1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/ScopeExit.h" 65 #include "llvm/ADT/Sequence.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/ConstantFolding.h" 70 #include "llvm/Analysis/InstructionSimplify.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 73 #include "llvm/Analysis/TargetLibraryInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/GlobalAlias.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/InstIterator.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Metadata.h" 87 #include "llvm/IR/Operator.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/ErrorHandling.h" 92 #include "llvm/Support/MathExtras.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Support/SaveAndRestore.h" 95 #include <algorithm> 96 using namespace llvm; 97 98 #define DEBUG_TYPE "scalar-evolution" 99 100 STATISTIC(NumArrayLenItCounts, 101 "Number of trip counts computed with array length"); 102 STATISTIC(NumTripCountsComputed, 103 "Number of loops with predictable loop counts"); 104 STATISTIC(NumTripCountsNotComputed, 105 "Number of loops without predictable loop counts"); 106 STATISTIC(NumBruteForceTripCountsComputed, 107 "Number of loops with trip counts computed by force"); 108 109 static cl::opt<unsigned> 110 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 111 cl::desc("Maximum number of iterations SCEV will " 112 "symbolically execute a constant " 113 "derived loop"), 114 cl::init(100)); 115 116 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 117 static cl::opt<bool> 118 VerifySCEV("verify-scev", 119 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 120 static cl::opt<bool> 121 VerifySCEVMap("verify-scev-maps", 122 cl::desc("Verify no dangling value in ScalarEvolution's " 123 "ExprValueMap (slow)")); 124 125 static cl::opt<unsigned> MulOpsInlineThreshold( 126 "scev-mulops-inline-threshold", cl::Hidden, 127 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 128 cl::init(1000)); 129 130 static cl::opt<unsigned> AddOpsInlineThreshold( 131 "scev-addops-inline-threshold", cl::Hidden, 132 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 133 cl::init(500)); 134 135 static cl::opt<unsigned> 136 MaxCompareDepth("scalar-evolution-max-compare-depth", cl::Hidden, 137 cl::desc("Maximum depth of recursive compare complexity"), 138 cl::init(32)); 139 140 static cl::opt<unsigned> MaxConstantEvolvingDepth( 141 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 142 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 143 144 //===----------------------------------------------------------------------===// 145 // SCEV class definitions 146 //===----------------------------------------------------------------------===// 147 148 //===----------------------------------------------------------------------===// 149 // Implementation of the SCEV class. 150 // 151 152 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 153 LLVM_DUMP_METHOD void SCEV::dump() const { 154 print(dbgs()); 155 dbgs() << '\n'; 156 } 157 #endif 158 159 void SCEV::print(raw_ostream &OS) const { 160 switch (static_cast<SCEVTypes>(getSCEVType())) { 161 case scConstant: 162 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 163 return; 164 case scTruncate: { 165 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 166 const SCEV *Op = Trunc->getOperand(); 167 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 168 << *Trunc->getType() << ")"; 169 return; 170 } 171 case scZeroExtend: { 172 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 173 const SCEV *Op = ZExt->getOperand(); 174 OS << "(zext " << *Op->getType() << " " << *Op << " to " 175 << *ZExt->getType() << ")"; 176 return; 177 } 178 case scSignExtend: { 179 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 180 const SCEV *Op = SExt->getOperand(); 181 OS << "(sext " << *Op->getType() << " " << *Op << " to " 182 << *SExt->getType() << ")"; 183 return; 184 } 185 case scAddRecExpr: { 186 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 187 OS << "{" << *AR->getOperand(0); 188 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 189 OS << ",+," << *AR->getOperand(i); 190 OS << "}<"; 191 if (AR->hasNoUnsignedWrap()) 192 OS << "nuw><"; 193 if (AR->hasNoSignedWrap()) 194 OS << "nsw><"; 195 if (AR->hasNoSelfWrap() && 196 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 197 OS << "nw><"; 198 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 199 OS << ">"; 200 return; 201 } 202 case scAddExpr: 203 case scMulExpr: 204 case scUMaxExpr: 205 case scSMaxExpr: { 206 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 207 const char *OpStr = nullptr; 208 switch (NAry->getSCEVType()) { 209 case scAddExpr: OpStr = " + "; break; 210 case scMulExpr: OpStr = " * "; break; 211 case scUMaxExpr: OpStr = " umax "; break; 212 case scSMaxExpr: OpStr = " smax "; break; 213 } 214 OS << "("; 215 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 216 I != E; ++I) { 217 OS << **I; 218 if (std::next(I) != E) 219 OS << OpStr; 220 } 221 OS << ")"; 222 switch (NAry->getSCEVType()) { 223 case scAddExpr: 224 case scMulExpr: 225 if (NAry->hasNoUnsignedWrap()) 226 OS << "<nuw>"; 227 if (NAry->hasNoSignedWrap()) 228 OS << "<nsw>"; 229 } 230 return; 231 } 232 case scUDivExpr: { 233 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 234 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 235 return; 236 } 237 case scUnknown: { 238 const SCEVUnknown *U = cast<SCEVUnknown>(this); 239 Type *AllocTy; 240 if (U->isSizeOf(AllocTy)) { 241 OS << "sizeof(" << *AllocTy << ")"; 242 return; 243 } 244 if (U->isAlignOf(AllocTy)) { 245 OS << "alignof(" << *AllocTy << ")"; 246 return; 247 } 248 249 Type *CTy; 250 Constant *FieldNo; 251 if (U->isOffsetOf(CTy, FieldNo)) { 252 OS << "offsetof(" << *CTy << ", "; 253 FieldNo->printAsOperand(OS, false); 254 OS << ")"; 255 return; 256 } 257 258 // Otherwise just print it normally. 259 U->getValue()->printAsOperand(OS, false); 260 return; 261 } 262 case scCouldNotCompute: 263 OS << "***COULDNOTCOMPUTE***"; 264 return; 265 } 266 llvm_unreachable("Unknown SCEV kind!"); 267 } 268 269 Type *SCEV::getType() const { 270 switch (static_cast<SCEVTypes>(getSCEVType())) { 271 case scConstant: 272 return cast<SCEVConstant>(this)->getType(); 273 case scTruncate: 274 case scZeroExtend: 275 case scSignExtend: 276 return cast<SCEVCastExpr>(this)->getType(); 277 case scAddRecExpr: 278 case scMulExpr: 279 case scUMaxExpr: 280 case scSMaxExpr: 281 return cast<SCEVNAryExpr>(this)->getType(); 282 case scAddExpr: 283 return cast<SCEVAddExpr>(this)->getType(); 284 case scUDivExpr: 285 return cast<SCEVUDivExpr>(this)->getType(); 286 case scUnknown: 287 return cast<SCEVUnknown>(this)->getType(); 288 case scCouldNotCompute: 289 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 290 } 291 llvm_unreachable("Unknown SCEV kind!"); 292 } 293 294 bool SCEV::isZero() const { 295 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 296 return SC->getValue()->isZero(); 297 return false; 298 } 299 300 bool SCEV::isOne() const { 301 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 302 return SC->getValue()->isOne(); 303 return false; 304 } 305 306 bool SCEV::isAllOnesValue() const { 307 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 308 return SC->getValue()->isAllOnesValue(); 309 return false; 310 } 311 312 bool SCEV::isNonConstantNegative() const { 313 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 314 if (!Mul) return false; 315 316 // If there is a constant factor, it will be first. 317 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 318 if (!SC) return false; 319 320 // Return true if the value is negative, this matches things like (-42 * V). 321 return SC->getAPInt().isNegative(); 322 } 323 324 SCEVCouldNotCompute::SCEVCouldNotCompute() : 325 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 326 327 bool SCEVCouldNotCompute::classof(const SCEV *S) { 328 return S->getSCEVType() == scCouldNotCompute; 329 } 330 331 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 332 FoldingSetNodeID ID; 333 ID.AddInteger(scConstant); 334 ID.AddPointer(V); 335 void *IP = nullptr; 336 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 337 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 338 UniqueSCEVs.InsertNode(S, IP); 339 return S; 340 } 341 342 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 343 return getConstant(ConstantInt::get(getContext(), Val)); 344 } 345 346 const SCEV * 347 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 348 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 349 return getConstant(ConstantInt::get(ITy, V, isSigned)); 350 } 351 352 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 353 unsigned SCEVTy, const SCEV *op, Type *ty) 354 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 355 356 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 357 const SCEV *op, Type *ty) 358 : SCEVCastExpr(ID, scTruncate, op, ty) { 359 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 360 (Ty->isIntegerTy() || Ty->isPointerTy()) && 361 "Cannot truncate non-integer value!"); 362 } 363 364 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 365 const SCEV *op, Type *ty) 366 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 367 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 368 (Ty->isIntegerTy() || Ty->isPointerTy()) && 369 "Cannot zero extend non-integer value!"); 370 } 371 372 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 373 const SCEV *op, Type *ty) 374 : SCEVCastExpr(ID, scSignExtend, op, ty) { 375 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 376 (Ty->isIntegerTy() || Ty->isPointerTy()) && 377 "Cannot sign extend non-integer value!"); 378 } 379 380 void SCEVUnknown::deleted() { 381 // Clear this SCEVUnknown from various maps. 382 SE->forgetMemoizedResults(this); 383 384 // Remove this SCEVUnknown from the uniquing map. 385 SE->UniqueSCEVs.RemoveNode(this); 386 387 // Release the value. 388 setValPtr(nullptr); 389 } 390 391 void SCEVUnknown::allUsesReplacedWith(Value *New) { 392 // Clear this SCEVUnknown from various maps. 393 SE->forgetMemoizedResults(this); 394 395 // Remove this SCEVUnknown from the uniquing map. 396 SE->UniqueSCEVs.RemoveNode(this); 397 398 // Update this SCEVUnknown to point to the new value. This is needed 399 // because there may still be outstanding SCEVs which still point to 400 // this SCEVUnknown. 401 setValPtr(New); 402 } 403 404 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 405 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 406 if (VCE->getOpcode() == Instruction::PtrToInt) 407 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 408 if (CE->getOpcode() == Instruction::GetElementPtr && 409 CE->getOperand(0)->isNullValue() && 410 CE->getNumOperands() == 2) 411 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 412 if (CI->isOne()) { 413 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 414 ->getElementType(); 415 return true; 416 } 417 418 return false; 419 } 420 421 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 423 if (VCE->getOpcode() == Instruction::PtrToInt) 424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 425 if (CE->getOpcode() == Instruction::GetElementPtr && 426 CE->getOperand(0)->isNullValue()) { 427 Type *Ty = 428 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 429 if (StructType *STy = dyn_cast<StructType>(Ty)) 430 if (!STy->isPacked() && 431 CE->getNumOperands() == 3 && 432 CE->getOperand(1)->isNullValue()) { 433 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 434 if (CI->isOne() && 435 STy->getNumElements() == 2 && 436 STy->getElementType(0)->isIntegerTy(1)) { 437 AllocTy = STy->getElementType(1); 438 return true; 439 } 440 } 441 } 442 443 return false; 444 } 445 446 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 447 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 448 if (VCE->getOpcode() == Instruction::PtrToInt) 449 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 450 if (CE->getOpcode() == Instruction::GetElementPtr && 451 CE->getNumOperands() == 3 && 452 CE->getOperand(0)->isNullValue() && 453 CE->getOperand(1)->isNullValue()) { 454 Type *Ty = 455 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 456 // Ignore vector types here so that ScalarEvolutionExpander doesn't 457 // emit getelementptrs that index into vectors. 458 if (Ty->isStructTy() || Ty->isArrayTy()) { 459 CTy = Ty; 460 FieldNo = CE->getOperand(2); 461 return true; 462 } 463 } 464 465 return false; 466 } 467 468 //===----------------------------------------------------------------------===// 469 // SCEV Utilities 470 //===----------------------------------------------------------------------===// 471 472 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 473 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 474 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 475 /// have been previously deemed to be "equally complex" by this routine. It is 476 /// intended to avoid exponential time complexity in cases like: 477 /// 478 /// %a = f(%x, %y) 479 /// %b = f(%a, %a) 480 /// %c = f(%b, %b) 481 /// 482 /// %d = f(%x, %y) 483 /// %e = f(%d, %d) 484 /// %f = f(%e, %e) 485 /// 486 /// CompareValueComplexity(%f, %c) 487 /// 488 /// Since we do not continue running this routine on expression trees once we 489 /// have seen unequal values, there is no need to track them in the cache. 490 static int 491 CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache, 492 const LoopInfo *const LI, Value *LV, Value *RV, 493 unsigned Depth) { 494 if (Depth > MaxCompareDepth || EqCache.count({LV, RV})) 495 return 0; 496 497 // Order pointer values after integer values. This helps SCEVExpander form 498 // GEPs. 499 bool LIsPointer = LV->getType()->isPointerTy(), 500 RIsPointer = RV->getType()->isPointerTy(); 501 if (LIsPointer != RIsPointer) 502 return (int)LIsPointer - (int)RIsPointer; 503 504 // Compare getValueID values. 505 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 506 if (LID != RID) 507 return (int)LID - (int)RID; 508 509 // Sort arguments by their position. 510 if (const auto *LA = dyn_cast<Argument>(LV)) { 511 const auto *RA = cast<Argument>(RV); 512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 513 return (int)LArgNo - (int)RArgNo; 514 } 515 516 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 517 const auto *RGV = cast<GlobalValue>(RV); 518 519 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 520 auto LT = GV->getLinkage(); 521 return !(GlobalValue::isPrivateLinkage(LT) || 522 GlobalValue::isInternalLinkage(LT)); 523 }; 524 525 // Use the names to distinguish the two values, but only if the 526 // names are semantically important. 527 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 528 return LGV->getName().compare(RGV->getName()); 529 } 530 531 // For instructions, compare their loop depth, and their operand count. This 532 // is pretty loose. 533 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 534 const auto *RInst = cast<Instruction>(RV); 535 536 // Compare loop depths. 537 const BasicBlock *LParent = LInst->getParent(), 538 *RParent = RInst->getParent(); 539 if (LParent != RParent) { 540 unsigned LDepth = LI->getLoopDepth(LParent), 541 RDepth = LI->getLoopDepth(RParent); 542 if (LDepth != RDepth) 543 return (int)LDepth - (int)RDepth; 544 } 545 546 // Compare the number of operands. 547 unsigned LNumOps = LInst->getNumOperands(), 548 RNumOps = RInst->getNumOperands(); 549 if (LNumOps != RNumOps) 550 return (int)LNumOps - (int)RNumOps; 551 552 for (unsigned Idx : seq(0u, LNumOps)) { 553 int Result = 554 CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx), 555 RInst->getOperand(Idx), Depth + 1); 556 if (Result != 0) 557 return Result; 558 } 559 } 560 561 EqCache.insert({LV, RV}); 562 return 0; 563 } 564 565 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 566 // than RHS, respectively. A three-way result allows recursive comparisons to be 567 // more efficient. 568 static int CompareSCEVComplexity( 569 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV, 570 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 571 unsigned Depth = 0) { 572 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 573 if (LHS == RHS) 574 return 0; 575 576 // Primarily, sort the SCEVs by their getSCEVType(). 577 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 578 if (LType != RType) 579 return (int)LType - (int)RType; 580 581 if (Depth > MaxCompareDepth || EqCacheSCEV.count({LHS, RHS})) 582 return 0; 583 // Aside from the getSCEVType() ordering, the particular ordering 584 // isn't very important except that it's beneficial to be consistent, 585 // so that (a + b) and (b + a) don't end up as different expressions. 586 switch (static_cast<SCEVTypes>(LType)) { 587 case scUnknown: { 588 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 589 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 590 591 SmallSet<std::pair<Value *, Value *>, 8> EqCache; 592 int X = CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue(), 593 Depth + 1); 594 if (X == 0) 595 EqCacheSCEV.insert({LHS, RHS}); 596 return X; 597 } 598 599 case scConstant: { 600 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 601 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 602 603 // Compare constant values. 604 const APInt &LA = LC->getAPInt(); 605 const APInt &RA = RC->getAPInt(); 606 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 607 if (LBitWidth != RBitWidth) 608 return (int)LBitWidth - (int)RBitWidth; 609 return LA.ult(RA) ? -1 : 1; 610 } 611 612 case scAddRecExpr: { 613 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 614 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 615 616 // Compare addrec loop depths. 617 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 618 if (LLoop != RLoop) { 619 unsigned LDepth = LLoop->getLoopDepth(), RDepth = RLoop->getLoopDepth(); 620 if (LDepth != RDepth) 621 return (int)LDepth - (int)RDepth; 622 } 623 624 // Addrec complexity grows with operand count. 625 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 626 if (LNumOps != RNumOps) 627 return (int)LNumOps - (int)RNumOps; 628 629 // Lexicographically compare. 630 for (unsigned i = 0; i != LNumOps; ++i) { 631 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i), 632 RA->getOperand(i), Depth + 1); 633 if (X != 0) 634 return X; 635 } 636 EqCacheSCEV.insert({LHS, RHS}); 637 return 0; 638 } 639 640 case scAddExpr: 641 case scMulExpr: 642 case scSMaxExpr: 643 case scUMaxExpr: { 644 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 645 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 646 647 // Lexicographically compare n-ary expressions. 648 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 649 if (LNumOps != RNumOps) 650 return (int)LNumOps - (int)RNumOps; 651 652 for (unsigned i = 0; i != LNumOps; ++i) { 653 if (i >= RNumOps) 654 return 1; 655 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i), 656 RC->getOperand(i), Depth + 1); 657 if (X != 0) 658 return X; 659 } 660 EqCacheSCEV.insert({LHS, RHS}); 661 return 0; 662 } 663 664 case scUDivExpr: { 665 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 666 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 667 668 // Lexicographically compare udiv expressions. 669 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(), 670 Depth + 1); 671 if (X != 0) 672 return X; 673 X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(), 674 Depth + 1); 675 if (X == 0) 676 EqCacheSCEV.insert({LHS, RHS}); 677 return X; 678 } 679 680 case scTruncate: 681 case scZeroExtend: 682 case scSignExtend: { 683 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 684 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 685 686 // Compare cast expressions by operand. 687 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(), 688 RC->getOperand(), Depth + 1); 689 if (X == 0) 690 EqCacheSCEV.insert({LHS, RHS}); 691 return X; 692 } 693 694 case scCouldNotCompute: 695 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 696 } 697 llvm_unreachable("Unknown SCEV kind!"); 698 } 699 700 /// Given a list of SCEV objects, order them by their complexity, and group 701 /// objects of the same complexity together by value. When this routine is 702 /// finished, we know that any duplicates in the vector are consecutive and that 703 /// complexity is monotonically increasing. 704 /// 705 /// Note that we go take special precautions to ensure that we get deterministic 706 /// results from this routine. In other words, we don't want the results of 707 /// this to depend on where the addresses of various SCEV objects happened to 708 /// land in memory. 709 /// 710 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 711 LoopInfo *LI) { 712 if (Ops.size() < 2) return; // Noop 713 714 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache; 715 if (Ops.size() == 2) { 716 // This is the common case, which also happens to be trivially simple. 717 // Special case it. 718 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 719 if (CompareSCEVComplexity(EqCache, LI, RHS, LHS) < 0) 720 std::swap(LHS, RHS); 721 return; 722 } 723 724 // Do the rough sort by complexity. 725 std::stable_sort(Ops.begin(), Ops.end(), 726 [&EqCache, LI](const SCEV *LHS, const SCEV *RHS) { 727 return CompareSCEVComplexity(EqCache, LI, LHS, RHS) < 0; 728 }); 729 730 // Now that we are sorted by complexity, group elements of the same 731 // complexity. Note that this is, at worst, N^2, but the vector is likely to 732 // be extremely short in practice. Note that we take this approach because we 733 // do not want to depend on the addresses of the objects we are grouping. 734 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 735 const SCEV *S = Ops[i]; 736 unsigned Complexity = S->getSCEVType(); 737 738 // If there are any objects of the same complexity and same value as this 739 // one, group them. 740 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 741 if (Ops[j] == S) { // Found a duplicate. 742 // Move it to immediately after i'th element. 743 std::swap(Ops[i+1], Ops[j]); 744 ++i; // no need to rescan it. 745 if (i == e-2) return; // Done! 746 } 747 } 748 } 749 } 750 751 // Returns the size of the SCEV S. 752 static inline int sizeOfSCEV(const SCEV *S) { 753 struct FindSCEVSize { 754 int Size; 755 FindSCEVSize() : Size(0) {} 756 757 bool follow(const SCEV *S) { 758 ++Size; 759 // Keep looking at all operands of S. 760 return true; 761 } 762 bool isDone() const { 763 return false; 764 } 765 }; 766 767 FindSCEVSize F; 768 SCEVTraversal<FindSCEVSize> ST(F); 769 ST.visitAll(S); 770 return F.Size; 771 } 772 773 namespace { 774 775 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 776 public: 777 // Computes the Quotient and Remainder of the division of Numerator by 778 // Denominator. 779 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 780 const SCEV *Denominator, const SCEV **Quotient, 781 const SCEV **Remainder) { 782 assert(Numerator && Denominator && "Uninitialized SCEV"); 783 784 SCEVDivision D(SE, Numerator, Denominator); 785 786 // Check for the trivial case here to avoid having to check for it in the 787 // rest of the code. 788 if (Numerator == Denominator) { 789 *Quotient = D.One; 790 *Remainder = D.Zero; 791 return; 792 } 793 794 if (Numerator->isZero()) { 795 *Quotient = D.Zero; 796 *Remainder = D.Zero; 797 return; 798 } 799 800 // A simple case when N/1. The quotient is N. 801 if (Denominator->isOne()) { 802 *Quotient = Numerator; 803 *Remainder = D.Zero; 804 return; 805 } 806 807 // Split the Denominator when it is a product. 808 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 809 const SCEV *Q, *R; 810 *Quotient = Numerator; 811 for (const SCEV *Op : T->operands()) { 812 divide(SE, *Quotient, Op, &Q, &R); 813 *Quotient = Q; 814 815 // Bail out when the Numerator is not divisible by one of the terms of 816 // the Denominator. 817 if (!R->isZero()) { 818 *Quotient = D.Zero; 819 *Remainder = Numerator; 820 return; 821 } 822 } 823 *Remainder = D.Zero; 824 return; 825 } 826 827 D.visit(Numerator); 828 *Quotient = D.Quotient; 829 *Remainder = D.Remainder; 830 } 831 832 // Except in the trivial case described above, we do not know how to divide 833 // Expr by Denominator for the following functions with empty implementation. 834 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 835 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 836 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 837 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 838 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 839 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 840 void visitUnknown(const SCEVUnknown *Numerator) {} 841 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 842 843 void visitConstant(const SCEVConstant *Numerator) { 844 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 845 APInt NumeratorVal = Numerator->getAPInt(); 846 APInt DenominatorVal = D->getAPInt(); 847 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 848 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 849 850 if (NumeratorBW > DenominatorBW) 851 DenominatorVal = DenominatorVal.sext(NumeratorBW); 852 else if (NumeratorBW < DenominatorBW) 853 NumeratorVal = NumeratorVal.sext(DenominatorBW); 854 855 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 856 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 857 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 858 Quotient = SE.getConstant(QuotientVal); 859 Remainder = SE.getConstant(RemainderVal); 860 return; 861 } 862 } 863 864 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 865 const SCEV *StartQ, *StartR, *StepQ, *StepR; 866 if (!Numerator->isAffine()) 867 return cannotDivide(Numerator); 868 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 869 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 870 // Bail out if the types do not match. 871 Type *Ty = Denominator->getType(); 872 if (Ty != StartQ->getType() || Ty != StartR->getType() || 873 Ty != StepQ->getType() || Ty != StepR->getType()) 874 return cannotDivide(Numerator); 875 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 876 Numerator->getNoWrapFlags()); 877 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 878 Numerator->getNoWrapFlags()); 879 } 880 881 void visitAddExpr(const SCEVAddExpr *Numerator) { 882 SmallVector<const SCEV *, 2> Qs, Rs; 883 Type *Ty = Denominator->getType(); 884 885 for (const SCEV *Op : Numerator->operands()) { 886 const SCEV *Q, *R; 887 divide(SE, Op, Denominator, &Q, &R); 888 889 // Bail out if types do not match. 890 if (Ty != Q->getType() || Ty != R->getType()) 891 return cannotDivide(Numerator); 892 893 Qs.push_back(Q); 894 Rs.push_back(R); 895 } 896 897 if (Qs.size() == 1) { 898 Quotient = Qs[0]; 899 Remainder = Rs[0]; 900 return; 901 } 902 903 Quotient = SE.getAddExpr(Qs); 904 Remainder = SE.getAddExpr(Rs); 905 } 906 907 void visitMulExpr(const SCEVMulExpr *Numerator) { 908 SmallVector<const SCEV *, 2> Qs; 909 Type *Ty = Denominator->getType(); 910 911 bool FoundDenominatorTerm = false; 912 for (const SCEV *Op : Numerator->operands()) { 913 // Bail out if types do not match. 914 if (Ty != Op->getType()) 915 return cannotDivide(Numerator); 916 917 if (FoundDenominatorTerm) { 918 Qs.push_back(Op); 919 continue; 920 } 921 922 // Check whether Denominator divides one of the product operands. 923 const SCEV *Q, *R; 924 divide(SE, Op, Denominator, &Q, &R); 925 if (!R->isZero()) { 926 Qs.push_back(Op); 927 continue; 928 } 929 930 // Bail out if types do not match. 931 if (Ty != Q->getType()) 932 return cannotDivide(Numerator); 933 934 FoundDenominatorTerm = true; 935 Qs.push_back(Q); 936 } 937 938 if (FoundDenominatorTerm) { 939 Remainder = Zero; 940 if (Qs.size() == 1) 941 Quotient = Qs[0]; 942 else 943 Quotient = SE.getMulExpr(Qs); 944 return; 945 } 946 947 if (!isa<SCEVUnknown>(Denominator)) 948 return cannotDivide(Numerator); 949 950 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 951 ValueToValueMap RewriteMap; 952 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 953 cast<SCEVConstant>(Zero)->getValue(); 954 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 955 956 if (Remainder->isZero()) { 957 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 958 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 959 cast<SCEVConstant>(One)->getValue(); 960 Quotient = 961 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 962 return; 963 } 964 965 // Quotient is (Numerator - Remainder) divided by Denominator. 966 const SCEV *Q, *R; 967 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 968 // This SCEV does not seem to simplify: fail the division here. 969 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 970 return cannotDivide(Numerator); 971 divide(SE, Diff, Denominator, &Q, &R); 972 if (R != Zero) 973 return cannotDivide(Numerator); 974 Quotient = Q; 975 } 976 977 private: 978 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 979 const SCEV *Denominator) 980 : SE(S), Denominator(Denominator) { 981 Zero = SE.getZero(Denominator->getType()); 982 One = SE.getOne(Denominator->getType()); 983 984 // We generally do not know how to divide Expr by Denominator. We 985 // initialize the division to a "cannot divide" state to simplify the rest 986 // of the code. 987 cannotDivide(Numerator); 988 } 989 990 // Convenience function for giving up on the division. We set the quotient to 991 // be equal to zero and the remainder to be equal to the numerator. 992 void cannotDivide(const SCEV *Numerator) { 993 Quotient = Zero; 994 Remainder = Numerator; 995 } 996 997 ScalarEvolution &SE; 998 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 999 }; 1000 1001 } 1002 1003 //===----------------------------------------------------------------------===// 1004 // Simple SCEV method implementations 1005 //===----------------------------------------------------------------------===// 1006 1007 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1008 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1009 ScalarEvolution &SE, 1010 Type *ResultTy) { 1011 // Handle the simplest case efficiently. 1012 if (K == 1) 1013 return SE.getTruncateOrZeroExtend(It, ResultTy); 1014 1015 // We are using the following formula for BC(It, K): 1016 // 1017 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1018 // 1019 // Suppose, W is the bitwidth of the return value. We must be prepared for 1020 // overflow. Hence, we must assure that the result of our computation is 1021 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1022 // safe in modular arithmetic. 1023 // 1024 // However, this code doesn't use exactly that formula; the formula it uses 1025 // is something like the following, where T is the number of factors of 2 in 1026 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1027 // exponentiation: 1028 // 1029 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1030 // 1031 // This formula is trivially equivalent to the previous formula. However, 1032 // this formula can be implemented much more efficiently. The trick is that 1033 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1034 // arithmetic. To do exact division in modular arithmetic, all we have 1035 // to do is multiply by the inverse. Therefore, this step can be done at 1036 // width W. 1037 // 1038 // The next issue is how to safely do the division by 2^T. The way this 1039 // is done is by doing the multiplication step at a width of at least W + T 1040 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1041 // when we perform the division by 2^T (which is equivalent to a right shift 1042 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1043 // truncated out after the division by 2^T. 1044 // 1045 // In comparison to just directly using the first formula, this technique 1046 // is much more efficient; using the first formula requires W * K bits, 1047 // but this formula less than W + K bits. Also, the first formula requires 1048 // a division step, whereas this formula only requires multiplies and shifts. 1049 // 1050 // It doesn't matter whether the subtraction step is done in the calculation 1051 // width or the input iteration count's width; if the subtraction overflows, 1052 // the result must be zero anyway. We prefer here to do it in the width of 1053 // the induction variable because it helps a lot for certain cases; CodeGen 1054 // isn't smart enough to ignore the overflow, which leads to much less 1055 // efficient code if the width of the subtraction is wider than the native 1056 // register width. 1057 // 1058 // (It's possible to not widen at all by pulling out factors of 2 before 1059 // the multiplication; for example, K=2 can be calculated as 1060 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1061 // extra arithmetic, so it's not an obvious win, and it gets 1062 // much more complicated for K > 3.) 1063 1064 // Protection from insane SCEVs; this bound is conservative, 1065 // but it probably doesn't matter. 1066 if (K > 1000) 1067 return SE.getCouldNotCompute(); 1068 1069 unsigned W = SE.getTypeSizeInBits(ResultTy); 1070 1071 // Calculate K! / 2^T and T; we divide out the factors of two before 1072 // multiplying for calculating K! / 2^T to avoid overflow. 1073 // Other overflow doesn't matter because we only care about the bottom 1074 // W bits of the result. 1075 APInt OddFactorial(W, 1); 1076 unsigned T = 1; 1077 for (unsigned i = 3; i <= K; ++i) { 1078 APInt Mult(W, i); 1079 unsigned TwoFactors = Mult.countTrailingZeros(); 1080 T += TwoFactors; 1081 Mult = Mult.lshr(TwoFactors); 1082 OddFactorial *= Mult; 1083 } 1084 1085 // We need at least W + T bits for the multiplication step 1086 unsigned CalculationBits = W + T; 1087 1088 // Calculate 2^T, at width T+W. 1089 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1090 1091 // Calculate the multiplicative inverse of K! / 2^T; 1092 // this multiplication factor will perform the exact division by 1093 // K! / 2^T. 1094 APInt Mod = APInt::getSignedMinValue(W+1); 1095 APInt MultiplyFactor = OddFactorial.zext(W+1); 1096 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1097 MultiplyFactor = MultiplyFactor.trunc(W); 1098 1099 // Calculate the product, at width T+W 1100 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1101 CalculationBits); 1102 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1103 for (unsigned i = 1; i != K; ++i) { 1104 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1105 Dividend = SE.getMulExpr(Dividend, 1106 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1107 } 1108 1109 // Divide by 2^T 1110 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1111 1112 // Truncate the result, and divide by K! / 2^T. 1113 1114 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1115 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1116 } 1117 1118 /// Return the value of this chain of recurrences at the specified iteration 1119 /// number. We can evaluate this recurrence by multiplying each element in the 1120 /// chain by the binomial coefficient corresponding to it. In other words, we 1121 /// can evaluate {A,+,B,+,C,+,D} as: 1122 /// 1123 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1124 /// 1125 /// where BC(It, k) stands for binomial coefficient. 1126 /// 1127 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1128 ScalarEvolution &SE) const { 1129 const SCEV *Result = getStart(); 1130 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1131 // The computation is correct in the face of overflow provided that the 1132 // multiplication is performed _after_ the evaluation of the binomial 1133 // coefficient. 1134 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1135 if (isa<SCEVCouldNotCompute>(Coeff)) 1136 return Coeff; 1137 1138 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1139 } 1140 return Result; 1141 } 1142 1143 //===----------------------------------------------------------------------===// 1144 // SCEV Expression folder implementations 1145 //===----------------------------------------------------------------------===// 1146 1147 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1148 Type *Ty) { 1149 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1150 "This is not a truncating conversion!"); 1151 assert(isSCEVable(Ty) && 1152 "This is not a conversion to a SCEVable type!"); 1153 Ty = getEffectiveSCEVType(Ty); 1154 1155 FoldingSetNodeID ID; 1156 ID.AddInteger(scTruncate); 1157 ID.AddPointer(Op); 1158 ID.AddPointer(Ty); 1159 void *IP = nullptr; 1160 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1161 1162 // Fold if the operand is constant. 1163 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1164 return getConstant( 1165 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1166 1167 // trunc(trunc(x)) --> trunc(x) 1168 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1169 return getTruncateExpr(ST->getOperand(), Ty); 1170 1171 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1172 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1173 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1174 1175 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1176 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1177 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1178 1179 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1180 // eliminate all the truncates, or we replace other casts with truncates. 1181 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1182 SmallVector<const SCEV *, 4> Operands; 1183 bool hasTrunc = false; 1184 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1185 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1186 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1187 hasTrunc = isa<SCEVTruncateExpr>(S); 1188 Operands.push_back(S); 1189 } 1190 if (!hasTrunc) 1191 return getAddExpr(Operands); 1192 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1193 } 1194 1195 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1196 // eliminate all the truncates, or we replace other casts with truncates. 1197 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1198 SmallVector<const SCEV *, 4> Operands; 1199 bool hasTrunc = false; 1200 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1201 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1202 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1203 hasTrunc = isa<SCEVTruncateExpr>(S); 1204 Operands.push_back(S); 1205 } 1206 if (!hasTrunc) 1207 return getMulExpr(Operands); 1208 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1209 } 1210 1211 // If the input value is a chrec scev, truncate the chrec's operands. 1212 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1213 SmallVector<const SCEV *, 4> Operands; 1214 for (const SCEV *Op : AddRec->operands()) 1215 Operands.push_back(getTruncateExpr(Op, Ty)); 1216 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1217 } 1218 1219 // The cast wasn't folded; create an explicit cast node. We can reuse 1220 // the existing insert position since if we get here, we won't have 1221 // made any changes which would invalidate it. 1222 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1223 Op, Ty); 1224 UniqueSCEVs.InsertNode(S, IP); 1225 return S; 1226 } 1227 1228 // Get the limit of a recurrence such that incrementing by Step cannot cause 1229 // signed overflow as long as the value of the recurrence within the 1230 // loop does not exceed this limit before incrementing. 1231 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1232 ICmpInst::Predicate *Pred, 1233 ScalarEvolution *SE) { 1234 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1235 if (SE->isKnownPositive(Step)) { 1236 *Pred = ICmpInst::ICMP_SLT; 1237 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1238 SE->getSignedRange(Step).getSignedMax()); 1239 } 1240 if (SE->isKnownNegative(Step)) { 1241 *Pred = ICmpInst::ICMP_SGT; 1242 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1243 SE->getSignedRange(Step).getSignedMin()); 1244 } 1245 return nullptr; 1246 } 1247 1248 // Get the limit of a recurrence such that incrementing by Step cannot cause 1249 // unsigned overflow as long as the value of the recurrence within the loop does 1250 // not exceed this limit before incrementing. 1251 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1252 ICmpInst::Predicate *Pred, 1253 ScalarEvolution *SE) { 1254 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1255 *Pred = ICmpInst::ICMP_ULT; 1256 1257 return SE->getConstant(APInt::getMinValue(BitWidth) - 1258 SE->getUnsignedRange(Step).getUnsignedMax()); 1259 } 1260 1261 namespace { 1262 1263 struct ExtendOpTraitsBase { 1264 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1265 }; 1266 1267 // Used to make code generic over signed and unsigned overflow. 1268 template <typename ExtendOp> struct ExtendOpTraits { 1269 // Members present: 1270 // 1271 // static const SCEV::NoWrapFlags WrapType; 1272 // 1273 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1274 // 1275 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1276 // ICmpInst::Predicate *Pred, 1277 // ScalarEvolution *SE); 1278 }; 1279 1280 template <> 1281 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1282 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1283 1284 static const GetExtendExprTy GetExtendExpr; 1285 1286 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1287 ICmpInst::Predicate *Pred, 1288 ScalarEvolution *SE) { 1289 return getSignedOverflowLimitForStep(Step, Pred, SE); 1290 } 1291 }; 1292 1293 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1294 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1295 1296 template <> 1297 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1298 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1299 1300 static const GetExtendExprTy GetExtendExpr; 1301 1302 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1303 ICmpInst::Predicate *Pred, 1304 ScalarEvolution *SE) { 1305 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1306 } 1307 }; 1308 1309 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1310 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1311 } 1312 1313 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1314 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1315 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1316 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1317 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1318 // expression "Step + sext/zext(PreIncAR)" is congruent with 1319 // "sext/zext(PostIncAR)" 1320 template <typename ExtendOpTy> 1321 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1322 ScalarEvolution *SE) { 1323 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1324 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1325 1326 const Loop *L = AR->getLoop(); 1327 const SCEV *Start = AR->getStart(); 1328 const SCEV *Step = AR->getStepRecurrence(*SE); 1329 1330 // Check for a simple looking step prior to loop entry. 1331 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1332 if (!SA) 1333 return nullptr; 1334 1335 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1336 // subtraction is expensive. For this purpose, perform a quick and dirty 1337 // difference, by checking for Step in the operand list. 1338 SmallVector<const SCEV *, 4> DiffOps; 1339 for (const SCEV *Op : SA->operands()) 1340 if (Op != Step) 1341 DiffOps.push_back(Op); 1342 1343 if (DiffOps.size() == SA->getNumOperands()) 1344 return nullptr; 1345 1346 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1347 // `Step`: 1348 1349 // 1. NSW/NUW flags on the step increment. 1350 auto PreStartFlags = 1351 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1352 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1353 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1354 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1355 1356 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1357 // "S+X does not sign/unsign-overflow". 1358 // 1359 1360 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1361 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1362 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1363 return PreStart; 1364 1365 // 2. Direct overflow check on the step operation's expression. 1366 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1367 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1368 const SCEV *OperandExtendedStart = 1369 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1370 (SE->*GetExtendExpr)(Step, WideTy)); 1371 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1372 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1373 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1374 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1375 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1376 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1377 } 1378 return PreStart; 1379 } 1380 1381 // 3. Loop precondition. 1382 ICmpInst::Predicate Pred; 1383 const SCEV *OverflowLimit = 1384 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1385 1386 if (OverflowLimit && 1387 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1388 return PreStart; 1389 1390 return nullptr; 1391 } 1392 1393 // Get the normalized zero or sign extended expression for this AddRec's Start. 1394 template <typename ExtendOpTy> 1395 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1396 ScalarEvolution *SE) { 1397 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1398 1399 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1400 if (!PreStart) 1401 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1402 1403 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1404 (SE->*GetExtendExpr)(PreStart, Ty)); 1405 } 1406 1407 // Try to prove away overflow by looking at "nearby" add recurrences. A 1408 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1409 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1410 // 1411 // Formally: 1412 // 1413 // {S,+,X} == {S-T,+,X} + T 1414 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1415 // 1416 // If ({S-T,+,X} + T) does not overflow ... (1) 1417 // 1418 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1419 // 1420 // If {S-T,+,X} does not overflow ... (2) 1421 // 1422 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1423 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1424 // 1425 // If (S-T)+T does not overflow ... (3) 1426 // 1427 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1428 // == {Ext(S),+,Ext(X)} == LHS 1429 // 1430 // Thus, if (1), (2) and (3) are true for some T, then 1431 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1432 // 1433 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1434 // does not overflow" restricted to the 0th iteration. Therefore we only need 1435 // to check for (1) and (2). 1436 // 1437 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1438 // is `Delta` (defined below). 1439 // 1440 template <typename ExtendOpTy> 1441 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1442 const SCEV *Step, 1443 const Loop *L) { 1444 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1445 1446 // We restrict `Start` to a constant to prevent SCEV from spending too much 1447 // time here. It is correct (but more expensive) to continue with a 1448 // non-constant `Start` and do a general SCEV subtraction to compute 1449 // `PreStart` below. 