1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/ScopeExit.h" 65 #include "llvm/ADT/Sequence.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/ConstantFolding.h" 70 #include "llvm/Analysis/InstructionSimplify.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 73 #include "llvm/Analysis/TargetLibraryInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/GlobalAlias.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/InstIterator.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Metadata.h" 87 #include "llvm/IR/Operator.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/ErrorHandling.h" 92 #include "llvm/Support/KnownBits.h" 93 #include "llvm/Support/MathExtras.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Support/SaveAndRestore.h" 96 #include <algorithm> 97 using namespace llvm; 98 99 #define DEBUG_TYPE "scalar-evolution" 100 101 STATISTIC(NumArrayLenItCounts, 102 "Number of trip counts computed with array length"); 103 STATISTIC(NumTripCountsComputed, 104 "Number of loops with predictable loop counts"); 105 STATISTIC(NumTripCountsNotComputed, 106 "Number of loops without predictable loop counts"); 107 STATISTIC(NumBruteForceTripCountsComputed, 108 "Number of loops with trip counts computed by force"); 109 110 static cl::opt<unsigned> 111 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 112 cl::desc("Maximum number of iterations SCEV will " 113 "symbolically execute a constant " 114 "derived loop"), 115 cl::init(100)); 116 117 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 118 static cl::opt<bool> 119 VerifySCEV("verify-scev", 120 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 121 static cl::opt<bool> 122 VerifySCEVMap("verify-scev-maps", 123 cl::desc("Verify no dangling value in ScalarEvolution's " 124 "ExprValueMap (slow)")); 125 126 static cl::opt<unsigned> MulOpsInlineThreshold( 127 "scev-mulops-inline-threshold", cl::Hidden, 128 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 129 cl::init(1000)); 130 131 static cl::opt<unsigned> AddOpsInlineThreshold( 132 "scev-addops-inline-threshold", cl::Hidden, 133 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 134 cl::init(500)); 135 136 static cl::opt<unsigned> MaxSCEVCompareDepth( 137 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 138 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 139 cl::init(32)); 140 141 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 142 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 143 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 144 cl::init(2)); 145 146 static cl::opt<unsigned> MaxValueCompareDepth( 147 "scalar-evolution-max-value-compare-depth", cl::Hidden, 148 cl::desc("Maximum depth of recursive value complexity comparisons"), 149 cl::init(2)); 150 151 static cl::opt<unsigned> 152 MaxAddExprDepth("scalar-evolution-max-addexpr-depth", cl::Hidden, 153 cl::desc("Maximum depth of recursive AddExpr"), 154 cl::init(32)); 155 156 static cl::opt<unsigned> MaxConstantEvolvingDepth( 157 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 158 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 159 160 //===----------------------------------------------------------------------===// 161 // SCEV class definitions 162 //===----------------------------------------------------------------------===// 163 164 //===----------------------------------------------------------------------===// 165 // Implementation of the SCEV class. 166 // 167 168 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 169 LLVM_DUMP_METHOD void SCEV::dump() const { 170 print(dbgs()); 171 dbgs() << '\n'; 172 } 173 #endif 174 175 void SCEV::print(raw_ostream &OS) const { 176 switch (static_cast<SCEVTypes>(getSCEVType())) { 177 case scConstant: 178 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 179 return; 180 case scTruncate: { 181 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 182 const SCEV *Op = Trunc->getOperand(); 183 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 184 << *Trunc->getType() << ")"; 185 return; 186 } 187 case scZeroExtend: { 188 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 189 const SCEV *Op = ZExt->getOperand(); 190 OS << "(zext " << *Op->getType() << " " << *Op << " to " 191 << *ZExt->getType() << ")"; 192 return; 193 } 194 case scSignExtend: { 195 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 196 const SCEV *Op = SExt->getOperand(); 197 OS << "(sext " << *Op->getType() << " " << *Op << " to " 198 << *SExt->getType() << ")"; 199 return; 200 } 201 case scAddRecExpr: { 202 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 203 OS << "{" << *AR->getOperand(0); 204 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 205 OS << ",+," << *AR->getOperand(i); 206 OS << "}<"; 207 if (AR->hasNoUnsignedWrap()) 208 OS << "nuw><"; 209 if (AR->hasNoSignedWrap()) 210 OS << "nsw><"; 211 if (AR->hasNoSelfWrap() && 212 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 213 OS << "nw><"; 214 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 215 OS << ">"; 216 return; 217 } 218 case scAddExpr: 219 case scMulExpr: 220 case scUMaxExpr: 221 case scSMaxExpr: { 222 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 223 const char *OpStr = nullptr; 224 switch (NAry->getSCEVType()) { 225 case scAddExpr: OpStr = " + "; break; 226 case scMulExpr: OpStr = " * "; break; 227 case scUMaxExpr: OpStr = " umax "; break; 228 case scSMaxExpr: OpStr = " smax "; break; 229 } 230 OS << "("; 231 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 232 I != E; ++I) { 233 OS << **I; 234 if (std::next(I) != E) 235 OS << OpStr; 236 } 237 OS << ")"; 238 switch (NAry->getSCEVType()) { 239 case scAddExpr: 240 case scMulExpr: 241 if (NAry->hasNoUnsignedWrap()) 242 OS << "<nuw>"; 243 if (NAry->hasNoSignedWrap()) 244 OS << "<nsw>"; 245 } 246 return; 247 } 248 case scUDivExpr: { 249 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 250 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 251 return; 252 } 253 case scUnknown: { 254 const SCEVUnknown *U = cast<SCEVUnknown>(this); 255 Type *AllocTy; 256 if (U->isSizeOf(AllocTy)) { 257 OS << "sizeof(" << *AllocTy << ")"; 258 return; 259 } 260 if (U->isAlignOf(AllocTy)) { 261 OS << "alignof(" << *AllocTy << ")"; 262 return; 263 } 264 265 Type *CTy; 266 Constant *FieldNo; 267 if (U->isOffsetOf(CTy, FieldNo)) { 268 OS << "offsetof(" << *CTy << ", "; 269 FieldNo->printAsOperand(OS, false); 270 OS << ")"; 271 return; 272 } 273 274 // Otherwise just print it normally. 275 U->getValue()->printAsOperand(OS, false); 276 return; 277 } 278 case scCouldNotCompute: 279 OS << "***COULDNOTCOMPUTE***"; 280 return; 281 } 282 llvm_unreachable("Unknown SCEV kind!"); 283 } 284 285 Type *SCEV::getType() const { 286 switch (static_cast<SCEVTypes>(getSCEVType())) { 287 case scConstant: 288 return cast<SCEVConstant>(this)->getType(); 289 case scTruncate: 290 case scZeroExtend: 291 case scSignExtend: 292 return cast<SCEVCastExpr>(this)->getType(); 293 case scAddRecExpr: 294 case scMulExpr: 295 case scUMaxExpr: 296 case scSMaxExpr: 297 return cast<SCEVNAryExpr>(this)->getType(); 298 case scAddExpr: 299 return cast<SCEVAddExpr>(this)->getType(); 300 case scUDivExpr: 301 return cast<SCEVUDivExpr>(this)->getType(); 302 case scUnknown: 303 return cast<SCEVUnknown>(this)->getType(); 304 case scCouldNotCompute: 305 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 306 } 307 llvm_unreachable("Unknown SCEV kind!"); 308 } 309 310 bool SCEV::isZero() const { 311 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 312 return SC->getValue()->isZero(); 313 return false; 314 } 315 316 bool SCEV::isOne() const { 317 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 318 return SC->getValue()->isOne(); 319 return false; 320 } 321 322 bool SCEV::isAllOnesValue() const { 323 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 324 return SC->getValue()->isAllOnesValue(); 325 return false; 326 } 327 328 bool SCEV::isNonConstantNegative() const { 329 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 330 if (!Mul) return false; 331 332 // If there is a constant factor, it will be first. 333 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 334 if (!SC) return false; 335 336 // Return true if the value is negative, this matches things like (-42 * V). 