = LI.getLoopFor(PN->getParent());
3957   if (!L || L->getHeader() != PN->getParent())
3958     return nullptr;
3959 
3960   // The loop may have multiple entrances or multiple exits; we can analyze
3961   // this phi as an addrec if it has a unique entry value and a unique
3962   // backedge value.
3963   Value *BEValueV = nullptr, *StartValueV = nullptr;
3964   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3965     Value *V = PN->getIncomingValue(i);
3966     if (L->contains(PN->getIncomingBlock(i))) {
3967       if (!BEValueV) {
3968         BEValueV = V;
3969       } else if (BEValueV != V) {
3970         BEValueV = nullptr;
3971         break;
3972       }
3973     } else if (!StartValueV) {
3974       StartValueV = V;
3975     } else if (StartValueV != V) {
3976       StartValueV = nullptr;
3977       break;
3978     }
3979   }
3980   if (BEValueV && StartValueV) {
3981     // While we are analyzing this PHI node, handle its value symbolically.
3982     const SCEV *SymbolicName = getUnknown(PN);
3983     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3984            "PHI node already processed?");
3985     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3986 
3987     // Using this symbolic name for the PHI, analyze the value coming around
3988     // the back-edge.
3989     const SCEV *BEValue = getSCEV(BEValueV);
3990 
3991     // NOTE: If BEValue is loop invariant, we know that the PHI node just
3992     // has a special value for the first iteration of the loop.
3993 
3994     // If the value coming around the backedge is an add with the symbolic
3995     // value we just inserted, then we found a simple induction variable!
3996     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3997       // If there is a single occurrence of the symbolic value, replace it
3998       // with a recurrence.
3999       unsigned FoundIndex = Add->getNumOperands();
4000       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4001         if (Add->getOperand(i) == SymbolicName)
4002           if (FoundIndex == e) {
4003             FoundIndex = i;
4004             break;
4005           }
4006 
4007       if (FoundIndex != Add->getNumOperands()) {
4008         // Create an add with everything but the specified operand.
4009         SmallVector<const SCEV *, 8> Ops;
4010         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4011           if (i != FoundIndex)
4012             Ops.push_back(Add->getOperand(i));
4013         const SCEV *Accum = getAddExpr(Ops);
4014 
4015         // This is not a valid addrec if the step amount is varying each
4016         // loop iteration, but is not itself an addrec in this loop.
4017         if (isLoopInvariant(Accum, L) ||
4018             (isa<SCEVAddRecExpr>(Accum) &&
4019              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4020           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4021 
4022           if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4023             if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4024               if (BO->IsNUW)
4025                 Flags = setFlags(Flags, SCEV::FlagNUW);
4026               if (BO->IsNSW)
4027                 Flags = setFlags(Flags, SCEV::FlagNSW);
4028             }
4029           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4030             // If the increment is an inbounds GEP, then we know the address
4031             // space cannot be wrapped around. We cannot make any guarantee
4032             // about signed or unsigned overflow because pointers are
4033             // unsigned but we may have a negative index from the base
4034             // pointer. We can guarantee that no unsigned wrap occurs if the
4035             // indices form a positive value.
4036             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4037               Flags = setFlags(Flags, SCEV::FlagNW);
4038 
4039               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4040               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4041                 Flags = setFlags(Flags, SCEV::FlagNUW);
4042             }
4043 
4044             // We cannot transfer nuw and nsw flags from subtraction
4045             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4046             // for instance.
4047           }
4048 
4049           const SCEV *StartVal = getSCEV(StartValueV);
4050           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4051 
4052           // Okay, for the entire analysis of this edge we assumed the PHI
4053           // to be symbolic.  We now need to go back and purge all of the
4054           // entries for the scalars that use the symbolic expression.
4055           forgetSymbolicName(PN, SymbolicName);
4056           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4057 
4058           // We can add Flags to the post-inc expression only if we
4059           // know that it us *undefined behavior* for BEValueV to
4060           // overflow.
4061           if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4062             if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4063               (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4064 
4065           return PHISCEV;
4066         }
4067       }
4068     } else {
4069       // Otherwise, this could be a loop like this:
4070       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4071       // In this case, j = {1,+,1}  and BEValue is j.
4072       // Because the other in-value of i (0) fits the evolution of BEValue
4073       // i really is an addrec evolution.
4074       //
4075       // We can generalize this saying that i is the shifted value of BEValue
4076       // by one iteration:
4077       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4078       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4079       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4080       if (Shifted != getCouldNotCompute() &&
4081           Start != getCouldNotCompute()) {
4082         const SCEV *StartVal = getSCEV(StartValueV);
4083         if (Start == StartVal) {
4084           // Okay, for the entire analysis of this edge we assumed the PHI
4085           // to be symbolic.  We now need to go back and purge all of the
4086           // entries for the scalars that use the symbolic expression.
4087           forgetSymbolicName(PN, SymbolicName);
4088           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4089           return Shifted;
4090         }
4091       }
4092     }
4093 
4094     // Remove the temporary PHI node SCEV that has been inserted while intending
4095     // to create an AddRecExpr for this PHI node. We can not keep this temporary
4096     // as it will prevent later (possibly simpler) SCEV expressions to be added
4097     // to the ValueExprMap.
4098     eraseValueFromMap(PN);
4099   }
4100 
4101   return nullptr;
4102 }
4103 
4104 // Checks if the SCEV S is available at BB.  S is considered available at BB
4105 // if S can be materialized at BB without introducing a fault.
4106 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4107                                BasicBlock *BB) {
4108   struct CheckAvailable {
4109     bool TraversalDone = false;
4110     bool Available = true;
4111 
4112     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4113     BasicBlock *BB = nullptr;
4114     DominatorTree &DT;
4115 
4116     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4117       : L(L), BB(BB), DT(DT) {}
4118 
4119     bool setUnavailable() {
4120       TraversalDone = true;
4121       Available = false;
4122       return false;
4123     }
4124 
4125     bool follow(const SCEV *S) {
4126       switch (S->getSCEVType()) {
4127       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4128       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4129         // These expressions are available if their operand(s) is/are.
4130         return true;
4131 
4132       case scAddRecExpr: {
4133         // We allow add recurrences that are on the loop BB is in, or some
4134         // outer loop.  This guarantees availability because the value of the
4135         // add recurrence at BB is simply the "current" value of the induction
4136         // variable.  We can relax this in the future; for instance an add
4137         // recurrence on a sibling dominating loop is also available at BB.
4138         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4139         if (L && (ARLoop == L || ARLoop->contains(L)))
4140           return true;
4141 
4142         return setUnavailable();
4143       }
4144 
4145       case scUnknown: {
4146         // For SCEVUnknown, we check for simple dominance.
4147         const auto *SU = cast<SCEVUnknown>(S);
4148         Value *V = SU->getValue();
4149 
4150         if (isa<Argument>(V))
4151           return false;
4152 
4153         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4154           return false;
4155 
4156         return setUnavailable();
4157       }
4158 
4159       case scUDivExpr:
4160       case scCouldNotCompute:
4161         // We do not try to smart about these at all.
4162         return setUnavailable();
4163       }
4164       llvm_unreachable("switch should be fully covered!");
4165     }
4166 
4167     bool isDone() { return TraversalDone; }
4168   };
4169 
4170   CheckAvailable CA(L, BB, DT);
4171   SCEVTraversal<CheckAvailable> ST(CA);
4172 
4173   ST.visitAll(S);
4174   return CA.Available;
4175 }
4176 
4177 // Try to match a control flow sequence that branches out at BI and merges back
4178 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
4179 // match.
4180 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4181                           Value *&C, Value *&LHS, Value *&RHS) {
4182   C = BI->getCondition();
4183 
4184   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4185   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4186 
4187   if (!LeftEdge.isSingleEdge())
4188     return false;
4189 
4190   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4191 
4192   Use &LeftUse = Merge->getOperandUse(0);
4193   Use &RightUse = Merge->getOperandUse(1);
4194 
4195   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4196     LHS = LeftUse;
4197     RHS = RightUse;
4198     return true;
4199   }
4200 
4201   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4202     LHS = RightUse;
4203     RHS = LeftUse;
4204     return true;
4205   }
4206 
4207   return false;
4208 }
4209 
4210 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4211   auto IsReachable =
4212       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
4213   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
4214     const Loop *L = LI.getLoopFor(PN->getParent());
4215 
4216     // We don't want to break LCSSA, even in a SCEV expression tree.
4217     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4218       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4219         return nullptr;
4220 
4221     // Try to match
4222     //
4223     //  br %cond, label %left, label %right
4224     // left:
4225     //  br label %merge
4226     // right:
4227     //  br label %merge
4228     // merge:
4229     //  V = phi [ %x, %left ], [ %y, %right ]
4230     //
4231     // as "select %cond, %x, %y"
4232 
4233     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4234     assert(IDom && "At least the entry block should dominate PN");
4235 
4236     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4237     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4238 
4239     if (BI && BI->isConditional() &&
4240         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4241         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4242         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4243       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4244   }
4245 
4246   return nullptr;
4247 }
4248 
4249 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4250   if (const SCEV *S = createAddRecFromPHI(PN))
4251     return S;
4252 
4253   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4254     return S;
4255 
4256   // If the PHI has a single incoming value, follow that value, unless the
4257   // PHI's incoming blocks are in a different loop, in which case doing so
4258   // risks breaking LCSSA form. Instcombine would normally zap these, but
4259   // it doesn't have DominatorTree information, so it may miss cases.
4260   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4261     if (LI.replacementPreservesLCSSAForm(PN, V))
4262       return getSCEV(V);
4263 
4264   // If it's not a loop phi, we can't handle it yet.
4265   return getUnknown(PN);
4266 }
4267 
4268 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4269                                                       Value *Cond,
4270                                                       Value *TrueVal,
4271                                                       Value *FalseVal) {
4272   // Handle "constant" branch or select. This can occur for instance when a
4273   // loop pass transforms an inner loop and moves on to process the outer loop.
4274   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4275     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4276 
4277   // Try to match some simple smax or umax patterns.
4278   auto *ICI = dyn_cast<ICmpInst>(Cond);
4279   if (!ICI)
4280     return getUnknown(I);
4281 
4282   Value *LHS = ICI->getOperand(0);
4283   Value *RHS = ICI->getOperand(1);
4284 
4285   switch (ICI->getPredicate()) {
4286   case ICmpInst::ICMP_SLT:
4287   case ICmpInst::ICMP_SLE:
4288     std::swap(LHS, RHS);
4289     LLVM_FALLTHROUGH;
4290   case ICmpInst::ICMP_SGT:
4291   case ICmpInst::ICMP_SGE:
4292     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4293     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4294     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4295       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4296       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4297       const SCEV *LA = getSCEV(TrueVal);
4298       const SCEV *RA = getSCEV(FalseVal);
4299       const SCEV *LDiff = getMinusSCEV(LA, LS);
4300       const SCEV *RDiff = getMinusSCEV(RA, RS);
4301       if (LDiff == RDiff)
4302         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4303       LDiff = getMinusSCEV(LA, RS);
4304       RDiff = getMinusSCEV(RA, LS);
4305       if (LDiff == RDiff)
4306         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4307     }
4308     break;
4309   case ICmpInst::ICMP_ULT:
4310   case ICmpInst::ICMP_ULE:
4311     std::swap(LHS, RHS);
4312     LLVM_FALLTHROUGH;
4313   case ICmpInst::ICMP_UGT:
4314   case ICmpInst::ICMP_UGE:
4315     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4316     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4317     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4318       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4319       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4320       const SCEV *LA = getSCEV(TrueVal);
4321       const SCEV *RA = getSCEV(FalseVal);
4322       const SCEV *LDiff = getMinusSCEV(LA, LS);
4323       const SCEV *RDiff = getMinusSCEV(RA, RS);
4324       if (LDiff == RDiff)
4325         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4326       LDiff = getMinusSCEV(LA, RS);
4327       RDiff = getMinusSCEV(RA, LS);
4328       if (LDiff == RDiff)
4329         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4330     }
4331     break;
4332   case ICmpInst::ICMP_NE:
4333     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4334     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4335         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4336       const SCEV *One = getOne(I->getType());
4337       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4338       const SCEV *LA = getSCEV(TrueVal);
4339       const SCEV *RA = getSCEV(FalseVal);
4340       const SCEV *LDiff = getMinusSCEV(LA, LS);
4341       const SCEV *RDiff = getMinusSCEV(RA, One);
4342       if (LDiff == RDiff)
4343         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4344     }
4345     break;
4346   case ICmpInst::ICMP_EQ:
4347     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4348     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4349         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4350       const SCEV *One = getOne(I->getType());
4351       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4352       const SCEV *LA = getSCEV(TrueVal);
4353       const SCEV *RA = getSCEV(FalseVal);
4354       const SCEV *LDiff = getMinusSCEV(LA, One);
4355       const SCEV *RDiff = getMinusSCEV(RA, LS);
4356       if (LDiff == RDiff)
4357         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4358     }
4359     break;
4360   default:
4361     break;
4362   }
4363 
4364   return getUnknown(I);
4365 }
4366 
4367 /// Expand GEP instructions into add and multiply operations. This allows them
4368 /// to be analyzed by regular SCEV code.
4369 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4370   // Don't attempt to analyze GEPs over unsized objects.
4371   if (!GEP->getSourceElementType()->isSized())
4372     return getUnknown(GEP);
4373 
4374   SmallVector<const SCEV *, 4> IndexExprs;
4375   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4376     IndexExprs.push_back(getSCEV(*Index));
4377   return getGEPExpr(GEP, IndexExprs);
4378 }
4379 
4380 uint32_t
4381 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4382   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4383     return C->getAPInt().countTrailingZeros();
4384 
4385   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4386     return std::min(GetMinTrailingZeros(T->getOperand()),
4387                     (uint32_t)getTypeSizeInBits(T->getType()));
4388 
4389   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4390     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4391     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4392              getTypeSizeInBits(E->getType()) : OpRes;
4393   }
4394 
4395   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4396     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4397     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4398              getTypeSizeInBits(E->getType()) : OpRes;
4399   }
4400 
4401   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4402     // The result is the min of all operands results.
4403     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4404     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4405       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4406     return MinOpRes;
4407   }
4408 
4409   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4410     // The result is the sum of all operands results.
4411     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4412     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4413     for (unsigned i = 1, e = M->getNumOperands();
4414          SumOpRes != BitWidth && i != e; ++i)
4415       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4416                           BitWidth);
4417     return SumOpRes;
4418   }
4419 
4420   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4421     // The result is the min of all operands results.
4422     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4423     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4424       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4425     return MinOpRes;
4426   }
4427 
4428   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4429     // The result is the min of all operands results.
4430     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4431     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4432       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4433     return MinOpRes;
4434   }
4435 
4436   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4437     // The result is the min of all operands results.
4438     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4439     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4440       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4441     return MinOpRes;
4442   }
4443 
4444   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4445     // For a SCEVUnknown, ask ValueTracking.
4446     unsigned BitWidth = getTypeSizeInBits(U->getType());
4447     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4448     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4449                      nullptr, &DT);
4450     return Zeros.countTrailingOnes();
4451   }
4452 
4453   // SCEVUDivExpr
4454   return 0;
4455 }
4456 
4457 /// Helper method to assign a range to V from metadata present in the IR.
4458 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4459   if (Instruction *I = dyn_cast<Instruction>(V))
4460     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4461       return getConstantRangeFromMetadata(*MD);
4462 
4463   return None;
4464 }
4465 
4466 /// Determine the range for a particular SCEV.  If SignHint is
4467 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4468 /// with a "cleaner" unsigned (resp. signed) representation.
4469 ConstantRange
4470 ScalarEvolution::getRange(const SCEV *S,
4471                           ScalarEvolution::RangeSignHint SignHint) {
4472   DenseMap<const SCEV *, ConstantRange> &Cache =
4473       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4474                                                        : SignedRanges;
4475 
4476   // See if we've computed this range already.
4477   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4478   if (I != Cache.end())
4479     return I->second;
4480 
4481   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4482     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4483 
4484   unsigned BitWidth = getTypeSizeInBits(S->getType());
4485   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4486 
4487   // If the value has known zeros, the maximum value will have those known zeros
4488   // as well.
4489   uint32_t TZ = GetMinTrailingZeros(S);
4490   if (TZ != 0) {
4491     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4492       ConservativeResult =
4493           ConstantRange(APInt::getMinValue(BitWidth),
4494                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4495     else
4496       ConservativeResult = ConstantRange(
4497           APInt::getSignedMinValue(BitWidth),
4498           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4499   }
4500 
4501   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4502     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4503     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4504       X = X.add(getRange(Add->getOperand(i), SignHint));
4505     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4506   }
4507 
4508   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4509     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4510     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4511       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4512     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4513   }
4514 
4515   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4516     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4517     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4518       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4519     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4520   }
4521 
4522   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4523     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4524     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4525       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4526     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4527   }
4528 
4529   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4530     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4531     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4532     return setRange(UDiv, SignHint,
4533                     ConservativeResult.intersectWith(X.udiv(Y)));
4534   }
4535 
4536   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4537     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4538     return setRange(ZExt, SignHint,
4539                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4540   }
4541 
4542   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4543     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4544     return setRange(SExt, SignHint,
4545                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4546   }
4547 
4548   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4549     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4550     return setRange(Trunc, SignHint,
4551                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4552   }
4553 
4554   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4555     // If there's no unsigned wrap, the value will never be less than its
4556     // initial value.
4557     if (AddRec->hasNoUnsignedWrap())
4558       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4559         if (!C->getValue()->isZero())
4560           ConservativeResult = ConservativeResult.intersectWith(
4561               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4562 
4563     // If there's no signed wrap, and all the operands have the same sign or
4564     // zero, the value won't ever change sign.
4565     if (AddRec->hasNoSignedWrap()) {
4566       bool AllNonNeg = true;
4567       bool AllNonPos = true;
4568       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4569         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4570         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4571       }
4572       if (AllNonNeg)
4573         ConservativeResult = ConservativeResult.intersectWith(
4574           ConstantRange(APInt(BitWidth, 0),
4575                         APInt::getSignedMinValue(BitWidth)));
4576       else if (AllNonPos)
4577         ConservativeResult = ConservativeResult.intersectWith(
4578           ConstantRange(APInt::getSignedMinValue(BitWidth),
4579                         APInt(BitWidth, 1)));
4580     }
4581 
4582     // TODO: non-affine addrec
4583     if (AddRec->isAffine()) {
4584       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4585       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4586           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4587         auto RangeFromAffine = getRangeForAffineAR(
4588             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4589             BitWidth);
4590         if (!RangeFromAffine.isFullSet())
4591           ConservativeResult =
4592               ConservativeResult.intersectWith(RangeFromAffine);
4593 
4594         auto RangeFromFactoring = getRangeViaFactoring(
4595             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4596             BitWidth);
4597         if (!RangeFromFactoring.isFullSet())
4598           ConservativeResult =
4599               ConservativeResult.intersectWith(RangeFromFactoring);
4600       }
4601     }
4602 
4603     return setRange(AddRec, SignHint, ConservativeResult);
4604   }
4605 
4606   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4607     // Check if the IR explicitly contains !range metadata.
4608     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4609     if (MDRange.hasValue())
4610       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4611 
4612     // Split here to avoid paying the compile-time cost of calling both
4613     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4614     // if needed.
4615     const DataLayout &DL = getDataLayout();
4616     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4617       // For a SCEVUnknown, ask ValueTracking.
4618       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4619       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4620       if (Ones != ~Zeros + 1)
4621         ConservativeResult =
4622             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4623     } else {
4624       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4625              "generalize as needed!");
4626       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4627       if (NS > 1)
4628         ConservativeResult = ConservativeResult.intersectWith(
4629             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4630                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4631     }
4632 
4633     return setRange(U, SignHint, ConservativeResult);
4634   }
4635 
4636   return setRange(S, SignHint, ConservativeResult);
4637 }
4638 
4639 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4640                                                    const SCEV *Step,
4641                                                    const SCEV *MaxBECount,
4642                                                    unsigned BitWidth) {
4643   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4644          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4645          "Precondition!");
4646 
4647   ConstantRange Result(BitWidth, /* isFullSet = */ true);
4648 
4649   // Check for overflow.  This must be done with ConstantRange arithmetic
4650   // because we could be called from within the ScalarEvolution overflow
4651   // checking code.
4652 
4653   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4654   ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4655   ConstantRange ZExtMaxBECountRange =
4656       MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4657 
4658   ConstantRange StepSRange = getSignedRange(Step);
4659   ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4660 
4661   ConstantRange StartURange = getUnsignedRange(Start);
4662   ConstantRange EndURange =
4663       StartURange.add(MaxBECountRange.multiply(StepSRange));
4664 
4665   // Check for unsigned overflow.
4666   ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4667   ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4668   if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4669       ZExtEndURange) {
4670     APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4671                                EndURange.getUnsignedMin());
4672     APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4673                                EndURange.getUnsignedMax());
4674     bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4675     if (!IsFullRange)
4676       Result =
4677           Result.intersectWith(ConstantRange(Min, Max + 1));
4678   }
4679 
4680   ConstantRange StartSRange = getSignedRange(Start);
4681   ConstantRange EndSRange =
4682       StartSRange.add(MaxBECountRange.multiply(StepSRange));
4683 
4684   // Check for signed overflow. This must be done with ConstantRange
4685   // arithmetic because we could be called from within the ScalarEvolution
4686   // overflow checking code.
4687   ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4688   ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4689   if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4690       SExtEndSRange) {
4691     APInt Min =
4692         APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4693     APInt Max =
4694         APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4695     bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4696     if (!IsFullRange)
4697       Result =
4698           Result.intersectWith(ConstantRange(Min, Max + 1));
4699   }
4700 
4701   return Result;
4702 }
4703 
4704 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4705                                                     const SCEV *Step,
4706                                                     const SCEV *MaxBECount,
4707                                                     unsigned BitWidth) {
4708   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4709   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4710 
4711   struct SelectPattern {
4712     Value *Condition = nullptr;
4713     APInt TrueValue;
4714     APInt FalseValue;
4715 
4716     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4717                            const SCEV *S) {
4718       Optional<unsigned> CastOp;
4719       APInt Offset(BitWidth, 0);
4720 
4721       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4722              "Should be!");
4723 
4724       // Peel off a constant offset:
4725       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4726         // In the future we could consider being smarter here and handle
4727         // {Start+Step,+,Step} too.
4728         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4729           return;
4730 
4731         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4732         S = SA->getOperand(1);
4733       }
4734 
4735       // Peel off a cast operation
4736       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4737         CastOp = SCast->getSCEVType();
4738         S = SCast->getOperand();
4739       }
4740 
4741       using namespace llvm::PatternMatch;
4742 
4743       auto *SU = dyn_cast<SCEVUnknown>(S);
4744       const APInt *TrueVal, *FalseVal;
4745       if (!SU ||
4746           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4747                                           m_APInt(FalseVal)))) {
4748         Condition = nullptr;
4749         return;
4750       }
4751 
4752       TrueValue = *TrueVal;
4753       FalseValue = *FalseVal;
4754 
4755       // Re-apply the cast we peeled off earlier
4756       if (CastOp.hasValue())
4757         switch (*CastOp) {
4758         default:
4759           llvm_unreachable("Unknown SCEV cast type!");
4760 
4761         case scTruncate:
4762           TrueValue = TrueValue.trunc(BitWidth);
4763           FalseValue = FalseValue.trunc(BitWidth);
4764           break;
4765         case scZeroExtend:
4766           TrueValue = TrueValue.zext(BitWidth);
4767           FalseValue = FalseValue.zext(BitWidth);
4768           break;
4769         case scSignExtend:
4770           TrueValue = TrueValue.sext(BitWidth);
4771           FalseValue = FalseValue.sext(BitWidth);
4772           break;
4773         }
4774 
4775       // Re-apply the constant offset we peeled off earlier
4776       TrueValue += Offset;
4777       FalseValue += Offset;
4778     }
4779 
4780     bool isRecognized() { return Condition != nullptr; }
4781   };
4782 
4783   SelectPattern StartPattern(*this, BitWidth, Start);
4784   if (!StartPattern.isRecognized())
4785     return ConstantRange(BitWidth, /* isFullSet = */ true);
4786 
4787   SelectPattern StepPattern(*this, BitWidth, Step);
4788   if (!StepPattern.isRecognized())
4789     return ConstantRange(BitWidth, /* isFullSet = */ true);
4790 
4791   if (StartPattern.Condition != StepPattern.Condition) {
4792     // We don't handle this case today; but we could, by considering four
4793     // possibilities below instead of two. I'm not sure if there are cases where
4794     // that will help over what getRange already does, though.
4795     return ConstantRange(BitWidth, /* isFullSet = */ true);
4796   }
4797 
4798   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4799   // construct arbitrary general SCEV expressions here.  This function is called
4800   // from deep in the call stack, and calling getSCEV (on a sext instruction,
4801   // say) can end up caching a suboptimal value.
4802 
4803   // FIXME: without the explicit `this` receiver below, MSVC errors out with
4804   // C2352 and C2512 (otherwise it isn't needed).
