xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 8d7576e12c6f085b50e1cb625e2fd7269e15c606)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle.  These classes are reference counted, managed by the const SCEV*
18 // class.  We only create one SCEV of a particular shape, so pointer-comparisons
19 // for equality are legal.
20 //
21 // One important aspect of the SCEV objects is that they are never cyclic, even
22 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
24 // recurrence) then we represent it directly as a recurrence node, otherwise we
25 // represent it as a SCEVUnknown node.
26 //
27 // In addition to being able to represent expressions of various types, we also
28 // have folders that are used to build the *canonical* representation for a
29 // particular expression.  These folders are capable of using a variety of
30 // rewrite rules to simplify the expressions.
31 //
32 // Once the folders are defined, we can implement the more interesting
33 // higher-level code, such as the code that recognizes PHI nodes of various
34 // types, computes the execution count of a loop, etc.
35 //
36 // TODO: We should use these routines and value representations to implement
37 // dependence analysis!
38 //
39 //===----------------------------------------------------------------------===//
40 //
41 // There are several good references for the techniques used in this analysis.
42 //
43 //  Chains of recurrences -- a method to expedite the evaluation
44 //  of closed-form functions
45 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46 //
47 //  On computational properties of chains of recurrences
48 //  Eugene V. Zima
49 //
50 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51 //  Robert A. van Engelen
52 //
53 //  Efficient Symbolic Analysis for Optimizing Compilers
54 //  Robert A. van Engelen
55 //
56 //  Using the chains of recurrences algebra for data dependence testing and
57 //  induction variable substitution
58 //  MS Thesis, Johnie Birch
59 //
60 //===----------------------------------------------------------------------===//
61 
62 #define DEBUG_TYPE "scalar-evolution"
63 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
64 #include "llvm/Constants.h"
65 #include "llvm/DerivedTypes.h"
66 #include "llvm/GlobalVariable.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/Analysis/ConstantFolding.h"
69 #include "llvm/Analysis/Dominators.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/ValueTracking.h"
72 #include "llvm/Assembly/Writer.h"
73 #include "llvm/Target/TargetData.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/ConstantRange.h"
77 #include "llvm/Support/GetElementPtrTypeIterator.h"
78 #include "llvm/Support/InstIterator.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/ADT/Statistic.h"
82 #include "llvm/ADT/STLExtras.h"
83 #include <algorithm>
84 using namespace llvm;
85 
86 STATISTIC(NumArrayLenItCounts,
87           "Number of trip counts computed with array length");
88 STATISTIC(NumTripCountsComputed,
89           "Number of loops with predictable loop counts");
90 STATISTIC(NumTripCountsNotComputed,
91           "Number of loops without predictable loop counts");
92 STATISTIC(NumBruteForceTripCountsComputed,
93           "Number of loops with trip counts computed by force");
94 
95 static cl::opt<unsigned>
96 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
97                         cl::desc("Maximum number of iterations SCEV will "
98                                  "symbolically execute a constant derived loop"),
99                         cl::init(100));
100 
101 static RegisterPass<ScalarEvolution>
102 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
103 char ScalarEvolution::ID = 0;
104 
105 //===----------------------------------------------------------------------===//
106 //                           SCEV class definitions
107 //===----------------------------------------------------------------------===//
108 
109 //===----------------------------------------------------------------------===//
110 // Implementation of the SCEV class.
111 //
112 SCEV::~SCEV() {}
113 void SCEV::dump() const {
114   print(errs());
115   errs() << '\n';
116 }
117 
118 void SCEV::print(std::ostream &o) const {
119   raw_os_ostream OS(o);
120   print(OS);
121 }
122 
123 bool SCEV::isZero() const {
124   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
125     return SC->getValue()->isZero();
126   return false;
127 }
128 
129 bool SCEV::isOne() const {
130   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131     return SC->getValue()->isOne();
132   return false;
133 }
134 
135 bool SCEV::isAllOnesValue() const {
136   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
137     return SC->getValue()->isAllOnesValue();
138   return false;
139 }
140 
141 SCEVCouldNotCompute::SCEVCouldNotCompute() :
142   SCEV(scCouldNotCompute) {}
143 
144 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
145   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146   return false;
147 }
148 
149 const Type *SCEVCouldNotCompute::getType() const {
150   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151   return 0;
152 }
153 
154 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
155   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
156   return false;
157 }
158 
159 const SCEV* SCEVCouldNotCompute::
160 replaceSymbolicValuesWithConcrete(const SCEV* Sym,
161                                   const SCEV* Conc,
162                                   ScalarEvolution &SE) const {
163   return this;
164 }
165 
166 void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167   OS << "***COULDNOTCOMPUTE***";
168 }
169 
170 bool SCEVCouldNotCompute::classof(const SCEV *S) {
171   return S->getSCEVType() == scCouldNotCompute;
172 }
173 
174 
175 // SCEVConstants - Only allow the creation of one SCEVConstant for any
176 // particular value.  Don't use a const SCEV* here, or else the object will
177 // never be deleted!
178 
179 const SCEV* ScalarEvolution::getConstant(ConstantInt *V) {
180   SCEVConstant *&R = SCEVConstants[V];
181   if (R == 0) R = new SCEVConstant(V);
182   return R;
183 }
184 
185 const SCEV* ScalarEvolution::getConstant(const APInt& Val) {
186   return getConstant(ConstantInt::get(Val));
187 }
188 
189 const SCEV*
190 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191   return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
192 }
193 
194 const Type *SCEVConstant::getType() const { return V->getType(); }
195 
196 void SCEVConstant::print(raw_ostream &OS) const {
197   WriteAsOperand(OS, V, false);
198 }
199 
200 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
201                            const SCEV* op, const Type *ty)
202   : SCEV(SCEVTy), Op(op), Ty(ty) {}
203 
204 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
205   return Op->dominates(BB, DT);
206 }
207 
208 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
209 // particular input.  Don't use a const SCEV* here, or else the object will
210 // never be deleted!
211 
212 SCEVTruncateExpr::SCEVTruncateExpr(const SCEV* op, const Type *ty)
213   : SCEVCastExpr(scTruncate, op, ty) {
214   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
215          (Ty->isInteger() || isa<PointerType>(Ty)) &&
216          "Cannot truncate non-integer value!");
217 }
218 
219 
220 void SCEVTruncateExpr::print(raw_ostream &OS) const {
221   OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
222 }
223 
224 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
225 // particular input.  Don't use a const SCEV* here, or else the object will never
226 // be deleted!
227 
228 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEV* op, const Type *ty)
229   : SCEVCastExpr(scZeroExtend, op, ty) {
230   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
231          (Ty->isInteger() || isa<PointerType>(Ty)) &&
232          "Cannot zero extend non-integer value!");
233 }
234 
235 void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
236   OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
237 }
238 
239 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
240 // particular input.  Don't use a const SCEV* here, or else the object will never
241 // be deleted!
242 
243 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEV* op, const Type *ty)
244   : SCEVCastExpr(scSignExtend, op, ty) {
245   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
246          (Ty->isInteger() || isa<PointerType>(Ty)) &&
247          "Cannot sign extend non-integer value!");
248 }
249 
250 void SCEVSignExtendExpr::print(raw_ostream &OS) const {
251   OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
252 }
253 
254 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
255 // particular input.  Don't use a const SCEV* here, or else the object will never
256 // be deleted!
257 
258 void SCEVCommutativeExpr::print(raw_ostream &OS) const {
259   assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
260   const char *OpStr = getOperationStr();
261   OS << "(" << *Operands[0];
262   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
263     OS << OpStr << *Operands[i];
264   OS << ")";
265 }
266 
267 const SCEV* SCEVCommutativeExpr::
268 replaceSymbolicValuesWithConcrete(const SCEV* Sym,
269                                   const SCEV* Conc,
270                                   ScalarEvolution &SE) const {
271   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272     const SCEV* H =
273       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
274     if (H != getOperand(i)) {
275       SmallVector<const SCEV*, 8> NewOps;
276       NewOps.reserve(getNumOperands());
277       for (unsigned j = 0; j != i; ++j)
278         NewOps.push_back(getOperand(j));
279       NewOps.push_back(H);
280       for (++i; i != e; ++i)
281         NewOps.push_back(getOperand(i)->
282                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
283 
284       if (isa<SCEVAddExpr>(this))
285         return SE.getAddExpr(NewOps);
286       else if (isa<SCEVMulExpr>(this))
287         return SE.getMulExpr(NewOps);
288       else if (isa<SCEVSMaxExpr>(this))
289         return SE.getSMaxExpr(NewOps);
290       else if (isa<SCEVUMaxExpr>(this))
291         return SE.getUMaxExpr(NewOps);
292       else
293         assert(0 && "Unknown commutative expr!");
294     }
295   }
296   return this;
297 }
298 
299 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
300   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
301     if (!getOperand(i)->dominates(BB, DT))
302       return false;
303   }
304   return true;
305 }
306 
307 
308 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
309 // input.  Don't use a const SCEV* here, or else the object will never be
310 // deleted!
311 
312 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
313   return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
314 }
315 
316 void SCEVUDivExpr::print(raw_ostream &OS) const {
317   OS << "(" << *LHS << " /u " << *RHS << ")";
318 }
319 
320 const Type *SCEVUDivExpr::getType() const {
321   // In most cases the types of LHS and RHS will be the same, but in some
322   // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
323   // depend on the type for correctness, but handling types carefully can
324   // avoid extra casts in the SCEVExpander. The LHS is more likely to be
325   // a pointer type than the RHS, so use the RHS' type here.
326   return RHS->getType();
327 }
328 
329 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
330 // particular input.  Don't use a const SCEV* here, or else the object will never
331 // be deleted!
332 
333 const SCEV* SCEVAddRecExpr::
334 replaceSymbolicValuesWithConcrete(const SCEV* Sym,
335                                   const SCEV* Conc,
336                                   ScalarEvolution &SE) const {
337   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
338     const SCEV* H =
339       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
340     if (H != getOperand(i)) {
341       SmallVector<const SCEV*, 8> NewOps;
342       NewOps.reserve(getNumOperands());
343       for (unsigned j = 0; j != i; ++j)
344         NewOps.push_back(getOperand(j));
345       NewOps.push_back(H);
346       for (++i; i != e; ++i)
347         NewOps.push_back(getOperand(i)->
348                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
349 
350       return SE.getAddRecExpr(NewOps, L);
351     }
352   }
353   return this;
354 }
355 
356 
357 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
358   // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
359   // contain L and if the start is invariant.
360   // Add recurrences are never invariant in the function-body (null loop).
361   return QueryLoop &&
362          !QueryLoop->contains(L->getHeader()) &&
363          getOperand(0)->isLoopInvariant(QueryLoop);
364 }
365 
366 
367 void SCEVAddRecExpr::print(raw_ostream &OS) const {
368   OS << "{" << *Operands[0];
369   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
370     OS << ",+," << *Operands[i];
371   OS << "}<" << L->getHeader()->getName() + ">";
372 }
373 
374 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
375 // value.  Don't use a const SCEV* here, or else the object will never be
376 // deleted!
377 
378 bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
379   // All non-instruction values are loop invariant.  All instructions are loop
380   // invariant if they are not contained in the specified loop.
381   // Instructions are never considered invariant in the function body
382   // (null loop) because they are defined within the "loop".
383   if (Instruction *I = dyn_cast<Instruction>(V))
384     return L && !L->contains(I->getParent());
385   return true;
386 }
387 
388 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
389   if (Instruction *I = dyn_cast<Instruction>(getValue()))
390     return DT->dominates(I->getParent(), BB);
391   return true;
392 }
393 
394 const Type *SCEVUnknown::getType() const {
395   return V->getType();
396 }
397 
398 void SCEVUnknown::print(raw_ostream &OS) const {
399   WriteAsOperand(OS, V, false);
400 }
401 
402 //===----------------------------------------------------------------------===//
403 //                               SCEV Utilities
404 //===----------------------------------------------------------------------===//
405 
406 namespace {
407   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
408   /// than the complexity of the RHS.  This comparator is used to canonicalize
409   /// expressions.
410   class VISIBILITY_HIDDEN SCEVComplexityCompare {
411     LoopInfo *LI;
412   public:
413     explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
414 
415     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
416       // Primarily, sort the SCEVs by their getSCEVType().
417       if (LHS->getSCEVType() != RHS->getSCEVType())
418         return LHS->getSCEVType() < RHS->getSCEVType();
419 
420       // Aside from the getSCEVType() ordering, the particular ordering
421       // isn't very important except that it's beneficial to be consistent,
422       // so that (a + b) and (b + a) don't end up as different expressions.
423 
424       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
425       // not as complete as it could be.
426       if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
427         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
428 
429         // Order pointer values after integer values. This helps SCEVExpander
430         // form GEPs.
431         if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
432           return false;
433         if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
434           return true;
435 
436         // Compare getValueID values.
437         if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
438           return LU->getValue()->getValueID() < RU->getValue()->getValueID();
439 
440         // Sort arguments by their position.
441         if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
442           const Argument *RA = cast<Argument>(RU->getValue());
443           return LA->getArgNo() < RA->getArgNo();
444         }
445 
446         // For instructions, compare their loop depth, and their opcode.
447         // This is pretty loose.
448         if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
449           Instruction *RV = cast<Instruction>(RU->getValue());
450 
451           // Compare loop depths.
452           if (LI->getLoopDepth(LV->getParent()) !=
453               LI->getLoopDepth(RV->getParent()))
454             return LI->getLoopDepth(LV->getParent()) <
455                    LI->getLoopDepth(RV->getParent());
456 
457           // Compare opcodes.
458           if (LV->getOpcode() != RV->getOpcode())
459             return LV->getOpcode() < RV->getOpcode();
460 
461           // Compare the number of operands.
462           if (LV->getNumOperands() != RV->getNumOperands())
463             return LV->getNumOperands() < RV->getNumOperands();
464         }
465 
466         return false;
467       }
468 
469       // Compare constant values.
470       if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
471         const SCEVConstant *RC = cast<SCEVConstant>(RHS);
472         return LC->getValue()->getValue().ult(RC->getValue()->getValue());
473       }
474 
475       // Compare addrec loop depths.
476       if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
477         const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
478         if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
479           return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
480       }
481 
482       // Lexicographically compare n-ary expressions.
483       if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
484         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
485         for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
486           if (i >= RC->getNumOperands())
487             return false;
488           if (operator()(LC->getOperand(i), RC->getOperand(i)))
489             return true;
490           if (operator()(RC->getOperand(i), LC->getOperand(i)))
491             return false;
492         }
493         return LC->getNumOperands() < RC->getNumOperands();
494       }
495 
496       // Lexicographically compare udiv expressions.
497       if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
498         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
499         if (operator()(LC->getLHS(), RC->getLHS()))
500           return true;
501         if (operator()(RC->getLHS(), LC->getLHS()))
502           return false;
503         if (operator()(LC->getRHS(), RC->getRHS()))
504           return true;
505         if (operator()(RC->getRHS(), LC->getRHS()))
506           return false;
507         return false;
508       }
509 
510       // Compare cast expressions by operand.
511       if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
512         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
513         return operator()(LC->getOperand(), RC->getOperand());
514       }
515 
516       assert(0 && "Unknown SCEV kind!");
517       return false;
518     }
519   };
520 }
521 
522 /// GroupByComplexity - Given a list of SCEV objects, order them by their
523 /// complexity, and group objects of the same complexity together by value.
524 /// When this routine is finished, we know that any duplicates in the vector are
525 /// consecutive and that complexity is monotonically increasing.
526 ///
527 /// Note that we go take special precautions to ensure that we get determinstic
528 /// results from this routine.  In other words, we don't want the results of
529 /// this to depend on where the addresses of various SCEV objects happened to
530 /// land in memory.
531 ///
532 static void GroupByComplexity(SmallVectorImpl<const SCEV*> &Ops,
533                               LoopInfo *LI) {
534   if (Ops.size() < 2) return;  // Noop
535   if (Ops.size() == 2) {
536     // This is the common case, which also happens to be trivially simple.
537     // Special case it.
538     if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
539       std::swap(Ops[0], Ops[1]);
540     return;
541   }
542 
543   // Do the rough sort by complexity.
544   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
545 
546   // Now that we are sorted by complexity, group elements of the same
547   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
548   // be extremely short in practice.  Note that we take this approach because we
549   // do not want to depend on the addresses of the objects we are grouping.
550   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
551     const SCEV *S = Ops[i];
552     unsigned Complexity = S->getSCEVType();
553 
554     // If there are any objects of the same complexity and same value as this
555     // one, group them.
556     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
557       if (Ops[j] == S) { // Found a duplicate.
558         // Move it to immediately after i'th element.
559         std::swap(Ops[i+1], Ops[j]);
560         ++i;   // no need to rescan it.
561         if (i == e-2) return;  // Done!
562       }
563     }
564   }
565 }
566 
567 
568 
569 //===----------------------------------------------------------------------===//
570 //                      Simple SCEV method implementations
571 //===----------------------------------------------------------------------===//
572 
573 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
574 /// Assume, K > 0.
575 static const SCEV* BinomialCoefficient(const SCEV* It, unsigned K,
576                                       ScalarEvolution &SE,
577                                       const Type* ResultTy) {
578   // Handle the simplest case efficiently.
579   if (K == 1)
580     return SE.getTruncateOrZeroExtend(It, ResultTy);
581 
582   // We are using the following formula for BC(It, K):
583   //
584   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
585   //
586   // Suppose, W is the bitwidth of the return value.  We must be prepared for
587   // overflow.  Hence, we must assure that the result of our computation is
588   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
589   // safe in modular arithmetic.
590   //
591   // However, this code doesn't use exactly that formula; the formula it uses
592   // is something like the following, where T is the number of factors of 2 in
593   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
594   // exponentiation:
595   //
596   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
597   //
598   // This formula is trivially equivalent to the previous formula.  However,
599   // this formula can be implemented much more efficiently.  The trick is that
600   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
601   // arithmetic.  To do exact division in modular arithmetic, all we have
602   // to do is multiply by the inverse.  Therefore, this step can be done at
603   // width W.
604   //
605   // The next issue is how to safely do the division by 2^T.  The way this
606   // is done is by doing the multiplication step at a width of at least W + T
607   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
608   // when we perform the division by 2^T (which is equivalent to a right shift
609   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
610   // truncated out after the division by 2^T.
611   //
612   // In comparison to just directly using the first formula, this technique
613   // is much more efficient; using the first formula requires W * K bits,
614   // but this formula less than W + K bits. Also, the first formula requires
615   // a division step, whereas this formula only requires multiplies and shifts.
616   //
617   // It doesn't matter whether the subtraction step is done in the calculation
618   // width or the input iteration count's width; if the subtraction overflows,
619   // the result must be zero anyway.  We prefer here to do it in the width of
620   // the induction variable because it helps a lot for certain cases; CodeGen
621   // isn't smart enough to ignore the overflow, which leads to much less
622   // efficient code if the width of the subtraction is wider than the native
623   // register width.