337 return SC->getAPInt().isNegative(); 338 } 339 340 SCEVCouldNotCompute::SCEVCouldNotCompute() : 341 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 342 343 bool SCEVCouldNotCompute::classof(const SCEV *S) { 344 return S->getSCEVType() == scCouldNotCompute; 345 } 346 347 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 348 FoldingSetNodeID ID; 349 ID.AddInteger(scConstant); 350 ID.AddPointer(V); 351 void *IP = nullptr; 352 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 353 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 354 UniqueSCEVs.InsertNode(S, IP); 355 return S; 356 } 357 358 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 359 return getConstant(ConstantInt::get(getContext(), Val)); 360 } 361 362 const SCEV * 363 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 364 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 365 return getConstant(ConstantInt::get(ITy, V, isSigned)); 366 } 367 368 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 369 unsigned SCEVTy, const SCEV *op, Type *ty) 370 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 371 372 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 373 const SCEV *op, Type *ty) 374 : SCEVCastExpr(ID, scTruncate, op, ty) { 375 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 376 (Ty->isIntegerTy() || Ty->isPointerTy()) && 377 "Cannot truncate non-integer value!"); 378 } 379 380 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 381 const SCEV *op, Type *ty) 382 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 383 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 384 (Ty->isIntegerTy() || Ty->isPointerTy()) && 385 "Cannot zero extend non-integer value!"); 386 } 387 388 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 389 const SCEV *op, Type *ty) 390 : SCEVCastExpr(ID, scSignExtend, op, ty) { 391 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 392 (Ty->isIntegerTy() || Ty->isPointerTy()) && 393 "Cannot sign extend non-integer value!"); 394 } 395 396 void SCEVUnknown::deleted() { 397 // Clear this SCEVUnknown from various maps. 398 SE->forgetMemoizedResults(this); 399 400 // Remove this SCEVUnknown from the uniquing map. 401 SE->UniqueSCEVs.RemoveNode(this); 402 403 // Release the value. 404 setValPtr(nullptr); 405 } 406 407 void SCEVUnknown::allUsesReplacedWith(Value *New) { 408 // Clear this SCEVUnknown from various maps. 409 SE->forgetMemoizedResults(this); 410 411 // Remove this SCEVUnknown from the uniquing map. 412 SE->UniqueSCEVs.RemoveNode(this); 413 414 // Update this SCEVUnknown to point to the new value. This is needed 415 // because there may still be outstanding SCEVs which still point to 416 // this SCEVUnknown. 417 setValPtr(New); 418 } 419 420 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 421 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 422 if (VCE->getOpcode() == Instruction::PtrToInt) 423 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 424 if (CE->getOpcode() == Instruction::GetElementPtr && 425 CE->getOperand(0)->isNullValue() && 426 CE->getNumOperands() == 2) 427 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 428 if (CI->isOne()) { 429 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 430 ->getElementType(); 431 return true; 432 } 433 434 return false; 435 } 436 437 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 438 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 439 if (VCE->getOpcode() == Instruction::PtrToInt) 440 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 441 if (CE->getOpcode() == Instruction::GetElementPtr && 442 CE->getOperand(0)->isNullValue()) { 443 Type *Ty = 444 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 445 if (StructType *STy = dyn_cast<StructType>(Ty)) 446 if (!STy->isPacked() && 447 CE->getNumOperands() == 3 && 448 CE->getOperand(1)->isNullValue()) { 449 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 450 if (CI->isOne() && 451 STy->getNumElements() == 2 && 452 STy->getElementType(0)->isIntegerTy(1)) { 453 AllocTy = STy->getElementType(1); 454 return true; 455 } 456 } 457 } 458 459 return false; 460 } 461 462 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 463 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 464 if (VCE->getOpcode() == Instruction::PtrToInt) 465 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 466 if (CE->getOpcode() == Instruction::GetElementPtr && 467 CE->getNumOperands() == 3 && 468 CE->getOperand(0)->isNullValue() && 469 CE->getOperand(1)->isNullValue()) { 470 Type *Ty = 471 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 472 // Ignore vector types here so that ScalarEvolutionExpander doesn't 473 // emit getelementptrs that index into vectors. 474 if (Ty->isStructTy() || Ty->isArrayTy()) { 475 CTy = Ty; 476 FieldNo = CE->getOperand(2); 477 return true; 478 } 479 } 480 481 return false; 482 } 483 484 //===----------------------------------------------------------------------===// 485 // SCEV Utilities 486 //===----------------------------------------------------------------------===// 487 488 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 489 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 490 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 491 /// have been previously deemed to be "equally complex" by this routine. It is 492 /// intended to avoid exponential time complexity in cases like: 493 /// 494 /// %a = f(%x, %y) 495 /// %b = f(%a, %a) 496 /// %c = f(%b, %b) 497 /// 498 /// %d = f(%x, %y) 499 /// %e = f(%d, %d) 500 /// %f = f(%e, %e) 501 /// 502 /// CompareValueComplexity(%f, %c) 503 /// 504 /// Since we do not continue running this routine on expression trees once we 505 /// have seen unequal values, there is no need to track them in the cache. 506 static int 507 CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache, 508 const LoopInfo *const LI, Value *LV, Value *RV, 509 unsigned Depth) { 510 if (Depth > MaxValueCompareDepth || EqCache.count({LV, RV})) 511 return 0; 512 513 // Order pointer values after integer values. This helps SCEVExpander form 514 // GEPs. 515 bool LIsPointer = LV->getType()->isPointerTy(), 516 RIsPointer = RV->getType()->isPointerTy(); 517 if (LIsPointer != RIsPointer) 518 return (int)LIsPointer - (int)RIsPointer; 519 520 // Compare getValueID values. 521 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 522 if (LID != RID) 523 return (int)LID - (int)RID; 524 525 // Sort arguments by their position. 526 if (const auto *LA = dyn_cast<Argument>(LV)) { 527 const auto *RA = cast<Argument>(RV); 528 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 529 return (int)LArgNo - (int)RArgNo; 530 } 531 532 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 533 const auto *RGV = cast<GlobalValue>(RV); 534 535 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 536 auto LT = GV->getLinkage(); 537 return !(GlobalValue::isPrivateLinkage(LT) || 538 GlobalValue::isInternalLinkage(LT)); 539 }; 540 541 // Use the names to distinguish the two values, but only if the 542 // names are semantically important. 543 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 544 return LGV->getName().compare(RGV->getName()); 545 } 546 547 // For instructions, compare their loop depth, and their operand count. This 548 // is pretty loose. 549 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 550 const auto *RInst = cast<Instruction>(RV); 551 552 // Compare loop depths. 553 const BasicBlock *LParent = LInst->getParent(), 554 *RParent = RInst->getParent(); 555 if (LParent != RParent) { 556 unsigned LDepth = LI->getLoopDepth(LParent), 557 RDepth = LI->getLoopDepth(RParent); 558 if (LDepth != RDepth) 559 return (int)LDepth - (int)RDepth; 560 } 561 562 // Compare the number of operands. 563 unsigned LNumOps = LInst->getNumOperands(), 564 RNumOps = RInst->getNumOperands(); 565 if (LNumOps != RNumOps) 566 return (int)LNumOps - (int)RNumOps; 567 568 for (unsigned Idx : seq(0u, LNumOps)) { 569 int Result = 570 CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx), 571 RInst->getOperand(Idx), Depth + 1); 572 if (Result != 0) 573 return Result; 574 } 575 } 576 577 EqCache.insert({LV, RV}); 578 return 0; 579 } 580 581 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 582 // than RHS, respectively. A three-way result allows recursive comparisons to be 583 // more efficient. 