4805 
4806   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
4807   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
4808   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
4809   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
4810 
4811   ConstantRange TrueRange =
4812       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
4813   ConstantRange FalseRange =
4814       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
4815 
4816   return TrueRange.unionWith(FalseRange);
4817 }
4818 
4819 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4820   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4821   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4822 
4823   // Return early if there are no flags to propagate to the SCEV.
4824   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4825   if (BinOp->hasNoUnsignedWrap())
4826     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4827   if (BinOp->hasNoSignedWrap())
4828     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4829   if (Flags == SCEV::FlagAnyWrap)
4830     return SCEV::FlagAnyWrap;
4831 
4832   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4833 }
4834 
4835 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4836   // Here we check that I is in the header of the innermost loop containing I,
4837   // since we only deal with instructions in the loop header. The actual loop we
4838   // need to check later will come from an add recurrence, but getting that
4839   // requires computing the SCEV of the operands, which can be expensive. This
4840   // check we can do cheaply to rule out some cases early.
4841   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
4842   if (InnermostContainingLoop == nullptr ||
4843       InnermostContainingLoop->getHeader() != I->getParent())
4844     return false;
4845 
4846   // Only proceed if we can prove that I does not yield poison.
4847   if (!isKnownNotFullPoison(I)) return false;
4848 
4849   // At this point we know that if I is executed, then it does not wrap
4850   // according to at least one of NSW or NUW. If I is not executed, then we do
4851   // not know if the calculation that I represents would wrap. Multiple
4852   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
4853   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4854   // derived from other instructions that map to the same SCEV. We cannot make
4855   // that guarantee for cases where I is not executed. So we need to find the
4856   // loop that I is considered in relation to and prove that I is executed for
4857   // every iteration of that loop. That implies that the value that I
4858   // calculates does not wrap anywhere in the loop, so then we can apply the
4859   // flags to the SCEV.
4860   //
4861   // We check isLoopInvariant to disambiguate in case we are adding recurrences
4862   // from different loops, so that we know which loop to prove that I is
4863   // executed in.
4864   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4865     // I could be an extractvalue from a call to an overflow intrinsic.
4866     // TODO: We can do better here in some cases.
4867     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
4868       return false;
4869     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
4870     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4871       bool AllOtherOpsLoopInvariant = true;
4872       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4873            ++OtherOpIndex) {
4874         if (OtherOpIndex != OpIndex) {
4875           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4876           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4877             AllOtherOpsLoopInvariant = false;
4878             break;
4879           }
4880         }
4881       }
4882       if (AllOtherOpsLoopInvariant &&
4883           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4884         return true;
4885     }
4886   }
4887   return false;
4888 }
4889 
4890 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
4891   // If we know that \c I can never be poison period, then that's enough.
4892   if (isSCEVExprNeverPoison(I))
4893     return true;
4894 
4895   // For an add recurrence specifically, we assume that infinite loops without
4896   // side effects are undefined behavior, and then reason as follows:
4897   //
4898   // If the add recurrence is poison in any iteration, it is poison on all
4899   // future iterations (since incrementing poison yields poison). If the result
4900   // of the add recurrence is fed into the loop latch condition and the loop
4901   // does not contain any throws or exiting blocks other than the latch, we now
4902   // have the ability to "choose" whether the backedge is taken or not (by
4903   // choosing a sufficiently evil value for the poison feeding into the branch)
4904   // for every iteration including and after the one in which \p I first became
4905   // poison.  There are two possibilities (let's call the iteration in which \p
4906   // I first became poison as K):
4907   //
4908   //  1. In the set of iterations including and after K, the loop body executes
4909   //     no side effects.  In this case executing the backege an infinte number
4910   //     of times will yield undefined behavior.
4911   //
4912   //  2. In the set of iterations including and after K, the loop body executes
4913   //     at least one side effect.  In this case, that specific instance of side
4914   //     effect is control dependent on poison, which also yields undefined
4915   //     behavior.
4916 
4917   auto *ExitingBB = L->getExitingBlock();
4918   auto *LatchBB = L->getLoopLatch();
4919   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
4920     return false;
4921 
4922   SmallPtrSet<const Instruction *, 16> Pushed;
4923   SmallVector<const Instruction *, 8> PoisonStack;
4924 
4925   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
4926   // things that are known to be fully poison under that assumption go on the
4927   // PoisonStack.
4928   Pushed.insert(I);
4929   PoisonStack.push_back(I);
4930 
4931   bool LatchControlDependentOnPoison = false;
4932   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
4933     const Instruction *Poison = PoisonStack.pop_back_val();
4934 
4935     for (auto *PoisonUser : Poison->users()) {
4936       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
4937         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
4938           PoisonStack.push_back(cast<Instruction>(PoisonUser));
4939       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
4940         assert(BI->isConditional() && "Only possibility!");
4941         if (BI->getParent() == LatchBB) {
4942           LatchControlDependentOnPoison = true;
4943           break;
4944         }
4945       }
4946     }
4947   }
4948 
4949   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
4950 }
4951 
4952 ScalarEvolution::LoopProperties
4953 ScalarEvolution::getLoopProperties(const Loop *L) {
4954   typedef ScalarEvolution::LoopProperties LoopProperties;
4955 
4956   auto Itr = LoopPropertiesCache.find(L);
4957   if (Itr == LoopPropertiesCache.end()) {
4958     auto HasSideEffects = [](Instruction *I) {
4959       if (auto *SI = dyn_cast<StoreInst>(I))
4960         return !SI->isSimple();
4961 
4962       return I->mayHaveSideEffects();
4963     };
4964 
4965     LoopProperties LP = {/* HasNoAbnormalExits */ true,
4966                          /*HasNoSideEffects*/ true};
4967 
4968     for (auto *BB : L->getBlocks())
4969       for (auto &I : *BB) {
4970         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4971           LP.HasNoAbnormalExits = false;
4972         if (HasSideEffects(&I))
4973           LP.HasNoSideEffects = false;
4974         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
4975           break; // We're already as pessimistic as we can get.
4976       }
4977 
4978     auto InsertPair = LoopPropertiesCache.insert({L, LP});
4979     assert(InsertPair.second && "We just checked!");
4980     Itr = InsertPair.first;
4981   }
4982 
4983   return Itr->second;
4984 }
4985 
4986 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4987   if (!isSCEVable(V->getType()))
4988     return getUnknown(V);
4989 
4990   if (Instruction *I = dyn_cast<Instruction>(V)) {
4991     // Don't attempt to analyze instructions in blocks that aren't
4992     // reachable. Such instructions don't matter, and they aren't required
4993     // to obey basic rules for definitions dominating uses which this
4994     // analysis depends on.
4995     if (!DT.isReachableFromEntry(I->getParent()))
4996       return getUnknown(V);
4997   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4998     return getConstant(CI);
4999   else if (isa<ConstantPointerNull>(V))
5000     return getZero(V->getType());
5001   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5002     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5003   else if (!isa<ConstantExpr>(V))
5004     return getUnknown(V);
5005 
5006   Operator *U = cast<Operator>(V);
5007   if (auto BO = MatchBinaryOp(U, DT)) {
5008     switch (BO->Opcode) {
5009     case Instruction::Add: {
5010       // The simple thing to do would be to just call getSCEV on both operands
5011       // and call getAddExpr with the result. However if we're looking at a
5012       // bunch of things all added together, this can be quite inefficient,
5013       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5014       // Instead, gather up all the operands and make a single getAddExpr call.
5015       // LLVM IR canonical form means we need only traverse the left operands.
5016       SmallVector<const SCEV *, 4> AddOps;
5017       do {
5018         if (BO->Op) {
5019           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5020             AddOps.push_back(OpSCEV);
5021             break;
5022           }
5023 
5024           // If a NUW or NSW flag can be applied to the SCEV for this
5025           // addition, then compute the SCEV for this addition by itself
5026           // with a separate call to getAddExpr. We need to do that
5027           // instead of pushing the operands of the addition onto AddOps,
5028           // since the flags are only known to apply to this particular
5029           // addition - they may not apply to other additions that can be
5030           // formed with operands from AddOps.
5031           const SCEV *RHS = getSCEV(BO->RHS);
5032           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5033           if (Flags != SCEV::FlagAnyWrap) {
5034             const SCEV *LHS = getSCEV(BO->LHS);
5035             if (BO->Opcode == Instruction::Sub)
5036               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
5037             else
5038               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
5039             break;
5040           }
5041         }
5042 
5043         if (BO->Opcode == Instruction::Sub)
5044           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
5045         else
5046           AddOps.push_back(getSCEV(BO->RHS));
5047 
5048         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5049         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
5050                        NewBO->Opcode != Instruction::Sub)) {
5051           AddOps.push_back(getSCEV(BO->LHS));
5052           break;
5053         }
5054         BO = NewBO;
5055       } while (true);
5056 
5057       return getAddExpr(AddOps);
5058     }
5059 
5060     case Instruction::Mul: {
5061       SmallVector<const SCEV *, 4> MulOps;
5062       do {
5063         if (BO->Op) {
5064           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5065             MulOps.push_back(OpSCEV);
5066             break;
5067           }
5068 
5069           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5070           if (Flags != SCEV::FlagAnyWrap) {
5071             MulOps.push_back(
5072                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5073             break;
5074           }
5075         }
5076 
5077         MulOps.push_back(getSCEV(BO->RHS));
5078         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5079         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5080           MulOps.push_back(getSCEV(BO->LHS));
5081           break;
5082         }
5083         BO = NewBO;
5084       } while (true);
5085 
5086       return getMulExpr(MulOps);
5087     }
5088     case Instruction::UDiv:
5089       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5090     case Instruction::Sub: {
5091       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5092       if (BO->Op)
5093         Flags = getNoWrapFlagsFromUB(BO->Op);
5094       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5095     }
5096     case Instruction::And:
5097       // For an expression like x&255 that merely masks off the high bits,
5098       // use zext(trunc(x)) as the SCEV expression.
5099       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5100         if (CI->isNullValue())
5101           return getSCEV(BO->RHS);
5102         if (CI->isAllOnesValue())
5103           return getSCEV(BO->LHS);
5104         const APInt &A = CI->getValue();
5105 
5106         // Instcombine's ShrinkDemandedConstant may strip bits out of
5107         // constants, obscuring what would otherwise be a low-bits mask.
5108         // Use computeKnownBits to compute what ShrinkDemandedConstant
5109         // knew about to reconstruct a low-bits mask value.
5110         unsigned LZ = A.countLeadingZeros();
5111         unsigned TZ = A.countTrailingZeros();
5112         unsigned BitWidth = A.getBitWidth();
5113         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5114         computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
5115                          0, &AC, nullptr, &DT);
5116 
5117         APInt EffectiveMask =
5118             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5119         if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
5120           const SCEV *MulCount = getConstant(ConstantInt::get(
5121               getContext(), APInt::getOneBitSet(BitWidth, TZ)));
5122           return getMulExpr(
5123               getZeroExtendExpr(
5124                   getTruncateExpr(
5125                       getUDivExactExpr(getSCEV(BO->LHS), MulCount),
5126                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5127                   BO->LHS->getType()),
5128               MulCount);
5129         }
5130       }
5131       break;
5132 
5133     case Instruction::Or:
5134       // If the RHS of the Or is a constant, we may have something like:
5135       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
5136       // optimizations will transparently handle this case.
5137       //
5138       // In order for this transformation to be safe, the LHS must be of the
5139       // form X*(2^n) and the Or constant must be less than 2^n.
5140       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5141         const SCEV *LHS = getSCEV(BO->LHS);
5142         const APInt &CIVal = CI->getValue();
5143         if (GetMinTrailingZeros(LHS) >=
5144             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5145           // Build a plain add SCEV.
5146           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5147           // If the LHS of the add was an addrec and it has no-wrap flags,
5148           // transfer the no-wrap flags, since an or won't introduce a wrap.
5149           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5150             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5151             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5152                 OldAR->getNoWrapFlags());
5153           }
5154           return S;
5155         }
5156       }
5157       break;
5158 
5159     case Instruction::Xor:
5160       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5161         // If the RHS of xor is -1, then this is a not operation.
5162         if (CI->isAllOnesValue())
5163           return getNotSCEV(getSCEV(BO->LHS));
5164 
5165         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5166         // This is a variant of the check for xor with -1, and it handles
5167         // the case where instcombine has trimmed non-demanded bits out
5168         // of an xor with -1.
5169         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5170           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5171             if (LBO->getOpcode() == Instruction::And &&
5172                 LCI->getValue() == CI->getValue())
5173               if (const SCEVZeroExtendExpr *Z =
5174                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5175                 Type *UTy = BO->LHS->getType();
5176                 const SCEV *Z0 = Z->getOperand();
5177                 Type *Z0Ty = Z0->getType();
5178                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5179 
5180                 // If C is a low-bits mask, the zero extend is serving to
5181                 // mask off the high bits. Complement the operand and
5182                 // re-apply the zext.
5183                 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5184                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5185 
5186                 // If C is a single bit, it may be in the sign-bit position
5187                 // before the zero-extend. In this case, represent the xor
5188                 // using an add, which is equivalent, and re-apply the zext.
5189                 APInt Trunc = CI->getValue().trunc(Z0TySize);
5190                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5191                     Trunc.isSignBit())
5192                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5193                                            UTy);
5194               }
5195       }
5196       break;
5197 
5198   case Instruction::Shl:
5199     // Turn shift left of a constant amount into a multiply.
5200     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5201       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5202 
5203       // If the shift count is not less than the bitwidth, the result of
5204       // the shift is undefined. Don't try to analyze it, because the
5205       // resolution chosen here may differ from the resolution chosen in
5206       // other parts of the compiler.
5207       if (SA->getValue().uge(BitWidth))
5208         break;
5209 
5210       // It is currently not resolved how to interpret NSW for left
5211       // shift by BitWidth - 1, so we avoid applying flags in that
5212       // case. Remove this check (or this comment) once the situation
5213       // is resolved. See
5214       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5215       // and http://reviews.llvm.org/D8890 .
5216       auto Flags = SCEV::FlagAnyWrap;
5217       if (BO->Op && SA->getValue().ult(BitWidth - 1))
5218         Flags = getNoWrapFlagsFromUB(BO->Op);
5219 
5220       Constant *X = ConstantInt::get(getContext(),
5221         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5222       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5223     }
5224     break;
5225 
5226     case Instruction::AShr:
5227       // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5228       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5229         if (Operator *L = dyn_cast<Operator>(BO->LHS))
5230           if (L->getOpcode() == Instruction::Shl &&
5231               L->getOperand(1) == BO->RHS) {
5232             uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
5233 
5234             // If the shift count is not less than the bitwidth, the result of
5235             // the shift is undefined. Don't try to analyze it, because the
5236             // resolution chosen here may differ from the resolution chosen in
5237             // other parts of the compiler.
5238             if (CI->getValue().uge(BitWidth))
5239               break;
5240 
5241             uint64_t Amt = BitWidth - CI->getZExtValue();
5242             if (Amt == BitWidth)
5243               return getSCEV(L->getOperand(0)); // shift by zero --> noop
5244             return getSignExtendExpr(
5245                 getTruncateExpr(getSCEV(L->getOperand(0)),
5246                                 IntegerType::get(getContext(), Amt)),
5247                 BO->LHS->getType());
5248           }
5249       break;
5250     }
5251   }
5252 
5253   switch (U->getOpcode()) {
5254   case Instruction::Trunc:
5255     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5256 
5257   case Instruction::ZExt:
5258     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5259 
5260   case Instruction::SExt:
5261     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5262 
5263   case Instruction::BitCast:
5264     // BitCasts are no-op casts so we just eliminate the cast.
5265     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5266       return getSCEV(U->getOperand(0));
5267     break;
5268 
5269   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5270   // lead to pointer expressions which cannot safely be expanded to GEPs,
5271   // because ScalarEvolution doesn't respect the GEP aliasing rules when
5272   // simplifying integer expressions.
5273 
5274   case Instruction::GetElementPtr:
5275     return createNodeForGEP(cast<GEPOperator>(U));
5276 
5277   case Instruction::PHI:
5278     return createNodeForPHI(cast<PHINode>(U));
5279 
5280   case Instruction::Select:
5281     // U can also be a select constant expr, which let fall through.  Since
5282     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5283     // constant expressions cannot have instructions as operands, we'd have
5284     // returned getUnknown for a select constant expressions anyway.
5285     if (isa<Instruction>(U))
5286       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5287                                       U->getOperand(1), U->getOperand(2));
5288     break;
5289 
5290   case Instruction::Call:
5291   case Instruction::Invoke:
5292     if (Value *RV = CallSite(U).getReturnedArgOperand())
5293       return getSCEV(RV);
5294     break;
5295   }
5296 
5297   return getUnknown(V);
5298 }
5299 
5300 
5301 
5302 //===----------------------------------------------------------------------===//
5303 //                   Iteration Count Computation Code
5304 //
5305 
5306 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
5307   if (!ExitCount)
5308     return 0;
5309 
5310   ConstantInt *ExitConst = ExitCount->getValue();
5311 
5312   // Guard against huge trip counts.
5313   if (ExitConst->getValue().getActiveBits() > 32)
5314     return 0;
5315 
5316   // In case of integer overflow, this returns 0, which is correct.
5317   return ((unsigned)ExitConst->getZExtValue()) + 1;
5318 }
5319 
5320 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5321   if (BasicBlock *ExitingBB = L->getExitingBlock())
5322     return getSmallConstantTripCount(L, ExitingBB);
5323 
5324   // No trip count information for multiple exits.
5325   return 0;
5326 }
5327 
5328 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5329                                                     BasicBlock *ExitingBlock) {
5330   assert(ExitingBlock && "Must pass a non-null exiting block!");
5331   assert(L->isLoopExiting(ExitingBlock) &&
5332          "Exiting block must actually branch out of the loop!");
5333   const SCEVConstant *ExitCount =
5334       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5335   return getConstantTripCount(ExitCount);
5336 }
5337 
5338 unsigned ScalarEvolution::getSmallConstantMaxTripCount(Loop *L) {
5339   const auto *MaxExitCount =
5340       dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
5341   return getConstantTripCount(MaxExitCount);
5342 }
5343 
5344 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5345   if (BasicBlock *ExitingBB = L->getExitingBlock())
5346     return getSmallConstantTripMultiple(L, ExitingBB);
5347 
5348   // No trip multiple information for multiple exits.
5349   return 0;
5350 }
5351 
5352 /// Returns the largest constant divisor of the trip count of this loop as a
5353 /// normal unsigned value, if possible. This means that the actual trip count is
5354 /// always a multiple of the returned value (don't forget the trip count could
5355 /// very well be zero as well!).
5356 ///
5357 /// Returns 1 if the trip count is unknown or not guaranteed to be the
5358 /// multiple of a constant (which is also the case if the trip count is simply
5359 /// constant, use getSmallConstantTripCount for that case), Will also return 1
5360 /// if the trip count is very large (>= 2^32).
5361 ///
5362 /// As explained in the comments for getSmallConstantTripCount, this assumes
5363 /// that control exits the loop via ExitingBlock.
5364 unsigned
5365 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5366                                               BasicBlock *ExitingBlock) {
5367   assert(ExitingBlock && "Must pass a non-null exiting block!");
5368   assert(L->isLoopExiting(ExitingBlock) &&
5369          "Exiting block must actually branch out of the loop!");
5370   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5371   if (ExitCount == getCouldNotCompute())
5372     return 1;
5373 
5374   // Get the trip count from the BE count by adding 1.
5375   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5376   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5377   // to factor simple cases.
5378   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5379     TCMul = Mul->getOperand(0);
5380 
5381   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5382   if (!MulC)
5383     return 1;
5384 
5385   ConstantInt *Result = MulC->getValue();
5386 
5387   // Guard against huge trip counts (this requires checking
5388   // for zero to handle the case where the trip count == -1 and the
5389   // addition wraps).
5390   if (!Result || Result->getValue().getActiveBits() > 32 ||
5391       Result->getValue().getActiveBits() == 0)
5392     return 1;
5393 
5394   return (unsigned)Result->getZExtValue();
5395 }
5396 
5397 /// Get the expression for the number of loop iterations for which this loop is
5398 /// guaranteed not to exit via ExitingBlock. Otherwise return
5399 /// SCEVCouldNotCompute.
5400 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5401   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5402 }
5403 
5404 const SCEV *
5405 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5406                                                  SCEVUnionPredicate &Preds) {
5407   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5408 }
5409 
5410 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5411   return getBackedgeTakenInfo(L).getExact(this);
5412 }
5413 
5414 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
5415 /// known never to be less than the actual backedge taken count.
5416 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5417   return getBackedgeTakenInfo(L).getMax(this);
5418 }
5419 
5420 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
5421   return getBackedgeTakenInfo(L).isMaxOrZero(this);
5422 }
5423 
5424 /// Push PHI nodes in the header of the given loop onto the given Worklist.
5425 static void
5426 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5427   BasicBlock *Header = L->getHeader();
5428 
5429   // Push all Loop-header PHIs onto the Worklist stack.
5430   for (BasicBlock::iterator I = Header->begin();
5431        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5432     Worklist.push_back(PN);
5433 }
5434 
5435 const ScalarEvolution::BackedgeTakenInfo &
5436 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5437   auto &BTI = getBackedgeTakenInfo(L);
5438   if (BTI.hasFullInfo())
5439     return BTI;
5440 
5441   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5442 
5443   if (!Pair.second)
5444     return Pair.first->second;
5445 
5446   BackedgeTakenInfo Result =
5447       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5448 
5449   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
5450 }
5451 
5452 const ScalarEvolution::BackedgeTakenInfo &
5453 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5454   // Initially insert an invalid entry for this loop. If the insertion
5455   // succeeds, proceed to actually compute a backedge-taken count and
5456   // update the value. The temporary CouldNotCompute value tells SCEV
5457   // code elsewhere that it shouldn't attempt to request a new
5458   // backedge-taken count, which could result in infinite recursion.
5459   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5460       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5461   if (!Pair.second)
5462     return Pair.first->second;
5463 
5464   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5465   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5466   // must be cleared in this scope.
5467   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5468 
5469   if (Result.getExact(this) != getCouldNotCompute()) {
5470     assert(isLoopInvariant(Result.getExact(this), L) &&
5471            isLoopInvariant(Result.getMax(this), L) &&
5472            "Computed backedge-taken count isn't loop invariant for loop!");
5473     ++NumTripCountsComputed;
5474   }
5475   else if (Result.getMax(this) == getCouldNotCompute() &&
5476            isa<PHINode>(L->getHeader()->begin())) {
5477     // Only count loops that have phi nodes as not being computable.
5478     ++NumTripCountsNotComputed;
5479   }
5480 
5481   // Now that we know more about the trip count for this loop, forget any
5482   // existing SCEV values for PHI nodes in this loop since they are only
5483   // conservative estimates made without the benefit of trip count
5484   // information. This is similar to the code in forgetLoop, except that
5485   // it handles SCEVUnknown PHI nodes specially.
5486   if (Result.hasAnyInfo()) {
5487     SmallVector<Instruction *, 16> Worklist;
5488     PushLoopPHIs(L, Worklist);
5489 
5490     SmallPtrSet<Instruction *, 8> Visited;
5491     while (!Worklist.empty()) {
5492       Instruction *I = Worklist.pop_back_val();
5493       if (!Visited.insert(I).second)
5494         continue;
5495 
5496       ValueExprMapType::iterator It =
5497         ValueExprMap.find_as(static_cast<Value *>(I));
5498       if (It != ValueExprMap.end()) {
5499         const SCEV *Old = It->second;
5500 
5501         // SCEVUnknown for a PHI either means that it has an unrecognized
5502         // structure, or it's a PHI that's in the progress of being computed
5503         // by createNodeForPHI.  In the former case, additional loop trip
5504         // count information isn't going to change anything. In the later
5505         // case, createNodeForPHI will perform the necessary updates on its
5506         // own when it gets to that point.
5507         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5508           eraseValueFromMap(It->first);
5509           forgetMemoizedResults(Old);
5510         }
5511         if (PHINode *PN = dyn_cast<PHINode>(I))
5512           ConstantEvolutionLoopExitValue.erase(PN);
5513       }
5514 
5515       PushDefUseChildren(I, Worklist);
5516     }
5517   }
5518 
5519   // Re-lookup the insert position, since the call to
5520   // computeBackedgeTakenCount above could result in a
5521   // recusive call to getBackedgeTakenInfo (on a different
5522   // loop), which would invalidate the iterator computed
5523   // earlier.
5524   return BackedgeTakenCounts.find(L)->second = std::move(Result);
5525 }
5526 
5527 void ScalarEvolution::forgetLoop(const Loop *L) {
5528   // Drop any stored trip count value.
5529   auto RemoveLoopFromBackedgeMap =
5530       [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5531         auto BTCPos = Map.find(L);
5532         if (BTCPos != Map.end()) {
5533           BTCPos->second.clear();
5534           Map.erase(BTCPos);
5535         }
5536       };
5537 
5538   RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5539   RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
5540 
5541   // Drop information about expressions based on loop-header PHIs.