624   //
625   // (It's possible to not widen at all by pulling out factors of 2 before
626   // the multiplication; for example, K=2 can be calculated as
627   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
628   // extra arithmetic, so it's not an obvious win, and it gets
629   // much more complicated for K > 3.)
630 
631   // Protection from insane SCEVs; this bound is conservative,
632   // but it probably doesn't matter.
633   if (K > 1000)
634     return SE.getCouldNotCompute();
635 
636   unsigned W = SE.getTypeSizeInBits(ResultTy);
637 
638   // Calculate K! / 2^T and T; we divide out the factors of two before
639   // multiplying for calculating K! / 2^T to avoid overflow.
640   // Other overflow doesn't matter because we only care about the bottom
641   // W bits of the result.
642   APInt OddFactorial(W, 1);
643   unsigned T = 1;
644   for (unsigned i = 3; i <= K; ++i) {
645     APInt Mult(W, i);
646     unsigned TwoFactors = Mult.countTrailingZeros();
647     T += TwoFactors;
648     Mult = Mult.lshr(TwoFactors);
649     OddFactorial *= Mult;
650   }
651 
652   // We need at least W + T bits for the multiplication step
653   unsigned CalculationBits = W + T;
654 
655   // Calcuate 2^T, at width T+W.
656   APInt DivFactor = APInt(CalculationBits, 1).shl(T);
657 
658   // Calculate the multiplicative inverse of K! / 2^T;
659   // this multiplication factor will perform the exact division by
660   // K! / 2^T.
661   APInt Mod = APInt::getSignedMinValue(W+1);
662   APInt MultiplyFactor = OddFactorial.zext(W+1);
663   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
664   MultiplyFactor = MultiplyFactor.trunc(W);
665 
666   // Calculate the product, at width T+W
667   const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
668   const SCEV* Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
669   for (unsigned i = 1; i != K; ++i) {
670     const SCEV* S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
671     Dividend = SE.getMulExpr(Dividend,
672                              SE.getTruncateOrZeroExtend(S, CalculationTy));
673   }
674 
675   // Divide by 2^T
676   const SCEV* DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
677 
678   // Truncate the result, and divide by K! / 2^T.
679 
680   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
681                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
682 }
683 
684 /// evaluateAtIteration - Return the value of this chain of recurrences at
685 /// the specified iteration number.  We can evaluate this recurrence by
686 /// multiplying each element in the chain by the binomial coefficient
687 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
688 ///
689 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
690 ///
691 /// where BC(It, k) stands for binomial coefficient.
692 ///
693 const SCEV* SCEVAddRecExpr::evaluateAtIteration(const SCEV* It,
694                                                ScalarEvolution &SE) const {
695   const SCEV* Result = getStart();
696   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
697     // The computation is correct in the face of overflow provided that the
698     // multiplication is performed _after_ the evaluation of the binomial
699     // coefficient.
700     const SCEV* Coeff = BinomialCoefficient(It, i, SE, getType());
701     if (isa<SCEVCouldNotCompute>(Coeff))
702       return Coeff;
703 
704     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
705   }
706   return Result;
707 }
708 
709 //===----------------------------------------------------------------------===//
710 //                    SCEV Expression folder implementations
711 //===----------------------------------------------------------------------===//
712 
713 const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op,
714                                             const Type *Ty) {
715   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
716          "This is not a truncating conversion!");
717   assert(isSCEVable(Ty) &&
718          "This is not a conversion to a SCEVable type!");
719   Ty = getEffectiveSCEVType(Ty);
720 
721   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
722     return getConstant(
723       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
724 
725   // trunc(trunc(x)) --> trunc(x)
726   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
727     return getTruncateExpr(ST->getOperand(), Ty);
728 
729   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
730   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
731     return getTruncateOrSignExtend(SS->getOperand(), Ty);
732 
733   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
734   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
735     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
736 
737   // If the input value is a chrec scev, truncate the chrec's operands.
738   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
739     SmallVector<const SCEV*, 4> Operands;
740     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
741       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
742     return getAddRecExpr(Operands, AddRec->getLoop());
743   }
744 
745   SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
746   if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
747   return Result;
748 }
749 
750 const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
751                                               const Type *Ty) {
752   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
753          "This is not an extending conversion!");
754   assert(isSCEVable(Ty) &&
755          "This is not a conversion to a SCEVable type!");
756   Ty = getEffectiveSCEVType(Ty);
757 
758   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
759     const Type *IntTy = getEffectiveSCEVType(Ty);
760     Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
761     if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
762     return getConstant(cast<ConstantInt>(C));
763   }
764 
765   // zext(zext(x)) --> zext(x)
766   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
767     return getZeroExtendExpr(SZ->getOperand(), Ty);
768 
769   // If the input value is a chrec scev, and we can prove that the value
770   // did not overflow the old, smaller, value, we can zero extend all of the
771   // operands (often constants).  This allows analysis of something like
772   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
773   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
774     if (AR->isAffine()) {
775       // Check whether the backedge-taken count is SCEVCouldNotCompute.
776       // Note that this serves two purposes: It filters out loops that are
777       // simply not analyzable, and it covers the case where this code is
778       // being called from within backedge-taken count analysis, such that
779       // attempting to ask for the backedge-taken count would likely result
780       // in infinite recursion. In the later case, the analysis code will
781       // cope with a conservative value, and it will take care to purge
782       // that value once it has finished.
783       const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
784       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
785         // Manually compute the final value for AR, checking for
786         // overflow.
787         const SCEV* Start = AR->getStart();
788         const SCEV* Step = AR->getStepRecurrence(*this);
789 
790         // Check whether the backedge-taken count can be losslessly casted to
791         // the addrec's type. The count is always unsigned.
792         const SCEV* CastedMaxBECount =
793           getTruncateOrZeroExtend(MaxBECount, Start->getType());
794         const SCEV* RecastedMaxBECount =
795           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
796         if (MaxBECount == RecastedMaxBECount) {
797           const Type *WideTy =
798             IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
799           // Check whether Start+Step*MaxBECount has no unsigned overflow.
800           const SCEV* ZMul =
801             getMulExpr(CastedMaxBECount,
802                        getTruncateOrZeroExtend(Step, Start->getType()));
803           const SCEV* Add = getAddExpr(Start, ZMul);
804           const SCEV* OperandExtendedAdd =
805             getAddExpr(getZeroExtendExpr(Start, WideTy),
806                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
807                                   getZeroExtendExpr(Step, WideTy)));
808           if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
809             // Return the expression with the addrec on the outside.
810             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
811                                  getZeroExtendExpr(Step, Ty),
812                                  AR->getLoop());
813 
814           // Similar to above, only this time treat the step value as signed.
815           // This covers loops that count down.
816           const SCEV* SMul =
817             getMulExpr(CastedMaxBECount,
818                        getTruncateOrSignExtend(Step, Start->getType()));
819           Add = getAddExpr(Start, SMul);
820           OperandExtendedAdd =
821             getAddExpr(getZeroExtendExpr(Start, WideTy),
822                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
823                                   getSignExtendExpr(Step, WideTy)));
824           if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
825             // Return the expression with the addrec on the outside.
826             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
827                                  getSignExtendExpr(Step, Ty),
828                                  AR->getLoop());
829         }
830       }
831     }
832 
833   SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
834   if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
835   return Result;
836 }
837 
838 const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
839                                               const Type *Ty) {
840   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
841          "This is not an extending conversion!");
842   assert(isSCEVable(Ty) &&
843          "This is not a conversion to a SCEVable type!");
844   Ty = getEffectiveSCEVType(Ty);
845 
846   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
847     const Type *IntTy = getEffectiveSCEVType(Ty);
848     Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
849     if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
850     return getConstant(cast<ConstantInt>(C));
851   }
852 
853   // sext(sext(x)) --> sext(x)
854   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
855     return getSignExtendExpr(SS->getOperand(), Ty);
856 
857   // If the input value is a chrec scev, and we can prove that the value
858   // did not overflow the old, smaller, value, we can sign extend all of the
859   // operands (often constants).  This allows analysis of something like
860   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
861   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
862     if (AR->isAffine()) {
863       // Check whether the backedge-taken count is SCEVCouldNotCompute.
864       // Note that this serves two purposes: It filters out loops that are
865       // simply not analyzable, and it covers the case where this code is
866       // being called from within backedge-taken count analysis, such that
867       // attempting to ask for the backedge-taken count would likely result
868       // in infinite recursion. In the later case, the analysis code will
869       // cope with a conservative value, and it will take care to purge
870       // that value once it has finished.
871       const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
872       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
873         // Manually compute the final value for AR, checking for
874         // overflow.
875         const SCEV* Start = AR->getStart();
876         const SCEV* Step = AR->getStepRecurrence(*this);
877 
878         // Check whether the backedge-taken count can be losslessly casted to
879         // the addrec's type. The count is always unsigned.
880         const SCEV* CastedMaxBECount =
881           getTruncateOrZeroExtend(MaxBECount, Start->getType());
882         const SCEV* RecastedMaxBECount =
883           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
884         if (MaxBECount == RecastedMaxBECount) {
885           const Type *WideTy =
886             IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
887           // Check whether Start+Step*MaxBECount has no signed overflow.
888           const SCEV* SMul =
889             getMulExpr(CastedMaxBECount,
890                        getTruncateOrSignExtend(Step, Start->getType()));
891           const SCEV* Add = getAddExpr(Start, SMul);
892           const SCEV* OperandExtendedAdd =
893             getAddExpr(getSignExtendExpr(Start, WideTy),
894                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
895                                   getSignExtendExpr(Step, WideTy)));
896           if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
897             // Return the expression with the addrec on the outside.
898             return getAddRecExpr(getSignExtendExpr(Start, Ty),
899                                  getSignExtendExpr(Step, Ty),
900                                  AR->getLoop());
901         }
902       }
903     }
904 
905   SCEVSignExtendExpr *&Result = SCEVSignExtends[std::make_pair(Op, Ty)];
906   if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
907   return Result;
908 }
909 
910 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
911 /// unspecified bits out to the given type.
912 ///
913 const SCEV* ScalarEvolution::getAnyExtendExpr(const SCEV* Op,
914                                              const Type *Ty) {
915   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
916          "This is not an extending conversion!");
917   assert(isSCEVable(Ty) &&
918          "This is not a conversion to a SCEVable type!");
919   Ty = getEffectiveSCEVType(Ty);
920 
921   // Sign-extend negative constants.
922   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
923     if (SC->getValue()->getValue().isNegative())
924       return getSignExtendExpr(Op, Ty);
925 
926   // Peel off a truncate cast.
927   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
928     const SCEV* NewOp = T->getOperand();
929     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
930       return getAnyExtendExpr(NewOp, Ty);
931     return getTruncateOrNoop(NewOp, Ty);
932   }
933 
934   // Next try a zext cast. If the cast is folded, use it.
935   const SCEV* ZExt = getZeroExtendExpr(Op, Ty);
936   if (!isa<SCEVZeroExtendExpr>(ZExt))
937     return ZExt;
938 
939   // Next try a sext cast. If the cast is folded, use it.
940   const SCEV* SExt = getSignExtendExpr(Op, Ty);
941   if (!isa<SCEVSignExtendExpr>(SExt))
942     return SExt;
943 
944   // If the expression is obviously signed, use the sext cast value.
945   if (isa<SCEVSMaxExpr>(Op))
946     return SExt;
947 
948   // Absent any other information, use the zext cast value.
949   return ZExt;
950 }
951 
952 /// CollectAddOperandsWithScales - Process the given Ops list, which is
953 /// a list of operands to be added under the given scale, update the given
954 /// map. This is a helper function for getAddRecExpr. As an example of
955 /// what it does, given a sequence of operands that would form an add
956 /// expression like this:
957 ///
958 ///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
959 ///
960 /// where A and B are constants, update the map with these values:
961 ///
962 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
963 ///
964 /// and add 13 + A*B*29 to AccumulatedConstant.
965 /// This will allow getAddRecExpr to produce this:
966 ///
967 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
968 ///
969 /// This form often exposes folding opportunities that are hidden in
970 /// the original operand list.
971 ///
972 /// Return true iff it appears that any interesting folding opportunities
973 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
974 /// the common case where no interesting opportunities are present, and
975 /// is also used as a check to avoid infinite recursion.
976 ///
977 static bool
978 CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M,
979                              SmallVector<const SCEV*, 8> &NewOps,
980                              APInt &AccumulatedConstant,
981                              const SmallVectorImpl<const SCEV*> &Ops,
982                              const APInt &Scale,
983                              ScalarEvolution &SE) {
984   bool Interesting = false;
985 
986   // Iterate over the add operands.
987   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
988     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
989     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
990       APInt NewScale =
991         Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
992       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
993         // A multiplication of a constant with another add; recurse.
994         Interesting |=
995           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
996                                        cast<SCEVAddExpr>(Mul->getOperand(1))
997                                          ->getOperands(),
998                                        NewScale, SE);
999       } else {
1000         // A multiplication of a constant with some other value. Update
1001         // the map.
1002         SmallVector<const SCEV*, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1003         const SCEV* Key = SE.getMulExpr(MulOps);
1004         std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
1005           M.insert(std::make_pair(Key, APInt()));
1006         if (Pair.second) {
1007           Pair.first->second = NewScale;
1008           NewOps.push_back(Pair.first->first);
1009         } else {
1010           Pair.first->second += NewScale;
1011           // The map already had an entry for this value, which may indicate
1012           // a folding opportunity.
1013           Interesting = true;
1014         }
1015       }
1016     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1017       // Pull a buried constant out to the outside.
1018       if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1019         Interesting = true;
1020       AccumulatedConstant += Scale * C->getValue()->getValue();
1021     } else {
1022       // An ordinary operand. Update the map.
1023       std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
1024         M.insert(std::make_pair(Ops[i], APInt()));
1025       if (Pair.second) {
1026         Pair.first->second = Scale;
1027         NewOps.push_back(Pair.first->first);
1028       } else {
1029         Pair.first->second += Scale;
1030         // The map already had an entry for this value, which may indicate
1031         // a folding opportunity.
1032         Interesting = true;
1033       }
1034     }
1035   }
1036 
1037   return Interesting;
1038 }
1039 
1040 namespace {
1041   struct APIntCompare {
1042     bool operator()(const APInt &LHS, const APInt &RHS) const {
1043       return LHS.ult(RHS);
1044     }
1045   };
1046 }
1047 
1048 /// getAddExpr - Get a canonical add expression, or something simpler if
1049 /// possible.
1050 const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
1051   assert(!Ops.empty() && "Cannot get empty add!");
1052   if (Ops.size() == 1) return Ops[0];
1053 #ifndef NDEBUG
1054   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1055     assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1056            getEffectiveSCEVType(Ops[0]->getType()) &&
1057            "SCEVAddExpr operand types don't match!");
1058 #endif
1059 
1060   // Sort by complexity, this groups all similar expression types together.
1061   GroupByComplexity(Ops, LI);
1062 
1063   // If there are any constants, fold them together.
1064   unsigned Idx = 0;
1065   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1066     ++Idx;
1067     assert(Idx < Ops.size());
1068     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1069       // We found two constants, fold them together!
1070       Ops[0] = getConstant(LHSC->getValue()->getValue() +
1071                            RHSC->getValue()->getValue());
1072       if (Ops.size() == 2) return Ops[0];
1073       Ops.erase(Ops.begin()+1);  // Erase the folded element
1074       LHSC = cast<SCEVConstant>(Ops[0]);
1075     }
1076 
1077     // If we are left with a constant zero being added, strip it off.
1078     if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1079       Ops.erase(Ops.begin());
1080       --Idx;
1081     }
1082   }
1083 
1084   if (Ops.size() == 1) return Ops[0];
1085 
1086   // Okay, check to see if the same value occurs in the operand list twice.  If
1087   // so, merge them together into an multiply expression.  Since we sorted the
1088   // list, these values are required to be adjacent.
1089   const Type *Ty = Ops[0]->getType();
1090   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1091     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1092       // Found a match, merge the two values into a multiply, and add any
1093       // remaining values to the result.
1094       const SCEV* Two = getIntegerSCEV(2, Ty);
1095       const SCEV* Mul = getMulExpr(Ops[i], Two);
1096       if (Ops.size() == 2)
1097         return Mul;
1098       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1099       Ops.push_back(Mul);
1100       return getAddExpr(Ops);
1101     }
1102 
1103   // Check for truncates. If all the operands are truncated from the same
1104   // type, see if factoring out the truncate would permit the result to be
1105   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1106   // if the contents of the resulting outer trunc fold to something simple.
1107   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1108     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1109     const Type *DstType = Trunc->getType();
1110     const Type *SrcType = Trunc->getOperand()->getType();
1111     SmallVector<const SCEV*, 8> LargeOps;
1112     bool Ok = true;
1113     // Check all the operands to see if they can be represented in the
1114     // source type of the truncate.
1115     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1116       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1117         if (T->getOperand()->getType() != SrcType) {
1118           Ok = false;
1119           break;
1120         }
1121         LargeOps.push_back(T->getOperand());
1122       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1123         // This could be either sign or zero extension, but sign extension
1124         // is much more likely to be foldable here.
1125         LargeOps.push_back(getSignExtendExpr(C, SrcType));
1126       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1127         SmallVector<const SCEV*, 8> LargeMulOps;
1128         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1129           if (const SCEVTruncateExpr *T =
1130                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1131             if (T->getOperand()->getType() != SrcType) {
1132               Ok = false;
1133               break;
1134             }
1135             LargeMulOps.push_back(T->getOperand());
1136           } else if (const SCEVConstant *C =
1137                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
1138             // This could be either sign or zero extension, but sign extension
1139             // is much more likely to be foldable here.
1140             LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1141           } else {
1142             Ok = false;
1143             break;
1144           }
1145         }
1146         if (Ok)
1147           LargeOps.push_back(getMulExpr(LargeMulOps));
1148       } else {
1149         Ok = false;
1150         break;
1151       }
1152     }
1153     if (Ok) {
1154       // Evaluate the expression in the larger type.
1155       const SCEV* Fold = getAddExpr(LargeOps);
1156       // If it folds to something simple, use it. Otherwise, don't.
1157       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1158         return getTruncateExpr(Fold, DstType);
1159     }
1160   }
1161 
1162   // Skip past any other cast SCEVs.
1163   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1164     ++Idx;
1165 
1166   // If there are add operands they would be next.
1167   if (Idx < Ops.size()) {
1168     bool DeletedAdd = false;
1169     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1170       // If we have an add, expand the add operands onto the end of the operands
1171       // list.
1172       Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1173       Ops.erase(Ops.begin()+Idx);
1174       DeletedAdd = true;
1175     }
1176 
1177     // If we deleted at least one add, we added operands to the end of the list,
1178     // and they are not necessarily sorted.  Recurse to resort and resimplify
1179     // any operands we just aquired.