584 static int CompareSCEVComplexity( 585 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV, 586 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 587 DominatorTree &DT, unsigned Depth = 0) { 588 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 589 if (LHS == RHS) 590 return 0; 591 592 // Primarily, sort the SCEVs by their getSCEVType(). 593 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 594 if (LType != RType) 595 return (int)LType - (int)RType; 596 597 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.count({LHS, RHS})) 598 return 0; 599 // Aside from the getSCEVType() ordering, the particular ordering 600 // isn't very important except that it's beneficial to be consistent, 601 // so that (a + b) and (b + a) don't end up as different expressions. 602 switch (static_cast<SCEVTypes>(LType)) { 603 case scUnknown: { 604 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 605 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 606 607 SmallSet<std::pair<Value *, Value *>, 8> EqCache; 608 int X = CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue(), 609 Depth + 1); 610 if (X == 0) 611 EqCacheSCEV.insert({LHS, RHS}); 612 return X; 613 } 614 615 case scConstant: { 616 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 617 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 618 619 // Compare constant values. 620 const APInt &LA = LC->getAPInt(); 621 const APInt &RA = RC->getAPInt(); 622 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 623 if (LBitWidth != RBitWidth) 624 return (int)LBitWidth - (int)RBitWidth; 625 return LA.ult(RA) ? -1 : 1; 626 } 627 628 case scAddRecExpr: { 629 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 630 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 631 632 // There is always a dominance between two recs that are used by one SCEV, 633 // so we can safely sort recs by loop header dominance. We require such 634 // order in getAddExpr. 635 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 636 if (LLoop != RLoop) { 637 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 638 assert(LHead != RHead && "Two loops share the same header?"); 639 if (DT.dominates(LHead, RHead)) 640 return 1; 641 else 642 assert(DT.dominates(RHead, LHead) && 643 "No dominance between recurrences used by one SCEV?"); 644 return -1; 645 } 646 647 // Addrec complexity grows with operand count. 648 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 649 if (LNumOps != RNumOps) 650 return (int)LNumOps - (int)RNumOps; 651 652 // Lexicographically compare. 653 for (unsigned i = 0; i != LNumOps; ++i) { 654 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i), 655 RA->getOperand(i), DT, Depth + 1); 656 if (X != 0) 657 return X; 658 } 659 EqCacheSCEV.insert({LHS, RHS}); 660 return 0; 661 } 662 663 case scAddExpr: 664 case scMulExpr: 665 case scSMaxExpr: 666 case scUMaxExpr: { 667 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 668 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 669 670 // Lexicographically compare n-ary expressions. 671 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 672 if (LNumOps != RNumOps) 673 return (int)LNumOps - (int)RNumOps; 674 675 for (unsigned i = 0; i != LNumOps; ++i) { 676 if (i >= RNumOps) 677 return 1; 678 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i), 679 RC->getOperand(i), DT, Depth + 1); 680 if (X != 0) 681 return X; 682 } 683 EqCacheSCEV.insert({LHS, RHS}); 684 return 0; 685 } 686 687 case scUDivExpr: { 688 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 689 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 690 691 // Lexicographically compare udiv expressions. 692 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(), 693 DT, Depth + 1); 694 if (X != 0) 695 return X; 696 X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(), DT, 697 Depth + 1); 698 if (X == 0) 699 EqCacheSCEV.insert({LHS, RHS}); 700 return X; 701 } 702 703 case scTruncate: 704 case scZeroExtend: 705 case scSignExtend: { 706 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 707 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 708 709 // Compare cast expressions by operand. 710 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(), 711 RC->getOperand(), DT, Depth + 1); 712 if (X == 0) 713 EqCacheSCEV.insert({LHS, RHS}); 714 return X; 715 } 716 717 case scCouldNotCompute: 718 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 719 } 720 llvm_unreachable("Unknown SCEV kind!"); 721 } 722 723 /// Given a list of SCEV objects, order them by their complexity, and group 724 /// objects of the same complexity together by value. When this routine is 725 /// finished, we know that any duplicates in the vector are consecutive and that 726 /// complexity is monotonically increasing. 727 /// 728 /// Note that we go take special precautions to ensure that we get deterministic 729 /// results from this routine. In other words, we don't want the results of 730 /// this to depend on where the addresses of various SCEV objects happened to 731 /// land in memory. 732 /// 733 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 734 LoopInfo *LI, DominatorTree &DT) { 735 if (Ops.size() < 2) return; // Noop 736 737 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache; 738 if (Ops.size() == 2) { 739 // This is the common case, which also happens to be trivially simple. 740 // Special case it. 741 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 742 if (CompareSCEVComplexity(EqCache, LI, RHS, LHS, DT) < 0) 743 std::swap(LHS, RHS); 744 return; 745 } 746 747 // Do the rough sort by complexity. 748 std::stable_sort(Ops.begin(), Ops.end(), 749 [&EqCache, LI, &DT](const SCEV *LHS, const SCEV *RHS) { 750 return 751 CompareSCEVComplexity(EqCache, LI, LHS, RHS, DT) < 0; 752 }); 753 754 // Now that we are sorted by complexity, group elements of the same 755 // complexity. Note that this is, at worst, N^2, but the vector is likely to 756 // be extremely short in practice. Note that we take this approach because we 757 // do not want to depend on the addresses of the objects we are grouping. 758 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 759 const SCEV *S = Ops[i]; 760 unsigned Complexity = S->getSCEVType(); 761 762 // If there are any objects of the same complexity and same value as this 763 // one, group them. 764 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 765 if (Ops[j] == S) { // Found a duplicate. 766 // Move it to immediately after i'th element. 767 std::swap(Ops[i+1], Ops[j]); 768 ++i; // no need to rescan it. 769 if (i == e-2) return; // Done! 770 } 771 } 772 } 773 } 774 775 // Returns the size of the SCEV S. 776 static inline int sizeOfSCEV(const SCEV *S) { 777 struct FindSCEVSize { 778 int Size; 779 FindSCEVSize() : Size(0) {} 780 781 bool follow(const SCEV *S) { 782 ++Size; 783 // Keep looking at all operands of S. 784 return true; 785 } 786 bool isDone() const { 787 return false; 788 } 789 }; 790 791 FindSCEVSize F; 792 SCEVTraversal<FindSCEVSize> ST(F); 793 ST.visitAll(S); 794 return F.Size; 795 } 796 797 namespace { 798 799 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 800 public: 801 // Computes the Quotient and Remainder of the division of Numerator by 802 // Denominator. 803 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 804 const SCEV *Denominator, const SCEV **Quotient, 805 const SCEV **Remainder) { 806 assert(Numerator && Denominator && "Uninitialized SCEV"); 807 808 SCEVDivision D(SE, Numerator, Denominator); 809 810 // Check for the trivial case here to avoid having to check for it in the 811 // rest of the code. 812 if (Numerator == Denominator) { 813 *Quotient = D.One; 814 *Remainder = D.Zero; 815 return; 816 } 817 818 if (Numerator->isZero()) { 819 *Quotient = D.Zero; 820 *Remainder = D.Zero; 821 return; 822 } 823 824 // A simple case when N/1. The quotient is N. 825 if (Denominator->isOne()) { 826 *Quotient = Numerator; 827 *Remainder = D.Zero; 828 return; 829 } 830 831 // Split the Denominator when it is a product. 