5542   SmallVector<Instruction *, 16> Worklist;
5543   PushLoopPHIs(L, Worklist);
5544 
5545   SmallPtrSet<Instruction *, 8> Visited;
5546   while (!Worklist.empty()) {
5547     Instruction *I = Worklist.pop_back_val();
5548     if (!Visited.insert(I).second)
5549       continue;
5550 
5551     ValueExprMapType::iterator It =
5552       ValueExprMap.find_as(static_cast<Value *>(I));
5553     if (It != ValueExprMap.end()) {
5554       eraseValueFromMap(It->first);
5555       forgetMemoizedResults(It->second);
5556       if (PHINode *PN = dyn_cast<PHINode>(I))
5557         ConstantEvolutionLoopExitValue.erase(PN);
5558     }
5559 
5560     PushDefUseChildren(I, Worklist);
5561   }
5562 
5563   // Forget all contained loops too, to avoid dangling entries in the
5564   // ValuesAtScopes map.
5565   for (Loop *I : *L)
5566     forgetLoop(I);
5567 
5568   LoopPropertiesCache.erase(L);
5569 }
5570 
5571 void ScalarEvolution::forgetValue(Value *V) {
5572   Instruction *I = dyn_cast<Instruction>(V);
5573   if (!I) return;
5574 
5575   // Drop information about expressions based on loop-header PHIs.
5576   SmallVector<Instruction *, 16> Worklist;
5577   Worklist.push_back(I);
5578 
5579   SmallPtrSet<Instruction *, 8> Visited;
5580   while (!Worklist.empty()) {
5581     I = Worklist.pop_back_val();
5582     if (!Visited.insert(I).second)
5583       continue;
5584 
5585     ValueExprMapType::iterator It =
5586       ValueExprMap.find_as(static_cast<Value *>(I));
5587     if (It != ValueExprMap.end()) {
5588       eraseValueFromMap(It->first);
5589       forgetMemoizedResults(It->second);
5590       if (PHINode *PN = dyn_cast<PHINode>(I))
5591         ConstantEvolutionLoopExitValue.erase(PN);
5592     }
5593 
5594     PushDefUseChildren(I, Worklist);
5595   }
5596 }
5597 
5598 /// Get the exact loop backedge taken count considering all loop exits. A
5599 /// computable result can only be returned for loops with a single exit.
5600 /// Returning the minimum taken count among all exits is incorrect because one
5601 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that
5602 /// the limit of each loop test is never skipped. This is a valid assumption as
5603 /// long as the loop exits via that test. For precise results, it is the
5604 /// caller's responsibility to specify the relevant loop exit using
5605 /// getExact(ExitingBlock, SE).
5606 const SCEV *
5607 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE,
5608                                              SCEVUnionPredicate *Preds) const {
5609   // If any exits were not computable, the loop is not computable.
5610   if (!isComplete() || ExitNotTaken.empty())
5611     return SE->getCouldNotCompute();
5612 
5613   const SCEV *BECount = nullptr;
5614   for (auto &ENT : ExitNotTaken) {
5615     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5616 
5617     if (!BECount)
5618       BECount = ENT.ExactNotTaken;
5619     else if (BECount != ENT.ExactNotTaken)
5620       return SE->getCouldNotCompute();
5621     if (Preds && !ENT.hasAlwaysTruePredicate())
5622       Preds->add(ENT.Predicate.get());
5623 
5624     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
5625            "Predicate should be always true!");
5626   }
5627 
5628   assert(BECount && "Invalid not taken count for loop exit");
5629   return BECount;
5630 }
5631 
5632 /// Get the exact not taken count for this loop exit.
5633 const SCEV *
5634 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5635                                              ScalarEvolution *SE) const {
5636   for (auto &ENT : ExitNotTaken)
5637     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
5638       return ENT.ExactNotTaken;
5639 
5640   return SE->getCouldNotCompute();
5641 }
5642 
5643 /// getMax - Get the max backedge taken count for the loop.
5644 const SCEV *
5645 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5646   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
5647     return !ENT.hasAlwaysTruePredicate();
5648   };
5649 
5650   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
5651     return SE->getCouldNotCompute();
5652 
5653   return getMax();
5654 }
5655 
5656 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
5657   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
5658     return !ENT.hasAlwaysTruePredicate();
5659   };
5660   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
5661 }
5662 
5663 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5664                                                     ScalarEvolution *SE) const {
5665   if (getMax() && getMax() != SE->getCouldNotCompute() &&
5666       SE->hasOperand(getMax(), S))
5667     return true;
5668 
5669   for (auto &ENT : ExitNotTaken)
5670     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5671         SE->hasOperand(ENT.ExactNotTaken, S))
5672       return true;
5673 
5674   return false;
5675 }
5676 
5677 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5678 /// computable exit into a persistent ExitNotTakenInfo array.
5679 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5680     SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
5681         &&ExitCounts,
5682     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
5683     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
5684   typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo;
5685   ExitNotTaken.reserve(ExitCounts.size());
5686   std::transform(
5687       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
5688       [&](const EdgeExitInfo &EEI) {
5689         BasicBlock *ExitBB = EEI.first;
5690         const ExitLimit &EL = EEI.second;
5691         if (EL.Predicates.empty())
5692           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
5693 
5694         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
5695         for (auto *Pred : EL.Predicates)
5696           Predicate->add(Pred);
5697 
5698         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
5699       });
5700 }
5701 
5702 /// Invalidate this result and free the ExitNotTakenInfo array.
5703 void ScalarEvolution::BackedgeTakenInfo::clear() {
5704   ExitNotTaken.clear();
5705 }
5706 
5707 /// Compute the number of times the backedge of the specified loop will execute.
5708 ScalarEvolution::BackedgeTakenInfo
5709 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5710                                            bool AllowPredicates) {
5711   SmallVector<BasicBlock *, 8> ExitingBlocks;
5712   L->getExitingBlocks(ExitingBlocks);
5713 
5714   typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo;
5715 
5716   SmallVector<EdgeExitInfo, 4> ExitCounts;
5717   bool CouldComputeBECount = true;
5718   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5719   const SCEV *MustExitMaxBECount = nullptr;
5720   const SCEV *MayExitMaxBECount = nullptr;
5721   bool MustExitMaxOrZero = false;
5722 
5723   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5724   // and compute maxBECount.
5725   // Do a union of all the predicates here.
5726   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5727     BasicBlock *ExitBB = ExitingBlocks[i];
5728     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5729 
5730     assert((AllowPredicates || EL.Predicates.empty()) &&
5731            "Predicated exit limit when predicates are not allowed!");
5732 
5733     // 1. For each exit that can be computed, add an entry to ExitCounts.
5734     // CouldComputeBECount is true only if all exits can be computed.
5735     if (EL.ExactNotTaken == getCouldNotCompute())
5736       // We couldn't compute an exact value for this exit, so
5737       // we won't be able to compute an exact value for the loop.
5738       CouldComputeBECount = false;
5739     else
5740       ExitCounts.emplace_back(ExitBB, EL);
5741 
5742     // 2. Derive the loop's MaxBECount from each exit's max number of
5743     // non-exiting iterations. Partition the loop exits into two kinds:
5744     // LoopMustExits and LoopMayExits.
5745     //
5746     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5747     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5748     // MaxBECount is the minimum EL.MaxNotTaken of computable
5749     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
5750     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
5751     // computable EL.MaxNotTaken.
5752     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
5753         DT.dominates(ExitBB, Latch)) {
5754       if (!MustExitMaxBECount) {
5755         MustExitMaxBECount = EL.MaxNotTaken;
5756         MustExitMaxOrZero = EL.MaxOrZero;
5757       } else {
5758         MustExitMaxBECount =
5759             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
5760       }
5761     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5762       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
5763         MayExitMaxBECount = EL.MaxNotTaken;
5764       else {
5765         MayExitMaxBECount =
5766             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
5767       }
5768     }
5769   }
5770   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5771     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5772   // The loop backedge will be taken the maximum or zero times if there's
5773   // a single exit that must be taken the maximum or zero times.
5774   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
5775   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
5776                            MaxBECount, MaxOrZero);
5777 }
5778 
5779 ScalarEvolution::ExitLimit
5780 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5781                                   bool AllowPredicates) {
5782 
5783   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5784   // at this block and remember the exit block and whether all other targets
5785   // lead to the loop header.
5786   bool MustExecuteLoopHeader = true;
5787   BasicBlock *Exit = nullptr;
5788   for (auto *SBB : successors(ExitingBlock))
5789     if (!L->contains(SBB)) {
5790       if (Exit) // Multiple exit successors.
5791         return getCouldNotCompute();
5792       Exit = SBB;
5793     } else if (SBB != L->getHeader()) {
5794       MustExecuteLoopHeader = false;
5795     }
5796 
5797   // At this point, we know we have a conditional branch that determines whether
5798   // the loop is exited.  However, we don't know if the branch is executed each
5799   // time through the loop.  If not, then the execution count of the branch will
5800   // not be equal to the trip count of the loop.
5801   //
5802   // Currently we check for this by checking to see if the Exit branch goes to
5803   // the loop header.  If so, we know it will always execute the same number of
5804   // times as the loop.  We also handle the case where the exit block *is* the
5805   // loop header.  This is common for un-rotated loops.
5806   //
5807   // If both of those tests fail, walk up the unique predecessor chain to the
5808   // header, stopping if there is an edge that doesn't exit the loop. If the
5809   // header is reached, the execution count of the branch will be equal to the
5810   // trip count of the loop.
5811   //
5812   //  More extensive analysis could be done to handle more cases here.
5813   //
5814   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5815     // The simple checks failed, try climbing the unique predecessor chain
5816     // up to the header.
5817     bool Ok = false;
5818     for (BasicBlock *BB = ExitingBlock; BB; ) {
5819       BasicBlock *Pred = BB->getUniquePredecessor();
5820       if (!Pred)
5821         return getCouldNotCompute();
5822       TerminatorInst *PredTerm = Pred->getTerminator();
5823       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5824         if (PredSucc == BB)
5825           continue;
5826         // If the predecessor has a successor that isn't BB and isn't
5827         // outside the loop, assume the worst.
5828         if (L->contains(PredSucc))
5829           return getCouldNotCompute();
5830       }
5831       if (Pred == L->getHeader()) {
5832         Ok = true;
5833         break;
5834       }
5835       BB = Pred;
5836     }
5837     if (!Ok)
5838       return getCouldNotCompute();
5839   }
5840 
5841   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5842   TerminatorInst *Term = ExitingBlock->getTerminator();
5843   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5844     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5845     // Proceed to the next level to examine the exit condition expression.
5846     return computeExitLimitFromCond(
5847         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5848         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
5849   }
5850 
5851   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5852     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5853                                                 /*ControlsExit=*/IsOnlyExit);
5854 
5855   return getCouldNotCompute();
5856 }
5857 
5858 ScalarEvolution::ExitLimit
5859 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5860                                           Value *ExitCond,
5861                                           BasicBlock *TBB,
5862                                           BasicBlock *FBB,
5863                                           bool ControlsExit,
5864                                           bool AllowPredicates) {
5865   // Check if the controlling expression for this loop is an And or Or.
5866   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5867     if (BO->getOpcode() == Instruction::And) {
5868       // Recurse on the operands of the and.
5869       bool EitherMayExit = L->contains(TBB);
5870       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5871                                                ControlsExit && !EitherMayExit,
5872                                                AllowPredicates);
5873       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5874                                                ControlsExit && !EitherMayExit,
5875                                                AllowPredicates);
5876       const SCEV *BECount = getCouldNotCompute();
5877       const SCEV *MaxBECount = getCouldNotCompute();
5878       if (EitherMayExit) {
5879         // Both conditions must be true for the loop to continue executing.
5880         // Choose the less conservative count.
5881         if (EL0.ExactNotTaken == getCouldNotCompute() ||
5882             EL1.ExactNotTaken == getCouldNotCompute())
5883           BECount = getCouldNotCompute();
5884         else
5885           BECount =
5886               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
5887         if (EL0.MaxNotTaken == getCouldNotCompute())
5888           MaxBECount = EL1.MaxNotTaken;
5889         else if (EL1.MaxNotTaken == getCouldNotCompute())
5890           MaxBECount = EL0.MaxNotTaken;
5891         else
5892           MaxBECount =
5893               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
5894       } else {
5895         // Both conditions must be true at the same time for the loop to exit.
5896         // For now, be conservative.
5897         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5898         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
5899           MaxBECount = EL0.MaxNotTaken;
5900         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
5901           BECount = EL0.ExactNotTaken;
5902       }
5903 
5904       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5905       // to be more aggressive when computing BECount than when computing
5906       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
5907       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
5908       // to not.
5909       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5910           !isa<SCEVCouldNotCompute>(BECount))
5911         MaxBECount = BECount;
5912 
5913       return ExitLimit(BECount, MaxBECount, false,
5914                        {&EL0.Predicates, &EL1.Predicates});
5915     }
5916     if (BO->getOpcode() == Instruction::Or) {
5917       // Recurse on the operands of the or.
5918       bool EitherMayExit = L->contains(FBB);
5919       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5920                                                ControlsExit && !EitherMayExit,
5921                                                AllowPredicates);
5922       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5923                                                ControlsExit && !EitherMayExit,
5924                                                AllowPredicates);
5925       const SCEV *BECount = getCouldNotCompute();
5926       const SCEV *MaxBECount = getCouldNotCompute();
5927       if (EitherMayExit) {
5928         // Both conditions must be false for the loop to continue executing.
5929         // Choose the less conservative count.
5930         if (EL0.ExactNotTaken == getCouldNotCompute() ||
5931             EL1.ExactNotTaken == getCouldNotCompute())
5932           BECount = getCouldNotCompute();
5933         else
5934           BECount =
5935               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
5936         if (EL0.MaxNotTaken == getCouldNotCompute())
5937           MaxBECount = EL1.MaxNotTaken;
5938         else if (EL1.MaxNotTaken == getCouldNotCompute())
5939           MaxBECount = EL0.MaxNotTaken;
5940         else
5941           MaxBECount =
5942               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
5943       } else {
5944         // Both conditions must be false at the same time for the loop to exit.
5945         // For now, be conservative.
5946         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5947         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
5948           MaxBECount = EL0.MaxNotTaken;
5949         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
5950           BECount = EL0.ExactNotTaken;
5951       }
5952 
5953       return ExitLimit(BECount, MaxBECount, false,
5954                        {&EL0.Predicates, &EL1.Predicates});
5955     }
5956   }
5957 
5958   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5959   // Proceed to the next level to examine the icmp.
5960   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
5961     ExitLimit EL =
5962         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5963     if (EL.hasFullInfo() || !AllowPredicates)
5964       return EL;
5965 
5966     // Try again, but use SCEV predicates this time.
5967     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
5968                                     /*AllowPredicates=*/true);
5969   }
5970 
5971   // Check for a constant condition. These are normally stripped out by
5972   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5973   // preserve the CFG and is temporarily leaving constant conditions
5974   // in place.
5975   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5976     if (L->contains(FBB) == !CI->getZExtValue())
5977       // The backedge is always taken.
5978       return getCouldNotCompute();
5979     else
5980       // The backedge is never taken.
5981       return getZero(CI->getType());
5982   }
5983 
5984   // If it's not an integer or pointer comparison then compute it the hard way.
5985   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5986 }
5987 
5988 ScalarEvolution::ExitLimit
5989 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5990                                           ICmpInst *ExitCond,
5991                                           BasicBlock *TBB,
5992                                           BasicBlock *FBB,
5993                                           bool ControlsExit,
5994                                           bool AllowPredicates) {
5995 
5996   // If the condition was exit on true, convert the condition to exit on false
5997   ICmpInst::Predicate Cond;
5998   if (!L->contains(FBB))
5999     Cond = ExitCond->getPredicate();
6000   else
6001     Cond = ExitCond->getInversePredicate();
6002 
6003   // Handle common loops like: for (X = "string"; *X; ++X)
6004   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
6005     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
6006       ExitLimit ItCnt =
6007         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
6008       if (ItCnt.hasAnyInfo())
6009         return ItCnt;
6010     }
6011 
6012   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
6013   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
6014 
6015   // Try to evaluate any dependencies out of the loop.
6016   LHS = getSCEVAtScope(LHS, L);
6017   RHS = getSCEVAtScope(RHS, L);
6018 
6019   // At this point, we would like to compute how many iterations of the
6020   // loop the predicate will return true for these inputs.
6021   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
6022     // If there is a loop-invariant, force it into the RHS.
6023     std::swap(LHS, RHS);
6024     Cond = ICmpInst::getSwappedPredicate(Cond);
6025   }
6026 
6027   // Simplify the operands before analyzing them.
6028   (void)SimplifyICmpOperands(Cond, LHS, RHS);
6029 
6030   // If we have a comparison of a chrec against a constant, try to use value
6031   // ranges to answer this query.
6032   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
6033     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
6034       if (AddRec->getLoop() == L) {
6035         // Form the constant range.
6036         ConstantRange CompRange =
6037             ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt());
6038 
6039         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
6040         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
6041       }
6042 
6043   switch (Cond) {
6044   case ICmpInst::ICMP_NE: {                     // while (X != Y)
6045     // Convert to: while (X-Y != 0)
6046     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
6047                                 AllowPredicates);
6048     if (EL.hasAnyInfo()) return EL;
6049     break;
6050   }
6051   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
6052     // Convert to: while (X-Y == 0)
6053     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
6054     if (EL.hasAnyInfo()) return EL;
6055     break;
6056   }
6057   case ICmpInst::ICMP_SLT:
6058   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
6059     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
6060     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
6061                                     AllowPredicates);
6062     if (EL.hasAnyInfo()) return EL;
6063     break;
6064   }
6065   case ICmpInst::ICMP_SGT:
6066   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
6067     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
6068     ExitLimit EL =
6069         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
6070                             AllowPredicates);
6071     if (EL.hasAnyInfo()) return EL;
6072     break;
6073   }
6074   default:
6075     break;
6076   }
6077 
6078   auto *ExhaustiveCount =
6079       computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6080 
6081   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
6082     return ExhaustiveCount;
6083 
6084   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
6085                                       ExitCond->getOperand(1), L, Cond);
6086 }
6087 
6088 ScalarEvolution::ExitLimit
6089 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
6090                                                       SwitchInst *Switch,
6091                                                       BasicBlock *ExitingBlock,
6092                                                       bool ControlsExit) {
6093   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
6094 
6095   // Give up if the exit is the default dest of a switch.
6096   if (Switch->getDefaultDest() == ExitingBlock)
6097     return getCouldNotCompute();
6098 
6099   assert(L->contains(Switch->getDefaultDest()) &&
6100          "Default case must not exit the loop!");
6101   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6102   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6103 
6104   // while (X != Y) --> while (X-Y != 0)
6105   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
6106   if (EL.hasAnyInfo())
6107     return EL;
6108 
6109   return getCouldNotCompute();
6110 }
6111 
6112 static ConstantInt *
6113 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6114                                 ScalarEvolution &SE) {
6115   const SCEV *InVal = SE.getConstant(C);
6116   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
6117   assert(isa<SCEVConstant>(Val) &&
6118          "Evaluation of SCEV at constant didn't fold correctly?");
6119   return cast<SCEVConstant>(Val)->getValue();
6120 }
6121 
6122 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
6123 /// compute the backedge execution count.
6124 ScalarEvolution::ExitLimit
6125 ScalarEvolution::computeLoadConstantCompareExitLimit(
6126   LoadInst *LI,
6127   Constant *RHS,
6128   const Loop *L,
6129   ICmpInst::Predicate predicate) {
6130 
6131   if (LI->isVolatile()) return getCouldNotCompute();
6132 
6133   // Check to see if the loaded pointer is a getelementptr of a global.
6134   // TODO: Use SCEV instead of manually grubbing with GEPs.
6135   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
6136   if (!GEP) return getCouldNotCompute();
6137 
6138   // Make sure that it is really a constant global we are gepping, with an
6139   // initializer, and make sure the first IDX is really 0.
6140   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
6141   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
6142       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6143       !cast<Constant>(GEP->getOperand(1))->isNullValue())
6144     return getCouldNotCompute();
6145 
6146   // Okay, we allow one non-constant index into the GEP instruction.
6147   Value *VarIdx = nullptr;
6148   std::vector<Constant*> Indexes;
6149   unsigned VarIdxNum = 0;
6150   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6151     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6152       Indexes.push_back(CI);
6153     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
6154       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
6155       VarIdx = GEP->getOperand(i);
6156       VarIdxNum = i-2;
6157       Indexes.push_back(nullptr);
6158     }
6159 
6160   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6161   if (!VarIdx)
6162     return getCouldNotCompute();
6163 
6164   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6165   // Check to see if X is a loop variant variable value now.
6166   const SCEV *Idx = getSCEV(VarIdx);
6167   Idx = getSCEVAtScope(Idx, L);
6168 
6169   // We can only recognize very limited forms of loop index expressions, in
6170   // particular, only affine AddRec's like {C1,+,C2}.
6171   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
6172   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
6173       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6174       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
6175     return getCouldNotCompute();
6176 
6177   unsigned MaxSteps = MaxBruteForceIterations;
6178   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
6179     ConstantInt *ItCst = ConstantInt::get(
6180                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
6181     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
6182 
6183     // Form the GEP offset.
6184     Indexes[VarIdxNum] = Val;
6185 
6186     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6187                                                          Indexes);
6188     if (!Result) break;  // Cannot compute!
6189 
6190     // Evaluate the condition for this iteration.
6191     Result = ConstantExpr::getICmp(predicate, Result, RHS);
6192     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
6193     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
6194       ++NumArrayLenItCounts;
6195       return getConstant(ItCst);   // Found terminating iteration!
6196     }
6197   }
6198   return getCouldNotCompute();
6199 }
6200 
6201 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6202     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6203   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6204   if (!RHS)
6205     return getCouldNotCompute();
6206 
6207   const BasicBlock *Latch = L->getLoopLatch();
6208   if (!Latch)
6209     return getCouldNotCompute();
6210 
6211   const BasicBlock *Predecessor = L->getLoopPredecessor();
6212   if (!Predecessor)
6213     return getCouldNotCompute();
6214 
6215   // Return true if V is of the form "LHS `shift_op` <positive constant>".
6216   // Return LHS in OutLHS and shift_opt in OutOpCode.
6217   auto MatchPositiveShift =
6218       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6219 
6220     using namespace PatternMatch;
6221 
6222     ConstantInt *ShiftAmt;
6223     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6224       OutOpCode = Instruction::LShr;
6225     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6226       OutOpCode = Instruction::AShr;
6227     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6228       OutOpCode = Instruction::Shl;
6229     else
6230       return false;
6231 
6232     return ShiftAmt->getValue().isStrictlyPositive();
6233   };
6234 
6235   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6236   //
6237   // loop:
6238   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6239   //   %iv.shifted = lshr i32 %iv, <positive constant>
6240   //
6241   // Return true on a succesful match.  Return the corresponding PHI node (%iv
6242   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6243   auto MatchShiftRecurrence =
6244       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6245     Optional<Instruction::BinaryOps> PostShiftOpCode;
6246 
6247     {
6248       Instruction::BinaryOps OpC;
6249       Value *V;
6250 
6251       // If we encounter a shift instruction, "peel off" the shift operation,
6252       // and remember that we did so.  Later when we inspect %iv's backedge
6253       // value, we will make sure that the backedge value uses the same
6254       // operation.
6255       //
6256       // Note: the peeled shift operation does not have to be the same
6257       // instruction as the one feeding into the PHI's backedge value.  We only
6258       // really care about it being the same *kind* of shift instruction --
6259       // that's all that is required for our later inferences to hold.
6260       if (MatchPositiveShift(LHS, V, OpC)) {
6261         PostShiftOpCode = OpC;
6262         LHS = V;
6263       }
6264     }
6265 
6266     PNOut = dyn_cast<PHINode>(LHS);
6267     if (!PNOut || PNOut->getParent() != L->getHeader())
6268       return false;
6269 
6270     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6271     Value *OpLHS;
6272 
6273     return
6274         // The backedge value for the PHI node must be a shift by a positive
6275         // amount
6276         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6277 
6278         // of the PHI node itself
6279         OpLHS == PNOut &&
6280 
6281         // and the kind of shift should be match the kind of shift we peeled
6282         // off, if any.
6283         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6284   };
6285 
6286   PHINode *PN;
6287   Instruction::BinaryOps OpCode;
6288   if (!MatchShiftRecurrence(LHS, PN, OpCode))
6289     return getCouldNotCompute();
6290 
6291   const DataLayout &DL = getDataLayout();
6292 
6293   // The key rationale for this optimization is that for some kinds of shift
6294   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6295   // within a finite number of iterations.  If the condition guarding the
6296   // backedge (in the sense that the backedge is taken if the condition is true)
6297   // is false for the value the shift recurrence stabilizes to, then we know
6298   // that the backedge is taken only a finite number of times.
6299 
6300   ConstantInt *StableValue = nullptr;
6301   switch (OpCode) {
6302   default:
6303     llvm_unreachable("Impossible case!");
6304 
6305   case Instruction::AShr: {
6306     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6307     // bitwidth(K) iterations.