1180     if (DeletedAdd)
1181       return getAddExpr(Ops);
1182   }
1183 
1184   // Skip over the add expression until we get to a multiply.
1185   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1186     ++Idx;
1187 
1188   // Check to see if there are any folding opportunities present with
1189   // operands multiplied by constant values.
1190   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1191     uint64_t BitWidth = getTypeSizeInBits(Ty);
1192     DenseMap<const SCEV*, APInt> M;
1193     SmallVector<const SCEV*, 8> NewOps;
1194     APInt AccumulatedConstant(BitWidth, 0);
1195     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1196                                      Ops, APInt(BitWidth, 1), *this)) {
1197       // Some interesting folding opportunity is present, so its worthwhile to
1198       // re-generate the operands list. Group the operands by constant scale,
1199       // to avoid multiplying by the same constant scale multiple times.
1200       std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare> MulOpLists;
1201       for (SmallVector<const SCEV*, 8>::iterator I = NewOps.begin(),
1202            E = NewOps.end(); I != E; ++I)
1203         MulOpLists[M.find(*I)->second].push_back(*I);
1204       // Re-generate the operands list.
1205       Ops.clear();
1206       if (AccumulatedConstant != 0)
1207         Ops.push_back(getConstant(AccumulatedConstant));
1208       for (std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare>::iterator I =
1209            MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1210         if (I->first != 0)
1211           Ops.push_back(getMulExpr(getConstant(I->first), getAddExpr(I->second)));
1212       if (Ops.empty())
1213         return getIntegerSCEV(0, Ty);
1214       if (Ops.size() == 1)
1215         return Ops[0];
1216       return getAddExpr(Ops);
1217     }
1218   }
1219 
1220   // If we are adding something to a multiply expression, make sure the
1221   // something is not already an operand of the multiply.  If so, merge it into
1222   // the multiply.
1223   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1224     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1225     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1226       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1227       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1228         if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1229           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1230           const SCEV* InnerMul = Mul->getOperand(MulOp == 0);
1231           if (Mul->getNumOperands() != 2) {
1232             // If the multiply has more than two operands, we must get the
1233             // Y*Z term.
1234             SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end());
1235             MulOps.erase(MulOps.begin()+MulOp);
1236             InnerMul = getMulExpr(MulOps);
1237           }
1238           const SCEV* One = getIntegerSCEV(1, Ty);
1239           const SCEV* AddOne = getAddExpr(InnerMul, One);
1240           const SCEV* OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1241           if (Ops.size() == 2) return OuterMul;
1242           if (AddOp < Idx) {
1243             Ops.erase(Ops.begin()+AddOp);
1244             Ops.erase(Ops.begin()+Idx-1);
1245           } else {
1246             Ops.erase(Ops.begin()+Idx);
1247             Ops.erase(Ops.begin()+AddOp-1);
1248           }
1249           Ops.push_back(OuterMul);
1250           return getAddExpr(Ops);
1251         }
1252 
1253       // Check this multiply against other multiplies being added together.
1254       for (unsigned OtherMulIdx = Idx+1;
1255            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1256            ++OtherMulIdx) {
1257         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1258         // If MulOp occurs in OtherMul, we can fold the two multiplies
1259         // together.
1260         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1261              OMulOp != e; ++OMulOp)
1262           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1263             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1264             const SCEV* InnerMul1 = Mul->getOperand(MulOp == 0);
1265             if (Mul->getNumOperands() != 2) {
1266               SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end());
1267               MulOps.erase(MulOps.begin()+MulOp);
1268               InnerMul1 = getMulExpr(MulOps);
1269             }
1270             const SCEV* InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1271             if (OtherMul->getNumOperands() != 2) {
1272               SmallVector<const SCEV*, 4> MulOps(OtherMul->op_begin(),
1273                                              OtherMul->op_end());
1274               MulOps.erase(MulOps.begin()+OMulOp);
1275               InnerMul2 = getMulExpr(MulOps);
1276             }
1277             const SCEV* InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1278             const SCEV* OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1279             if (Ops.size() == 2) return OuterMul;
1280             Ops.erase(Ops.begin()+Idx);
1281             Ops.erase(Ops.begin()+OtherMulIdx-1);
1282             Ops.push_back(OuterMul);
1283             return getAddExpr(Ops);
1284           }
1285       }
1286     }
1287   }
1288 
1289   // If there are any add recurrences in the operands list, see if any other
1290   // added values are loop invariant.  If so, we can fold them into the
1291   // recurrence.
1292   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1293     ++Idx;
1294 
1295   // Scan over all recurrences, trying to fold loop invariants into them.
1296   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1297     // Scan all of the other operands to this add and add them to the vector if
1298     // they are loop invariant w.r.t. the recurrence.
1299     SmallVector<const SCEV*, 8> LIOps;
1300     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1301     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1302       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1303         LIOps.push_back(Ops[i]);
1304         Ops.erase(Ops.begin()+i);
1305         --i; --e;
1306       }
1307 
1308     // If we found some loop invariants, fold them into the recurrence.
1309     if (!LIOps.empty()) {
1310       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1311       LIOps.push_back(AddRec->getStart());
1312 
1313       SmallVector<const SCEV*, 4> AddRecOps(AddRec->op_begin(),
1314                                            AddRec->op_end());
1315       AddRecOps[0] = getAddExpr(LIOps);
1316 
1317       const SCEV* NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1318       // If all of the other operands were loop invariant, we are done.
1319       if (Ops.size() == 1) return NewRec;
1320 
1321       // Otherwise, add the folded AddRec by the non-liv parts.
1322       for (unsigned i = 0;; ++i)
1323         if (Ops[i] == AddRec) {
1324           Ops[i] = NewRec;
1325           break;
1326         }
1327       return getAddExpr(Ops);
1328     }
1329 
1330     // Okay, if there weren't any loop invariants to be folded, check to see if
1331     // there are multiple AddRec's with the same loop induction variable being
1332     // added together.  If so, we can fold them.
1333     for (unsigned OtherIdx = Idx+1;
1334          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1335       if (OtherIdx != Idx) {
1336         const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1337         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1338           // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1339           SmallVector<const SCEV*, 4> NewOps(AddRec->op_begin(), AddRec->op_end());
1340           for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1341             if (i >= NewOps.size()) {
1342               NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1343                             OtherAddRec->op_end());
1344               break;
1345             }
1346             NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1347           }
1348           const SCEV* NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1349 
1350           if (Ops.size() == 2) return NewAddRec;
1351 
1352           Ops.erase(Ops.begin()+Idx);
1353           Ops.erase(Ops.begin()+OtherIdx-1);
1354           Ops.push_back(NewAddRec);
1355           return getAddExpr(Ops);
1356         }
1357       }
1358 
1359     // Otherwise couldn't fold anything into this recurrence.  Move onto the
1360     // next one.
1361   }
1362 
1363   // Okay, it looks like we really DO need an add expr.  Check to see if we
1364   // already have one, otherwise create a new one.
1365   std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1366   SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
1367                                                                  SCEVOps)];
1368   if (Result == 0) Result = new SCEVAddExpr(Ops);
1369   return Result;
1370 }
1371 
1372 
1373 /// getMulExpr - Get a canonical multiply expression, or something simpler if
1374 /// possible.
1375 const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
1376   assert(!Ops.empty() && "Cannot get empty mul!");
1377 #ifndef NDEBUG
1378   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1379     assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1380            getEffectiveSCEVType(Ops[0]->getType()) &&
1381            "SCEVMulExpr operand types don't match!");
1382 #endif
1383 
1384   // Sort by complexity, this groups all similar expression types together.
1385   GroupByComplexity(Ops, LI);
1386 
1387   // If there are any constants, fold them together.
1388   unsigned Idx = 0;
1389   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1390 
1391     // C1*(C2+V) -> C1*C2 + C1*V
1392     if (Ops.size() == 2)
1393       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1394         if (Add->getNumOperands() == 2 &&
1395             isa<SCEVConstant>(Add->getOperand(0)))
1396           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1397                             getMulExpr(LHSC, Add->getOperand(1)));
1398 
1399 
1400     ++Idx;
1401     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1402       // We found two constants, fold them together!
1403       ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1404                                            RHSC->getValue()->getValue());
1405       Ops[0] = getConstant(Fold);
1406       Ops.erase(Ops.begin()+1);  // Erase the folded element
1407       if (Ops.size() == 1) return Ops[0];
1408       LHSC = cast<SCEVConstant>(Ops[0]);
1409     }
1410 
1411     // If we are left with a constant one being multiplied, strip it off.
1412     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1413       Ops.erase(Ops.begin());
1414       --Idx;
1415     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1416       // If we have a multiply of zero, it will always be zero.
1417       return Ops[0];
1418     }
1419   }
1420 
1421   // Skip over the add expression until we get to a multiply.
1422   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1423     ++Idx;
1424 
1425   if (Ops.size() == 1)
1426     return Ops[0];
1427 
1428   // If there are mul operands inline them all into this expression.
1429   if (Idx < Ops.size()) {
1430     bool DeletedMul = false;
1431     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1432       // If we have an mul, expand the mul operands onto the end of the operands
1433       // list.
1434       Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1435       Ops.erase(Ops.begin()+Idx);
1436       DeletedMul = true;
1437     }
1438 
1439     // If we deleted at least one mul, we added operands to the end of the list,
1440     // and they are not necessarily sorted.  Recurse to resort and resimplify
1441     // any operands we just aquired.
1442     if (DeletedMul)
1443       return getMulExpr(Ops);
1444   }
1445 
1446   // If there are any add recurrences in the operands list, see if any other
1447   // added values are loop invariant.  If so, we can fold them into the
1448   // recurrence.
1449   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1450     ++Idx;
1451 
1452   // Scan over all recurrences, trying to fold loop invariants into them.
1453   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1454     // Scan all of the other operands to this mul and add them to the vector if
1455     // they are loop invariant w.r.t. the recurrence.
1456     SmallVector<const SCEV*, 8> LIOps;
1457     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1458     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1459       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1460         LIOps.push_back(Ops[i]);
1461         Ops.erase(Ops.begin()+i);
1462         --i; --e;
1463       }
1464 
1465     // If we found some loop invariants, fold them into the recurrence.
1466     if (!LIOps.empty()) {
1467       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1468       SmallVector<const SCEV*, 4> NewOps;
1469       NewOps.reserve(AddRec->getNumOperands());
1470       if (LIOps.size() == 1) {
1471         const SCEV *Scale = LIOps[0];
1472         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1473           NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1474       } else {
1475         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1476           SmallVector<const SCEV*, 4> MulOps(LIOps.begin(), LIOps.end());
1477           MulOps.push_back(AddRec->getOperand(i));
1478           NewOps.push_back(getMulExpr(MulOps));
1479         }
1480       }
1481 
1482       const SCEV* NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1483 
1484       // If all of the other operands were loop invariant, we are done.
1485       if (Ops.size() == 1) return NewRec;
1486 
1487       // Otherwise, multiply the folded AddRec by the non-liv parts.
1488       for (unsigned i = 0;; ++i)
1489         if (Ops[i] == AddRec) {
1490           Ops[i] = NewRec;
1491           break;
1492         }
1493       return getMulExpr(Ops);
1494     }
1495 
1496     // Okay, if there weren't any loop invariants to be folded, check to see if
1497     // there are multiple AddRec's with the same loop induction variable being
1498     // multiplied together.  If so, we can fold them.
1499     for (unsigned OtherIdx = Idx+1;
1500          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1501       if (OtherIdx != Idx) {
1502         const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1503         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1504           // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1505           const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1506           const SCEV* NewStart = getMulExpr(F->getStart(),
1507                                                  G->getStart());
1508           const SCEV* B = F->getStepRecurrence(*this);
1509           const SCEV* D = G->getStepRecurrence(*this);
1510           const SCEV* NewStep = getAddExpr(getMulExpr(F, D),
1511                                           getMulExpr(G, B),
1512                                           getMulExpr(B, D));
1513           const SCEV* NewAddRec = getAddRecExpr(NewStart, NewStep,
1514                                                F->getLoop());
1515           if (Ops.size() == 2) return NewAddRec;
1516 
1517           Ops.erase(Ops.begin()+Idx);
1518           Ops.erase(Ops.begin()+OtherIdx-1);
1519           Ops.push_back(NewAddRec);
1520           return getMulExpr(Ops);
1521         }
1522       }
1523 
1524     // Otherwise couldn't fold anything into this recurrence.  Move onto the
1525     // next one.
1526   }
1527 
1528   // Okay, it looks like we really DO need an mul expr.  Check to see if we
1529   // already have one, otherwise create a new one.
1530   std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1531   SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
1532                                                                  SCEVOps)];
1533   if (Result == 0)
1534     Result = new SCEVMulExpr(Ops);
1535   return Result;
1536 }
1537 
1538 /// getUDivExpr - Get a canonical multiply expression, or something simpler if
1539 /// possible.
1540 const SCEV* ScalarEvolution::getUDivExpr(const SCEV* LHS,
1541                                         const SCEV* RHS) {
1542   assert(getEffectiveSCEVType(LHS->getType()) ==
1543          getEffectiveSCEVType(RHS->getType()) &&
1544          "SCEVUDivExpr operand types don't match!");
1545 
1546   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1547     if (RHSC->getValue()->equalsInt(1))
1548       return LHS;                            // X udiv 1 --> x
1549     if (RHSC->isZero())
1550       return getIntegerSCEV(0, LHS->getType()); // value is undefined
1551 
1552     // Determine if the division can be folded into the operands of
1553     // its operands.
1554     // TODO: Generalize this to non-constants by using known-bits information.
1555     const Type *Ty = LHS->getType();
1556     unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1557     unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1558     // For non-power-of-two values, effectively round the value up to the
1559     // nearest power of two.
1560     if (!RHSC->getValue()->getValue().isPowerOf2())
1561       ++MaxShiftAmt;
1562     const IntegerType *ExtTy =
1563       IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1564     // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1565     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1566       if (const SCEVConstant *Step =
1567             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1568         if (!Step->getValue()->getValue()
1569               .urem(RHSC->getValue()->getValue()) &&
1570             getZeroExtendExpr(AR, ExtTy) ==
1571             getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1572                           getZeroExtendExpr(Step, ExtTy),
1573                           AR->getLoop())) {
1574           SmallVector<const SCEV*, 4> Operands;
1575           for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1576             Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1577           return getAddRecExpr(Operands, AR->getLoop());
1578         }
1579     // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1580     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1581       SmallVector<const SCEV*, 4> Operands;
1582       for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1583         Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1584       if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1585         // Find an operand that's safely divisible.
1586         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1587           const SCEV* Op = M->getOperand(i);
1588           const SCEV* Div = getUDivExpr(Op, RHSC);
1589           if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1590             const SmallVectorImpl<const SCEV*> &MOperands = M->getOperands();
1591             Operands = SmallVector<const SCEV*, 4>(MOperands.begin(),
1592                                                   MOperands.end());
1593             Operands[i] = Div;
1594             return getMulExpr(Operands);
1595           }
1596         }
1597     }
1598     // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1599     if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1600       SmallVector<const SCEV*, 4> Operands;
1601       for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1602         Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1603       if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1604         Operands.clear();
1605         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1606           const SCEV* Op = getUDivExpr(A->getOperand(i), RHS);
1607           if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1608             break;
1609           Operands.push_back(Op);
1610         }
1611         if (Operands.size() == A->getNumOperands())
1612           return getAddExpr(Operands);
1613       }
1614     }
1615 
1616     // Fold if both operands are constant.
1617     if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1618       Constant *LHSCV = LHSC->getValue();
1619       Constant *RHSCV = RHSC->getValue();
1620       return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1621                                                                  RHSCV)));
1622     }
1623   }
1624 
1625   SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
1626   if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1627   return Result;
1628 }
1629 
1630 
1631 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1632 /// Simplify the expression as much as possible.
1633 const SCEV* ScalarEvolution::getAddRecExpr(const SCEV* Start,
1634                                const SCEV* Step, const Loop *L) {
1635   SmallVector<const SCEV*, 4> Operands;
1636   Operands.push_back(Start);
1637   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1638     if (StepChrec->getLoop() == L) {
1639       Operands.insert(Operands.end(), StepChrec->op_begin(),
1640                       StepChrec->op_end());
1641       return getAddRecExpr(Operands, L);
1642     }
1643 
1644   Operands.push_back(Step);
1645   return getAddRecExpr(Operands, L);
1646 }
1647 
1648 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1649 /// Simplify the expression as much as possible.
1650 const SCEV* ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
1651                                           const Loop *L) {
1652   if (Operands.size() == 1) return Operands[0];
1653 #ifndef NDEBUG
1654   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1655     assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1656            getEffectiveSCEVType(Operands[0]->getType()) &&
1657            "SCEVAddRecExpr operand types don't match!");
1658 #endif
1659 
1660   if (Operands.back()->isZero()) {
1661     Operands.pop_back();
1662     return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1663   }
1664 
1665   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1666   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1667     const Loop* NestedLoop = NestedAR->getLoop();
1668     if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1669       SmallVector<const SCEV*, 4> NestedOperands(NestedAR->op_begin(),
1670                                                 NestedAR->op_end());
1671       Operands[0] = NestedAR->getStart();
1672       NestedOperands[0] = getAddRecExpr(Operands, L);
1673       return getAddRecExpr(NestedOperands, NestedLoop);
1674     }
1675   }
1676 
1677   std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1678   SCEVAddRecExpr *&Result = SCEVAddRecExprs[std::make_pair(L, SCEVOps)];
1679   if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1680   return Result;
1681 }
1682 
1683 const SCEV* ScalarEvolution::getSMaxExpr(const SCEV* LHS,
1684                                         const SCEV* RHS) {
1685   SmallVector<const SCEV*, 2> Ops;
1686   Ops.push_back(LHS);
1687   Ops.push_back(RHS);
1688   return getSMaxExpr(Ops);
1689 }
1690 
1691 const SCEV*
1692 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
1693   assert(!Ops.empty() && "Cannot get empty smax!");
1694   if (Ops.size() == 1) return Ops[0];
1695 #ifndef NDEBUG
1696   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1697     assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1698            getEffectiveSCEVType(Ops[0]->getType()) &&
1699            "SCEVSMaxExpr operand types don't match!");
1700 #endif
1701 
1702   // Sort by complexity, this groups all similar expression types together.
1703   GroupByComplexity(Ops, LI);
1704 
1705   // If there are any constants, fold them together.
1706   unsigned Idx = 0;
1707   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1708     ++Idx;
1709     assert(Idx < Ops.size());
1710     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1711       // We found two constants, fold them together!
1712       ConstantInt *Fold = ConstantInt::get(
1713                               APIntOps::smax(LHSC->getValue()->getValue(),
1714                                              RHSC->getValue()->getValue()));
1715       Ops[0] = getConstant(Fold);
1716       Ops.erase(Ops.begin()+1);  // Erase the folded element
1717       if (Ops.size() == 1) return Ops[0];
1718       LHSC = cast<SCEVConstant>(Ops[0]);
1719     }
1720 
1721     // If we are left with a constant -inf, strip it off.