1450 // 1451 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1452 if (!StartC) 1453 return false; 1454 1455 APInt StartAI = StartC->getAPInt(); 1456 1457 for (unsigned Delta : {-2, -1, 1, 2}) { 1458 const SCEV *PreStart = getConstant(StartAI - Delta); 1459 1460 FoldingSetNodeID ID; 1461 ID.AddInteger(scAddRecExpr); 1462 ID.AddPointer(PreStart); 1463 ID.AddPointer(Step); 1464 ID.AddPointer(L); 1465 void *IP = nullptr; 1466 const auto *PreAR = 1467 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1468 1469 // Give up if we don't already have the add recurrence we need because 1470 // actually constructing an add recurrence is relatively expensive. 1471 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1472 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1473 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1474 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1475 DeltaS, &Pred, this); 1476 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1477 return true; 1478 } 1479 } 1480 1481 return false; 1482 } 1483 1484 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1485 Type *Ty) { 1486 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1487 "This is not an extending conversion!"); 1488 assert(isSCEVable(Ty) && 1489 "This is not a conversion to a SCEVable type!"); 1490 Ty = getEffectiveSCEVType(Ty); 1491 1492 // Fold if the operand is constant. 1493 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1494 return getConstant( 1495 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1496 1497 // zext(zext(x)) --> zext(x) 1498 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1499 return getZeroExtendExpr(SZ->getOperand(), Ty); 1500 1501 // Before doing any expensive analysis, check to see if we've already 1502 // computed a SCEV for this Op and Ty. 1503 FoldingSetNodeID ID; 1504 ID.AddInteger(scZeroExtend); 1505 ID.AddPointer(Op); 1506 ID.AddPointer(Ty); 1507 void *IP = nullptr; 1508 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1509 1510 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1511 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1512 // It's possible the bits taken off by the truncate were all zero bits. If 1513 // so, we should be able to simplify this further. 1514 const SCEV *X = ST->getOperand(); 1515 ConstantRange CR = getUnsignedRange(X); 1516 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1517 unsigned NewBits = getTypeSizeInBits(Ty); 1518 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1519 CR.zextOrTrunc(NewBits))) 1520 return getTruncateOrZeroExtend(X, Ty); 1521 } 1522 1523 // If the input value is a chrec scev, and we can prove that the value 1524 // did not overflow the old, smaller, value, we can zero extend all of the 1525 // operands (often constants). This allows analysis of something like 1526 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1527 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1528 if (AR->isAffine()) { 1529 const SCEV *Start = AR->getStart(); 1530 const SCEV *Step = AR->getStepRecurrence(*this); 1531 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1532 const Loop *L = AR->getLoop(); 1533 1534 if (!AR->hasNoUnsignedWrap()) { 1535 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1536 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1537 } 1538 1539 // If we have special knowledge that this addrec won't overflow, 1540 // we don't need to do any further analysis. 1541 if (AR->hasNoUnsignedWrap()) 1542 return getAddRecExpr( 1543 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1544 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1545 1546 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1547 // Note that this serves two purposes: It filters out loops that are 1548 // simply not analyzable, and it covers the case where this code is 1549 // being called from within backedge-taken count analysis, such that 1550 // attempting to ask for the backedge-taken count would likely result 1551 // in infinite recursion. In the later case, the analysis code will 1552 // cope with a conservative value, and it will take care to purge 1553 // that value once it has finished. 1554 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1555 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1556 // Manually compute the final value for AR, checking for 1557 // overflow. 1558 1559 // Check whether the backedge-taken count can be losslessly casted to 1560 // the addrec's type. The count is always unsigned. 1561 const SCEV *CastedMaxBECount = 1562 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1563 const SCEV *RecastedMaxBECount = 1564 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1565 if (MaxBECount == RecastedMaxBECount) { 1566 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1567 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1568 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1569 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1570 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1571 const SCEV *WideMaxBECount = 1572 getZeroExtendExpr(CastedMaxBECount, WideTy); 1573 const SCEV *OperandExtendedAdd = 1574 getAddExpr(WideStart, 1575 getMulExpr(WideMaxBECount, 1576 getZeroExtendExpr(Step, WideTy))); 1577 if (ZAdd == OperandExtendedAdd) { 1578 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1579 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1580 // Return the expression with the addrec on the outside. 1581 return getAddRecExpr( 1582 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1583 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1584 } 1585 // Similar to above, only this time treat the step value as signed. 1586 // This covers loops that count down. 1587 OperandExtendedAdd = 1588 getAddExpr(WideStart, 1589 getMulExpr(WideMaxBECount, 1590 getSignExtendExpr(Step, WideTy))); 1591 if (ZAdd == OperandExtendedAdd) { 1592 // Cache knowledge of AR NW, which is propagated to this AddRec. 1593 // Negative step causes unsigned wrap, but it still can't self-wrap. 1594 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1595 // Return the expression with the addrec on the outside. 1596 return getAddRecExpr( 1597 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1598 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1599 } 1600 } 1601 } 1602 1603 // Normally, in the cases we can prove no-overflow via a 1604 // backedge guarding condition, we can also compute a backedge 1605 // taken count for the loop. The exceptions are assumptions and 1606 // guards present in the loop -- SCEV is not great at exploiting 1607 // these to compute max backedge taken counts, but can still use 1608 // these to prove lack of overflow. Use this fact to avoid 1609 // doing extra work that may not pay off. 1610 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1611 !AC.assumptions().empty()) { 1612 // If the backedge is guarded by a comparison with the pre-inc 1613 // value the addrec is safe. Also, if the entry is guarded by 1614 // a comparison with the start value and the backedge is 1615 // guarded by a comparison with the post-inc value, the addrec 1616 // is safe. 1617 if (isKnownPositive(Step)) { 1618 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1619 getUnsignedRange(Step).getUnsignedMax()); 1620 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1621 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1622 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1623 AR->getPostIncExpr(*this), N))) { 1624 // Cache knowledge of AR NUW, which is propagated to this 1625 // AddRec. 1626 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1627 // Return the expression with the addrec on the outside. 1628 return getAddRecExpr( 1629 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1630 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1631 } 1632 } else if (isKnownNegative(Step)) { 1633 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1634 getSignedRange(Step).getSignedMin()); 1635 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1636 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1637 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1638 AR->getPostIncExpr(*this), N))) { 1639 // Cache knowledge of AR NW, which is propagated to this 1640 // AddRec. Negative step causes unsigned wrap, but it 1641 // still can't self-wrap. 1642 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1643 // Return the expression with the addrec on the outside. 1644 return getAddRecExpr( 1645 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1646 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1647 } 1648 } 1649 } 1650 1651 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1652 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1653 return getAddRecExpr( 1654 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1655 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1656 } 1657 } 1658 1659 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1660 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1661 if (SA->hasNoUnsignedWrap()) { 1662 // If the addition does not unsign overflow then we can, by definition, 1663 // commute the zero extension with the addition operation. 1664 SmallVector<const SCEV *, 4> Ops; 1665 for (const auto *Op : SA->operands()) 1666 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1667 return getAddExpr(Ops, SCEV::FlagNUW); 1668 } 1669 } 1670 1671 // The cast wasn't folded; create an explicit cast node. 1672 // Recompute the insert position, as it may have been invalidated. 1673 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1674 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1675 Op, Ty); 1676 UniqueSCEVs.InsertNode(S, IP); 1677 return S; 1678 } 1679 1680 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1681 Type *Ty) { 1682 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1683 "This is not an extending conversion!"); 1684 assert(isSCEVable(Ty) && 1685 "This is not a conversion to a SCEVable type!"); 1686 Ty = getEffectiveSCEVType(Ty); 1687 1688 // Fold if the operand is constant. 1689 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1690 return getConstant( 1691 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1692 1693 // sext(sext(x)) --> sext(x) 1694 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1695 return getSignExtendExpr(SS->getOperand(), Ty); 1696 1697 // sext(zext(x)) --> zext(x) 1698 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1699 return getZeroExtendExpr(SZ->getOperand(), Ty); 1700 1701 // Before doing any expensive analysis, check to see if we've already 1702 // computed a SCEV for this Op and Ty. 1703 FoldingSetNodeID ID; 1704 ID.AddInteger(scSignExtend); 1705 ID.AddPointer(Op); 1706 ID.AddPointer(Ty); 1707 void *IP = nullptr; 1708 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1709 1710 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1711 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1712 // It's possible the bits taken off by the truncate were all sign bits. If 1713 // so, we should be able to simplify this further. 1714 const SCEV *X = ST->getOperand(); 1715 ConstantRange CR = getSignedRange(X); 1716 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1717 unsigned NewBits = getTypeSizeInBits(Ty); 1718 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1719 CR.sextOrTrunc(NewBits))) 1720 return getTruncateOrSignExtend(X, Ty); 1721 } 1722 1723 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1724 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1725 if (SA->getNumOperands() == 2) { 1726 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1727 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1728 if (SMul && SC1) { 1729 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1730 const APInt &C1 = SC1->getAPInt(); 1731 const APInt &C2 = SC2->getAPInt(); 1732 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1733 C2.ugt(C1) && C2.isPowerOf2()) 1734 return getAddExpr(getSignExtendExpr(SC1, Ty), 1735 getSignExtendExpr(SMul, Ty)); 1736 } 1737 } 1738 } 1739 1740 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1741 if (SA->hasNoSignedWrap()) { 1742 // If the addition does not sign overflow then we can, by definition, 1743 // commute the sign extension with the addition operation. 1744 SmallVector<const SCEV *, 4> Ops; 1745 for (const auto *Op : SA->operands()) 1746 Ops.push_back(getSignExtendExpr(Op, Ty)); 1747 return getAddExpr(Ops, SCEV::FlagNSW); 1748 } 1749 } 1750 // If the input value is a chrec scev, and we can prove that the value 1751 // did not overflow the old, smaller, value, we can sign extend all of the 1752 // operands (often constants). This allows analysis of something like 1753 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1754 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1755 if (AR->isAffine()) { 1756 const SCEV *Start = AR->getStart(); 1757 const SCEV *Step = AR->getStepRecurrence(*this); 1758 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1759 const Loop *L = AR->getLoop(); 1760 1761 if (!AR->hasNoSignedWrap()) { 1762 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1763 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1764 } 1765 1766 // If we have special knowledge that this addrec won't overflow, 1767 // we don't need to do any further analysis. 1768 if (AR->hasNoSignedWrap()) 1769 return getAddRecExpr( 1770 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1771 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1772 1773 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1774 // Note that this serves two purposes: It filters out loops that are 1775 // simply not analyzable, and it covers the case where this code is 1776 // being called from within backedge-taken count analysis, such that 1777 // attempting to ask for the backedge-taken count would likely result 1778 // in infinite recursion. In the later case, the analysis code will 1779 // cope with a conservative value, and it will take care to purge 1780 // that value once it has finished. 1781 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1782 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1783 // Manually compute the final value for AR, checking for 1784 // overflow. 1785 1786 // Check whether the backedge-taken count can be losslessly casted to 1787 // the addrec's type. The count is always unsigned. 1788 const SCEV *CastedMaxBECount = 1789 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1790 const SCEV *RecastedMaxBECount = 1791 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1792 if (MaxBECount == RecastedMaxBECount) { 1793 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1794 // Check whether Start+Step*MaxBECount has no signed overflow. 1795 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1796 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1797 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1798 const SCEV *WideMaxBECount = 1799 getZeroExtendExpr(CastedMaxBECount, WideTy); 1800 const SCEV *OperandExtendedAdd = 1801 getAddExpr(WideStart, 1802 getMulExpr(WideMaxBECount, 1803 getSignExtendExpr(Step, WideTy))); 1804 if (SAdd == OperandExtendedAdd) { 1805 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1806 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1807 // Return the expression with the addrec on the outside. 1808 return getAddRecExpr( 1809 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1810 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1811 } 1812 // Similar to above, only this time treat the step value as unsigned. 1813 // This covers loops that count up with an unsigned step. 1814 OperandExtendedAdd = 1815 getAddExpr(WideStart, 1816 getMulExpr(WideMaxBECount, 1817 getZeroExtendExpr(Step, WideTy))); 1818 if (SAdd == OperandExtendedAdd) { 1819 // If AR wraps around then 1820 // 1821 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1822 // => SAdd != OperandExtendedAdd 1823 // 1824 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1825 // (SAdd == OperandExtendedAdd => AR is NW) 1826 1827 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1828 1829 // Return the expression with the addrec on the outside. 1830 return getAddRecExpr( 1831 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1832 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1833 } 1834 } 1835 } 1836 1837 // Normally, in the cases we can prove no-overflow via a 1838 // backedge guarding condition, we can also compute a backedge 1839 // taken count for the loop. The exceptions are assumptions and 1840 // guards present in the loop -- SCEV is not great at exploiting 1841 // these to compute max backedge taken counts, but can still use 1842 // these to prove lack of overflow. Use this fact to avoid 1843 // doing extra work that may not pay off. 1844 1845 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1846 !AC.assumptions().empty()) { 1847 // If the backedge is guarded by a comparison with the pre-inc 1848 // value the addrec is safe. Also, if the entry is guarded by 1849 // a comparison with the start value and the backedge is 1850 // guarded by a comparison with the post-inc value, the addrec 1851 // is safe. 1852 ICmpInst::Predicate Pred; 1853 const SCEV *OverflowLimit = 1854 getSignedOverflowLimitForStep(Step, &Pred, this); 1855 if (OverflowLimit && 1856 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1857 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1858 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1859 OverflowLimit)))) { 1860 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1861 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1862 return getAddRecExpr( 1863 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1864 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1865 } 1866 } 1867 1868 // If Start and Step are constants, check if we can apply this 1869 // transformation: 1870 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1871 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1872 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1873 if (SC1 && SC2) { 1874 const APInt &C1 = SC1->getAPInt(); 1875 const APInt &C2 = SC2->getAPInt(); 1876 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1877 C2.isPowerOf2()) { 1878 Start = getSignExtendExpr(Start, Ty); 1879 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1880 AR->getNoWrapFlags()); 1881 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1882 } 1883 } 1884 1885 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1886 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1887 return getAddRecExpr( 1888 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1889 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1890 } 1891 } 1892 1893 // If the input value is provably positive and we could not simplify 1894 // away the sext build a zext instead. 1895 if (isKnownNonNegative(Op)) 1896 return getZeroExtendExpr(Op, Ty); 1897 1898 // The cast wasn't folded; create an explicit cast node. 1899 // Recompute the insert position, as it may have been invalidated. 1900 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1901 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1902 Op, Ty); 1903 UniqueSCEVs.InsertNode(S, IP); 1904 return S; 1905 } 1906 1907 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1908 /// unspecified bits out to the given type. 1909 /// 1910 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1911 Type *Ty) { 1912 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1913 "This is not an extending conversion!"); 1914 assert(isSCEVable(Ty) && 1915 "This is not a conversion to a SCEVable type!"); 1916 Ty = getEffectiveSCEVType(Ty); 1917 1918 // Sign-extend negative constants. 1919 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1920 if (SC->getAPInt().isNegative()) 1921 return getSignExtendExpr(Op, Ty); 1922 1923 // Peel off a truncate cast. 1924 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1925 const SCEV *NewOp = T->getOperand(); 1926 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1927 return getAnyExtendExpr(NewOp, Ty); 1928 return getTruncateOrNoop(NewOp, Ty); 1929 } 1930 1931 // Next try a zext cast. If the cast is folded, use it. 1932 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1933 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1934 return ZExt; 1935 1936 // Next try a sext cast. If the cast is folded, use it. 1937 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1938 if (!isa<SCEVSignExtendExpr>(SExt)) 1939 return SExt; 1940 1941 // Force the cast to be folded into the operands of an addrec. 1942 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1943 SmallVector<const SCEV *, 4> Ops; 1944 for (const SCEV *Op : AR->operands()) 1945 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1946 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1947 } 1948 1949 // If the expression is obviously signed, use the sext cast value. 1950 if (isa<SCEVSMaxExpr>(Op)) 1951 return SExt; 1952 1953 // Absent any other information, use the zext cast value. 1954 return ZExt; 1955 } 1956 1957 /// Process the given Ops list, which is a list of operands to be added under 1958 /// the given scale, update the given map. This is a helper function for 1959 /// getAddRecExpr. As an example of what it does, given a sequence of operands 1960 /// that would form an add expression like this: 1961 /// 1962 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1963 /// 1964 /// where A and B are constants, update the map with these values: 1965 /// 1966 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1967 /// 1968 /// and add 13 + A*B*29 to AccumulatedConstant. 1969 /// This will allow getAddRecExpr to produce this: 1970 /// 1971 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1972 /// 1973 /// This form often exposes folding opportunities that are hidden in 1974 /// the original operand list. 1975 /// 1976 /// Return true iff it appears that any interesting folding opportunities 1977 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1978 /// the common case where no interesting opportunities are present, and 1979 /// is also used as a check to avoid infinite recursion. 1980 /// 1981 static bool 1982 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1983 SmallVectorImpl<const SCEV *> &NewOps, 1984 APInt &AccumulatedConstant, 1985 const SCEV *const *Ops, size_t NumOperands, 1986 const APInt &Scale, 1987 ScalarEvolution &SE) { 1988 bool Interesting = false; 1989 1990 // Iterate over the add operands. They are sorted, with constants first. 1991 unsigned i = 0; 1992 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1993 ++i; 1994 // Pull a buried constant out to the outside. 1995 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1996 Interesting = true; 1997 AccumulatedConstant += Scale * C->getAPInt(); 1998 } 1999 2000 // Next comes everything else. We're especially interested in multiplies 2001 // here, but they're in the middle, so just visit the rest with one loop. 2002 for (; i != NumOperands; ++i) { 2003 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2004 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2005 APInt NewScale = 2006 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2007 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2008 // A multiplication of a constant with another add; recurse. 2009 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2010 Interesting |= 2011 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2012 Add->op_begin(), Add->getNumOperands(), 2013 NewScale, SE); 2014 } else { 2015 // A multiplication of a constant with some other value. Update 2016 // the map. 2017 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2018 const SCEV *Key = SE.getMulExpr(MulOps); 2019 auto Pair = M.insert({Key, NewScale}); 2020 if (Pair.second) { 2021 NewOps.push_back(Pair.first->first); 2022 } else { 2023 Pair.first->second += NewScale; 2024 // The map already had an entry for this value, which may indicate 2025 // a folding opportunity. 2026 Interesting = true; 2027 } 2028 } 2029 } else { 2030 // An ordinary operand. Update the map. 2031 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2032 M.insert({Ops[i], Scale}); 2033 if (Pair.second) { 2034 NewOps.push_back(Pair.first->first); 2035 } else { 2036 Pair.first->second += Scale; 2037 // The map already had an entry for this value, which may indicate 2038 // a folding opportunity. 2039 Interesting = true; 2040 } 2041 } 2042 } 2043 2044 return Interesting; 2045 } 2046 2047 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2048 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2049 // can't-overflow flags for the operation if possible. 2050 static SCEV::NoWrapFlags 2051 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2052 const SmallVectorImpl<const SCEV *> &Ops, 2053 SCEV::NoWrapFlags Flags) { 2054 using namespace std::placeholders; 2055 typedef OverflowingBinaryOperator OBO; 2056 2057 bool CanAnalyze = 2058 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2059 (void)CanAnalyze; 2060 assert(CanAnalyze && "don't call from other places!"); 2061 2062 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2063 SCEV::NoWrapFlags SignOrUnsignWrap = 2064 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2065 2066 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2067 auto IsKnownNonNegative = [&](const SCEV *S) { 2068 return SE->isKnownNonNegative(S); 2069 }; 2070 2071 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2072 Flags = 2073 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2074 2075 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2076 2077 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 2078 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 2079 2080 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 2081 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2082 2083 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2084 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2085 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2086 Instruction::Add, C, OBO::NoSignedWrap); 2087 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2088 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2089 } 2090 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2091 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2092 Instruction::Add, C, OBO::NoUnsignedWrap); 2093 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2094 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2095 } 2096 } 2097 2098 return Flags; 2099 } 2100 2101 /// Get a canonical add expression, or something simpler if possible. 2102 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2103 SCEV::NoWrapFlags Flags) { 2104 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2105 "only nuw or nsw allowed"); 2106 assert(!Ops.empty() && "Cannot get empty add!"); 2107 if (Ops.size() == 1) return Ops[0]; 2108 #ifndef NDEBUG 2109 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2110 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2111 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2112 "SCEVAddExpr operand types don't match!"); 2113 #endif 2114 2115 // Sort by complexity, this groups all similar expression types together. 2116 GroupByComplexity(Ops, &LI); 2117 2118 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2119 2120 // If there are any constants, fold them together. 2121 unsigned Idx = 0; 2122 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2123 ++Idx; 2124 assert(Idx < Ops.size()); 2125 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2126 // We found two constants, fold them together! 2127 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2128 if (Ops.size() == 2) return Ops[0]; 2129 Ops.erase(Ops.begin()+1); // Erase the folded element 2130 LHSC = cast<SCEVConstant>(Ops[0]); 2131 } 2132 2133 // If we are left with a constant zero being added, strip it off. 2134 if (LHSC->getValue()->isZero()) { 2135 Ops.erase(Ops.begin()); 2136 --Idx; 2137 } 2138 2139 if (Ops.size() == 1) return Ops[0]; 2140 } 2141 2142 // Okay, check to see if the same value occurs in the operand list more than 2143 // once. If so, merge them together into an multiply expression. Since we 2144 // sorted the list, these values are required to be adjacent. 2145 Type *Ty = Ops[0]->getType(); 2146 bool FoundMatch = false; 2147 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2148 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2149 // Scan ahead to count how many equal operands there are. 2150 unsigned Count = 2; 2151 while (i+Count != e && Ops[i+Count] == Ops[i]) 2152 ++Count; 2153 // Merge the values into a multiply. 2154 const SCEV *Scale = getConstant(Ty, Count); 2155 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2156 if (Ops.size() == Count) 2157 return Mul; 2158 Ops[i] = Mul; 2159 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2160 --i; e -= Count - 1; 2161 FoundMatch = true; 2162 } 2163 if (FoundMatch) 2164 return getAddExpr(Ops, Flags); 2165 2166 // Check for truncates. If all the operands are truncated from the same 2167 // type, see if factoring out the truncate would permit the result to be 2168 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2169 // if the contents of the resulting outer trunc fold to something simple. 2170 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2171 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2172 Type *DstType = Trunc->getType(); 2173 Type *SrcType = Trunc->getOperand()->getType(); 2174 SmallVector<const SCEV *, 8> LargeOps; 2175 bool Ok = true; 2176 // Check all the operands to see if they can be represented in the 2177 // source type of the truncate. 2178 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2179 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2180 if (T->getOperand()->getType() != SrcType) { 2181 Ok = false; 2182 break; 2183 } 2184 LargeOps.push_back(T->getOperand()); 2185 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2186 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2187 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2188 SmallVector<const SCEV *, 8> LargeMulOps; 2189 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2190 if (const SCEVTruncateExpr *T = 2191 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2192 if (T->getOperand()->getType() != SrcType) { 2193 Ok = false; 2194 break; 2195 } 2196 LargeMulOps.push_back(T->getOperand()); 2197 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2198 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2199 } else { 2200 Ok = false; 2201 break; 2202 } 2203 } 2204 if (Ok) 2205 LargeOps.push_back(getMulExpr(LargeMulOps)); 2206 } else { 2207 Ok = false; 2208 break; 2209 } 2210 } 2211 if (Ok) { 2212 // Evaluate the expression in the larger type. 2213 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2214 // If it folds to something simple, use it. Otherwise, don't. 2215 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2216 return getTruncateExpr(Fold, DstType); 2217 } 2218 } 2219 2220 // Skip past any other cast SCEVs. 2221 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2222 ++Idx; 2223 2224 // If there are add operands they would be next. 2225 if (Idx < Ops.size()) { 2226 bool DeletedAdd = false; 2227 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2228 if (Ops.size() > AddOpsInlineThreshold || 2229 Add->getNumOperands() > AddOpsInlineThreshold) 2230 break; 2231 // If we have an add, expand the add operands onto the end of the operands 2232 // list. 2233 Ops.erase(Ops.begin()+Idx); 2234 Ops.append(Add->op_begin(), Add->op_end()); 2235 DeletedAdd = true; 2236 } 2237 2238 // If we deleted at least one add, we added operands to the end of the list, 2239 // and they are not necessarily sorted. Recurse to resort and resimplify 2240 // any operands we just acquired. 2241 if (DeletedAdd) 2242 return getAddExpr(Ops); 2243 } 2244 2245 // Skip over the add expression until we get to a multiply. 2246 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2247 ++Idx; 2248 2249 // Check to see if there are any folding opportunities present with 2250 // operands multiplied by constant values. 2251 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2252 uint64_t BitWidth = getTypeSizeInBits(Ty); 2253 DenseMap<const SCEV *, APInt> M; 2254 SmallVector<const SCEV *, 8> NewOps; 2255 APInt AccumulatedConstant(BitWidth, 0); 2256 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2257 Ops.data(), Ops.size(), 2258 APInt(BitWidth, 1), *this)) { 2259 struct APIntCompare { 2260 bool operator()(const APInt &LHS, const APInt &RHS) const { 2261 return LHS.ult(RHS); 2262 } 2263 }; 2264 2265 // Some interesting folding opportunity is present, so its worthwhile to 2266 // re-generate the operands list. Group the operands by constant scale, 2267 // to avoid multiplying by the same constant scale multiple times. 2268 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2269 for (const SCEV *NewOp : NewOps) 2270 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2271 // Re-generate the operands list. 2272 Ops.clear(); 2273 if (AccumulatedConstant != 0) 2274 Ops.push_back(getConstant(AccumulatedConstant)); 2275 for (auto &MulOp : MulOpLists) 2276 if (MulOp.first != 0) 2277 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2278 getAddExpr(MulOp.second))); 2279 if (Ops.empty()) 2280 return getZero(Ty); 2281 if (Ops.size() == 1) 2282 return Ops[0]; 2283 return getAddExpr(Ops); 2284 } 2285 } 2286 2287 // If we are adding something to a multiply expression, make sure the 2288 // something is not already an operand of the multiply. If so, merge it into 2289 // the multiply. 2290 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2291 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2292 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2293 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2294 if (isa<SCEVConstant>(MulOpSCEV)) 2295 continue; 2296 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2297 if (MulOpSCEV == Ops[AddOp]) { 2298 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2299 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2300 if (Mul->getNumOperands() != 2) { 2301 // If the multiply has more than two operands, we must get the 2302 // Y*Z term. 2303 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2304 Mul->op_begin()+MulOp); 2305 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2306 InnerMul = getMulExpr(MulOps); 2307 } 2308 const SCEV *One = getOne(Ty); 2309 const SCEV *AddOne = getAddExpr(One, InnerMul); 2310 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2311 if (Ops.size() == 2) return OuterMul; 2312 if (AddOp < Idx) { 2313 Ops.erase(Ops.begin()+AddOp); 2314 Ops.erase(Ops.begin()+Idx-1); 2315 } else { 2316 Ops.erase(Ops.begin()+Idx); 2317 Ops.erase(Ops.begin()+AddOp-1); 2318 } 2319 Ops.push_back(OuterMul); 2320 return getAddExpr(Ops); 2321 } 2322 2323 // Check this multiply against other multiplies being added together. 2324 for (unsigned OtherMulIdx = Idx+1; 2325 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2326 ++OtherMulIdx) { 2327 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2328 // If MulOp occurs in OtherMul, we can fold the two multiplies 2329 // together. 2330 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2331 OMulOp != e; ++OMulOp) 2332 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2333 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2334 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2335 if (Mul->getNumOperands() != 2) { 2336 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2337 Mul->op_begin()+MulOp); 2338 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2339 InnerMul1 = getMulExpr(MulOps); 2340 } 2341 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2342 if (OtherMul->getNumOperands() != 2) { 2343 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2344 OtherMul->op_begin()+OMulOp); 2345 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2346 InnerMul2 = getMulExpr(MulOps); 2347 } 2348 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2349 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2350 if (Ops.size() == 2) return OuterMul; 2351 Ops.erase(Ops.begin()+Idx); 2352 Ops.erase(Ops.begin()+OtherMulIdx-1); 2353 Ops.push_back(OuterMul); 2354 return getAddExpr(Ops); 2355 } 2356 } 2357 } 2358 } 2359 2360 // If there are any add recurrences in the operands list, see if any other 2361 // added values are loop invariant. If so, we can fold them into the 2362 // recurrence. 2363 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2364 ++Idx; 2365 2366 // Scan over all recurrences, trying to fold loop invariants into them. 2367 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2368 // Scan all of the other operands to this add and add them to the vector if 2369 // they are loop invariant w.r.t. the recurrence. 2370 SmallVector<const SCEV *, 8> LIOps; 2371 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2372 const Loop *AddRecLoop = AddRec->getLoop(); 2373 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2374 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2375 LIOps.push_back(Ops[i]); 2376 Ops.erase(Ops.begin()+i); 2377 --i; --e; 2378 } 2379 2380 // If we found some loop invariants, fold them into the recurrence. 2381 if (!LIOps.empty()) { 2382 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2383 LIOps.push_back(AddRec->getStart()); 2384 2385 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2386 AddRec->op_end()); 2387 // This follows from the fact that the no-wrap flags on the outer add 2388 // expression are applicable on the 0th iteration, when the add recurrence 2389 // will be equal to its start value. 2390 AddRecOps[0] = getAddExpr(LIOps, Flags); 2391 2392 // Build the new addrec. Propagate the NUW and NSW flags if both the 2393 // outer add and the inner addrec are guaranteed to have no overflow. 2394 // Always propagate NW. 2395 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2396 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2397 2398 // If all of the other operands were loop invariant, we are done. 2399 if (Ops.size() == 1) return NewRec; 2400 2401 // Otherwise, add the folded AddRec by the non-invariant parts. 2402 for (unsigned i = 0;; ++i) 2403 if (Ops[i] == AddRec) { 2404 Ops[i] = NewRec; 2405 break; 2406 } 2407 return getAddExpr(Ops); 2408 } 2409 2410 // Okay, if there weren't any loop invariants to be folded, check to see if 2411 // there are multiple AddRec's with the same loop induction variable being 2412 // added together. If so, we can fold them. 2413 for (unsigned OtherIdx = Idx+1; 2414 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2415 ++OtherIdx) 2416 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2417 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2418 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2419 AddRec->op_end()); 2420 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2421 ++OtherIdx) 2422 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2423 if (OtherAddRec->getLoop() == AddRecLoop) { 2424 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2425 i != e; ++i) { 2426 if (i >= AddRecOps.size()) { 2427 AddRecOps.append(OtherAddRec->op_begin()+i, 2428 OtherAddRec->op_end()); 2429 break; 2430 } 2431 AddRecOps[i] = getAddExpr(AddRecOps[i], 2432 OtherAddRec->getOperand(i)); 2433 } 2434 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2435 } 2436 // Step size has changed, so we cannot guarantee no self-wraparound. 2437 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2438 return getAddExpr(Ops); 2439 } 2440 2441 // Otherwise couldn't fold anything into this recurrence. Move onto the 2442 // next one. 2443 } 2444 2445 // Okay, it looks like we really DO need an add expr. Check to see if we 2446 // already have one, otherwise create a new one. 2447 FoldingSetNodeID ID; 2448 ID.AddInteger(scAddExpr); 2449 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2450 ID.AddPointer(Ops[i]); 2451 void *IP = nullptr; 2452 SCEVAddExpr *S = 2453 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2454 if (!S) { 2455 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2456 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2457 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2458 O, Ops.size()); 2459 UniqueSCEVs.InsertNode(S, IP); 2460 } 2461 S->setNoWrapFlags(Flags); 2462 return S; 2463 } 2464 2465 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2466 uint64_t k = i*j; 2467 if (j > 1 && k / j != i) Overflow = true; 2468 return k; 2469 } 2470 2471 /// Compute the result of "n choose k", the binomial coefficient. If an 2472 /// intermediate computation overflows, Overflow will be set and the return will 2473 /// be garbage. Overflow is not cleared on absence of overflow. 2474 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2475 // We use the multiplicative formula: 2476 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2477 // At each iteration, we take the n-th term of the numeral and divide by the 2478 // (k-n)th term of the denominator. This division will always produce an 2479 // integral result, and helps reduce the chance of overflow in the 2480 // intermediate computations. However, we can still overflow even when the 2481 // final result would fit. 2482 2483 if (n == 0 || n == k) return 1; 2484 if (k > n) return 0; 2485 2486 if (k > n/2) 2487 k = n-k; 2488 2489 uint64_t r = 1; 2490 for (uint64_t i = 1; i <= k; ++i) { 2491 r = umul_ov(r, n-(i-1), Overflow); 2492 r /= i; 2493 } 2494 return r; 2495 } 2496 2497 /// Determine if any of the operands in this SCEV are a constant or if 2498 /// any of the add or multiply expressions in this SCEV contain a constant. 2499 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2500 SmallVector<const SCEV *, 4> Ops; 2501 Ops.push_back(StartExpr); 2502 while (!Ops.empty()) { 2503 const SCEV *CurrentExpr = Ops.pop_back_val(); 2504 if (isa<SCEVConstant>(*CurrentExpr)) 2505 return true; 2506 2507 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2508 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2509 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2510 } 2511 } 2512 return false; 2513 } 2514 2515 /// Get a canonical multiply expression, or something simpler if possible. 2516 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2517 SCEV::NoWrapFlags Flags) { 2518 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2519 "only nuw or nsw allowed"); 2520 assert(!Ops.empty() && "Cannot get empty mul!"); 2521 if (Ops.size() == 1) return Ops[0]; 2522 #ifndef NDEBUG 2523 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2524 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2525 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2526 "SCEVMulExpr operand types don't match!"); 2527 #endif 2528 2529 // Sort by complexity, this groups all similar expression types together. 2530 GroupByComplexity(Ops, &LI); 2531 2532 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2533 2534 // If there are any constants, fold them together. 2535 unsigned Idx = 0; 2536 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2537 2538 // C1*(C2+V) -> C1*C2 + C1*V 2539 if (Ops.size() == 2) 2540 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2541 // If any of Add's ops are Adds or Muls with a constant, 2542 // apply this transformation as well. 2543 if (Add->getNumOperands() == 2) 2544 if (containsConstantSomewhere(Add)) 2545 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2546 getMulExpr(LHSC, Add->getOperand(1))); 2547 2548 ++Idx; 2549 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2550 // We found two constants, fold them together! 2551 ConstantInt *Fold = 2552 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2553 Ops[0] = getConstant(Fold); 2554 Ops.erase(Ops.begin()+1); // Erase the folded element 2555 if (Ops.size() == 1) return Ops[0]; 2556 LHSC = cast<SCEVConstant>(Ops[0]); 2557 } 2558 2559 // If we are left with a constant one being multiplied, strip it off. 2560 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2561 Ops.erase(Ops.begin()); 2562 --Idx; 2563 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2564 // If we have a multiply of zero, it will always be zero. 2565 return Ops[0]; 2566 } else if (Ops[0]->isAllOnesValue()) { 2567 // If we have a mul by -1 of an add, try distributing the -1 among the 2568 // add operands. 2569 if (Ops.size() == 2) { 2570 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2571 SmallVector<const SCEV *, 4> NewOps; 2572 bool AnyFolded = false; 2573 for (const SCEV *AddOp : Add->operands()) { 2574 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2575 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2576 NewOps.push_back(Mul); 2577 } 2578 if (AnyFolded) 2579 return getAddExpr(NewOps); 2580 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2581 // Negation preserves a recurrence's no self-wrap property. 2582 SmallVector<const SCEV *, 4> Operands; 2583 for (const SCEV *AddRecOp : AddRec->operands()) 2584 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2585 2586 return getAddRecExpr(Operands, AddRec->getLoop(), 2587 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2588 } 2589 } 2590 } 2591 2592 if (Ops.size() == 1) 2593 return Ops[0]; 2594 } 2595 2596 // Skip over the add expression until we get to a multiply. 2597 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2598 ++Idx; 2599 2600 // If there are mul operands inline them all into this expression. 2601 if (Idx < Ops.size()) { 2602 bool DeletedMul = false; 2603 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2604 if (Ops.size() > MulOpsInlineThreshold) 2605 break; 2606 // If we have an mul, expand the mul operands onto the end of the operands 2607 // list. 2608 Ops.erase(Ops.begin()+Idx); 2609 Ops.append(Mul->op_begin(), Mul->op_end()); 2610 DeletedMul = true; 2611 } 2612 2613 // If we deleted at least one mul, we added operands to the end of the list, 2614 // and they are not necessarily sorted. Recurse to resort and resimplify 2615 // any operands we just acquired. 2616 if (DeletedMul) 2617 return getMulExpr(Ops); 2618 } 2619 2620 // If there are any add recurrences in the operands list, see if any other 2621 // added values are loop invariant. If so, we can fold them into the 2622 // recurrence. 2623 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2624 ++Idx; 2625 2626 // Scan over all recurrences, trying to fold loop invariants into them. 2627 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2628 // Scan all of the other operands to this mul and add them to the vector if 2629 // they are loop invariant w.r.t. the recurrence. 2630 SmallVector<const SCEV *, 8> LIOps; 2631 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2632 const Loop *AddRecLoop = AddRec->getLoop(); 2633 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2634 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2635 LIOps.push_back(Ops[i]); 2636 Ops.erase(Ops.begin()+i); 2637 --i; --e; 2638 } 2639 2640 // If we found some loop invariants, fold them into the recurrence. 2641 if (!LIOps.empty()) { 2642 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2643 SmallVector<const SCEV *, 4> NewOps; 2644 NewOps.reserve(AddRec->getNumOperands()); 2645 const SCEV *Scale = getMulExpr(LIOps); 2646 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2647 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2648 2649 // Build the new addrec. Propagate the NUW and NSW flags if both the 2650 // outer mul and the inner addrec are guaranteed to have no overflow. 