6308     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6309     bool KnownZero, KnownOne;
6310     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6311                    Predecessor->getTerminator(), &DT);
6312     auto *Ty = cast<IntegerType>(RHS->getType());
6313     if (KnownZero)
6314       StableValue = ConstantInt::get(Ty, 0);
6315     else if (KnownOne)
6316       StableValue = ConstantInt::get(Ty, -1, true);
6317     else
6318       return getCouldNotCompute();
6319 
6320     break;
6321   }
6322   case Instruction::LShr:
6323   case Instruction::Shl:
6324     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6325     // stabilize to 0 in at most bitwidth(K) iterations.
6326     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6327     break;
6328   }
6329 
6330   auto *Result =
6331       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6332   assert(Result->getType()->isIntegerTy(1) &&
6333          "Otherwise cannot be an operand to a branch instruction");
6334 
6335   if (Result->isZeroValue()) {
6336     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6337     const SCEV *UpperBound =
6338         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6339     return ExitLimit(getCouldNotCompute(), UpperBound, false);
6340   }
6341 
6342   return getCouldNotCompute();
6343 }
6344 
6345 /// Return true if we can constant fold an instruction of the specified type,
6346 /// assuming that all operands were constants.
6347 static bool CanConstantFold(const Instruction *I) {
6348   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6349       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6350       isa<LoadInst>(I))
6351     return true;
6352 
6353   if (const CallInst *CI = dyn_cast<CallInst>(I))
6354     if (const Function *F = CI->getCalledFunction())
6355       return canConstantFoldCallTo(F);
6356   return false;
6357 }
6358 
6359 /// Determine whether this instruction can constant evolve within this loop
6360 /// assuming its operands can all constant evolve.
6361 static bool canConstantEvolve(Instruction *I, const Loop *L) {
6362   // An instruction outside of the loop can't be derived from a loop PHI.
6363   if (!L->contains(I)) return false;
6364 
6365   if (isa<PHINode>(I)) {
6366     // We don't currently keep track of the control flow needed to evaluate
6367     // PHIs, so we cannot handle PHIs inside of loops.
6368     return L->getHeader() == I->getParent();
6369   }
6370 
6371   // If we won't be able to constant fold this expression even if the operands
6372   // are constants, bail early.
6373   return CanConstantFold(I);
6374 }
6375 
6376 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6377 /// recursing through each instruction operand until reaching a loop header phi.
6378 static PHINode *
6379 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6380                                DenseMap<Instruction *, PHINode *> &PHIMap) {
6381 
6382   // Otherwise, we can evaluate this instruction if all of its operands are
6383   // constant or derived from a PHI node themselves.
6384   PHINode *PHI = nullptr;
6385   for (Value *Op : UseInst->operands()) {
6386     if (isa<Constant>(Op)) continue;
6387 
6388     Instruction *OpInst = dyn_cast<Instruction>(Op);
6389     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6390 
6391     PHINode *P = dyn_cast<PHINode>(OpInst);
6392     if (!P)
6393       // If this operand is already visited, reuse the prior result.
6394       // We may have P != PHI if this is the deepest point at which the
6395       // inconsistent paths meet.
6396       P = PHIMap.lookup(OpInst);
6397     if (!P) {
6398       // Recurse and memoize the results, whether a phi is found or not.
6399       // This recursive call invalidates pointers into PHIMap.
6400       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6401       PHIMap[OpInst] = P;
6402     }
6403     if (!P)
6404       return nullptr;  // Not evolving from PHI
6405     if (PHI && PHI != P)
6406       return nullptr;  // Evolving from multiple different PHIs.
6407     PHI = P;
6408   }
6409   // This is a expression evolving from a constant PHI!
6410   return PHI;
6411 }
6412 
6413 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6414 /// in the loop that V is derived from.  We allow arbitrary operations along the
6415 /// way, but the operands of an operation must either be constants or a value
6416 /// derived from a constant PHI.  If this expression does not fit with these
6417 /// constraints, return null.
6418 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6419   Instruction *I = dyn_cast<Instruction>(V);
6420   if (!I || !canConstantEvolve(I, L)) return nullptr;
6421 
6422   if (PHINode *PN = dyn_cast<PHINode>(I))
6423     return PN;
6424 
6425   // Record non-constant instructions contained by the loop.
6426   DenseMap<Instruction *, PHINode *> PHIMap;
6427   return getConstantEvolvingPHIOperands(I, L, PHIMap);
6428 }
6429 
6430 /// EvaluateExpression - Given an expression that passes the
6431 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6432 /// in the loop has the value PHIVal.  If we can't fold this expression for some
6433 /// reason, return null.
6434 static Constant *EvaluateExpression(Value *V, const Loop *L,
6435                                     DenseMap<Instruction *, Constant *> &Vals,
6436                                     const DataLayout &DL,
6437                                     const TargetLibraryInfo *TLI) {
6438   // Convenient constant check, but redundant for recursive calls.
6439   if (Constant *C = dyn_cast<Constant>(V)) return C;
6440   Instruction *I = dyn_cast<Instruction>(V);
6441   if (!I) return nullptr;
6442 
6443   if (Constant *C = Vals.lookup(I)) return C;
6444 
6445   // An instruction inside the loop depends on a value outside the loop that we
6446   // weren't given a mapping for, or a value such as a call inside the loop.
6447   if (!canConstantEvolve(I, L)) return nullptr;
6448 
6449   // An unmapped PHI can be due to a branch or another loop inside this loop,
6450   // or due to this not being the initial iteration through a loop where we
6451   // couldn't compute the evolution of this particular PHI last time.
6452   if (isa<PHINode>(I)) return nullptr;
6453 
6454   std::vector<Constant*> Operands(I->getNumOperands());
6455 
6456   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6457     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6458     if (!Operand) {
6459       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6460       if (!Operands[i]) return nullptr;
6461       continue;
6462     }
6463     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6464     Vals[Operand] = C;
6465     if (!C) return nullptr;
6466     Operands[i] = C;
6467   }
6468 
6469   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6470     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6471                                            Operands[1], DL, TLI);
6472   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6473     if (!LI->isVolatile())
6474       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6475   }
6476   return ConstantFoldInstOperands(I, Operands, DL, TLI);
6477 }
6478 
6479 
6480 // If every incoming value to PN except the one for BB is a specific Constant,
6481 // return that, else return nullptr.
6482 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6483   Constant *IncomingVal = nullptr;
6484 
6485   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6486     if (PN->getIncomingBlock(i) == BB)
6487       continue;
6488 
6489     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6490     if (!CurrentVal)
6491       return nullptr;
6492 
6493     if (IncomingVal != CurrentVal) {
6494       if (IncomingVal)
6495         return nullptr;
6496       IncomingVal = CurrentVal;
6497     }
6498   }
6499 
6500   return IncomingVal;
6501 }
6502 
6503 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6504 /// in the header of its containing loop, we know the loop executes a
6505 /// constant number of times, and the PHI node is just a recurrence
6506 /// involving constants, fold it.
6507 Constant *
6508 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6509                                                    const APInt &BEs,
6510                                                    const Loop *L) {
6511   auto I = ConstantEvolutionLoopExitValue.find(PN);
6512   if (I != ConstantEvolutionLoopExitValue.end())
6513     return I->second;
6514 
6515   if (BEs.ugt(MaxBruteForceIterations))
6516     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6517 
6518   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6519 
6520   DenseMap<Instruction *, Constant *> CurrentIterVals;
6521   BasicBlock *Header = L->getHeader();
6522   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6523 
6524   BasicBlock *Latch = L->getLoopLatch();
6525   if (!Latch)
6526     return nullptr;
6527 
6528   for (auto &I : *Header) {
6529     PHINode *PHI = dyn_cast<PHINode>(&I);
6530     if (!PHI) break;
6531     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6532     if (!StartCST) continue;
6533     CurrentIterVals[PHI] = StartCST;
6534   }
6535   if (!CurrentIterVals.count(PN))
6536     return RetVal = nullptr;
6537 
6538   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6539 
6540   // Execute the loop symbolically to determine the exit value.
6541   if (BEs.getActiveBits() >= 32)
6542     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6543 
6544   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6545   unsigned IterationNum = 0;
6546   const DataLayout &DL = getDataLayout();
6547   for (; ; ++IterationNum) {
6548     if (IterationNum == NumIterations)
6549       return RetVal = CurrentIterVals[PN];  // Got exit value!
6550 
6551     // Compute the value of the PHIs for the next iteration.
6552     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6553     DenseMap<Instruction *, Constant *> NextIterVals;
6554     Constant *NextPHI =
6555         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6556     if (!NextPHI)
6557       return nullptr;        // Couldn't evaluate!
6558     NextIterVals[PN] = NextPHI;
6559 
6560     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6561 
6562     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6563     // cease to be able to evaluate one of them or if they stop evolving,
6564     // because that doesn't necessarily prevent us from computing PN.
6565     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6566     for (const auto &I : CurrentIterVals) {
6567       PHINode *PHI = dyn_cast<PHINode>(I.first);
6568       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6569       PHIsToCompute.emplace_back(PHI, I.second);
6570     }
6571     // We use two distinct loops because EvaluateExpression may invalidate any
6572     // iterators into CurrentIterVals.
6573     for (const auto &I : PHIsToCompute) {
6574       PHINode *PHI = I.first;
6575       Constant *&NextPHI = NextIterVals[PHI];
6576       if (!NextPHI) {   // Not already computed.
6577         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6578         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6579       }
6580       if (NextPHI != I.second)
6581         StoppedEvolving = false;
6582     }
6583 
6584     // If all entries in CurrentIterVals == NextIterVals then we can stop
6585     // iterating, the loop can't continue to change.
6586     if (StoppedEvolving)
6587       return RetVal = CurrentIterVals[PN];
6588 
6589     CurrentIterVals.swap(NextIterVals);
6590   }
6591 }
6592 
6593 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6594                                                           Value *Cond,
6595                                                           bool ExitWhen) {
6596   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6597   if (!PN) return getCouldNotCompute();
6598 
6599   // If the loop is canonicalized, the PHI will have exactly two entries.
6600   // That's the only form we support here.
6601   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6602 
6603   DenseMap<Instruction *, Constant *> CurrentIterVals;
6604   BasicBlock *Header = L->getHeader();
6605   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6606 
6607   BasicBlock *Latch = L->getLoopLatch();
6608   assert(Latch && "Should follow from NumIncomingValues == 2!");
6609 
6610   for (auto &I : *Header) {
6611     PHINode *PHI = dyn_cast<PHINode>(&I);
6612     if (!PHI)
6613       break;
6614     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6615     if (!StartCST) continue;
6616     CurrentIterVals[PHI] = StartCST;
6617   }
6618   if (!CurrentIterVals.count(PN))
6619     return getCouldNotCompute();
6620 
6621   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6622   // the loop symbolically to determine when the condition gets a value of
6623   // "ExitWhen".
6624   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6625   const DataLayout &DL = getDataLayout();
6626   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6627     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6628         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6629 
6630     // Couldn't symbolically evaluate.
6631     if (!CondVal) return getCouldNotCompute();
6632 
6633     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6634       ++NumBruteForceTripCountsComputed;
6635       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6636     }
6637 
6638     // Update all the PHI nodes for the next iteration.
6639     DenseMap<Instruction *, Constant *> NextIterVals;
6640 
6641     // Create a list of which PHIs we need to compute. We want to do this before
6642     // calling EvaluateExpression on them because that may invalidate iterators
6643     // into CurrentIterVals.
6644     SmallVector<PHINode *, 8> PHIsToCompute;
6645     for (const auto &I : CurrentIterVals) {
6646       PHINode *PHI = dyn_cast<PHINode>(I.first);
6647       if (!PHI || PHI->getParent() != Header) continue;
6648       PHIsToCompute.push_back(PHI);
6649     }
6650     for (PHINode *PHI : PHIsToCompute) {
6651       Constant *&NextPHI = NextIterVals[PHI];
6652       if (NextPHI) continue;    // Already computed!
6653 
6654       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6655       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6656     }
6657     CurrentIterVals.swap(NextIterVals);
6658   }
6659 
6660   // Too many iterations were needed to evaluate.
6661   return getCouldNotCompute();
6662 }
6663 
6664 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6665   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6666       ValuesAtScopes[V];
6667   // Check to see if we've folded this expression at this loop before.
6668   for (auto &LS : Values)
6669     if (LS.first == L)
6670       return LS.second ? LS.second : V;
6671 
6672   Values.emplace_back(L, nullptr);
6673 
6674   // Otherwise compute it.
6675   const SCEV *C = computeSCEVAtScope(V, L);
6676   for (auto &LS : reverse(ValuesAtScopes[V]))
6677     if (LS.first == L) {
6678       LS.second = C;
6679       break;
6680     }
6681   return C;
6682 }
6683 
6684 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6685 /// will return Constants for objects which aren't represented by a
6686 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6687 /// Returns NULL if the SCEV isn't representable as a Constant.
6688 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6689   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6690     case scCouldNotCompute:
6691     case scAddRecExpr:
6692       break;
6693     case scConstant:
6694       return cast<SCEVConstant>(V)->getValue();
6695     case scUnknown:
6696       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6697     case scSignExtend: {
6698       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6699       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6700         return ConstantExpr::getSExt(CastOp, SS->getType());
6701       break;
6702     }
6703     case scZeroExtend: {
6704       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6705       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6706         return ConstantExpr::getZExt(CastOp, SZ->getType());
6707       break;
6708     }
6709     case scTruncate: {
6710       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6711       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6712         return ConstantExpr::getTrunc(CastOp, ST->getType());
6713       break;
6714     }
6715     case scAddExpr: {
6716       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6717       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6718         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6719           unsigned AS = PTy->getAddressSpace();
6720           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6721           C = ConstantExpr::getBitCast(C, DestPtrTy);
6722         }
6723         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6724           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6725           if (!C2) return nullptr;
6726 
6727           // First pointer!
6728           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6729             unsigned AS = C2->getType()->getPointerAddressSpace();
6730             std::swap(C, C2);
6731             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6732             // The offsets have been converted to bytes.  We can add bytes to an
6733             // i8* by GEP with the byte count in the first index.
6734             C = ConstantExpr::getBitCast(C, DestPtrTy);
6735           }
6736 
6737           // Don't bother trying to sum two pointers. We probably can't
6738           // statically compute a load that results from it anyway.
6739           if (C2->getType()->isPointerTy())
6740             return nullptr;
6741 
6742           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6743             if (PTy->getElementType()->isStructTy())
6744               C2 = ConstantExpr::getIntegerCast(
6745                   C2, Type::getInt32Ty(C->getContext()), true);
6746             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6747           } else
6748             C = ConstantExpr::getAdd(C, C2);
6749         }
6750         return C;
6751       }
6752       break;
6753     }
6754     case scMulExpr: {
6755       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6756       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6757         // Don't bother with pointers at all.
6758         if (C->getType()->isPointerTy()) return nullptr;
6759         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6760           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6761           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6762           C = ConstantExpr::getMul(C, C2);
6763         }
6764         return C;
6765       }
6766       break;
6767     }
6768     case scUDivExpr: {
6769       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6770       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6771         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6772           if (LHS->getType() == RHS->getType())
6773             return ConstantExpr::getUDiv(LHS, RHS);
6774       break;
6775     }
6776     case scSMaxExpr:
6777     case scUMaxExpr:
6778       break; // TODO: smax, umax.
6779   }
6780   return nullptr;
6781 }
6782 
6783 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6784   if (isa<SCEVConstant>(V)) return V;
6785 
6786   // If this instruction is evolved from a constant-evolving PHI, compute the
6787   // exit value from the loop without using SCEVs.
6788   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6789     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6790       const Loop *LI = this->LI[I->getParent()];
6791       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6792         if (PHINode *PN = dyn_cast<PHINode>(I))
6793           if (PN->getParent() == LI->getHeader()) {
6794             // Okay, there is no closed form solution for the PHI node.  Check
6795             // to see if the loop that contains it has a known backedge-taken
6796             // count.  If so, we may be able to force computation of the exit
6797             // value.
6798             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6799             if (const SCEVConstant *BTCC =
6800                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6801               // Okay, we know how many times the containing loop executes.  If
6802               // this is a constant evolving PHI node, get the final value at
6803               // the specified iteration number.
6804               Constant *RV =
6805                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6806               if (RV) return getSCEV(RV);
6807             }
6808           }
6809 
6810       // Okay, this is an expression that we cannot symbolically evaluate
6811       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6812       // the arguments into constants, and if so, try to constant propagate the
6813       // result.  This is particularly useful for computing loop exit values.
6814       if (CanConstantFold(I)) {
6815         SmallVector<Constant *, 4> Operands;
6816         bool MadeImprovement = false;
6817         for (Value *Op : I->operands()) {
6818           if (Constant *C = dyn_cast<Constant>(Op)) {
6819             Operands.push_back(C);
6820             continue;
6821           }
6822 
6823           // If any of the operands is non-constant and if they are
6824           // non-integer and non-pointer, don't even try to analyze them
6825           // with scev techniques.
6826           if (!isSCEVable(Op->getType()))
6827             return V;
6828 
6829           const SCEV *OrigV = getSCEV(Op);
6830           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6831           MadeImprovement |= OrigV != OpV;
6832 
6833           Constant *C = BuildConstantFromSCEV(OpV);
6834           if (!C) return V;
6835           if (C->getType() != Op->getType())
6836             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6837                                                               Op->getType(),
6838                                                               false),
6839                                       C, Op->getType());
6840           Operands.push_back(C);
6841         }
6842 
6843         // Check to see if getSCEVAtScope actually made an improvement.
6844         if (MadeImprovement) {
6845           Constant *C = nullptr;
6846           const DataLayout &DL = getDataLayout();
6847           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6848             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6849                                                 Operands[1], DL, &TLI);
6850           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6851             if (!LI->isVolatile())
6852               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6853           } else
6854             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6855           if (!C) return V;
6856           return getSCEV(C);
6857         }
6858       }
6859     }
6860 
6861     // This is some other type of SCEVUnknown, just return it.
6862     return V;
6863   }
6864 
6865   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6866     // Avoid performing the look-up in the common case where the specified
6867     // expression has no loop-variant portions.
6868     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6869       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6870       if (OpAtScope != Comm->getOperand(i)) {
6871         // Okay, at least one of these operands is loop variant but might be
6872         // foldable.  Build a new instance of the folded commutative expression.
6873         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6874                                             Comm->op_begin()+i);
6875         NewOps.push_back(OpAtScope);
6876 
6877         for (++i; i != e; ++i) {
6878           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6879           NewOps.push_back(OpAtScope);
6880         }
6881         if (isa<SCEVAddExpr>(Comm))
6882           return getAddExpr(NewOps);
6883         if (isa<SCEVMulExpr>(Comm))
6884           return getMulExpr(NewOps);
6885         if (isa<SCEVSMaxExpr>(Comm))
6886           return getSMaxExpr(NewOps);
6887         if (isa<SCEVUMaxExpr>(Comm))
6888           return getUMaxExpr(NewOps);
6889         llvm_unreachable("Unknown commutative SCEV type!");
6890       }
6891     }
6892     // If we got here, all operands are loop invariant.
6893     return Comm;
6894   }
6895 
6896   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6897     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6898     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6899     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6900       return Div;   // must be loop invariant
6901     return getUDivExpr(LHS, RHS);
6902   }
6903 
6904   // If this is a loop recurrence for a loop that does not contain L, then we
6905   // are dealing with the final value computed by the loop.
6906   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6907     // First, attempt to evaluate each operand.
6908     // Avoid performing the look-up in the common case where the specified
6909     // expression has no loop-variant portions.
6910     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6911       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6912       if (OpAtScope == AddRec->getOperand(i))
6913         continue;
6914 
6915       // Okay, at least one of these operands is loop variant but might be
6916       // foldable.  Build a new instance of the folded commutative expression.
6917       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6918                                           AddRec->op_begin()+i);
6919       NewOps.push_back(OpAtScope);
6920       for (++i; i != e; ++i)
6921         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6922 
6923       const SCEV *FoldedRec =
6924         getAddRecExpr(NewOps, AddRec->getLoop(),
6925                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6926       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6927       // The addrec may be folded to a nonrecurrence, for example, if the
6928       // induction variable is multiplied by zero after constant folding. Go
6929       // ahead and return the folded value.
6930       if (!AddRec)
6931         return FoldedRec;
6932       break;
6933     }
6934 
6935     // If the scope is outside the addrec's loop, evaluate it by using the
6936     // loop exit value of the addrec.
6937     if (!AddRec->getLoop()->contains(L)) {
6938       // To evaluate this recurrence, we need to know how many times the AddRec
6939       // loop iterates.  Compute this now.
6940       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6941       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6942 
6943       // Then, evaluate the AddRec.
6944       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6945     }
6946 
6947     return AddRec;
6948   }
6949 
6950   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6951     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6952     if (Op == Cast->getOperand())
6953       return Cast;  // must be loop invariant
6954     return getZeroExtendExpr(Op, Cast->getType());
6955   }
6956 
6957   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6958     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6959     if (Op == Cast->getOperand())
6960       return Cast;  // must be loop invariant
6961     return getSignExtendExpr(Op, Cast->getType());
6962   }
6963 
6964   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6965     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6966     if (Op == Cast->getOperand())
6967       return Cast;  // must be loop invariant
6968     return getTruncateExpr(Op, Cast->getType());
6969   }
6970 
6971   llvm_unreachable("Unknown SCEV type!");
6972 }
6973 
6974 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6975   return getSCEVAtScope(getSCEV(V), L);
6976 }
6977 
6978 /// Finds the minimum unsigned root of the following equation:
6979 ///
6980 ///     A * X = B (mod N)
6981 ///
6982 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6983 /// A and B isn't important.
6984 ///
6985 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6986 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6987                                                ScalarEvolution &SE) {
6988   uint32_t BW = A.getBitWidth();
6989   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6990   assert(A != 0 && "A must be non-zero.");
6991 
6992   // 1. D = gcd(A, N)
6993   //
6994   // The gcd of A and N may have only one prime factor: 2. The number of
6995   // trailing zeros in A is its multiplicity
6996   uint32_t Mult2 = A.countTrailingZeros();
6997   // D = 2^Mult2
6998 
6999   // 2. Check if B is divisible by D.
7000   //
7001   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
7002   // is not less than multiplicity of this prime factor for D.
7003   if (B.countTrailingZeros() < Mult2)
7004     return SE.getCouldNotCompute();
7005 
7006   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
7007   // modulo (N / D).
7008   //
7009   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
7010   // bit width during computations.
7011   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
7012   APInt Mod(BW + 1, 0);
7013   Mod.setBit(BW - Mult2);  // Mod = N / D
7014   APInt I = AD.multiplicativeInverse(Mod);
7015 
7016   // 4. Compute the minimum unsigned root of the equation:
7017   // I * (B / D) mod (N / D)
7018   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
7019 
7020   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
7021   // bits.
7022   return SE.getConstant(Result.trunc(BW));
7023 }
7024 
7025 /// Find the roots of the quadratic equation for the given quadratic chrec
7026 /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
7027 /// two SCEVCouldNotCompute objects.
7028 ///
7029 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
7030 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
7031   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
7032   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
7033   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
7034   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
7035 
7036   // We currently can only solve this if the coefficients are constants.
7037   if (!LC || !MC || !NC)
7038     return None;
7039 
7040   uint32_t BitWidth = LC->getAPInt().getBitWidth();
7041   const APInt &L = LC->getAPInt();
7042   const APInt &M = MC->getAPInt();
7043   const APInt &N = NC->getAPInt();
7044   APInt Two(BitWidth, 2);
7045   APInt Four(BitWidth, 4);
7046 
7047   {
7048     using namespace APIntOps;
7049     const APInt& C = L;
7050     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
7051     // The B coefficient is M-N/2
7052     APInt B(M);
7053     B -= sdiv(N,Two);
7054 
7055     // The A coefficient is N/2
7056     APInt A(N.sdiv(Two));
7057 
7058     // Compute the B^2-4ac term.
7059     APInt SqrtTerm(B);
7060     SqrtTerm *= B;
7061     SqrtTerm -= Four * (A * C);
7062 
7063     if (SqrtTerm.isNegative()) {
7064       // The loop is provably infinite.
7065       return None;
7066     }
7067 
7068     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7069     // integer value or else APInt::sqrt() will assert.
7070     APInt SqrtVal(SqrtTerm.sqrt());
7071 
7072     // Compute the two solutions for the quadratic formula.
7073     // The divisions must be performed as signed divisions.
7074     APInt NegB(-B);
7075     APInt TwoA(A << 1);
7076     if (TwoA.isMinValue())
7077       return None;
7078 
7079     LLVMContext &Context = SE.getContext();
7080 
7081     ConstantInt *Solution1 =
7082       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
7083     ConstantInt *Solution2 =
7084       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
7085 
7086     return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
7087                           cast<SCEVConstant>(SE.getConstant(Solution2)));
7088   } // end APIntOps namespace
7089 }
7090 
7091 ScalarEvolution::ExitLimit
7092 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
7093                               bool AllowPredicates) {
7094 
7095   // This is only used for loops with a "x != y" exit test. The exit condition
7096   // is now expressed as a single expression, V = x-y. So the exit test is
7097   // effectively V != 0.  We know and take advantage of the fact that this
7098   // expression only being used in a comparison by zero context.