1722     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1723       Ops.erase(Ops.begin());
1724       --Idx;
1725     }
1726   }
1727 
1728   if (Ops.size() == 1) return Ops[0];
1729 
1730   // Find the first SMax
1731   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1732     ++Idx;
1733 
1734   // Check to see if one of the operands is an SMax. If so, expand its operands
1735   // onto our operand list, and recurse to simplify.
1736   if (Idx < Ops.size()) {
1737     bool DeletedSMax = false;
1738     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1739       Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1740       Ops.erase(Ops.begin()+Idx);
1741       DeletedSMax = true;
1742     }
1743 
1744     if (DeletedSMax)
1745       return getSMaxExpr(Ops);
1746   }
1747 
1748   // Okay, check to see if the same value occurs in the operand list twice.  If
1749   // so, delete one.  Since we sorted the list, these values are required to
1750   // be adjacent.
1751   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1752     if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1753       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1754       --i; --e;
1755     }
1756 
1757   if (Ops.size() == 1) return Ops[0];
1758 
1759   assert(!Ops.empty() && "Reduced smax down to nothing!");
1760 
1761   // Okay, it looks like we really DO need an smax expr.  Check to see if we
1762   // already have one, otherwise create a new one.
1763   std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1764   SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scSMaxExpr,
1765                                                                  SCEVOps)];
1766   if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1767   return Result;
1768 }
1769 
1770 const SCEV* ScalarEvolution::getUMaxExpr(const SCEV* LHS,
1771                                         const SCEV* RHS) {
1772   SmallVector<const SCEV*, 2> Ops;
1773   Ops.push_back(LHS);
1774   Ops.push_back(RHS);
1775   return getUMaxExpr(Ops);
1776 }
1777 
1778 const SCEV*
1779 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
1780   assert(!Ops.empty() && "Cannot get empty umax!");
1781   if (Ops.size() == 1) return Ops[0];
1782 #ifndef NDEBUG
1783   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1784     assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1785            getEffectiveSCEVType(Ops[0]->getType()) &&
1786            "SCEVUMaxExpr operand types don't match!");
1787 #endif
1788 
1789   // Sort by complexity, this groups all similar expression types together.
1790   GroupByComplexity(Ops, LI);
1791 
1792   // If there are any constants, fold them together.
1793   unsigned Idx = 0;
1794   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1795     ++Idx;
1796     assert(Idx < Ops.size());
1797     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1798       // We found two constants, fold them together!
1799       ConstantInt *Fold = ConstantInt::get(
1800                               APIntOps::umax(LHSC->getValue()->getValue(),
1801                                              RHSC->getValue()->getValue()));
1802       Ops[0] = getConstant(Fold);
1803       Ops.erase(Ops.begin()+1);  // Erase the folded element
1804       if (Ops.size() == 1) return Ops[0];
1805       LHSC = cast<SCEVConstant>(Ops[0]);
1806     }
1807 
1808     // If we are left with a constant zero, strip it off.
1809     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1810       Ops.erase(Ops.begin());
1811       --Idx;
1812     }
1813   }
1814 
1815   if (Ops.size() == 1) return Ops[0];
1816 
1817   // Find the first UMax
1818   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1819     ++Idx;
1820 
1821   // Check to see if one of the operands is a UMax. If so, expand its operands
1822   // onto our operand list, and recurse to simplify.
1823   if (Idx < Ops.size()) {
1824     bool DeletedUMax = false;
1825     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1826       Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1827       Ops.erase(Ops.begin()+Idx);
1828       DeletedUMax = true;
1829     }
1830 
1831     if (DeletedUMax)
1832       return getUMaxExpr(Ops);
1833   }
1834 
1835   // Okay, check to see if the same value occurs in the operand list twice.  If
1836   // so, delete one.  Since we sorted the list, these values are required to
1837   // be adjacent.
1838   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1839     if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1840       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1841       --i; --e;
1842     }
1843 
1844   if (Ops.size() == 1) return Ops[0];
1845 
1846   assert(!Ops.empty() && "Reduced umax down to nothing!");
1847 
1848   // Okay, it looks like we really DO need a umax expr.  Check to see if we
1849   // already have one, otherwise create a new one.
1850   std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1851   SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scUMaxExpr,
1852                                                                  SCEVOps)];
1853   if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1854   return Result;
1855 }
1856 
1857 const SCEV* ScalarEvolution::getSMinExpr(const SCEV* LHS,
1858                                         const SCEV* RHS) {
1859   // ~smax(~x, ~y) == smin(x, y).
1860   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1861 }
1862 
1863 const SCEV* ScalarEvolution::getUMinExpr(const SCEV* LHS,
1864                                         const SCEV* RHS) {
1865   // ~umax(~x, ~y) == umin(x, y)
1866   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1867 }
1868 
1869 const SCEV* ScalarEvolution::getUnknown(Value *V) {
1870   if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1871     return getConstant(CI);
1872   if (isa<ConstantPointerNull>(V))
1873     return getIntegerSCEV(0, V->getType());
1874   SCEVUnknown *&Result = SCEVUnknowns[V];
1875   if (Result == 0) Result = new SCEVUnknown(V);
1876   return Result;
1877 }
1878 
1879 //===----------------------------------------------------------------------===//
1880 //            Basic SCEV Analysis and PHI Idiom Recognition Code
1881 //
1882 
1883 /// isSCEVable - Test if values of the given type are analyzable within
1884 /// the SCEV framework. This primarily includes integer types, and it
1885 /// can optionally include pointer types if the ScalarEvolution class
1886 /// has access to target-specific information.
1887 bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1888   // Integers are always SCEVable.
1889   if (Ty->isInteger())
1890     return true;
1891 
1892   // Pointers are SCEVable if TargetData information is available
1893   // to provide pointer size information.
1894   if (isa<PointerType>(Ty))
1895     return TD != NULL;
1896 
1897   // Otherwise it's not SCEVable.
1898   return false;
1899 }
1900 
1901 /// getTypeSizeInBits - Return the size in bits of the specified type,
1902 /// for which isSCEVable must return true.
1903 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1904   assert(isSCEVable(Ty) && "Type is not SCEVable!");
1905 
1906   // If we have a TargetData, use it!
1907   if (TD)
1908     return TD->getTypeSizeInBits(Ty);
1909 
1910   // Otherwise, we support only integer types.
1911   assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1912   return Ty->getPrimitiveSizeInBits();
1913 }
1914 
1915 /// getEffectiveSCEVType - Return a type with the same bitwidth as
1916 /// the given type and which represents how SCEV will treat the given
1917 /// type, for which isSCEVable must return true. For pointer types,
1918 /// this is the pointer-sized integer type.
1919 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1920   assert(isSCEVable(Ty) && "Type is not SCEVable!");
1921 
1922   if (Ty->isInteger())
1923     return Ty;
1924 
1925   assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1926   return TD->getIntPtrType();
1927 }
1928 
1929 const SCEV* ScalarEvolution::getCouldNotCompute() {
1930   return CouldNotCompute;
1931 }
1932 
1933 /// hasSCEV - Return true if the SCEV for this value has already been
1934 /// computed.
1935 bool ScalarEvolution::hasSCEV(Value *V) const {
1936   return Scalars.count(V);
1937 }
1938 
1939 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1940 /// expression and create a new one.
1941 const SCEV* ScalarEvolution::getSCEV(Value *V) {
1942   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1943 
1944   std::map<SCEVCallbackVH, const SCEV*>::iterator I = Scalars.find(V);
1945   if (I != Scalars.end()) return I->second;
1946   const SCEV* S = createSCEV(V);
1947   Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
1948   return S;
1949 }
1950 
1951 /// getIntegerSCEV - Given an integer or FP type, create a constant for the
1952 /// specified signed integer value and return a SCEV for the constant.
1953 const SCEV* ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1954   Ty = getEffectiveSCEVType(Ty);
1955   Constant *C;
1956   if (Val == 0)
1957     C = Constant::getNullValue(Ty);
1958   else if (Ty->isFloatingPoint())
1959     C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1960                                 APFloat::IEEEdouble, Val));
1961   else
1962     C = ConstantInt::get(Ty, Val);
1963   return getUnknown(C);
1964 }
1965 
1966 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1967 ///
1968 const SCEV* ScalarEvolution::getNegativeSCEV(const SCEV* V) {
1969   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1970     return getConstant(cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
1971 
1972   const Type *Ty = V->getType();
1973   Ty = getEffectiveSCEVType(Ty);
1974   return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1975 }
1976 
1977 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1978 const SCEV* ScalarEvolution::getNotSCEV(const SCEV* V) {
1979   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1980     return getConstant(cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
1981 
1982   const Type *Ty = V->getType();
1983   Ty = getEffectiveSCEVType(Ty);
1984   const SCEV* AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1985   return getMinusSCEV(AllOnes, V);
1986 }
1987 
1988 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1989 ///
1990 const SCEV* ScalarEvolution::getMinusSCEV(const SCEV* LHS,
1991                                          const SCEV* RHS) {
1992   // X - Y --> X + -Y
1993   return getAddExpr(LHS, getNegativeSCEV(RHS));
1994 }
1995 
1996 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1997 /// input value to the specified type.  If the type must be extended, it is zero
1998 /// extended.
1999 const SCEV*
2000 ScalarEvolution::getTruncateOrZeroExtend(const SCEV* V,
2001                                          const Type *Ty) {
2002   const Type *SrcTy = V->getType();
2003   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2004          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2005          "Cannot truncate or zero extend with non-integer arguments!");
2006   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2007     return V;  // No conversion
2008   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2009     return getTruncateExpr(V, Ty);
2010   return getZeroExtendExpr(V, Ty);
2011 }
2012 
2013 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2014 /// input value to the specified type.  If the type must be extended, it is sign
2015 /// extended.
2016 const SCEV*
2017 ScalarEvolution::getTruncateOrSignExtend(const SCEV* V,
2018                                          const Type *Ty) {
2019   const Type *SrcTy = V->getType();
2020   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2021          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2022          "Cannot truncate or zero extend with non-integer arguments!");
2023   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2024     return V;  // No conversion
2025   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2026     return getTruncateExpr(V, Ty);
2027   return getSignExtendExpr(V, Ty);
2028 }
2029 
2030 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2031 /// input value to the specified type.  If the type must be extended, it is zero
2032 /// extended.  The conversion must not be narrowing.
2033 const SCEV*
2034 ScalarEvolution::getNoopOrZeroExtend(const SCEV* V, const Type *Ty) {
2035   const Type *SrcTy = V->getType();
2036   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2037          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2038          "Cannot noop or zero extend with non-integer arguments!");
2039   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2040          "getNoopOrZeroExtend cannot truncate!");
2041   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2042     return V;  // No conversion
2043   return getZeroExtendExpr(V, Ty);
2044 }
2045 
2046 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2047 /// input value to the specified type.  If the type must be extended, it is sign
2048 /// extended.  The conversion must not be narrowing.
2049 const SCEV*
2050 ScalarEvolution::getNoopOrSignExtend(const SCEV* V, const Type *Ty) {
2051   const Type *SrcTy = V->getType();
2052   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2053          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2054          "Cannot noop or sign extend with non-integer arguments!");
2055   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2056          "getNoopOrSignExtend cannot truncate!");
2057   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2058     return V;  // No conversion
2059   return getSignExtendExpr(V, Ty);
2060 }
2061 
2062 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2063 /// the input value to the specified type. If the type must be extended,
2064 /// it is extended with unspecified bits. The conversion must not be
2065 /// narrowing.
2066 const SCEV*
2067 ScalarEvolution::getNoopOrAnyExtend(const SCEV* V, const Type *Ty) {
2068   const Type *SrcTy = V->getType();
2069   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2070          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2071          "Cannot noop or any extend with non-integer arguments!");
2072   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2073          "getNoopOrAnyExtend cannot truncate!");
2074   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2075     return V;  // No conversion
2076   return getAnyExtendExpr(V, Ty);
2077 }
2078 
2079 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2080 /// input value to the specified type.  The conversion must not be widening.
2081 const SCEV*
2082 ScalarEvolution::getTruncateOrNoop(const SCEV* V, const Type *Ty) {
2083   const Type *SrcTy = V->getType();
2084   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2085          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2086          "Cannot truncate or noop with non-integer arguments!");
2087   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2088          "getTruncateOrNoop cannot extend!");
2089   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2090     return V;  // No conversion
2091   return getTruncateExpr(V, Ty);
2092 }
2093 
2094 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2095 /// the types using zero-extension, and then perform a umax operation
2096 /// with them.
2097 const SCEV* ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV* LHS,
2098                                                        const SCEV* RHS) {
2099   const SCEV* PromotedLHS = LHS;
2100   const SCEV* PromotedRHS = RHS;
2101 
2102   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2103     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2104   else
2105     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2106 
2107   return getUMaxExpr(PromotedLHS, PromotedRHS);
2108 }
2109 
2110 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
2111 /// the types using zero-extension, and then perform a umin operation
2112 /// with them.
2113 const SCEV* ScalarEvolution::getUMinFromMismatchedTypes(const SCEV* LHS,
2114                                                        const SCEV* RHS) {
2115   const SCEV* PromotedLHS = LHS;
2116   const SCEV* PromotedRHS = RHS;
2117 
2118   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2119     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2120   else
2121     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2122 
2123   return getUMinExpr(PromotedLHS, PromotedRHS);
2124 }
2125 
2126 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2127 /// the specified instruction and replaces any references to the symbolic value
2128 /// SymName with the specified value.  This is used during PHI resolution.
2129 void ScalarEvolution::
2130 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEV* SymName,
2131                                  const SCEV* NewVal) {
2132   std::map<SCEVCallbackVH, const SCEV*>::iterator SI =
2133     Scalars.find(SCEVCallbackVH(I, this));
2134   if (SI == Scalars.end()) return;
2135 
2136   const SCEV* NV =
2137     SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
2138   if (NV == SI->second) return;  // No change.
2139 
2140   SI->second = NV;       // Update the scalars map!
2141 
2142   // Any instruction values that use this instruction might also need to be
2143   // updated!
2144   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2145        UI != E; ++UI)
2146     ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2147 }
2148 
2149 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2150 /// a loop header, making it a potential recurrence, or it doesn't.
2151 ///
2152 const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
2153   if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
2154     if (const Loop *L = LI->getLoopFor(PN->getParent()))
2155       if (L->getHeader() == PN->getParent()) {
2156         // If it lives in the loop header, it has two incoming values, one
2157         // from outside the loop, and one from inside.
2158         unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2159         unsigned BackEdge     = IncomingEdge^1;
2160 
2161         // While we are analyzing this PHI node, handle its value symbolically.
2162         const SCEV* SymbolicName = getUnknown(PN);
2163         assert(Scalars.find(PN) == Scalars.end() &&
2164                "PHI node already processed?");
2165         Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2166 
2167         // Using this symbolic name for the PHI, analyze the value coming around
2168         // the back-edge.
2169         const SCEV* BEValue = getSCEV(PN->getIncomingValue(BackEdge));
2170 
2171         // NOTE: If BEValue is loop invariant, we know that the PHI node just
2172         // has a special value for the first iteration of the loop.
2173 
2174         // If the value coming around the backedge is an add with the symbolic
2175         // value we just inserted, then we found a simple induction variable!
2176         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2177           // If there is a single occurrence of the symbolic value, replace it
2178           // with a recurrence.
2179           unsigned FoundIndex = Add->getNumOperands();
2180           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2181             if (Add->getOperand(i) == SymbolicName)
2182               if (FoundIndex == e) {
2183                 FoundIndex = i;
2184                 break;
2185               }
2186 
2187           if (FoundIndex != Add->getNumOperands()) {
2188             // Create an add with everything but the specified operand.
2189             SmallVector<const SCEV*, 8> Ops;
2190             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2191               if (i != FoundIndex)
2192                 Ops.push_back(Add->getOperand(i));
2193             const SCEV* Accum = getAddExpr(Ops);
2194 
2195             // This is not a valid addrec if the step amount is varying each
2196             // loop iteration, but is not itself an addrec in this loop.
2197             if (Accum->isLoopInvariant(L) ||
2198                 (isa<SCEVAddRecExpr>(Accum) &&
2199                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2200               const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2201               const SCEV* PHISCEV  = getAddRecExpr(StartVal, Accum, L);
2202 
2203               // Okay, for the entire analysis of this edge we assumed the PHI
2204               // to be symbolic.  We now need to go back and update all of the
2205               // entries for the scalars that use the PHI (except for the PHI
2206               // itself) to use the new analyzed value instead of the "symbolic"
2207               // value.
2208               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2209               return PHISCEV;
2210             }
2211           }
2212         } else if (const SCEVAddRecExpr *AddRec =
2213                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
2214           // Otherwise, this could be a loop like this:
2215           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2216           // In this case, j = {1,+,1}  and BEValue is j.
2217           // Because the other in-value of i (0) fits the evolution of BEValue
2218           // i really is an addrec evolution.
2219           if (AddRec->getLoop() == L && AddRec->isAffine()) {
2220             const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2221 
2222             // If StartVal = j.start - j.stride, we can use StartVal as the
2223             // initial step of the addrec evolution.
2224             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2225                                             AddRec->getOperand(1))) {
2226               const SCEV* PHISCEV =
2227                  getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2228 
2229               // Okay, for the entire analysis of this edge we assumed the PHI
2230               // to be symbolic.  We now need to go back and update all of the
2231               // entries for the scalars that use the PHI (except for the PHI
2232               // itself) to use the new analyzed value instead of the "symbolic"
2233               // value.
2234               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2235               return PHISCEV;
2236             }
2237           }
2238         }
2239 
2240         return SymbolicName;
2241       }
2242 
2243   // If it's not a loop phi, we can't handle it yet.
2244   return getUnknown(PN);
2245 }
2246 
2247 /// createNodeForGEP - Expand GEP instructions into add and multiply
2248 /// operations. This allows them to be analyzed by regular SCEV code.
2249 ///
2250 const SCEV* ScalarEvolution::createNodeForGEP(User *GEP) {
2251 
2252   const Type *IntPtrTy = TD->getIntPtrType();
2253   Value *Base = GEP->getOperand(0);
2254   // Don't attempt to analyze GEPs over unsized objects.
2255   if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2256     return getUnknown(GEP);
2257   const SCEV* TotalOffset = getIntegerSCEV(0, IntPtrTy);
2258   gep_type_iterator GTI = gep_type_begin(GEP);
2259   for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2260                                       E = GEP->op_end();
2261        I != E; ++I) {
2262     Value *Index = *I;
2263     // Compute the (potentially symbolic) offset in bytes for this index.
2264     if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2265       // For a struct, add the member offset.
2266       const StructLayout &SL = *TD->getStructLayout(STy);
2267       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2268       uint64_t Offset = SL.getElementOffset(FieldNo);
2269       TotalOffset = getAddExpr(TotalOffset,
2270                                   getIntegerSCEV(Offset, IntPtrTy));
2271     } else {
2272       // For an array, add the element offset, explicitly scaled.