2651 // 2652 // No self-wrap cannot be guaranteed after changing the step size, but 2653 // will be inferred if either NUW or NSW is true. 2654 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2655 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2656 2657 // If all of the other operands were loop invariant, we are done. 2658 if (Ops.size() == 1) return NewRec; 2659 2660 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2661 for (unsigned i = 0;; ++i) 2662 if (Ops[i] == AddRec) { 2663 Ops[i] = NewRec; 2664 break; 2665 } 2666 return getMulExpr(Ops); 2667 } 2668 2669 // Okay, if there weren't any loop invariants to be folded, check to see if 2670 // there are multiple AddRec's with the same loop induction variable being 2671 // multiplied together. If so, we can fold them. 2672 2673 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2674 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2675 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2676 // ]]],+,...up to x=2n}. 2677 // Note that the arguments to choose() are always integers with values 2678 // known at compile time, never SCEV objects. 2679 // 2680 // The implementation avoids pointless extra computations when the two 2681 // addrec's are of different length (mathematically, it's equivalent to 2682 // an infinite stream of zeros on the right). 2683 bool OpsModified = false; 2684 for (unsigned OtherIdx = Idx+1; 2685 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2686 ++OtherIdx) { 2687 const SCEVAddRecExpr *OtherAddRec = 2688 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2689 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2690 continue; 2691 2692 bool Overflow = false; 2693 Type *Ty = AddRec->getType(); 2694 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2695 SmallVector<const SCEV*, 7> AddRecOps; 2696 for (int x = 0, xe = AddRec->getNumOperands() + 2697 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2698 const SCEV *Term = getZero(Ty); 2699 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2700 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2701 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2702 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2703 z < ze && !Overflow; ++z) { 2704 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2705 uint64_t Coeff; 2706 if (LargerThan64Bits) 2707 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2708 else 2709 Coeff = Coeff1*Coeff2; 2710 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2711 const SCEV *Term1 = AddRec->getOperand(y-z); 2712 const SCEV *Term2 = OtherAddRec->getOperand(z); 2713 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2714 } 2715 } 2716 AddRecOps.push_back(Term); 2717 } 2718 if (!Overflow) { 2719 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2720 SCEV::FlagAnyWrap); 2721 if (Ops.size() == 2) return NewAddRec; 2722 Ops[Idx] = NewAddRec; 2723 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2724 OpsModified = true; 2725 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2726 if (!AddRec) 2727 break; 2728 } 2729 } 2730 if (OpsModified) 2731 return getMulExpr(Ops); 2732 2733 // Otherwise couldn't fold anything into this recurrence. Move onto the 2734 // next one. 2735 } 2736 2737 // Okay, it looks like we really DO need an mul expr. Check to see if we 2738 // already have one, otherwise create a new one. 2739 FoldingSetNodeID ID; 2740 ID.AddInteger(scMulExpr); 2741 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2742 ID.AddPointer(Ops[i]); 2743 void *IP = nullptr; 2744 SCEVMulExpr *S = 2745 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2746 if (!S) { 2747 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2748 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2749 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2750 O, Ops.size()); 2751 UniqueSCEVs.InsertNode(S, IP); 2752 } 2753 S->setNoWrapFlags(Flags); 2754 return S; 2755 } 2756 2757 /// Get a canonical unsigned division expression, or something simpler if 2758 /// possible. 2759 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2760 const SCEV *RHS) { 2761 assert(getEffectiveSCEVType(LHS->getType()) == 2762 getEffectiveSCEVType(RHS->getType()) && 2763 "SCEVUDivExpr operand types don't match!"); 2764 2765 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2766 if (RHSC->getValue()->equalsInt(1)) 2767 return LHS; // X udiv 1 --> x 2768 // If the denominator is zero, the result of the udiv is undefined. Don't 2769 // try to analyze it, because the resolution chosen here may differ from 2770 // the resolution chosen in other parts of the compiler. 2771 if (!RHSC->getValue()->isZero()) { 2772 // Determine if the division can be folded into the operands of 2773 // its operands. 2774 // TODO: Generalize this to non-constants by using known-bits information. 2775 Type *Ty = LHS->getType(); 2776 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2777 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2778 // For non-power-of-two values, effectively round the value up to the 2779 // nearest power of two. 2780 if (!RHSC->getAPInt().isPowerOf2()) 2781 ++MaxShiftAmt; 2782 IntegerType *ExtTy = 2783 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2784 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2785 if (const SCEVConstant *Step = 2786 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2787 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2788 const APInt &StepInt = Step->getAPInt(); 2789 const APInt &DivInt = RHSC->getAPInt(); 2790 if (!StepInt.urem(DivInt) && 2791 getZeroExtendExpr(AR, ExtTy) == 2792 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2793 getZeroExtendExpr(Step, ExtTy), 2794 AR->getLoop(), SCEV::FlagAnyWrap)) { 2795 SmallVector<const SCEV *, 4> Operands; 2796 for (const SCEV *Op : AR->operands()) 2797 Operands.push_back(getUDivExpr(Op, RHS)); 2798 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2799 } 2800 /// Get a canonical UDivExpr for a recurrence. 2801 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2802 // We can currently only fold X%N if X is constant. 2803 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2804 if (StartC && !DivInt.urem(StepInt) && 2805 getZeroExtendExpr(AR, ExtTy) == 2806 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2807 getZeroExtendExpr(Step, ExtTy), 2808 AR->getLoop(), SCEV::FlagAnyWrap)) { 2809 const APInt &StartInt = StartC->getAPInt(); 2810 const APInt &StartRem = StartInt.urem(StepInt); 2811 if (StartRem != 0) 2812 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2813 AR->getLoop(), SCEV::FlagNW); 2814 } 2815 } 2816 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2817 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2818 SmallVector<const SCEV *, 4> Operands; 2819 for (const SCEV *Op : M->operands()) 2820 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2821 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2822 // Find an operand that's safely divisible. 2823 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2824 const SCEV *Op = M->getOperand(i); 2825 const SCEV *Div = getUDivExpr(Op, RHSC); 2826 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2827 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2828 M->op_end()); 2829 Operands[i] = Div; 2830 return getMulExpr(Operands); 2831 } 2832 } 2833 } 2834 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2835 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2836 SmallVector<const SCEV *, 4> Operands; 2837 for (const SCEV *Op : A->operands()) 2838 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2839 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2840 Operands.clear(); 2841 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2842 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2843 if (isa<SCEVUDivExpr>(Op) || 2844 getMulExpr(Op, RHS) != A->getOperand(i)) 2845 break; 2846 Operands.push_back(Op); 2847 } 2848 if (Operands.size() == A->getNumOperands()) 2849 return getAddExpr(Operands); 2850 } 2851 } 2852 2853 // Fold if both operands are constant. 2854 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2855 Constant *LHSCV = LHSC->getValue(); 2856 Constant *RHSCV = RHSC->getValue(); 2857 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2858 RHSCV))); 2859 } 2860 } 2861 } 2862 2863 FoldingSetNodeID ID; 2864 ID.AddInteger(scUDivExpr); 2865 ID.AddPointer(LHS); 2866 ID.AddPointer(RHS); 2867 void *IP = nullptr; 2868 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2869 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2870 LHS, RHS); 2871 UniqueSCEVs.InsertNode(S, IP); 2872 return S; 2873 } 2874 2875 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2876 APInt A = C1->getAPInt().abs(); 2877 APInt B = C2->getAPInt().abs(); 2878 uint32_t ABW = A.getBitWidth(); 2879 uint32_t BBW = B.getBitWidth(); 2880 2881 if (ABW > BBW) 2882 B = B.zext(ABW); 2883 else if (ABW < BBW) 2884 A = A.zext(BBW); 2885 2886 return APIntOps::GreatestCommonDivisor(A, B); 2887 } 2888 2889 /// Get a canonical unsigned division expression, or something simpler if 2890 /// possible. There is no representation for an exact udiv in SCEV IR, but we 2891 /// can attempt to remove factors from the LHS and RHS. We can't do this when 2892 /// it's not exact because the udiv may be clearing bits. 2893 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2894 const SCEV *RHS) { 2895 // TODO: we could try to find factors in all sorts of things, but for now we 2896 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2897 // end of this file for inspiration. 2898 2899 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2900 if (!Mul || !Mul->hasNoUnsignedWrap()) 2901 return getUDivExpr(LHS, RHS); 2902 2903 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2904 // If the mulexpr multiplies by a constant, then that constant must be the 2905 // first element of the mulexpr. 2906 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2907 if (LHSCst == RHSCst) { 2908 SmallVector<const SCEV *, 2> Operands; 2909 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2910 return getMulExpr(Operands); 2911 } 2912 2913 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2914 // that there's a factor provided by one of the other terms. We need to 2915 // check. 2916 APInt Factor = gcd(LHSCst, RHSCst); 2917 if (!Factor.isIntN(1)) { 2918 LHSCst = 2919 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 2920 RHSCst = 2921 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 2922 SmallVector<const SCEV *, 2> Operands; 2923 Operands.push_back(LHSCst); 2924 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2925 LHS = getMulExpr(Operands); 2926 RHS = RHSCst; 2927 Mul = dyn_cast<SCEVMulExpr>(LHS); 2928 if (!Mul) 2929 return getUDivExactExpr(LHS, RHS); 2930 } 2931 } 2932 } 2933 2934 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2935 if (Mul->getOperand(i) == RHS) { 2936 SmallVector<const SCEV *, 2> Operands; 2937 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2938 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2939 return getMulExpr(Operands); 2940 } 2941 } 2942 2943 return getUDivExpr(LHS, RHS); 2944 } 2945 2946 /// Get an add recurrence expression for the specified loop. Simplify the 2947 /// expression as much as possible. 2948 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2949 const Loop *L, 2950 SCEV::NoWrapFlags Flags) { 2951 SmallVector<const SCEV *, 4> Operands; 2952 Operands.push_back(Start); 2953 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2954 if (StepChrec->getLoop() == L) { 2955 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2956 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2957 } 2958 2959 Operands.push_back(Step); 2960 return getAddRecExpr(Operands, L, Flags); 2961 } 2962 2963 /// Get an add recurrence expression for the specified loop. Simplify the 2964 /// expression as much as possible. 2965 const SCEV * 2966 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2967 const Loop *L, SCEV::NoWrapFlags Flags) { 2968 if (Operands.size() == 1) return Operands[0]; 2969 #ifndef NDEBUG 2970 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2971 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2972 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2973 "SCEVAddRecExpr operand types don't match!"); 2974 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2975 assert(isLoopInvariant(Operands[i], L) && 2976 "SCEVAddRecExpr operand is not loop-invariant!"); 2977 #endif 2978 2979 if (Operands.back()->isZero()) { 2980 Operands.pop_back(); 2981 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2982 } 2983 2984 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2985 // use that information to infer NUW and NSW flags. However, computing a 2986 // BE count requires calling getAddRecExpr, so we may not yet have a 2987 // meaningful BE count at this point (and if we don't, we'd be stuck 2988 // with a SCEVCouldNotCompute as the cached BE count). 2989 2990 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2991 2992 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2993 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2994 const Loop *NestedLoop = NestedAR->getLoop(); 2995 if (L->contains(NestedLoop) 2996 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2997 : (!NestedLoop->contains(L) && 2998 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2999 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3000 NestedAR->op_end()); 3001 Operands[0] = NestedAR->getStart(); 3002 // AddRecs require their operands be loop-invariant with respect to their 3003 // loops. Don't perform this transformation if it would break this 3004 // requirement. 3005 bool AllInvariant = all_of( 3006 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3007 3008 if (AllInvariant) { 3009 // Create a recurrence for the outer loop with the same step size. 3010 // 3011 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3012 // inner recurrence has the same property. 3013 SCEV::NoWrapFlags OuterFlags = 3014 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3015 3016 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3017 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3018 return isLoopInvariant(Op, NestedLoop); 3019 }); 3020 3021 if (AllInvariant) { 3022 // Ok, both add recurrences are valid after the transformation. 3023 // 3024 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3025 // the outer recurrence has the same property. 3026 SCEV::NoWrapFlags InnerFlags = 3027 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3028 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3029 } 3030 } 3031 // Reset Operands to its original state. 3032 Operands[0] = NestedAR; 3033 } 3034 } 3035 3036 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3037 // already have one, otherwise create a new one. 3038 FoldingSetNodeID ID; 3039 ID.AddInteger(scAddRecExpr); 3040 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3041 ID.AddPointer(Operands[i]); 3042 ID.AddPointer(L); 3043 void *IP = nullptr; 3044 SCEVAddRecExpr *S = 3045 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3046 if (!S) { 3047 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 3048 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 3049 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 3050 O, Operands.size(), L); 3051 UniqueSCEVs.InsertNode(S, IP); 3052 } 3053 S->setNoWrapFlags(Flags); 3054 return S; 3055 } 3056 3057 const SCEV * 3058 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3059 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3060 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3061 // getSCEV(Base)->getType() has the same address space as Base->getType() 3062 // because SCEV::getType() preserves the address space. 3063 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3064 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3065 // instruction to its SCEV, because the Instruction may be guarded by control 3066 // flow and the no-overflow bits may not be valid for the expression in any 3067 // context. This can be fixed similarly to how these flags are handled for 3068 // adds. 3069 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3070 : SCEV::FlagAnyWrap; 3071 3072 const SCEV *TotalOffset = getZero(IntPtrTy); 3073 // The array size is unimportant. The first thing we do on CurTy is getting 3074 // its element type. 3075 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3076 for (const SCEV *IndexExpr : IndexExprs) { 3077 // Compute the (potentially symbolic) offset in bytes for this index. 3078 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3079 // For a struct, add the member offset. 3080 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3081 unsigned FieldNo = Index->getZExtValue(); 3082 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3083 3084 // Add the field offset to the running total offset. 3085 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3086 3087 // Update CurTy to the type of the field at Index. 3088 CurTy = STy->getTypeAtIndex(Index); 3089 } else { 3090 // Update CurTy to its element type. 3091 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3092 // For an array, add the element offset, explicitly scaled. 3093 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3094 // Getelementptr indices are signed. 3095 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3096 3097 // Multiply the index by the element size to compute the element offset. 3098 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3099 3100 // Add the element offset to the running total offset. 3101 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3102 } 3103 } 3104 3105 // Add the total offset from all the GEP indices to the base. 3106 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3107 } 3108 3109 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3110 const SCEV *RHS) { 3111 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3112 return getSMaxExpr(Ops); 3113 } 3114 3115 const SCEV * 3116 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3117 assert(!Ops.empty() && "Cannot get empty smax!"); 3118 if (Ops.size() == 1) return Ops[0]; 3119 #ifndef NDEBUG 3120 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3121 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3122 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3123 "SCEVSMaxExpr operand types don't match!"); 3124 #endif 3125 3126 // Sort by complexity, this groups all similar expression types together. 3127 GroupByComplexity(Ops, &LI); 3128 3129 // If there are any constants, fold them together. 3130 unsigned Idx = 0; 3131 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3132 ++Idx; 3133 assert(Idx < Ops.size()); 3134 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3135 // We found two constants, fold them together! 3136 ConstantInt *Fold = ConstantInt::get( 3137 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3138 Ops[0] = getConstant(Fold); 3139 Ops.erase(Ops.begin()+1); // Erase the folded element 3140 if (Ops.size() == 1) return Ops[0]; 3141 LHSC = cast<SCEVConstant>(Ops[0]); 3142 } 3143 3144 // If we are left with a constant minimum-int, strip it off. 3145 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3146 Ops.erase(Ops.begin()); 3147 --Idx; 3148 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3149 // If we have an smax with a constant maximum-int, it will always be 3150 // maximum-int. 3151 return Ops[0]; 3152 } 3153 3154 if (Ops.size() == 1) return Ops[0]; 3155 } 3156 3157 // Find the first SMax 3158 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3159 ++Idx; 3160 3161 // Check to see if one of the operands is an SMax. If so, expand its operands 3162 // onto our operand list, and recurse to simplify. 3163 if (Idx < Ops.size()) { 3164 bool DeletedSMax = false; 3165 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3166 Ops.erase(Ops.begin()+Idx); 3167 Ops.append(SMax->op_begin(), SMax->op_end()); 3168 DeletedSMax = true; 3169 } 3170 3171 if (DeletedSMax) 3172 return getSMaxExpr(Ops); 3173 } 3174 3175 // Okay, check to see if the same value occurs in the operand list twice. If 3176 // so, delete one. Since we sorted the list, these values are required to 3177 // be adjacent. 3178 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3179 // X smax Y smax Y --> X smax Y 3180 // X smax Y --> X, if X is always greater than Y 3181 if (Ops[i] == Ops[i+1] || 3182 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3183 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3184 --i; --e; 3185 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3186 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3187 --i; --e; 3188 } 3189 3190 if (Ops.size() == 1) return Ops[0]; 3191 3192 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3193 3194 // Okay, it looks like we really DO need an smax expr. Check to see if we 3195 // already have one, otherwise create a new one. 3196 FoldingSetNodeID ID; 3197 ID.AddInteger(scSMaxExpr); 3198 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3199 ID.AddPointer(Ops[i]); 3200 void *IP = nullptr; 3201 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3202 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3203 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3204 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3205 O, Ops.size()); 3206 UniqueSCEVs.InsertNode(S, IP); 3207 return S; 3208 } 3209 3210 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3211 const SCEV *RHS) { 3212 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3213 return getUMaxExpr(Ops); 3214 } 3215 3216 const SCEV * 3217 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3218 assert(!Ops.empty() && "Cannot get empty umax!"); 3219 if (Ops.size() == 1) return Ops[0]; 3220 #ifndef NDEBUG 3221 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3222 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3223 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3224 "SCEVUMaxExpr operand types don't match!"); 3225 #endif 3226 3227 // Sort by complexity, this groups all similar expression types together. 3228 GroupByComplexity(Ops, &LI); 3229 3230 // If there are any constants, fold them together. 3231 unsigned Idx = 0; 3232 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3233 ++Idx; 3234 assert(Idx < Ops.size()); 3235 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3236 // We found two constants, fold them together! 3237 ConstantInt *Fold = ConstantInt::get( 3238 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3239 Ops[0] = getConstant(Fold); 3240 Ops.erase(Ops.begin()+1); // Erase the folded element 3241 if (Ops.size() == 1) return Ops[0]; 3242 LHSC = cast<SCEVConstant>(Ops[0]); 3243 } 3244 3245 // If we are left with a constant minimum-int, strip it off. 3246 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3247 Ops.erase(Ops.begin()); 3248 --Idx; 3249 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3250 // If we have an umax with a constant maximum-int, it will always be 3251 // maximum-int. 3252 return Ops[0]; 3253 } 3254 3255 if (Ops.size() == 1) return Ops[0]; 3256 } 3257 3258 // Find the first UMax 3259 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3260 ++Idx; 3261 3262 // Check to see if one of the operands is a UMax. If so, expand its operands 3263 // onto our operand list, and recurse to simplify. 3264 if (Idx < Ops.size()) { 3265 bool DeletedUMax = false; 3266 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3267 Ops.erase(Ops.begin()+Idx); 3268 Ops.append(UMax->op_begin(), UMax->op_end()); 3269 DeletedUMax = true; 3270 } 3271 3272 if (DeletedUMax) 3273 return getUMaxExpr(Ops); 3274 } 3275 3276 // Okay, check to see if the same value occurs in the operand list twice. If 3277 // so, delete one. Since we sorted the list, these values are required to 3278 // be adjacent. 3279 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3280 // X umax Y umax Y --> X umax Y 3281 // X umax Y --> X, if X is always greater than Y 3282 if (Ops[i] == Ops[i+1] || 3283 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3284 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3285 --i; --e; 3286 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3287 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3288 --i; --e; 3289 } 3290 3291 if (Ops.size() == 1) return Ops[0]; 3292 3293 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3294 3295 // Okay, it looks like we really DO need a umax expr. Check to see if we 3296 // already have one, otherwise create a new one. 3297 FoldingSetNodeID ID; 3298 ID.AddInteger(scUMaxExpr); 3299 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3300 ID.AddPointer(Ops[i]); 3301 void *IP = nullptr; 3302 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3303 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3304 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3305 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3306 O, Ops.size()); 3307 UniqueSCEVs.InsertNode(S, IP); 3308 return S; 3309 } 3310 3311 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3312 const SCEV *RHS) { 3313 // ~smax(~x, ~y) == smin(x, y). 3314 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3315 } 3316 3317 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3318 const SCEV *RHS) { 3319 // ~umax(~x, ~y) == umin(x, y) 3320 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3321 } 3322 3323 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3324 // We can bypass creating a target-independent 3325 // constant expression and then folding it back into a ConstantInt. 3326 // This is just a compile-time optimization. 3327 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3328 } 3329 3330 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3331 StructType *STy, 3332 unsigned FieldNo) { 3333 // We can bypass creating a target-independent 3334 // constant expression and then folding it back into a ConstantInt. 3335 // This is just a compile-time optimization. 3336 return getConstant( 3337 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3338 } 3339 3340 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3341 // Don't attempt to do anything other than create a SCEVUnknown object 3342 // here. createSCEV only calls getUnknown after checking for all other 3343 // interesting possibilities, and any other code that calls getUnknown 3344 // is doing so in order to hide a value from SCEV canonicalization. 3345 3346 FoldingSetNodeID ID; 3347 ID.AddInteger(scUnknown); 3348 ID.AddPointer(V); 3349 void *IP = nullptr; 3350 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3351 assert(cast<SCEVUnknown>(S)->getValue() == V && 3352 "Stale SCEVUnknown in uniquing map!"); 3353 return S; 3354 } 3355 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3356 FirstUnknown); 3357 FirstUnknown = cast<SCEVUnknown>(S); 3358 UniqueSCEVs.InsertNode(S, IP); 3359 return S; 3360 } 3361 3362 //===----------------------------------------------------------------------===// 3363 // Basic SCEV Analysis and PHI Idiom Recognition Code 3364 // 3365 3366 /// Test if values of the given type are analyzable within the SCEV 3367 /// framework. This primarily includes integer types, and it can optionally 3368 /// include pointer types if the ScalarEvolution class has access to 3369 /// target-specific information. 3370 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3371 // Integers and pointers are always SCEVable. 3372 return Ty->isIntegerTy() || Ty->isPointerTy(); 3373 } 3374 3375 /// Return the size in bits of the specified type, for which isSCEVable must 3376 /// return true. 3377 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3378 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3379 return getDataLayout().getTypeSizeInBits(Ty); 3380 } 3381 3382 /// Return a type with the same bitwidth as the given type and which represents 3383 /// how SCEV will treat the given type, for which isSCEVable must return 3384 /// true. For pointer types, this is the pointer-sized integer type. 3385 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3386 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3387 3388 if (Ty->isIntegerTy()) 3389 return Ty; 3390 3391 // The only other support type is pointer. 3392 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3393 return getDataLayout().getIntPtrType(Ty); 3394 } 3395 3396 const SCEV *ScalarEvolution::getCouldNotCompute() { 3397 return CouldNotCompute.get(); 3398 } 3399 3400 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3401 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3402 auto *SU = dyn_cast<SCEVUnknown>(S); 3403 return SU && SU->getValue() == nullptr; 3404 }); 3405 3406 return !ContainsNulls; 3407 } 3408 3409 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3410 HasRecMapType::iterator I = HasRecMap.find(S); 3411 if (I != HasRecMap.end()) 3412 return I->second; 3413 3414 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3415 HasRecMap.insert({S, FoundAddRec}); 3416 return FoundAddRec; 3417 } 3418 3419 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3420 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3421 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3422 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3423 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3424 if (!Add) 3425 return {S, nullptr}; 3426 3427 if (Add->getNumOperands() != 2) 3428 return {S, nullptr}; 3429 3430 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3431 if (!ConstOp) 3432 return {S, nullptr}; 3433 3434 return {Add->getOperand(1), ConstOp->getValue()}; 3435 } 3436 3437 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3438 /// by the value and offset from any ValueOffsetPair in the set. 3439 SetVector<ScalarEvolution::ValueOffsetPair> * 3440 ScalarEvolution::getSCEVValues(const SCEV *S) { 3441 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3442 if (SI == ExprValueMap.end()) 3443 return nullptr; 3444 #ifndef NDEBUG 3445 if (VerifySCEVMap) { 3446 // Check there is no dangling Value in the set returned. 3447 for (const auto &VE : SI->second) 3448 assert(ValueExprMap.count(VE.first)); 3449 } 3450 #endif 3451 return &SI->second; 3452 } 3453 3454 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3455 /// cannot be used separately. eraseValueFromMap should be used to remove 3456 /// V from ValueExprMap and ExprValueMap at the same time. 3457 void ScalarEvolution::eraseValueFromMap(Value *V) { 3458 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3459 if (I != ValueExprMap.end()) { 3460 const SCEV *S = I->second; 3461 // Remove {V, 0} from the set of ExprValueMap[S] 3462 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3463 SV->remove({V, nullptr}); 3464 3465 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3466 const SCEV *Stripped; 3467 ConstantInt *Offset; 3468 std::tie(Stripped, Offset) = splitAddExpr(S); 3469 if (Offset != nullptr) { 3470 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3471 SV->remove({V, Offset}); 3472 } 3473 ValueExprMap.erase(V); 3474 } 3475 } 3476 3477 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3478 /// create a new one. 3479 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3480 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3481 3482 const SCEV *S = getExistingSCEV(V); 3483 if (S == nullptr) { 3484 S = createSCEV(V); 3485 // During PHI resolution, it is possible to create two SCEVs for the same 3486 // V, so it is needed to double check whether V->S is inserted into 3487 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3488 std::pair<ValueExprMapType::iterator, bool> Pair = 3489 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3490 if (Pair.second) { 3491 ExprValueMap[S].insert({V, nullptr}); 3492 3493 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3494 // ExprValueMap. 3495 const SCEV *Stripped = S; 3496 ConstantInt *Offset = nullptr; 3497 std::tie(Stripped, Offset) = splitAddExpr(S); 3498 // If stripped is SCEVUnknown, don't bother to save 3499 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3500 // increase the complexity of the expansion code. 3501 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3502 // because it may generate add/sub instead of GEP in SCEV expansion. 3503 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3504 !isa<GetElementPtrInst>(V)) 3505 ExprValueMap[Stripped].insert({V, Offset}); 3506 } 3507 } 3508 return S; 3509 } 3510 3511 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3512 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3513 3514 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3515 if (I != ValueExprMap.end()) { 3516 const SCEV *S = I->second; 3517 if (checkValidity(S)) 3518 return S; 3519 eraseValueFromMap(V); 3520 forgetMemoizedResults(S); 3521 } 3522 return nullptr; 3523 } 3524 3525 /// Return a SCEV corresponding to -V = -1*V 3526 /// 3527 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3528 SCEV::NoWrapFlags Flags) { 3529 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3530 return getConstant( 3531 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3532 3533 Type *Ty = V->getType(); 3534 Ty = getEffectiveSCEVType(Ty); 3535 return getMulExpr( 3536 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3537 } 3538 3539 /// Return a SCEV corresponding to ~V = -1-V 3540 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3541 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3542 return getConstant( 3543 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3544 3545 Type *Ty = V->getType(); 3546 Ty = getEffectiveSCEVType(Ty); 3547 const SCEV *AllOnes = 3548 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3549 return getMinusSCEV(AllOnes, V); 3550 } 3551 3552 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3553 SCEV::NoWrapFlags Flags) { 3554 // Fast path: X - X --> 0. 3555 if (LHS == RHS) 3556 return getZero(LHS->getType()); 3557 3558 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3559 // makes it so that we cannot make much use of NUW. 3560 auto AddFlags = SCEV::FlagAnyWrap; 3561 const bool RHSIsNotMinSigned = 3562 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3563 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3564 // Let M be the minimum representable signed value. Then (-1)*RHS 3565 // signed-wraps if and only if RHS is M. That can happen even for 3566 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3567 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3568 // (-1)*RHS, we need to prove that RHS != M. 3569 // 3570 // If LHS is non-negative and we know that LHS - RHS does not 3571 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3572 // either by proving that RHS > M or that LHS >= 0. 3573 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3574 AddFlags = SCEV::FlagNSW; 3575 } 3576 } 3577 3578 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3579 // RHS is NSW and LHS >= 0. 3580 // 3581 // The difficulty here is that the NSW flag may have been proven 3582 // relative to a loop that is to be found in a recurrence in LHS and 3583 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3584 // larger scope than intended. 3585 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3586 3587 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3588 } 3589 3590 const SCEV * 3591 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3592 Type *SrcTy = V->getType(); 3593 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3594 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3595 "Cannot truncate or zero extend with non-integer arguments!"); 3596 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3597 return V; // No conversion 3598 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3599 return getTruncateExpr(V, Ty); 3600 return getZeroExtendExpr(V, Ty); 3601 } 3602 3603 const SCEV * 3604 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3605 Type *Ty) { 3606 Type *SrcTy = V->getType(); 3607 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3608 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3609 "Cannot truncate or zero extend with non-integer arguments!"); 3610 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3611 return V; // No conversion 3612 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3613 return getTruncateExpr(V, Ty); 3614 return getSignExtendExpr(V, Ty); 3615 } 3616 3617 const SCEV * 3618 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3619 Type *SrcTy = V->getType(); 3620 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3621 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3622 "Cannot noop or zero extend with non-integer arguments!"); 3623 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3624 "getNoopOrZeroExtend cannot truncate!"); 3625 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3626 return V; // No conversion 3627 return getZeroExtendExpr(V, Ty); 3628 } 3629 3630 const SCEV * 3631 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3632 Type *SrcTy = V->getType(); 3633 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3634 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3635 "Cannot noop or sign extend with non-integer arguments!"); 3636 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3637 "getNoopOrSignExtend cannot truncate!"); 3638 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3639 return V; // No conversion 3640 return getSignExtendExpr(V, Ty); 3641 } 3642 3643 const SCEV * 3644 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3645 Type *SrcTy = V->getType(); 3646 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3647 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3648 "Cannot noop or any extend with non-integer arguments!"); 3649 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3650 "getNoopOrAnyExtend cannot truncate!"); 3651 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3652 return V; // No conversion 3653 return getAnyExtendExpr(V, Ty); 3654 } 3655 3656 const SCEV * 3657 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3658 Type *SrcTy = V->getType(); 3659 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3660 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3661 "Cannot truncate or noop with non-integer arguments!"); 3662 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3663 "getTruncateOrNoop cannot extend!"); 3664 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3665 return V; // No conversion 3666 return getTruncateExpr(V, Ty); 3667 } 3668 3669 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3670 const SCEV *RHS) { 3671 const SCEV *PromotedLHS = LHS; 3672 const SCEV *PromotedRHS = RHS; 3673 3674 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3675 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3676 else 3677 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3678 3679 return getUMaxExpr(PromotedLHS, PromotedRHS); 3680 } 3681 3682 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3683 const SCEV *RHS) { 3684 const SCEV *PromotedLHS = LHS; 3685 const SCEV *PromotedRHS = RHS; 3686 3687 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3688 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3689 else 3690 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3691 3692 return getUMinExpr(PromotedLHS, PromotedRHS); 3693 } 3694 3695 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3696 // A pointer operand may evaluate to a nonpointer expression, such as null. 3697 if (!V->getType()->isPointerTy()) 3698 return V; 3699 3700 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3701 return getPointerBase(Cast->getOperand()); 3702 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3703 const SCEV *PtrOp = nullptr; 3704 for (const SCEV *NAryOp : NAry->operands()) { 3705 if (NAryOp->getType()->isPointerTy()) { 3706 // Cannot find the base of an expression with multiple pointer operands. 3707 if (PtrOp) 3708 return V; 3709 PtrOp = NAryOp; 3710 } 3711 } 3712 if (!PtrOp) 3713 return V; 3714 return getPointerBase(PtrOp); 3715 } 3716 return V; 3717 } 3718 3719 /// Push users of the given Instruction onto the given Worklist. 3720 static void 3721 PushDefUseChildren(Instruction *I, 3722 SmallVectorImpl<Instruction *> &Worklist) { 3723 // Push the def-use children onto the Worklist stack. 3724 for (User *U : I->users()) 3725 Worklist.push_back(cast<Instruction>(U)); 3726 } 3727 3728 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3729 SmallVector<Instruction *, 16> Worklist; 3730 PushDefUseChildren(PN, Worklist); 3731 3732 SmallPtrSet<Instruction *, 8> Visited; 3733 Visited.insert(PN); 3734 while (!Worklist.empty()) { 3735 Instruction *I = Worklist.pop_back_val(); 3736 if (!Visited.insert(I).second) 3737 continue; 3738 3739 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3740 if (It != ValueExprMap.end()) { 3741 const SCEV *Old = It->second; 3742 3743 // Short-circuit the def-use traversal if the symbolic name 3744 // ceases to appear in expressions. 3745 if (Old != SymName && !hasOperand(Old, SymName)) 3746 continue; 3747 3748 // SCEVUnknown for a PHI either means that it has an unrecognized 3749 // structure, it's a PHI that's in the progress of being computed 3750 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3751 // additional loop trip count information isn't going to change anything. 3752 // In the second case, createNodeForPHI will perform the necessary 3753 // updates on its own when it gets to that point. In the third, we do 3754 // want to forget the SCEVUnknown. 3755 if (!isa<PHINode>(I) || 3756 !isa<SCEVUnknown>(Old) || 3757 (I != PN && Old == SymName)) { 3758 eraseValueFromMap(It->first); 3759 forgetMemoizedResults(Old); 3760 } 3761 } 3762 3763 PushDefUseChildren(I, Worklist); 3764 } 3765 } 3766 3767 namespace { 3768 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3769 public: 3770 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3771 ScalarEvolution &SE) { 3772 SCEVInitRewriter Rewriter(L, SE); 3773 const SCEV *Result = Rewriter.visit(S); 3774 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3775 } 3776 3777 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3778 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3779 3780 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3781 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3782 Valid = false; 3783 return Expr; 3784 } 3785 3786 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3787 // Only allow AddRecExprs for this loop. 3788 if (Expr->getLoop() == L) 3789 return Expr->getStart(); 3790 Valid = false; 3791 return Expr; 3792 } 3793 3794 bool isValid() { return Valid; } 3795 3796 private: 3797 const Loop *L; 3798 bool Valid; 3799 }; 3800 3801 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3802 public: 3803 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3804 ScalarEvolution &SE) { 3805 SCEVShiftRewriter Rewriter(L, SE); 3806 const SCEV *Result = Rewriter.visit(S); 3807 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3808 } 3809 3810 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3811 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3812 3813 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3814 // Only allow AddRecExprs for this loop. 3815 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3816 Valid = false; 3817 return Expr; 3818 } 3819 3820 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3821 if (Expr->getLoop() == L && Expr->isAffine()) 3822 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3823 Valid = false; 3824 return Expr; 3825 } 3826 bool isValid() { return Valid; } 3827 3828 private: 3829 const Loop *L; 3830 bool Valid; 3831 }; 3832 } // end anonymous namespace 3833 3834 SCEV::NoWrapFlags 3835 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 3836 if (!AR->isAffine()) 3837 return SCEV::FlagAnyWrap; 3838 3839 typedef OverflowingBinaryOperator OBO; 3840 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 3841 3842 if (!AR->hasNoSignedWrap()) { 3843 ConstantRange AddRecRange = getSignedRange(AR); 3844 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 3845 3846 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3847 Instruction::Add, IncRange, OBO::NoSignedWrap); 3848 if (NSWRegion.contains(AddRecRange)) 3849 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 3850 } 3851 3852 if (!AR->hasNoUnsignedWrap()) { 3853 ConstantRange AddRecRange = getUnsignedRange(AR); 3854 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 3855 3856 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3857 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 3858 if (NUWRegion.contains(AddRecRange)) 3859 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 3860 } 3861 3862 return Result; 3863 } 3864 3865 namespace { 3866 /// Represents an abstract binary operation. This may exist as a 3867 /// normal instruction or constant expression, or may have been 3868 /// derived from an expression tree. 3869 struct BinaryOp { 3870 unsigned Opcode; 3871 Value *LHS; 3872 Value *RHS; 3873 bool IsNSW; 3874 bool IsNUW; 3875 3876 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 3877 /// constant expression. 3878 Operator *Op; 3879 3880 explicit BinaryOp(Operator *Op) 3881 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 3882 IsNSW(false), IsNUW(false), Op(Op) { 3883 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 3884 IsNSW = OBO->hasNoSignedWrap(); 3885 IsNUW = OBO->hasNoUnsignedWrap(); 3886 } 3887 } 3888 3889 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 3890 bool IsNUW = false) 3891 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 3892 Op(nullptr) {} 3893 }; 3894 } 3895 3896 3897 /// Try to map \p V into a BinaryOp, and return \c None on failure. 3898 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 3899 auto *Op = dyn_cast<Operator>(V); 3900 if (!Op) 3901 return None; 3902 3903 // Implementation detail: all the cleverness here should happen without 3904 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 3905 // SCEV expressions when possible, and we should not break that. 3906 3907 switch (Op->getOpcode()) { 3908 case Instruction::Add: 3909 case Instruction::Sub: 3910 case Instruction::Mul: 3911 case Instruction::UDiv: 3912 case Instruction::And: 3913 case Instruction::Or: 3914 case Instruction::AShr: 3915 case Instruction::Shl: 3916 return BinaryOp(Op); 3917 3918 case Instruction::Xor: 3919 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 3920 // If the RHS of the xor is a signbit, then this is just an add. 3921 // Instcombine turns add of signbit into xor as a strength reduction step. 3922 if (RHSC->getValue().isSignBit()) 3923 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 3924 return BinaryOp(Op); 3925 3926 case Instruction::LShr: 3927 // Turn logical shift right of a constant into a unsigned divide. 3928 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 3929 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 3930 3931 // If the shift count is not less than the bitwidth, the result of 3932 // the shift is undefined. Don't try to analyze it, because the 3933 // resolution chosen here may differ from the resolution chosen in 3934 // other parts of the compiler. 