832 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 833 const SCEV *Q, *R; 834 *Quotient = Numerator; 835 for (const SCEV *Op : T->operands()) { 836 divide(SE, *Quotient, Op, &Q, &R); 837 *Quotient = Q; 838 839 // Bail out when the Numerator is not divisible by one of the terms of 840 // the Denominator. 841 if (!R->isZero()) { 842 *Quotient = D.Zero; 843 *Remainder = Numerator; 844 return; 845 } 846 } 847 *Remainder = D.Zero; 848 return; 849 } 850 851 D.visit(Numerator); 852 *Quotient = D.Quotient; 853 *Remainder = D.Remainder; 854 } 855 856 // Except in the trivial case described above, we do not know how to divide 857 // Expr by Denominator for the following functions with empty implementation. 858 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 859 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 860 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 861 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 862 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 863 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 864 void visitUnknown(const SCEVUnknown *Numerator) {} 865 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 866 867 void visitConstant(const SCEVConstant *Numerator) { 868 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 869 APInt NumeratorVal = Numerator->getAPInt(); 870 APInt DenominatorVal = D->getAPInt(); 871 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 872 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 873 874 if (NumeratorBW > DenominatorBW) 875 DenominatorVal = DenominatorVal.sext(NumeratorBW); 876 else if (NumeratorBW < DenominatorBW) 877 NumeratorVal = NumeratorVal.sext(DenominatorBW); 878 879 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 880 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 881 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 882 Quotient = SE.getConstant(QuotientVal); 883 Remainder = SE.getConstant(RemainderVal); 884 return; 885 } 886 } 887 888 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 889 const SCEV *StartQ, *StartR, *StepQ, *StepR; 890 if (!Numerator->isAffine()) 891 return cannotDivide(Numerator); 892 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 893 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 894 // Bail out if the types do not match. 895 Type *Ty = Denominator->getType(); 896 if (Ty != StartQ->getType() || Ty != StartR->getType() || 897 Ty != StepQ->getType() || Ty != StepR->getType()) 898 return cannotDivide(Numerator); 899 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 900 Numerator->getNoWrapFlags()); 901 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 902 Numerator->getNoWrapFlags()); 903 } 904 905 void visitAddExpr(const SCEVAddExpr *Numerator) { 906 SmallVector<const SCEV *, 2> Qs, Rs; 907 Type *Ty = Denominator->getType(); 908 909 for (const SCEV *Op : Numerator->operands()) { 910 const SCEV *Q, *R; 911 divide(SE, Op, Denominator, &Q, &R); 912 913 // Bail out if types do not match. 914 if (Ty != Q->getType() || Ty != R->getType()) 915 return cannotDivide(Numerator); 916 917 Qs.push_back(Q); 918 Rs.push_back(R); 919 } 920 921 if (Qs.size() == 1) { 922 Quotient = Qs[0]; 923 Remainder = Rs[0]; 924 return; 925 } 926 927 Quotient = SE.getAddExpr(Qs); 928 Remainder = SE.getAddExpr(Rs); 929 } 930 931 void visitMulExpr(const SCEVMulExpr *Numerator) { 932 SmallVector<const SCEV *, 2> Qs; 933 Type *Ty = Denominator->getType(); 934 935 bool FoundDenominatorTerm = false; 936 for (const SCEV *Op : Numerator->operands()) { 937 // Bail out if types do not match. 938 if (Ty != Op->getType()) 939 return cannotDivide(Numerator); 940 941 if (FoundDenominatorTerm) { 942 Qs.push_back(Op); 943 continue; 944 } 945 946 // Check whether Denominator divides one of the product operands. 947 const SCEV *Q, *R; 948 divide(SE, Op, Denominator, &Q, &R); 949 if (!R->isZero()) { 950 Qs.push_back(Op); 951 continue; 952 } 953 954 // Bail out if types do not match. 955 if (Ty != Q->getType()) 956 return cannotDivide(Numerator); 957 958 FoundDenominatorTerm = true; 959 Qs.push_back(Q); 960 } 961 962 if (FoundDenominatorTerm) { 963 Remainder = Zero; 964 if (Qs.size() == 1) 965 Quotient = Qs[0]; 966 else 967 Quotient = SE.getMulExpr(Qs); 968 return; 969 } 970 971 if (!isa<SCEVUnknown>(Denominator)) 972 return cannotDivide(Numerator); 973 974 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 975 ValueToValueMap RewriteMap; 976 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 977 cast<SCEVConstant>(Zero)->getValue(); 978 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 979 980 if (Remainder->isZero()) { 981 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 982 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 983 cast<SCEVConstant>(One)->getValue(); 984 Quotient = 985 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 986 return; 987 } 988 989 // Quotient is (Numerator - Remainder) divided by Denominator. 990 const SCEV *Q, *R; 991 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 992 // This SCEV does not seem to simplify: fail the division here. 993 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 994 return cannotDivide(Numerator); 995 divide(SE, Diff, Denominator, &Q, &R); 996 if (R != Zero) 997 return cannotDivide(Numerator); 998 Quotient = Q; 999 } 1000 1001 private: 1002 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 1003 const SCEV *Denominator) 1004 : SE(S), Denominator(Denominator) { 1005 Zero = SE.getZero(Denominator->getType()); 1006 One = SE.getOne(Denominator->getType()); 1007 1008 // We generally do not know how to divide Expr by Denominator. We 1009 // initialize the division to a "cannot divide" state to simplify the rest 1010 // of the code. 1011 cannotDivide(Numerator); 1012 } 1013 1014 // Convenience function for giving up on the division. We set the quotient to 1015 // be equal to zero and the remainder to be equal to the numerator. 1016 void cannotDivide(const SCEV *Numerator) { 1017 Quotient = Zero; 1018 Remainder = Numerator; 1019 } 1020 1021 ScalarEvolution &SE; 1022 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1023 }; 1024 1025 } 1026 1027 //===----------------------------------------------------------------------===// 1028 // Simple SCEV method implementations 1029 //===----------------------------------------------------------------------===// 1030 1031 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1032 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1033 ScalarEvolution &SE, 1034 Type *ResultTy) { 1035 // Handle the simplest case efficiently. 1036 if (K == 1) 1037 return SE.getTruncateOrZeroExtend(It, ResultTy); 1038 1039 // We are using the following formula for BC(It, K): 1040 // 1041 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1042 // 1043 // Suppose, W is the bitwidth of the return value. We must be prepared for 1044 // overflow. Hence, we must assure that the result of our computation is 1045 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1046 // safe in modular arithmetic. 1047 // 1048 // However, this code doesn't use exactly that formula; the formula it uses 1049 // is something like the following, where T is the number of factors of 2 in 1050 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1051 // exponentiation: 1052 // 1053 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1054 // 1055 // This formula is trivially equivalent to the previous formula. However, 1056 // this formula can be implemented much more efficiently. The trick is that 1057 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1058 // arithmetic. To do exact division in modular arithmetic, all we have 1059 // to do is multiply by the inverse. Therefore, this step can be done at 1060 // width W. 1061 // 1062 // The next issue is how to safely do the division by 2^T. The way this 1063 // is done is by doing the multiplication step at a width of at least W + T 1064 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1065 // when we perform the division by 2^T (which is equivalent to a right shift 1066 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1067 // truncated out after the division by 2^T. 1068 // 1069 // In comparison to just directly using the first formula, this technique 1070 // is much more efficient; using the first formula requires W * K bits, 1071 // but this formula less than W + K bits. Also, the first formula requires 1072 // a division step, whereas this formula only requires multiplies and shifts. 