2273       const SCEV* LocalOffset = getSCEV(Index);
2274       if (!isa<PointerType>(LocalOffset->getType()))
2275         // Getelementptr indicies are signed.
2276         LocalOffset = getTruncateOrSignExtend(LocalOffset,
2277                                               IntPtrTy);
2278       LocalOffset =
2279         getMulExpr(LocalOffset,
2280                    getIntegerSCEV(TD->getTypeAllocSize(*GTI),
2281                                   IntPtrTy));
2282       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2283     }
2284   }
2285   return getAddExpr(getSCEV(Base), TotalOffset);
2286 }
2287 
2288 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2289 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
2290 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2291 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2292 uint32_t
2293 ScalarEvolution::GetMinTrailingZeros(const SCEV* S) {
2294   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2295     return C->getValue()->getValue().countTrailingZeros();
2296 
2297   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2298     return std::min(GetMinTrailingZeros(T->getOperand()),
2299                     (uint32_t)getTypeSizeInBits(T->getType()));
2300 
2301   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2302     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2303     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2304              getTypeSizeInBits(E->getType()) : OpRes;
2305   }
2306 
2307   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2308     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2309     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2310              getTypeSizeInBits(E->getType()) : OpRes;
2311   }
2312 
2313   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2314     // The result is the min of all operands results.
2315     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2316     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2317       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2318     return MinOpRes;
2319   }
2320 
2321   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2322     // The result is the sum of all operands results.
2323     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2324     uint32_t BitWidth = getTypeSizeInBits(M->getType());
2325     for (unsigned i = 1, e = M->getNumOperands();
2326          SumOpRes != BitWidth && i != e; ++i)
2327       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2328                           BitWidth);
2329     return SumOpRes;
2330   }
2331 
2332   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2333     // The result is the min of all operands results.
2334     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2335     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2336       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2337     return MinOpRes;
2338   }
2339 
2340   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2341     // The result is the min of all operands results.
2342     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2343     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2344       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2345     return MinOpRes;
2346   }
2347 
2348   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2349     // The result is the min of all operands results.
2350     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2351     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2352       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2353     return MinOpRes;
2354   }
2355 
2356   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2357     // For a SCEVUnknown, ask ValueTracking.
2358     unsigned BitWidth = getTypeSizeInBits(U->getType());
2359     APInt Mask = APInt::getAllOnesValue(BitWidth);
2360     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2361     ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2362     return Zeros.countTrailingOnes();
2363   }
2364 
2365   // SCEVUDivExpr
2366   return 0;
2367 }
2368 
2369 uint32_t
2370 ScalarEvolution::GetMinLeadingZeros(const SCEV* S) {
2371   // TODO: Handle other SCEV expression types here.
2372 
2373   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2374     return C->getValue()->getValue().countLeadingZeros();
2375 
2376   if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) {
2377     // A zero-extension cast adds zero bits.
2378     return GetMinLeadingZeros(C->getOperand()) +
2379            (getTypeSizeInBits(C->getType()) -
2380             getTypeSizeInBits(C->getOperand()->getType()));
2381   }
2382 
2383   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2384     // For a SCEVUnknown, ask ValueTracking.
2385     unsigned BitWidth = getTypeSizeInBits(U->getType());
2386     APInt Mask = APInt::getAllOnesValue(BitWidth);
2387     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2388     ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2389     return Zeros.countLeadingOnes();
2390   }
2391 
2392   return 1;
2393 }
2394 
2395 uint32_t
2396 ScalarEvolution::GetMinSignBits(const SCEV* S) {
2397   // TODO: Handle other SCEV expression types here.
2398 
2399   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
2400     const APInt &A = C->getValue()->getValue();
2401     return A.isNegative() ? A.countLeadingOnes() :
2402                             A.countLeadingZeros();
2403   }
2404 
2405   if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) {
2406     // A sign-extension cast adds sign bits.
2407     return GetMinSignBits(C->getOperand()) +
2408            (getTypeSizeInBits(C->getType()) -
2409             getTypeSizeInBits(C->getOperand()->getType()));
2410   }
2411 
2412   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2413     // For a SCEVUnknown, ask ValueTracking.
2414     return ComputeNumSignBits(U->getValue(), TD);
2415   }
2416 
2417   return 1;
2418 }
2419 
2420 /// createSCEV - We know that there is no SCEV for the specified value.
2421 /// Analyze the expression.
2422 ///
2423 const SCEV* ScalarEvolution::createSCEV(Value *V) {
2424   if (!isSCEVable(V->getType()))
2425     return getUnknown(V);
2426 
2427   unsigned Opcode = Instruction::UserOp1;
2428   if (Instruction *I = dyn_cast<Instruction>(V))
2429     Opcode = I->getOpcode();
2430   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2431     Opcode = CE->getOpcode();
2432   else
2433     return getUnknown(V);
2434 
2435   User *U = cast<User>(V);
2436   switch (Opcode) {
2437   case Instruction::Add:
2438     return getAddExpr(getSCEV(U->getOperand(0)),
2439                       getSCEV(U->getOperand(1)));
2440   case Instruction::Mul:
2441     return getMulExpr(getSCEV(U->getOperand(0)),
2442                       getSCEV(U->getOperand(1)));
2443   case Instruction::UDiv:
2444     return getUDivExpr(getSCEV(U->getOperand(0)),
2445                        getSCEV(U->getOperand(1)));
2446   case Instruction::Sub:
2447     return getMinusSCEV(getSCEV(U->getOperand(0)),
2448                         getSCEV(U->getOperand(1)));
2449   case Instruction::And:
2450     // For an expression like x&255 that merely masks off the high bits,
2451     // use zext(trunc(x)) as the SCEV expression.
2452     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2453       if (CI->isNullValue())
2454         return getSCEV(U->getOperand(1));
2455       if (CI->isAllOnesValue())
2456         return getSCEV(U->getOperand(0));
2457       const APInt &A = CI->getValue();
2458 
2459       // Instcombine's ShrinkDemandedConstant may strip bits out of
2460       // constants, obscuring what would otherwise be a low-bits mask.
2461       // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2462       // knew about to reconstruct a low-bits mask value.
2463       unsigned LZ = A.countLeadingZeros();
2464       unsigned BitWidth = A.getBitWidth();
2465       APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2466       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2467       ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2468 
2469       APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2470 
2471       if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
2472         return
2473           getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2474                                             IntegerType::get(BitWidth - LZ)),
2475                             U->getType());
2476     }
2477     break;
2478 
2479   case Instruction::Or:
2480     // If the RHS of the Or is a constant, we may have something like:
2481     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2482     // optimizations will transparently handle this case.
2483     //
2484     // In order for this transformation to be safe, the LHS must be of the
2485     // form X*(2^n) and the Or constant must be less than 2^n.
2486     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2487       const SCEV* LHS = getSCEV(U->getOperand(0));
2488       const APInt &CIVal = CI->getValue();
2489       if (GetMinTrailingZeros(LHS) >=
2490           (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2491         return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2492     }
2493     break;
2494   case Instruction::Xor:
2495     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2496       // If the RHS of the xor is a signbit, then this is just an add.
2497       // Instcombine turns add of signbit into xor as a strength reduction step.
2498       if (CI->getValue().isSignBit())
2499         return getAddExpr(getSCEV(U->getOperand(0)),
2500                           getSCEV(U->getOperand(1)));
2501 
2502       // If the RHS of xor is -1, then this is a not operation.
2503       if (CI->isAllOnesValue())
2504         return getNotSCEV(getSCEV(U->getOperand(0)));
2505 
2506       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2507       // This is a variant of the check for xor with -1, and it handles
2508       // the case where instcombine has trimmed non-demanded bits out
2509       // of an xor with -1.
2510       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2511         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2512           if (BO->getOpcode() == Instruction::And &&
2513               LCI->getValue() == CI->getValue())
2514             if (const SCEVZeroExtendExpr *Z =
2515                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
2516               const Type *UTy = U->getType();
2517               const SCEV* Z0 = Z->getOperand();
2518               const Type *Z0Ty = Z0->getType();
2519               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2520 
2521               // If C is a low-bits mask, the zero extend is zerving to
2522               // mask off the high bits. Complement the operand and
2523               // re-apply the zext.
2524               if (APIntOps::isMask(Z0TySize, CI->getValue()))
2525                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2526 
2527               // If C is a single bit, it may be in the sign-bit position
2528               // before the zero-extend. In this case, represent the xor
2529               // using an add, which is equivalent, and re-apply the zext.
2530               APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2531               if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2532                   Trunc.isSignBit())
2533                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2534                                          UTy);
2535             }
2536     }
2537     break;
2538 
2539   case Instruction::Shl:
2540     // Turn shift left of a constant amount into a multiply.
2541     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2542       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2543       Constant *X = ConstantInt::get(
2544         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2545       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2546     }
2547     break;
2548 
2549   case Instruction::LShr:
2550     // Turn logical shift right of a constant into a unsigned divide.
2551     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2552       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2553       Constant *X = ConstantInt::get(
2554         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2555       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2556     }
2557     break;
2558 
2559   case Instruction::AShr:
2560     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2561     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2562       if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2563         if (L->getOpcode() == Instruction::Shl &&
2564             L->getOperand(1) == U->getOperand(1)) {
2565           unsigned BitWidth = getTypeSizeInBits(U->getType());
2566           uint64_t Amt = BitWidth - CI->getZExtValue();
2567           if (Amt == BitWidth)
2568             return getSCEV(L->getOperand(0));       // shift by zero --> noop
2569           if (Amt > BitWidth)
2570             return getIntegerSCEV(0, U->getType()); // value is undefined
2571           return
2572             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2573                                                       IntegerType::get(Amt)),
2574                                  U->getType());
2575         }
2576     break;
2577 
2578   case Instruction::Trunc:
2579     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2580 
2581   case Instruction::ZExt:
2582     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2583 
2584   case Instruction::SExt:
2585     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2586 
2587   case Instruction::BitCast:
2588     // BitCasts are no-op casts so we just eliminate the cast.
2589     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2590       return getSCEV(U->getOperand(0));
2591     break;
2592 
2593   case Instruction::IntToPtr:
2594     if (!TD) break; // Without TD we can't analyze pointers.
2595     return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2596                                    TD->getIntPtrType());
2597 
2598   case Instruction::PtrToInt:
2599     if (!TD) break; // Without TD we can't analyze pointers.
2600     return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2601                                    U->getType());
2602 
2603   case Instruction::GetElementPtr:
2604     if (!TD) break; // Without TD we can't analyze pointers.
2605     return createNodeForGEP(U);
2606 
2607   case Instruction::PHI:
2608     return createNodeForPHI(cast<PHINode>(U));
2609 
2610   case Instruction::Select:
2611     // This could be a smax or umax that was lowered earlier.
2612     // Try to recover it.
2613     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2614       Value *LHS = ICI->getOperand(0);
2615       Value *RHS = ICI->getOperand(1);
2616       switch (ICI->getPredicate()) {
2617       case ICmpInst::ICMP_SLT:
2618       case ICmpInst::ICMP_SLE:
2619         std::swap(LHS, RHS);
2620         // fall through
2621       case ICmpInst::ICMP_SGT:
2622       case ICmpInst::ICMP_SGE:
2623         if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2624           return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2625         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2626           return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
2627         break;
2628       case ICmpInst::ICMP_ULT:
2629       case ICmpInst::ICMP_ULE:
2630         std::swap(LHS, RHS);
2631         // fall through
2632       case ICmpInst::ICMP_UGT:
2633       case ICmpInst::ICMP_UGE:
2634         if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2635           return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2636         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2637           return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
2638         break;
2639       case ICmpInst::ICMP_NE:
2640         // n != 0 ? n : 1  ->  umax(n, 1)
2641         if (LHS == U->getOperand(1) &&
2642             isa<ConstantInt>(U->getOperand(2)) &&
2643             cast<ConstantInt>(U->getOperand(2))->isOne() &&
2644             isa<ConstantInt>(RHS) &&
2645             cast<ConstantInt>(RHS)->isZero())
2646           return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2647         break;
2648       case ICmpInst::ICMP_EQ:
2649         // n == 0 ? 1 : n  ->  umax(n, 1)
2650         if (LHS == U->getOperand(2) &&
2651             isa<ConstantInt>(U->getOperand(1)) &&
2652             cast<ConstantInt>(U->getOperand(1))->isOne() &&
2653             isa<ConstantInt>(RHS) &&
2654             cast<ConstantInt>(RHS)->isZero())
2655           return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
2656         break;
2657       default:
2658         break;
2659       }
2660     }
2661 
2662   default: // We cannot analyze this expression.
2663     break;
2664   }
2665 
2666   return getUnknown(V);
2667 }
2668 
2669 
2670 
2671 //===----------------------------------------------------------------------===//
2672 //                   Iteration Count Computation Code
2673 //
2674 
2675 /// getBackedgeTakenCount - If the specified loop has a predictable
2676 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2677 /// object. The backedge-taken count is the number of times the loop header
2678 /// will be branched to from within the loop. This is one less than the
2679 /// trip count of the loop, since it doesn't count the first iteration,
2680 /// when the header is branched to from outside the loop.
2681 ///
2682 /// Note that it is not valid to call this method on a loop without a
2683 /// loop-invariant backedge-taken count (see
2684 /// hasLoopInvariantBackedgeTakenCount).
2685 ///
2686 const SCEV* ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2687   return getBackedgeTakenInfo(L).Exact;
2688 }
2689 
2690 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2691 /// return the least SCEV value that is known never to be less than the
2692 /// actual backedge taken count.
2693 const SCEV* ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2694   return getBackedgeTakenInfo(L).Max;
2695 }
2696 
2697 const ScalarEvolution::BackedgeTakenInfo &
2698 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2699   // Initially insert a CouldNotCompute for this loop. If the insertion
2700   // succeeds, procede to actually compute a backedge-taken count and
2701   // update the value. The temporary CouldNotCompute value tells SCEV
2702   // code elsewhere that it shouldn't attempt to request a new
2703   // backedge-taken count, which could result in infinite recursion.
2704   std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2705     BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2706   if (Pair.second) {
2707     BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2708     if (ItCount.Exact != CouldNotCompute) {
2709       assert(ItCount.Exact->isLoopInvariant(L) &&
2710              ItCount.Max->isLoopInvariant(L) &&
2711              "Computed trip count isn't loop invariant for loop!");
2712       ++NumTripCountsComputed;
2713 
2714       // Update the value in the map.
2715       Pair.first->second = ItCount;
2716     } else {
2717       if (ItCount.Max != CouldNotCompute)
2718         // Update the value in the map.
2719         Pair.first->second = ItCount;
2720       if (isa<PHINode>(L->getHeader()->begin()))
2721         // Only count loops that have phi nodes as not being computable.
2722         ++NumTripCountsNotComputed;
2723     }
2724 
2725     // Now that we know more about the trip count for this loop, forget any
2726     // existing SCEV values for PHI nodes in this loop since they are only
2727     // conservative estimates made without the benefit
2728     // of trip count information.
2729     if (ItCount.hasAnyInfo())
2730       forgetLoopPHIs(L);
2731   }
2732   return Pair.first->second;
2733 }
2734 
2735 /// forgetLoopBackedgeTakenCount - This method should be called by the
2736 /// client when it has changed a loop in a way that may effect
2737 /// ScalarEvolution's ability to compute a trip count, or if the loop
2738 /// is deleted.
2739 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2740   BackedgeTakenCounts.erase(L);
2741   forgetLoopPHIs(L);
2742 }
2743 
2744 /// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2745 /// PHI nodes in the given loop. This is used when the trip count of
2746 /// the loop may have changed.
2747 void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2748   BasicBlock *Header = L->getHeader();
2749 
2750   // Push all Loop-header PHIs onto the Worklist stack, except those
2751   // that are presently represented via a SCEVUnknown. SCEVUnknown for
2752   // a PHI either means that it has an unrecognized structure, or it's
2753   // a PHI that's in the progress of being computed by createNodeForPHI.
2754   // In the former case, additional loop trip count information isn't
2755   // going to change anything. In the later case, createNodeForPHI will
2756   // perform the necessary updates on its own when it gets to that point.
2757   SmallVector<Instruction *, 16> Worklist;
2758   for (BasicBlock::iterator I = Header->begin();
2759        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2760     std::map<SCEVCallbackVH, const SCEV*>::iterator It = Scalars.find((Value*)I);
2761     if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2762       Worklist.push_back(PN);
2763   }
2764 
2765   while (!Worklist.empty()) {
2766     Instruction *I = Worklist.pop_back_val();
2767     if (Scalars.erase(I))
2768       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2769            UI != UE; ++UI)
2770         Worklist.push_back(cast<Instruction>(UI));
2771   }
2772 }
2773 
2774 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
2775 /// of the specified loop will execute.
2776 ScalarEvolution::BackedgeTakenInfo
2777 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2778   SmallVector<BasicBlock*, 8> ExitingBlocks;
2779   L->getExitingBlocks(ExitingBlocks);
2780 
2781   // Examine all exits and pick the most conservative values.
2782   const SCEV* BECount = CouldNotCompute;
2783   const SCEV* MaxBECount = CouldNotCompute;
2784   bool CouldNotComputeBECount = false;
2785   bool CouldNotComputeMaxBECount = false;
2786   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
2787     BackedgeTakenInfo NewBTI =
2788       ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
2789 
2790     if (NewBTI.Exact == CouldNotCompute) {
2791       // We couldn't compute an exact value for this exit, so
2792       // we won't be able to compute an exact value for the loop.
2793       CouldNotComputeBECount = true;
2794       BECount = CouldNotCompute;
2795     } else if (!CouldNotComputeBECount) {
2796       if (BECount == CouldNotCompute)
2797         BECount = NewBTI.Exact;
2798       else {
2799         // TODO: More analysis could be done here. For example, a
2800         // loop with a short-circuiting && operator has an exact count
2801         // of the min of both sides.
2802         CouldNotComputeBECount = true;
2803         BECount = CouldNotCompute;
2804       }
2805     }
2806     if (NewBTI.Max == CouldNotCompute) {
2807       // We couldn't compute an maximum value for this exit, so
2808       // we won't be able to compute an maximum value for the loop.
2809       CouldNotComputeMaxBECount = true;
2810       MaxBECount = CouldNotCompute;
2811     } else if (!CouldNotComputeMaxBECount) {
2812       if (MaxBECount == CouldNotCompute)
2813         MaxBECount = NewBTI.Max;
2814       else
2815         MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, NewBTI.Max);
2816     }
2817   }
2818 
2819   return BackedgeTakenInfo(BECount, MaxBECount);
2820 }
2821 
2822 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
2823 /// of the specified loop will execute if it exits via the specified block.