3935 if (SA->getValue().ult(BitWidth)) { 3936 Constant *X = 3937 ConstantInt::get(SA->getContext(), 3938 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3939 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 3940 } 3941 } 3942 return BinaryOp(Op); 3943 3944 case Instruction::ExtractValue: { 3945 auto *EVI = cast<ExtractValueInst>(Op); 3946 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 3947 break; 3948 3949 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 3950 if (!CI) 3951 break; 3952 3953 if (auto *F = CI->getCalledFunction()) 3954 switch (F->getIntrinsicID()) { 3955 case Intrinsic::sadd_with_overflow: 3956 case Intrinsic::uadd_with_overflow: { 3957 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 3958 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3959 CI->getArgOperand(1)); 3960 3961 // Now that we know that all uses of the arithmetic-result component of 3962 // CI are guarded by the overflow check, we can go ahead and pretend 3963 // that the arithmetic is non-overflowing. 3964 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 3965 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3966 CI->getArgOperand(1), /* IsNSW = */ true, 3967 /* IsNUW = */ false); 3968 else 3969 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3970 CI->getArgOperand(1), /* IsNSW = */ false, 3971 /* IsNUW*/ true); 3972 } 3973 3974 case Intrinsic::ssub_with_overflow: 3975 case Intrinsic::usub_with_overflow: 3976 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 3977 CI->getArgOperand(1)); 3978 3979 case Intrinsic::smul_with_overflow: 3980 case Intrinsic::umul_with_overflow: 3981 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 3982 CI->getArgOperand(1)); 3983 default: 3984 break; 3985 } 3986 } 3987 3988 default: 3989 break; 3990 } 3991 3992 return None; 3993 } 3994 3995 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3996 const Loop *L = LI.getLoopFor(PN->getParent()); 3997 if (!L || L->getHeader() != PN->getParent()) 3998 return nullptr; 3999 4000 // The loop may have multiple entrances or multiple exits; we can analyze 4001 // this phi as an addrec if it has a unique entry value and a unique 4002 // backedge value. 4003 Value *BEValueV = nullptr, *StartValueV = nullptr; 4004 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4005 Value *V = PN->getIncomingValue(i); 4006 if (L->contains(PN->getIncomingBlock(i))) { 4007 if (!BEValueV) { 4008 BEValueV = V; 4009 } else if (BEValueV != V) { 4010 BEValueV = nullptr; 4011 break; 4012 } 4013 } else if (!StartValueV) { 4014 StartValueV = V; 4015 } else if (StartValueV != V) { 4016 StartValueV = nullptr; 4017 break; 4018 } 4019 } 4020 if (BEValueV && StartValueV) { 4021 // While we are analyzing this PHI node, handle its value symbolically. 4022 const SCEV *SymbolicName = getUnknown(PN); 4023 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4024 "PHI node already processed?"); 4025 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4026 4027 // Using this symbolic name for the PHI, analyze the value coming around 4028 // the back-edge. 4029 const SCEV *BEValue = getSCEV(BEValueV); 4030 4031 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4032 // has a special value for the first iteration of the loop. 4033 4034 // If the value coming around the backedge is an add with the symbolic 4035 // value we just inserted, then we found a simple induction variable! 4036 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4037 // If there is a single occurrence of the symbolic value, replace it 4038 // with a recurrence. 4039 unsigned FoundIndex = Add->getNumOperands(); 4040 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4041 if (Add->getOperand(i) == SymbolicName) 4042 if (FoundIndex == e) { 4043 FoundIndex = i; 4044 break; 4045 } 4046 4047 if (FoundIndex != Add->getNumOperands()) { 4048 // Create an add with everything but the specified operand. 4049 SmallVector<const SCEV *, 8> Ops; 4050 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4051 if (i != FoundIndex) 4052 Ops.push_back(Add->getOperand(i)); 4053 const SCEV *Accum = getAddExpr(Ops); 4054 4055 // This is not a valid addrec if the step amount is varying each 4056 // loop iteration, but is not itself an addrec in this loop. 4057 if (isLoopInvariant(Accum, L) || 4058 (isa<SCEVAddRecExpr>(Accum) && 4059 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4060 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4061 4062 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4063 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4064 if (BO->IsNUW) 4065 Flags = setFlags(Flags, SCEV::FlagNUW); 4066 if (BO->IsNSW) 4067 Flags = setFlags(Flags, SCEV::FlagNSW); 4068 } 4069 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4070 // If the increment is an inbounds GEP, then we know the address 4071 // space cannot be wrapped around. We cannot make any guarantee 4072 // about signed or unsigned overflow because pointers are 4073 // unsigned but we may have a negative index from the base 4074 // pointer. We can guarantee that no unsigned wrap occurs if the 4075 // indices form a positive value. 4076 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4077 Flags = setFlags(Flags, SCEV::FlagNW); 4078 4079 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4080 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4081 Flags = setFlags(Flags, SCEV::FlagNUW); 4082 } 4083 4084 // We cannot transfer nuw and nsw flags from subtraction 4085 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4086 // for instance. 4087 } 4088 4089 const SCEV *StartVal = getSCEV(StartValueV); 4090 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4091 4092 // Okay, for the entire analysis of this edge we assumed the PHI 4093 // to be symbolic. We now need to go back and purge all of the 4094 // entries for the scalars that use the symbolic expression. 4095 forgetSymbolicName(PN, SymbolicName); 4096 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4097 4098 // We can add Flags to the post-inc expression only if we 4099 // know that it us *undefined behavior* for BEValueV to 4100 // overflow. 4101 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4102 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4103 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4104 4105 return PHISCEV; 4106 } 4107 } 4108 } else { 4109 // Otherwise, this could be a loop like this: 4110 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4111 // In this case, j = {1,+,1} and BEValue is j. 4112 // Because the other in-value of i (0) fits the evolution of BEValue 4113 // i really is an addrec evolution. 4114 // 4115 // We can generalize this saying that i is the shifted value of BEValue 4116 // by one iteration: 4117 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4118 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4119 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 4120 if (Shifted != getCouldNotCompute() && 4121 Start != getCouldNotCompute()) { 4122 const SCEV *StartVal = getSCEV(StartValueV); 4123 if (Start == StartVal) { 4124 // Okay, for the entire analysis of this edge we assumed the PHI 4125 // to be symbolic. We now need to go back and purge all of the 4126 // entries for the scalars that use the symbolic expression. 4127 forgetSymbolicName(PN, SymbolicName); 4128 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4129 return Shifted; 4130 } 4131 } 4132 } 4133 4134 // Remove the temporary PHI node SCEV that has been inserted while intending 4135 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4136 // as it will prevent later (possibly simpler) SCEV expressions to be added 4137 // to the ValueExprMap. 4138 eraseValueFromMap(PN); 4139 } 4140 4141 return nullptr; 4142 } 4143 4144 // Checks if the SCEV S is available at BB. S is considered available at BB 4145 // if S can be materialized at BB without introducing a fault. 4146 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4147 BasicBlock *BB) { 4148 struct CheckAvailable { 4149 bool TraversalDone = false; 4150 bool Available = true; 4151 4152 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4153 BasicBlock *BB = nullptr; 4154 DominatorTree &DT; 4155 4156 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4157 : L(L), BB(BB), DT(DT) {} 4158 4159 bool setUnavailable() { 4160 TraversalDone = true; 4161 Available = false; 4162 return false; 4163 } 4164 4165 bool follow(const SCEV *S) { 4166 switch (S->getSCEVType()) { 4167 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4168 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4169 // These expressions are available if their operand(s) is/are. 4170 return true; 4171 4172 case scAddRecExpr: { 4173 // We allow add recurrences that are on the loop BB is in, or some 4174 // outer loop. This guarantees availability because the value of the 4175 // add recurrence at BB is simply the "current" value of the induction 4176 // variable. We can relax this in the future; for instance an add 4177 // recurrence on a sibling dominating loop is also available at BB. 4178 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 4179 if (L && (ARLoop == L || ARLoop->contains(L))) 4180 return true; 4181 4182 return setUnavailable(); 4183 } 4184 4185 case scUnknown: { 4186 // For SCEVUnknown, we check for simple dominance. 4187 const auto *SU = cast<SCEVUnknown>(S); 4188 Value *V = SU->getValue(); 4189 4190 if (isa<Argument>(V)) 4191 return false; 4192 4193 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 4194 return false; 4195 4196 return setUnavailable(); 4197 } 4198 4199 case scUDivExpr: 4200 case scCouldNotCompute: 4201 // We do not try to smart about these at all. 4202 return setUnavailable(); 4203 } 4204 llvm_unreachable("switch should be fully covered!"); 4205 } 4206 4207 bool isDone() { return TraversalDone; } 4208 }; 4209 4210 CheckAvailable CA(L, BB, DT); 4211 SCEVTraversal<CheckAvailable> ST(CA); 4212 4213 ST.visitAll(S); 4214 return CA.Available; 4215 } 4216 4217 // Try to match a control flow sequence that branches out at BI and merges back 4218 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 4219 // match. 4220 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 4221 Value *&C, Value *&LHS, Value *&RHS) { 4222 C = BI->getCondition(); 4223 4224 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 4225 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 4226 4227 if (!LeftEdge.isSingleEdge()) 4228 return false; 4229 4230 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 4231 4232 Use &LeftUse = Merge->getOperandUse(0); 4233 Use &RightUse = Merge->getOperandUse(1); 4234 4235 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 4236 LHS = LeftUse; 4237 RHS = RightUse; 4238 return true; 4239 } 4240 4241 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4242 LHS = RightUse; 4243 RHS = LeftUse; 4244 return true; 4245 } 4246 4247 return false; 4248 } 4249 4250 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4251 auto IsReachable = 4252 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 4253 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 4254 const Loop *L = LI.getLoopFor(PN->getParent()); 4255 4256 // We don't want to break LCSSA, even in a SCEV expression tree. 4257 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4258 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4259 return nullptr; 4260 4261 // Try to match 4262 // 4263 // br %cond, label %left, label %right 4264 // left: 4265 // br label %merge 4266 // right: 4267 // br label %merge 4268 // merge: 4269 // V = phi [ %x, %left ], [ %y, %right ] 4270 // 4271 // as "select %cond, %x, %y" 4272 4273 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4274 assert(IDom && "At least the entry block should dominate PN"); 4275 4276 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4277 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4278 4279 if (BI && BI->isConditional() && 4280 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4281 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4282 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4283 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4284 } 4285 4286 return nullptr; 4287 } 4288 4289 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4290 if (const SCEV *S = createAddRecFromPHI(PN)) 4291 return S; 4292 4293 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4294 return S; 4295 4296 // If the PHI has a single incoming value, follow that value, unless the 4297 // PHI's incoming blocks are in a different loop, in which case doing so 4298 // risks breaking LCSSA form. Instcombine would normally zap these, but 4299 // it doesn't have DominatorTree information, so it may miss cases. 4300 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 4301 if (LI.replacementPreservesLCSSAForm(PN, V)) 4302 return getSCEV(V); 4303 4304 // If it's not a loop phi, we can't handle it yet. 4305 return getUnknown(PN); 4306 } 4307 4308 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4309 Value *Cond, 4310 Value *TrueVal, 4311 Value *FalseVal) { 4312 // Handle "constant" branch or select. This can occur for instance when a 4313 // loop pass transforms an inner loop and moves on to process the outer loop. 4314 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4315 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4316 4317 // Try to match some simple smax or umax patterns. 4318 auto *ICI = dyn_cast<ICmpInst>(Cond); 4319 if (!ICI) 4320 return getUnknown(I); 4321 4322 Value *LHS = ICI->getOperand(0); 4323 Value *RHS = ICI->getOperand(1); 4324 4325 switch (ICI->getPredicate()) { 4326 case ICmpInst::ICMP_SLT: 4327 case ICmpInst::ICMP_SLE: 4328 std::swap(LHS, RHS); 4329 LLVM_FALLTHROUGH; 4330 case ICmpInst::ICMP_SGT: 4331 case ICmpInst::ICMP_SGE: 4332 // a >s b ? a+x : b+x -> smax(a, b)+x 4333 // a >s b ? b+x : a+x -> smin(a, b)+x 4334 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4335 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4336 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4337 const SCEV *LA = getSCEV(TrueVal); 4338 const SCEV *RA = getSCEV(FalseVal); 4339 const SCEV *LDiff = getMinusSCEV(LA, LS); 4340 const SCEV *RDiff = getMinusSCEV(RA, RS); 4341 if (LDiff == RDiff) 4342 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4343 LDiff = getMinusSCEV(LA, RS); 4344 RDiff = getMinusSCEV(RA, LS); 4345 if (LDiff == RDiff) 4346 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4347 } 4348 break; 4349 case ICmpInst::ICMP_ULT: 4350 case ICmpInst::ICMP_ULE: 4351 std::swap(LHS, RHS); 4352 LLVM_FALLTHROUGH; 4353 case ICmpInst::ICMP_UGT: 4354 case ICmpInst::ICMP_UGE: 4355 // a >u b ? a+x : b+x -> umax(a, b)+x 4356 // a >u b ? b+x : a+x -> umin(a, b)+x 4357 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4358 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4359 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4360 const SCEV *LA = getSCEV(TrueVal); 4361 const SCEV *RA = getSCEV(FalseVal); 4362 const SCEV *LDiff = getMinusSCEV(LA, LS); 4363 const SCEV *RDiff = getMinusSCEV(RA, RS); 4364 if (LDiff == RDiff) 4365 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4366 LDiff = getMinusSCEV(LA, RS); 4367 RDiff = getMinusSCEV(RA, LS); 4368 if (LDiff == RDiff) 4369 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4370 } 4371 break; 4372 case ICmpInst::ICMP_NE: 4373 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4374 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4375 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4376 const SCEV *One = getOne(I->getType()); 4377 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4378 const SCEV *LA = getSCEV(TrueVal); 4379 const SCEV *RA = getSCEV(FalseVal); 4380 const SCEV *LDiff = getMinusSCEV(LA, LS); 4381 const SCEV *RDiff = getMinusSCEV(RA, One); 4382 if (LDiff == RDiff) 4383 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4384 } 4385 break; 4386 case ICmpInst::ICMP_EQ: 4387 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4388 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4389 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4390 const SCEV *One = getOne(I->getType()); 4391 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4392 const SCEV *LA = getSCEV(TrueVal); 4393 const SCEV *RA = getSCEV(FalseVal); 4394 const SCEV *LDiff = getMinusSCEV(LA, One); 4395 const SCEV *RDiff = getMinusSCEV(RA, LS); 4396 if (LDiff == RDiff) 4397 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4398 } 4399 break; 4400 default: 4401 break; 4402 } 4403 4404 return getUnknown(I); 4405 } 4406 4407 /// Expand GEP instructions into add and multiply operations. This allows them 4408 /// to be analyzed by regular SCEV code. 4409 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4410 // Don't attempt to analyze GEPs over unsized objects. 4411 if (!GEP->getSourceElementType()->isSized()) 4412 return getUnknown(GEP); 4413 4414 SmallVector<const SCEV *, 4> IndexExprs; 4415 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4416 IndexExprs.push_back(getSCEV(*Index)); 4417 return getGEPExpr(GEP, IndexExprs); 4418 } 4419 4420 uint32_t 4421 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4422 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4423 return C->getAPInt().countTrailingZeros(); 4424 4425 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4426 return std::min(GetMinTrailingZeros(T->getOperand()), 4427 (uint32_t)getTypeSizeInBits(T->getType())); 4428 4429 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4430 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4431 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4432 getTypeSizeInBits(E->getType()) : OpRes; 4433 } 4434 4435 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4436 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4437 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4438 getTypeSizeInBits(E->getType()) : OpRes; 4439 } 4440 4441 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4442 // The result is the min of all operands results. 4443 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4444 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4445 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4446 return MinOpRes; 4447 } 4448 4449 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4450 // The result is the sum of all operands results. 4451 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4452 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4453 for (unsigned i = 1, e = M->getNumOperands(); 4454 SumOpRes != BitWidth && i != e; ++i) 4455 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4456 BitWidth); 4457 return SumOpRes; 4458 } 4459 4460 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4461 // The result is the min of all operands results. 4462 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4463 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4464 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4465 return MinOpRes; 4466 } 4467 4468 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4469 // The result is the min of all operands results. 4470 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4471 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4472 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4473 return MinOpRes; 4474 } 4475 4476 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4477 // The result is the min of all operands results. 4478 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4479 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4480 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4481 return MinOpRes; 4482 } 4483 4484 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4485 // For a SCEVUnknown, ask ValueTracking. 4486 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4487 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4488 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4489 nullptr, &DT); 4490 return Zeros.countTrailingOnes(); 4491 } 4492 4493 // SCEVUDivExpr 4494 return 0; 4495 } 4496 4497 /// Helper method to assign a range to V from metadata present in the IR. 4498 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4499 if (Instruction *I = dyn_cast<Instruction>(V)) 4500 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4501 return getConstantRangeFromMetadata(*MD); 4502 4503 return None; 4504 } 4505 4506 /// Determine the range for a particular SCEV. If SignHint is 4507 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4508 /// with a "cleaner" unsigned (resp. signed) representation. 4509 ConstantRange 4510 ScalarEvolution::getRange(const SCEV *S, 4511 ScalarEvolution::RangeSignHint SignHint) { 4512 DenseMap<const SCEV *, ConstantRange> &Cache = 4513 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4514 : SignedRanges; 4515 4516 // See if we've computed this range already. 4517 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4518 if (I != Cache.end()) 4519 return I->second; 4520 4521 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4522 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4523 4524 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4525 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4526 4527 // If the value has known zeros, the maximum value will have those known zeros 4528 // as well. 4529 uint32_t TZ = GetMinTrailingZeros(S); 4530 if (TZ != 0) { 4531 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4532 ConservativeResult = 4533 ConstantRange(APInt::getMinValue(BitWidth), 4534 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4535 else 4536 ConservativeResult = ConstantRange( 4537 APInt::getSignedMinValue(BitWidth), 4538 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4539 } 4540 4541 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4542 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4543 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4544 X = X.add(getRange(Add->getOperand(i), SignHint)); 4545 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4546 } 4547 4548 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4549 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4550 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4551 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4552 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4553 } 4554 4555 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4556 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4557 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4558 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4559 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4560 } 4561 4562 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4563 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4564 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4565 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4566 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4567 } 4568 4569 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4570 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4571 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4572 return setRange(UDiv, SignHint, 4573 ConservativeResult.intersectWith(X.udiv(Y))); 4574 } 4575 4576 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4577 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4578 return setRange(ZExt, SignHint, 4579 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4580 } 4581 4582 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4583 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4584 return setRange(SExt, SignHint, 4585 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4586 } 4587 4588 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4589 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4590 return setRange(Trunc, SignHint, 4591 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4592 } 4593 4594 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4595 // If there's no unsigned wrap, the value will never be less than its 4596 // initial value. 4597 if (AddRec->hasNoUnsignedWrap()) 4598 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4599 if (!C->getValue()->isZero()) 4600 ConservativeResult = ConservativeResult.intersectWith( 4601 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4602 4603 // If there's no signed wrap, and all the operands have the same sign or 4604 // zero, the value won't ever change sign. 4605 if (AddRec->hasNoSignedWrap()) { 4606 bool AllNonNeg = true; 4607 bool AllNonPos = true; 4608 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4609 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4610 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4611 } 4612 if (AllNonNeg) 4613 ConservativeResult = ConservativeResult.intersectWith( 4614 ConstantRange(APInt(BitWidth, 0), 4615 APInt::getSignedMinValue(BitWidth))); 4616 else if (AllNonPos) 4617 ConservativeResult = ConservativeResult.intersectWith( 4618 ConstantRange(APInt::getSignedMinValue(BitWidth), 4619 APInt(BitWidth, 1))); 4620 } 4621 4622 // TODO: non-affine addrec 4623 if (AddRec->isAffine()) { 4624 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4625 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4626 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4627 auto RangeFromAffine = getRangeForAffineAR( 4628 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4629 BitWidth); 4630 if (!RangeFromAffine.isFullSet()) 4631 ConservativeResult = 4632 ConservativeResult.intersectWith(RangeFromAffine); 4633 4634 auto RangeFromFactoring = getRangeViaFactoring( 4635 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4636 BitWidth); 4637 if (!RangeFromFactoring.isFullSet()) 4638 ConservativeResult = 4639 ConservativeResult.intersectWith(RangeFromFactoring); 4640 } 4641 } 4642 4643 return setRange(AddRec, SignHint, ConservativeResult); 4644 } 4645 4646 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4647 // Check if the IR explicitly contains !range metadata. 4648 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4649 if (MDRange.hasValue()) 4650 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4651 4652 // Split here to avoid paying the compile-time cost of calling both 4653 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4654 // if needed. 4655 const DataLayout &DL = getDataLayout(); 4656 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4657 // For a SCEVUnknown, ask ValueTracking. 4658 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4659 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4660 if (Ones != ~Zeros + 1) 4661 ConservativeResult = 4662 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4663 } else { 4664 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4665 "generalize as needed!"); 4666 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4667 if (NS > 1) 4668 ConservativeResult = ConservativeResult.intersectWith( 4669 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4670 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4671 } 4672 4673 return setRange(U, SignHint, ConservativeResult); 4674 } 4675 4676 return setRange(S, SignHint, ConservativeResult); 4677 } 4678 4679 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 4680 const SCEV *Step, 4681 const SCEV *MaxBECount, 4682 unsigned BitWidth) { 4683 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 4684 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 4685 "Precondition!"); 4686 4687 ConstantRange Result(BitWidth, /* isFullSet = */ true); 4688 4689 // Check for overflow. This must be done with ConstantRange arithmetic 4690 // because we could be called from within the ScalarEvolution overflow 4691 // checking code. 4692 4693 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 4694 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4695 ConstantRange ZExtMaxBECountRange = MaxBECountRange.zextOrTrunc(BitWidth * 2); 4696 4697 ConstantRange StepSRange = getSignedRange(Step); 4698 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2); 4699 4700 ConstantRange StartURange = getUnsignedRange(Start); 4701 ConstantRange EndURange = 4702 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4703 4704 // Check for unsigned overflow. 4705 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2); 4706 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2); 4707 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4708 ZExtEndURange) { 4709 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4710 EndURange.getUnsignedMin()); 4711 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4712 EndURange.getUnsignedMax()); 4713 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4714 if (!IsFullRange) 4715 Result = 4716 Result.intersectWith(ConstantRange(Min, Max + 1)); 4717 } 4718 4719 ConstantRange StartSRange = getSignedRange(Start); 4720 ConstantRange EndSRange = 4721 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4722 4723 // Check for signed overflow. This must be done with ConstantRange 4724 // arithmetic because we could be called from within the ScalarEvolution 4725 // overflow checking code. 4726 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2); 4727 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2); 4728 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4729 SExtEndSRange) { 4730 APInt Min = 4731 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin()); 4732 APInt Max = 4733 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax()); 4734 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4735 if (!IsFullRange) 4736 Result = 4737 Result.intersectWith(ConstantRange(Min, Max + 1)); 4738 } 4739 4740 return Result; 4741 } 4742 4743 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 4744 const SCEV *Step, 4745 const SCEV *MaxBECount, 4746 unsigned BitWidth) { 4747 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 4748 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 4749 4750 struct SelectPattern { 4751 Value *Condition = nullptr; 4752 APInt TrueValue; 4753 APInt FalseValue; 4754 4755 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 4756 const SCEV *S) { 4757 Optional<unsigned> CastOp; 4758 APInt Offset(BitWidth, 0); 4759 4760 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 4761 "Should be!"); 4762 4763 // Peel off a constant offset: 4764 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 4765 // In the future we could consider being smarter here and handle 4766 // {Start+Step,+,Step} too. 4767 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 4768 return; 4769 4770 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 4771 S = SA->getOperand(1); 4772 } 4773 4774 // Peel off a cast operation 4775 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 4776 CastOp = SCast->getSCEVType(); 4777 S = SCast->getOperand(); 4778 } 4779 4780 using namespace llvm::PatternMatch; 4781 4782 auto *SU = dyn_cast<SCEVUnknown>(S); 4783 const APInt *TrueVal, *FalseVal; 4784 if (!SU || 4785 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 4786 m_APInt(FalseVal)))) { 4787 Condition = nullptr; 4788 return; 4789 } 4790 4791 TrueValue = *TrueVal; 4792 FalseValue = *FalseVal; 4793 4794 // Re-apply the cast we peeled off earlier 4795 if (CastOp.hasValue()) 4796 switch (*CastOp) { 4797 default: 4798 llvm_unreachable("Unknown SCEV cast type!"); 4799 4800 case scTruncate: 4801 TrueValue = TrueValue.trunc(BitWidth); 4802 FalseValue = FalseValue.trunc(BitWidth); 4803 break; 4804 case scZeroExtend: 4805 TrueValue = TrueValue.zext(BitWidth); 4806 FalseValue = FalseValue.zext(BitWidth); 4807 break; 4808 case scSignExtend: 4809 TrueValue = TrueValue.sext(BitWidth); 4810 FalseValue = FalseValue.sext(BitWidth); 4811 break; 4812 } 4813 4814 // Re-apply the constant offset we peeled off earlier 4815 TrueValue += Offset; 4816 FalseValue += Offset; 4817 } 4818 4819 bool isRecognized() { return Condition != nullptr; } 4820 }; 4821 4822 SelectPattern StartPattern(*this, BitWidth, Start); 4823 if (!StartPattern.isRecognized()) 4824 return ConstantRange(BitWidth, /* isFullSet = */ true); 4825 4826 SelectPattern StepPattern(*this, BitWidth, Step); 4827 if (!StepPattern.isRecognized()) 4828 return ConstantRange(BitWidth, /* isFullSet = */ true); 4829 4830 if (StartPattern.Condition != StepPattern.Condition) { 4831 // We don't handle this case today; but we could, by considering four 4832 // possibilities below instead of two. I'm not sure if there are cases where 4833 // that will help over what getRange already does, though. 4834 return ConstantRange(BitWidth, /* isFullSet = */ true); 4835 } 4836 4837 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 4838 // construct arbitrary general SCEV expressions here. This function is called 4839 // from deep in the call stack, and calling getSCEV (on a sext instruction, 4840 // say) can end up caching a suboptimal value. 4841 4842 // FIXME: without the explicit `this` receiver below, MSVC errors out with 4843 // C2352 and C2512 (otherwise it isn't needed). 4844 4845 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 4846 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 4847 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 4848 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 4849 4850 ConstantRange TrueRange = 4851 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 4852 ConstantRange FalseRange = 4853 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 4854 4855 return TrueRange.unionWith(FalseRange); 4856 } 4857 4858 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4859 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4860 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4861 4862 // Return early if there are no flags to propagate to the SCEV. 4863 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4864 if (BinOp->hasNoUnsignedWrap()) 4865 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4866 if (BinOp->hasNoSignedWrap()) 4867 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4868 if (Flags == SCEV::FlagAnyWrap) 4869 return SCEV::FlagAnyWrap; 4870 4871 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 4872 } 4873 4874 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 4875 // Here we check that I is in the header of the innermost loop containing I, 4876 // since we only deal with instructions in the loop header. The actual loop we 4877 // need to check later will come from an add recurrence, but getting that 4878 // requires computing the SCEV of the operands, which can be expensive. This 4879 // check we can do cheaply to rule out some cases early. 4880 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 4881 if (InnermostContainingLoop == nullptr || 4882 InnermostContainingLoop->getHeader() != I->getParent()) 4883 return false; 4884 4885 // Only proceed if we can prove that I does not yield poison. 4886 if (!isKnownNotFullPoison(I)) return false; 4887 4888 // At this point we know that if I is executed, then it does not wrap 4889 // according to at least one of NSW or NUW. If I is not executed, then we do 4890 // not know if the calculation that I represents would wrap. Multiple 4891 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 4892 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4893 // derived from other instructions that map to the same SCEV. We cannot make 4894 // that guarantee for cases where I is not executed. So we need to find the 4895 // loop that I is considered in relation to and prove that I is executed for 4896 // every iteration of that loop. That implies that the value that I 4897 // calculates does not wrap anywhere in the loop, so then we can apply the 4898 // flags to the SCEV. 4899 // 4900 // We check isLoopInvariant to disambiguate in case we are adding recurrences 4901 // from different loops, so that we know which loop to prove that I is 4902 // executed in. 4903 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 4904 // I could be an extractvalue from a call to an overflow intrinsic. 4905 // TODO: We can do better here in some cases. 4906 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 4907 return false; 4908 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 4909 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4910 bool AllOtherOpsLoopInvariant = true; 4911 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 4912 ++OtherOpIndex) { 4913 if (OtherOpIndex != OpIndex) { 4914 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 4915 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 4916 AllOtherOpsLoopInvariant = false; 4917 break; 4918 } 4919 } 4920 } 4921 if (AllOtherOpsLoopInvariant && 4922 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 4923 return true; 4924 } 4925 } 4926 return false; 4927 } 4928 4929 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 4930 // If we know that \c I can never be poison period, then that's enough. 4931 if (isSCEVExprNeverPoison(I)) 4932 return true; 4933 4934 // For an add recurrence specifically, we assume that infinite loops without 4935 // side effects are undefined behavior, and then reason as follows: 4936 // 4937 // If the add recurrence is poison in any iteration, it is poison on all 4938 // future iterations (since incrementing poison yields poison). If the result 4939 // of the add recurrence is fed into the loop latch condition and the loop 4940 // does not contain any throws or exiting blocks other than the latch, we now 4941 // have the ability to "choose" whether the backedge is taken or not (by 4942 // choosing a sufficiently evil value for the poison feeding into the branch) 4943 // for every iteration including and after the one in which \p I first became 4944 // poison. There are two possibilities (let's call the iteration in which \p 4945 // I first became poison as K): 4946 // 4947 // 1. In the set of iterations including and after K, the loop body executes 4948 // no side effects. In this case executing the backege an infinte number 4949 // of times will yield undefined behavior. 4950 // 4951 // 2. In the set of iterations including and after K, the loop body executes 4952 // at least one side effect. In this case, that specific instance of side 4953 // effect is control dependent on poison, which also yields undefined 4954 // behavior. 4955 4956 auto *ExitingBB = L->getExitingBlock(); 4957 auto *LatchBB = L->getLoopLatch(); 4958 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 4959 return false; 4960 4961 SmallPtrSet<const Instruction *, 16> Pushed; 4962 SmallVector<const Instruction *, 8> PoisonStack; 4963 4964 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 4965 // things that are known to be fully poison under that assumption go on the 4966 // PoisonStack. 4967 Pushed.insert(I); 4968 PoisonStack.push_back(I); 4969 4970 bool LatchControlDependentOnPoison = false; 4971 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 4972 const Instruction *Poison = PoisonStack.pop_back_val(); 4973 4974 for (auto *PoisonUser : Poison->users()) { 4975 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 4976 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 4977 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 4978 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 4979 assert(BI->isConditional() && "Only possibility!"); 4980 if (BI->getParent() == LatchBB) { 4981 LatchControlDependentOnPoison = true; 4982 break; 4983 } 4984 } 4985 } 4986 } 4987 4988 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 4989 } 4990 4991 ScalarEvolution::LoopProperties 4992 ScalarEvolution::getLoopProperties(const Loop *L) { 4993 typedef ScalarEvolution::LoopProperties LoopProperties; 4994 4995 auto Itr = LoopPropertiesCache.find(L); 4996 if (Itr == LoopPropertiesCache.end()) { 4997 auto HasSideEffects = [](Instruction *I) { 4998 if (auto *SI = dyn_cast<StoreInst>(I)) 4999 return !SI->isSimple(); 5000 5001 return I->mayHaveSideEffects(); 5002 }; 5003 5004 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5005 /*HasNoSideEffects*/ true}; 5006 5007 for (auto *BB : L->getBlocks()) 5008 for (auto &I : *BB) { 5009 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5010 LP.HasNoAbnormalExits = false; 5011 if (HasSideEffects(&I)) 5012 LP.HasNoSideEffects = false; 5013 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5014 break; // We're already as pessimistic as we can get. 5015 } 5016 5017 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5018 assert(InsertPair.second && "We just checked!"); 5019 Itr = InsertPair.first; 5020 } 5021 5022 return Itr->second; 5023 } 5024 5025 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5026 if (!isSCEVable(V->getType())) 5027 return getUnknown(V); 5028 5029 if (Instruction *I = dyn_cast<Instruction>(V)) { 5030 // Don't attempt to analyze instructions in blocks that aren't 5031 // reachable. Such instructions don't matter, and they aren't required 5032 // to obey basic rules for definitions dominating uses which this 5033 // analysis depends on. 5034 if (!DT.isReachableFromEntry(I->getParent())) 5035 return getUnknown(V); 5036 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5037 return getConstant(CI); 5038 else if (isa<ConstantPointerNull>(V)) 5039 return getZero(V->getType()); 5040 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5041 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5042 else if (!isa<ConstantExpr>(V)) 5043 return getUnknown(V); 5044 5045 Operator *U = cast<Operator>(V); 5046 if (auto BO = MatchBinaryOp(U, DT)) { 5047 switch (BO->Opcode) { 5048 case Instruction::Add: { 5049 // The simple thing to do would be to just call getSCEV on both operands 5050 // and call getAddExpr with the result. However if we're looking at a 5051 // bunch of things all added together, this can be quite inefficient, 5052 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5053 // Instead, gather up all the operands and make a single getAddExpr call. 5054 // LLVM IR canonical form means we need only traverse the left operands. 5055 SmallVector<const SCEV *, 4> AddOps; 5056 do { 5057 if (BO->Op) { 5058 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5059 AddOps.push_back(OpSCEV); 5060 break; 5061 } 5062 5063 // If a NUW or NSW flag can be applied to the SCEV for this 5064 // addition, then compute the SCEV for this addition by itself 5065 // with a separate call to getAddExpr. We need to do that 5066 // instead of pushing the operands of the addition onto AddOps, 5067 // since the flags are only known to apply to this particular 5068 // addition - they may not apply to other additions that can be 5069 // formed with operands from AddOps. 5070 const SCEV *RHS = getSCEV(BO->RHS); 5071 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5072 if (Flags != SCEV::FlagAnyWrap) { 5073 const SCEV *LHS = getSCEV(BO->LHS); 5074 if (BO->Opcode == Instruction::Sub) 5075 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 5076 else 5077 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 5078 break; 5079 } 5080 } 5081 5082 if (BO->Opcode == Instruction::Sub) 5083 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 5084 else 5085 AddOps.push_back(getSCEV(BO->RHS)); 5086 5087 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5088 if (!NewBO || (NewBO->Opcode != Instruction::Add && 5089 NewBO->Opcode != Instruction::Sub)) { 5090 AddOps.push_back(getSCEV(BO->LHS)); 5091 break; 5092 } 5093 BO = NewBO; 5094 } while (true); 5095 5096 return getAddExpr(AddOps); 5097 } 5098 5099 case Instruction::Mul: { 5100 SmallVector<const SCEV *, 4> MulOps; 5101 do { 5102 if (BO->Op) { 5103 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5104 MulOps.push_back(OpSCEV); 5105 break; 5106 } 5107 5108 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5109 if (Flags != SCEV::FlagAnyWrap) { 5110 MulOps.push_back( 5111 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 5112 break; 5113 } 5114 } 5115 5116 MulOps.push_back(getSCEV(BO->RHS)); 5117 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5118 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 5119 MulOps.push_back(getSCEV(BO->LHS)); 5120 break; 5121 } 5122 BO = NewBO; 5123 } while (true); 5124 5125 return getMulExpr(MulOps); 5126 } 5127 case Instruction::UDiv: 5128 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 5129 case Instruction::Sub: { 5130 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5131 if (BO->Op) 5132 Flags = getNoWrapFlagsFromUB(BO->Op); 5133 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 5134 } 5135 case Instruction::And: 5136 // For an expression like x&255 that merely masks off the high bits, 5137 // use zext(trunc(x)) as the SCEV expression. 5138 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5139 if (CI->isNullValue()) 5140 return getSCEV(BO->RHS); 5141 if (CI->isAllOnesValue()) 5142 return getSCEV(BO->LHS); 5143 const APInt &A = CI->getValue(); 5144 5145 // Instcombine's ShrinkDemandedConstant may strip bits out of 5146 // constants, obscuring what would otherwise be a low-bits mask. 5147 // Use computeKnownBits to compute what ShrinkDemandedConstant 5148 // knew about to reconstruct a low-bits mask value. 5149 unsigned LZ = A.countLeadingZeros(); 5150 unsigned TZ = A.countTrailingZeros(); 5151 unsigned BitWidth = A.getBitWidth(); 5152 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 5153 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(), 5154 0, &AC, nullptr, &DT); 5155 5156 APInt EffectiveMask = 5157 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 5158 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 5159 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 5160 const SCEV *LHS = getSCEV(BO->LHS); 5161 const SCEV *ShiftedLHS = nullptr; 5162 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 5163 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 5164 // For an expression like (x * 8) & 8, simplify the multiply. 5165 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 5166 unsigned GCD = std::min(MulZeros, TZ); 5167 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 5168 SmallVector<const SCEV*, 4> MulOps; 5169 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 5170 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 5171 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 5172 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 5173 } 5174 } 5175 if (!ShiftedLHS) 5176 ShiftedLHS = getUDivExpr(LHS, MulCount); 5177 return getMulExpr( 5178 getZeroExtendExpr( 5179 getTruncateExpr(ShiftedLHS, 5180 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 5181 BO->LHS->getType()), 5182 MulCount); 5183 } 5184 } 5185 break; 5186 5187 case Instruction::Or: 5188 // If the RHS of the Or is a constant, we may have something like: 5189 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 5190 // optimizations will transparently handle this case. 5191 // 5192 // In order for this transformation to be safe, the LHS must be of the 5193 // form X*(2^n) and the Or constant must be less than 2^n. 5194 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5195 const SCEV *LHS = getSCEV(BO->LHS); 5196 const APInt &CIVal = CI->getValue(); 5197 if (GetMinTrailingZeros(LHS) >= 5198 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 5199 // Build a plain add SCEV. 5200 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 5201 // If the LHS of the add was an addrec and it has no-wrap flags, 5202 // transfer the no-wrap flags, since an or won't introduce a wrap. 5203 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 5204 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 5205 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 5206 OldAR->getNoWrapFlags()); 5207 } 5208 return S; 5209 } 5210 } 5211 break; 5212 5213 case Instruction::Xor: 5214 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5215 // If the RHS of xor is -1, then this is a not operation. 