7099 
7100   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
7101   // If the value is a constant
7102   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7103     // If the value is already zero, the branch will execute zero times.
7104     if (C->getValue()->isZero()) return C;
7105     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7106   }
7107 
7108   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
7109   if (!AddRec && AllowPredicates)
7110     // Try to make this an AddRec using runtime tests, in the first X
7111     // iterations of this loop, where X is the SCEV expression found by the
7112     // algorithm below.
7113     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
7114 
7115   if (!AddRec || AddRec->getLoop() != L)
7116     return getCouldNotCompute();
7117 
7118   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7119   // the quadratic equation to solve it.
7120   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7121     if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
7122       const SCEVConstant *R1 = Roots->first;
7123       const SCEVConstant *R2 = Roots->second;
7124       // Pick the smallest positive root value.
7125       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
7126               CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
7127         if (!CB->getZExtValue())
7128           std::swap(R1, R2); // R1 is the minimum root now.
7129 
7130         // We can only use this value if the chrec ends up with an exact zero
7131         // value at this index.  When solving for "X*X != 5", for example, we
7132         // should not accept a root of 2.
7133         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
7134         if (Val->isZero())
7135           // We found a quadratic root!
7136           return ExitLimit(R1, R1, false, Predicates);
7137       }
7138     }
7139     return getCouldNotCompute();
7140   }
7141 
7142   // Otherwise we can only handle this if it is affine.
7143   if (!AddRec->isAffine())
7144     return getCouldNotCompute();
7145 
7146   // If this is an affine expression, the execution count of this branch is
7147   // the minimum unsigned root of the following equation:
7148   //
7149   //     Start + Step*N = 0 (mod 2^BW)
7150   //
7151   // equivalent to:
7152   //
7153   //             Step*N = -Start (mod 2^BW)
7154   //
7155   // where BW is the common bit width of Start and Step.
7156 
7157   // Get the initial value for the loop.
7158   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7159   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7160 
7161   // For now we handle only constant steps.
7162   //
7163   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7164   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7165   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7166   // We have not yet seen any such cases.
7167   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
7168   if (!StepC || StepC->getValue()->equalsInt(0))
7169     return getCouldNotCompute();
7170 
7171   // For positive steps (counting up until unsigned overflow):
7172   //   N = -Start/Step (as unsigned)
7173   // For negative steps (counting down to zero):
7174   //   N = Start/-Step
7175   // First compute the unsigned distance from zero in the direction of Step.
7176   bool CountDown = StepC->getAPInt().isNegative();
7177   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
7178 
7179   // Handle unitary steps, which cannot wraparound.
7180   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7181   //   N = Distance (as unsigned)
7182   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7183     ConstantRange CR = getUnsignedRange(Start);
7184     const SCEV *MaxBECount;
7185     if (!CountDown && CR.getUnsignedMin().isMinValue())
7186       // When counting up, the worst starting value is 1, not 0.
7187       MaxBECount = CR.getUnsignedMax().isMinValue()
7188         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
7189         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
7190     else
7191       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
7192                                          : -CR.getUnsignedMin());
7193     return ExitLimit(Distance, MaxBECount, false, Predicates);
7194   }
7195 
7196   // As a special case, handle the instance where Step is a positive power of
7197   // two. In this case, determining whether Step divides Distance evenly can be
7198   // done by counting and comparing the number of trailing zeros of Step and
7199   // Distance.
7200   if (!CountDown) {
7201     const APInt &StepV = StepC->getAPInt();
7202     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
7203     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7204     // case is not handled as this code is guarded by !CountDown.
7205     if (StepV.isPowerOf2() &&
7206         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7207       // Here we've constrained the equation to be of the form
7208       //
7209       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
7210       //
7211       // where we're operating on a W bit wide integer domain and k is
7212       // non-negative.  The smallest unsigned solution for X is the trip count.
7213       //
7214       // (0) is equivalent to:
7215       //
7216       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
7217       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7218       // <=>  2^k * Distance' - X = L * 2^(W - N)
7219       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
7220       //
7221       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7222       // by 2^(W - N).
7223       //
7224       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
7225       //
7226       // E.g. say we're solving
7227       //
7228       //   2 * Val = 2 * X  (in i8)   ... (3)
7229       //
7230       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7231       //
7232       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7233       // necessarily the smallest unsigned value of X that satisfies (3).
7234       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7235       // is i8 1, not i8 -127
7236 
7237       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7238 
7239       // Since SCEV does not have a URem node, we construct one using a truncate
7240       // and a zero extend.
7241 
7242       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7243       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7244       auto *WideTy = Distance->getType();
7245 
7246       const SCEV *Limit =
7247           getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7248       return ExitLimit(Limit, Limit, false, Predicates);
7249     }
7250   }
7251 
7252   // If the condition controls loop exit (the loop exits only if the expression
7253   // is true) and the addition is no-wrap we can use unsigned divide to
7254   // compute the backedge count.  In this case, the step may not divide the
7255   // distance, but we don't care because if the condition is "missed" the loop
7256   // will have undefined behavior due to wrapping.
7257   if (ControlsExit && AddRec->hasNoSelfWrap() &&
7258       loopHasNoAbnormalExits(AddRec->getLoop())) {
7259     const SCEV *Exact =
7260         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7261     return ExitLimit(Exact, Exact, false, Predicates);
7262   }
7263 
7264   // Then, try to solve the above equation provided that Start is constant.
7265   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7266     const SCEV *E = SolveLinEquationWithOverflow(
7267         StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7268     return ExitLimit(E, E, false, Predicates);
7269   }
7270   return getCouldNotCompute();
7271 }
7272 
7273 ScalarEvolution::ExitLimit
7274 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
7275   // Loops that look like: while (X == 0) are very strange indeed.  We don't
7276   // handle them yet except for the trivial case.  This could be expanded in the
7277   // future as needed.
7278 
7279   // If the value is a constant, check to see if it is known to be non-zero
7280   // already.  If so, the backedge will execute zero times.
7281   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7282     if (!C->getValue()->isNullValue())
7283       return getZero(C->getType());
7284     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7285   }
7286 
7287   // We could implement others, but I really doubt anyone writes loops like
7288   // this, and if they did, they would already be constant folded.
7289   return getCouldNotCompute();
7290 }
7291 
7292 std::pair<BasicBlock *, BasicBlock *>
7293 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7294   // If the block has a unique predecessor, then there is no path from the
7295   // predecessor to the block that does not go through the direct edge
7296   // from the predecessor to the block.
7297   if (BasicBlock *Pred = BB->getSinglePredecessor())
7298     return {Pred, BB};
7299 
7300   // A loop's header is defined to be a block that dominates the loop.
7301   // If the header has a unique predecessor outside the loop, it must be
7302   // a block that has exactly one successor that can reach the loop.
7303   if (Loop *L = LI.getLoopFor(BB))
7304     return {L->getLoopPredecessor(), L->getHeader()};
7305 
7306   return {nullptr, nullptr};
7307 }
7308 
7309 /// SCEV structural equivalence is usually sufficient for testing whether two
7310 /// expressions are equal, however for the purposes of looking for a condition
7311 /// guarding a loop, it can be useful to be a little more general, since a
7312 /// front-end may have replicated the controlling expression.
7313 ///
7314 static bool HasSameValue(const SCEV *A, const SCEV *B) {
7315   // Quick check to see if they are the same SCEV.
7316   if (A == B) return true;
7317 
7318   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7319     // Not all instructions that are "identical" compute the same value.  For
7320     // instance, two distinct alloca instructions allocating the same type are
7321     // identical and do not read memory; but compute distinct values.
7322     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7323   };
7324 
7325   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7326   // two different instructions with the same value. Check for this case.
7327   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7328     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7329       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7330         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7331           if (ComputesEqualValues(AI, BI))
7332             return true;
7333 
7334   // Otherwise assume they may have a different value.
7335   return false;
7336 }
7337 
7338 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7339                                            const SCEV *&LHS, const SCEV *&RHS,
7340                                            unsigned Depth) {
7341   bool Changed = false;
7342 
7343   // If we hit the max recursion limit bail out.
7344   if (Depth >= 3)
7345     return false;
7346 
7347   // Canonicalize a constant to the right side.
7348   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7349     // Check for both operands constant.
7350     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7351       if (ConstantExpr::getICmp(Pred,
7352                                 LHSC->getValue(),
7353                                 RHSC->getValue())->isNullValue())
7354         goto trivially_false;
7355       else
7356         goto trivially_true;
7357     }
7358     // Otherwise swap the operands to put the constant on the right.
7359     std::swap(LHS, RHS);
7360     Pred = ICmpInst::getSwappedPredicate(Pred);
7361     Changed = true;
7362   }
7363 
7364   // If we're comparing an addrec with a value which is loop-invariant in the
7365   // addrec's loop, put the addrec on the left. Also make a dominance check,
7366   // as both operands could be addrecs loop-invariant in each other's loop.
7367   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7368     const Loop *L = AR->getLoop();
7369     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7370       std::swap(LHS, RHS);
7371       Pred = ICmpInst::getSwappedPredicate(Pred);
7372       Changed = true;
7373     }
7374   }
7375 
7376   // If there's a constant operand, canonicalize comparisons with boundary
7377   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7378   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7379     const APInt &RA = RC->getAPInt();
7380 
7381     bool SimplifiedByConstantRange = false;
7382 
7383     if (!ICmpInst::isEquality(Pred)) {
7384       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
7385       if (ExactCR.isFullSet())
7386         goto trivially_true;
7387       else if (ExactCR.isEmptySet())
7388         goto trivially_false;
7389 
7390       APInt NewRHS;
7391       CmpInst::Predicate NewPred;
7392       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
7393           ICmpInst::isEquality(NewPred)) {
7394         // We were able to convert an inequality to an equality.
7395         Pred = NewPred;
7396         RHS = getConstant(NewRHS);
7397         Changed = SimplifiedByConstantRange = true;
7398       }
7399     }
7400 
7401     if (!SimplifiedByConstantRange) {
7402       switch (Pred) {
7403       default:
7404         break;
7405       case ICmpInst::ICMP_EQ:
7406       case ICmpInst::ICMP_NE:
7407         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7408         if (!RA)
7409           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7410             if (const SCEVMulExpr *ME =
7411                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7412               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7413                   ME->getOperand(0)->isAllOnesValue()) {
7414                 RHS = AE->getOperand(1);
7415                 LHS = ME->getOperand(1);
7416                 Changed = true;
7417               }
7418         break;
7419 
7420 
7421         // The "Should have been caught earlier!" messages refer to the fact
7422         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
7423         // should have fired on the corresponding cases, and canonicalized the
7424         // check to trivially_true or trivially_false.
7425 
7426       case ICmpInst::ICMP_UGE:
7427         assert(!RA.isMinValue() && "Should have been caught earlier!");
7428         Pred = ICmpInst::ICMP_UGT;
7429         RHS = getConstant(RA - 1);
7430         Changed = true;
7431         break;
7432       case ICmpInst::ICMP_ULE:
7433         assert(!RA.isMaxValue() && "Should have been caught earlier!");
7434         Pred = ICmpInst::ICMP_ULT;
7435         RHS = getConstant(RA + 1);
7436         Changed = true;
7437         break;
7438       case ICmpInst::ICMP_SGE:
7439         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
7440         Pred = ICmpInst::ICMP_SGT;
7441         RHS = getConstant(RA - 1);
7442         Changed = true;
7443         break;
7444       case ICmpInst::ICMP_SLE:
7445         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
7446         Pred = ICmpInst::ICMP_SLT;
7447         RHS = getConstant(RA + 1);
7448         Changed = true;
7449         break;
7450       }
7451     }
7452   }
7453 
7454   // Check for obvious equality.
7455   if (HasSameValue(LHS, RHS)) {
7456     if (ICmpInst::isTrueWhenEqual(Pred))
7457       goto trivially_true;
7458     if (ICmpInst::isFalseWhenEqual(Pred))
7459       goto trivially_false;
7460   }
7461 
7462   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7463   // adding or subtracting 1 from one of the operands.
7464   switch (Pred) {
7465   case ICmpInst::ICMP_SLE:
7466     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7467       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7468                        SCEV::FlagNSW);
7469       Pred = ICmpInst::ICMP_SLT;
7470       Changed = true;
7471     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7472       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7473                        SCEV::FlagNSW);
7474       Pred = ICmpInst::ICMP_SLT;
7475       Changed = true;
7476     }
7477     break;
7478   case ICmpInst::ICMP_SGE:
7479     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7480       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7481                        SCEV::FlagNSW);
7482       Pred = ICmpInst::ICMP_SGT;
7483       Changed = true;
7484     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7485       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7486                        SCEV::FlagNSW);
7487       Pred = ICmpInst::ICMP_SGT;
7488       Changed = true;
7489     }
7490     break;
7491   case ICmpInst::ICMP_ULE:
7492     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7493       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7494                        SCEV::FlagNUW);
7495       Pred = ICmpInst::ICMP_ULT;
7496       Changed = true;
7497     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7498       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7499       Pred = ICmpInst::ICMP_ULT;
7500       Changed = true;
7501     }
7502     break;
7503   case ICmpInst::ICMP_UGE:
7504     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7505       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7506       Pred = ICmpInst::ICMP_UGT;
7507       Changed = true;
7508     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7509       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7510                        SCEV::FlagNUW);
7511       Pred = ICmpInst::ICMP_UGT;
7512       Changed = true;
7513     }
7514     break;
7515   default:
7516     break;
7517   }
7518 
7519   // TODO: More simplifications are possible here.
7520 
7521   // Recursively simplify until we either hit a recursion limit or nothing
7522   // changes.
7523   if (Changed)
7524     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7525 
7526   return Changed;
7527 
7528 trivially_true:
7529   // Return 0 == 0.
7530   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7531   Pred = ICmpInst::ICMP_EQ;
7532   return true;
7533 
7534 trivially_false:
7535   // Return 0 != 0.
7536   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7537   Pred = ICmpInst::ICMP_NE;
7538   return true;
7539 }
7540 
7541 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7542   return getSignedRange(S).getSignedMax().isNegative();
7543 }
7544 
7545 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7546   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7547 }
7548 
7549 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7550   return !getSignedRange(S).getSignedMin().isNegative();
7551 }
7552 
7553 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7554   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7555 }
7556 
7557 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7558   return isKnownNegative(S) || isKnownPositive(S);
7559 }
7560 
7561 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7562                                        const SCEV *LHS, const SCEV *RHS) {
7563   // Canonicalize the inputs first.
7564   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7565 
7566   // If LHS or RHS is an addrec, check to see if the condition is true in
7567   // every iteration of the loop.
7568   // If LHS and RHS are both addrec, both conditions must be true in
7569   // every iteration of the loop.
7570   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7571   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7572   bool LeftGuarded = false;
7573   bool RightGuarded = false;
7574   if (LAR) {
7575     const Loop *L = LAR->getLoop();
7576     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7577         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7578       if (!RAR) return true;
7579       LeftGuarded = true;
7580     }
7581   }
7582   if (RAR) {
7583     const Loop *L = RAR->getLoop();
7584     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7585         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7586       if (!LAR) return true;
7587       RightGuarded = true;
7588     }
7589   }
7590   if (LeftGuarded && RightGuarded)
7591     return true;
7592 
7593   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7594     return true;
7595 
7596   // Otherwise see what can be done with known constant ranges.
7597   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7598 }
7599 
7600 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7601                                            ICmpInst::Predicate Pred,
7602                                            bool &Increasing) {
7603   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7604 
7605 #ifndef NDEBUG
7606   // Verify an invariant: inverting the predicate should turn a monotonically
7607   // increasing change to a monotonically decreasing one, and vice versa.
7608   bool IncreasingSwapped;
7609   bool ResultSwapped = isMonotonicPredicateImpl(
7610       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7611 
7612   assert(Result == ResultSwapped && "should be able to analyze both!");
7613   if (ResultSwapped)
7614     assert(Increasing == !IncreasingSwapped &&
7615            "monotonicity should flip as we flip the predicate");
7616 #endif
7617 
7618   return Result;
7619 }
7620 
7621 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7622                                                ICmpInst::Predicate Pred,
7623                                                bool &Increasing) {
7624 
7625   // A zero step value for LHS means the induction variable is essentially a
7626   // loop invariant value. We don't really depend on the predicate actually
7627   // flipping from false to true (for increasing predicates, and the other way
7628   // around for decreasing predicates), all we care about is that *if* the
7629   // predicate changes then it only changes from false to true.
7630   //
7631   // A zero step value in itself is not very useful, but there may be places
7632   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7633   // as general as possible.
7634 
7635   switch (Pred) {
7636   default:
7637     return false; // Conservative answer
7638 
7639   case ICmpInst::ICMP_UGT:
7640   case ICmpInst::ICMP_UGE:
7641   case ICmpInst::ICMP_ULT:
7642   case ICmpInst::ICMP_ULE:
7643     if (!LHS->hasNoUnsignedWrap())
7644       return false;
7645 
7646     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7647     return true;
7648 
7649   case ICmpInst::ICMP_SGT:
7650   case ICmpInst::ICMP_SGE:
7651   case ICmpInst::ICMP_SLT:
7652   case ICmpInst::ICMP_SLE: {
7653     if (!LHS->hasNoSignedWrap())
7654       return false;
7655 
7656     const SCEV *Step = LHS->getStepRecurrence(*this);
7657 
7658     if (isKnownNonNegative(Step)) {
7659       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7660       return true;
7661     }
7662 
7663     if (isKnownNonPositive(Step)) {
7664       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7665       return true;
7666     }
7667 
7668     return false;
7669   }
7670 
7671   }
7672 
7673   llvm_unreachable("switch has default clause!");
7674 }
7675 
7676 bool ScalarEvolution::isLoopInvariantPredicate(
7677     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7678     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7679     const SCEV *&InvariantRHS) {
7680 
7681   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7682   if (!isLoopInvariant(RHS, L)) {
7683     if (!isLoopInvariant(LHS, L))
7684       return false;
7685 
7686     std::swap(LHS, RHS);
7687     Pred = ICmpInst::getSwappedPredicate(Pred);
7688   }
7689 
7690   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7691   if (!ArLHS || ArLHS->getLoop() != L)
7692     return false;
7693 
7694   bool Increasing;
7695   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7696     return false;
7697 
7698   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7699   // true as the loop iterates, and the backedge is control dependent on
7700   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7701   //
7702   //   * if the predicate was false in the first iteration then the predicate
7703   //     is never evaluated again, since the loop exits without taking the
7704   //     backedge.
7705   //   * if the predicate was true in the first iteration then it will
7706   //     continue to be true for all future iterations since it is
7707   //     monotonically increasing.
7708   //
7709   // For both the above possibilities, we can replace the loop varying
7710   // predicate with its value on the first iteration of the loop (which is
7711   // loop invariant).
7712   //
7713   // A similar reasoning applies for a monotonically decreasing predicate, by
7714   // replacing true with false and false with true in the above two bullets.
7715 
7716   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7717 
7718   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7719     return false;
7720 
7721   InvariantPred = Pred;
7722   InvariantLHS = ArLHS->getStart();
7723   InvariantRHS = RHS;
7724   return true;
7725 }
7726 
7727 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7728     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7729   if (HasSameValue(LHS, RHS))
7730     return ICmpInst::isTrueWhenEqual(Pred);
7731 
7732   // This code is split out from isKnownPredicate because it is called from
7733   // within isLoopEntryGuardedByCond.
7734 
7735   auto CheckRanges =
7736       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7737     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7738         .contains(RangeLHS);
7739   };
7740 
7741   // The check at the top of the function catches the case where the values are
7742   // known to be equal.
7743   if (Pred == CmpInst::ICMP_EQ)
7744     return false;
7745 
7746   if (Pred == CmpInst::ICMP_NE)
7747     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7748            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7749            isKnownNonZero(getMinusSCEV(LHS, RHS));
7750 
7751   if (CmpInst::isSigned(Pred))
7752     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7753 
7754   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7755 }
7756 
7757 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7758                                                     const SCEV *LHS,
7759                                                     const SCEV *RHS) {
7760 
7761   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7762   // Return Y via OutY.
7763   auto MatchBinaryAddToConst =
7764       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7765              SCEV::NoWrapFlags ExpectedFlags) {
7766     const SCEV *NonConstOp, *ConstOp;
7767     SCEV::NoWrapFlags FlagsPresent;
7768 
7769     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7770         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7771       return false;
7772 
7773     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7774     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7775   };
7776 
7777   APInt C;
7778 
7779   switch (Pred) {
7780   default:
7781     break;
7782 
7783   case ICmpInst::ICMP_SGE:
7784     std::swap(LHS, RHS);
7785   case ICmpInst::ICMP_SLE:
7786     // X s<= (X + C)<nsw> if C >= 0
7787     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7788       return true;
7789 
7790     // (X + C)<nsw> s<= X if C <= 0
7791     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7792         !C.isStrictlyPositive())
7793       return true;
7794     break;
7795 
7796   case ICmpInst::ICMP_SGT:
7797     std::swap(LHS, RHS);
7798   case ICmpInst::ICMP_SLT:
7799     // X s< (X + C)<nsw> if C > 0
7800     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7801         C.isStrictlyPositive())
7802       return true;
7803 
7804     // (X + C)<nsw> s< X if C < 0
7805     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7806       return true;
7807     break;
7808   }
7809 
7810   return false;
7811 }
7812 
7813 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7814                                                    const SCEV *LHS,
7815                                                    const SCEV *RHS) {
7816   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7817     return false;
7818 
7819   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7820   // the stack can result in exponential time complexity.
7821   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7822 
7823   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7824   //
7825   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7826   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7827   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7828   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7829   // use isKnownPredicate later if needed.
7830   return isKnownNonNegative(RHS) &&
7831          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7832          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7833 }
7834 
7835 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7836                                         ICmpInst::Predicate Pred,
7837                                         const SCEV *LHS, const SCEV *RHS) {
7838   // No need to even try if we know the module has no guards.
7839   if (!HasGuards)
7840     return false;
7841 
7842   return any_of(*BB, [&](Instruction &I) {
7843     using namespace llvm::PatternMatch;
7844 
7845     Value *Condition;
7846     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7847                          m_Value(Condition))) &&
7848            isImpliedCond(Pred, LHS, RHS, Condition, false);
7849   });
7850 }
7851 
7852 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7853 /// protected by a conditional between LHS and RHS.  This is used to
7854 /// to eliminate casts.
7855 bool
7856 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7857                                              ICmpInst::Predicate Pred,
7858                                              const SCEV *LHS, const SCEV *RHS) {
7859   // Interpret a null as meaning no loop, where there is obviously no guard
7860   // (interprocedural conditions notwithstanding).
7861   if (!L) return true;
7862 
7863   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7864     return true;
7865 
7866   BasicBlock *Latch = L->getLoopLatch();
7867   if (!Latch)
7868     return false;
7869 
7870   BranchInst *LoopContinuePredicate =
7871     dyn_cast<BranchInst>(Latch->getTerminator());
7872   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7873       isImpliedCond(Pred, LHS, RHS,
7874                     LoopContinuePredicate->getCondition(),
7875                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7876     return true;
7877 
7878   // We don't want more than one activation of the following loops on the stack
7879   // -- that can lead to O(n!) time complexity.
7880   if (WalkingBEDominatingConds)
7881     return false;
7882 
7883   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7884 
7885   // See if we can exploit a trip count to prove the predicate.
7886   const auto &BETakenInfo = getBackedgeTakenInfo(L);
7887   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7888   if (LatchBECount != getCouldNotCompute()) {
7889     // We know that Latch branches back to the loop header exactly
7890     // LatchBECount times.  This means the backdege condition at Latch is
7891     // equivalent to  "{0,+,1} u< LatchBECount".
7892     Type *Ty = LatchBECount->getType();
7893     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7894     const SCEV *LoopCounter =
7895       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7896     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7897                       LatchBECount))
7898       return true;
7899   }
7900 
7901   // Check conditions due to any @llvm.assume intrinsics.
7902   for (auto &AssumeVH : AC.assumptions()) {
7903     if (!AssumeVH)
7904       continue;
7905     auto *CI = cast<CallInst>(AssumeVH);
7906     if (!DT.dominates(CI, Latch->getTerminator()))
7907       continue;
7908 
7909     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7910       return true;
7911   }
7912 
7913   // If the loop is not reachable from the entry block, we risk running into an
7914   // infinite loop as we walk up into the dom tree.  These loops do not matter
7915   // anyway, so we just return a conservative answer when we see them.
7916   if (!DT.isReachableFromEntry(L->getHeader()))
7917     return false;
7918 
7919   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
7920     return true;
7921 
7922   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7923        DTN != HeaderDTN; DTN = DTN->getIDom()) {
7924 
7925     assert(DTN && "should reach the loop header before reaching the root!");
7926 
7927     BasicBlock *BB = DTN->getBlock();
7928     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
7929       return true;
7930 
7931     BasicBlock *PBB = BB->getSinglePredecessor();
7932     if (!PBB)
7933       continue;
7934 
7935     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7936     if (!ContinuePredicate || !ContinuePredicate->isConditional())
7937       continue;
7938 
7939     Value *Condition = ContinuePredicate->getCondition();
7940 
7941     // If we have an edge `E` within the loop body that dominates the only
7942     // latch, the condition guarding `E` also guards the backedge.  This
7943     // reasoning works only for loops with a single latch.