2824 ScalarEvolution::BackedgeTakenInfo
2825 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
2826                                                    BasicBlock *ExitingBlock) {
2827 
2828   // Okay, we've chosen an exiting block.  See what condition causes us to
2829   // exit at this block.
2830   //
2831   // FIXME: we should be able to handle switch instructions (with a single exit)
2832   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2833   if (ExitBr == 0) return CouldNotCompute;
2834   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2835 
2836   // At this point, we know we have a conditional branch that determines whether
2837   // the loop is exited.  However, we don't know if the branch is executed each
2838   // time through the loop.  If not, then the execution count of the branch will
2839   // not be equal to the trip count of the loop.
2840   //
2841   // Currently we check for this by checking to see if the Exit branch goes to
2842   // the loop header.  If so, we know it will always execute the same number of
2843   // times as the loop.  We also handle the case where the exit block *is* the
2844   // loop header.  This is common for un-rotated loops.
2845   //
2846   // If both of those tests fail, walk up the unique predecessor chain to the
2847   // header, stopping if there is an edge that doesn't exit the loop. If the
2848   // header is reached, the execution count of the branch will be equal to the
2849   // trip count of the loop.
2850   //
2851   //  More extensive analysis could be done to handle more cases here.
2852   //
2853   if (ExitBr->getSuccessor(0) != L->getHeader() &&
2854       ExitBr->getSuccessor(1) != L->getHeader() &&
2855       ExitBr->getParent() != L->getHeader()) {
2856     // The simple checks failed, try climbing the unique predecessor chain
2857     // up to the header.
2858     bool Ok = false;
2859     for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
2860       BasicBlock *Pred = BB->getUniquePredecessor();
2861       if (!Pred)
2862         return CouldNotCompute;
2863       TerminatorInst *PredTerm = Pred->getTerminator();
2864       for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
2865         BasicBlock *PredSucc = PredTerm->getSuccessor(i);
2866         if (PredSucc == BB)
2867           continue;
2868         // If the predecessor has a successor that isn't BB and isn't
2869         // outside the loop, assume the worst.
2870         if (L->contains(PredSucc))
2871           return CouldNotCompute;
2872       }
2873       if (Pred == L->getHeader()) {
2874         Ok = true;
2875         break;
2876       }
2877       BB = Pred;
2878     }
2879     if (!Ok)
2880       return CouldNotCompute;
2881   }
2882 
2883   // Procede to the next level to examine the exit condition expression.
2884   return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
2885                                                ExitBr->getSuccessor(0),
2886                                                ExitBr->getSuccessor(1));
2887 }
2888 
2889 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
2890 /// backedge of the specified loop will execute if its exit condition
2891 /// were a conditional branch of ExitCond, TBB, and FBB.
2892 ScalarEvolution::BackedgeTakenInfo
2893 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
2894                                                        Value *ExitCond,
2895                                                        BasicBlock *TBB,
2896                                                        BasicBlock *FBB) {
2897   // Check if the controlling expression for this loop is an and or or. In
2898   // such cases, an exact backedge-taken count may be infeasible, but a
2899   // maximum count may still be feasible.
2900   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
2901     if (BO->getOpcode() == Instruction::And) {
2902       // Recurse on the operands of the and.
2903       BackedgeTakenInfo BTI0 =
2904         ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
2905       BackedgeTakenInfo BTI1 =
2906         ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
2907       const SCEV* BECount = CouldNotCompute;
2908       const SCEV* MaxBECount = CouldNotCompute;
2909       if (L->contains(TBB)) {
2910         // Both conditions must be true for the loop to continue executing.
2911         // Choose the less conservative count.
2912         if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute)
2913           BECount = CouldNotCompute;
2914         else
2915           BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2916         if (BTI0.Max == CouldNotCompute)
2917           MaxBECount = BTI1.Max;
2918         else if (BTI1.Max == CouldNotCompute)
2919           MaxBECount = BTI0.Max;
2920         else
2921           MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
2922       } else {
2923         // Both conditions must be true for the loop to exit.
2924         assert(L->contains(FBB) && "Loop block has no successor in loop!");
2925         if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
2926           BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2927         if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
2928           MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
2929       }
2930 
2931       return BackedgeTakenInfo(BECount, MaxBECount);
2932     }
2933     if (BO->getOpcode() == Instruction::Or) {
2934       // Recurse on the operands of the or.
2935       BackedgeTakenInfo BTI0 =
2936         ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
2937       BackedgeTakenInfo BTI1 =
2938         ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
2939       const SCEV* BECount = CouldNotCompute;
2940       const SCEV* MaxBECount = CouldNotCompute;
2941       if (L->contains(FBB)) {
2942         // Both conditions must be false for the loop to continue executing.
2943         // Choose the less conservative count.
2944         if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute)
2945           BECount = CouldNotCompute;
2946         else
2947           BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2948         if (BTI0.Max == CouldNotCompute)
2949           MaxBECount = BTI1.Max;
2950         else if (BTI1.Max == CouldNotCompute)
2951           MaxBECount = BTI0.Max;
2952         else
2953           MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
2954       } else {
2955         // Both conditions must be false for the loop to exit.
2956         assert(L->contains(TBB) && "Loop block has no successor in loop!");
2957         if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
2958           BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2959         if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
2960           MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
2961       }
2962 
2963       return BackedgeTakenInfo(BECount, MaxBECount);
2964     }
2965   }
2966 
2967   // With an icmp, it may be feasible to compute an exact backedge-taken count.
2968   // Procede to the next level to examine the icmp.
2969   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
2970     return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
2971 
2972   // If it's not an integer or pointer comparison then compute it the hard way.
2973   return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
2974 }
2975 
2976 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
2977 /// backedge of the specified loop will execute if its exit condition
2978 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
2979 ScalarEvolution::BackedgeTakenInfo
2980 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
2981                                                            ICmpInst *ExitCond,
2982                                                            BasicBlock *TBB,
2983                                                            BasicBlock *FBB) {
2984 
2985   // If the condition was exit on true, convert the condition to exit on false
2986   ICmpInst::Predicate Cond;
2987   if (!L->contains(FBB))
2988     Cond = ExitCond->getPredicate();
2989   else
2990     Cond = ExitCond->getInversePredicate();
2991 
2992   // Handle common loops like: for (X = "string"; *X; ++X)
2993   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2994     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2995       const SCEV* ItCnt =
2996         ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2997       if (!isa<SCEVCouldNotCompute>(ItCnt)) {
2998         unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
2999         return BackedgeTakenInfo(ItCnt,
3000                                  isa<SCEVConstant>(ItCnt) ? ItCnt :
3001                                    getConstant(APInt::getMaxValue(BitWidth)-1));
3002       }
3003     }
3004 
3005   const SCEV* LHS = getSCEV(ExitCond->getOperand(0));
3006   const SCEV* RHS = getSCEV(ExitCond->getOperand(1));
3007 
3008   // Try to evaluate any dependencies out of the loop.
3009   LHS = getSCEVAtScope(LHS, L);
3010   RHS = getSCEVAtScope(RHS, L);
3011 
3012   // At this point, we would like to compute how many iterations of the
3013   // loop the predicate will return true for these inputs.
3014   if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3015     // If there is a loop-invariant, force it into the RHS.
3016     std::swap(LHS, RHS);
3017     Cond = ICmpInst::getSwappedPredicate(Cond);
3018   }
3019 
3020   // If we have a comparison of a chrec against a constant, try to use value
3021   // ranges to answer this query.
3022   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3023     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3024       if (AddRec->getLoop() == L) {
3025         // Form the constant range.
3026         ConstantRange CompRange(
3027             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3028 
3029         const SCEV* Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3030         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3031       }
3032 
3033   switch (Cond) {
3034   case ICmpInst::ICMP_NE: {                     // while (X != Y)
3035     // Convert to: while (X-Y != 0)
3036     const SCEV* TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3037     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3038     break;
3039   }
3040   case ICmpInst::ICMP_EQ: {
3041     // Convert to: while (X-Y == 0)           // while (X == Y)
3042     const SCEV* TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3043     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3044     break;
3045   }
3046   case ICmpInst::ICMP_SLT: {
3047     BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3048     if (BTI.hasAnyInfo()) return BTI;
3049     break;
3050   }
3051   case ICmpInst::ICMP_SGT: {
3052     BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3053                                              getNotSCEV(RHS), L, true);
3054     if (BTI.hasAnyInfo()) return BTI;
3055     break;
3056   }
3057   case ICmpInst::ICMP_ULT: {
3058     BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3059     if (BTI.hasAnyInfo()) return BTI;
3060     break;
3061   }
3062   case ICmpInst::ICMP_UGT: {
3063     BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3064                                              getNotSCEV(RHS), L, false);
3065     if (BTI.hasAnyInfo()) return BTI;
3066     break;
3067   }
3068   default:
3069 #if 0
3070     errs() << "ComputeBackedgeTakenCount ";
3071     if (ExitCond->getOperand(0)->getType()->isUnsigned())
3072       errs() << "[unsigned] ";
3073     errs() << *LHS << "   "
3074          << Instruction::getOpcodeName(Instruction::ICmp)
3075          << "   " << *RHS << "\n";
3076 #endif
3077     break;
3078   }
3079   return
3080     ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3081 }
3082 
3083 static ConstantInt *
3084 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3085                                 ScalarEvolution &SE) {
3086   const SCEV* InVal = SE.getConstant(C);
3087   const SCEV* Val = AddRec->evaluateAtIteration(InVal, SE);
3088   assert(isa<SCEVConstant>(Val) &&
3089          "Evaluation of SCEV at constant didn't fold correctly?");
3090   return cast<SCEVConstant>(Val)->getValue();
3091 }
3092 
3093 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
3094 /// and a GEP expression (missing the pointer index) indexing into it, return
3095 /// the addressed element of the initializer or null if the index expression is
3096 /// invalid.
3097 static Constant *
3098 GetAddressedElementFromGlobal(GlobalVariable *GV,
3099                               const std::vector<ConstantInt*> &Indices) {
3100   Constant *Init = GV->getInitializer();
3101   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3102     uint64_t Idx = Indices[i]->getZExtValue();
3103     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3104       assert(Idx < CS->getNumOperands() && "Bad struct index!");
3105       Init = cast<Constant>(CS->getOperand(Idx));
3106     } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3107       if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3108       Init = cast<Constant>(CA->getOperand(Idx));
3109     } else if (isa<ConstantAggregateZero>(Init)) {
3110       if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3111         assert(Idx < STy->getNumElements() && "Bad struct index!");
3112         Init = Constant::getNullValue(STy->getElementType(Idx));
3113       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3114         if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3115         Init = Constant::getNullValue(ATy->getElementType());
3116       } else {
3117         assert(0 && "Unknown constant aggregate type!");
3118       }
3119       return 0;
3120     } else {
3121       return 0; // Unknown initializer type
3122     }
3123   }
3124   return Init;
3125 }
3126 
3127 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3128 /// 'icmp op load X, cst', try to see if we can compute the backedge
3129 /// execution count.
3130 const SCEV* ScalarEvolution::
3131 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
3132                                              const Loop *L,
3133                                              ICmpInst::Predicate predicate) {
3134   if (LI->isVolatile()) return CouldNotCompute;
3135 
3136   // Check to see if the loaded pointer is a getelementptr of a global.
3137   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3138   if (!GEP) return CouldNotCompute;
3139 
3140   // Make sure that it is really a constant global we are gepping, with an
3141   // initializer, and make sure the first IDX is really 0.
3142   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3143   if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3144       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3145       !cast<Constant>(GEP->getOperand(1))->isNullValue())
3146     return CouldNotCompute;
3147 
3148   // Okay, we allow one non-constant index into the GEP instruction.
3149   Value *VarIdx = 0;
3150   std::vector<ConstantInt*> Indexes;
3151   unsigned VarIdxNum = 0;
3152   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3153     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3154       Indexes.push_back(CI);
3155     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3156       if (VarIdx) return CouldNotCompute;  // Multiple non-constant idx's.
3157       VarIdx = GEP->getOperand(i);
3158       VarIdxNum = i-2;
3159       Indexes.push_back(0);
3160     }
3161 
3162   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3163   // Check to see if X is a loop variant variable value now.
3164   const SCEV* Idx = getSCEV(VarIdx);
3165   Idx = getSCEVAtScope(Idx, L);
3166 
3167   // We can only recognize very limited forms of loop index expressions, in
3168   // particular, only affine AddRec's like {C1,+,C2}.
3169   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3170   if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3171       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3172       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3173     return CouldNotCompute;
3174 
3175   unsigned MaxSteps = MaxBruteForceIterations;
3176   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3177     ConstantInt *ItCst =
3178       ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum);
3179     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3180 
3181     // Form the GEP offset.
3182     Indexes[VarIdxNum] = Val;
3183 
3184     Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
3185     if (Result == 0) break;  // Cannot compute!
3186 
3187     // Evaluate the condition for this iteration.
3188     Result = ConstantExpr::getICmp(predicate, Result, RHS);
3189     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3190     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3191 #if 0
3192       errs() << "\n***\n*** Computed loop count " << *ItCst
3193              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3194              << "***\n";
3195 #endif
3196       ++NumArrayLenItCounts;
3197       return getConstant(ItCst);   // Found terminating iteration!
3198     }
3199   }
3200   return CouldNotCompute;
3201 }
3202 
3203 
3204 /// CanConstantFold - Return true if we can constant fold an instruction of the
3205 /// specified type, assuming that all operands were constants.
3206 static bool CanConstantFold(const Instruction *I) {
3207   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3208       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3209     return true;
3210 
3211   if (const CallInst *CI = dyn_cast<CallInst>(I))
3212     if (const Function *F = CI->getCalledFunction())
3213       return canConstantFoldCallTo(F);
3214   return false;
3215 }
3216 
3217 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3218 /// in the loop that V is derived from.  We allow arbitrary operations along the
3219 /// way, but the operands of an operation must either be constants or a value
3220 /// derived from a constant PHI.  If this expression does not fit with these
3221 /// constraints, return null.
3222 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3223   // If this is not an instruction, or if this is an instruction outside of the
3224   // loop, it can't be derived from a loop PHI.
3225   Instruction *I = dyn_cast<Instruction>(V);
3226   if (I == 0 || !L->contains(I->getParent())) return 0;
3227 
3228   if (PHINode *PN = dyn_cast<PHINode>(I)) {
3229     if (L->getHeader() == I->getParent())
3230       return PN;
3231     else
3232       // We don't currently keep track of the control flow needed to evaluate
3233       // PHIs, so we cannot handle PHIs inside of loops.
3234       return 0;
3235   }
3236 
3237   // If we won't be able to constant fold this expression even if the operands
3238   // are constants, return early.
3239   if (!CanConstantFold(I)) return 0;
3240 
3241   // Otherwise, we can evaluate this instruction if all of its operands are
3242   // constant or derived from a PHI node themselves.
3243   PHINode *PHI = 0;
3244   for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3245     if (!(isa<Constant>(I->getOperand(Op)) ||
3246           isa<GlobalValue>(I->getOperand(Op)))) {
3247       PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3248       if (P == 0) return 0;  // Not evolving from PHI
3249       if (PHI == 0)
3250         PHI = P;
3251       else if (PHI != P)
3252         return 0;  // Evolving from multiple different PHIs.
3253     }
3254 
3255   // This is a expression evolving from a constant PHI!
3256   return PHI;
3257 }
3258 
3259 /// EvaluateExpression - Given an expression that passes the
3260 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3261 /// in the loop has the value PHIVal.  If we can't fold this expression for some
3262 /// reason, return null.
3263 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3264   if (isa<PHINode>(V)) return PHIVal;
3265   if (Constant *C = dyn_cast<Constant>(V)) return C;
3266   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3267   Instruction *I = cast<Instruction>(V);
3268 
3269   std::vector<Constant*> Operands;
3270   Operands.resize(I->getNumOperands());
3271 
3272   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3273     Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3274     if (Operands[i] == 0) return 0;
3275   }
3276 
3277   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3278     return ConstantFoldCompareInstOperands(CI->getPredicate(),
3279                                            &Operands[0], Operands.size());
3280   else
3281     return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3282                                     &Operands[0], Operands.size());
3283 }
3284 
3285 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3286 /// in the header of its containing loop, we know the loop executes a
3287 /// constant number of times, and the PHI node is just a recurrence
3288 /// involving constants, fold it.
3289 Constant *ScalarEvolution::
3290 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
3291   std::map<PHINode*, Constant*>::iterator I =
3292     ConstantEvolutionLoopExitValue.find(PN);
3293   if (I != ConstantEvolutionLoopExitValue.end())
3294     return I->second;
3295 
3296   if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3297     return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
3298 
3299   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3300 
3301   // Since the loop is canonicalized, the PHI node must have two entries.  One
3302   // entry must be a constant (coming in from outside of the loop), and the
3303   // second must be derived from the same PHI.
3304   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3305   Constant *StartCST =
3306     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3307   if (StartCST == 0)
3308     return RetVal = 0;  // Must be a constant.
3309 
3310   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3311   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3312   if (PN2 != PN)
3313     return RetVal = 0;  // Not derived from same PHI.
3314 
3315   // Execute the loop symbolically to determine the exit value.
3316   if (BEs.getActiveBits() >= 32)
3317     return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3318 
3319   unsigned NumIterations = BEs.getZExtValue(); // must be in range
3320   unsigned IterationNum = 0;
3321   for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3322     if (IterationNum == NumIterations)
3323       return RetVal = PHIVal;  // Got exit value!
3324 
3325     // Compute the value of the PHI node for the next iteration.
3326     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3327     if (NextPHI == PHIVal)
3328       return RetVal = NextPHI;  // Stopped evolving!
3329     if (NextPHI == 0)
3330       return 0;        // Couldn't evaluate!
3331     PHIVal = NextPHI;
3332   }
3333 }
3334 
3335 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
3336 /// constant number of times (the condition evolves only from constants),
3337 /// try to evaluate a few iterations of the loop until we get the exit
3338 /// condition gets a value of ExitWhen (true or false).  If we cannot
3339 /// evaluate the trip count of the loop, return CouldNotCompute.
3340 const SCEV* ScalarEvolution::
3341 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
3342   PHINode *PN = getConstantEvolvingPHI(Cond, L);
3343   if (PN == 0) return CouldNotCompute;
3344 
3345   // Since the loop is canonicalized, the PHI node must have two entries.  One
3346   // entry must be a constant (coming in from outside of the loop), and the
3347   // second must be derived from the same PHI.
3348   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3349   Constant *StartCST =
3350     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3351   if (StartCST == 0) return CouldNotCompute;  // Must be a constant.
3352 
3353   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3354   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3355   if (PN2 != PN) return CouldNotCompute;  // Not derived from same PHI.
3356 
3357   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
3358   // the loop symbolically to determine when the condition gets a value of
3359   // "ExitWhen".
3360   unsigned IterationNum = 0;
3361   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
3362   for (Constant *PHIVal = StartCST;
3363        IterationNum != MaxIterations; ++IterationNum) {
3364     ConstantInt *CondVal =
3365       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3366 
3367     // Couldn't symbolically evaluate.