5216 if (CI->isAllOnesValue()) 5217 return getNotSCEV(getSCEV(BO->LHS)); 5218 5219 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 5220 // This is a variant of the check for xor with -1, and it handles 5221 // the case where instcombine has trimmed non-demanded bits out 5222 // of an xor with -1. 5223 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 5224 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 5225 if (LBO->getOpcode() == Instruction::And && 5226 LCI->getValue() == CI->getValue()) 5227 if (const SCEVZeroExtendExpr *Z = 5228 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 5229 Type *UTy = BO->LHS->getType(); 5230 const SCEV *Z0 = Z->getOperand(); 5231 Type *Z0Ty = Z0->getType(); 5232 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 5233 5234 // If C is a low-bits mask, the zero extend is serving to 5235 // mask off the high bits. Complement the operand and 5236 // re-apply the zext. 5237 if (APIntOps::isMask(Z0TySize, CI->getValue())) 5238 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 5239 5240 // If C is a single bit, it may be in the sign-bit position 5241 // before the zero-extend. In this case, represent the xor 5242 // using an add, which is equivalent, and re-apply the zext. 5243 APInt Trunc = CI->getValue().trunc(Z0TySize); 5244 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 5245 Trunc.isSignBit()) 5246 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 5247 UTy); 5248 } 5249 } 5250 break; 5251 5252 case Instruction::Shl: 5253 // Turn shift left of a constant amount into a multiply. 5254 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 5255 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 5256 5257 // If the shift count is not less than the bitwidth, the result of 5258 // the shift is undefined. Don't try to analyze it, because the 5259 // resolution chosen here may differ from the resolution chosen in 5260 // other parts of the compiler. 5261 if (SA->getValue().uge(BitWidth)) 5262 break; 5263 5264 // It is currently not resolved how to interpret NSW for left 5265 // shift by BitWidth - 1, so we avoid applying flags in that 5266 // case. Remove this check (or this comment) once the situation 5267 // is resolved. See 5268 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 5269 // and http://reviews.llvm.org/D8890 . 5270 auto Flags = SCEV::FlagAnyWrap; 5271 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 5272 Flags = getNoWrapFlagsFromUB(BO->Op); 5273 5274 Constant *X = ConstantInt::get(getContext(), 5275 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5276 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 5277 } 5278 break; 5279 5280 case Instruction::AShr: 5281 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 5282 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) 5283 if (Operator *L = dyn_cast<Operator>(BO->LHS)) 5284 if (L->getOpcode() == Instruction::Shl && 5285 L->getOperand(1) == BO->RHS) { 5286 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType()); 5287 5288 // If the shift count is not less than the bitwidth, the result of 5289 // the shift is undefined. Don't try to analyze it, because the 5290 // resolution chosen here may differ from the resolution chosen in 5291 // other parts of the compiler. 5292 if (CI->getValue().uge(BitWidth)) 5293 break; 5294 5295 uint64_t Amt = BitWidth - CI->getZExtValue(); 5296 if (Amt == BitWidth) 5297 return getSCEV(L->getOperand(0)); // shift by zero --> noop 5298 return getSignExtendExpr( 5299 getTruncateExpr(getSCEV(L->getOperand(0)), 5300 IntegerType::get(getContext(), Amt)), 5301 BO->LHS->getType()); 5302 } 5303 break; 5304 } 5305 } 5306 5307 switch (U->getOpcode()) { 5308 case Instruction::Trunc: 5309 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 5310 5311 case Instruction::ZExt: 5312 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5313 5314 case Instruction::SExt: 5315 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5316 5317 case Instruction::BitCast: 5318 // BitCasts are no-op casts so we just eliminate the cast. 5319 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 5320 return getSCEV(U->getOperand(0)); 5321 break; 5322 5323 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 5324 // lead to pointer expressions which cannot safely be expanded to GEPs, 5325 // because ScalarEvolution doesn't respect the GEP aliasing rules when 5326 // simplifying integer expressions. 5327 5328 case Instruction::GetElementPtr: 5329 return createNodeForGEP(cast<GEPOperator>(U)); 5330 5331 case Instruction::PHI: 5332 return createNodeForPHI(cast<PHINode>(U)); 5333 5334 case Instruction::Select: 5335 // U can also be a select constant expr, which let fall through. Since 5336 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 5337 // constant expressions cannot have instructions as operands, we'd have 5338 // returned getUnknown for a select constant expressions anyway. 5339 if (isa<Instruction>(U)) 5340 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 5341 U->getOperand(1), U->getOperand(2)); 5342 break; 5343 5344 case Instruction::Call: 5345 case Instruction::Invoke: 5346 if (Value *RV = CallSite(U).getReturnedArgOperand()) 5347 return getSCEV(RV); 5348 break; 5349 } 5350 5351 return getUnknown(V); 5352 } 5353 5354 5355 5356 //===----------------------------------------------------------------------===// 5357 // Iteration Count Computation Code 5358 // 5359 5360 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 5361 if (!ExitCount) 5362 return 0; 5363 5364 ConstantInt *ExitConst = ExitCount->getValue(); 5365 5366 // Guard against huge trip counts. 5367 if (ExitConst->getValue().getActiveBits() > 32) 5368 return 0; 5369 5370 // In case of integer overflow, this returns 0, which is correct. 5371 return ((unsigned)ExitConst->getZExtValue()) + 1; 5372 } 5373 5374 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 5375 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5376 return getSmallConstantTripCount(L, ExitingBB); 5377 5378 // No trip count information for multiple exits. 5379 return 0; 5380 } 5381 5382 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 5383 BasicBlock *ExitingBlock) { 5384 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5385 assert(L->isLoopExiting(ExitingBlock) && 5386 "Exiting block must actually branch out of the loop!"); 5387 const SCEVConstant *ExitCount = 5388 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 5389 return getConstantTripCount(ExitCount); 5390 } 5391 5392 unsigned ScalarEvolution::getSmallConstantMaxTripCount(Loop *L) { 5393 const auto *MaxExitCount = 5394 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 5395 return getConstantTripCount(MaxExitCount); 5396 } 5397 5398 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 5399 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5400 return getSmallConstantTripMultiple(L, ExitingBB); 5401 5402 // No trip multiple information for multiple exits. 5403 return 0; 5404 } 5405 5406 /// Returns the largest constant divisor of the trip count of this loop as a 5407 /// normal unsigned value, if possible. This means that the actual trip count is 5408 /// always a multiple of the returned value (don't forget the trip count could 5409 /// very well be zero as well!). 5410 /// 5411 /// Returns 1 if the trip count is unknown or not guaranteed to be the 5412 /// multiple of a constant (which is also the case if the trip count is simply 5413 /// constant, use getSmallConstantTripCount for that case), Will also return 1 5414 /// if the trip count is very large (>= 2^32). 5415 /// 5416 /// As explained in the comments for getSmallConstantTripCount, this assumes 5417 /// that control exits the loop via ExitingBlock. 5418 unsigned 5419 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 5420 BasicBlock *ExitingBlock) { 5421 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5422 assert(L->isLoopExiting(ExitingBlock) && 5423 "Exiting block must actually branch out of the loop!"); 5424 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 5425 if (ExitCount == getCouldNotCompute()) 5426 return 1; 5427 5428 // Get the trip count from the BE count by adding 1. 5429 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 5430 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 5431 // to factor simple cases. 5432 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 5433 TCMul = Mul->getOperand(0); 5434 5435 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 5436 if (!MulC) 5437 return 1; 5438 5439 ConstantInt *Result = MulC->getValue(); 5440 5441 // Guard against huge trip counts (this requires checking 5442 // for zero to handle the case where the trip count == -1 and the 5443 // addition wraps). 5444 if (!Result || Result->getValue().getActiveBits() > 32 || 5445 Result->getValue().getActiveBits() == 0) 5446 return 1; 5447 5448 return (unsigned)Result->getZExtValue(); 5449 } 5450 5451 /// Get the expression for the number of loop iterations for which this loop is 5452 /// guaranteed not to exit via ExitingBlock. Otherwise return 5453 /// SCEVCouldNotCompute. 5454 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 5455 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 5456 } 5457 5458 const SCEV * 5459 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 5460 SCEVUnionPredicate &Preds) { 5461 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds); 5462 } 5463 5464 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 5465 return getBackedgeTakenInfo(L).getExact(this); 5466 } 5467 5468 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 5469 /// known never to be less than the actual backedge taken count. 5470 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 5471 return getBackedgeTakenInfo(L).getMax(this); 5472 } 5473 5474 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 5475 return getBackedgeTakenInfo(L).isMaxOrZero(this); 5476 } 5477 5478 /// Push PHI nodes in the header of the given loop onto the given Worklist. 5479 static void 5480 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5481 BasicBlock *Header = L->getHeader(); 5482 5483 // Push all Loop-header PHIs onto the Worklist stack. 5484 for (BasicBlock::iterator I = Header->begin(); 5485 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5486 Worklist.push_back(PN); 5487 } 5488 5489 const ScalarEvolution::BackedgeTakenInfo & 5490 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 5491 auto &BTI = getBackedgeTakenInfo(L); 5492 if (BTI.hasFullInfo()) 5493 return BTI; 5494 5495 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5496 5497 if (!Pair.second) 5498 return Pair.first->second; 5499 5500 BackedgeTakenInfo Result = 5501 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 5502 5503 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 5504 } 5505 5506 const ScalarEvolution::BackedgeTakenInfo & 5507 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5508 // Initially insert an invalid entry for this loop. If the insertion 5509 // succeeds, proceed to actually compute a backedge-taken count and 5510 // update the value. The temporary CouldNotCompute value tells SCEV 5511 // code elsewhere that it shouldn't attempt to request a new 5512 // backedge-taken count, which could result in infinite recursion. 5513 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5514 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5515 if (!Pair.second) 5516 return Pair.first->second; 5517 5518 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5519 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5520 // must be cleared in this scope. 5521 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5522 5523 if (Result.getExact(this) != getCouldNotCompute()) { 5524 assert(isLoopInvariant(Result.getExact(this), L) && 5525 isLoopInvariant(Result.getMax(this), L) && 5526 "Computed backedge-taken count isn't loop invariant for loop!"); 5527 ++NumTripCountsComputed; 5528 } 5529 else if (Result.getMax(this) == getCouldNotCompute() && 5530 isa<PHINode>(L->getHeader()->begin())) { 5531 // Only count loops that have phi nodes as not being computable. 5532 ++NumTripCountsNotComputed; 5533 } 5534 5535 // Now that we know more about the trip count for this loop, forget any 5536 // existing SCEV values for PHI nodes in this loop since they are only 5537 // conservative estimates made without the benefit of trip count 5538 // information. This is similar to the code in forgetLoop, except that 5539 // it handles SCEVUnknown PHI nodes specially. 5540 if (Result.hasAnyInfo()) { 5541 SmallVector<Instruction *, 16> Worklist; 5542 PushLoopPHIs(L, Worklist); 5543 5544 SmallPtrSet<Instruction *, 8> Visited; 5545 while (!Worklist.empty()) { 5546 Instruction *I = Worklist.pop_back_val(); 5547 if (!Visited.insert(I).second) 5548 continue; 5549 5550 ValueExprMapType::iterator It = 5551 ValueExprMap.find_as(static_cast<Value *>(I)); 5552 if (It != ValueExprMap.end()) { 5553 const SCEV *Old = It->second; 5554 5555 // SCEVUnknown for a PHI either means that it has an unrecognized 5556 // structure, or it's a PHI that's in the progress of being computed 5557 // by createNodeForPHI. In the former case, additional loop trip 5558 // count information isn't going to change anything. In the later 5559 // case, createNodeForPHI will perform the necessary updates on its 5560 // own when it gets to that point. 5561 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5562 eraseValueFromMap(It->first); 5563 forgetMemoizedResults(Old); 5564 } 5565 if (PHINode *PN = dyn_cast<PHINode>(I)) 5566 ConstantEvolutionLoopExitValue.erase(PN); 5567 } 5568 5569 PushDefUseChildren(I, Worklist); 5570 } 5571 } 5572 5573 // Re-lookup the insert position, since the call to 5574 // computeBackedgeTakenCount above could result in a 5575 // recusive call to getBackedgeTakenInfo (on a different 5576 // loop), which would invalidate the iterator computed 5577 // earlier. 5578 return BackedgeTakenCounts.find(L)->second = std::move(Result); 5579 } 5580 5581 void ScalarEvolution::forgetLoop(const Loop *L) { 5582 // Drop any stored trip count value. 5583 auto RemoveLoopFromBackedgeMap = 5584 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 5585 auto BTCPos = Map.find(L); 5586 if (BTCPos != Map.end()) { 5587 BTCPos->second.clear(); 5588 Map.erase(BTCPos); 5589 } 5590 }; 5591 5592 RemoveLoopFromBackedgeMap(BackedgeTakenCounts); 5593 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts); 5594 5595 // Drop information about expressions based on loop-header PHIs. 5596 SmallVector<Instruction *, 16> Worklist; 5597 PushLoopPHIs(L, Worklist); 5598 5599 SmallPtrSet<Instruction *, 8> Visited; 5600 while (!Worklist.empty()) { 5601 Instruction *I = Worklist.pop_back_val(); 5602 if (!Visited.insert(I).second) 5603 continue; 5604 5605 ValueExprMapType::iterator It = 5606 ValueExprMap.find_as(static_cast<Value *>(I)); 5607 if (It != ValueExprMap.end()) { 5608 eraseValueFromMap(It->first); 5609 forgetMemoizedResults(It->second); 5610 if (PHINode *PN = dyn_cast<PHINode>(I)) 5611 ConstantEvolutionLoopExitValue.erase(PN); 5612 } 5613 5614 PushDefUseChildren(I, Worklist); 5615 } 5616 5617 // Forget all contained loops too, to avoid dangling entries in the 5618 // ValuesAtScopes map. 5619 for (Loop *I : *L) 5620 forgetLoop(I); 5621 5622 LoopPropertiesCache.erase(L); 5623 } 5624 5625 void ScalarEvolution::forgetValue(Value *V) { 5626 Instruction *I = dyn_cast<Instruction>(V); 5627 if (!I) return; 5628 5629 // Drop information about expressions based on loop-header PHIs. 5630 SmallVector<Instruction *, 16> Worklist; 5631 Worklist.push_back(I); 5632 5633 SmallPtrSet<Instruction *, 8> Visited; 5634 while (!Worklist.empty()) { 5635 I = Worklist.pop_back_val(); 5636 if (!Visited.insert(I).second) 5637 continue; 5638 5639 ValueExprMapType::iterator It = 5640 ValueExprMap.find_as(static_cast<Value *>(I)); 5641 if (It != ValueExprMap.end()) { 5642 eraseValueFromMap(It->first); 5643 forgetMemoizedResults(It->second); 5644 if (PHINode *PN = dyn_cast<PHINode>(I)) 5645 ConstantEvolutionLoopExitValue.erase(PN); 5646 } 5647 5648 PushDefUseChildren(I, Worklist); 5649 } 5650 } 5651 5652 /// Get the exact loop backedge taken count considering all loop exits. A 5653 /// computable result can only be returned for loops with a single exit. 5654 /// Returning the minimum taken count among all exits is incorrect because one 5655 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that 5656 /// the limit of each loop test is never skipped. This is a valid assumption as 5657 /// long as the loop exits via that test. For precise results, it is the 5658 /// caller's responsibility to specify the relevant loop exit using 5659 /// getExact(ExitingBlock, SE). 5660 const SCEV * 5661 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE, 5662 SCEVUnionPredicate *Preds) const { 5663 // If any exits were not computable, the loop is not computable. 5664 if (!isComplete() || ExitNotTaken.empty()) 5665 return SE->getCouldNotCompute(); 5666 5667 const SCEV *BECount = nullptr; 5668 for (auto &ENT : ExitNotTaken) { 5669 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5670 5671 if (!BECount) 5672 BECount = ENT.ExactNotTaken; 5673 else if (BECount != ENT.ExactNotTaken) 5674 return SE->getCouldNotCompute(); 5675 if (Preds && !ENT.hasAlwaysTruePredicate()) 5676 Preds->add(ENT.Predicate.get()); 5677 5678 assert((Preds || ENT.hasAlwaysTruePredicate()) && 5679 "Predicate should be always true!"); 5680 } 5681 5682 assert(BECount && "Invalid not taken count for loop exit"); 5683 return BECount; 5684 } 5685 5686 /// Get the exact not taken count for this loop exit. 5687 const SCEV * 5688 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5689 ScalarEvolution *SE) const { 5690 for (auto &ENT : ExitNotTaken) 5691 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 5692 return ENT.ExactNotTaken; 5693 5694 return SE->getCouldNotCompute(); 5695 } 5696 5697 /// getMax - Get the max backedge taken count for the loop. 5698 const SCEV * 5699 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5700 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5701 return !ENT.hasAlwaysTruePredicate(); 5702 }; 5703 5704 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 5705 return SE->getCouldNotCompute(); 5706 5707 return getMax(); 5708 } 5709 5710 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 5711 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5712 return !ENT.hasAlwaysTruePredicate(); 5713 }; 5714 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 5715 } 5716 5717 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5718 ScalarEvolution *SE) const { 5719 if (getMax() && getMax() != SE->getCouldNotCompute() && 5720 SE->hasOperand(getMax(), S)) 5721 return true; 5722 5723 for (auto &ENT : ExitNotTaken) 5724 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 5725 SE->hasOperand(ENT.ExactNotTaken, S)) 5726 return true; 5727 5728 return false; 5729 } 5730 5731 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5732 /// computable exit into a persistent ExitNotTakenInfo array. 5733 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5734 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 5735 &&ExitCounts, 5736 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 5737 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 5738 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 5739 ExitNotTaken.reserve(ExitCounts.size()); 5740 std::transform( 5741 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 5742 [&](const EdgeExitInfo &EEI) { 5743 BasicBlock *ExitBB = EEI.first; 5744 const ExitLimit &EL = EEI.second; 5745 if (EL.Predicates.empty()) 5746 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 5747 5748 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 5749 for (auto *Pred : EL.Predicates) 5750 Predicate->add(Pred); 5751 5752 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 5753 }); 5754 } 5755 5756 /// Invalidate this result and free the ExitNotTakenInfo array. 5757 void ScalarEvolution::BackedgeTakenInfo::clear() { 5758 ExitNotTaken.clear(); 5759 } 5760 5761 /// Compute the number of times the backedge of the specified loop will execute. 5762 ScalarEvolution::BackedgeTakenInfo 5763 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 5764 bool AllowPredicates) { 5765 SmallVector<BasicBlock *, 8> ExitingBlocks; 5766 L->getExitingBlocks(ExitingBlocks); 5767 5768 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 5769 5770 SmallVector<EdgeExitInfo, 4> ExitCounts; 5771 bool CouldComputeBECount = true; 5772 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5773 const SCEV *MustExitMaxBECount = nullptr; 5774 const SCEV *MayExitMaxBECount = nullptr; 5775 bool MustExitMaxOrZero = false; 5776 5777 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5778 // and compute maxBECount. 5779 // Do a union of all the predicates here. 5780 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5781 BasicBlock *ExitBB = ExitingBlocks[i]; 5782 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 5783 5784 assert((AllowPredicates || EL.Predicates.empty()) && 5785 "Predicated exit limit when predicates are not allowed!"); 5786 5787 // 1. For each exit that can be computed, add an entry to ExitCounts. 5788 // CouldComputeBECount is true only if all exits can be computed. 5789 if (EL.ExactNotTaken == getCouldNotCompute()) 5790 // We couldn't compute an exact value for this exit, so 5791 // we won't be able to compute an exact value for the loop. 5792 CouldComputeBECount = false; 5793 else 5794 ExitCounts.emplace_back(ExitBB, EL); 5795 5796 // 2. Derive the loop's MaxBECount from each exit's max number of 5797 // non-exiting iterations. Partition the loop exits into two kinds: 5798 // LoopMustExits and LoopMayExits. 5799 // 5800 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5801 // is a LoopMayExit. If any computable LoopMustExit is found, then 5802 // MaxBECount is the minimum EL.MaxNotTaken of computable 5803 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 5804 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 5805 // computable EL.MaxNotTaken. 5806 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 5807 DT.dominates(ExitBB, Latch)) { 5808 if (!MustExitMaxBECount) { 5809 MustExitMaxBECount = EL.MaxNotTaken; 5810 MustExitMaxOrZero = EL.MaxOrZero; 5811 } else { 5812 MustExitMaxBECount = 5813 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 5814 } 5815 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5816 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 5817 MayExitMaxBECount = EL.MaxNotTaken; 5818 else { 5819 MayExitMaxBECount = 5820 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 5821 } 5822 } 5823 } 5824 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5825 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5826 // The loop backedge will be taken the maximum or zero times if there's 5827 // a single exit that must be taken the maximum or zero times. 5828 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 5829 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 5830 MaxBECount, MaxOrZero); 5831 } 5832 5833 ScalarEvolution::ExitLimit 5834 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 5835 bool AllowPredicates) { 5836 5837 // Okay, we've chosen an exiting block. See what condition causes us to exit 5838 // at this block and remember the exit block and whether all other targets 5839 // lead to the loop header. 5840 bool MustExecuteLoopHeader = true; 5841 BasicBlock *Exit = nullptr; 5842 for (auto *SBB : successors(ExitingBlock)) 5843 if (!L->contains(SBB)) { 5844 if (Exit) // Multiple exit successors. 5845 return getCouldNotCompute(); 5846 Exit = SBB; 5847 } else if (SBB != L->getHeader()) { 5848 MustExecuteLoopHeader = false; 5849 } 5850 5851 // At this point, we know we have a conditional branch that determines whether 5852 // the loop is exited. However, we don't know if the branch is executed each 5853 // time through the loop. If not, then the execution count of the branch will 5854 // not be equal to the trip count of the loop. 5855 // 5856 // Currently we check for this by checking to see if the Exit branch goes to 5857 // the loop header. If so, we know it will always execute the same number of 5858 // times as the loop. We also handle the case where the exit block *is* the 5859 // loop header. This is common for un-rotated loops. 5860 // 5861 // If both of those tests fail, walk up the unique predecessor chain to the 5862 // header, stopping if there is an edge that doesn't exit the loop. If the 5863 // header is reached, the execution count of the branch will be equal to the 5864 // trip count of the loop. 5865 // 5866 // More extensive analysis could be done to handle more cases here. 5867 // 5868 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5869 // The simple checks failed, try climbing the unique predecessor chain 5870 // up to the header. 5871 bool Ok = false; 5872 for (BasicBlock *BB = ExitingBlock; BB; ) { 5873 BasicBlock *Pred = BB->getUniquePredecessor(); 5874 if (!Pred) 5875 return getCouldNotCompute(); 5876 TerminatorInst *PredTerm = Pred->getTerminator(); 5877 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5878 if (PredSucc == BB) 5879 continue; 5880 // If the predecessor has a successor that isn't BB and isn't 5881 // outside the loop, assume the worst. 5882 if (L->contains(PredSucc)) 5883 return getCouldNotCompute(); 5884 } 5885 if (Pred == L->getHeader()) { 5886 Ok = true; 5887 break; 5888 } 5889 BB = Pred; 5890 } 5891 if (!Ok) 5892 return getCouldNotCompute(); 5893 } 5894 5895 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5896 TerminatorInst *Term = ExitingBlock->getTerminator(); 5897 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5898 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5899 // Proceed to the next level to examine the exit condition expression. 5900 return computeExitLimitFromCond( 5901 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1), 5902 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 5903 } 5904 5905 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5906 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5907 /*ControlsExit=*/IsOnlyExit); 5908 5909 return getCouldNotCompute(); 5910 } 5911 5912 ScalarEvolution::ExitLimit 5913 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5914 Value *ExitCond, 5915 BasicBlock *TBB, 5916 BasicBlock *FBB, 5917 bool ControlsExit, 5918 bool AllowPredicates) { 5919 // Check if the controlling expression for this loop is an And or Or. 5920 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5921 if (BO->getOpcode() == Instruction::And) { 5922 // Recurse on the operands of the and. 5923 bool EitherMayExit = L->contains(TBB); 5924 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5925 ControlsExit && !EitherMayExit, 5926 AllowPredicates); 5927 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5928 ControlsExit && !EitherMayExit, 5929 AllowPredicates); 5930 const SCEV *BECount = getCouldNotCompute(); 5931 const SCEV *MaxBECount = getCouldNotCompute(); 5932 if (EitherMayExit) { 5933 // Both conditions must be true for the loop to continue executing. 5934 // Choose the less conservative count. 5935 if (EL0.ExactNotTaken == getCouldNotCompute() || 5936 EL1.ExactNotTaken == getCouldNotCompute()) 5937 BECount = getCouldNotCompute(); 5938 else 5939 BECount = 5940 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 5941 if (EL0.MaxNotTaken == getCouldNotCompute()) 5942 MaxBECount = EL1.MaxNotTaken; 5943 else if (EL1.MaxNotTaken == getCouldNotCompute()) 5944 MaxBECount = EL0.MaxNotTaken; 5945 else 5946 MaxBECount = 5947 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 5948 } else { 5949 // Both conditions must be true at the same time for the loop to exit. 5950 // For now, be conservative. 5951 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5952 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 5953 MaxBECount = EL0.MaxNotTaken; 5954 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 5955 BECount = EL0.ExactNotTaken; 5956 } 5957 5958 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 5959 // to be more aggressive when computing BECount than when computing 5960 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 5961 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 5962 // to not. 5963 if (isa<SCEVCouldNotCompute>(MaxBECount) && 5964 !isa<SCEVCouldNotCompute>(BECount)) 5965 MaxBECount = BECount; 5966 5967 return ExitLimit(BECount, MaxBECount, false, 5968 {&EL0.Predicates, &EL1.Predicates}); 5969 } 5970 if (BO->getOpcode() == Instruction::Or) { 5971 // Recurse on the operands of the or. 5972 bool EitherMayExit = L->contains(FBB); 5973 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5974 ControlsExit && !EitherMayExit, 5975 AllowPredicates); 5976 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5977 ControlsExit && !EitherMayExit, 5978 AllowPredicates); 5979 const SCEV *BECount = getCouldNotCompute(); 5980 const SCEV *MaxBECount = getCouldNotCompute(); 5981 if (EitherMayExit) { 5982 // Both conditions must be false for the loop to continue executing. 5983 // Choose the less conservative count. 5984 if (EL0.ExactNotTaken == getCouldNotCompute() || 5985 EL1.ExactNotTaken == getCouldNotCompute()) 5986 BECount = getCouldNotCompute(); 5987 else 5988 BECount = 5989 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 5990 if (EL0.MaxNotTaken == getCouldNotCompute()) 5991 MaxBECount = EL1.MaxNotTaken; 5992 else if (EL1.MaxNotTaken == getCouldNotCompute()) 5993 MaxBECount = EL0.MaxNotTaken; 5994 else 5995 MaxBECount = 5996 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 5997 } else { 5998 // Both conditions must be false at the same time for the loop to exit. 5999 // For now, be conservative. 6000 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 6001 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 6002 MaxBECount = EL0.MaxNotTaken; 6003 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 6004 BECount = EL0.ExactNotTaken; 6005 } 6006 6007 return ExitLimit(BECount, MaxBECount, false, 6008 {&EL0.Predicates, &EL1.Predicates}); 6009 } 6010 } 6011 6012 // With an icmp, it may be feasible to compute an exact backedge-taken count. 6013 // Proceed to the next level to examine the icmp. 6014 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 6015 ExitLimit EL = 6016 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 6017 if (EL.hasFullInfo() || !AllowPredicates) 6018 return EL; 6019 6020 // Try again, but use SCEV predicates this time. 6021 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit, 6022 /*AllowPredicates=*/true); 6023 } 6024 6025 // Check for a constant condition. These are normally stripped out by 6026 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 6027 // preserve the CFG and is temporarily leaving constant conditions 6028 // in place. 6029 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 6030 if (L->contains(FBB) == !CI->getZExtValue()) 6031 // The backedge is always taken. 6032 return getCouldNotCompute(); 6033 else 6034 // The backedge is never taken. 6035 return getZero(CI->getType()); 6036 } 6037 6038 // If it's not an integer or pointer comparison then compute it the hard way. 6039 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6040 } 6041 6042 ScalarEvolution::ExitLimit 6043 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 6044 ICmpInst *ExitCond, 6045 BasicBlock *TBB, 6046 BasicBlock *FBB, 6047 bool ControlsExit, 6048 bool AllowPredicates) { 6049 6050 // If the condition was exit on true, convert the condition to exit on false 6051 ICmpInst::Predicate Cond; 6052 if (!L->contains(FBB)) 6053 Cond = ExitCond->getPredicate(); 6054 else 6055 Cond = ExitCond->getInversePredicate(); 6056 6057 // Handle common loops like: for (X = "string"; *X; ++X) 6058 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 6059 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 6060 ExitLimit ItCnt = 6061 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 6062 if (ItCnt.hasAnyInfo()) 6063 return ItCnt; 6064 } 6065 6066 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 6067 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 6068 6069 // Try to evaluate any dependencies out of the loop. 6070 LHS = getSCEVAtScope(LHS, L); 6071 RHS = getSCEVAtScope(RHS, L); 6072 6073 // At this point, we would like to compute how many iterations of the 6074 // loop the predicate will return true for these inputs. 6075 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 6076 // If there is a loop-invariant, force it into the RHS. 6077 std::swap(LHS, RHS); 6078 Cond = ICmpInst::getSwappedPredicate(Cond); 6079 } 6080 6081 // Simplify the operands before analyzing them. 6082 (void)SimplifyICmpOperands(Cond, LHS, RHS); 6083 6084 // If we have a comparison of a chrec against a constant, try to use value 6085 // ranges to answer this query. 6086 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 6087 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 6088 if (AddRec->getLoop() == L) { 6089 // Form the constant range. 6090 ConstantRange CompRange = 6091 ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt()); 6092 6093 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 6094 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 6095 } 6096 6097 switch (Cond) { 6098 case ICmpInst::ICMP_NE: { // while (X != Y) 6099 // Convert to: while (X-Y != 0) 6100 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 6101 AllowPredicates); 6102 if (EL.hasAnyInfo()) return EL; 6103 break; 6104 } 6105 case ICmpInst::ICMP_EQ: { // while (X == Y) 6106 // Convert to: while (X-Y == 0) 6107 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 6108 if (EL.hasAnyInfo()) return EL; 6109 break; 6110 } 6111 case ICmpInst::ICMP_SLT: 6112 case ICmpInst::ICMP_ULT: { // while (X < Y) 6113 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 6114 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 6115 AllowPredicates); 6116 if (EL.hasAnyInfo()) return EL; 6117 break; 6118 } 6119 case ICmpInst::ICMP_SGT: 6120 case ICmpInst::ICMP_UGT: { // while (X > Y) 6121 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 6122 ExitLimit EL = 6123 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 6124 AllowPredicates); 6125 if (EL.hasAnyInfo()) return EL; 6126 break; 6127 } 6128 default: 6129 break; 6130 } 6131 6132 auto *ExhaustiveCount = 6133 computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6134 6135 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 6136 return ExhaustiveCount; 6137 6138 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 6139 ExitCond->getOperand(1), L, Cond); 6140 } 6141 6142 ScalarEvolution::ExitLimit 6143 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 6144 SwitchInst *Switch, 6145 BasicBlock *ExitingBlock, 6146 bool ControlsExit) { 6147 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 6148 6149 // Give up if the exit is the default dest of a switch. 6150 if (Switch->getDefaultDest() == ExitingBlock) 6151 return getCouldNotCompute(); 6152 6153 assert(L->contains(Switch->getDefaultDest()) && 6154 "Default case must not exit the loop!"); 6155 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 6156 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 6157 6158 // while (X != Y) --> while (X-Y != 0) 6159 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 6160 if (EL.hasAnyInfo()) 6161 return EL; 6162 6163 return getCouldNotCompute(); 6164 } 6165 6166 static ConstantInt * 6167 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 6168 ScalarEvolution &SE) { 6169 const SCEV *InVal = SE.getConstant(C); 6170 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 6171 assert(isa<SCEVConstant>(Val) && 6172 "Evaluation of SCEV at constant didn't fold correctly?"); 6173 return cast<SCEVConstant>(Val)->getValue(); 6174 } 6175 6176 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 6177 /// compute the backedge execution count. 6178 ScalarEvolution::ExitLimit 6179 ScalarEvolution::computeLoadConstantCompareExitLimit( 6180 LoadInst *LI, 6181 Constant *RHS, 6182 const Loop *L, 6183 ICmpInst::Predicate predicate) { 6184 6185 if (LI->isVolatile()) return getCouldNotCompute(); 6186 6187 // Check to see if the loaded pointer is a getelementptr of a global. 6188 // TODO: Use SCEV instead of manually grubbing with GEPs. 6189 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 6190 if (!GEP) return getCouldNotCompute(); 6191 6192 // Make sure that it is really a constant global we are gepping, with an 6193 // initializer, and make sure the first IDX is really 0. 6194 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 6195 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 6196 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 6197 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 6198 return getCouldNotCompute(); 6199 6200 // Okay, we allow one non-constant index into the GEP instruction. 6201 Value *VarIdx = nullptr; 6202 std::vector<Constant*> Indexes; 6203 unsigned VarIdxNum = 0; 6204 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 6205 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 6206 Indexes.push_back(CI); 6207 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 6208 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 6209 VarIdx = GEP->getOperand(i); 6210 VarIdxNum = i-2; 6211 Indexes.push_back(nullptr); 6212 } 6213 6214 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 6215 if (!VarIdx) 6216 return getCouldNotCompute(); 6217 6218 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 6219 // Check to see if X is a loop variant variable value now. 6220 const SCEV *Idx = getSCEV(VarIdx); 6221 Idx = getSCEVAtScope(Idx, L); 6222 6223 // We can only recognize very limited forms of loop index expressions, in 6224 // particular, only affine AddRec's like {C1,+,C2}. 6225 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 6226 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 6227 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 6228 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 6229 return getCouldNotCompute(); 6230 6231 unsigned MaxSteps = MaxBruteForceIterations; 6232 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 6233 ConstantInt *ItCst = ConstantInt::get( 6234 cast<IntegerType>(IdxExpr->getType()), IterationNum); 6235 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 6236 6237 // Form the GEP offset. 6238 Indexes[VarIdxNum] = Val; 6239 6240 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 6241 Indexes); 6242 if (!Result) break; // Cannot compute! 6243 6244 // Evaluate the condition for this iteration. 6245 Result = ConstantExpr::getICmp(predicate, Result, RHS); 6246 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 6247 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 6248 ++NumArrayLenItCounts; 6249 return getConstant(ItCst); // Found terminating iteration! 6250 } 6251 } 6252 return getCouldNotCompute(); 6253 } 6254 6255 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 6256 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 6257 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 6258 if (!RHS) 6259 return getCouldNotCompute(); 6260 6261 const BasicBlock *Latch = L->getLoopLatch(); 6262 if (!Latch) 6263 return getCouldNotCompute(); 6264 6265 const BasicBlock *Predecessor = L->getLoopPredecessor(); 6266 if (!Predecessor) 6267 return getCouldNotCompute(); 6268 6269 // Return true if V is of the form "LHS `shift_op` <positive constant>". 6270 // Return LHS in OutLHS and shift_opt in OutOpCode. 6271 auto MatchPositiveShift = 6272 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 6273 6274 using namespace PatternMatch; 6275 6276 ConstantInt *ShiftAmt; 6277 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6278 OutOpCode = Instruction::LShr; 6279 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6280 OutOpCode = Instruction::AShr; 6281 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6282 OutOpCode = Instruction::Shl; 6283 else 6284 return false; 6285 6286 return ShiftAmt->getValue().isStrictlyPositive(); 6287 }; 6288 6289 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 6290 // 6291 // loop: 6292 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 6293 // %iv.shifted = lshr i32 %iv, <positive constant> 6294 // 6295 // Return true on a successful match. Return the corresponding PHI node (%iv 6296 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 6297 auto MatchShiftRecurrence = 6298 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 6299 Optional<Instruction::BinaryOps> PostShiftOpCode; 6300 6301 { 6302 Instruction::BinaryOps OpC; 6303 Value *V; 6304 6305 // If we encounter a shift instruction, "peel off" the shift operation, 6306 // and remember that we did so. Later when we inspect %iv's backedge 6307 // value, we will make sure that the backedge value uses the same 6308 // operation. 6309 // 6310 // Note: the peeled shift operation does not have to be the same 6311 // instruction as the one feeding into the PHI's backedge value. We only 6312 // really care about it being the same *kind* of shift instruction -- 6313 // that's all that is required for our later inferences to hold. 6314 if (MatchPositiveShift(LHS, V, OpC)) { 6315 PostShiftOpCode = OpC; 6316 LHS = V; 6317 } 6318 } 6319 6320 PNOut = dyn_cast<PHINode>(LHS); 6321 if (!PNOut || PNOut->getParent() != L->getHeader()) 6322 return false; 6323 6324 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 6325 Value *OpLHS; 6326 6327 return 6328 // The backedge value for the PHI node must be a shift by a positive 6329 // amount 6330 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 6331 6332 // of the PHI node itself 6333 OpLHS == PNOut && 6334 6335 // and the kind of shift should be match the kind of shift we peeled 6336 // off, if any. 6337 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 6338 }; 6339 6340 PHINode *PN; 6341 Instruction::BinaryOps OpCode; 6342 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 6343 return getCouldNotCompute(); 6344 6345 const DataLayout &DL = getDataLayout(); 6346 6347 // The key rationale for this optimization is that for some kinds of shift 6348 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 6349 // within a finite number of iterations. If the condition guarding the 6350 // backedge (in the sense that the backedge is taken if the condition is true) 6351 // is false for the value the shift recurrence stabilizes to, then we know 6352 // that the backedge is taken only a finite number of times. 6353 6354 ConstantInt *StableValue = nullptr; 6355 switch (OpCode) { 6356 default: 6357 llvm_unreachable("Impossible case!"); 6358 6359 case Instruction::AShr: { 6360 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 6361 // bitwidth(K) iterations. 6362 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 6363 bool KnownZero, KnownOne; 6364 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 6365 Predecessor->getTerminator(), &DT); 6366 auto *Ty = cast<IntegerType>(RHS->getType()); 6367 if (KnownZero) 6368 StableValue = ConstantInt::get(Ty, 0); 6369 else if (KnownOne) 6370 StableValue = ConstantInt::get(Ty, -1, true); 6371 else 6372 return getCouldNotCompute(); 6373 6374 break; 6375 } 6376 case Instruction::LShr: 6377 case Instruction::Shl: 6378 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 6379 // stabilize to 0 in at most bitwidth(K) iterations. 6380 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 6381 break; 6382 } 6383 6384 auto *Result = 6385 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 6386 assert(Result->getType()->isIntegerTy(1) && 6387 "Otherwise cannot be an operand to a branch instruction"); 6388 6389 if (Result->isZeroValue()) { 6390 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6391 const SCEV *UpperBound = 6392 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 6393 return ExitLimit(getCouldNotCompute(), UpperBound, false); 6394 } 6395 6396 return getCouldNotCompute(); 6397 } 6398 6399 /// Return true if we can constant fold an instruction of the specified type, 6400 /// assuming that all operands were constants. 6401 static bool CanConstantFold(const Instruction *I) { 6402 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 6403 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6404 isa<LoadInst>(I)) 6405 return true; 6406 6407 if (const CallInst *CI = dyn_cast<CallInst>(I)) 6408 if (const Function *F = CI->getCalledFunction()) 6409 return canConstantFoldCallTo(F); 6410 return false; 6411 } 6412 6413 /// Determine whether this instruction can constant evolve within this loop 6414 /// assuming its operands can all constant evolve. 6415 static bool canConstantEvolve(Instruction *I, const Loop *L) { 6416 // An instruction outside of the loop can't be derived from a loop PHI. 6417 if (!L->contains(I)) return false; 6418 6419 if (isa<PHINode>(I)) { 6420 // We don't currently keep track of the control flow needed to evaluate 6421 // PHIs, so we cannot handle PHIs inside of loops. 6422 return L->getHeader() == I->getParent(); 6423 } 6424 6425 // If we won't be able to constant fold this expression even if the operands 6426 // are constants, bail early. 6427 return CanConstantFold(I); 6428 } 6429 6430 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 6431 /// recursing through each instruction operand until reaching a loop header phi. 6432 static PHINode * 6433 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 6434 DenseMap<Instruction *, PHINode *> &PHIMap, 6435 unsigned Depth) { 6436 if (Depth > MaxConstantEvolvingDepth) 6437 return nullptr; 6438 6439 // Otherwise, we can evaluate this instruction if all of its operands are 6440 // constant or derived from a PHI node themselves. 6441 PHINode *PHI = nullptr; 6442 for (Value *Op : UseInst->operands()) { 6443 if (isa<Constant>(Op)) continue; 6444 6445 Instruction *OpInst = dyn_cast<Instruction>(Op); 6446 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 6447 6448 PHINode *P = dyn_cast<PHINode>(OpInst); 6449 if (!P) 6450 // If this operand is already visited, reuse the prior result. 6451 // We may have P != PHI if this is the deepest point at which the 6452 // inconsistent paths meet. 6453 P = PHIMap.lookup(OpInst); 6454 if (!P) { 6455 // Recurse and memoize the results, whether a phi is found or not. 6456 // This recursive call invalidates pointers into PHIMap. 