1073 // 1074 // It doesn't matter whether the subtraction step is done in the calculation 1075 // width or the input iteration count's width; if the subtraction overflows, 1076 // the result must be zero anyway. We prefer here to do it in the width of 1077 // the induction variable because it helps a lot for certain cases; CodeGen 1078 // isn't smart enough to ignore the overflow, which leads to much less 1079 // efficient code if the width of the subtraction is wider than the native 1080 // register width. 1081 // 1082 // (It's possible to not widen at all by pulling out factors of 2 before 1083 // the multiplication; for example, K=2 can be calculated as 1084 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1085 // extra arithmetic, so it's not an obvious win, and it gets 1086 // much more complicated for K > 3.) 1087 1088 // Protection from insane SCEVs; this bound is conservative, 1089 // but it probably doesn't matter. 1090 if (K > 1000) 1091 return SE.getCouldNotCompute(); 1092 1093 unsigned W = SE.getTypeSizeInBits(ResultTy); 1094 1095 // Calculate K! / 2^T and T; we divide out the factors of two before 1096 // multiplying for calculating K! / 2^T to avoid overflow. 1097 // Other overflow doesn't matter because we only care about the bottom 1098 // W bits of the result. 1099 APInt OddFactorial(W, 1); 1100 unsigned T = 1; 1101 for (unsigned i = 3; i <= K; ++i) { 1102 APInt Mult(W, i); 1103 unsigned TwoFactors = Mult.countTrailingZeros(); 1104 T += TwoFactors; 1105 Mult.lshrInPlace(TwoFactors); 1106 OddFactorial *= Mult; 1107 } 1108 1109 // We need at least W + T bits for the multiplication step 1110 unsigned CalculationBits = W + T; 1111 1112 // Calculate 2^T, at width T+W. 1113 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1114 1115 // Calculate the multiplicative inverse of K! / 2^T; 1116 // this multiplication factor will perform the exact division by 1117 // K! / 2^T. 1118 APInt Mod = APInt::getSignedMinValue(W+1); 1119 APInt MultiplyFactor = OddFactorial.zext(W+1); 1120 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1121 MultiplyFactor = MultiplyFactor.trunc(W); 1122 1123 // Calculate the product, at width T+W 1124 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1125 CalculationBits); 1126 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1127 for (unsigned i = 1; i != K; ++i) { 1128 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1129 Dividend = SE.getMulExpr(Dividend, 1130 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1131 } 1132 1133 // Divide by 2^T 1134 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1135 1136 // Truncate the result, and divide by K! / 2^T. 1137 1138 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1139 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1140 } 1141 1142 /// Return the value of this chain of recurrences at the specified iteration 1143 /// number. We can evaluate this recurrence by multiplying each element in the 1144 /// chain by the binomial coefficient corresponding to it. In other words, we 1145 /// can evaluate {A,+,B,+,C,+,D} as: 1146 /// 1147 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1148 /// 1149 /// where BC(It, k) stands for binomial coefficient. 1150 /// 1151 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1152 ScalarEvolution &SE) const { 1153 const SCEV *Result = getStart(); 1154 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1155 // The computation is correct in the face of overflow provided that the 1156 // multiplication is performed _after_ the evaluation of the binomial 1157 // coefficient. 1158 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1159 if (isa<SCEVCouldNotCompute>(Coeff)) 1160 return Coeff; 1161 1162 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1163 } 1164 return Result; 1165 } 1166 1167 //===----------------------------------------------------------------------===// 1168 // SCEV Expression folder implementations 1169 //===----------------------------------------------------------------------===// 1170 1171 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1172 Type *Ty) { 1173 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1174 "This is not a truncating conversion!"); 1175 assert(isSCEVable(Ty) && 1176 "This is not a conversion to a SCEVable type!"); 1177 Ty = getEffectiveSCEVType(Ty); 1178 1179 FoldingSetNodeID ID; 1180 ID.AddInteger(scTruncate); 1181 ID.AddPointer(Op); 1182 ID.AddPointer(Ty); 1183 void *IP = nullptr; 1184 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1185 1186 // Fold if the operand is constant. 1187 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1188 return getConstant( 1189 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1190 1191 // trunc(trunc(x)) --> trunc(x) 1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1193 return getTruncateExpr(ST->getOperand(), Ty); 1194 1195 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1196 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1197 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1198 1199 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1200 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1201 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1202 1203 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1204 // eliminate all the truncates, or we replace other casts with truncates. 1205 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1206 SmallVector<const SCEV *, 4> Operands; 1207 bool hasTrunc = false; 1208 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1209 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1210 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1211 hasTrunc = isa<SCEVTruncateExpr>(S); 1212 Operands.push_back(S); 1213 } 1214 if (!hasTrunc) 1215 return getAddExpr(Operands); 1216 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1217 } 1218 1219 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1220 // eliminate all the truncates, or we replace other casts with truncates. 1221 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1222 SmallVector<const SCEV *, 4> Operands; 1223 bool hasTrunc = false; 1224 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1225 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1226 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1227 hasTrunc = isa<SCEVTruncateExpr>(S); 1228 Operands.push_back(S); 1229 } 1230 if (!hasTrunc) 1231 return getMulExpr(Operands); 1232 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1233 } 1234 1235 // If the input value is a chrec scev, truncate the chrec's operands. 1236 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1237 SmallVector<const SCEV *, 4> Operands; 1238 for (const SCEV *Op : AddRec->operands()) 1239 Operands.push_back(getTruncateExpr(Op, Ty)); 1240 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1241 } 1242 1243 // The cast wasn't folded; create an explicit cast node. We can reuse 1244 // the existing insert position since if we get here, we won't have 1245 // made any changes which would invalidate it. 1246 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1247 Op, Ty); 1248 UniqueSCEVs.InsertNode(S, IP); 1249 return S; 1250 } 1251 1252 // Get the limit of a recurrence such that incrementing by Step cannot cause 1253 // signed overflow as long as the value of the recurrence within the 1254 // loop does not exceed this limit before incrementing. 1255 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1256 ICmpInst::Predicate *Pred, 1257 ScalarEvolution *SE) { 1258 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1259 if (SE->isKnownPositive(Step)) { 1260 *Pred = ICmpInst::ICMP_SLT; 1261 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1262 SE->getSignedRange(Step).getSignedMax()); 1263 } 1264 if (SE->isKnownNegative(Step)) { 1265 *Pred = ICmpInst::ICMP_SGT; 1266 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1267 SE->getSignedRange(Step).getSignedMin()); 1268 } 1269 return nullptr; 1270 } 1271 1272 // Get the limit of a recurrence such that incrementing by Step cannot cause 1273 // unsigned overflow as long as the value of the recurrence within the loop does 1274 // not exceed this limit before incrementing. 