3368     if (!CondVal) return CouldNotCompute;
3369 
3370     if (CondVal->getValue() == uint64_t(ExitWhen)) {
3371       ConstantEvolutionLoopExitValue[PN] = PHIVal;
3372       ++NumBruteForceTripCountsComputed;
3373       return getConstant(Type::Int32Ty, IterationNum);
3374     }
3375 
3376     // Compute the value of the PHI node for the next iteration.
3377     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3378     if (NextPHI == 0 || NextPHI == PHIVal)
3379       return CouldNotCompute;   // Couldn't evaluate or not making progress...
3380     PHIVal = NextPHI;
3381   }
3382 
3383   // Too many iterations were needed to evaluate.
3384   return CouldNotCompute;
3385 }
3386 
3387 /// getSCEVAtScope - Return a SCEV expression handle for the specified value
3388 /// at the specified scope in the program.  The L value specifies a loop
3389 /// nest to evaluate the expression at, where null is the top-level or a
3390 /// specified loop is immediately inside of the loop.
3391 ///
3392 /// This method can be used to compute the exit value for a variable defined
3393 /// in a loop by querying what the value will hold in the parent loop.
3394 ///
3395 /// In the case that a relevant loop exit value cannot be computed, the
3396 /// original value V is returned.
3397 const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3398   // FIXME: this should be turned into a virtual method on SCEV!
3399 
3400   if (isa<SCEVConstant>(V)) return V;
3401 
3402   // If this instruction is evolved from a constant-evolving PHI, compute the
3403   // exit value from the loop without using SCEVs.
3404   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3405     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3406       const Loop *LI = (*this->LI)[I->getParent()];
3407       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
3408         if (PHINode *PN = dyn_cast<PHINode>(I))
3409           if (PN->getParent() == LI->getHeader()) {
3410             // Okay, there is no closed form solution for the PHI node.  Check
3411             // to see if the loop that contains it has a known backedge-taken
3412             // count.  If so, we may be able to force computation of the exit
3413             // value.
3414             const SCEV* BackedgeTakenCount = getBackedgeTakenCount(LI);
3415             if (const SCEVConstant *BTCC =
3416                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3417               // Okay, we know how many times the containing loop executes.  If
3418               // this is a constant evolving PHI node, get the final value at
3419               // the specified iteration number.
3420               Constant *RV = getConstantEvolutionLoopExitValue(PN,
3421                                                    BTCC->getValue()->getValue(),
3422                                                                LI);
3423               if (RV) return getUnknown(RV);
3424             }
3425           }
3426 
3427       // Okay, this is an expression that we cannot symbolically evaluate
3428       // into a SCEV.  Check to see if it's possible to symbolically evaluate
3429       // the arguments into constants, and if so, try to constant propagate the
3430       // result.  This is particularly useful for computing loop exit values.
3431       if (CanConstantFold(I)) {
3432         // Check to see if we've folded this instruction at this loop before.
3433         std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3434         std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3435           Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3436         if (!Pair.second)
3437           return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
3438 
3439         std::vector<Constant*> Operands;
3440         Operands.reserve(I->getNumOperands());
3441         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3442           Value *Op = I->getOperand(i);
3443           if (Constant *C = dyn_cast<Constant>(Op)) {
3444             Operands.push_back(C);
3445           } else {
3446             // If any of the operands is non-constant and if they are
3447             // non-integer and non-pointer, don't even try to analyze them
3448             // with scev techniques.
3449             if (!isSCEVable(Op->getType()))
3450               return V;
3451 
3452             const SCEV* OpV = getSCEVAtScope(getSCEV(Op), L);
3453             if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
3454               Constant *C = SC->getValue();
3455               if (C->getType() != Op->getType())
3456                 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3457                                                                   Op->getType(),
3458                                                                   false),
3459                                           C, Op->getType());
3460               Operands.push_back(C);
3461             } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
3462               if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3463                 if (C->getType() != Op->getType())
3464                   C =
3465                     ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3466                                                                   Op->getType(),
3467                                                                   false),
3468                                           C, Op->getType());
3469                 Operands.push_back(C);
3470               } else
3471                 return V;
3472             } else {
3473               return V;
3474             }
3475           }
3476         }
3477 
3478         Constant *C;
3479         if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3480           C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3481                                               &Operands[0], Operands.size());
3482         else
3483           C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3484                                        &Operands[0], Operands.size());
3485         Pair.first->second = C;
3486         return getUnknown(C);
3487       }
3488     }
3489 
3490     // This is some other type of SCEVUnknown, just return it.
3491     return V;
3492   }
3493 
3494   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
3495     // Avoid performing the look-up in the common case where the specified
3496     // expression has no loop-variant portions.
3497     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3498       const SCEV* OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3499       if (OpAtScope != Comm->getOperand(i)) {
3500         // Okay, at least one of these operands is loop variant but might be
3501         // foldable.  Build a new instance of the folded commutative expression.
3502         SmallVector<const SCEV*, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i);
3503         NewOps.push_back(OpAtScope);
3504 
3505         for (++i; i != e; ++i) {
3506           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3507           NewOps.push_back(OpAtScope);
3508         }
3509         if (isa<SCEVAddExpr>(Comm))
3510           return getAddExpr(NewOps);
3511         if (isa<SCEVMulExpr>(Comm))
3512           return getMulExpr(NewOps);
3513         if (isa<SCEVSMaxExpr>(Comm))
3514           return getSMaxExpr(NewOps);
3515         if (isa<SCEVUMaxExpr>(Comm))
3516           return getUMaxExpr(NewOps);
3517         assert(0 && "Unknown commutative SCEV type!");
3518       }
3519     }
3520     // If we got here, all operands are loop invariant.
3521     return Comm;
3522   }
3523 
3524   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
3525     const SCEV* LHS = getSCEVAtScope(Div->getLHS(), L);
3526     const SCEV* RHS = getSCEVAtScope(Div->getRHS(), L);
3527     if (LHS == Div->getLHS() && RHS == Div->getRHS())
3528       return Div;   // must be loop invariant
3529     return getUDivExpr(LHS, RHS);
3530   }
3531 
3532   // If this is a loop recurrence for a loop that does not contain L, then we
3533   // are dealing with the final value computed by the loop.
3534   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
3535     if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3536       // To evaluate this recurrence, we need to know how many times the AddRec
3537       // loop iterates.  Compute this now.
3538       const SCEV* BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3539       if (BackedgeTakenCount == CouldNotCompute) return AddRec;
3540 
3541       // Then, evaluate the AddRec.
3542       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3543     }
3544     return AddRec;
3545   }
3546 
3547   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3548     const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
3549     if (Op == Cast->getOperand())
3550       return Cast;  // must be loop invariant
3551     return getZeroExtendExpr(Op, Cast->getType());
3552   }
3553 
3554   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3555     const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
3556     if (Op == Cast->getOperand())
3557       return Cast;  // must be loop invariant
3558     return getSignExtendExpr(Op, Cast->getType());
3559   }
3560 
3561   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3562     const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
3563     if (Op == Cast->getOperand())
3564       return Cast;  // must be loop invariant
3565     return getTruncateExpr(Op, Cast->getType());
3566   }
3567 
3568   assert(0 && "Unknown SCEV type!");
3569   return 0;
3570 }
3571 
3572 /// getSCEVAtScope - This is a convenience function which does
3573 /// getSCEVAtScope(getSCEV(V), L).
3574 const SCEV* ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3575   return getSCEVAtScope(getSCEV(V), L);
3576 }
3577 
3578 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3579 /// following equation:
3580 ///
3581 ///     A * X = B (mod N)
3582 ///
3583 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3584 /// A and B isn't important.
3585 ///
3586 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3587 static const SCEV* SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3588                                                ScalarEvolution &SE) {
3589   uint32_t BW = A.getBitWidth();
3590   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3591   assert(A != 0 && "A must be non-zero.");
3592 
3593   // 1. D = gcd(A, N)
3594   //
3595   // The gcd of A and N may have only one prime factor: 2. The number of
3596   // trailing zeros in A is its multiplicity
3597   uint32_t Mult2 = A.countTrailingZeros();
3598   // D = 2^Mult2
3599 
3600   // 2. Check if B is divisible by D.
3601   //
3602   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3603   // is not less than multiplicity of this prime factor for D.
3604   if (B.countTrailingZeros() < Mult2)
3605     return SE.getCouldNotCompute();
3606 
3607   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3608   // modulo (N / D).
3609   //
3610   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3611   // bit width during computations.
3612   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3613   APInt Mod(BW + 1, 0);
3614   Mod.set(BW - Mult2);  // Mod = N / D
3615   APInt I = AD.multiplicativeInverse(Mod);
3616 
3617   // 4. Compute the minimum unsigned root of the equation:
3618   // I * (B / D) mod (N / D)
3619   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3620 
3621   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3622   // bits.
3623   return SE.getConstant(Result.trunc(BW));
3624 }
3625 
3626 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3627 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
3628 /// might be the same) or two SCEVCouldNotCompute objects.
3629 ///
3630 static std::pair<const SCEV*,const SCEV*>
3631 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
3632   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
3633   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3634   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3635   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
3636 
3637   // We currently can only solve this if the coefficients are constants.
3638   if (!LC || !MC || !NC) {
3639     const SCEV *CNC = SE.getCouldNotCompute();
3640     return std::make_pair(CNC, CNC);
3641   }
3642 
3643   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3644   const APInt &L = LC->getValue()->getValue();
3645   const APInt &M = MC->getValue()->getValue();
3646   const APInt &N = NC->getValue()->getValue();
3647   APInt Two(BitWidth, 2);
3648   APInt Four(BitWidth, 4);
3649 
3650   {
3651     using namespace APIntOps;
3652     const APInt& C = L;
3653     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3654     // The B coefficient is M-N/2
3655     APInt B(M);
3656     B -= sdiv(N,Two);
3657 
3658     // The A coefficient is N/2
3659     APInt A(N.sdiv(Two));
3660 
3661     // Compute the B^2-4ac term.
3662     APInt SqrtTerm(B);
3663     SqrtTerm *= B;
3664     SqrtTerm -= Four * (A * C);
3665 
3666     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3667     // integer value or else APInt::sqrt() will assert.
3668     APInt SqrtVal(SqrtTerm.sqrt());
3669 
3670     // Compute the two solutions for the quadratic formula.
3671     // The divisions must be performed as signed divisions.
3672     APInt NegB(-B);
3673     APInt TwoA( A << 1 );
3674     if (TwoA.isMinValue()) {
3675       const SCEV *CNC = SE.getCouldNotCompute();
3676       return std::make_pair(CNC, CNC);
3677     }
3678 
3679     ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3680     ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3681 
3682     return std::make_pair(SE.getConstant(Solution1),
3683                           SE.getConstant(Solution2));
3684     } // end APIntOps namespace
3685 }
3686 
3687 /// HowFarToZero - Return the number of times a backedge comparing the specified
3688 /// value to zero will execute.  If not computable, return CouldNotCompute.
3689 const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
3690   // If the value is a constant
3691   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3692     // If the value is already zero, the branch will execute zero times.
3693     if (C->getValue()->isZero()) return C;
3694     return CouldNotCompute;  // Otherwise it will loop infinitely.
3695   }
3696 
3697   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
3698   if (!AddRec || AddRec->getLoop() != L)
3699     return CouldNotCompute;
3700 
3701   if (AddRec->isAffine()) {
3702     // If this is an affine expression, the execution count of this branch is
3703     // the minimum unsigned root of the following equation:
3704     //
3705     //     Start + Step*N = 0 (mod 2^BW)
3706     //
3707     // equivalent to:
3708     //
3709     //             Step*N = -Start (mod 2^BW)
3710     //
3711     // where BW is the common bit width of Start and Step.
3712 
3713     // Get the initial value for the loop.
3714     const SCEV* Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3715     const SCEV* Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
3716 
3717     if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
3718       // For now we handle only constant steps.
3719 
3720       // First, handle unitary steps.
3721       if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
3722         return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
3723       if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
3724         return Start;                           //    N = Start (as unsigned)
3725 
3726       // Then, try to solve the above equation provided that Start is constant.
3727       if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
3728         return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
3729                                             -StartC->getValue()->getValue(),
3730                                             *this);
3731     }
3732   } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3733     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3734     // the quadratic equation to solve it.
3735     std::pair<const SCEV*,const SCEV*> Roots = SolveQuadraticEquation(AddRec,
3736                                                                     *this);
3737     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3738     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3739     if (R1) {
3740 #if 0
3741       errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3742              << "  sol#2: " << *R2 << "\n";
3743 #endif
3744       // Pick the smallest positive root value.
3745       if (ConstantInt *CB =
3746           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3747                                    R1->getValue(), R2->getValue()))) {
3748         if (CB->getZExtValue() == false)
3749           std::swap(R1, R2);   // R1 is the minimum root now.
3750 
3751         // We can only use this value if the chrec ends up with an exact zero
3752         // value at this index.  When solving for "X*X != 5", for example, we
3753         // should not accept a root of 2.
3754         const SCEV* Val = AddRec->evaluateAtIteration(R1, *this);
3755         if (Val->isZero())
3756           return R1;  // We found a quadratic root!
3757       }
3758     }
3759   }
3760 
3761   return CouldNotCompute;
3762 }
3763 
3764 /// HowFarToNonZero - Return the number of times a backedge checking the
3765 /// specified value for nonzero will execute.  If not computable, return
3766 /// CouldNotCompute
3767 const SCEV* ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
3768   // Loops that look like: while (X == 0) are very strange indeed.  We don't
3769   // handle them yet except for the trivial case.  This could be expanded in the
3770   // future as needed.
3771 
3772   // If the value is a constant, check to see if it is known to be non-zero
3773   // already.  If so, the backedge will execute zero times.
3774   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3775     if (!C->getValue()->isNullValue())
3776       return getIntegerSCEV(0, C->getType());
3777     return CouldNotCompute;  // Otherwise it will loop infinitely.
3778   }
3779 
3780   // We could implement others, but I really doubt anyone writes loops like
3781   // this, and if they did, they would already be constant folded.
3782   return CouldNotCompute;
3783 }
3784 
3785 /// getLoopPredecessor - If the given loop's header has exactly one unique
3786 /// predecessor outside the loop, return it. Otherwise return null.
3787 ///
3788 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3789   BasicBlock *Header = L->getHeader();
3790   BasicBlock *Pred = 0;
3791   for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3792        PI != E; ++PI)
3793     if (!L->contains(*PI)) {
3794       if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3795       Pred = *PI;
3796     }
3797   return Pred;
3798 }
3799 
3800 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3801 /// (which may not be an immediate predecessor) which has exactly one
3802 /// successor from which BB is reachable, or null if no such block is
3803 /// found.
3804 ///
3805 BasicBlock *
3806 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3807   // If the block has a unique predecessor, then there is no path from the
3808   // predecessor to the block that does not go through the direct edge
3809   // from the predecessor to the block.
3810   if (BasicBlock *Pred = BB->getSinglePredecessor())
3811     return Pred;
3812 
3813   // A loop's header is defined to be a block that dominates the loop.
3814   // If the header has a unique predecessor outside the loop, it must be
3815   // a block that has exactly one successor that can reach the loop.
3816   if (Loop *L = LI->getLoopFor(BB))
3817     return getLoopPredecessor(L);
3818 
3819   return 0;
3820 }
3821 
3822 /// HasSameValue - SCEV structural equivalence is usually sufficient for
3823 /// testing whether two expressions are equal, however for the purposes of
3824 /// looking for a condition guarding a loop, it can be useful to be a little
3825 /// more general, since a front-end may have replicated the controlling
3826 /// expression.
3827 ///
3828 static bool HasSameValue(const SCEV* A, const SCEV* B) {
3829   // Quick check to see if they are the same SCEV.
3830   if (A == B) return true;
3831 
3832   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
3833   // two different instructions with the same value. Check for this case.
3834   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
3835     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
3836       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
3837         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
3838           if (AI->isIdenticalTo(BI))
3839             return true;
3840 
3841   // Otherwise assume they may have a different value.
3842   return false;
3843 }
3844 
3845 /// isLoopGuardedByCond - Test whether entry to the loop is protected by
3846 /// a conditional between LHS and RHS.  This is used to help avoid max
3847 /// expressions in loop trip counts.
3848 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3849                                           ICmpInst::Predicate Pred,
3850                                           const SCEV *LHS, const SCEV *RHS) {
3851   // Interpret a null as meaning no loop, where there is obviously no guard
3852   // (interprocedural conditions notwithstanding).
3853   if (!L) return false;
3854 
3855   BasicBlock *Predecessor = getLoopPredecessor(L);
3856   BasicBlock *PredecessorDest = L->getHeader();
3857 
3858   // Starting at the loop predecessor, climb up the predecessor chain, as long
3859   // as there are predecessors that can be found that have unique successors
3860   // leading to the original header.
3861   for (; Predecessor;
3862        PredecessorDest = Predecessor,
3863        Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
3864 
3865     BranchInst *LoopEntryPredicate =
3866       dyn_cast<BranchInst>(Predecessor->getTerminator());
3867     if (!LoopEntryPredicate ||
3868         LoopEntryPredicate->isUnconditional())
3869       continue;
3870 
3871     ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3872     if (!ICI) continue;
3873 
3874     // Now that we found a conditional branch that dominates the loop, check to
3875     // see if it is the comparison we are looking for.
3876     Value *PreCondLHS = ICI->getOperand(0);
3877     Value *PreCondRHS = ICI->getOperand(1);
3878     ICmpInst::Predicate Cond;
3879     if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
3880       Cond = ICI->getPredicate();
3881     else
3882       Cond = ICI->getInversePredicate();
3883 
3884     if (Cond == Pred)
3885       ; // An exact match.
3886     else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3887       ; // The actual condition is beyond sufficient.
3888     else
3889       // Check a few special cases.
3890       switch (Cond) {
3891       case ICmpInst::ICMP_UGT:
3892         if (Pred == ICmpInst::ICMP_ULT) {
3893           std::swap(PreCondLHS, PreCondRHS);
3894           Cond = ICmpInst::ICMP_ULT;
3895           break;
3896         }
3897         continue;
3898       case ICmpInst::ICMP_SGT:
3899         if (Pred == ICmpInst::ICMP_SLT) {
3900           std::swap(PreCondLHS, PreCondRHS);
3901           Cond = ICmpInst::ICMP_SLT;
3902           break;
3903         }
3904         continue;
3905       case ICmpInst::ICMP_NE:
3906         // Expressions like (x >u 0) are often canonicalized to (x != 0),
3907         // so check for this case by checking if the NE is comparing against
3908         // a minimum or maximum constant.