6457 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 6458 PHIMap[OpInst] = P; 6459 } 6460 if (!P) 6461 return nullptr; // Not evolving from PHI 6462 if (PHI && PHI != P) 6463 return nullptr; // Evolving from multiple different PHIs. 6464 PHI = P; 6465 } 6466 // This is a expression evolving from a constant PHI! 6467 return PHI; 6468 } 6469 6470 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 6471 /// in the loop that V is derived from. We allow arbitrary operations along the 6472 /// way, but the operands of an operation must either be constants or a value 6473 /// derived from a constant PHI. If this expression does not fit with these 6474 /// constraints, return null. 6475 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 6476 Instruction *I = dyn_cast<Instruction>(V); 6477 if (!I || !canConstantEvolve(I, L)) return nullptr; 6478 6479 if (PHINode *PN = dyn_cast<PHINode>(I)) 6480 return PN; 6481 6482 // Record non-constant instructions contained by the loop. 6483 DenseMap<Instruction *, PHINode *> PHIMap; 6484 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 6485 } 6486 6487 /// EvaluateExpression - Given an expression that passes the 6488 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 6489 /// in the loop has the value PHIVal. If we can't fold this expression for some 6490 /// reason, return null. 6491 static Constant *EvaluateExpression(Value *V, const Loop *L, 6492 DenseMap<Instruction *, Constant *> &Vals, 6493 const DataLayout &DL, 6494 const TargetLibraryInfo *TLI) { 6495 // Convenient constant check, but redundant for recursive calls. 6496 if (Constant *C = dyn_cast<Constant>(V)) return C; 6497 Instruction *I = dyn_cast<Instruction>(V); 6498 if (!I) return nullptr; 6499 6500 if (Constant *C = Vals.lookup(I)) return C; 6501 6502 // An instruction inside the loop depends on a value outside the loop that we 6503 // weren't given a mapping for, or a value such as a call inside the loop. 6504 if (!canConstantEvolve(I, L)) return nullptr; 6505 6506 // An unmapped PHI can be due to a branch or another loop inside this loop, 6507 // or due to this not being the initial iteration through a loop where we 6508 // couldn't compute the evolution of this particular PHI last time. 6509 if (isa<PHINode>(I)) return nullptr; 6510 6511 std::vector<Constant*> Operands(I->getNumOperands()); 6512 6513 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 6514 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 6515 if (!Operand) { 6516 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 6517 if (!Operands[i]) return nullptr; 6518 continue; 6519 } 6520 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 6521 Vals[Operand] = C; 6522 if (!C) return nullptr; 6523 Operands[i] = C; 6524 } 6525 6526 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6527 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6528 Operands[1], DL, TLI); 6529 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6530 if (!LI->isVolatile()) 6531 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6532 } 6533 return ConstantFoldInstOperands(I, Operands, DL, TLI); 6534 } 6535 6536 6537 // If every incoming value to PN except the one for BB is a specific Constant, 6538 // return that, else return nullptr. 6539 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6540 Constant *IncomingVal = nullptr; 6541 6542 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6543 if (PN->getIncomingBlock(i) == BB) 6544 continue; 6545 6546 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6547 if (!CurrentVal) 6548 return nullptr; 6549 6550 if (IncomingVal != CurrentVal) { 6551 if (IncomingVal) 6552 return nullptr; 6553 IncomingVal = CurrentVal; 6554 } 6555 } 6556 6557 return IncomingVal; 6558 } 6559 6560 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6561 /// in the header of its containing loop, we know the loop executes a 6562 /// constant number of times, and the PHI node is just a recurrence 6563 /// involving constants, fold it. 6564 Constant * 6565 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6566 const APInt &BEs, 6567 const Loop *L) { 6568 auto I = ConstantEvolutionLoopExitValue.find(PN); 6569 if (I != ConstantEvolutionLoopExitValue.end()) 6570 return I->second; 6571 6572 if (BEs.ugt(MaxBruteForceIterations)) 6573 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6574 6575 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6576 6577 DenseMap<Instruction *, Constant *> CurrentIterVals; 6578 BasicBlock *Header = L->getHeader(); 6579 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6580 6581 BasicBlock *Latch = L->getLoopLatch(); 6582 if (!Latch) 6583 return nullptr; 6584 6585 for (auto &I : *Header) { 6586 PHINode *PHI = dyn_cast<PHINode>(&I); 6587 if (!PHI) break; 6588 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6589 if (!StartCST) continue; 6590 CurrentIterVals[PHI] = StartCST; 6591 } 6592 if (!CurrentIterVals.count(PN)) 6593 return RetVal = nullptr; 6594 6595 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6596 6597 // Execute the loop symbolically to determine the exit value. 6598 if (BEs.getActiveBits() >= 32) 6599 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6600 6601 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6602 unsigned IterationNum = 0; 6603 const DataLayout &DL = getDataLayout(); 6604 for (; ; ++IterationNum) { 6605 if (IterationNum == NumIterations) 6606 return RetVal = CurrentIterVals[PN]; // Got exit value! 6607 6608 // Compute the value of the PHIs for the next iteration. 6609 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6610 DenseMap<Instruction *, Constant *> NextIterVals; 6611 Constant *NextPHI = 6612 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6613 if (!NextPHI) 6614 return nullptr; // Couldn't evaluate! 6615 NextIterVals[PN] = NextPHI; 6616 6617 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6618 6619 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6620 // cease to be able to evaluate one of them or if they stop evolving, 6621 // because that doesn't necessarily prevent us from computing PN. 6622 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6623 for (const auto &I : CurrentIterVals) { 6624 PHINode *PHI = dyn_cast<PHINode>(I.first); 6625 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6626 PHIsToCompute.emplace_back(PHI, I.second); 6627 } 6628 // We use two distinct loops because EvaluateExpression may invalidate any 6629 // iterators into CurrentIterVals. 6630 for (const auto &I : PHIsToCompute) { 6631 PHINode *PHI = I.first; 6632 Constant *&NextPHI = NextIterVals[PHI]; 6633 if (!NextPHI) { // Not already computed. 6634 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6635 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6636 } 6637 if (NextPHI != I.second) 6638 StoppedEvolving = false; 6639 } 6640 6641 // If all entries in CurrentIterVals == NextIterVals then we can stop 6642 // iterating, the loop can't continue to change. 6643 if (StoppedEvolving) 6644 return RetVal = CurrentIterVals[PN]; 6645 6646 CurrentIterVals.swap(NextIterVals); 6647 } 6648 } 6649 6650 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6651 Value *Cond, 6652 bool ExitWhen) { 6653 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6654 if (!PN) return getCouldNotCompute(); 6655 6656 // If the loop is canonicalized, the PHI will have exactly two entries. 6657 // That's the only form we support here. 6658 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6659 6660 DenseMap<Instruction *, Constant *> CurrentIterVals; 6661 BasicBlock *Header = L->getHeader(); 6662 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6663 6664 BasicBlock *Latch = L->getLoopLatch(); 6665 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6666 6667 for (auto &I : *Header) { 6668 PHINode *PHI = dyn_cast<PHINode>(&I); 6669 if (!PHI) 6670 break; 6671 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6672 if (!StartCST) continue; 6673 CurrentIterVals[PHI] = StartCST; 6674 } 6675 if (!CurrentIterVals.count(PN)) 6676 return getCouldNotCompute(); 6677 6678 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6679 // the loop symbolically to determine when the condition gets a value of 6680 // "ExitWhen". 6681 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6682 const DataLayout &DL = getDataLayout(); 6683 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6684 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6685 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6686 6687 // Couldn't symbolically evaluate. 6688 if (!CondVal) return getCouldNotCompute(); 6689 6690 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6691 ++NumBruteForceTripCountsComputed; 6692 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6693 } 6694 6695 // Update all the PHI nodes for the next iteration. 6696 DenseMap<Instruction *, Constant *> NextIterVals; 6697 6698 // Create a list of which PHIs we need to compute. We want to do this before 6699 // calling EvaluateExpression on them because that may invalidate iterators 6700 // into CurrentIterVals. 6701 SmallVector<PHINode *, 8> PHIsToCompute; 6702 for (const auto &I : CurrentIterVals) { 6703 PHINode *PHI = dyn_cast<PHINode>(I.first); 6704 if (!PHI || PHI->getParent() != Header) continue; 6705 PHIsToCompute.push_back(PHI); 6706 } 6707 for (PHINode *PHI : PHIsToCompute) { 6708 Constant *&NextPHI = NextIterVals[PHI]; 6709 if (NextPHI) continue; // Already computed! 6710 6711 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6712 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6713 } 6714 CurrentIterVals.swap(NextIterVals); 6715 } 6716 6717 // Too many iterations were needed to evaluate. 6718 return getCouldNotCompute(); 6719 } 6720 6721 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6722 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6723 ValuesAtScopes[V]; 6724 // Check to see if we've folded this expression at this loop before. 6725 for (auto &LS : Values) 6726 if (LS.first == L) 6727 return LS.second ? LS.second : V; 6728 6729 Values.emplace_back(L, nullptr); 6730 6731 // Otherwise compute it. 6732 const SCEV *C = computeSCEVAtScope(V, L); 6733 for (auto &LS : reverse(ValuesAtScopes[V])) 6734 if (LS.first == L) { 6735 LS.second = C; 6736 break; 6737 } 6738 return C; 6739 } 6740 6741 /// This builds up a Constant using the ConstantExpr interface. That way, we 6742 /// will return Constants for objects which aren't represented by a 6743 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6744 /// Returns NULL if the SCEV isn't representable as a Constant. 6745 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6746 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6747 case scCouldNotCompute: 6748 case scAddRecExpr: 6749 break; 6750 case scConstant: 6751 return cast<SCEVConstant>(V)->getValue(); 6752 case scUnknown: 6753 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6754 case scSignExtend: { 6755 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6756 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6757 return ConstantExpr::getSExt(CastOp, SS->getType()); 6758 break; 6759 } 6760 case scZeroExtend: { 6761 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6762 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6763 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6764 break; 6765 } 6766 case scTruncate: { 6767 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6768 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6769 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6770 break; 6771 } 6772 case scAddExpr: { 6773 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6774 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6775 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6776 unsigned AS = PTy->getAddressSpace(); 6777 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6778 C = ConstantExpr::getBitCast(C, DestPtrTy); 6779 } 6780 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6781 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6782 if (!C2) return nullptr; 6783 6784 // First pointer! 6785 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6786 unsigned AS = C2->getType()->getPointerAddressSpace(); 6787 std::swap(C, C2); 6788 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6789 // The offsets have been converted to bytes. We can add bytes to an 6790 // i8* by GEP with the byte count in the first index. 6791 C = ConstantExpr::getBitCast(C, DestPtrTy); 6792 } 6793 6794 // Don't bother trying to sum two pointers. We probably can't 6795 // statically compute a load that results from it anyway. 6796 if (C2->getType()->isPointerTy()) 6797 return nullptr; 6798 6799 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6800 if (PTy->getElementType()->isStructTy()) 6801 C2 = ConstantExpr::getIntegerCast( 6802 C2, Type::getInt32Ty(C->getContext()), true); 6803 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6804 } else 6805 C = ConstantExpr::getAdd(C, C2); 6806 } 6807 return C; 6808 } 6809 break; 6810 } 6811 case scMulExpr: { 6812 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6813 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6814 // Don't bother with pointers at all. 6815 if (C->getType()->isPointerTy()) return nullptr; 6816 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6817 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6818 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6819 C = ConstantExpr::getMul(C, C2); 6820 } 6821 return C; 6822 } 6823 break; 6824 } 6825 case scUDivExpr: { 6826 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6827 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6828 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6829 if (LHS->getType() == RHS->getType()) 6830 return ConstantExpr::getUDiv(LHS, RHS); 6831 break; 6832 } 6833 case scSMaxExpr: 6834 case scUMaxExpr: 6835 break; // TODO: smax, umax. 6836 } 6837 return nullptr; 6838 } 6839 6840 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6841 if (isa<SCEVConstant>(V)) return V; 6842 6843 // If this instruction is evolved from a constant-evolving PHI, compute the 6844 // exit value from the loop without using SCEVs. 6845 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6846 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6847 const Loop *LI = this->LI[I->getParent()]; 6848 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6849 if (PHINode *PN = dyn_cast<PHINode>(I)) 6850 if (PN->getParent() == LI->getHeader()) { 6851 // Okay, there is no closed form solution for the PHI node. Check 6852 // to see if the loop that contains it has a known backedge-taken 6853 // count. If so, we may be able to force computation of the exit 6854 // value. 6855 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6856 if (const SCEVConstant *BTCC = 6857 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6858 // Okay, we know how many times the containing loop executes. If 6859 // this is a constant evolving PHI node, get the final value at 6860 // the specified iteration number. 6861 Constant *RV = 6862 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 6863 if (RV) return getSCEV(RV); 6864 } 6865 } 6866 6867 // Okay, this is an expression that we cannot symbolically evaluate 6868 // into a SCEV. Check to see if it's possible to symbolically evaluate 6869 // the arguments into constants, and if so, try to constant propagate the 6870 // result. This is particularly useful for computing loop exit values. 6871 if (CanConstantFold(I)) { 6872 SmallVector<Constant *, 4> Operands; 6873 bool MadeImprovement = false; 6874 for (Value *Op : I->operands()) { 6875 if (Constant *C = dyn_cast<Constant>(Op)) { 6876 Operands.push_back(C); 6877 continue; 6878 } 6879 6880 // If any of the operands is non-constant and if they are 6881 // non-integer and non-pointer, don't even try to analyze them 6882 // with scev techniques. 6883 if (!isSCEVable(Op->getType())) 6884 return V; 6885 6886 const SCEV *OrigV = getSCEV(Op); 6887 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6888 MadeImprovement |= OrigV != OpV; 6889 6890 Constant *C = BuildConstantFromSCEV(OpV); 6891 if (!C) return V; 6892 if (C->getType() != Op->getType()) 6893 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6894 Op->getType(), 6895 false), 6896 C, Op->getType()); 6897 Operands.push_back(C); 6898 } 6899 6900 // Check to see if getSCEVAtScope actually made an improvement. 6901 if (MadeImprovement) { 6902 Constant *C = nullptr; 6903 const DataLayout &DL = getDataLayout(); 6904 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6905 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6906 Operands[1], DL, &TLI); 6907 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6908 if (!LI->isVolatile()) 6909 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6910 } else 6911 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 6912 if (!C) return V; 6913 return getSCEV(C); 6914 } 6915 } 6916 } 6917 6918 // This is some other type of SCEVUnknown, just return it. 6919 return V; 6920 } 6921 6922 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6923 // Avoid performing the look-up in the common case where the specified 6924 // expression has no loop-variant portions. 6925 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6926 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6927 if (OpAtScope != Comm->getOperand(i)) { 6928 // Okay, at least one of these operands is loop variant but might be 6929 // foldable. Build a new instance of the folded commutative expression. 6930 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6931 Comm->op_begin()+i); 6932 NewOps.push_back(OpAtScope); 6933 6934 for (++i; i != e; ++i) { 6935 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6936 NewOps.push_back(OpAtScope); 6937 } 6938 if (isa<SCEVAddExpr>(Comm)) 6939 return getAddExpr(NewOps); 6940 if (isa<SCEVMulExpr>(Comm)) 6941 return getMulExpr(NewOps); 6942 if (isa<SCEVSMaxExpr>(Comm)) 6943 return getSMaxExpr(NewOps); 6944 if (isa<SCEVUMaxExpr>(Comm)) 6945 return getUMaxExpr(NewOps); 6946 llvm_unreachable("Unknown commutative SCEV type!"); 6947 } 6948 } 6949 // If we got here, all operands are loop invariant. 6950 return Comm; 6951 } 6952 6953 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6954 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6955 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6956 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6957 return Div; // must be loop invariant 6958 return getUDivExpr(LHS, RHS); 6959 } 6960 6961 // If this is a loop recurrence for a loop that does not contain L, then we 6962 // are dealing with the final value computed by the loop. 6963 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6964 // First, attempt to evaluate each operand. 6965 // Avoid performing the look-up in the common case where the specified 6966 // expression has no loop-variant portions. 6967 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6968 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6969 if (OpAtScope == AddRec->getOperand(i)) 6970 continue; 6971 6972 // Okay, at least one of these operands is loop variant but might be 6973 // foldable. Build a new instance of the folded commutative expression. 6974 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6975 AddRec->op_begin()+i); 6976 NewOps.push_back(OpAtScope); 6977 for (++i; i != e; ++i) 6978 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6979 6980 const SCEV *FoldedRec = 6981 getAddRecExpr(NewOps, AddRec->getLoop(), 6982 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6983 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6984 // The addrec may be folded to a nonrecurrence, for example, if the 6985 // induction variable is multiplied by zero after constant folding. Go 6986 // ahead and return the folded value. 6987 if (!AddRec) 6988 return FoldedRec; 6989 break; 6990 } 6991 6992 // If the scope is outside the addrec's loop, evaluate it by using the 6993 // loop exit value of the addrec. 6994 if (!AddRec->getLoop()->contains(L)) { 6995 // To evaluate this recurrence, we need to know how many times the AddRec 6996 // loop iterates. Compute this now. 6997 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6998 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6999 7000 // Then, evaluate the AddRec. 7001 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 7002 } 7003 7004 return AddRec; 7005 } 7006 7007 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 7008 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7009 if (Op == Cast->getOperand()) 7010 return Cast; // must be loop invariant 7011 return getZeroExtendExpr(Op, Cast->getType()); 7012 } 7013 7014 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 7015 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7016 if (Op == Cast->getOperand()) 7017 return Cast; // must be loop invariant 7018 return getSignExtendExpr(Op, Cast->getType()); 7019 } 7020 7021 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 7022 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7023 if (Op == Cast->getOperand()) 7024 return Cast; // must be loop invariant 7025 return getTruncateExpr(Op, Cast->getType()); 7026 } 7027 7028 llvm_unreachable("Unknown SCEV type!"); 7029 } 7030 7031 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 7032 return getSCEVAtScope(getSCEV(V), L); 7033 } 7034 7035 /// Finds the minimum unsigned root of the following equation: 7036 /// 7037 /// A * X = B (mod N) 7038 /// 7039 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 7040 /// A and B isn't important. 7041 /// 7042 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 7043 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 7044 ScalarEvolution &SE) { 7045 uint32_t BW = A.getBitWidth(); 7046 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 7047 assert(A != 0 && "A must be non-zero."); 7048 7049 // 1. D = gcd(A, N) 7050 // 7051 // The gcd of A and N may have only one prime factor: 2. The number of 7052 // trailing zeros in A is its multiplicity 7053 uint32_t Mult2 = A.countTrailingZeros(); 7054 // D = 2^Mult2 7055 7056 // 2. Check if B is divisible by D. 7057 // 7058 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 7059 // is not less than multiplicity of this prime factor for D. 7060 if (B.countTrailingZeros() < Mult2) 7061 return SE.getCouldNotCompute(); 7062 7063 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 7064 // modulo (N / D). 7065 // 7066 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 7067 // (N / D) in general. The inverse itself always fits into BW bits, though, 7068 // so we immediately truncate it. 7069 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 7070 APInt Mod(BW + 1, 0); 7071 Mod.setBit(BW - Mult2); // Mod = N / D 7072 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 7073 7074 // 4. Compute the minimum unsigned root of the equation: 7075 // I * (B / D) mod (N / D) 7076 // To simplify the computation, we factor out the divide by D: 7077 // (I * B mod N) / D 7078 APInt Result = (I * B).lshr(Mult2); 7079 7080 return SE.getConstant(Result); 7081 } 7082 7083 /// Find the roots of the quadratic equation for the given quadratic chrec 7084 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 7085 /// two SCEVCouldNotCompute objects. 7086 /// 7087 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 7088 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 7089 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 7090 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 7091 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 7092 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 7093 7094 // We currently can only solve this if the coefficients are constants. 7095 if (!LC || !MC || !NC) 7096 return None; 7097 7098 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 7099 const APInt &L = LC->getAPInt(); 7100 const APInt &M = MC->getAPInt(); 7101 const APInt &N = NC->getAPInt(); 7102 APInt Two(BitWidth, 2); 7103 APInt Four(BitWidth, 4); 7104 7105 { 7106 using namespace APIntOps; 7107 const APInt& C = L; 7108 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 7109 // The B coefficient is M-N/2 7110 APInt B(M); 7111 B -= sdiv(N,Two); 7112 7113 // The A coefficient is N/2 7114 APInt A(N.sdiv(Two)); 7115 7116 // Compute the B^2-4ac term. 7117 APInt SqrtTerm(B); 7118 SqrtTerm *= B; 7119 SqrtTerm -= Four * (A * C); 7120 7121 if (SqrtTerm.isNegative()) { 7122 // The loop is provably infinite. 7123 return None; 7124 } 7125 7126 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 7127 // integer value or else APInt::sqrt() will assert. 7128 APInt SqrtVal(SqrtTerm.sqrt()); 7129 7130 // Compute the two solutions for the quadratic formula. 7131 // The divisions must be performed as signed divisions. 7132 APInt NegB(-B); 7133 APInt TwoA(A << 1); 7134 if (TwoA.isMinValue()) 7135 return None; 7136 7137 LLVMContext &Context = SE.getContext(); 7138 7139 ConstantInt *Solution1 = 7140 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 7141 ConstantInt *Solution2 = 7142 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 7143 7144 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 7145 cast<SCEVConstant>(SE.getConstant(Solution2))); 7146 } // end APIntOps namespace 7147 } 7148 7149 ScalarEvolution::ExitLimit 7150 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 7151 bool AllowPredicates) { 7152 7153 // This is only used for loops with a "x != y" exit test. The exit condition 7154 // is now expressed as a single expression, V = x-y. So the exit test is 7155 // effectively V != 0. We know and take advantage of the fact that this 7156 // expression only being used in a comparison by zero context. 7157 7158 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 7159 // If the value is a constant 7160 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7161 // If the value is already zero, the branch will execute zero times. 7162 if (C->getValue()->isZero()) return C; 7163 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7164 } 7165 7166 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 7167 if (!AddRec && AllowPredicates) 7168 // Try to make this an AddRec using runtime tests, in the first X 7169 // iterations of this loop, where X is the SCEV expression found by the 7170 // algorithm below. 7171 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 7172 7173 if (!AddRec || AddRec->getLoop() != L) 7174 return getCouldNotCompute(); 7175 7176 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 7177 // the quadratic equation to solve it. 7178 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 7179 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 7180 const SCEVConstant *R1 = Roots->first; 7181 const SCEVConstant *R2 = Roots->second; 7182 // Pick the smallest positive root value. 7183 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 7184 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 7185 if (!CB->getZExtValue()) 7186 std::swap(R1, R2); // R1 is the minimum root now. 7187 7188 // We can only use this value if the chrec ends up with an exact zero 7189 // value at this index. When solving for "X*X != 5", for example, we 7190 // should not accept a root of 2. 7191 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 7192 if (Val->isZero()) 7193 // We found a quadratic root! 7194 return ExitLimit(R1, R1, false, Predicates); 7195 } 7196 } 7197 return getCouldNotCompute(); 7198 } 7199 7200 // Otherwise we can only handle this if it is affine. 7201 if (!AddRec->isAffine()) 7202 return getCouldNotCompute(); 7203 7204 // If this is an affine expression, the execution count of this branch is 7205 // the minimum unsigned root of the following equation: 7206 // 7207 // Start + Step*N = 0 (mod 2^BW) 7208 // 7209 // equivalent to: 7210 // 7211 // Step*N = -Start (mod 2^BW) 7212 // 7213 // where BW is the common bit width of Start and Step. 7214 7215 // Get the initial value for the loop. 7216 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 7217 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 7218 7219 // For now we handle only constant steps. 7220 // 7221 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 7222 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 7223 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 7224 // We have not yet seen any such cases. 7225 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 7226 if (!StepC || StepC->getValue()->equalsInt(0)) 7227 return getCouldNotCompute(); 7228 7229 // For positive steps (counting up until unsigned overflow): 7230 // N = -Start/Step (as unsigned) 7231 // For negative steps (counting down to zero): 7232 // N = Start/-Step 7233 // First compute the unsigned distance from zero in the direction of Step. 7234 bool CountDown = StepC->getAPInt().isNegative(); 7235 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 7236 7237 // Handle unitary steps, which cannot wraparound. 7238 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 7239 // N = Distance (as unsigned) 7240 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 7241 APInt MaxBECount = getUnsignedRange(Distance).getUnsignedMax(); 7242 7243 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 7244 // we end up with a loop whose backedge-taken count is n - 1. Detect this 7245 // case, and see if we can improve the bound. 7246 // 7247 // Explicitly handling this here is necessary because getUnsignedRange 7248 // isn't context-sensitive; it doesn't know that we only care about the 7249 // range inside the loop. 7250 const SCEV *Zero = getZero(Distance->getType()); 7251 const SCEV *One = getOne(Distance->getType()); 7252 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 7253 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 7254 // If Distance + 1 doesn't overflow, we can compute the maximum distance 7255 // as "unsigned_max(Distance + 1) - 1". 7256 ConstantRange CR = getUnsignedRange(DistancePlusOne); 7257 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 7258 } 7259 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 7260 } 7261 7262 // As a special case, handle the instance where Step is a positive power of 7263 // two. In this case, determining whether Step divides Distance evenly can be 7264 // done by counting and comparing the number of trailing zeros of Step and 7265 // Distance. 7266 if (!CountDown) { 7267 const APInt &StepV = StepC->getAPInt(); 7268 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 7269 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 7270 // case is not handled as this code is guarded by !CountDown. 7271 if (StepV.isPowerOf2() && 7272 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 7273 // Here we've constrained the equation to be of the form 7274 // 7275 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 7276 // 7277 // where we're operating on a W bit wide integer domain and k is 7278 // non-negative. The smallest unsigned solution for X is the trip count. 7279 // 7280 // (0) is equivalent to: 7281 // 7282 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 7283 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 7284 // <=> 2^k * Distance' - X = L * 2^(W - N) 7285 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 7286 // 7287 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 7288 // by 2^(W - N). 7289 // 7290 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 7291 // 7292 // E.g. say we're solving 7293 // 7294 // 2 * Val = 2 * X (in i8) ... (3) 7295 // 7296 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 7297 // 7298 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 7299 // necessarily the smallest unsigned value of X that satisfies (3). 7300 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 7301 // is i8 1, not i8 -127 7302 7303 const auto *Limit = getUDivExactExpr(Distance, Step); 7304 return ExitLimit(Limit, Limit, false, Predicates); 7305 } 7306 } 7307 7308 // If the condition controls loop exit (the loop exits only if the expression 7309 // is true) and the addition is no-wrap we can use unsigned divide to 7310 // compute the backedge count. In this case, the step may not divide the 7311 // distance, but we don't care because if the condition is "missed" the loop 7312 // will have undefined behavior due to wrapping. 7313 if (ControlsExit && AddRec->hasNoSelfWrap() && 7314 loopHasNoAbnormalExits(AddRec->getLoop())) { 7315 const SCEV *Exact = 7316 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 7317 return ExitLimit(Exact, Exact, false, Predicates); 7318 } 7319 7320 // Then, try to solve the above equation provided that Start is constant. 7321 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { 7322 const SCEV *E = SolveLinEquationWithOverflow( 7323 StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this); 7324 return ExitLimit(E, E, false, Predicates); 7325 } 7326 return getCouldNotCompute(); 7327 } 7328 7329 ScalarEvolution::ExitLimit 7330 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 7331 // Loops that look like: while (X == 0) are very strange indeed. We don't 7332 // handle them yet except for the trivial case. This could be expanded in the 7333 // future as needed. 7334 7335 // If the value is a constant, check to see if it is known to be non-zero 7336 // already. If so, the backedge will execute zero times. 7337 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7338 if (!C->getValue()->isNullValue()) 7339 return getZero(C->getType()); 7340 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7341 } 7342 7343 // We could implement others, but I really doubt anyone writes loops like 7344 // this, and if they did, they would already be constant folded. 7345 return getCouldNotCompute(); 7346 } 7347 7348 std::pair<BasicBlock *, BasicBlock *> 7349 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 7350 // If the block has a unique predecessor, then there is no path from the 7351 // predecessor to the block that does not go through the direct edge 7352 // from the predecessor to the block. 7353 if (BasicBlock *Pred = BB->getSinglePredecessor()) 7354 return {Pred, BB}; 7355 7356 // A loop's header is defined to be a block that dominates the loop. 7357 // If the header has a unique predecessor outside the loop, it must be 7358 // a block that has exactly one successor that can reach the loop. 7359 if (Loop *L = LI.getLoopFor(BB)) 7360 return {L->getLoopPredecessor(), L->getHeader()}; 7361 7362 return {nullptr, nullptr}; 7363 } 7364 7365 /// SCEV structural equivalence is usually sufficient for testing whether two 7366 /// expressions are equal, however for the purposes of looking for a condition 7367 /// guarding a loop, it can be useful to be a little more general, since a 7368 /// front-end may have replicated the controlling expression. 7369 /// 7370 static bool HasSameValue(const SCEV *A, const SCEV *B) { 7371 // Quick check to see if they are the same SCEV. 7372 if (A == B) return true; 7373 7374 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 7375 // Not all instructions that are "identical" compute the same value. For 7376 // instance, two distinct alloca instructions allocating the same type are 7377 // identical and do not read memory; but compute distinct values. 7378 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 7379 }; 7380 7381 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 7382 // two different instructions with the same value. Check for this case. 7383 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 7384 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 7385 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 7386 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 7387 if (ComputesEqualValues(AI, BI)) 7388 return true; 7389 7390 // Otherwise assume they may have a different value. 7391 return false; 7392 } 7393 7394 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 7395 const SCEV *&LHS, const SCEV *&RHS, 7396 unsigned Depth) { 7397 bool Changed = false; 7398 7399 // If we hit the max recursion limit bail out. 7400 if (Depth >= 3) 7401 return false; 7402 7403 // Canonicalize a constant to the right side. 7404 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 7405 // Check for both operands constant. 7406 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 7407 if (ConstantExpr::getICmp(Pred, 7408 LHSC->getValue(), 7409 RHSC->getValue())->isNullValue()) 7410 goto trivially_false; 7411 else 7412 goto trivially_true; 7413 } 7414 // Otherwise swap the operands to put the constant on the right. 7415 std::swap(LHS, RHS); 7416 Pred = ICmpInst::getSwappedPredicate(Pred); 7417 Changed = true; 7418 } 7419 7420 // If we're comparing an addrec with a value which is loop-invariant in the 7421 // addrec's loop, put the addrec on the left. Also make a dominance check, 7422 // as both operands could be addrecs loop-invariant in each other's loop. 7423 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 7424 const Loop *L = AR->getLoop(); 7425 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 7426 std::swap(LHS, RHS); 7427 Pred = ICmpInst::getSwappedPredicate(Pred); 7428 Changed = true; 7429 } 7430 } 7431 7432 // If there's a constant operand, canonicalize comparisons with boundary 7433 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 7434 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 7435 const APInt &RA = RC->getAPInt(); 7436 7437 bool SimplifiedByConstantRange = false; 7438 7439 if (!ICmpInst::isEquality(Pred)) { 7440 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 7441 if (ExactCR.isFullSet()) 7442 goto trivially_true; 7443 else if (ExactCR.isEmptySet()) 7444 goto trivially_false; 7445 7446 APInt NewRHS; 7447 CmpInst::Predicate NewPred; 7448 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 7449 ICmpInst::isEquality(NewPred)) { 7450 // We were able to convert an inequality to an equality. 7451 Pred = NewPred; 7452 RHS = getConstant(NewRHS); 7453 Changed = SimplifiedByConstantRange = true; 7454 } 7455 } 7456 7457 if (!SimplifiedByConstantRange) { 7458 switch (Pred) { 7459 default: 7460 break; 7461 case ICmpInst::ICMP_EQ: 7462 case ICmpInst::ICMP_NE: 7463 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 7464 if (!RA) 7465 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 7466 if (const SCEVMulExpr *ME = 7467 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 7468 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 7469 ME->getOperand(0)->isAllOnesValue()) { 7470 RHS = AE->getOperand(1); 7471 LHS = ME->getOperand(1); 7472 Changed = true; 7473 } 7474 break; 7475 7476 7477 // The "Should have been caught earlier!" messages refer to the fact 7478 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 7479 // should have fired on the corresponding cases, and canonicalized the 7480 // check to trivially_true or trivially_false. 7481 7482 case ICmpInst::ICMP_UGE: 7483 assert(!RA.isMinValue() && "Should have been caught earlier!"); 7484 Pred = ICmpInst::ICMP_UGT; 7485 RHS = getConstant(RA - 1); 7486 Changed = true; 7487 break; 7488 case ICmpInst::ICMP_ULE: 7489 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 7490 Pred = ICmpInst::ICMP_ULT; 7491 RHS = getConstant(RA + 1); 7492 Changed = true; 7493 break; 7494 case ICmpInst::ICMP_SGE: 7495 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 7496 Pred = ICmpInst::ICMP_SGT; 7497 RHS = getConstant(RA - 1); 7498 Changed = true; 7499 break; 7500 case ICmpInst::ICMP_SLE: 7501 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 7502 Pred = ICmpInst::ICMP_SLT; 7503 RHS = getConstant(RA + 1); 7504 Changed = true; 7505 break; 7506 } 7507 } 7508 } 7509 7510 // Check for obvious equality. 7511 if (HasSameValue(LHS, RHS)) { 7512 if (ICmpInst::isTrueWhenEqual(Pred)) 7513 goto trivially_true; 7514 if (ICmpInst::isFalseWhenEqual(Pred)) 7515 goto trivially_false; 7516 } 7517 7518 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7519 // adding or subtracting 1 from one of the operands. 7520 switch (Pred) { 7521 case ICmpInst::ICMP_SLE: 7522 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7523 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7524 SCEV::FlagNSW); 7525 Pred = ICmpInst::ICMP_SLT; 7526 Changed = true; 7527 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7528 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7529 SCEV::FlagNSW); 7530 Pred = ICmpInst::ICMP_SLT; 7531 Changed = true; 7532 } 7533 break; 7534 case ICmpInst::ICMP_SGE: 7535 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7536 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7537 SCEV::FlagNSW); 7538 Pred = ICmpInst::ICMP_SGT; 7539 Changed = true; 7540 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7541 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7542 SCEV::FlagNSW); 7543 Pred = ICmpInst::ICMP_SGT; 7544 Changed = true; 7545 } 7546 break; 7547 case ICmpInst::ICMP_ULE: 7548 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7549 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7550 SCEV::FlagNUW); 7551 Pred = ICmpInst::ICMP_ULT; 7552 Changed = true; 7553 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7554 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7555 Pred = ICmpInst::ICMP_ULT; 7556 Changed = true; 7557 } 7558 break; 7559 case ICmpInst::ICMP_UGE: 7560 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7561 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7562 Pred = ICmpInst::ICMP_UGT; 7563 Changed = true; 7564 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7565 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7566 SCEV::FlagNUW); 7567 Pred = ICmpInst::ICMP_UGT; 7568 Changed = true; 7569 } 7570 break; 7571 default: 7572 break; 7573 } 7574 7575 // TODO: More simplifications are possible here. 7576 7577 // Recursively simplify until we either hit a recursion limit or nothing 7578 // changes. 7579 if (Changed) 7580 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7581 7582 return Changed; 7583 7584 trivially_true: 7585 // Return 0 == 0. 7586 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7587 Pred = ICmpInst::ICMP_EQ; 7588 return true; 7589 7590 trivially_false: 7591 // Return 0 != 0. 7592 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7593 Pred = ICmpInst::ICMP_NE; 7594 return true; 7595 } 7596 7597 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7598 return getSignedRange(S).getSignedMax().isNegative(); 7599 } 7600 7601 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7602 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7603 } 7604 7605 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7606 return !getSignedRange(S).getSignedMin().isNegative(); 7607 } 7608 7609 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7610 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7611 } 7612 7613 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7614 return isKnownNegative(S) || isKnownPositive(S); 7615 } 7616 7617 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7618 const SCEV *LHS, const SCEV *RHS) { 7619 // Canonicalize the inputs first. 7620 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7621 7622 // If LHS or RHS is an addrec, check to see if the condition is true in 7623 // every iteration of the loop. 7624 // If LHS and RHS are both addrec, both conditions must be true in 7625 // every iteration of the loop. 7626 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7627 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7628 bool LeftGuarded = false; 7629 bool RightGuarded = false; 7630 if (LAR) { 7631 const Loop *L = LAR->getLoop(); 7632 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7633 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7634 if (!RAR) return true; 7635 LeftGuarded = true; 7636 } 7637 } 7638 if (RAR) { 7639 const Loop *L = RAR->getLoop(); 7640 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7641 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7642 if (!LAR) return true; 7643 RightGuarded = true; 7644 } 7645 } 7646 if (LeftGuarded && RightGuarded) 7647 return true; 7648 7649 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7650 return true; 7651 7652 // Otherwise see what can be done with known constant ranges. 7653 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7654 } 7655 7656 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7657 ICmpInst::Predicate Pred, 7658 bool &Increasing) { 7659 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7660 7661 #ifndef NDEBUG 7662 // Verify an invariant: inverting the predicate should turn a monotonically 7663 // increasing change to a monotonically decreasing one, and vice versa. 7664 bool IncreasingSwapped; 7665 bool ResultSwapped = isMonotonicPredicateImpl( 7666 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7667 7668 assert(Result == ResultSwapped && "should be able to analyze both!"); 7669 if (ResultSwapped) 7670 assert(Increasing == !IncreasingSwapped && 7671 "monotonicity should flip as we flip the predicate"); 7672 #endif 7673 7674 return Result; 7675 } 7676 7677 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7678 ICmpInst::Predicate Pred, 7679 bool &Increasing) { 7680 7681 // A zero step value for LHS means the induction variable is essentially a 7682 // loop invariant value. We don't really depend on the predicate actually 7683 // flipping from false to true (for increasing predicates, and the other way 7684 // around for decreasing predicates), all we care about is that *if* the 7685 // predicate changes then it only changes from false to true. 7686 // 7687 // A zero step value in itself is not very useful, but there may be places 7688 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7689 // as general as possible. 7690 7691 switch (Pred) { 7692 default: 7693 return false; // Conservative answer 7694 7695 case ICmpInst::ICMP_UGT: 7696 case ICmpInst::ICMP_UGE: 7697 case ICmpInst::ICMP_ULT: 7698 case ICmpInst::ICMP_ULE: 7699 if (!LHS->hasNoUnsignedWrap()) 7700 return false; 7701 7702 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7703 return true; 7704 7705 case ICmpInst::ICMP_SGT: 7706 case ICmpInst::ICMP_SGE: 7707 case ICmpInst::ICMP_SLT: 7708 case ICmpInst::ICMP_SLE: { 7709 if (!LHS->hasNoSignedWrap()) 7710 return false; 7711 7712 const SCEV *Step = LHS->getStepRecurrence(*this); 7713 7714 if (isKnownNonNegative(Step)) { 7715 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7716 return true; 7717 } 7718 7719 if (isKnownNonPositive(Step)) { 7720 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7721 return true; 7722 } 7723 7724 return false; 7725 } 7726 7727 } 7728 7729 llvm_unreachable("switch has default clause!"); 7730 } 7731 7732 bool ScalarEvolution::isLoopInvariantPredicate( 7733 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7734 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7735 const SCEV *&InvariantRHS) { 7736 7737 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7738 if (!isLoopInvariant(RHS, L)) { 7739 if (!isLoopInvariant(LHS, L)) 7740 return false; 7741 7742 std::swap(LHS, RHS); 7743 Pred = ICmpInst::getSwappedPredicate(Pred); 7744 } 7745 7746 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7747 if (!ArLHS || ArLHS->getLoop() != L) 7748 return false; 7749 7750 bool Increasing; 7751 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7752 return false; 7753 7754 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7755 // true as the loop iterates, and the backedge is control dependent on 7756 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7757 // 7758 // * if the predicate was false in the first iteration then the predicate 7759 // is never evaluated again, since the loop exits without taking the 7760 // backedge. 7761 // * if the predicate was true in the first iteration then it will 7762 // continue to be true for all future iterations since it is 7763 // monotonically increasing. 7764 // 7765 // For both the above possibilities, we can replace the loop varying 7766 // predicate with its value on the first iteration of the loop (which is 7767 // loop invariant). 7768 // 7769 // A similar reasoning applies for a monotonically decreasing predicate, by 7770 // replacing true with false and false with true in the above two bullets. 