1275 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1276 ICmpInst::Predicate *Pred, 1277 ScalarEvolution *SE) { 1278 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1279 *Pred = ICmpInst::ICMP_ULT; 1280 1281 return SE->getConstant(APInt::getMinValue(BitWidth) - 1282 SE->getUnsignedRange(Step).getUnsignedMax()); 1283 } 1284 1285 namespace { 1286 1287 struct ExtendOpTraitsBase { 1288 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)( 1289 const SCEV *, Type *, ScalarEvolution::ExtendCacheTy &Cache); 1290 }; 1291 1292 // Used to make code generic over signed and unsigned overflow. 1293 template <typename ExtendOp> struct ExtendOpTraits { 1294 // Members present: 1295 // 1296 // static const SCEV::NoWrapFlags WrapType; 1297 // 1298 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1299 // 1300 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1301 // ICmpInst::Predicate *Pred, 1302 // ScalarEvolution *SE); 1303 }; 1304 1305 template <> 1306 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1307 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1308 1309 static const GetExtendExprTy GetExtendExpr; 1310 1311 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1312 ICmpInst::Predicate *Pred, 1313 ScalarEvolution *SE) { 1314 return getSignedOverflowLimitForStep(Step, Pred, SE); 1315 } 1316 }; 1317 1318 const ExtendOpTraitsBase::GetExtendExprTy 1319 ExtendOpTraits<SCEVSignExtendExpr>::GetExtendExpr = 1320 &ScalarEvolution::getSignExtendExprCached; 1321 1322 template <> 1323 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1324 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1325 1326 static const GetExtendExprTy GetExtendExpr; 1327 1328 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1329 ICmpInst::Predicate *Pred, 1330 ScalarEvolution *SE) { 1331 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1332 } 1333 }; 1334 1335 const ExtendOpTraitsBase::GetExtendExprTy 1336 ExtendOpTraits<SCEVZeroExtendExpr>::GetExtendExpr = 1337 &ScalarEvolution::getZeroExtendExprCached; 1338 } 1339 1340 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1341 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1342 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1343 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1344 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1345 // expression "Step + sext/zext(PreIncAR)" is congruent with 1346 // "sext/zext(PostIncAR)" 1347 template <typename ExtendOpTy> 1348 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1349 ScalarEvolution *SE, 1350 ScalarEvolution::ExtendCacheTy &Cache) { 1351 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1352 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1353 1354 const Loop *L = AR->getLoop(); 1355 const SCEV *Start = AR->getStart(); 1356 const SCEV *Step = AR->getStepRecurrence(*SE); 1357 1358 // Check for a simple looking step prior to loop entry. 1359 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1360 if (!SA) 1361 return nullptr; 1362 1363 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1364 // subtraction is expensive. For this purpose, perform a quick and dirty 1365 // difference, by checking for Step in the operand list. 1366 SmallVector<const SCEV *, 4> DiffOps; 1367 for (const SCEV *Op : SA->operands()) 1368 if (Op != Step) 1369 DiffOps.push_back(Op); 1370 1371 if (DiffOps.size() == SA->getNumOperands()) 1372 return nullptr; 1373 1374 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1375 // `Step`: 1376 1377 // 1. NSW/NUW flags on the step increment. 1378 auto PreStartFlags = 1379 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1380 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1381 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1382 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1383 1384 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1385 // "S+X does not sign/unsign-overflow". 1386 // 1387 1388 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1389 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1390 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1391 return PreStart; 1392 1393 // 2. Direct overflow check on the step operation's expression. 1394 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1395 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1396 const SCEV *OperandExtendedStart = 1397 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Cache), 1398 (SE->*GetExtendExpr)(Step, WideTy, Cache)); 1399 if ((SE->*GetExtendExpr)(Start, WideTy, Cache) == OperandExtendedStart) { 1400 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1401 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1402 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1403 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1404 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1405 } 1406 return PreStart; 1407 } 1408 1409 // 3. Loop precondition. 1410 ICmpInst::Predicate Pred; 1411 const SCEV *OverflowLimit = 1412 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1413 1414 if (OverflowLimit && 1415 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1416 return PreStart; 1417 1418 return nullptr; 1419 } 1420 1421 // Get the normalized zero or sign extended expression for this AddRec's Start. 1422 template <typename ExtendOpTy> 1423 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1424 ScalarEvolution *SE, 1425 ScalarEvolution::ExtendCacheTy &Cache) { 1426 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1427 1428 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Cache); 1429 if (!PreStart) 1430 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Cache); 1431 1432 return SE->getAddExpr( 1433 (SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, Cache), 1434 (SE->*GetExtendExpr)(PreStart, Ty, Cache)); 1435 } 1436 1437 // Try to prove away overflow by looking at "nearby" add recurrences. A 1438 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1439 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1440 // 1441 // Formally: 1442 // 1443 // {S,+,X} == {S-T,+,X} + T 1444 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1445 // 1446 // If ({S-T,+,X} + T) does not overflow ... (1) 1447 // 1448 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1449 // 1450 // If {S-T,+,X} does not overflow ... (2) 1451 // 1452 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1453 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1454 // 1455 // If (S-T)+T does not overflow ... (3) 1456 // 1457 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1458 // == {Ext(S),+,Ext(X)} == LHS 1459 // 1460 // Thus, if (1), (2) and (3) are true for some T, then 1461 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1462 // 1463 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1464 // does not overflow" restricted to the 0th iteration. Therefore we only need 1465 // to check for (1) and (2). 1466 // 1467 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1468 // is `Delta` (defined below). 1469 // 1470 template <typename ExtendOpTy> 1471 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1472 const SCEV *Step, 1473 const Loop *L) { 1474 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1475 1476 // We restrict `Start` to a constant to prevent SCEV from spending too much 1477 // time here. It is correct (but more expensive) to continue with a 1478 // non-constant `Start` and do a general SCEV subtraction to compute 1479 // `PreStart` below. 1480 // 1481 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1482 if (!StartC) 1483 return false; 1484 1485 APInt StartAI = StartC->getAPInt(); 1486 1487 for (unsigned Delta : {-2, -1, 1, 2}) { 1488 const SCEV *PreStart = getConstant(StartAI - Delta); 1489 1490 FoldingSetNodeID ID; 1491 ID.AddInteger(scAddRecExpr); 1492 ID.AddPointer(PreStart); 1493 ID.AddPointer(Step); 1494 ID.AddPointer(L); 1495 void *IP = nullptr; 1496 const auto *PreAR = 1497 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1498 1499 // Give up if we don't already have the add recurrence we need because 1500 // actually constructing an add recurrence is relatively expensive. 