7944 
7945     BasicBlockEdge DominatingEdge(PBB, BB);
7946     if (DominatingEdge.isSingleEdge()) {
7947       // We're constructively (and conservatively) enumerating edges within the
7948       // loop body that dominate the latch.  The dominator tree better agree
7949       // with us on this:
7950       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
7951 
7952       if (isImpliedCond(Pred, LHS, RHS, Condition,
7953                         BB != ContinuePredicate->getSuccessor(0)))
7954         return true;
7955     }
7956   }
7957 
7958   return false;
7959 }
7960 
7961 bool
7962 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7963                                           ICmpInst::Predicate Pred,
7964                                           const SCEV *LHS, const SCEV *RHS) {
7965   // Interpret a null as meaning no loop, where there is obviously no guard
7966   // (interprocedural conditions notwithstanding).
7967   if (!L) return false;
7968 
7969   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7970     return true;
7971 
7972   // Starting at the loop predecessor, climb up the predecessor chain, as long
7973   // as there are predecessors that can be found that have unique successors
7974   // leading to the original header.
7975   for (std::pair<BasicBlock *, BasicBlock *>
7976          Pair(L->getLoopPredecessor(), L->getHeader());
7977        Pair.first;
7978        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7979 
7980     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
7981       return true;
7982 
7983     BranchInst *LoopEntryPredicate =
7984       dyn_cast<BranchInst>(Pair.first->getTerminator());
7985     if (!LoopEntryPredicate ||
7986         LoopEntryPredicate->isUnconditional())
7987       continue;
7988 
7989     if (isImpliedCond(Pred, LHS, RHS,
7990                       LoopEntryPredicate->getCondition(),
7991                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
7992       return true;
7993   }
7994 
7995   // Check conditions due to any @llvm.assume intrinsics.
7996   for (auto &AssumeVH : AC.assumptions()) {
7997     if (!AssumeVH)
7998       continue;
7999     auto *CI = cast<CallInst>(AssumeVH);
8000     if (!DT.dominates(CI, L->getHeader()))
8001       continue;
8002 
8003     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8004       return true;
8005   }
8006 
8007   return false;
8008 }
8009 
8010 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
8011                                     const SCEV *LHS, const SCEV *RHS,
8012                                     Value *FoundCondValue,
8013                                     bool Inverse) {
8014   if (!PendingLoopPredicates.insert(FoundCondValue).second)
8015     return false;
8016 
8017   auto ClearOnExit =
8018       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
8019 
8020   // Recursively handle And and Or conditions.
8021   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
8022     if (BO->getOpcode() == Instruction::And) {
8023       if (!Inverse)
8024         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8025                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8026     } else if (BO->getOpcode() == Instruction::Or) {
8027       if (Inverse)
8028         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8029                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8030     }
8031   }
8032 
8033   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8034   if (!ICI) return false;
8035 
8036   // Now that we found a conditional branch that dominates the loop or controls
8037   // the loop latch. Check to see if it is the comparison we are looking for.
8038   ICmpInst::Predicate FoundPred;
8039   if (Inverse)
8040     FoundPred = ICI->getInversePredicate();
8041   else
8042     FoundPred = ICI->getPredicate();
8043 
8044   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8045   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8046 
8047   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8048 }
8049 
8050 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8051                                     const SCEV *RHS,
8052                                     ICmpInst::Predicate FoundPred,
8053                                     const SCEV *FoundLHS,
8054                                     const SCEV *FoundRHS) {
8055   // Balance the types.
8056   if (getTypeSizeInBits(LHS->getType()) <
8057       getTypeSizeInBits(FoundLHS->getType())) {
8058     if (CmpInst::isSigned(Pred)) {
8059       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8060       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8061     } else {
8062       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8063       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8064     }
8065   } else if (getTypeSizeInBits(LHS->getType()) >
8066       getTypeSizeInBits(FoundLHS->getType())) {
8067     if (CmpInst::isSigned(FoundPred)) {
8068       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8069       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8070     } else {
8071       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8072       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8073     }
8074   }
8075 
8076   // Canonicalize the query to match the way instcombine will have
8077   // canonicalized the comparison.
8078   if (SimplifyICmpOperands(Pred, LHS, RHS))
8079     if (LHS == RHS)
8080       return CmpInst::isTrueWhenEqual(Pred);
8081   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8082     if (FoundLHS == FoundRHS)
8083       return CmpInst::isFalseWhenEqual(FoundPred);
8084 
8085   // Check to see if we can make the LHS or RHS match.
8086   if (LHS == FoundRHS || RHS == FoundLHS) {
8087     if (isa<SCEVConstant>(RHS)) {
8088       std::swap(FoundLHS, FoundRHS);
8089       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8090     } else {
8091       std::swap(LHS, RHS);
8092       Pred = ICmpInst::getSwappedPredicate(Pred);
8093     }
8094   }
8095 
8096   // Check whether the found predicate is the same as the desired predicate.
8097   if (FoundPred == Pred)
8098     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8099 
8100   // Check whether swapping the found predicate makes it the same as the
8101   // desired predicate.
8102   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8103     if (isa<SCEVConstant>(RHS))
8104       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8105     else
8106       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8107                                    RHS, LHS, FoundLHS, FoundRHS);
8108   }
8109 
8110   // Unsigned comparison is the same as signed comparison when both the operands
8111   // are non-negative.
8112   if (CmpInst::isUnsigned(FoundPred) &&
8113       CmpInst::getSignedPredicate(FoundPred) == Pred &&
8114       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8115     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8116 
8117   // Check if we can make progress by sharpening ranges.
8118   if (FoundPred == ICmpInst::ICMP_NE &&
8119       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8120 
8121     const SCEVConstant *C = nullptr;
8122     const SCEV *V = nullptr;
8123 
8124     if (isa<SCEVConstant>(FoundLHS)) {
8125       C = cast<SCEVConstant>(FoundLHS);
8126       V = FoundRHS;
8127     } else {
8128       C = cast<SCEVConstant>(FoundRHS);
8129       V = FoundLHS;
8130     }
8131 
8132     // The guarding predicate tells us that C != V. If the known range
8133     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
8134     // range we consider has to correspond to same signedness as the
8135     // predicate we're interested in folding.
8136 
8137     APInt Min = ICmpInst::isSigned(Pred) ?
8138         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8139 
8140     if (Min == C->getAPInt()) {
8141       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8142       // This is true even if (Min + 1) wraps around -- in case of
8143       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8144 
8145       APInt SharperMin = Min + 1;
8146 
8147       switch (Pred) {
8148         case ICmpInst::ICMP_SGE:
8149         case ICmpInst::ICMP_UGE:
8150           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
8151           // RHS, we're done.
8152           if (isImpliedCondOperands(Pred, LHS, RHS, V,
8153                                     getConstant(SharperMin)))
8154             return true;
8155 
8156         case ICmpInst::ICMP_SGT:
8157         case ICmpInst::ICMP_UGT:
8158           // We know from the range information that (V `Pred` Min ||
8159           // V == Min).  We know from the guarding condition that !(V
8160           // == Min).  This gives us
8161           //
8162           //       V `Pred` Min || V == Min && !(V == Min)
8163           //   =>  V `Pred` Min
8164           //
8165           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8166 
8167           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8168             return true;
8169 
8170         default:
8171           // No change
8172           break;
8173       }
8174     }
8175   }
8176 
8177   // Check whether the actual condition is beyond sufficient.
8178   if (FoundPred == ICmpInst::ICMP_EQ)
8179     if (ICmpInst::isTrueWhenEqual(Pred))
8180       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8181         return true;
8182   if (Pred == ICmpInst::ICMP_NE)
8183     if (!ICmpInst::isTrueWhenEqual(FoundPred))
8184       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8185         return true;
8186 
8187   // Otherwise assume the worst.
8188   return false;
8189 }
8190 
8191 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8192                                      const SCEV *&L, const SCEV *&R,
8193                                      SCEV::NoWrapFlags &Flags) {
8194   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8195   if (!AE || AE->getNumOperands() != 2)
8196     return false;
8197 
8198   L = AE->getOperand(0);
8199   R = AE->getOperand(1);
8200   Flags = AE->getNoWrapFlags();
8201   return true;
8202 }
8203 
8204 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
8205                                                            const SCEV *Less) {
8206   // We avoid subtracting expressions here because this function is usually
8207   // fairly deep in the call stack (i.e. is called many times).
8208 
8209   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8210     const auto *LAR = cast<SCEVAddRecExpr>(Less);
8211     const auto *MAR = cast<SCEVAddRecExpr>(More);
8212 
8213     if (LAR->getLoop() != MAR->getLoop())
8214       return None;
8215 
8216     // We look at affine expressions only; not for correctness but to keep
8217     // getStepRecurrence cheap.
8218     if (!LAR->isAffine() || !MAR->isAffine())
8219       return None;
8220 
8221     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8222       return None;
8223 
8224     Less = LAR->getStart();
8225     More = MAR->getStart();
8226 
8227     // fall through
8228   }
8229 
8230   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8231     const auto &M = cast<SCEVConstant>(More)->getAPInt();
8232     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8233     return M - L;
8234   }
8235 
8236   const SCEV *L, *R;
8237   SCEV::NoWrapFlags Flags;
8238   if (splitBinaryAdd(Less, L, R, Flags))
8239     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8240       if (R == More)
8241         return -(LC->getAPInt());
8242 
8243   if (splitBinaryAdd(More, L, R, Flags))
8244     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8245       if (R == Less)
8246         return LC->getAPInt();
8247 
8248   return None;
8249 }
8250 
8251 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8252     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8253     const SCEV *FoundLHS, const SCEV *FoundRHS) {
8254   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8255     return false;
8256 
8257   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8258   if (!AddRecLHS)
8259     return false;
8260 
8261   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8262   if (!AddRecFoundLHS)
8263     return false;
8264 
8265   // We'd like to let SCEV reason about control dependencies, so we constrain
8266   // both the inequalities to be about add recurrences on the same loop.  This
8267   // way we can use isLoopEntryGuardedByCond later.
8268 
8269   const Loop *L = AddRecFoundLHS->getLoop();
8270   if (L != AddRecLHS->getLoop())
8271     return false;
8272 
8273   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
8274   //
8275   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8276   //                                                                  ... (2)
8277   //
8278   // Informal proof for (2), assuming (1) [*]:
8279   //
8280   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8281   //
8282   // Then
8283   //
8284   //       FoundLHS s< FoundRHS s< INT_MIN - C
8285   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
8286   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8287   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
8288   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8289   // <=>  FoundLHS + C s< FoundRHS + C
8290   //
8291   // [*]: (1) can be proved by ruling out overflow.
8292   //
8293   // [**]: This can be proved by analyzing all the four possibilities:
8294   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8295   //    (A s>= 0, B s>= 0).
8296   //
8297   // Note:
8298   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8299   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
8300   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
8301   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
8302   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8303   // C)".
8304 
8305   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
8306   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
8307   if (!LDiff || !RDiff || *LDiff != *RDiff)
8308     return false;
8309 
8310   if (LDiff->isMinValue())
8311     return true;
8312 
8313   APInt FoundRHSLimit;
8314 
8315   if (Pred == CmpInst::ICMP_ULT) {
8316     FoundRHSLimit = -(*RDiff);
8317   } else {
8318     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
8319     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
8320   }
8321 
8322   // Try to prove (1) or (2), as needed.
8323   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8324                                   getConstant(FoundRHSLimit));
8325 }
8326 
8327 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8328                                             const SCEV *LHS, const SCEV *RHS,
8329                                             const SCEV *FoundLHS,
8330                                             const SCEV *FoundRHS) {
8331   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8332     return true;
8333 
8334   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8335     return true;
8336 
8337   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8338                                      FoundLHS, FoundRHS) ||
8339          // ~x < ~y --> x > y
8340          isImpliedCondOperandsHelper(Pred, LHS, RHS,
8341                                      getNotSCEV(FoundRHS),
8342                                      getNotSCEV(FoundLHS));
8343 }
8344 
8345 
8346 /// If Expr computes ~A, return A else return nullptr
8347 static const SCEV *MatchNotExpr(const SCEV *Expr) {
8348   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8349   if (!Add || Add->getNumOperands() != 2 ||
8350       !Add->getOperand(0)->isAllOnesValue())
8351     return nullptr;
8352 
8353   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8354   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8355       !AddRHS->getOperand(0)->isAllOnesValue())
8356     return nullptr;
8357 
8358   return AddRHS->getOperand(1);
8359 }
8360 
8361 
8362 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8363 template<typename MaxExprType>
8364 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8365                               const SCEV *Candidate) {
8366   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8367   if (!MaxExpr) return false;
8368 
8369   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8370 }
8371 
8372 
8373 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8374 template<typename MaxExprType>
8375 static bool IsMinConsistingOf(ScalarEvolution &SE,
8376                               const SCEV *MaybeMinExpr,
8377                               const SCEV *Candidate) {
8378   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8379   if (!MaybeMaxExpr)
8380     return false;
8381 
8382   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8383 }
8384 
8385 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8386                                            ICmpInst::Predicate Pred,
8387                                            const SCEV *LHS, const SCEV *RHS) {
8388 
8389   // If both sides are affine addrecs for the same loop, with equal
8390   // steps, and we know the recurrences don't wrap, then we only
8391   // need to check the predicate on the starting values.
8392 
8393   if (!ICmpInst::isRelational(Pred))
8394     return false;
8395 
8396   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8397   if (!LAR)
8398     return false;
8399   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8400   if (!RAR)
8401     return false;
8402   if (LAR->getLoop() != RAR->getLoop())
8403     return false;
8404   if (!LAR->isAffine() || !RAR->isAffine())
8405     return false;
8406 
8407   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8408     return false;
8409 
8410   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8411                          SCEV::FlagNSW : SCEV::FlagNUW;
8412   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8413     return false;
8414 
8415   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8416 }
8417 
8418 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8419 /// expression?
8420 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8421                                         ICmpInst::Predicate Pred,
8422                                         const SCEV *LHS, const SCEV *RHS) {
8423   switch (Pred) {
8424   default:
8425     return false;
8426 
8427   case ICmpInst::ICMP_SGE:
8428     std::swap(LHS, RHS);
8429     LLVM_FALLTHROUGH;
8430   case ICmpInst::ICMP_SLE:
8431     return
8432       // min(A, ...) <= A
8433       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8434       // A <= max(A, ...)
8435       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8436 
8437   case ICmpInst::ICMP_UGE:
8438     std::swap(LHS, RHS);
8439     LLVM_FALLTHROUGH;
8440   case ICmpInst::ICMP_ULE:
8441     return
8442       // min(A, ...) <= A
8443       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8444       // A <= max(A, ...)
8445       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8446   }
8447 
8448   llvm_unreachable("covered switch fell through?!");
8449 }
8450 
8451 bool
8452 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8453                                              const SCEV *LHS, const SCEV *RHS,
8454                                              const SCEV *FoundLHS,
8455                                              const SCEV *FoundRHS) {
8456   auto IsKnownPredicateFull =
8457       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8458     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8459            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8460            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8461            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8462   };
8463 
8464   switch (Pred) {
8465   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8466   case ICmpInst::ICMP_EQ:
8467   case ICmpInst::ICMP_NE:
8468     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8469       return true;
8470     break;
8471   case ICmpInst::ICMP_SLT:
8472   case ICmpInst::ICMP_SLE:
8473     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8474         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8475       return true;
8476     break;
8477   case ICmpInst::ICMP_SGT:
8478   case ICmpInst::ICMP_SGE:
8479     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8480         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8481       return true;
8482     break;
8483   case ICmpInst::ICMP_ULT:
8484   case ICmpInst::ICMP_ULE:
8485     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8486         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8487       return true;
8488     break;
8489   case ICmpInst::ICMP_UGT:
8490   case ICmpInst::ICMP_UGE:
8491     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8492         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8493       return true;
8494     break;
8495   }
8496 
8497   return false;
8498 }
8499 
8500 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8501                                                      const SCEV *LHS,
8502                                                      const SCEV *RHS,
8503                                                      const SCEV *FoundLHS,
8504                                                      const SCEV *FoundRHS) {
8505   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8506     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8507     // reduce the compile time impact of this optimization.
8508     return false;
8509 
8510   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
8511   if (!Addend)
8512     return false;
8513 
8514   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8515 
8516   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8517   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8518   ConstantRange FoundLHSRange =
8519       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8520 
8521   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
8522   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
8523 
8524   // We can also compute the range of values for `LHS` that satisfy the
8525   // consequent, "`LHS` `Pred` `RHS`":
8526   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8527   ConstantRange SatisfyingLHSRange =
8528       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8529 
8530   // The antecedent implies the consequent if every value of `LHS` that
8531   // satisfies the antecedent also satisfies the consequent.
8532   return SatisfyingLHSRange.contains(LHSRange);
8533 }
8534 
8535 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8536                                          bool IsSigned, bool NoWrap) {
8537   assert(isKnownPositive(Stride) && "Positive stride expected!");
8538 
8539   if (NoWrap) return false;
8540 
8541   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8542   const SCEV *One = getOne(Stride->getType());
8543 
8544   if (IsSigned) {
8545     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8546     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8547     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8548                                 .getSignedMax();
8549 
8550     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8551     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8552   }
8553 
8554   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8555   APInt MaxValue = APInt::getMaxValue(BitWidth);
8556   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8557                               .getUnsignedMax();
8558 
8559   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8560   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8561 }
8562 
8563 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8564                                          bool IsSigned, bool NoWrap) {
8565   if (NoWrap) return false;
8566 
8567   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8568   const SCEV *One = getOne(Stride->getType());
8569 
8570   if (IsSigned) {
8571     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8572     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8573     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8574                                .getSignedMax();
8575 
8576     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8577     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8578   }
8579 
8580   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8581   APInt MinValue = APInt::getMinValue(BitWidth);
8582   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8583                             .getUnsignedMax();
8584 
8585   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8586   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8587 }
8588 
8589 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8590                                             bool Equality) {
8591   const SCEV *One = getOne(Step->getType());
8592   Delta = Equality ? getAddExpr(Delta, Step)
8593                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8594   return getUDivExpr(Delta, Step);
8595 }
8596 
8597 ScalarEvolution::ExitLimit
8598 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
8599                                   const Loop *L, bool IsSigned,
8600                                   bool ControlsExit, bool AllowPredicates) {
8601   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8602   // We handle only IV < Invariant
8603   if (!isLoopInvariant(RHS, L))
8604     return getCouldNotCompute();
8605 
8606   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8607   bool PredicatedIV = false;
8608 
8609   if (!IV && AllowPredicates) {
8610     // Try to make this an AddRec using runtime tests, in the first X
8611     // iterations of this loop, where X is the SCEV expression found by the
8612     // algorithm below.
8613     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
8614     PredicatedIV = true;
8615   }
8616 
8617   // Avoid weird loops
8618   if (!IV || IV->getLoop() != L || !IV->isAffine())
8619     return getCouldNotCompute();
8620 
8621   bool NoWrap = ControlsExit &&
8622                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8623 
8624   const SCEV *Stride = IV->getStepRecurrence(*this);
8625 
8626   bool PositiveStride = isKnownPositive(Stride);
8627 
8628   // Avoid negative or zero stride values.
8629   if (!PositiveStride) {
8630     // We can compute the correct backedge taken count for loops with unknown
8631     // strides if we can prove that the loop is not an infinite loop with side
8632     // effects. Here's the loop structure we are trying to handle -
8633     //
8634     // i = start
8635     // do {
8636     //   A[i] = i;
8637     //   i += s;
8638     // } while (i < end);
8639     //
8640     // The backedge taken count for such loops is evaluated as -
8641     // (max(end, start + stride) - start - 1) /u stride
8642     //
8643     // The additional preconditions that we need to check to prove correctness
8644     // of the above formula is as follows -
8645     //
8646     // a) IV is either nuw or nsw depending upon signedness (indicated by the
8647     //    NoWrap flag).
8648     // b) loop is single exit with no side effects.
8649     //
8650     //
8651     // Precondition a) implies that if the stride is negative, this is a single
8652     // trip loop. The backedge taken count formula reduces to zero in this case.
8653     //
8654     // Precondition b) implies that the unknown stride cannot be zero otherwise
8655     // we have UB.
8656     //
8657     // The positive stride case is the same as isKnownPositive(Stride) returning
8658     // true (original behavior of the function).
8659     //
8660     // We want to make sure that the stride is truly unknown as there are edge
8661     // cases where ScalarEvolution propagates no wrap flags to the
8662     // post-increment/decrement IV even though the increment/decrement operation
8663     // itself is wrapping. The computed backedge taken count may be wrong in
8664     // such cases. This is prevented by checking that the stride is not known to
8665     // be either positive or non-positive. For example, no wrap flags are
8666     // propagated to the post-increment IV of this loop with a trip count of 2 -
8667     //
8668     // unsigned char i;
8669     // for(i=127; i<128; i+=129)
8670     //   A[i] = i;
8671     //
8672     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
8673         !loopHasNoSideEffects(L))
8674       return getCouldNotCompute();
8675 
8676   } else if (!Stride->isOne() &&
8677              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8678     // Avoid proven overflow cases: this will ensure that the backedge taken
8679     // count will not generate any unsigned overflow. Relaxed no-overflow
8680     // conditions exploit NoWrapFlags, allowing to optimize in presence of
8681     // undefined behaviors like the case of C language.
8682     return getCouldNotCompute();
8683 
8684   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8685                                       : ICmpInst::ICMP_ULT;
8686   const SCEV *Start = IV->getStart();
8687   const SCEV *End = RHS;
8688   // If the backedge is taken at least once, then it will be taken
8689   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
8690   // is the LHS value of the less-than comparison the first time it is evaluated
8691   // and End is the RHS.
8692   const SCEV *BECountIfBackedgeTaken =
8693     computeBECount(getMinusSCEV(End, Start), Stride, false);
8694   // If the loop entry is guarded by the result of the backedge test of the
8695   // first loop iteration, then we know the backedge will be taken at least
8696   // once and so the backedge taken count is as above. If not then we use the
8697   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
8698   // as if the backedge is taken at least once max(End,Start) is End and so the
8699   // result is as above, and if not max(End,Start) is Start so we get a backedge
8700   // count of zero.
8701   const SCEV *BECount;
8702   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
8703     BECount = BECountIfBackedgeTaken;
8704   else {
8705     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
8706     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8707   }
8708 
8709   const SCEV *MaxBECount;
8710   bool MaxOrZero = false;
8711   if (isa<SCEVConstant>(BECount))
8712     MaxBECount = BECount;
8713   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
8714     // If we know exactly how many times the backedge will be taken if it's
8715     // taken at least once, then the backedge count will either be that or
8716     // zero.
8717     MaxBECount = BECountIfBackedgeTaken;
8718     MaxOrZero = true;
8719   } else {
8720     // Calculate the maximum backedge count based on the range of values
8721     // permitted by Start, End, and Stride.
8722     APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8723                               : getUnsignedRange(Start).getUnsignedMin();
8724 
8725     unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8726 
8727     APInt StrideForMaxBECount;
8728 
8729     if (PositiveStride)
8730       StrideForMaxBECount =
8731         IsSigned ? getSignedRange(Stride).getSignedMin()
8732                  : getUnsignedRange(Stride).getUnsignedMin();
8733     else
8734       // Using a stride of 1 is safe when computing max backedge taken count for
8735       // a loop with unknown stride.
8736       StrideForMaxBECount = APInt(BitWidth, 1, IsSigned);
8737 
8738     APInt Limit =
8739       IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1)
8740                : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1);
8741 
8742     // Although End can be a MAX expression we estimate MaxEnd considering only
8743     // the case End = RHS. This is safe because in the other case (End - Start)
8744     // is zero, leading to a zero maximum backedge taken count.
8745     APInt MaxEnd =
8746       IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8747                : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8748 
8749     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8750                                 getConstant(StrideForMaxBECount), false);
8751   }
8752 
8753   if (isa<SCEVCouldNotCompute>(MaxBECount))
8754     MaxBECount = BECount;
8755 
8756   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
8757 }
8758 
8759 ScalarEvolution::ExitLimit
8760 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8761                                      const Loop *L, bool IsSigned,
8762                                      bool ControlsExit, bool AllowPredicates) {
8763   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8764   // We handle only IV > Invariant
8765   if (!isLoopInvariant(RHS, L))
8766     return getCouldNotCompute();
8767 
8768   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8769   if (!IV && AllowPredicates)
8770     // Try to make this an AddRec using runtime tests, in the first X
8771     // iterations of this loop, where X is the SCEV expression found by the
8772     // algorithm below.
8773     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
8774 
8775   // Avoid weird loops
8776   if (!IV || IV->getLoop() != L || !IV->isAffine())
8777     return getCouldNotCompute();
8778 
8779   bool NoWrap = ControlsExit &&
8780                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8781 
8782   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8783 
8784   // Avoid negative or zero stride values
8785   if (!isKnownPositive(Stride))
8786     return getCouldNotCompute();
8787 
8788   // Avoid proven overflow cases: this will ensure that the backedge taken count
8789   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8790   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8791   // behaviors like the case of C language.