3909         if (!ICmpInst::isTrueWhenEqual(Pred))
3910           if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3911             const APInt &A = CI->getValue();
3912             switch (Pred) {
3913             case ICmpInst::ICMP_SLT:
3914               if (A.isMaxSignedValue()) break;
3915               continue;
3916             case ICmpInst::ICMP_SGT:
3917               if (A.isMinSignedValue()) break;
3918               continue;
3919             case ICmpInst::ICMP_ULT:
3920               if (A.isMaxValue()) break;
3921               continue;
3922             case ICmpInst::ICMP_UGT:
3923               if (A.isMinValue()) break;
3924               continue;
3925             default:
3926               continue;
3927             }
3928             Cond = ICmpInst::ICMP_NE;
3929             // NE is symmetric but the original comparison may not be. Swap
3930             // the operands if necessary so that they match below.
3931             if (isa<SCEVConstant>(LHS))
3932               std::swap(PreCondLHS, PreCondRHS);
3933             break;
3934           }
3935         continue;
3936       default:
3937         // We weren't able to reconcile the condition.
3938         continue;
3939       }
3940 
3941     if (!PreCondLHS->getType()->isInteger()) continue;
3942 
3943     const SCEV* PreCondLHSSCEV = getSCEV(PreCondLHS);
3944     const SCEV* PreCondRHSSCEV = getSCEV(PreCondRHS);
3945     if ((HasSameValue(LHS, PreCondLHSSCEV) &&
3946          HasSameValue(RHS, PreCondRHSSCEV)) ||
3947         (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
3948          HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV))))
3949       return true;
3950   }
3951 
3952   return false;
3953 }
3954 
3955 /// getBECount - Subtract the end and start values and divide by the step,
3956 /// rounding up, to get the number of times the backedge is executed. Return
3957 /// CouldNotCompute if an intermediate computation overflows.
3958 const SCEV* ScalarEvolution::getBECount(const SCEV* Start,
3959                                        const SCEV* End,
3960                                        const SCEV* Step) {
3961   const Type *Ty = Start->getType();
3962   const SCEV* NegOne = getIntegerSCEV(-1, Ty);
3963   const SCEV* Diff = getMinusSCEV(End, Start);
3964   const SCEV* RoundUp = getAddExpr(Step, NegOne);
3965 
3966   // Add an adjustment to the difference between End and Start so that
3967   // the division will effectively round up.
3968   const SCEV* Add = getAddExpr(Diff, RoundUp);
3969 
3970   // Check Add for unsigned overflow.
3971   // TODO: More sophisticated things could be done here.
3972   const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1);
3973   const SCEV* OperandExtendedAdd =
3974     getAddExpr(getZeroExtendExpr(Diff, WideTy),
3975                getZeroExtendExpr(RoundUp, WideTy));
3976   if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
3977     return CouldNotCompute;
3978 
3979   return getUDivExpr(Add, Step);
3980 }
3981 
3982 /// HowManyLessThans - Return the number of times a backedge containing the
3983 /// specified less-than comparison will execute.  If not computable, return
3984 /// CouldNotCompute.
3985 ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3986 HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3987                  const Loop *L, bool isSigned) {
3988   // Only handle:  "ADDREC < LoopInvariant".
3989   if (!RHS->isLoopInvariant(L)) return CouldNotCompute;
3990 
3991   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3992   if (!AddRec || AddRec->getLoop() != L)
3993     return CouldNotCompute;
3994 
3995   if (AddRec->isAffine()) {
3996     // FORNOW: We only support unit strides.
3997     unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3998     const SCEV* Step = AddRec->getStepRecurrence(*this);
3999 
4000     // TODO: handle non-constant strides.
4001     const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4002     if (!CStep || CStep->isZero())
4003       return CouldNotCompute;
4004     if (CStep->isOne()) {
4005       // With unit stride, the iteration never steps past the limit value.
4006     } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4007       if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4008         // Test whether a positive iteration iteration can step past the limit
4009         // value and past the maximum value for its type in a single step.
4010         if (isSigned) {
4011           APInt Max = APInt::getSignedMaxValue(BitWidth);
4012           if ((Max - CStep->getValue()->getValue())
4013                 .slt(CLimit->getValue()->getValue()))
4014             return CouldNotCompute;
4015         } else {
4016           APInt Max = APInt::getMaxValue(BitWidth);
4017           if ((Max - CStep->getValue()->getValue())
4018                 .ult(CLimit->getValue()->getValue()))
4019             return CouldNotCompute;
4020         }
4021       } else
4022         // TODO: handle non-constant limit values below.
4023         return CouldNotCompute;
4024     } else
4025       // TODO: handle negative strides below.
4026       return CouldNotCompute;
4027 
4028     // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4029     // m.  So, we count the number of iterations in which {n,+,s} < m is true.
4030     // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4031     // treat m-n as signed nor unsigned due to overflow possibility.
4032 
4033     // First, we get the value of the LHS in the first iteration: n
4034     const SCEV* Start = AddRec->getOperand(0);
4035 
4036     // Determine the minimum constant start value.
4037     const SCEV* MinStart = isa<SCEVConstant>(Start) ? Start :
4038       getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
4039                              APInt::getMinValue(BitWidth));
4040 
4041     // If we know that the condition is true in order to enter the loop,
4042     // then we know that it will run exactly (m-n)/s times. Otherwise, we
4043     // only know that it will execute (max(m,n)-n)/s times. In both cases,
4044     // the division must round up.
4045     const SCEV* End = RHS;
4046     if (!isLoopGuardedByCond(L,
4047                              isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
4048                              getMinusSCEV(Start, Step), RHS))
4049       End = isSigned ? getSMaxExpr(RHS, Start)
4050                      : getUMaxExpr(RHS, Start);
4051 
4052     // Determine the maximum constant end value.
4053     const SCEV* MaxEnd =
4054       isa<SCEVConstant>(End) ? End :
4055       getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
4056                                .ashr(GetMinSignBits(End) - 1) :
4057                              APInt::getMaxValue(BitWidth)
4058                                .lshr(GetMinLeadingZeros(End)));
4059 
4060     // Finally, we subtract these two values and divide, rounding up, to get
4061     // the number of times the backedge is executed.
4062     const SCEV* BECount = getBECount(Start, End, Step);
4063 
4064     // The maximum backedge count is similar, except using the minimum start
4065     // value and the maximum end value.
4066     const SCEV* MaxBECount = getBECount(MinStart, MaxEnd, Step);;
4067 
4068     return BackedgeTakenInfo(BECount, MaxBECount);
4069   }
4070 
4071   return CouldNotCompute;
4072 }
4073 
4074 /// getNumIterationsInRange - Return the number of iterations of this loop that
4075 /// produce values in the specified constant range.  Another way of looking at
4076 /// this is that it returns the first iteration number where the value is not in
4077 /// the condition, thus computing the exit count. If the iteration count can't
4078 /// be computed, an instance of SCEVCouldNotCompute is returned.
4079 const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4080                                                    ScalarEvolution &SE) const {
4081   if (Range.isFullSet())  // Infinite loop.
4082     return SE.getCouldNotCompute();
4083 
4084   // If the start is a non-zero constant, shift the range to simplify things.
4085   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4086     if (!SC->getValue()->isZero()) {
4087       SmallVector<const SCEV*, 4> Operands(op_begin(), op_end());
4088       Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4089       const SCEV* Shifted = SE.getAddRecExpr(Operands, getLoop());
4090       if (const SCEVAddRecExpr *ShiftedAddRec =
4091             dyn_cast<SCEVAddRecExpr>(Shifted))
4092         return ShiftedAddRec->getNumIterationsInRange(
4093                            Range.subtract(SC->getValue()->getValue()), SE);
4094       // This is strange and shouldn't happen.
4095       return SE.getCouldNotCompute();
4096     }
4097 
4098   // The only time we can solve this is when we have all constant indices.
4099   // Otherwise, we cannot determine the overflow conditions.
4100   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4101     if (!isa<SCEVConstant>(getOperand(i)))
4102       return SE.getCouldNotCompute();
4103 
4104 
4105   // Okay at this point we know that all elements of the chrec are constants and
4106   // that the start element is zero.
4107 
4108   // First check to see if the range contains zero.  If not, the first
4109   // iteration exits.
4110   unsigned BitWidth = SE.getTypeSizeInBits(getType());
4111   if (!Range.contains(APInt(BitWidth, 0)))
4112     return SE.getIntegerSCEV(0, getType());
4113 
4114   if (isAffine()) {
4115     // If this is an affine expression then we have this situation:
4116     //   Solve {0,+,A} in Range  ===  Ax in Range
4117 
4118     // We know that zero is in the range.  If A is positive then we know that
4119     // the upper value of the range must be the first possible exit value.
4120     // If A is negative then the lower of the range is the last possible loop
4121     // value.  Also note that we already checked for a full range.
4122     APInt One(BitWidth,1);
4123     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4124     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4125 
4126     // The exit value should be (End+A)/A.
4127     APInt ExitVal = (End + A).udiv(A);
4128     ConstantInt *ExitValue = ConstantInt::get(ExitVal);
4129 
4130     // Evaluate at the exit value.  If we really did fall out of the valid
4131     // range, then we computed our trip count, otherwise wrap around or other
4132     // things must have happened.
4133     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
4134     if (Range.contains(Val->getValue()))
4135       return SE.getCouldNotCompute();  // Something strange happened
4136 
4137     // Ensure that the previous value is in the range.  This is a sanity check.
4138     assert(Range.contains(
4139            EvaluateConstantChrecAtConstant(this,
4140            ConstantInt::get(ExitVal - One), SE)->getValue()) &&
4141            "Linear scev computation is off in a bad way!");
4142     return SE.getConstant(ExitValue);
4143   } else if (isQuadratic()) {
4144     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4145     // quadratic equation to solve it.  To do this, we must frame our problem in
4146     // terms of figuring out when zero is crossed, instead of when
4147     // Range.getUpper() is crossed.
4148     SmallVector<const SCEV*, 4> NewOps(op_begin(), op_end());
4149     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
4150     const SCEV* NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
4151 
4152     // Next, solve the constructed addrec
4153     std::pair<const SCEV*,const SCEV*> Roots =
4154       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
4155     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4156     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4157     if (R1) {
4158       // Pick the smallest positive root value.
4159       if (ConstantInt *CB =
4160           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4161                                    R1->getValue(), R2->getValue()))) {
4162         if (CB->getZExtValue() == false)
4163           std::swap(R1, R2);   // R1 is the minimum root now.
4164 
4165         // Make sure the root is not off by one.  The returned iteration should
4166         // not be in the range, but the previous one should be.  When solving
4167         // for "X*X < 5", for example, we should not return a root of 2.
4168         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
4169                                                              R1->getValue(),
4170                                                              SE);
4171         if (Range.contains(R1Val->getValue())) {
4172           // The next iteration must be out of the range...
4173           ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
4174 
4175           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4176           if (!Range.contains(R1Val->getValue()))
4177             return SE.getConstant(NextVal);
4178           return SE.getCouldNotCompute();  // Something strange happened
4179         }
4180 
4181         // If R1 was not in the range, then it is a good return value.  Make
4182         // sure that R1-1 WAS in the range though, just in case.
4183         ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
4184         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4185         if (Range.contains(R1Val->getValue()))
4186           return R1;
4187         return SE.getCouldNotCompute();  // Something strange happened
4188       }
4189     }
4190   }
4191 
4192   return SE.getCouldNotCompute();
4193 }
4194 
4195 
4196 
4197 //===----------------------------------------------------------------------===//
4198 //                   SCEVCallbackVH Class Implementation
4199 //===----------------------------------------------------------------------===//
4200 
4201 void ScalarEvolution::SCEVCallbackVH::deleted() {
4202   assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4203   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4204     SE->ConstantEvolutionLoopExitValue.erase(PN);
4205   if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4206     SE->ValuesAtScopes.erase(I);
4207   SE->Scalars.erase(getValPtr());
4208   // this now dangles!
4209 }
4210 
4211 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
4212   assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4213 
4214   // Forget all the expressions associated with users of the old value,
4215   // so that future queries will recompute the expressions using the new
4216   // value.
4217   SmallVector<User *, 16> Worklist;
4218   Value *Old = getValPtr();
4219   bool DeleteOld = false;
4220   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4221        UI != UE; ++UI)
4222     Worklist.push_back(*UI);
4223   while (!Worklist.empty()) {
4224     User *U = Worklist.pop_back_val();
4225     // Deleting the Old value will cause this to dangle. Postpone
4226     // that until everything else is done.
4227     if (U == Old) {
4228       DeleteOld = true;
4229       continue;
4230     }
4231     if (PHINode *PN = dyn_cast<PHINode>(U))
4232       SE->ConstantEvolutionLoopExitValue.erase(PN);
4233     if (Instruction *I = dyn_cast<Instruction>(U))
4234       SE->ValuesAtScopes.erase(I);
4235     if (SE->Scalars.erase(U))
4236       for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4237            UI != UE; ++UI)
4238         Worklist.push_back(*UI);
4239   }
4240   if (DeleteOld) {
4241     if (PHINode *PN = dyn_cast<PHINode>(Old))
4242       SE->ConstantEvolutionLoopExitValue.erase(PN);
4243     if (Instruction *I = dyn_cast<Instruction>(Old))
4244       SE->ValuesAtScopes.erase(I);
4245     SE->Scalars.erase(Old);
4246     // this now dangles!
4247   }
4248   // this may dangle!
4249 }
4250 
4251 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
4252   : CallbackVH(V), SE(se) {}
4253 
4254 //===----------------------------------------------------------------------===//
4255 //                   ScalarEvolution Class Implementation
4256 //===----------------------------------------------------------------------===//
4257 
4258 ScalarEvolution::ScalarEvolution()
4259   : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute()) {
4260 }
4261 
4262 bool ScalarEvolution::runOnFunction(Function &F) {
4263   this->F = &F;
4264   LI = &getAnalysis<LoopInfo>();
4265   TD = getAnalysisIfAvailable<TargetData>();
4266   return false;
4267 }
4268 
4269 void ScalarEvolution::releaseMemory() {
4270   Scalars.clear();
4271   BackedgeTakenCounts.clear();
4272   ConstantEvolutionLoopExitValue.clear();
4273   ValuesAtScopes.clear();
4274 
4275   for (std::map<ConstantInt*, SCEVConstant*>::iterator
4276        I = SCEVConstants.begin(), E = SCEVConstants.end(); I != E; ++I)
4277     delete I->second;
4278   for (std::map<std::pair<const SCEV*, const Type*>,
4279        SCEVTruncateExpr*>::iterator I = SCEVTruncates.begin(),
4280        E = SCEVTruncates.end(); I != E; ++I)
4281     delete I->second;
4282   for (std::map<std::pair<const SCEV*, const Type*>,
4283        SCEVZeroExtendExpr*>::iterator I = SCEVZeroExtends.begin(),
4284        E = SCEVZeroExtends.end(); I != E; ++I)
4285     delete I->second;
4286   for (std::map<std::pair<unsigned, std::vector<const SCEV*> >,
4287        SCEVCommutativeExpr*>::iterator I = SCEVCommExprs.begin(),
4288        E = SCEVCommExprs.end(); I != E; ++I)
4289     delete I->second;
4290   for (std::map<std::pair<const SCEV*, const SCEV*>, SCEVUDivExpr*>::iterator
4291        I = SCEVUDivs.begin(), E = SCEVUDivs.end(); I != E; ++I)
4292     delete I->second;
4293   for (std::map<std::pair<const SCEV*, const Type*>,
4294        SCEVSignExtendExpr*>::iterator I =  SCEVSignExtends.begin(),
4295        E = SCEVSignExtends.end(); I != E; ++I)
4296     delete I->second;
4297   for (std::map<std::pair<const Loop *, std::vector<const SCEV*> >,
4298        SCEVAddRecExpr*>::iterator I = SCEVAddRecExprs.begin(),
4299        E = SCEVAddRecExprs.end(); I != E; ++I)
4300     delete I->second;
4301   for (std::map<Value*, SCEVUnknown*>::iterator I = SCEVUnknowns.begin(),
4302        E = SCEVUnknowns.end(); I != E; ++I)
4303     delete I->second;
4304 
4305   SCEVConstants.clear();
4306   SCEVTruncates.clear();
4307   SCEVZeroExtends.clear();
4308   SCEVCommExprs.clear();
4309   SCEVUDivs.clear();
4310   SCEVSignExtends.clear();
4311   SCEVAddRecExprs.clear();
4312   SCEVUnknowns.clear();
4313 }
4314 
4315 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4316   AU.setPreservesAll();
4317   AU.addRequiredTransitive<LoopInfo>();
4318 }
4319 
4320 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
4321   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
4322 }
4323 
4324 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
4325                           const Loop *L) {
4326   // Print all inner loops first
4327   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4328     PrintLoopInfo(OS, SE, *I);
4329 
4330   OS << "Loop " << L->getHeader()->getName() << ": ";
4331 
4332   SmallVector<BasicBlock*, 8> ExitBlocks;
4333   L->getExitBlocks(ExitBlocks);
4334   if (ExitBlocks.size() != 1)
4335     OS << "<multiple exits> ";
4336 
4337   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
4338     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
4339   } else {
4340     OS << "Unpredictable backedge-taken count. ";
4341   }
4342 
4343   OS << "\n";
4344   OS << "Loop " << L->getHeader()->getName() << ": ";
4345 
4346   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
4347     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
4348   } else {
4349     OS << "Unpredictable max backedge-taken count. ";
4350   }
4351 
4352   OS << "\n";
4353 }
4354 
4355 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
4356   // ScalarEvolution's implementaiton of the print method is to print
4357   // out SCEV values of all instructions that are interesting. Doing
4358   // this potentially causes it to create new SCEV objects though,
4359   // which technically conflicts with the const qualifier. This isn't
4360   // observable from outside the class though (the hasSCEV function
4361   // notwithstanding), so casting away the const isn't dangerous.
4362   ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
4363 
4364   OS << "Classifying expressions for: " << F->getName() << "\n";
4365   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
4366     if (isSCEVable(I->getType())) {
4367       OS << *I;
4368       OS << "  -->  ";
4369       const SCEV* SV = SE.getSCEV(&*I);
4370       SV->print(OS);
4371 
4372       const Loop *L = LI->getLoopFor((*I).getParent());
4373 
4374       const SCEV* AtUse = SE.getSCEVAtScope(SV, L);
4375       if (AtUse != SV) {
4376         OS << "  -->  ";
4377         AtUse->print(OS);
4378       }
4379 
4380       if (L) {
4381         OS << "\t\t" "Exits: ";
4382         const SCEV* ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
4383         if (!ExitValue->isLoopInvariant(L)) {
4384           OS << "<<Unknown>>";
4385         } else {
4386           OS << *ExitValue;
4387         }
4388       }
4389 
4390       OS << "\n";
4391     }
4392 
4393   OS << "Determining loop execution counts for: " << F->getName() << "\n";
4394   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
4395     PrintLoopInfo(OS, &SE, *I);
4396 }
4397 
4398 void ScalarEvolution::print(std::ostream &o, const Module *M) const {
4399   raw_os_ostream OS(o);
4400   print(OS, M);
4401 }
4402