1501 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1502 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1503 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1504 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1505 DeltaS, &Pred, this); 1506 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1507 return true; 1508 } 1509 } 1510 1511 return false; 1512 } 1513 1514 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty) { 1515 // Use the local cache to prevent exponential behavior of 1516 // getZeroExtendExprImpl. 1517 ExtendCacheTy Cache; 1518 return getZeroExtendExprCached(Op, Ty, Cache); 1519 } 1520 1521 /// Query \p Cache before calling getZeroExtendExprImpl. If there is no 1522 /// related entry in the \p Cache, call getZeroExtendExprImpl and save 1523 /// the result in the \p Cache. 1524 const SCEV *ScalarEvolution::getZeroExtendExprCached(const SCEV *Op, Type *Ty, 1525 ExtendCacheTy &Cache) { 1526 auto It = Cache.find({Op, Ty}); 1527 if (It != Cache.end()) 1528 return It->second; 1529 const SCEV *ZExt = getZeroExtendExprImpl(Op, Ty, Cache); 1530 auto InsertResult = Cache.insert({{Op, Ty}, ZExt}); 1531 assert(InsertResult.second && "Expect the key was not in the cache"); 1532 (void)InsertResult; 1533 return ZExt; 1534 } 1535 1536 /// The real implementation of getZeroExtendExpr. 1537 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty, 1538 ExtendCacheTy &Cache) { 1539 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1540 "This is not an extending conversion!"); 1541 assert(isSCEVable(Ty) && 1542 "This is not a conversion to a SCEVable type!"); 1543 Ty = getEffectiveSCEVType(Ty); 1544 1545 // Fold if the operand is constant. 1546 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1547 return getConstant( 1548 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1549 1550 // zext(zext(x)) --> zext(x) 1551 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1552 return getZeroExtendExprCached(SZ->getOperand(), Ty, Cache); 1553 1554 // Before doing any expensive analysis, check to see if we've already 1555 // computed a SCEV for this Op and Ty. 1556 FoldingSetNodeID ID; 1557 ID.AddInteger(scZeroExtend); 1558 ID.AddPointer(Op); 1559 ID.AddPointer(Ty); 1560 void *IP = nullptr; 1561 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1562 1563 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1564 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1565 // It's possible the bits taken off by the truncate were all zero bits. If 1566 // so, we should be able to simplify this further. 1567 const SCEV *X = ST->getOperand(); 1568 ConstantRange CR = getUnsignedRange(X); 1569 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1570 unsigned NewBits = getTypeSizeInBits(Ty); 1571 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1572 CR.zextOrTrunc(NewBits))) 1573 return getTruncateOrZeroExtend(X, Ty); 1574 } 1575 1576 // If the input value is a chrec scev, and we can prove that the value 1577 // did not overflow the old, smaller, value, we can zero extend all of the 1578 // operands (often constants). This allows analysis of something like 1579 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1580 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1581 if (AR->isAffine()) { 1582 const SCEV *Start = AR->getStart(); 1583 const SCEV *Step = AR->getStepRecurrence(*this); 1584 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1585 const Loop *L = AR->getLoop(); 1586 1587 if (!AR->hasNoUnsignedWrap()) { 1588 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1589 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1590 } 1591 1592 // If we have special knowledge that this addrec won't overflow, 1593 // we don't need to do any further analysis. 1594 if (AR->hasNoUnsignedWrap()) 1595 return getAddRecExpr( 1596 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1597 getZeroExtendExprCached(Step, Ty, Cache), L, AR->getNoWrapFlags()); 1598 1599 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1600 // Note that this serves two purposes: It filters out loops that are 1601 // simply not analyzable, and it covers the case where this code is 1602 // being called from within backedge-taken count analysis, such that 1603 // attempting to ask for the backedge-taken count would likely result 1604 // in infinite recursion. In the later case, the analysis code will 1605 // cope with a conservative value, and it will take care to purge 1606 // that value once it has finished. 1607 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1608 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1609 // Manually compute the final value for AR, checking for 1610 // overflow. 1611 1612 // Check whether the backedge-taken count can be losslessly casted to 1613 // the addrec's type. The count is always unsigned. 1614 const SCEV *CastedMaxBECount = 1615 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1616 const SCEV *RecastedMaxBECount = 1617 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1618 if (MaxBECount == RecastedMaxBECount) { 1619 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1620 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1621 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1622 const SCEV *ZAdd = 1623 getZeroExtendExprCached(getAddExpr(Start, ZMul), WideTy, Cache); 1624 const SCEV *WideStart = getZeroExtendExprCached(Start, WideTy, Cache); 1625 const SCEV *WideMaxBECount = 1626 getZeroExtendExprCached(CastedMaxBECount, WideTy, Cache); 1627 const SCEV *OperandExtendedAdd = getAddExpr( 1628 WideStart, getMulExpr(WideMaxBECount, getZeroExtendExprCached( 1629 Step, WideTy, Cache))); 1630 if (ZAdd == OperandExtendedAdd) { 1631 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1632 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1633 // Return the expression with the addrec on the outside. 1634 return getAddRecExpr( 1635 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1636 getZeroExtendExprCached(Step, Ty, Cache), L, 1637 AR->getNoWrapFlags()); 1638 } 1639 // Similar to above, only this time treat the step value as signed. 1640 // This covers loops that count down. 1641 OperandExtendedAdd = 1642 getAddExpr(WideStart, 1643 getMulExpr(WideMaxBECount, 1644 getSignExtendExpr(Step, WideTy))); 1645 if (ZAdd == OperandExtendedAdd) { 1646 // Cache knowledge of AR NW, which is propagated to this AddRec. 1647 // Negative step causes unsigned wrap, but it still can't self-wrap. 1648 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1649 // Return the expression with the addrec on the outside. 1650 return getAddRecExpr( 1651 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1652 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1653 } 1654 } 1655 } 1656 1657 // Normally, in the cases we can prove no-overflow via a 1658 // backedge guarding condition, we can also compute a backedge 1659 // taken count for the loop. The exceptions are assumptions and 1660 // guards present in the loop -- SCEV is not great at exploiting 1661 // these to compute max backedge taken counts, but can still use 1662 // these to prove lack of overflow. Use this fact to avoid 1663 // doing extra work that may not pay off. 1664 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1665 !AC.assumptions().empty()) { 1666 // If the backedge is guarded by a comparison with the pre-inc 1667 // value the addrec is safe. Also, if the entry is guarded by 1668 // a comparison with the start value and the backedge is 1669 // guarded by a comparison with the post-inc value, the addrec 1670 // is safe. 1671 if (isKnownPositive(Step)) { 1672 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1673 getUnsignedRange(Step).getUnsignedMax()); 1674 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1675 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1676 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1677 AR->getPostIncExpr(*this), N))) { 1678 // Cache knowledge of AR NUW, which is propagated to this 1679 // AddRec. 1680 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1681 // Return the expression with the addrec on the outside. 