8792   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8793     return getCouldNotCompute();
8794 
8795   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8796                                       : ICmpInst::ICMP_UGT;
8797 
8798   const SCEV *Start = IV->getStart();
8799   const SCEV *End = RHS;
8800   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
8801     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
8802 
8803   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8804 
8805   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8806                             : getUnsignedRange(Start).getUnsignedMax();
8807 
8808   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8809                              : getUnsignedRange(Stride).getUnsignedMin();
8810 
8811   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8812   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8813                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8814 
8815   // Although End can be a MIN expression we estimate MinEnd considering only
8816   // the case End = RHS. This is safe because in the other case (Start - End)
8817   // is zero, leading to a zero maximum backedge taken count.
8818   APInt MinEnd =
8819     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8820              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8821 
8822 
8823   const SCEV *MaxBECount = getCouldNotCompute();
8824   if (isa<SCEVConstant>(BECount))
8825     MaxBECount = BECount;
8826   else
8827     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8828                                 getConstant(MinStride), false);
8829 
8830   if (isa<SCEVCouldNotCompute>(MaxBECount))
8831     MaxBECount = BECount;
8832 
8833   return ExitLimit(BECount, MaxBECount, false, Predicates);
8834 }
8835 
8836 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
8837                                                     ScalarEvolution &SE) const {
8838   if (Range.isFullSet())  // Infinite loop.
8839     return SE.getCouldNotCompute();
8840 
8841   // If the start is a non-zero constant, shift the range to simplify things.
8842   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8843     if (!SC->getValue()->isZero()) {
8844       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8845       Operands[0] = SE.getZero(SC->getType());
8846       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8847                                              getNoWrapFlags(FlagNW));
8848       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8849         return ShiftedAddRec->getNumIterationsInRange(
8850             Range.subtract(SC->getAPInt()), SE);
8851       // This is strange and shouldn't happen.
8852       return SE.getCouldNotCompute();
8853     }
8854 
8855   // The only time we can solve this is when we have all constant indices.
8856   // Otherwise, we cannot determine the overflow conditions.
8857   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8858     return SE.getCouldNotCompute();
8859 
8860   // Okay at this point we know that all elements of the chrec are constants and
8861   // that the start element is zero.
8862 
8863   // First check to see if the range contains zero.  If not, the first
8864   // iteration exits.
8865   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8866   if (!Range.contains(APInt(BitWidth, 0)))
8867     return SE.getZero(getType());
8868 
8869   if (isAffine()) {
8870     // If this is an affine expression then we have this situation:
8871     //   Solve {0,+,A} in Range  ===  Ax in Range
8872 
8873     // We know that zero is in the range.  If A is positive then we know that
8874     // the upper value of the range must be the first possible exit value.
8875     // If A is negative then the lower of the range is the last possible loop
8876     // value.  Also note that we already checked for a full range.
8877     APInt One(BitWidth,1);
8878     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8879     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8880 
8881     // The exit value should be (End+A)/A.
8882     APInt ExitVal = (End + A).udiv(A);
8883     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8884 
8885     // Evaluate at the exit value.  If we really did fall out of the valid
8886     // range, then we computed our trip count, otherwise wrap around or other
8887     // things must have happened.
8888     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8889     if (Range.contains(Val->getValue()))
8890       return SE.getCouldNotCompute();  // Something strange happened
8891 
8892     // Ensure that the previous value is in the range.  This is a sanity check.
8893     assert(Range.contains(
8894            EvaluateConstantChrecAtConstant(this,
8895            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8896            "Linear scev computation is off in a bad way!");
8897     return SE.getConstant(ExitValue);
8898   } else if (isQuadratic()) {
8899     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8900     // quadratic equation to solve it.  To do this, we must frame our problem in
8901     // terms of figuring out when zero is crossed, instead of when
8902     // Range.getUpper() is crossed.
8903     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8904     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8905     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap);
8906 
8907     // Next, solve the constructed addrec
8908     if (auto Roots =
8909             SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
8910       const SCEVConstant *R1 = Roots->first;
8911       const SCEVConstant *R2 = Roots->second;
8912       // Pick the smallest positive root value.
8913       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8914               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8915         if (!CB->getZExtValue())
8916           std::swap(R1, R2); // R1 is the minimum root now.
8917 
8918         // Make sure the root is not off by one.  The returned iteration should
8919         // not be in the range, but the previous one should be.  When solving
8920         // for "X*X < 5", for example, we should not return a root of 2.
8921         ConstantInt *R1Val =
8922             EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
8923         if (Range.contains(R1Val->getValue())) {
8924           // The next iteration must be out of the range...
8925           ConstantInt *NextVal =
8926               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8927 
8928           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8929           if (!Range.contains(R1Val->getValue()))
8930             return SE.getConstant(NextVal);
8931           return SE.getCouldNotCompute(); // Something strange happened
8932         }
8933 
8934         // If R1 was not in the range, then it is a good return value.  Make
8935         // sure that R1-1 WAS in the range though, just in case.
8936         ConstantInt *NextVal =
8937             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8938         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8939         if (Range.contains(R1Val->getValue()))
8940           return R1;
8941         return SE.getCouldNotCompute(); // Something strange happened
8942       }
8943     }
8944   }
8945 
8946   return SE.getCouldNotCompute();
8947 }
8948 
8949 // Return true when S contains at least an undef value.
8950 static inline bool containsUndefs(const SCEV *S) {
8951   return SCEVExprContains(S, [](const SCEV *S) {
8952     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
8953       return isa<UndefValue>(SU->getValue());
8954     else if (const auto *SC = dyn_cast<SCEVConstant>(S))
8955       return isa<UndefValue>(SC->getValue());
8956     return false;
8957   });
8958 }
8959 
8960 namespace {
8961 // Collect all steps of SCEV expressions.
8962 struct SCEVCollectStrides {
8963   ScalarEvolution &SE;
8964   SmallVectorImpl<const SCEV *> &Strides;
8965 
8966   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8967       : SE(SE), Strides(S) {}
8968 
8969   bool follow(const SCEV *S) {
8970     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8971       Strides.push_back(AR->getStepRecurrence(SE));
8972     return true;
8973   }
8974   bool isDone() const { return false; }
8975 };
8976 
8977 // Collect all SCEVUnknown and SCEVMulExpr expressions.
8978 struct SCEVCollectTerms {
8979   SmallVectorImpl<const SCEV *> &Terms;
8980 
8981   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8982       : Terms(T) {}
8983 
8984   bool follow(const SCEV *S) {
8985     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
8986         isa<SCEVSignExtendExpr>(S)) {
8987       if (!containsUndefs(S))
8988         Terms.push_back(S);
8989 
8990       // Stop recursion: once we collected a term, do not walk its operands.
8991       return false;
8992     }
8993 
8994     // Keep looking.
8995     return true;
8996   }
8997   bool isDone() const { return false; }
8998 };
8999 
9000 // Check if a SCEV contains an AddRecExpr.
9001 struct SCEVHasAddRec {
9002   bool &ContainsAddRec;
9003 
9004   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
9005    ContainsAddRec = false;
9006   }
9007 
9008   bool follow(const SCEV *S) {
9009     if (isa<SCEVAddRecExpr>(S)) {
9010       ContainsAddRec = true;
9011 
9012       // Stop recursion: once we collected a term, do not walk its operands.
9013       return false;
9014     }
9015 
9016     // Keep looking.
9017     return true;
9018   }
9019   bool isDone() const { return false; }
9020 };
9021 
9022 // Find factors that are multiplied with an expression that (possibly as a
9023 // subexpression) contains an AddRecExpr. In the expression:
9024 //
9025 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
9026 //
9027 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9028 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9029 // parameters as they form a product with an induction variable.
9030 //
9031 // This collector expects all array size parameters to be in the same MulExpr.
9032 // It might be necessary to later add support for collecting parameters that are
9033 // spread over different nested MulExpr.
9034 struct SCEVCollectAddRecMultiplies {
9035   SmallVectorImpl<const SCEV *> &Terms;
9036   ScalarEvolution &SE;
9037 
9038   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9039       : Terms(T), SE(SE) {}
9040 
9041   bool follow(const SCEV *S) {
9042     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9043       bool HasAddRec = false;
9044       SmallVector<const SCEV *, 0> Operands;
9045       for (auto Op : Mul->operands()) {
9046         if (isa<SCEVUnknown>(Op)) {
9047           Operands.push_back(Op);
9048         } else {
9049           bool ContainsAddRec;
9050           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9051           visitAll(Op, ContiansAddRec);
9052           HasAddRec |= ContainsAddRec;
9053         }
9054       }
9055       if (Operands.size() == 0)
9056         return true;
9057 
9058       if (!HasAddRec)
9059         return false;
9060 
9061       Terms.push_back(SE.getMulExpr(Operands));
9062       // Stop recursion: once we collected a term, do not walk its operands.
9063       return false;
9064     }
9065 
9066     // Keep looking.
9067     return true;
9068   }
9069   bool isDone() const { return false; }
9070 };
9071 }
9072 
9073 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9074 /// two places:
9075 ///   1) The strides of AddRec expressions.
9076 ///   2) Unknowns that are multiplied with AddRec expressions.
9077 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9078     SmallVectorImpl<const SCEV *> &Terms) {
9079   SmallVector<const SCEV *, 4> Strides;
9080   SCEVCollectStrides StrideCollector(*this, Strides);
9081   visitAll(Expr, StrideCollector);
9082 
9083   DEBUG({
9084       dbgs() << "Strides:\n";
9085       for (const SCEV *S : Strides)
9086         dbgs() << *S << "\n";
9087     });
9088 
9089   for (const SCEV *S : Strides) {
9090     SCEVCollectTerms TermCollector(Terms);
9091     visitAll(S, TermCollector);
9092   }
9093 
9094   DEBUG({
9095       dbgs() << "Terms:\n";
9096       for (const SCEV *T : Terms)
9097         dbgs() << *T << "\n";
9098     });
9099 
9100   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9101   visitAll(Expr, MulCollector);
9102 }
9103 
9104 static bool findArrayDimensionsRec(ScalarEvolution &SE,
9105                                    SmallVectorImpl<const SCEV *> &Terms,
9106                                    SmallVectorImpl<const SCEV *> &Sizes) {
9107   int Last = Terms.size() - 1;
9108   const SCEV *Step = Terms[Last];
9109 
9110   // End of recursion.
9111   if (Last == 0) {
9112     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
9113       SmallVector<const SCEV *, 2> Qs;
9114       for (const SCEV *Op : M->operands())
9115         if (!isa<SCEVConstant>(Op))
9116           Qs.push_back(Op);
9117 
9118       Step = SE.getMulExpr(Qs);
9119     }
9120 
9121     Sizes.push_back(Step);
9122     return true;
9123   }
9124 
9125   for (const SCEV *&Term : Terms) {
9126     // Normalize the terms before the next call to findArrayDimensionsRec.
9127     const SCEV *Q, *R;
9128     SCEVDivision::divide(SE, Term, Step, &Q, &R);
9129 
9130     // Bail out when GCD does not evenly divide one of the terms.
9131     if (!R->isZero())
9132       return false;
9133 
9134     Term = Q;
9135   }
9136 
9137   // Remove all SCEVConstants.
9138   Terms.erase(
9139       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
9140       Terms.end());
9141 
9142   if (Terms.size() > 0)
9143     if (!findArrayDimensionsRec(SE, Terms, Sizes))
9144       return false;
9145 
9146   Sizes.push_back(Step);
9147   return true;
9148 }
9149 
9150 
9151 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9152 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9153   for (const SCEV *T : Terms)
9154     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
9155       return true;
9156   return false;
9157 }
9158 
9159 // Return the number of product terms in S.
9160 static inline int numberOfTerms(const SCEV *S) {
9161   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9162     return Expr->getNumOperands();
9163   return 1;
9164 }
9165 
9166 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9167   if (isa<SCEVConstant>(T))
9168     return nullptr;
9169 
9170   if (isa<SCEVUnknown>(T))
9171     return T;
9172 
9173   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9174     SmallVector<const SCEV *, 2> Factors;
9175     for (const SCEV *Op : M->operands())
9176       if (!isa<SCEVConstant>(Op))
9177         Factors.push_back(Op);
9178 
9179     return SE.getMulExpr(Factors);
9180   }
9181 
9182   return T;
9183 }
9184 
9185 /// Return the size of an element read or written by Inst.
9186 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9187   Type *Ty;
9188   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9189     Ty = Store->getValueOperand()->getType();
9190   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9191     Ty = Load->getType();
9192   else
9193     return nullptr;
9194 
9195   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9196   return getSizeOfExpr(ETy, Ty);
9197 }
9198 
9199 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9200                                           SmallVectorImpl<const SCEV *> &Sizes,
9201                                           const SCEV *ElementSize) const {
9202   if (Terms.size() < 1 || !ElementSize)
9203     return;
9204 
9205   // Early return when Terms do not contain parameters: we do not delinearize
9206   // non parametric SCEVs.
9207   if (!containsParameters(Terms))
9208     return;
9209 
9210   DEBUG({
9211       dbgs() << "Terms:\n";
9212       for (const SCEV *T : Terms)
9213         dbgs() << *T << "\n";
9214     });
9215 
9216   // Remove duplicates.
9217   std::sort(Terms.begin(), Terms.end());
9218   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9219 
9220   // Put larger terms first.
9221   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9222     return numberOfTerms(LHS) > numberOfTerms(RHS);
9223   });
9224 
9225   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9226 
9227   // Try to divide all terms by the element size. If term is not divisible by
9228   // element size, proceed with the original term.
9229   for (const SCEV *&Term : Terms) {
9230     const SCEV *Q, *R;
9231     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
9232     if (!Q->isZero())
9233       Term = Q;
9234   }
9235 
9236   SmallVector<const SCEV *, 4> NewTerms;
9237 
9238   // Remove constant factors.
9239   for (const SCEV *T : Terms)
9240     if (const SCEV *NewT = removeConstantFactors(SE, T))
9241       NewTerms.push_back(NewT);
9242 
9243   DEBUG({
9244       dbgs() << "Terms after sorting:\n";
9245       for (const SCEV *T : NewTerms)
9246         dbgs() << *T << "\n";
9247     });
9248 
9249   if (NewTerms.empty() ||
9250       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
9251     Sizes.clear();
9252     return;
9253   }
9254 
9255   // The last element to be pushed into Sizes is the size of an element.
9256   Sizes.push_back(ElementSize);
9257 
9258   DEBUG({
9259       dbgs() << "Sizes:\n";
9260       for (const SCEV *S : Sizes)
9261         dbgs() << *S << "\n";
9262     });
9263 }
9264 
9265 void ScalarEvolution::computeAccessFunctions(
9266     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9267     SmallVectorImpl<const SCEV *> &Sizes) {
9268 
9269   // Early exit in case this SCEV is not an affine multivariate function.
9270   if (Sizes.empty())
9271     return;
9272 
9273   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9274     if (!AR->isAffine())
9275       return;
9276 
9277   const SCEV *Res = Expr;
9278   int Last = Sizes.size() - 1;
9279   for (int i = Last; i >= 0; i--) {
9280     const SCEV *Q, *R;
9281     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9282 
9283     DEBUG({
9284         dbgs() << "Res: " << *Res << "\n";
9285         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9286         dbgs() << "Res divided by Sizes[i]:\n";
9287         dbgs() << "Quotient: " << *Q << "\n";
9288         dbgs() << "Remainder: " << *R << "\n";
9289       });
9290 
9291     Res = Q;
9292 
9293     // Do not record the last subscript corresponding to the size of elements in
9294     // the array.
9295     if (i == Last) {
9296 
9297       // Bail out if the remainder is too complex.
9298       if (isa<SCEVAddRecExpr>(R)) {
9299         Subscripts.clear();
9300         Sizes.clear();
9301         return;
9302       }
9303 
9304       continue;
9305     }
9306 
9307     // Record the access function for the current subscript.
9308     Subscripts.push_back(R);
9309   }
9310 
9311   // Also push in last position the remainder of the last division: it will be
9312   // the access function of the innermost dimension.
9313   Subscripts.push_back(Res);
9314 
9315   std::reverse(Subscripts.begin(), Subscripts.end());
9316 
9317   DEBUG({
9318       dbgs() << "Subscripts:\n";
9319       for (const SCEV *S : Subscripts)
9320         dbgs() << *S << "\n";
9321     });
9322 }
9323 
9324 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9325 /// sizes of an array access. Returns the remainder of the delinearization that
9326 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
9327 /// the multiples of SCEV coefficients: that is a pattern matching of sub
9328 /// expressions in the stride and base of a SCEV corresponding to the
9329 /// computation of a GCD (greatest common divisor) of base and stride.  When
9330 /// SCEV->delinearize fails, it returns the SCEV unchanged.
9331 ///
9332 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
9333 ///
9334 ///  void foo(long n, long m, long o, double A[n][m][o]) {
9335 ///
9336 ///    for (long i = 0; i < n; i++)
9337 ///      for (long j = 0; j < m; j++)
9338 ///        for (long k = 0; k < o; k++)
9339 ///          A[i][j][k] = 1.0;
9340 ///  }
9341 ///
9342 /// the delinearization input is the following AddRec SCEV:
9343 ///
9344 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9345 ///
9346 /// From this SCEV, we are able to say that the base offset of the access is %A
9347 /// because it appears as an offset that does not divide any of the strides in
9348 /// the loops:
9349 ///
9350 ///  CHECK: Base offset: %A
9351 ///
9352 /// and then SCEV->delinearize determines the size of some of the dimensions of
9353 /// the array as these are the multiples by which the strides are happening:
9354 ///
9355 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9356 ///
9357 /// Note that the outermost dimension remains of UnknownSize because there are
9358 /// no strides that would help identifying the size of the last dimension: when
9359 /// the array has been statically allocated, one could compute the size of that
9360 /// dimension by dividing the overall size of the array by the size of the known
9361 /// dimensions: %m * %o * 8.
9362 ///
9363 /// Finally delinearize provides the access functions for the array reference
9364 /// that does correspond to A[i][j][k] of the above C testcase:
9365 ///
9366 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9367 ///
9368 /// The testcases are checking the output of a function pass:
9369 /// DelinearizationPass that walks through all loads and stores of a function
9370 /// asking for the SCEV of the memory access with respect to all enclosing
9371 /// loops, calling SCEV->delinearize on that and printing the results.
9372 
9373 void ScalarEvolution::delinearize(const SCEV *Expr,
9374                                  SmallVectorImpl<const SCEV *> &Subscripts,
9375                                  SmallVectorImpl<const SCEV *> &Sizes,
9376                                  const SCEV *ElementSize) {
9377   // First step: collect parametric terms.
9378   SmallVector<const SCEV *, 4> Terms;
9379   collectParametricTerms(Expr, Terms);
9380 
9381   if (Terms.empty())
9382     return;
9383 
9384   // Second step: find subscript sizes.
9385   findArrayDimensions(Terms, Sizes, ElementSize);
9386 
9387   if (Sizes.empty())
9388     return;
9389 
9390   // Third step: compute the access functions for each subscript.
9391   computeAccessFunctions(Expr, Subscripts, Sizes);
9392 
9393   if (Subscripts.empty())
9394     return;
9395 
9396   DEBUG({
9397       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9398       dbgs() << "ArrayDecl[UnknownSize]";
9399       for (const SCEV *S : Sizes)
9400         dbgs() << "[" << *S << "]";
9401 
9402       dbgs() << "\nArrayRef";
9403       for (const SCEV *S : Subscripts)
9404         dbgs() << "[" << *S << "]";
9405       dbgs() << "\n";
9406     });
9407 }
9408 
9409 //===----------------------------------------------------------------------===//
9410 //                   SCEVCallbackVH Class Implementation
9411 //===----------------------------------------------------------------------===//
9412 
9413 void ScalarEvolution::SCEVCallbackVH::deleted() {
9414   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9415   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9416     SE->ConstantEvolutionLoopExitValue.erase(PN);
9417   SE->eraseValueFromMap(getValPtr());
9418   // this now dangles!
9419 }
9420 
9421 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9422   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9423 
9424   // Forget all the expressions associated with users of the old value,
9425   // so that future queries will recompute the expressions using the new
9426   // value.
9427   Value *Old = getValPtr();
9428   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9429   SmallPtrSet<User *, 8> Visited;
9430   while (!Worklist.empty()) {
9431     User *U = Worklist.pop_back_val();
9432     // Deleting the Old value will cause this to dangle. Postpone
9433     // that until everything else is done.
9434     if (U == Old)
9435       continue;
9436     if (!Visited.insert(U).second)
9437       continue;
9438     if (PHINode *PN = dyn_cast<PHINode>(U))
9439       SE->ConstantEvolutionLoopExitValue.erase(PN);
9440     SE->eraseValueFromMap(U);
9441     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9442   }
9443   // Delete the Old value.
9444   if (PHINode *PN = dyn_cast<PHINode>(Old))
9445     SE->ConstantEvolutionLoopExitValue.erase(PN);
9446   SE->eraseValueFromMap(Old);
9447   // this now dangles!
9448 }
9449 
9450 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9451   : CallbackVH(V), SE(se) {}
9452 
9453 //===----------------------------------------------------------------------===//
9454 //                   ScalarEvolution Class Implementation
9455 //===----------------------------------------------------------------------===//
9456 
9457 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9458                                  AssumptionCache &AC, DominatorTree &DT,
9459                                  LoopInfo &LI)
9460     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9461       CouldNotCompute(new SCEVCouldNotCompute()),
9462       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9463       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9464       FirstUnknown(nullptr) {
9465 
9466   // To use guards for proving predicates, we need to scan every instruction in
9467   // relevant basic blocks, and not just terminators.  Doing this is a waste of
9468   // time if the IR does not actually contain any calls to
9469   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9470   //
9471   // This pessimizes the case where a pass that preserves ScalarEvolution wants
9472   // to _add_ guards to the module when there weren't any before, and wants
9473   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
9474   // efficient in lieu of being smart in that rather obscure case.
9475 
9476   auto *GuardDecl = F.getParent()->getFunction(
9477       Intrinsic::getName(Intrinsic::experimental_guard));
9478   HasGuards = GuardDecl && !GuardDecl->use_empty();
9479 }
9480 
9481 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9482     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9483       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
9484       ValueExprMap(std::move(Arg.ValueExprMap)),
9485       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
9486       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9487       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9488       PredicatedBackedgeTakenCounts(
9489           std::move(Arg.PredicatedBackedgeTakenCounts)),
9490       ConstantEvolutionLoopExitValue(
9491           std::move(Arg.ConstantEvolutionLoopExitValue)),
9492       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9493       LoopDispositions(std::move(Arg.LoopDispositions)),
9494       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
9495       BlockDispositions(std::move(Arg.BlockDispositions)),
9496       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9497       SignedRanges(std::move(Arg.SignedRanges)),
9498       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9499       UniquePreds(std::move(Arg.UniquePreds)),
9500       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9501       FirstUnknown(Arg.FirstUnknown) {
9502   Arg.FirstUnknown = nullptr;
9503 }
9504 
9505 ScalarEvolution::~ScalarEvolution() {
9506   // Iterate through all the SCEVUnknown instances and call their
9507   // destructors, so that they release their references to their values.
9508   for (SCEVUnknown *U = FirstUnknown; U;) {
9509     SCEVUnknown *Tmp = U;
9510     U = U->Next;
9511     Tmp->~SCEVUnknown();
9512   }
9513   FirstUnknown = nullptr;
9514 
9515   ExprValueMap.clear();
9516   ValueExprMap.clear();
9517   HasRecMap.clear();
9518 
9519   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9520   // that a loop had multiple computable exits.
9521   for (auto &BTCI : BackedgeTakenCounts)
9522     BTCI.second.clear();
9523   for (auto &BTCI : PredicatedBackedgeTakenCounts)
9524     BTCI.second.clear();
9525 
9526   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9527   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9528   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9529 }
9530 
9531 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9532   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9533 }
9534 
9535 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9536                           const Loop *L) {
9537   // Print all inner loops first
9538   for (Loop *I : *L)
9539     PrintLoopInfo(OS, SE, I);
9540 
9541   OS << "Loop ";
9542   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9543   OS << ": ";
9544 
9545   SmallVector<BasicBlock *, 8> ExitBlocks;
9546   L->getExitBlocks(ExitBlocks);
9547   if (ExitBlocks.size() != 1)
9548     OS << "<multiple exits> ";
9549 
9550   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9551     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9552   } else {
9553     OS << "Unpredictable backedge-taken count. ";
9554   }
9555 
9556   OS << "\n"
9557         "Loop ";
9558   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9559   OS << ": ";
9560 
9561   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9562     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9563     if (SE->isBackedgeTakenCountMaxOrZero(L))
9564       OS << ", actual taken count either this or zero.";
9565   } else {
9566     OS << "Unpredictable max backedge-taken count. ";
9567   }
9568 
9569   OS << "\n"
9570         "Loop ";
9571   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9572   OS << ": ";
9573 
9574   SCEVUnionPredicate Pred;
9575   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9576   if (!isa<SCEVCouldNotCompute>(PBT)) {
9577     OS << "Predicated backedge-taken count is " << *PBT << "\n";
9578     OS << " Predicates:\n";
9579     Pred.print(OS, 4);
9580   } else {
9581     OS << "Unpredictable predicated backedge-taken count. ";
9582   }
9583   OS << "\n";
9584 }
9585 
9586 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9587   switch (LD) {
9588   case ScalarEvolution::LoopVariant:
9589     return "Variant";
9590   case ScalarEvolution::LoopInvariant:
9591     return "Invariant";
9592   case ScalarEvolution::LoopComputable:
9593     return "Computable";
9594   }
9595   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
9596 }
9597 
9598 void ScalarEvolution::print(raw_ostream &OS) const {
9599   // ScalarEvolution's implementation of the print method is to print
9600   // out SCEV values of all instructions that are interesting. Doing
9601   // this potentially causes it to create new SCEV objects though,
9602   // which technically conflicts with the const qualifier. This isn't
9603   // observable from outside the class though, so casting away the
9604   // const isn't dangerous.