7771 7772 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7773 7774 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7775 return false; 7776 7777 InvariantPred = Pred; 7778 InvariantLHS = ArLHS->getStart(); 7779 InvariantRHS = RHS; 7780 return true; 7781 } 7782 7783 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 7784 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7785 if (HasSameValue(LHS, RHS)) 7786 return ICmpInst::isTrueWhenEqual(Pred); 7787 7788 // This code is split out from isKnownPredicate because it is called from 7789 // within isLoopEntryGuardedByCond. 7790 7791 auto CheckRanges = 7792 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 7793 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 7794 .contains(RangeLHS); 7795 }; 7796 7797 // The check at the top of the function catches the case where the values are 7798 // known to be equal. 7799 if (Pred == CmpInst::ICMP_EQ) 7800 return false; 7801 7802 if (Pred == CmpInst::ICMP_NE) 7803 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 7804 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 7805 isKnownNonZero(getMinusSCEV(LHS, RHS)); 7806 7807 if (CmpInst::isSigned(Pred)) 7808 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 7809 7810 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 7811 } 7812 7813 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7814 const SCEV *LHS, 7815 const SCEV *RHS) { 7816 7817 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7818 // Return Y via OutY. 7819 auto MatchBinaryAddToConst = 7820 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7821 SCEV::NoWrapFlags ExpectedFlags) { 7822 const SCEV *NonConstOp, *ConstOp; 7823 SCEV::NoWrapFlags FlagsPresent; 7824 7825 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7826 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7827 return false; 7828 7829 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7830 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7831 }; 7832 7833 APInt C; 7834 7835 switch (Pred) { 7836 default: 7837 break; 7838 7839 case ICmpInst::ICMP_SGE: 7840 std::swap(LHS, RHS); 7841 case ICmpInst::ICMP_SLE: 7842 // X s<= (X + C)<nsw> if C >= 0 7843 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7844 return true; 7845 7846 // (X + C)<nsw> s<= X if C <= 0 7847 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7848 !C.isStrictlyPositive()) 7849 return true; 7850 break; 7851 7852 case ICmpInst::ICMP_SGT: 7853 std::swap(LHS, RHS); 7854 case ICmpInst::ICMP_SLT: 7855 // X s< (X + C)<nsw> if C > 0 7856 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7857 C.isStrictlyPositive()) 7858 return true; 7859 7860 // (X + C)<nsw> s< X if C < 0 7861 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7862 return true; 7863 break; 7864 } 7865 7866 return false; 7867 } 7868 7869 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7870 const SCEV *LHS, 7871 const SCEV *RHS) { 7872 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7873 return false; 7874 7875 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7876 // the stack can result in exponential time complexity. 7877 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7878 7879 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7880 // 7881 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7882 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7883 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7884 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7885 // use isKnownPredicate later if needed. 7886 return isKnownNonNegative(RHS) && 7887 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7888 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7889 } 7890 7891 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 7892 ICmpInst::Predicate Pred, 7893 const SCEV *LHS, const SCEV *RHS) { 7894 // No need to even try if we know the module has no guards. 7895 if (!HasGuards) 7896 return false; 7897 7898 return any_of(*BB, [&](Instruction &I) { 7899 using namespace llvm::PatternMatch; 7900 7901 Value *Condition; 7902 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 7903 m_Value(Condition))) && 7904 isImpliedCond(Pred, LHS, RHS, Condition, false); 7905 }); 7906 } 7907 7908 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7909 /// protected by a conditional between LHS and RHS. This is used to 7910 /// to eliminate casts. 7911 bool 7912 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7913 ICmpInst::Predicate Pred, 7914 const SCEV *LHS, const SCEV *RHS) { 7915 // Interpret a null as meaning no loop, where there is obviously no guard 7916 // (interprocedural conditions notwithstanding). 7917 if (!L) return true; 7918 7919 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7920 return true; 7921 7922 BasicBlock *Latch = L->getLoopLatch(); 7923 if (!Latch) 7924 return false; 7925 7926 BranchInst *LoopContinuePredicate = 7927 dyn_cast<BranchInst>(Latch->getTerminator()); 7928 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7929 isImpliedCond(Pred, LHS, RHS, 7930 LoopContinuePredicate->getCondition(), 7931 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7932 return true; 7933 7934 // We don't want more than one activation of the following loops on the stack 7935 // -- that can lead to O(n!) time complexity. 7936 if (WalkingBEDominatingConds) 7937 return false; 7938 7939 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7940 7941 // See if we can exploit a trip count to prove the predicate. 7942 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7943 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7944 if (LatchBECount != getCouldNotCompute()) { 7945 // We know that Latch branches back to the loop header exactly 7946 // LatchBECount times. This means the backdege condition at Latch is 7947 // equivalent to "{0,+,1} u< LatchBECount". 7948 Type *Ty = LatchBECount->getType(); 7949 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7950 const SCEV *LoopCounter = 7951 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7952 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7953 LatchBECount)) 7954 return true; 7955 } 7956 7957 // Check conditions due to any @llvm.assume intrinsics. 7958 for (auto &AssumeVH : AC.assumptions()) { 7959 if (!AssumeVH) 7960 continue; 7961 auto *CI = cast<CallInst>(AssumeVH); 7962 if (!DT.dominates(CI, Latch->getTerminator())) 7963 continue; 7964 7965 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7966 return true; 7967 } 7968 7969 // If the loop is not reachable from the entry block, we risk running into an 7970 // infinite loop as we walk up into the dom tree. These loops do not matter 7971 // anyway, so we just return a conservative answer when we see them. 7972 if (!DT.isReachableFromEntry(L->getHeader())) 7973 return false; 7974 7975 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 7976 return true; 7977 7978 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7979 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7980 7981 assert(DTN && "should reach the loop header before reaching the root!"); 7982 7983 BasicBlock *BB = DTN->getBlock(); 7984 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 7985 return true; 7986 7987 BasicBlock *PBB = BB->getSinglePredecessor(); 7988 if (!PBB) 7989 continue; 7990 7991 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7992 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7993 continue; 7994 7995 Value *Condition = ContinuePredicate->getCondition(); 7996 7997 // If we have an edge `E` within the loop body that dominates the only 7998 // latch, the condition guarding `E` also guards the backedge. This 7999 // reasoning works only for loops with a single latch. 8000 8001 BasicBlockEdge DominatingEdge(PBB, BB); 8002 if (DominatingEdge.isSingleEdge()) { 8003 // We're constructively (and conservatively) enumerating edges within the 8004 // loop body that dominate the latch. The dominator tree better agree 8005 // with us on this: 8006 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 8007 8008 if (isImpliedCond(Pred, LHS, RHS, Condition, 8009 BB != ContinuePredicate->getSuccessor(0))) 8010 return true; 8011 } 8012 } 8013 8014 return false; 8015 } 8016 8017 bool 8018 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 8019 ICmpInst::Predicate Pred, 8020 const SCEV *LHS, const SCEV *RHS) { 8021 // Interpret a null as meaning no loop, where there is obviously no guard 8022 // (interprocedural conditions notwithstanding). 8023 if (!L) return false; 8024 8025 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8026 return true; 8027 8028 // Starting at the loop predecessor, climb up the predecessor chain, as long 8029 // as there are predecessors that can be found that have unique successors 8030 // leading to the original header. 8031 for (std::pair<BasicBlock *, BasicBlock *> 8032 Pair(L->getLoopPredecessor(), L->getHeader()); 8033 Pair.first; 8034 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 8035 8036 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS)) 8037 return true; 8038 8039 BranchInst *LoopEntryPredicate = 8040 dyn_cast<BranchInst>(Pair.first->getTerminator()); 8041 if (!LoopEntryPredicate || 8042 LoopEntryPredicate->isUnconditional()) 8043 continue; 8044 8045 if (isImpliedCond(Pred, LHS, RHS, 8046 LoopEntryPredicate->getCondition(), 8047 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 8048 return true; 8049 } 8050 8051 // Check conditions due to any @llvm.assume intrinsics. 8052 for (auto &AssumeVH : AC.assumptions()) { 8053 if (!AssumeVH) 8054 continue; 8055 auto *CI = cast<CallInst>(AssumeVH); 8056 if (!DT.dominates(CI, L->getHeader())) 8057 continue; 8058 8059 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8060 return true; 8061 } 8062 8063 return false; 8064 } 8065 8066 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 8067 const SCEV *LHS, const SCEV *RHS, 8068 Value *FoundCondValue, 8069 bool Inverse) { 8070 if (!PendingLoopPredicates.insert(FoundCondValue).second) 8071 return false; 8072 8073 auto ClearOnExit = 8074 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 8075 8076 // Recursively handle And and Or conditions. 8077 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 8078 if (BO->getOpcode() == Instruction::And) { 8079 if (!Inverse) 8080 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8081 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8082 } else if (BO->getOpcode() == Instruction::Or) { 8083 if (Inverse) 8084 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8085 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8086 } 8087 } 8088 8089 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 8090 if (!ICI) return false; 8091 8092 // Now that we found a conditional branch that dominates the loop or controls 8093 // the loop latch. Check to see if it is the comparison we are looking for. 8094 ICmpInst::Predicate FoundPred; 8095 if (Inverse) 8096 FoundPred = ICI->getInversePredicate(); 8097 else 8098 FoundPred = ICI->getPredicate(); 8099 8100 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 8101 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 8102 8103 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 8104 } 8105 8106 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 8107 const SCEV *RHS, 8108 ICmpInst::Predicate FoundPred, 8109 const SCEV *FoundLHS, 8110 const SCEV *FoundRHS) { 8111 // Balance the types. 8112 if (getTypeSizeInBits(LHS->getType()) < 8113 getTypeSizeInBits(FoundLHS->getType())) { 8114 if (CmpInst::isSigned(Pred)) { 8115 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 8116 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 8117 } else { 8118 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 8119 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 8120 } 8121 } else if (getTypeSizeInBits(LHS->getType()) > 8122 getTypeSizeInBits(FoundLHS->getType())) { 8123 if (CmpInst::isSigned(FoundPred)) { 8124 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 8125 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 8126 } else { 8127 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 8128 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 8129 } 8130 } 8131 8132 // Canonicalize the query to match the way instcombine will have 8133 // canonicalized the comparison. 8134 if (SimplifyICmpOperands(Pred, LHS, RHS)) 8135 if (LHS == RHS) 8136 return CmpInst::isTrueWhenEqual(Pred); 8137 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 8138 if (FoundLHS == FoundRHS) 8139 return CmpInst::isFalseWhenEqual(FoundPred); 8140 8141 // Check to see if we can make the LHS or RHS match. 8142 if (LHS == FoundRHS || RHS == FoundLHS) { 8143 if (isa<SCEVConstant>(RHS)) { 8144 std::swap(FoundLHS, FoundRHS); 8145 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 8146 } else { 8147 std::swap(LHS, RHS); 8148 Pred = ICmpInst::getSwappedPredicate(Pred); 8149 } 8150 } 8151 8152 // Check whether the found predicate is the same as the desired predicate. 8153 if (FoundPred == Pred) 8154 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8155 8156 // Check whether swapping the found predicate makes it the same as the 8157 // desired predicate. 8158 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 8159 if (isa<SCEVConstant>(RHS)) 8160 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 8161 else 8162 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 8163 RHS, LHS, FoundLHS, FoundRHS); 8164 } 8165 8166 // Unsigned comparison is the same as signed comparison when both the operands 8167 // are non-negative. 8168 if (CmpInst::isUnsigned(FoundPred) && 8169 CmpInst::getSignedPredicate(FoundPred) == Pred && 8170 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 8171 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8172 8173 // Check if we can make progress by sharpening ranges. 8174 if (FoundPred == ICmpInst::ICMP_NE && 8175 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 8176 8177 const SCEVConstant *C = nullptr; 8178 const SCEV *V = nullptr; 8179 8180 if (isa<SCEVConstant>(FoundLHS)) { 8181 C = cast<SCEVConstant>(FoundLHS); 8182 V = FoundRHS; 8183 } else { 8184 C = cast<SCEVConstant>(FoundRHS); 8185 V = FoundLHS; 8186 } 8187 8188 // The guarding predicate tells us that C != V. If the known range 8189 // of V is [C, t), we can sharpen the range to [C + 1, t). The 8190 // range we consider has to correspond to same signedness as the 8191 // predicate we're interested in folding. 8192 8193 APInt Min = ICmpInst::isSigned(Pred) ? 8194 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 8195 8196 if (Min == C->getAPInt()) { 8197 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 8198 // This is true even if (Min + 1) wraps around -- in case of 8199 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 8200 8201 APInt SharperMin = Min + 1; 8202 8203 switch (Pred) { 8204 case ICmpInst::ICMP_SGE: 8205 case ICmpInst::ICMP_UGE: 8206 // We know V `Pred` SharperMin. If this implies LHS `Pred` 8207 // RHS, we're done. 8208 if (isImpliedCondOperands(Pred, LHS, RHS, V, 8209 getConstant(SharperMin))) 8210 return true; 8211 8212 case ICmpInst::ICMP_SGT: 8213 case ICmpInst::ICMP_UGT: 8214 // We know from the range information that (V `Pred` Min || 8215 // V == Min). We know from the guarding condition that !(V 8216 // == Min). This gives us 8217 // 8218 // V `Pred` Min || V == Min && !(V == Min) 8219 // => V `Pred` Min 8220 // 8221 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 8222 8223 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 8224 return true; 8225 8226 default: 8227 // No change 8228 break; 8229 } 8230 } 8231 } 8232 8233 // Check whether the actual condition is beyond sufficient. 8234 if (FoundPred == ICmpInst::ICMP_EQ) 8235 if (ICmpInst::isTrueWhenEqual(Pred)) 8236 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8237 return true; 8238 if (Pred == ICmpInst::ICMP_NE) 8239 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 8240 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 8241 return true; 8242 8243 // Otherwise assume the worst. 8244 return false; 8245 } 8246 8247 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 8248 const SCEV *&L, const SCEV *&R, 8249 SCEV::NoWrapFlags &Flags) { 8250 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 8251 if (!AE || AE->getNumOperands() != 2) 8252 return false; 8253 8254 L = AE->getOperand(0); 8255 R = AE->getOperand(1); 8256 Flags = AE->getNoWrapFlags(); 8257 return true; 8258 } 8259 8260 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 8261 const SCEV *Less) { 8262 // We avoid subtracting expressions here because this function is usually 8263 // fairly deep in the call stack (i.e. is called many times). 8264 8265 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 8266 const auto *LAR = cast<SCEVAddRecExpr>(Less); 8267 const auto *MAR = cast<SCEVAddRecExpr>(More); 8268 8269 if (LAR->getLoop() != MAR->getLoop()) 8270 return None; 8271 8272 // We look at affine expressions only; not for correctness but to keep 8273 // getStepRecurrence cheap. 8274 if (!LAR->isAffine() || !MAR->isAffine()) 8275 return None; 8276 8277 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 8278 return None; 8279 8280 Less = LAR->getStart(); 8281 More = MAR->getStart(); 8282 8283 // fall through 8284 } 8285 8286 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 8287 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 8288 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 8289 return M - L; 8290 } 8291 8292 const SCEV *L, *R; 8293 SCEV::NoWrapFlags Flags; 8294 if (splitBinaryAdd(Less, L, R, Flags)) 8295 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8296 if (R == More) 8297 return -(LC->getAPInt()); 8298 8299 if (splitBinaryAdd(More, L, R, Flags)) 8300 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8301 if (R == Less) 8302 return LC->getAPInt(); 8303 8304 return None; 8305 } 8306 8307 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 8308 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 8309 const SCEV *FoundLHS, const SCEV *FoundRHS) { 8310 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 8311 return false; 8312 8313 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8314 if (!AddRecLHS) 8315 return false; 8316 8317 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 8318 if (!AddRecFoundLHS) 8319 return false; 8320 8321 // We'd like to let SCEV reason about control dependencies, so we constrain 8322 // both the inequalities to be about add recurrences on the same loop. This 8323 // way we can use isLoopEntryGuardedByCond later. 8324 8325 const Loop *L = AddRecFoundLHS->getLoop(); 8326 if (L != AddRecLHS->getLoop()) 8327 return false; 8328 8329 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 8330 // 8331 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 8332 // ... (2) 8333 // 8334 // Informal proof for (2), assuming (1) [*]: 8335 // 8336 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 8337 // 8338 // Then 8339 // 8340 // FoundLHS s< FoundRHS s< INT_MIN - C 8341 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 8342 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 8343 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 8344 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 8345 // <=> FoundLHS + C s< FoundRHS + C 8346 // 8347 // [*]: (1) can be proved by ruling out overflow. 8348 // 8349 // [**]: This can be proved by analyzing all the four possibilities: 8350 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 8351 // (A s>= 0, B s>= 0). 8352 // 8353 // Note: 8354 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 8355 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 8356 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 8357 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 8358 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 8359 // C)". 8360 8361 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 8362 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 8363 if (!LDiff || !RDiff || *LDiff != *RDiff) 8364 return false; 8365 8366 if (LDiff->isMinValue()) 8367 return true; 8368 8369 APInt FoundRHSLimit; 8370 8371 if (Pred == CmpInst::ICMP_ULT) { 8372 FoundRHSLimit = -(*RDiff); 8373 } else { 8374 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 8375 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 8376 } 8377 8378 // Try to prove (1) or (2), as needed. 8379 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 8380 getConstant(FoundRHSLimit)); 8381 } 8382 8383 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 8384 const SCEV *LHS, const SCEV *RHS, 8385 const SCEV *FoundLHS, 8386 const SCEV *FoundRHS) { 8387 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8388 return true; 8389 8390 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8391 return true; 8392 8393 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 8394 FoundLHS, FoundRHS) || 8395 // ~x < ~y --> x > y 8396 isImpliedCondOperandsHelper(Pred, LHS, RHS, 8397 getNotSCEV(FoundRHS), 8398 getNotSCEV(FoundLHS)); 8399 } 8400 8401 8402 /// If Expr computes ~A, return A else return nullptr 8403 static const SCEV *MatchNotExpr(const SCEV *Expr) { 8404 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 8405 if (!Add || Add->getNumOperands() != 2 || 8406 !Add->getOperand(0)->isAllOnesValue()) 8407 return nullptr; 8408 8409 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 8410 if (!AddRHS || AddRHS->getNumOperands() != 2 || 8411 !AddRHS->getOperand(0)->isAllOnesValue()) 8412 return nullptr; 8413 8414 return AddRHS->getOperand(1); 8415 } 8416 8417 8418 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 8419 template<typename MaxExprType> 8420 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 8421 const SCEV *Candidate) { 8422 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 8423 if (!MaxExpr) return false; 8424 8425 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 8426 } 8427 8428 8429 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 8430 template<typename MaxExprType> 8431 static bool IsMinConsistingOf(ScalarEvolution &SE, 8432 const SCEV *MaybeMinExpr, 8433 const SCEV *Candidate) { 8434 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8435 if (!MaybeMaxExpr) 8436 return false; 8437 8438 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8439 } 8440 8441 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8442 ICmpInst::Predicate Pred, 8443 const SCEV *LHS, const SCEV *RHS) { 8444 8445 // If both sides are affine addrecs for the same loop, with equal 8446 // steps, and we know the recurrences don't wrap, then we only 8447 // need to check the predicate on the starting values. 8448 8449 if (!ICmpInst::isRelational(Pred)) 8450 return false; 8451 8452 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8453 if (!LAR) 8454 return false; 8455 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8456 if (!RAR) 8457 return false; 8458 if (LAR->getLoop() != RAR->getLoop()) 8459 return false; 8460 if (!LAR->isAffine() || !RAR->isAffine()) 8461 return false; 8462 8463 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8464 return false; 8465 8466 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8467 SCEV::FlagNSW : SCEV::FlagNUW; 8468 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8469 return false; 8470 8471 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8472 } 8473 8474 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8475 /// expression? 8476 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8477 ICmpInst::Predicate Pred, 8478 const SCEV *LHS, const SCEV *RHS) { 8479 switch (Pred) { 8480 default: 8481 return false; 8482 8483 case ICmpInst::ICMP_SGE: 8484 std::swap(LHS, RHS); 8485 LLVM_FALLTHROUGH; 8486 case ICmpInst::ICMP_SLE: 8487 return 8488 // min(A, ...) <= A 8489 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8490 // A <= max(A, ...) 8491 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8492 8493 case ICmpInst::ICMP_UGE: 8494 std::swap(LHS, RHS); 8495 LLVM_FALLTHROUGH; 8496 case ICmpInst::ICMP_ULE: 8497 return 8498 // min(A, ...) <= A 8499 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8500 // A <= max(A, ...) 8501 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8502 } 8503 8504 llvm_unreachable("covered switch fell through?!"); 8505 } 8506 8507 bool 8508 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8509 const SCEV *LHS, const SCEV *RHS, 8510 const SCEV *FoundLHS, 8511 const SCEV *FoundRHS) { 8512 auto IsKnownPredicateFull = 8513 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8514 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8515 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8516 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8517 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8518 }; 8519 8520 switch (Pred) { 8521 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8522 case ICmpInst::ICMP_EQ: 8523 case ICmpInst::ICMP_NE: 8524 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8525 return true; 8526 break; 8527 case ICmpInst::ICMP_SLT: 8528 case ICmpInst::ICMP_SLE: 8529 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8530 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8531 return true; 8532 break; 8533 case ICmpInst::ICMP_SGT: 8534 case ICmpInst::ICMP_SGE: 8535 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8536 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8537 return true; 8538 break; 8539 case ICmpInst::ICMP_ULT: 8540 case ICmpInst::ICMP_ULE: 8541 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8542 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8543 return true; 8544 break; 8545 case ICmpInst::ICMP_UGT: 8546 case ICmpInst::ICMP_UGE: 8547 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8548 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8549 return true; 8550 break; 8551 } 8552 8553 return false; 8554 } 8555 8556 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8557 const SCEV *LHS, 8558 const SCEV *RHS, 8559 const SCEV *FoundLHS, 8560 const SCEV *FoundRHS) { 8561 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8562 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8563 // reduce the compile time impact of this optimization. 8564 return false; 8565 8566 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 8567 if (!Addend) 8568 return false; 8569 8570 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8571 8572 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8573 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8574 ConstantRange FoundLHSRange = 8575 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8576 8577 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 8578 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 8579 8580 // We can also compute the range of values for `LHS` that satisfy the 8581 // consequent, "`LHS` `Pred` `RHS`": 8582 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8583 ConstantRange SatisfyingLHSRange = 8584 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8585 8586 // The antecedent implies the consequent if every value of `LHS` that 8587 // satisfies the antecedent also satisfies the consequent. 8588 return SatisfyingLHSRange.contains(LHSRange); 8589 } 8590 8591 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8592 bool IsSigned, bool NoWrap) { 8593 assert(isKnownPositive(Stride) && "Positive stride expected!"); 8594 8595 if (NoWrap) return false; 8596 8597 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8598 const SCEV *One = getOne(Stride->getType()); 8599 8600 if (IsSigned) { 8601 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8602 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8603 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8604 .getSignedMax(); 8605 8606 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8607 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8608 } 8609 8610 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8611 APInt MaxValue = APInt::getMaxValue(BitWidth); 8612 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8613 .getUnsignedMax(); 8614 8615 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8616 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8617 } 8618 8619 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8620 bool IsSigned, bool NoWrap) { 8621 if (NoWrap) return false; 8622 8623 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8624 const SCEV *One = getOne(Stride->getType()); 8625 8626 if (IsSigned) { 8627 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8628 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8629 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8630 .getSignedMax(); 8631 8632 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8633 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8634 } 8635 8636 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8637 APInt MinValue = APInt::getMinValue(BitWidth); 8638 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8639 .getUnsignedMax(); 8640 8641 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8642 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8643 } 8644 8645 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8646 bool Equality) { 8647 const SCEV *One = getOne(Step->getType()); 8648 Delta = Equality ? getAddExpr(Delta, Step) 8649 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8650 return getUDivExpr(Delta, Step); 8651 } 8652 8653 ScalarEvolution::ExitLimit 8654 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 8655 const Loop *L, bool IsSigned, 8656 bool ControlsExit, bool AllowPredicates) { 8657 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8658 // We handle only IV < Invariant 8659 if (!isLoopInvariant(RHS, L)) 8660 return getCouldNotCompute(); 8661 8662 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8663 bool PredicatedIV = false; 8664 8665 if (!IV && AllowPredicates) { 8666 // Try to make this an AddRec using runtime tests, in the first X 8667 // iterations of this loop, where X is the SCEV expression found by the 8668 // algorithm below. 8669 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 8670 PredicatedIV = true; 8671 } 8672 8673 // Avoid weird loops 8674 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8675 return getCouldNotCompute(); 8676 8677 bool NoWrap = ControlsExit && 8678 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8679 8680 const SCEV *Stride = IV->getStepRecurrence(*this); 8681 8682 bool PositiveStride = isKnownPositive(Stride); 8683 8684 // Avoid negative or zero stride values. 8685 if (!PositiveStride) { 8686 // We can compute the correct backedge taken count for loops with unknown 8687 // strides if we can prove that the loop is not an infinite loop with side 8688 // effects. Here's the loop structure we are trying to handle - 8689 // 8690 // i = start 8691 // do { 8692 // A[i] = i; 8693 // i += s; 8694 // } while (i < end); 8695 // 8696 // The backedge taken count for such loops is evaluated as - 8697 // (max(end, start + stride) - start - 1) /u stride 8698 // 8699 // The additional preconditions that we need to check to prove correctness 8700 // of the above formula is as follows - 8701 // 8702 // a) IV is either nuw or nsw depending upon signedness (indicated by the 8703 // NoWrap flag). 8704 // b) loop is single exit with no side effects. 8705 // 8706 // 8707 // Precondition a) implies that if the stride is negative, this is a single 8708 // trip loop. The backedge taken count formula reduces to zero in this case. 8709 // 8710 // Precondition b) implies that the unknown stride cannot be zero otherwise 8711 // we have UB. 8712 // 8713 // The positive stride case is the same as isKnownPositive(Stride) returning 8714 // true (original behavior of the function). 8715 // 8716 // We want to make sure that the stride is truly unknown as there are edge 8717 // cases where ScalarEvolution propagates no wrap flags to the 8718 // post-increment/decrement IV even though the increment/decrement operation 8719 // itself is wrapping. The computed backedge taken count may be wrong in 8720 // such cases. This is prevented by checking that the stride is not known to 8721 // be either positive or non-positive. For example, no wrap flags are 8722 // propagated to the post-increment IV of this loop with a trip count of 2 - 8723 // 8724 // unsigned char i; 8725 // for(i=127; i<128; i+=129) 8726 // A[i] = i; 8727 // 8728 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 8729 !loopHasNoSideEffects(L)) 8730 return getCouldNotCompute(); 8731 8732 } else if (!Stride->isOne() && 8733 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8734 // Avoid proven overflow cases: this will ensure that the backedge taken 8735 // count will not generate any unsigned overflow. Relaxed no-overflow 8736 // conditions exploit NoWrapFlags, allowing to optimize in presence of 8737 // undefined behaviors like the case of C language. 8738 return getCouldNotCompute(); 8739 8740 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8741 : ICmpInst::ICMP_ULT; 8742 const SCEV *Start = IV->getStart(); 8743 const SCEV *End = RHS; 8744 // If the backedge is taken at least once, then it will be taken 8745 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 8746 // is the LHS value of the less-than comparison the first time it is evaluated 8747 // and End is the RHS. 8748 const SCEV *BECountIfBackedgeTaken = 8749 computeBECount(getMinusSCEV(End, Start), Stride, false); 8750 // If the loop entry is guarded by the result of the backedge test of the 8751 // first loop iteration, then we know the backedge will be taken at least 8752 // once and so the backedge taken count is as above. If not then we use the 8753 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 8754 // as if the backedge is taken at least once max(End,Start) is End and so the 8755 // result is as above, and if not max(End,Start) is Start so we get a backedge 8756 // count of zero. 8757 const SCEV *BECount; 8758 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 8759 BECount = BECountIfBackedgeTaken; 8760 else { 8761 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 8762 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8763 } 8764 8765 const SCEV *MaxBECount; 8766 bool MaxOrZero = false; 8767 if (isa<SCEVConstant>(BECount)) 8768 MaxBECount = BECount; 8769 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 8770 // If we know exactly how many times the backedge will be taken if it's 8771 // taken at least once, then the backedge count will either be that or 8772 // zero. 8773 MaxBECount = BECountIfBackedgeTaken; 8774 MaxOrZero = true; 8775 } else { 8776 // Calculate the maximum backedge count based on the range of values 8777 // permitted by Start, End, and Stride. 8778 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8779 : getUnsignedRange(Start).getUnsignedMin(); 8780 8781 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8782 8783 APInt StrideForMaxBECount; 8784 8785 if (PositiveStride) 8786 StrideForMaxBECount = 8787 IsSigned ? getSignedRange(Stride).getSignedMin() 8788 : getUnsignedRange(Stride).getUnsignedMin(); 8789 else 8790 // Using a stride of 1 is safe when computing max backedge taken count for 8791 // a loop with unknown stride. 8792 StrideForMaxBECount = APInt(BitWidth, 1, IsSigned); 8793 8794 APInt Limit = 8795 IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1) 8796 : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1); 8797 8798 // Although End can be a MAX expression we estimate MaxEnd considering only 8799 // the case End = RHS. This is safe because in the other case (End - Start) 8800 // is zero, leading to a zero maximum backedge taken count. 8801 APInt MaxEnd = 8802 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8803 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8804 8805 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8806 getConstant(StrideForMaxBECount), false); 8807 } 8808 8809 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8810 MaxBECount = BECount; 8811 8812 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 8813 } 8814 8815 ScalarEvolution::ExitLimit 8816 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8817 const Loop *L, bool IsSigned, 8818 bool ControlsExit, bool AllowPredicates) { 8819 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8820 // We handle only IV > Invariant 8821 if (!isLoopInvariant(RHS, L)) 8822 return getCouldNotCompute(); 8823 8824 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8825 if (!IV && AllowPredicates) 8826 // Try to make this an AddRec using runtime tests, in the first X 8827 // iterations of this loop, where X is the SCEV expression found by the 8828 // algorithm below. 8829 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 8830 8831 // Avoid weird loops 8832 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8833 return getCouldNotCompute(); 8834 8835 bool NoWrap = ControlsExit && 8836 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8837 8838 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8839 8840 // Avoid negative or zero stride values 8841 if (!isKnownPositive(Stride)) 8842 return getCouldNotCompute(); 8843 8844 // Avoid proven overflow cases: this will ensure that the backedge taken count 8845 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8846 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8847 // behaviors like the case of C language. 8848 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8849 return getCouldNotCompute(); 8850 8851 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8852 : ICmpInst::ICMP_UGT; 8853 8854 const SCEV *Start = IV->getStart(); 8855 const SCEV *End = RHS; 8856 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 8857 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 8858 8859 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8860 8861 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8862 : getUnsignedRange(Start).getUnsignedMax(); 8863 8864 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8865 : getUnsignedRange(Stride).getUnsignedMin(); 8866 8867 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8868 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8869 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8870 8871 // Although End can be a MIN expression we estimate MinEnd considering only 8872 // the case End = RHS. This is safe because in the other case (Start - End) 8873 // is zero, leading to a zero maximum backedge taken count. 8874 APInt MinEnd = 8875 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8876 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8877 8878 8879 const SCEV *MaxBECount = getCouldNotCompute(); 8880 if (isa<SCEVConstant>(BECount)) 8881 MaxBECount = BECount; 8882 else 8883 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8884 getConstant(MinStride), false); 8885 8886 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8887 MaxBECount = BECount; 8888 8889 return ExitLimit(BECount, MaxBECount, false, Predicates); 8890 } 8891 8892 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 8893 ScalarEvolution &SE) const { 8894 if (Range.isFullSet()) // Infinite loop. 8895 return SE.getCouldNotCompute(); 8896 8897 // If the start is a non-zero constant, shift the range to simplify things. 8898 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8899 if (!SC->getValue()->isZero()) { 8900 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8901 Operands[0] = SE.getZero(SC->getType()); 8902 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8903 getNoWrapFlags(FlagNW)); 8904 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8905 return ShiftedAddRec->getNumIterationsInRange( 8906 Range.subtract(SC->getAPInt()), SE); 8907 // This is strange and shouldn't happen. 8908 return SE.getCouldNotCompute(); 8909 } 8910 8911 // The only time we can solve this is when we have all constant indices. 8912 // Otherwise, we cannot determine the overflow conditions. 8913 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8914 return SE.getCouldNotCompute(); 8915 8916 // Okay at this point we know that all elements of the chrec are constants and 8917 // that the start element is zero. 8918 8919 // First check to see if the range contains zero. If not, the first 8920 // iteration exits. 8921 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8922 if (!Range.contains(APInt(BitWidth, 0))) 8923 return SE.getZero(getType()); 8924 8925 if (isAffine()) { 8926 // If this is an affine expression then we have this situation: 8927 // Solve {0,+,A} in Range === Ax in Range 8928 8929 // We know that zero is in the range. If A is positive then we know that 8930 // the upper value of the range must be the first possible exit value. 8931 // If A is negative then the lower of the range is the last possible loop 8932 // value. Also note that we already checked for a full range. 8933 APInt One(BitWidth,1); 8934 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 8935 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8936 8937 // The exit value should be (End+A)/A. 8938 APInt ExitVal = (End + A).udiv(A); 8939 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8940 8941 // Evaluate at the exit value. If we really did fall out of the valid 8942 // range, then we computed our trip count, otherwise wrap around or other 8943 // things must have happened. 8944 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8945 if (Range.contains(Val->getValue())) 8946 return SE.getCouldNotCompute(); // Something strange happened 8947 8948 // Ensure that the previous value is in the range. This is a sanity check. 8949 assert(Range.contains( 8950 EvaluateConstantChrecAtConstant(this, 8951 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8952 "Linear scev computation is off in a bad way!"); 8953 return SE.getConstant(ExitValue); 8954 } else if (isQuadratic()) { 8955 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8956 // quadratic equation to solve it. To do this, we must frame our problem in 8957 // terms of figuring out when zero is crossed, instead of when 8958 // Range.getUpper() is crossed. 8959 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8960 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8961 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); 8962 8963 // Next, solve the constructed addrec 8964 if (auto Roots = 8965 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 8966 const SCEVConstant *R1 = Roots->first; 8967 const SCEVConstant *R2 = Roots->second; 8968 // Pick the smallest positive root value. 8969 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8970 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8971 if (!CB->getZExtValue()) 8972 std::swap(R1, R2); // R1 is the minimum root now. 8973 8974 // Make sure the root is not off by one. The returned iteration should 8975 // not be in the range, but the previous one should be. When solving 8976 // for "X*X < 5", for example, we should not return a root of 2. 8977 ConstantInt *R1Val = 8978 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 8979 if (Range.contains(R1Val->getValue())) { 8980 // The next iteration must be out of the range... 8981 ConstantInt *NextVal = 8982 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 8983 8984 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8985 if (!Range.contains(R1Val->getValue())) 8986 return SE.getConstant(NextVal); 8987 return SE.getCouldNotCompute(); // Something strange happened 8988 } 8989 8990 // If R1 was not in the range, then it is a good return value. Make 8991 // sure that R1-1 WAS in the range though, just in case. 8992 ConstantInt *NextVal = 8993 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 8994 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8995 if (Range.contains(R1Val->getValue())) 8996 return R1; 8997 return SE.getCouldNotCompute(); // Something strange happened 8998 } 8999 } 9000 } 9001 9002 return SE.getCouldNotCompute(); 9003 } 9004 9005 // Return true when S contains at least an undef value. 9006 static inline bool containsUndefs(const SCEV *S) { 9007 return SCEVExprContains(S, [](const SCEV *S) { 9008 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 9009 return isa<UndefValue>(SU->getValue()); 9010 else if (const auto *SC = dyn_cast<SCEVConstant>(S)) 9011 return isa<UndefValue>(SC->getValue()); 9012 return false; 9013 }); 9014 } 9015 9016 namespace { 9017 // Collect all steps of SCEV expressions. 9018 struct SCEVCollectStrides { 9019 ScalarEvolution &SE; 9020 SmallVectorImpl<const SCEV *> &Strides; 9021 9022 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 9023 : SE(SE), Strides(S) {} 9024 9025 bool follow(const SCEV *S) { 9026 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 9027 Strides.push_back(AR->getStepRecurrence(SE)); 9028 return true; 9029 } 9030 bool isDone() const { return false; } 9031 }; 9032 9033 // Collect all SCEVUnknown and SCEVMulExpr expressions. 9034 struct SCEVCollectTerms { 9035 SmallVectorImpl<const SCEV *> &Terms; 9036 9037 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 9038 : Terms(T) {} 9039 9040 bool follow(const SCEV *S) { 9041 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 9042 isa<SCEVSignExtendExpr>(S)) { 9043 if (!containsUndefs(S)) 9044 Terms.push_back(S); 9045 9046 // Stop recursion: once we collected a term, do not walk its operands. 9047 return false; 9048 } 9049 9050 // Keep looking. 9051 return true; 9052 } 9053 bool isDone() const { return false; } 9054 }; 9055 9056 // Check if a SCEV contains an AddRecExpr. 9057 struct SCEVHasAddRec { 9058 bool &ContainsAddRec; 9059 9060 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 9061 ContainsAddRec = false; 9062 } 9063 9064 bool follow(const SCEV *S) { 9065 if (isa<SCEVAddRecExpr>(S)) { 9066 ContainsAddRec = true; 9067 9068 // Stop recursion: once we collected a term, do not walk its operands. 9069 return false; 9070 } 9071 9072 // Keep looking. 9073 return true; 9074 } 9075 bool isDone() const { return false; } 9076 }; 9077 9078 // Find factors that are multiplied with an expression that (possibly as a 9079 // subexpression) contains an AddRecExpr. In the expression: 9080 // 9081 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 9082 // 9083 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 9084 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 9085 // parameters as they form a product with an induction variable. 9086 // 9087 // This collector expects all array size parameters to be in the same MulExpr. 9088 // It might be necessary to later add support for collecting parameters that are 9089 // spread over different nested MulExpr. 9090 struct SCEVCollectAddRecMultiplies { 9091 SmallVectorImpl<const SCEV *> &Terms; 9092 ScalarEvolution &SE; 9093 9094 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 9095 : Terms(T), SE(SE) {} 9096 9097 bool follow(const SCEV *S) { 9098 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 9099 bool HasAddRec = false; 9100 SmallVector<const SCEV *, 0> Operands; 9101 for (auto Op : Mul->operands()) { 9102 if (isa<SCEVUnknown>(Op)) { 9103 Operands.push_back(Op); 9104 } else { 9105 bool ContainsAddRec; 9106 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 9107 visitAll(Op, ContiansAddRec); 9108 HasAddRec |= ContainsAddRec; 9109 } 9110 } 9111 if (Operands.size() == 0) 9112 return true; 9113 9114 if (!HasAddRec) 9115 return false; 9116 9117 Terms.push_back(SE.getMulExpr(Operands)); 9118 // Stop recursion: once we collected a term, do not walk its operands. 