9605   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9606 
9607   OS << "Classifying expressions for: ";
9608   F.printAsOperand(OS, /*PrintType=*/false);
9609   OS << "\n";
9610   for (Instruction &I : instructions(F))
9611     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9612       OS << I << '\n';
9613       OS << "  -->  ";
9614       const SCEV *SV = SE.getSCEV(&I);
9615       SV->print(OS);
9616       if (!isa<SCEVCouldNotCompute>(SV)) {
9617         OS << " U: ";
9618         SE.getUnsignedRange(SV).print(OS);
9619         OS << " S: ";
9620         SE.getSignedRange(SV).print(OS);
9621       }
9622 
9623       const Loop *L = LI.getLoopFor(I.getParent());
9624 
9625       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9626       if (AtUse != SV) {
9627         OS << "  -->  ";
9628         AtUse->print(OS);
9629         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9630           OS << " U: ";
9631           SE.getUnsignedRange(AtUse).print(OS);
9632           OS << " S: ";
9633           SE.getSignedRange(AtUse).print(OS);
9634         }
9635       }
9636 
9637       if (L) {
9638         OS << "\t\t" "Exits: ";
9639         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9640         if (!SE.isLoopInvariant(ExitValue, L)) {
9641           OS << "<<Unknown>>";
9642         } else {
9643           OS << *ExitValue;
9644         }
9645 
9646         bool First = true;
9647         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9648           if (First) {
9649             OS << "\t\t" "LoopDispositions: { ";
9650             First = false;
9651           } else {
9652             OS << ", ";
9653           }
9654 
9655           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9656           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
9657         }
9658 
9659         for (auto *InnerL : depth_first(L)) {
9660           if (InnerL == L)
9661             continue;
9662           if (First) {
9663             OS << "\t\t" "LoopDispositions: { ";
9664             First = false;
9665           } else {
9666             OS << ", ";
9667           }
9668 
9669           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9670           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9671         }
9672 
9673         OS << " }";
9674       }
9675 
9676       OS << "\n";
9677     }
9678 
9679   OS << "Determining loop execution counts for: ";
9680   F.printAsOperand(OS, /*PrintType=*/false);
9681   OS << "\n";
9682   for (Loop *I : LI)
9683     PrintLoopInfo(OS, &SE, I);
9684 }
9685 
9686 ScalarEvolution::LoopDisposition
9687 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9688   auto &Values = LoopDispositions[S];
9689   for (auto &V : Values) {
9690     if (V.getPointer() == L)
9691       return V.getInt();
9692   }
9693   Values.emplace_back(L, LoopVariant);
9694   LoopDisposition D = computeLoopDisposition(S, L);
9695   auto &Values2 = LoopDispositions[S];
9696   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9697     if (V.getPointer() == L) {
9698       V.setInt(D);
9699       break;
9700     }
9701   }
9702   return D;
9703 }
9704 
9705 ScalarEvolution::LoopDisposition
9706 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9707   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9708   case scConstant:
9709     return LoopInvariant;
9710   case scTruncate:
9711   case scZeroExtend:
9712   case scSignExtend:
9713     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9714   case scAddRecExpr: {
9715     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9716 
9717     // If L is the addrec's loop, it's computable.
9718     if (AR->getLoop() == L)
9719       return LoopComputable;
9720 
9721     // Add recurrences are never invariant in the function-body (null loop).
9722     if (!L)
9723       return LoopVariant;
9724 
9725     // This recurrence is variant w.r.t. L if L contains AR's loop.
9726     if (L->contains(AR->getLoop()))
9727       return LoopVariant;
9728 
9729     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9730     if (AR->getLoop()->contains(L))
9731       return LoopInvariant;
9732 
9733     // This recurrence is variant w.r.t. L if any of its operands
9734     // are variant.
9735     for (auto *Op : AR->operands())
9736       if (!isLoopInvariant(Op, L))
9737         return LoopVariant;
9738 
9739     // Otherwise it's loop-invariant.
9740     return LoopInvariant;
9741   }
9742   case scAddExpr:
9743   case scMulExpr:
9744   case scUMaxExpr:
9745   case scSMaxExpr: {
9746     bool HasVarying = false;
9747     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9748       LoopDisposition D = getLoopDisposition(Op, L);
9749       if (D == LoopVariant)
9750         return LoopVariant;
9751       if (D == LoopComputable)
9752         HasVarying = true;
9753     }
9754     return HasVarying ? LoopComputable : LoopInvariant;
9755   }
9756   case scUDivExpr: {
9757     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9758     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9759     if (LD == LoopVariant)
9760       return LoopVariant;
9761     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9762     if (RD == LoopVariant)
9763       return LoopVariant;
9764     return (LD == LoopInvariant && RD == LoopInvariant) ?
9765            LoopInvariant : LoopComputable;
9766   }
9767   case scUnknown:
9768     // All non-instruction values are loop invariant.  All instructions are loop
9769     // invariant if they are not contained in the specified loop.
9770     // Instructions are never considered invariant in the function body
9771     // (null loop) because they are defined within the "loop".
9772     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9773       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9774     return LoopInvariant;
9775   case scCouldNotCompute:
9776     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9777   }
9778   llvm_unreachable("Unknown SCEV kind!");
9779 }
9780 
9781 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9782   return getLoopDisposition(S, L) == LoopInvariant;
9783 }
9784 
9785 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9786   return getLoopDisposition(S, L) == LoopComputable;
9787 }
9788 
9789 ScalarEvolution::BlockDisposition
9790 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9791   auto &Values = BlockDispositions[S];
9792   for (auto &V : Values) {
9793     if (V.getPointer() == BB)
9794       return V.getInt();
9795   }
9796   Values.emplace_back(BB, DoesNotDominateBlock);
9797   BlockDisposition D = computeBlockDisposition(S, BB);
9798   auto &Values2 = BlockDispositions[S];
9799   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9800     if (V.getPointer() == BB) {
9801       V.setInt(D);
9802       break;
9803     }
9804   }
9805   return D;
9806 }
9807 
9808 ScalarEvolution::BlockDisposition
9809 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9810   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9811   case scConstant:
9812     return ProperlyDominatesBlock;
9813   case scTruncate:
9814   case scZeroExtend:
9815   case scSignExtend:
9816     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9817   case scAddRecExpr: {
9818     // This uses a "dominates" query instead of "properly dominates" query
9819     // to test for proper dominance too, because the instruction which
9820     // produces the addrec's value is a PHI, and a PHI effectively properly
9821     // dominates its entire containing block.
9822     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9823     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9824       return DoesNotDominateBlock;
9825 
9826     // Fall through into SCEVNAryExpr handling.
9827     LLVM_FALLTHROUGH;
9828   }
9829   case scAddExpr:
9830   case scMulExpr:
9831   case scUMaxExpr:
9832   case scSMaxExpr: {
9833     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9834     bool Proper = true;
9835     for (const SCEV *NAryOp : NAry->operands()) {
9836       BlockDisposition D = getBlockDisposition(NAryOp, BB);
9837       if (D == DoesNotDominateBlock)
9838         return DoesNotDominateBlock;
9839       if (D == DominatesBlock)
9840         Proper = false;
9841     }
9842     return Proper ? ProperlyDominatesBlock : DominatesBlock;
9843   }
9844   case scUDivExpr: {
9845     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9846     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9847     BlockDisposition LD = getBlockDisposition(LHS, BB);
9848     if (LD == DoesNotDominateBlock)
9849       return DoesNotDominateBlock;
9850     BlockDisposition RD = getBlockDisposition(RHS, BB);
9851     if (RD == DoesNotDominateBlock)
9852       return DoesNotDominateBlock;
9853     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9854       ProperlyDominatesBlock : DominatesBlock;
9855   }
9856   case scUnknown:
9857     if (Instruction *I =
9858           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9859       if (I->getParent() == BB)
9860         return DominatesBlock;
9861       if (DT.properlyDominates(I->getParent(), BB))
9862         return ProperlyDominatesBlock;
9863       return DoesNotDominateBlock;
9864     }
9865     return ProperlyDominatesBlock;
9866   case scCouldNotCompute:
9867     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9868   }
9869   llvm_unreachable("Unknown SCEV kind!");
9870 }
9871 
9872 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9873   return getBlockDisposition(S, BB) >= DominatesBlock;
9874 }
9875 
9876 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9877   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9878 }
9879 
9880 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9881   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
9882 }
9883 
9884 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9885   ValuesAtScopes.erase(S);
9886   LoopDispositions.erase(S);
9887   BlockDispositions.erase(S);
9888   UnsignedRanges.erase(S);
9889   SignedRanges.erase(S);
9890   ExprValueMap.erase(S);
9891   HasRecMap.erase(S);
9892 
9893   auto RemoveSCEVFromBackedgeMap =
9894       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
9895         for (auto I = Map.begin(), E = Map.end(); I != E;) {
9896           BackedgeTakenInfo &BEInfo = I->second;
9897           if (BEInfo.hasOperand(S, this)) {
9898             BEInfo.clear();
9899             Map.erase(I++);
9900           } else
9901             ++I;
9902         }
9903       };
9904 
9905   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
9906   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
9907 }
9908 
9909 typedef DenseMap<const Loop *, std::string> VerifyMap;
9910 
9911 /// replaceSubString - Replaces all occurrences of From in Str with To.
9912 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9913   size_t Pos = 0;
9914   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9915     Str.replace(Pos, From.size(), To.data(), To.size());
9916     Pos += To.size();
9917   }
9918 }
9919 
9920 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9921 static void
9922 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9923   std::string &S = Map[L];
9924   if (S.empty()) {
9925     raw_string_ostream OS(S);
9926     SE.getBackedgeTakenCount(L)->print(OS);
9927 
9928     // false and 0 are semantically equivalent. This can happen in dead loops.
9929     replaceSubString(OS.str(), "false", "0");
9930     // Remove wrap flags, their use in SCEV is highly fragile.
9931     // FIXME: Remove this when SCEV gets smarter about them.
9932     replaceSubString(OS.str(), "<nw>", "");
9933     replaceSubString(OS.str(), "<nsw>", "");
9934     replaceSubString(OS.str(), "<nuw>", "");
9935   }
9936 
9937   for (auto *R : reverse(*L))
9938     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
9939 }
9940 
9941 void ScalarEvolution::verify() const {
9942   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9943 
9944   // Gather stringified backedge taken counts for all loops using SCEV's caches.
9945   // FIXME: It would be much better to store actual values instead of strings,
9946   //        but SCEV pointers will change if we drop the caches.
9947   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9948   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9949     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9950 
9951   // Gather stringified backedge taken counts for all loops using a fresh
9952   // ScalarEvolution object.
9953   ScalarEvolution SE2(F, TLI, AC, DT, LI);
9954   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9955     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
9956 
9957   // Now compare whether they're the same with and without caches. This allows
9958   // verifying that no pass changed the cache.
9959   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9960          "New loops suddenly appeared!");
9961 
9962   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9963                            OldE = BackedgeDumpsOld.end(),
9964                            NewI = BackedgeDumpsNew.begin();
9965        OldI != OldE; ++OldI, ++NewI) {
9966     assert(OldI->first == NewI->first && "Loop order changed!");
9967 
9968     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9969     // changes.
9970     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
9971     // means that a pass is buggy or SCEV has to learn a new pattern but is
9972     // usually not harmful.
9973     if (OldI->second != NewI->second &&
9974         OldI->second.find("undef") == std::string::npos &&
9975         NewI->second.find("undef") == std::string::npos &&
9976         OldI->second != "***COULDNOTCOMPUTE***" &&
9977         NewI->second != "***COULDNOTCOMPUTE***") {
9978       dbgs() << "SCEVValidator: SCEV for loop '"
9979              << OldI->first->getHeader()->getName()
9980              << "' changed from '" << OldI->second
9981              << "' to '" << NewI->second << "'!\n";
9982       std::abort();
9983     }
9984   }
9985 
9986   // TODO: Verify more things.
9987 }
9988 
9989 char ScalarEvolutionAnalysis::PassID;
9990 
9991 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9992                                              FunctionAnalysisManager &AM) {
9993   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
9994                          AM.getResult<AssumptionAnalysis>(F),
9995                          AM.getResult<DominatorTreeAnalysis>(F),
9996                          AM.getResult<LoopAnalysis>(F));
9997 }
9998 
9999 PreservedAnalyses
10000 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
10001   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
10002   return PreservedAnalyses::all();
10003 }
10004 
10005 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10006                       "Scalar Evolution Analysis", false, true)
10007 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10008 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10009 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10010 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10011 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10012                     "Scalar Evolution Analysis", false, true)
10013 char ScalarEvolutionWrapperPass::ID = 0;
10014 
10015 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10016   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10017 }
10018 
10019 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10020   SE.reset(new ScalarEvolution(
10021       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10022       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10023       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10024       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10025   return false;
10026 }
10027 
10028 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10029 
10030 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10031   SE->print(OS);
10032 }
10033 
10034 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10035   if (!VerifySCEV)
10036     return;
10037 
10038   SE->verify();
10039 }
10040 
10041 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10042   AU.setPreservesAll();
10043   AU.addRequiredTransitive<AssumptionCacheTracker>();
10044   AU.addRequiredTransitive<LoopInfoWrapperPass>();
10045   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10046   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10047 }
10048 
10049 const SCEVPredicate *
10050 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10051                                    const SCEVConstant *RHS) {
10052   FoldingSetNodeID ID;
10053   // Unique this node based on the arguments
10054   ID.AddInteger(SCEVPredicate::P_Equal);
10055   ID.AddPointer(LHS);
10056   ID.AddPointer(RHS);
10057   void *IP = nullptr;
10058   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10059     return S;
10060   SCEVEqualPredicate *Eq = new (SCEVAllocator)
10061       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10062   UniquePreds.InsertNode(Eq, IP);
10063   return Eq;
10064 }
10065 
10066 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10067     const SCEVAddRecExpr *AR,
10068     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10069   FoldingSetNodeID ID;
10070   // Unique this node based on the arguments
10071   ID.AddInteger(SCEVPredicate::P_Wrap);
10072   ID.AddPointer(AR);
10073   ID.AddInteger(AddedFlags);
10074   void *IP = nullptr;
10075   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10076     return S;
10077   auto *OF = new (SCEVAllocator)
10078       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10079   UniquePreds.InsertNode(OF, IP);
10080   return OF;
10081 }
10082 
10083 namespace {
10084 
10085 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10086 public:
10087   /// Rewrites \p S in the context of a loop L and the SCEV predication
10088   /// infrastructure.
10089   ///
10090   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
10091   /// equivalences present in \p Pred.
10092   ///
10093   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
10094   /// \p NewPreds such that the result will be an AddRecExpr.
10095   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10096                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
10097                              SCEVUnionPredicate *Pred) {
10098     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
10099     return Rewriter.visit(S);
10100   }
10101 
10102   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10103                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
10104                         SCEVUnionPredicate *Pred)
10105       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
10106 
10107   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10108     if (Pred) {
10109       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
10110       for (auto *Pred : ExprPreds)
10111         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
10112           if (IPred->getLHS() == Expr)
10113             return IPred->getRHS();
10114     }
10115 
10116     return Expr;
10117   }
10118 
10119   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10120     const SCEV *Operand = visit(Expr->getOperand());
10121     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10122     if (AR && AR->getLoop() == L && AR->isAffine()) {
10123       // This couldn't be folded because the operand didn't have the nuw
10124       // flag. Add the nusw flag as an assumption that we could make.
10125       const SCEV *Step = AR->getStepRecurrence(SE);
10126       Type *Ty = Expr->getType();
10127       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10128         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10129                                 SE.getSignExtendExpr(Step, Ty), L,
10130                                 AR->getNoWrapFlags());
10131     }
10132     return SE.getZeroExtendExpr(Operand, Expr->getType());
10133   }
10134 
10135   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10136     const SCEV *Operand = visit(Expr->getOperand());
10137     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10138     if (AR && AR->getLoop() == L && AR->isAffine()) {
10139       // This couldn't be folded because the operand didn't have the nsw
10140       // flag. Add the nssw flag as an assumption that we could make.
10141       const SCEV *Step = AR->getStepRecurrence(SE);
10142       Type *Ty = Expr->getType();
10143       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10144         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10145                                 SE.getSignExtendExpr(Step, Ty), L,
10146                                 AR->getNoWrapFlags());
10147     }
10148     return SE.getSignExtendExpr(Operand, Expr->getType());
10149   }
10150 
10151 private:
10152   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10153                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10154     auto *A = SE.getWrapPredicate(AR, AddedFlags);
10155     if (!NewPreds) {
10156       // Check if we've already made this assumption.
10157       return Pred && Pred->implies(A);
10158     }
10159     NewPreds->insert(A);
10160     return true;
10161   }
10162 
10163   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
10164   SCEVUnionPredicate *Pred;
10165   const Loop *L;
10166 };
10167 } // end anonymous namespace
10168 
10169 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
10170                                                    SCEVUnionPredicate &Preds) {
10171   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
10172 }
10173 
10174 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
10175     const SCEV *S, const Loop *L,
10176     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
10177 
10178   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
10179   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
10180   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10181 
10182   if (!AddRec)
10183     return nullptr;
10184 
10185   // Since the transformation was successful, we can now transfer the SCEV
10186   // predicates.
10187   for (auto *P : TransformPreds)
10188     Preds.insert(P);
10189 
10190   return AddRec;
10191 }
10192 
10193 /// SCEV predicates
10194 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10195                              SCEVPredicateKind Kind)
10196     : FastID(ID), Kind(Kind) {}
10197 
10198 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10199                                        const SCEVUnknown *LHS,
10200                                        const SCEVConstant *RHS)
10201     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10202 
10203 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10204   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
10205 
10206   if (!Op)
10207     return false;
10208 
10209   return Op->LHS == LHS && Op->RHS == RHS;
10210 }
10211 
10212 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10213 
10214 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10215 
10216 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10217   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10218 }
10219 
10220 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10221                                      const SCEVAddRecExpr *AR,
10222                                      IncrementWrapFlags Flags)
10223     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10224 
10225 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10226 
10227 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10228   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10229 
10230   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10231 }
10232 
10233 bool SCEVWrapPredicate::isAlwaysTrue() const {
10234   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10235   IncrementWrapFlags IFlags = Flags;
10236 
10237   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10238     IFlags = clearFlags(IFlags, IncrementNSSW);
10239 
10240   return IFlags == IncrementAnyWrap;
10241 }
10242 
10243 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10244   OS.indent(Depth) << *getExpr() << " Added Flags: ";
10245   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10246     OS << "<nusw>";
10247   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10248     OS << "<nssw>";
10249   OS << "\n";
10250 }
10251 
10252 SCEVWrapPredicate::IncrementWrapFlags
10253 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10254                                    ScalarEvolution &SE) {
10255   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10256   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10257 
10258   // We can safely transfer the NSW flag as NSSW.
10259   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10260     ImpliedFlags = IncrementNSSW;
10261 
10262   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10263     // If the increment is positive, the SCEV NUW flag will also imply the
10264     // WrapPredicate NUSW flag.
10265     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10266       if (Step->getValue()->getValue().isNonNegative())
10267         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10268   }
10269 
10270   return ImpliedFlags;
10271 }
10272 
10273 /// Union predicates don't get cached so create a dummy set ID for it.
10274 SCEVUnionPredicate::SCEVUnionPredicate()
10275     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10276 
10277 bool SCEVUnionPredicate::isAlwaysTrue() const {
10278   return all_of(Preds,
10279                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10280 }
10281 
10282 ArrayRef<const SCEVPredicate *>
10283 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10284   auto I = SCEVToPreds.find(Expr);
10285   if (I == SCEVToPreds.end())
10286     return ArrayRef<const SCEVPredicate *>();
10287   return I->second;
10288 }
10289 
10290 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10291   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
10292     return all_of(Set->Preds,
10293                   [this](const SCEVPredicate *I) { return this->implies(I); });
10294 
10295   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10296   if (ScevPredsIt == SCEVToPreds.end())
10297     return false;
10298   auto &SCEVPreds = ScevPredsIt->second;
10299 
10300   return any_of(SCEVPreds,
10301                 [N](const SCEVPredicate *I) { return I->implies(N); });
10302 }
10303 
10304 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10305 
10306 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10307   for (auto Pred : Preds)
10308     Pred->print(OS, Depth);
10309 }
10310 
10311 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10312   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
10313     for (auto Pred : Set->Preds)
10314       add(Pred);
10315     return;
10316   }
10317 
10318   if (implies(N))
10319     return;
10320 
10321   const SCEV *Key = N->getExpr();
10322   assert(Key && "Only SCEVUnionPredicate doesn't have an "
10323                 " associated expression!");
10324 
10325   SCEVToPreds[Key].push_back(N);
10326   Preds.push_back(N);
10327 }
10328 
10329 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10330                                                      Loop &L)
10331     : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
10332 
10333 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10334   const SCEV *Expr = SE.getSCEV(V);
10335   RewriteEntry &Entry = RewriteMap[Expr];
10336 
10337   // If we already have an entry and the version matches, return it.
10338   if (Entry.second && Generation == Entry.first)
10339     return Entry.second;
10340 
10341   // We found an entry but it's stale. Rewrite the stale entry
10342   // acording to the current predicate.
10343   if (Entry.second)
10344     Expr = Entry.second;
10345 
10346   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10347   Entry = {Generation, NewSCEV};
10348 
10349   return NewSCEV;
10350 }
10351 
10352 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10353   if (!BackedgeCount) {
10354     SCEVUnionPredicate BackedgePred;
10355     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10356     addPredicate(BackedgePred);
10357   }
10358   return BackedgeCount;
10359 }
10360 
10361 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10362   if (Preds.implies(&Pred))
10363     return;
10364   Preds.add(&Pred);
10365   updateGeneration();
10366 }
10367 
10368 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10369   return Preds;
10370 }
10371 
10372 void PredicatedScalarEvolution::updateGeneration() {
10373   // If the generation number wrapped recompute everything.
10374   if (++Generation == 0) {
10375     for (auto &II : RewriteMap) {
10376       const SCEV *Rewritten = II.second.second;
10377       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10378     }
10379   }
10380 }
10381 
10382 void PredicatedScalarEvolution::setNoOverflow(
10383     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10384   const SCEV *Expr = getSCEV(V);
10385   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10386 
10387   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10388 
10389   // Clear the statically implied flags.
10390   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10391   addPredicate(*SE.getWrapPredicate(AR, Flags));
10392 
10393   auto II = FlagsMap.insert({V, Flags});
10394   if (!II.second)
10395     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10396 }
10397 
10398 bool PredicatedScalarEvolution::hasNoOverflow(
10399     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10400   const SCEV *Expr = getSCEV(V);
10401   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10402 
10403   Flags = SCEVWrapPredicate::clearFlags(
10404       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10405 
10406   auto II = FlagsMap.find(V);
10407 
10408   if (II != FlagsMap.end())
10409     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10410 
10411   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10412 }
10413 
10414 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10415   const SCEV *Expr = this->getSCEV(V);
10416   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
10417   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
10418 
10419   if (!New)
10420     return nullptr;
10421 
10422   for (auto *P : NewPreds)
10423     Preds.add(P);
10424 
10425   updateGeneration();
10426   RewriteMap[SE.getSCEV(V)] = {Generation, New};
10427   return New;
10428 }
10429 
10430 PredicatedScalarEvolution::PredicatedScalarEvolution(
10431     const PredicatedScalarEvolution &Init)
10432     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10433       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
10434   for (const auto &I : Init.FlagsMap)
10435     FlagsMap.insert(I);
10436 }
10437 
10438 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10439   // For each block.
10440   for (auto *BB : L.getBlocks())
10441     for (auto &I : *BB) {
10442       if (!SE.isSCEVable(I.getType()))
10443         continue;
10444 
10445       auto *Expr = SE.getSCEV(&I);
10446       auto II = RewriteMap.find(Expr);
10447 
10448       if (II == RewriteMap.end())
10449         continue;
10450 
10451       // Don't print things that are not interesting.
10452       if (II->second.second == Expr)
10453         continue;
10454 
10455       OS.indent(Depth) << "[PSE]" << I << ":\n";
10456       OS.indent(Depth + 2) << *Expr << "\n";
10457       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10458     }
10459 }
10460