9119 return false; 9120 } 9121 9122 // Keep looking. 9123 return true; 9124 } 9125 bool isDone() const { return false; } 9126 }; 9127 } 9128 9129 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 9130 /// two places: 9131 /// 1) The strides of AddRec expressions. 9132 /// 2) Unknowns that are multiplied with AddRec expressions. 9133 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 9134 SmallVectorImpl<const SCEV *> &Terms) { 9135 SmallVector<const SCEV *, 4> Strides; 9136 SCEVCollectStrides StrideCollector(*this, Strides); 9137 visitAll(Expr, StrideCollector); 9138 9139 DEBUG({ 9140 dbgs() << "Strides:\n"; 9141 for (const SCEV *S : Strides) 9142 dbgs() << *S << "\n"; 9143 }); 9144 9145 for (const SCEV *S : Strides) { 9146 SCEVCollectTerms TermCollector(Terms); 9147 visitAll(S, TermCollector); 9148 } 9149 9150 DEBUG({ 9151 dbgs() << "Terms:\n"; 9152 for (const SCEV *T : Terms) 9153 dbgs() << *T << "\n"; 9154 }); 9155 9156 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 9157 visitAll(Expr, MulCollector); 9158 } 9159 9160 static bool findArrayDimensionsRec(ScalarEvolution &SE, 9161 SmallVectorImpl<const SCEV *> &Terms, 9162 SmallVectorImpl<const SCEV *> &Sizes) { 9163 int Last = Terms.size() - 1; 9164 const SCEV *Step = Terms[Last]; 9165 9166 // End of recursion. 9167 if (Last == 0) { 9168 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 9169 SmallVector<const SCEV *, 2> Qs; 9170 for (const SCEV *Op : M->operands()) 9171 if (!isa<SCEVConstant>(Op)) 9172 Qs.push_back(Op); 9173 9174 Step = SE.getMulExpr(Qs); 9175 } 9176 9177 Sizes.push_back(Step); 9178 return true; 9179 } 9180 9181 for (const SCEV *&Term : Terms) { 9182 // Normalize the terms before the next call to findArrayDimensionsRec. 9183 const SCEV *Q, *R; 9184 SCEVDivision::divide(SE, Term, Step, &Q, &R); 9185 9186 // Bail out when GCD does not evenly divide one of the terms. 9187 if (!R->isZero()) 9188 return false; 9189 9190 Term = Q; 9191 } 9192 9193 // Remove all SCEVConstants. 9194 Terms.erase( 9195 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 9196 Terms.end()); 9197 9198 if (Terms.size() > 0) 9199 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 9200 return false; 9201 9202 Sizes.push_back(Step); 9203 return true; 9204 } 9205 9206 9207 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 9208 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 9209 for (const SCEV *T : Terms) 9210 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 9211 return true; 9212 return false; 9213 } 9214 9215 // Return the number of product terms in S. 9216 static inline int numberOfTerms(const SCEV *S) { 9217 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 9218 return Expr->getNumOperands(); 9219 return 1; 9220 } 9221 9222 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 9223 if (isa<SCEVConstant>(T)) 9224 return nullptr; 9225 9226 if (isa<SCEVUnknown>(T)) 9227 return T; 9228 9229 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 9230 SmallVector<const SCEV *, 2> Factors; 9231 for (const SCEV *Op : M->operands()) 9232 if (!isa<SCEVConstant>(Op)) 9233 Factors.push_back(Op); 9234 9235 return SE.getMulExpr(Factors); 9236 } 9237 9238 return T; 9239 } 9240 9241 /// Return the size of an element read or written by Inst. 9242 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 9243 Type *Ty; 9244 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 9245 Ty = Store->getValueOperand()->getType(); 9246 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 9247 Ty = Load->getType(); 9248 else 9249 return nullptr; 9250 9251 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 9252 return getSizeOfExpr(ETy, Ty); 9253 } 9254 9255 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 9256 SmallVectorImpl<const SCEV *> &Sizes, 9257 const SCEV *ElementSize) const { 9258 if (Terms.size() < 1 || !ElementSize) 9259 return; 9260 9261 // Early return when Terms do not contain parameters: we do not delinearize 9262 // non parametric SCEVs. 9263 if (!containsParameters(Terms)) 9264 return; 9265 9266 DEBUG({ 9267 dbgs() << "Terms:\n"; 9268 for (const SCEV *T : Terms) 9269 dbgs() << *T << "\n"; 9270 }); 9271 9272 // Remove duplicates. 9273 std::sort(Terms.begin(), Terms.end()); 9274 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 9275 9276 // Put larger terms first. 9277 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 9278 return numberOfTerms(LHS) > numberOfTerms(RHS); 9279 }); 9280 9281 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9282 9283 // Try to divide all terms by the element size. If term is not divisible by 9284 // element size, proceed with the original term. 9285 for (const SCEV *&Term : Terms) { 9286 const SCEV *Q, *R; 9287 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 9288 if (!Q->isZero()) 9289 Term = Q; 9290 } 9291 9292 SmallVector<const SCEV *, 4> NewTerms; 9293 9294 // Remove constant factors. 9295 for (const SCEV *T : Terms) 9296 if (const SCEV *NewT = removeConstantFactors(SE, T)) 9297 NewTerms.push_back(NewT); 9298 9299 DEBUG({ 9300 dbgs() << "Terms after sorting:\n"; 9301 for (const SCEV *T : NewTerms) 9302 dbgs() << *T << "\n"; 9303 }); 9304 9305 if (NewTerms.empty() || 9306 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 9307 Sizes.clear(); 9308 return; 9309 } 9310 9311 // The last element to be pushed into Sizes is the size of an element. 9312 Sizes.push_back(ElementSize); 9313 9314 DEBUG({ 9315 dbgs() << "Sizes:\n"; 9316 for (const SCEV *S : Sizes) 9317 dbgs() << *S << "\n"; 9318 }); 9319 } 9320 9321 void ScalarEvolution::computeAccessFunctions( 9322 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 9323 SmallVectorImpl<const SCEV *> &Sizes) { 9324 9325 // Early exit in case this SCEV is not an affine multivariate function. 9326 if (Sizes.empty()) 9327 return; 9328 9329 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 9330 if (!AR->isAffine()) 9331 return; 9332 9333 const SCEV *Res = Expr; 9334 int Last = Sizes.size() - 1; 9335 for (int i = Last; i >= 0; i--) { 9336 const SCEV *Q, *R; 9337 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 9338 9339 DEBUG({ 9340 dbgs() << "Res: " << *Res << "\n"; 9341 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 9342 dbgs() << "Res divided by Sizes[i]:\n"; 9343 dbgs() << "Quotient: " << *Q << "\n"; 9344 dbgs() << "Remainder: " << *R << "\n"; 9345 }); 9346 9347 Res = Q; 9348 9349 // Do not record the last subscript corresponding to the size of elements in 9350 // the array. 9351 if (i == Last) { 9352 9353 // Bail out if the remainder is too complex. 9354 if (isa<SCEVAddRecExpr>(R)) { 9355 Subscripts.clear(); 9356 Sizes.clear(); 9357 return; 9358 } 9359 9360 continue; 9361 } 9362 9363 // Record the access function for the current subscript. 9364 Subscripts.push_back(R); 9365 } 9366 9367 // Also push in last position the remainder of the last division: it will be 9368 // the access function of the innermost dimension. 9369 Subscripts.push_back(Res); 9370 9371 std::reverse(Subscripts.begin(), Subscripts.end()); 9372 9373 DEBUG({ 9374 dbgs() << "Subscripts:\n"; 9375 for (const SCEV *S : Subscripts) 9376 dbgs() << *S << "\n"; 9377 }); 9378 } 9379 9380 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 9381 /// sizes of an array access. Returns the remainder of the delinearization that 9382 /// is the offset start of the array. The SCEV->delinearize algorithm computes 9383 /// the multiples of SCEV coefficients: that is a pattern matching of sub 9384 /// expressions in the stride and base of a SCEV corresponding to the 9385 /// computation of a GCD (greatest common divisor) of base and stride. When 9386 /// SCEV->delinearize fails, it returns the SCEV unchanged. 9387 /// 9388 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 9389 /// 9390 /// void foo(long n, long m, long o, double A[n][m][o]) { 9391 /// 9392 /// for (long i = 0; i < n; i++) 9393 /// for (long j = 0; j < m; j++) 9394 /// for (long k = 0; k < o; k++) 9395 /// A[i][j][k] = 1.0; 9396 /// } 9397 /// 9398 /// the delinearization input is the following AddRec SCEV: 9399 /// 9400 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 9401 /// 9402 /// From this SCEV, we are able to say that the base offset of the access is %A 9403 /// because it appears as an offset that does not divide any of the strides in 9404 /// the loops: 9405 /// 9406 /// CHECK: Base offset: %A 9407 /// 9408 /// and then SCEV->delinearize determines the size of some of the dimensions of 9409 /// the array as these are the multiples by which the strides are happening: 9410 /// 9411 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 9412 /// 9413 /// Note that the outermost dimension remains of UnknownSize because there are 9414 /// no strides that would help identifying the size of the last dimension: when 9415 /// the array has been statically allocated, one could compute the size of that 9416 /// dimension by dividing the overall size of the array by the size of the known 9417 /// dimensions: %m * %o * 8. 9418 /// 9419 /// Finally delinearize provides the access functions for the array reference 9420 /// that does correspond to A[i][j][k] of the above C testcase: 9421 /// 9422 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 9423 /// 9424 /// The testcases are checking the output of a function pass: 9425 /// DelinearizationPass that walks through all loads and stores of a function 9426 /// asking for the SCEV of the memory access with respect to all enclosing 9427 /// loops, calling SCEV->delinearize on that and printing the results. 9428 9429 void ScalarEvolution::delinearize(const SCEV *Expr, 9430 SmallVectorImpl<const SCEV *> &Subscripts, 9431 SmallVectorImpl<const SCEV *> &Sizes, 9432 const SCEV *ElementSize) { 9433 // First step: collect parametric terms. 9434 SmallVector<const SCEV *, 4> Terms; 9435 collectParametricTerms(Expr, Terms); 9436 9437 if (Terms.empty()) 9438 return; 9439 9440 // Second step: find subscript sizes. 9441 findArrayDimensions(Terms, Sizes, ElementSize); 9442 9443 if (Sizes.empty()) 9444 return; 9445 9446 // Third step: compute the access functions for each subscript. 9447 computeAccessFunctions(Expr, Subscripts, Sizes); 9448 9449 if (Subscripts.empty()) 9450 return; 9451 9452 DEBUG({ 9453 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9454 dbgs() << "ArrayDecl[UnknownSize]"; 9455 for (const SCEV *S : Sizes) 9456 dbgs() << "[" << *S << "]"; 9457 9458 dbgs() << "\nArrayRef"; 9459 for (const SCEV *S : Subscripts) 9460 dbgs() << "[" << *S << "]"; 9461 dbgs() << "\n"; 9462 }); 9463 } 9464 9465 //===----------------------------------------------------------------------===// 9466 // SCEVCallbackVH Class Implementation 9467 //===----------------------------------------------------------------------===// 9468 9469 void ScalarEvolution::SCEVCallbackVH::deleted() { 9470 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9471 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9472 SE->ConstantEvolutionLoopExitValue.erase(PN); 9473 SE->eraseValueFromMap(getValPtr()); 9474 // this now dangles! 9475 } 9476 9477 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9478 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9479 9480 // Forget all the expressions associated with users of the old value, 9481 // so that future queries will recompute the expressions using the new 9482 // value. 9483 Value *Old = getValPtr(); 9484 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9485 SmallPtrSet<User *, 8> Visited; 9486 while (!Worklist.empty()) { 9487 User *U = Worklist.pop_back_val(); 9488 // Deleting the Old value will cause this to dangle. Postpone 9489 // that until everything else is done. 9490 if (U == Old) 9491 continue; 9492 if (!Visited.insert(U).second) 9493 continue; 9494 if (PHINode *PN = dyn_cast<PHINode>(U)) 9495 SE->ConstantEvolutionLoopExitValue.erase(PN); 9496 SE->eraseValueFromMap(U); 9497 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9498 } 9499 // Delete the Old value. 9500 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9501 SE->ConstantEvolutionLoopExitValue.erase(PN); 9502 SE->eraseValueFromMap(Old); 9503 // this now dangles! 9504 } 9505 9506 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9507 : CallbackVH(V), SE(se) {} 9508 9509 //===----------------------------------------------------------------------===// 9510 // ScalarEvolution Class Implementation 9511 //===----------------------------------------------------------------------===// 9512 9513 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9514 AssumptionCache &AC, DominatorTree &DT, 9515 LoopInfo &LI) 9516 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9517 CouldNotCompute(new SCEVCouldNotCompute()), 9518 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9519 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9520 FirstUnknown(nullptr) { 9521 9522 // To use guards for proving predicates, we need to scan every instruction in 9523 // relevant basic blocks, and not just terminators. Doing this is a waste of 9524 // time if the IR does not actually contain any calls to 9525 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 9526 // 9527 // This pessimizes the case where a pass that preserves ScalarEvolution wants 9528 // to _add_ guards to the module when there weren't any before, and wants 9529 // ScalarEvolution to optimize based on those guards. For now we prefer to be 9530 // efficient in lieu of being smart in that rather obscure case. 9531 9532 auto *GuardDecl = F.getParent()->getFunction( 9533 Intrinsic::getName(Intrinsic::experimental_guard)); 9534 HasGuards = GuardDecl && !GuardDecl->use_empty(); 9535 } 9536 9537 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9538 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 9539 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 9540 ValueExprMap(std::move(Arg.ValueExprMap)), 9541 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 9542 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9543 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9544 PredicatedBackedgeTakenCounts( 9545 std::move(Arg.PredicatedBackedgeTakenCounts)), 9546 ConstantEvolutionLoopExitValue( 9547 std::move(Arg.ConstantEvolutionLoopExitValue)), 9548 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9549 LoopDispositions(std::move(Arg.LoopDispositions)), 9550 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 9551 BlockDispositions(std::move(Arg.BlockDispositions)), 9552 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9553 SignedRanges(std::move(Arg.SignedRanges)), 9554 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9555 UniquePreds(std::move(Arg.UniquePreds)), 9556 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9557 FirstUnknown(Arg.FirstUnknown) { 9558 Arg.FirstUnknown = nullptr; 9559 } 9560 9561 ScalarEvolution::~ScalarEvolution() { 9562 // Iterate through all the SCEVUnknown instances and call their 9563 // destructors, so that they release their references to their values. 9564 for (SCEVUnknown *U = FirstUnknown; U;) { 9565 SCEVUnknown *Tmp = U; 9566 U = U->Next; 9567 Tmp->~SCEVUnknown(); 9568 } 9569 FirstUnknown = nullptr; 9570 9571 ExprValueMap.clear(); 9572 ValueExprMap.clear(); 9573 HasRecMap.clear(); 9574 9575 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9576 // that a loop had multiple computable exits. 9577 for (auto &BTCI : BackedgeTakenCounts) 9578 BTCI.second.clear(); 9579 for (auto &BTCI : PredicatedBackedgeTakenCounts) 9580 BTCI.second.clear(); 9581 9582 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9583 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9584 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9585 } 9586 9587 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9588 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9589 } 9590 9591 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9592 const Loop *L) { 9593 // Print all inner loops first 9594 for (Loop *I : *L) 9595 PrintLoopInfo(OS, SE, I); 9596 9597 OS << "Loop "; 9598 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9599 OS << ": "; 9600 9601 SmallVector<BasicBlock *, 8> ExitBlocks; 9602 L->getExitBlocks(ExitBlocks); 9603 if (ExitBlocks.size() != 1) 9604 OS << "<multiple exits> "; 9605 9606 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9607 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9608 } else { 9609 OS << "Unpredictable backedge-taken count. "; 9610 } 9611 9612 OS << "\n" 9613 "Loop "; 9614 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9615 OS << ": "; 9616 9617 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9618 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9619 if (SE->isBackedgeTakenCountMaxOrZero(L)) 9620 OS << ", actual taken count either this or zero."; 9621 } else { 9622 OS << "Unpredictable max backedge-taken count. "; 9623 } 9624 9625 OS << "\n" 9626 "Loop "; 9627 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9628 OS << ": "; 9629 9630 SCEVUnionPredicate Pred; 9631 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 9632 if (!isa<SCEVCouldNotCompute>(PBT)) { 9633 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 9634 OS << " Predicates:\n"; 9635 Pred.print(OS, 4); 9636 } else { 9637 OS << "Unpredictable predicated backedge-taken count. "; 9638 } 9639 OS << "\n"; 9640 } 9641 9642 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 9643 switch (LD) { 9644 case ScalarEvolution::LoopVariant: 9645 return "Variant"; 9646 case ScalarEvolution::LoopInvariant: 9647 return "Invariant"; 9648 case ScalarEvolution::LoopComputable: 9649 return "Computable"; 9650 } 9651 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 9652 } 9653 9654 void ScalarEvolution::print(raw_ostream &OS) const { 9655 // ScalarEvolution's implementation of the print method is to print 9656 // out SCEV values of all instructions that are interesting. Doing 9657 // this potentially causes it to create new SCEV objects though, 9658 // which technically conflicts with the const qualifier. This isn't 9659 // observable from outside the class though, so casting away the 9660 // const isn't dangerous. 9661 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9662 9663 OS << "Classifying expressions for: "; 9664 F.printAsOperand(OS, /*PrintType=*/false); 9665 OS << "\n"; 9666 for (Instruction &I : instructions(F)) 9667 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9668 OS << I << '\n'; 9669 OS << " --> "; 9670 const SCEV *SV = SE.getSCEV(&I); 9671 SV->print(OS); 9672 if (!isa<SCEVCouldNotCompute>(SV)) { 9673 OS << " U: "; 9674 SE.getUnsignedRange(SV).print(OS); 9675 OS << " S: "; 9676 SE.getSignedRange(SV).print(OS); 9677 } 9678 9679 const Loop *L = LI.getLoopFor(I.getParent()); 9680 9681 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9682 if (AtUse != SV) { 9683 OS << " --> "; 9684 AtUse->print(OS); 9685 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9686 OS << " U: "; 9687 SE.getUnsignedRange(AtUse).print(OS); 9688 OS << " S: "; 9689 SE.getSignedRange(AtUse).print(OS); 9690 } 9691 } 9692 9693 if (L) { 9694 OS << "\t\t" "Exits: "; 9695 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9696 if (!SE.isLoopInvariant(ExitValue, L)) { 9697 OS << "<<Unknown>>"; 9698 } else { 9699 OS << *ExitValue; 9700 } 9701 9702 bool First = true; 9703 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 9704 if (First) { 9705 OS << "\t\t" "LoopDispositions: { "; 9706 First = false; 9707 } else { 9708 OS << ", "; 9709 } 9710 9711 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9712 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 9713 } 9714 9715 for (auto *InnerL : depth_first(L)) { 9716 if (InnerL == L) 9717 continue; 9718 if (First) { 9719 OS << "\t\t" "LoopDispositions: { "; 9720 First = false; 9721 } else { 9722 OS << ", "; 9723 } 9724 9725 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9726 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 9727 } 9728 9729 OS << " }"; 9730 } 9731 9732 OS << "\n"; 9733 } 9734 9735 OS << "Determining loop execution counts for: "; 9736 F.printAsOperand(OS, /*PrintType=*/false); 9737 OS << "\n"; 9738 for (Loop *I : LI) 9739 PrintLoopInfo(OS, &SE, I); 9740 } 9741 9742 ScalarEvolution::LoopDisposition 9743 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9744 auto &Values = LoopDispositions[S]; 9745 for (auto &V : Values) { 9746 if (V.getPointer() == L) 9747 return V.getInt(); 9748 } 9749 Values.emplace_back(L, LoopVariant); 9750 LoopDisposition D = computeLoopDisposition(S, L); 9751 auto &Values2 = LoopDispositions[S]; 9752 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9753 if (V.getPointer() == L) { 9754 V.setInt(D); 9755 break; 9756 } 9757 } 9758 return D; 9759 } 9760 9761 ScalarEvolution::LoopDisposition 9762 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9763 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9764 case scConstant: 9765 return LoopInvariant; 9766 case scTruncate: 9767 case scZeroExtend: 9768 case scSignExtend: 9769 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9770 case scAddRecExpr: { 9771 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9772 9773 // If L is the addrec's loop, it's computable. 9774 if (AR->getLoop() == L) 9775 return LoopComputable; 9776 9777 // Add recurrences are never invariant in the function-body (null loop). 9778 if (!L) 9779 return LoopVariant; 9780 9781 // This recurrence is variant w.r.t. L if L contains AR's loop. 9782 if (L->contains(AR->getLoop())) 9783 return LoopVariant; 9784 9785 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9786 if (AR->getLoop()->contains(L)) 9787 return LoopInvariant; 9788 9789 // This recurrence is variant w.r.t. L if any of its operands 9790 // are variant. 9791 for (auto *Op : AR->operands()) 9792 if (!isLoopInvariant(Op, L)) 9793 return LoopVariant; 9794 9795 // Otherwise it's loop-invariant. 9796 return LoopInvariant; 9797 } 9798 case scAddExpr: 9799 case scMulExpr: 9800 case scUMaxExpr: 9801 case scSMaxExpr: { 9802 bool HasVarying = false; 9803 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9804 LoopDisposition D = getLoopDisposition(Op, L); 9805 if (D == LoopVariant) 9806 return LoopVariant; 9807 if (D == LoopComputable) 9808 HasVarying = true; 9809 } 9810 return HasVarying ? LoopComputable : LoopInvariant; 9811 } 9812 case scUDivExpr: { 9813 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9814 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9815 if (LD == LoopVariant) 9816 return LoopVariant; 9817 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9818 if (RD == LoopVariant) 9819 return LoopVariant; 9820 return (LD == LoopInvariant && RD == LoopInvariant) ? 9821 LoopInvariant : LoopComputable; 9822 } 9823 case scUnknown: 9824 // All non-instruction values are loop invariant. All instructions are loop 9825 // invariant if they are not contained in the specified loop. 9826 // Instructions are never considered invariant in the function body 9827 // (null loop) because they are defined within the "loop". 9828 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9829 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9830 return LoopInvariant; 9831 case scCouldNotCompute: 9832 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9833 } 9834 llvm_unreachable("Unknown SCEV kind!"); 9835 } 9836 9837 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9838 return getLoopDisposition(S, L) == LoopInvariant; 9839 } 9840 9841 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9842 return getLoopDisposition(S, L) == LoopComputable; 9843 } 9844 9845 ScalarEvolution::BlockDisposition 9846 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9847 auto &Values = BlockDispositions[S]; 9848 for (auto &V : Values) { 9849 if (V.getPointer() == BB) 9850 return V.getInt(); 9851 } 9852 Values.emplace_back(BB, DoesNotDominateBlock); 9853 BlockDisposition D = computeBlockDisposition(S, BB); 9854 auto &Values2 = BlockDispositions[S]; 9855 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9856 if (V.getPointer() == BB) { 9857 V.setInt(D); 9858 break; 9859 } 9860 } 9861 return D; 9862 } 9863 9864 ScalarEvolution::BlockDisposition 9865 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9866 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9867 case scConstant: 9868 return ProperlyDominatesBlock; 9869 case scTruncate: 9870 case scZeroExtend: 9871 case scSignExtend: 9872 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9873 case scAddRecExpr: { 9874 // This uses a "dominates" query instead of "properly dominates" query 9875 // to test for proper dominance too, because the instruction which 9876 // produces the addrec's value is a PHI, and a PHI effectively properly 9877 // dominates its entire containing block. 9878 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9879 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9880 return DoesNotDominateBlock; 9881 9882 // Fall through into SCEVNAryExpr handling. 9883 LLVM_FALLTHROUGH; 9884 } 9885 case scAddExpr: 9886 case scMulExpr: 9887 case scUMaxExpr: 9888 case scSMaxExpr: { 9889 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9890 bool Proper = true; 9891 for (const SCEV *NAryOp : NAry->operands()) { 9892 BlockDisposition D = getBlockDisposition(NAryOp, BB); 9893 if (D == DoesNotDominateBlock) 9894 return DoesNotDominateBlock; 9895 if (D == DominatesBlock) 9896 Proper = false; 9897 } 9898 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9899 } 9900 case scUDivExpr: { 9901 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9902 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9903 BlockDisposition LD = getBlockDisposition(LHS, BB); 9904 if (LD == DoesNotDominateBlock) 9905 return DoesNotDominateBlock; 9906 BlockDisposition RD = getBlockDisposition(RHS, BB); 9907 if (RD == DoesNotDominateBlock) 9908 return DoesNotDominateBlock; 9909 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9910 ProperlyDominatesBlock : DominatesBlock; 9911 } 9912 case scUnknown: 9913 if (Instruction *I = 9914 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9915 if (I->getParent() == BB) 9916 return DominatesBlock; 9917 if (DT.properlyDominates(I->getParent(), BB)) 9918 return ProperlyDominatesBlock; 9919 return DoesNotDominateBlock; 9920 } 9921 return ProperlyDominatesBlock; 9922 case scCouldNotCompute: 9923 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9924 } 9925 llvm_unreachable("Unknown SCEV kind!"); 9926 } 9927 9928 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9929 return getBlockDisposition(S, BB) >= DominatesBlock; 9930 } 9931 9932 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9933 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9934 } 9935 9936 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9937 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 9938 } 9939 9940 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9941 ValuesAtScopes.erase(S); 9942 LoopDispositions.erase(S); 9943 BlockDispositions.erase(S); 9944 UnsignedRanges.erase(S); 9945 SignedRanges.erase(S); 9946 ExprValueMap.erase(S); 9947 HasRecMap.erase(S); 9948 9949 auto RemoveSCEVFromBackedgeMap = 9950 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 9951 for (auto I = Map.begin(), E = Map.end(); I != E;) { 9952 BackedgeTakenInfo &BEInfo = I->second; 9953 if (BEInfo.hasOperand(S, this)) { 9954 BEInfo.clear(); 9955 Map.erase(I++); 9956 } else 9957 ++I; 9958 } 9959 }; 9960 9961 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 9962 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 9963 } 9964 9965 typedef DenseMap<const Loop *, std::string> VerifyMap; 9966 9967 /// replaceSubString - Replaces all occurrences of From in Str with To. 9968 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9969 size_t Pos = 0; 9970 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9971 Str.replace(Pos, From.size(), To.data(), To.size()); 9972 Pos += To.size(); 9973 } 9974 } 9975 9976 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9977 static void 9978 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9979 std::string &S = Map[L]; 9980 if (S.empty()) { 9981 raw_string_ostream OS(S); 9982 SE.getBackedgeTakenCount(L)->print(OS); 9983 9984 // false and 0 are semantically equivalent. This can happen in dead loops. 9985 replaceSubString(OS.str(), "false", "0"); 9986 // Remove wrap flags, their use in SCEV is highly fragile. 9987 // FIXME: Remove this when SCEV gets smarter about them. 9988 replaceSubString(OS.str(), "<nw>", ""); 9989 replaceSubString(OS.str(), "<nsw>", ""); 9990 replaceSubString(OS.str(), "<nuw>", ""); 9991 } 9992 9993 for (auto *R : reverse(*L)) 9994 getLoopBackedgeTakenCounts(R, Map, SE); // recurse. 9995 } 9996 9997 void ScalarEvolution::verify() const { 9998 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9999 10000 // Gather stringified backedge taken counts for all loops using SCEV's caches. 10001 // FIXME: It would be much better to store actual values instead of strings, 10002 // but SCEV pointers will change if we drop the caches. 10003 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 10004 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10005 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 10006 10007 // Gather stringified backedge taken counts for all loops using a fresh 10008 // ScalarEvolution object. 10009 ScalarEvolution SE2(F, TLI, AC, DT, LI); 10010 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10011 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 10012 10013 // Now compare whether they're the same with and without caches. This allows 10014 // verifying that no pass changed the cache. 10015 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 10016 "New loops suddenly appeared!"); 10017 10018 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 10019 OldE = BackedgeDumpsOld.end(), 10020 NewI = BackedgeDumpsNew.begin(); 10021 OldI != OldE; ++OldI, ++NewI) { 10022 assert(OldI->first == NewI->first && "Loop order changed!"); 10023 10024 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 10025 // changes. 10026 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 10027 // means that a pass is buggy or SCEV has to learn a new pattern but is 10028 // usually not harmful. 10029 if (OldI->second != NewI->second && 10030 OldI->second.find("undef") == std::string::npos && 10031 NewI->second.find("undef") == std::string::npos && 10032 OldI->second != "***COULDNOTCOMPUTE***" && 10033 NewI->second != "***COULDNOTCOMPUTE***") { 10034 dbgs() << "SCEVValidator: SCEV for loop '" 10035 << OldI->first->getHeader()->getName() 10036 << "' changed from '" << OldI->second 10037 << "' to '" << NewI->second << "'!\n"; 10038 std::abort(); 10039 } 10040 } 10041 10042 // TODO: Verify more things. 10043 } 10044 10045 bool ScalarEvolution::invalidate( 10046 Function &F, const PreservedAnalyses &PA, 10047 FunctionAnalysisManager::Invalidator &Inv) { 10048 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 10049 // of its dependencies is invalidated. 10050 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 10051 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 10052 Inv.invalidate<AssumptionAnalysis>(F, PA) || 10053 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 10054 Inv.invalidate<LoopAnalysis>(F, PA); 10055 } 10056 10057 AnalysisKey ScalarEvolutionAnalysis::Key; 10058 10059 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 10060 FunctionAnalysisManager &AM) { 10061 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 10062 AM.getResult<AssumptionAnalysis>(F), 10063 AM.getResult<DominatorTreeAnalysis>(F), 10064 AM.getResult<LoopAnalysis>(F)); 10065 } 10066 10067 PreservedAnalyses 10068 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 10069 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 10070 return PreservedAnalyses::all(); 10071 } 10072 10073 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 10074 "Scalar Evolution Analysis", false, true) 10075 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10076 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 10077 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 10078 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 10079 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 10080 "Scalar Evolution Analysis", false, true) 10081 char ScalarEvolutionWrapperPass::ID = 0; 10082 10083 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 10084 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 10085 } 10086 10087 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 10088 SE.reset(new ScalarEvolution( 10089 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 10090 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 10091 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 10092 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 10093 return false; 10094 } 10095 10096 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 10097 10098 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 10099 SE->print(OS); 10100 } 10101 10102 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 10103 if (!VerifySCEV) 10104 return; 10105 10106 SE->verify(); 10107 } 10108 10109 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 10110 AU.setPreservesAll(); 10111 AU.addRequiredTransitive<AssumptionCacheTracker>(); 10112 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 10113 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 10114 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 10115 } 10116 10117 const SCEVPredicate * 10118 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 10119 const SCEVConstant *RHS) { 10120 FoldingSetNodeID ID; 10121 // Unique this node based on the arguments 10122 ID.AddInteger(SCEVPredicate::P_Equal); 10123 ID.AddPointer(LHS); 10124 ID.AddPointer(RHS); 10125 void *IP = nullptr; 10126 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10127 return S; 10128 SCEVEqualPredicate *Eq = new (SCEVAllocator) 10129 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 10130 UniquePreds.InsertNode(Eq, IP); 10131 return Eq; 10132 } 10133 10134 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 10135 const SCEVAddRecExpr *AR, 10136 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10137 FoldingSetNodeID ID; 10138 // Unique this node based on the arguments 10139 ID.AddInteger(SCEVPredicate::P_Wrap); 10140 ID.AddPointer(AR); 10141 ID.AddInteger(AddedFlags); 10142 void *IP = nullptr; 10143 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10144 return S; 10145 auto *OF = new (SCEVAllocator) 10146 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 10147 UniquePreds.InsertNode(OF, IP); 10148 return OF; 10149 } 10150 10151 namespace { 10152 10153 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 10154 public: 10155 /// Rewrites \p S in the context of a loop L and the SCEV predication 10156 /// infrastructure. 10157 /// 10158 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 10159 /// equivalences present in \p Pred. 10160 /// 10161 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 10162 /// \p NewPreds such that the result will be an AddRecExpr. 10163 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 10164 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10165 SCEVUnionPredicate *Pred) { 10166 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 10167 return Rewriter.visit(S); 10168 } 10169 10170 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 10171 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10172 SCEVUnionPredicate *Pred) 10173 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 10174 10175 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 10176 if (Pred) { 10177 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 10178 for (auto *Pred : ExprPreds) 10179 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 10180 if (IPred->getLHS() == Expr) 10181 return IPred->getRHS(); 10182 } 10183 10184 return Expr; 10185 } 10186 10187 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 10188 const SCEV *Operand = visit(Expr->getOperand()); 10189 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10190 if (AR && AR->getLoop() == L && AR->isAffine()) { 10191 // This couldn't be folded because the operand didn't have the nuw 10192 // flag. Add the nusw flag as an assumption that we could make. 10193 const SCEV *Step = AR->getStepRecurrence(SE); 10194 Type *Ty = Expr->getType(); 10195 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 10196 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 10197 SE.getSignExtendExpr(Step, Ty), L, 10198 AR->getNoWrapFlags()); 10199 } 10200 return SE.getZeroExtendExpr(Operand, Expr->getType()); 10201 } 10202 10203 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 10204 const SCEV *Operand = visit(Expr->getOperand()); 10205 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10206 if (AR && AR->getLoop() == L && AR->isAffine()) { 10207 // This couldn't be folded because the operand didn't have the nsw 10208 // flag. Add the nssw flag as an assumption that we could make. 10209 const SCEV *Step = AR->getStepRecurrence(SE); 10210 Type *Ty = Expr->getType(); 10211 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 10212 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 10213 SE.getSignExtendExpr(Step, Ty), L, 10214 AR->getNoWrapFlags()); 10215 } 10216 return SE.getSignExtendExpr(Operand, Expr->getType()); 10217 } 10218 10219 private: 10220 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 10221 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10222 auto *A = SE.getWrapPredicate(AR, AddedFlags); 10223 if (!NewPreds) { 10224 // Check if we've already made this assumption. 10225 return Pred && Pred->implies(A); 10226 } 10227 NewPreds->insert(A); 10228 return true; 10229 } 10230 10231 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 10232 SCEVUnionPredicate *Pred; 10233 const Loop *L; 10234 }; 10235 } // end anonymous namespace 10236 10237 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 10238 SCEVUnionPredicate &Preds) { 10239 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 10240 } 10241 10242 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 10243 const SCEV *S, const Loop *L, 10244 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 10245 10246 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 10247 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 10248 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 10249 10250 if (!AddRec) 10251 return nullptr; 10252 10253 // Since the transformation was successful, we can now transfer the SCEV 10254 // predicates. 10255 for (auto *P : TransformPreds) 10256 Preds.insert(P); 10257 10258 return AddRec; 10259 } 10260 10261 /// SCEV predicates 10262 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 10263 SCEVPredicateKind Kind) 10264 : FastID(ID), Kind(Kind) {} 10265 10266 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 10267 const SCEVUnknown *LHS, 10268 const SCEVConstant *RHS) 10269 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 10270 10271 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 10272 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 10273 10274 if (!Op) 10275 return false; 10276 10277 return Op->LHS == LHS && Op->RHS == RHS; 10278 } 10279 10280 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 10281 10282 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 10283 10284 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 10285 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 10286 } 10287 10288 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 10289 const SCEVAddRecExpr *AR, 10290 IncrementWrapFlags Flags) 10291 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 10292 10293 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 10294 10295 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 10296 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 10297 10298 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 10299 } 10300 10301 bool SCEVWrapPredicate::isAlwaysTrue() const { 10302 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 10303 IncrementWrapFlags IFlags = Flags; 10304 10305 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 10306 IFlags = clearFlags(IFlags, IncrementNSSW); 10307 10308 return IFlags == IncrementAnyWrap; 10309 } 10310 10311 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 10312 OS.indent(Depth) << *getExpr() << " Added Flags: "; 10313 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 10314 OS << "<nusw>"; 10315 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 10316 OS << "<nssw>"; 10317 OS << "\n"; 10318 } 10319 10320 SCEVWrapPredicate::IncrementWrapFlags 10321 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 10322 ScalarEvolution &SE) { 10323 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 10324 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 10325 10326 // We can safely transfer the NSW flag as NSSW. 10327 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 10328 ImpliedFlags = IncrementNSSW; 10329 10330 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 10331 // If the increment is positive, the SCEV NUW flag will also imply the 10332 // WrapPredicate NUSW flag. 10333 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 10334 if (Step->getValue()->getValue().isNonNegative()) 10335 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 10336 } 10337 10338 return ImpliedFlags; 10339 } 10340 10341 /// Union predicates don't get cached so create a dummy set ID for it. 10342 SCEVUnionPredicate::SCEVUnionPredicate() 10343 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 10344 10345 bool SCEVUnionPredicate::isAlwaysTrue() const { 10346 return all_of(Preds, 10347 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 10348 } 10349 10350 ArrayRef<const SCEVPredicate *> 10351 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 10352 auto I = SCEVToPreds.find(Expr); 10353 if (I == SCEVToPreds.end()) 10354 return ArrayRef<const SCEVPredicate *>(); 10355 return I->second; 10356 } 10357 10358 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 10359 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 10360 return all_of(Set->Preds, 10361 [this](const SCEVPredicate *I) { return this->implies(I); }); 10362 10363 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 10364 if (ScevPredsIt == SCEVToPreds.end()) 10365 return false; 10366 auto &SCEVPreds = ScevPredsIt->second; 10367 10368 return any_of(SCEVPreds, 10369 [N](const SCEVPredicate *I) { return I->implies(N); }); 10370 } 10371 10372 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 10373 10374 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 10375 for (auto Pred : Preds) 10376 Pred->print(OS, Depth); 10377 } 10378 10379 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 10380 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 10381 for (auto Pred : Set->Preds) 10382 add(Pred); 10383 return; 10384 } 10385 10386 if (implies(N)) 10387 return; 10388 10389 const SCEV *Key = N->getExpr(); 10390 assert(Key && "Only SCEVUnionPredicate doesn't have an " 10391 " associated expression!"); 10392 10393 SCEVToPreds[Key].push_back(N); 10394 Preds.push_back(N); 10395 } 10396 10397 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 10398 Loop &L) 10399 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {} 10400 10401 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 10402 const SCEV *Expr = SE.getSCEV(V); 10403 RewriteEntry &Entry = RewriteMap[Expr]; 10404 10405 // If we already have an entry and the version matches, return it. 10406 if (Entry.second && Generation == Entry.first) 10407 return Entry.second; 10408 10409 // We found an entry but it's stale. Rewrite the stale entry 10410 // according to the current predicate. 10411 if (Entry.second) 10412 Expr = Entry.second; 10413 10414 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 10415 Entry = {Generation, NewSCEV}; 10416 10417 return NewSCEV; 10418 } 10419 10420 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 10421 if (!BackedgeCount) { 10422 SCEVUnionPredicate BackedgePred; 10423 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 10424 addPredicate(BackedgePred); 10425 } 10426 return BackedgeCount; 10427 } 10428 10429 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 10430 if (Preds.implies(&Pred)) 10431 return; 10432 Preds.add(&Pred); 10433 updateGeneration(); 10434 } 10435 10436 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 10437 return Preds; 10438 } 10439 10440 void PredicatedScalarEvolution::updateGeneration() { 10441 // If the generation number wrapped recompute everything. 10442 if (++Generation == 0) { 10443 for (auto &II : RewriteMap) { 10444 const SCEV *Rewritten = II.second.second; 10445 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 10446 } 10447 } 10448 } 10449 10450 void PredicatedScalarEvolution::setNoOverflow( 10451 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10452 const SCEV *Expr = getSCEV(V); 10453 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10454 10455 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 10456 10457 // Clear the statically implied flags. 10458 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 10459 addPredicate(*SE.getWrapPredicate(AR, Flags)); 10460 10461 auto II = FlagsMap.insert({V, Flags}); 10462 if (!II.second) 10463 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 10464 } 10465 10466 bool PredicatedScalarEvolution::hasNoOverflow( 10467 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10468 const SCEV *Expr = getSCEV(V); 10469 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10470 10471 Flags = SCEVWrapPredicate::clearFlags( 10472 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 10473 10474 auto II = FlagsMap.find(V); 10475 10476 if (II != FlagsMap.end()) 10477 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 10478 10479 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 10480 } 10481 10482 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 10483 const SCEV *Expr = this->getSCEV(V); 10484 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 10485 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 10486 10487 if (!New) 10488 return nullptr; 10489 10490 for (auto *P : NewPreds) 10491 Preds.add(P); 10492 10493 updateGeneration(); 10494 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 10495 return New; 10496 } 10497 10498 PredicatedScalarEvolution::PredicatedScalarEvolution( 10499 const PredicatedScalarEvolution &Init) 10500 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 10501 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 10502 for (const auto &I : Init.FlagsMap) 10503 FlagsMap.insert(I); 10504 } 10505 10506 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 10507 // For each block. 10508 for (auto *BB : L.getBlocks()) 10509 for (auto &I : *BB) { 10510 if (!SE.isSCEVable(I.getType())) 10511 continue; 10512 10513 auto *Expr = SE.getSCEV(&I); 10514 auto II = RewriteMap.find(Expr); 10515 10516 if (II == RewriteMap.end()) 10517 continue; 10518 10519 // Don't print things that are not interesting. 10520 if (II->second.second == Expr) 10521 continue; 10522 10523 OS.indent(Depth) << "[PSE]" << I << ":\n"; 10524 OS.indent(Depth + 2) << *Expr << "\n"; 10525 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 10526 } 10527 } 10528