1682 return getAddRecExpr( 1683 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1684 getZeroExtendExprCached(Step, Ty, Cache), L, 1685 AR->getNoWrapFlags()); 1686 } 1687 } else if (isKnownNegative(Step)) { 1688 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1689 getSignedRange(Step).getSignedMin()); 1690 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1691 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1692 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1693 AR->getPostIncExpr(*this), N))) { 1694 // Cache knowledge of AR NW, which is propagated to this 1695 // AddRec. Negative step causes unsigned wrap, but it 1696 // still can't self-wrap. 1697 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1698 // Return the expression with the addrec on the outside. 1699 return getAddRecExpr( 1700 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1701 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1702 } 1703 } 1704 } 1705 1706 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1708 return getAddRecExpr( 1709 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1710 getZeroExtendExprCached(Step, Ty, Cache), L, AR->getNoWrapFlags()); 1711 } 1712 } 1713 1714 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1715 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1716 if (SA->hasNoUnsignedWrap()) { 1717 // If the addition does not unsign overflow then we can, by definition, 1718 // commute the zero extension with the addition operation. 1719 SmallVector<const SCEV *, 4> Ops; 1720 for (const auto *Op : SA->operands()) 1721 Ops.push_back(getZeroExtendExprCached(Op, Ty, Cache)); 1722 return getAddExpr(Ops, SCEV::FlagNUW); 1723 } 1724 } 1725 1726 // The cast wasn't folded; create an explicit cast node. 1727 // Recompute the insert position, as it may have been invalidated. 1728 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1729 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1730 Op, Ty); 1731 UniqueSCEVs.InsertNode(S, IP); 1732 return S; 1733 } 1734 1735 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty) { 1736 // Use the local cache to prevent exponential behavior of 1737 // getSignExtendExprImpl. 1738 ExtendCacheTy Cache; 1739 return getSignExtendExprCached(Op, Ty, Cache); 1740 } 1741 1742 /// Query \p Cache before calling getSignExtendExprImpl. If there is no 1743 /// related entry in the \p Cache, call getSignExtendExprImpl and save 1744 /// the result in the \p Cache. 1745 const SCEV *ScalarEvolution::getSignExtendExprCached(const SCEV *Op, Type *Ty, 1746 ExtendCacheTy &Cache) { 1747 auto It = Cache.find({Op, Ty}); 1748 if (It != Cache.end()) 1749 return It->second; 1750 const SCEV *SExt = getSignExtendExprImpl(Op, Ty, Cache); 1751 auto InsertResult = Cache.insert({{Op, Ty}, SExt}); 1752 assert(InsertResult.second && "Expect the key was not in the cache"); 1753 (void)InsertResult; 1754 return SExt; 1755 } 1756 1757 /// The real implementation of getSignExtendExpr. 1758 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty, 1759 ExtendCacheTy &Cache) { 1760 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1761 "This is not an extending conversion!"); 1762 assert(isSCEVable(Ty) && 1763 "This is not a conversion to a SCEVable type!"); 1764 Ty = getEffectiveSCEVType(Ty); 1765 1766 // Fold if the operand is constant. 1767 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1768 return getConstant( 1769 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1770 1771 // sext(sext(x)) --> sext(x) 1772 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1773 return getSignExtendExprCached(SS->getOperand(), Ty, Cache); 1774 1775 // sext(zext(x)) --> zext(x) 1776 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1777 return getZeroExtendExpr(SZ->getOperand(), Ty); 1778 1779 // Before doing any expensive analysis, check to see if we've already 1780 // computed a SCEV for this Op and Ty. 1781 FoldingSetNodeID ID; 1782 ID.AddInteger(scSignExtend); 1783 ID.AddPointer(Op); 1784 ID.AddPointer(Ty); 1785 void *IP = nullptr; 1786 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1787 1788 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1789 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1790 // It's possible the bits taken off by the truncate were all sign bits. If 1791 // so, we should be able to simplify this further. 1792 const SCEV *X = ST->getOperand(); 1793 ConstantRange CR = getSignedRange(X); 1794 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1795 unsigned NewBits = getTypeSizeInBits(Ty); 1796 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1797 CR.sextOrTrunc(NewBits))) 1798 return getTruncateOrSignExtend(X, Ty); 1799 } 1800 1801 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1802 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1803 if (SA->getNumOperands() == 2) { 1804 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1805 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1806 if (SMul && SC1) { 1807 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1808 const APInt &C1 = SC1->getAPInt(); 1809 const APInt &C2 = SC2->getAPInt(); 1810 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1811 C2.ugt(C1) && C2.isPowerOf2()) 1812 return getAddExpr(getSignExtendExprCached(SC1, Ty, Cache), 1813 getSignExtendExprCached(SMul, Ty, Cache)); 1814 } 1815 } 1816 } 1817 1818 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1819 if (SA->hasNoSignedWrap()) { 1820 // If the addition does not sign overflow then we can, by definition, 1821 // commute the sign extension with the addition operation. 1822 SmallVector<const SCEV *, 4> Ops; 1823 for (const auto *Op : SA->operands()) 1824 Ops.push_back(getSignExtendExprCached(Op, Ty, Cache)); 1825 return getAddExpr(Ops, SCEV::FlagNSW); 1826 } 1827 } 1828 // If the input value is a chrec scev, and we can prove that the value 1829 // did not overflow the old, smaller, value, we can sign extend all of the 1830 // operands (often constants). This allows analysis of something like 1831 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1832 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1833 if (AR->isAffine()) { 1834 const SCEV *Start = AR->getStart(); 1835 const SCEV *Step = AR->getStepRecurrence(*this); 1836 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1837 const Loop *L = AR->getLoop(); 1838 1839 if (!AR->hasNoSignedWrap()) { 1840 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1841 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1842 } 1843 1844 // If we have special knowledge that this addrec won't overflow, 1845 // we don't need to do any further analysis. 1846 if (AR->hasNoSignedWrap()) 1847 return getAddRecExpr( 1848 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1849 getSignExtendExprCached(Step, Ty, Cache), L, SCEV::FlagNSW); 1850 1851 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1852 // Note that this serves two purposes: It filters out loops that are 1853 // simply not analyzable, and it covers the case where this code is 1854 // being called from within backedge-taken count analysis, such that 1855 // attempting to ask for the backedge-taken count would likely result 1856 // in infinite recursion. In the later case, the analysis code will 1857 // cope with a conservative value, and it will take care to purge 1858 // that value once it has finished. 1859 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1860 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1861 // Manually compute the final value for AR, checking for 1862 // overflow. 1863 1864 // Check whether the backedge-taken count can be losslessly casted to 1865 // the addrec's type. The count is always unsigned. 1866 const SCEV *CastedMaxBECount = 1867 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1868 const SCEV *RecastedMaxBECount = 1869 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1870 if (MaxBECount == RecastedMaxBECount) { 1871 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1872 // Check whether Start+Step*MaxBECount has no signed overflow. 1873 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1874 const SCEV *SAdd = 1875 getSignExtendExprCached(getAddExpr(Start, SMul), WideTy, Cache); 1876 const SCEV *WideStart = getSignExtendExprCached(Start, WideTy, Cache); 1877 const SCEV *WideMaxBECount = 1878 getZeroExtendExpr(CastedMaxBECount, WideTy); 1879 const SCEV *OperandExtendedAdd = getAddExpr( 1880 WideStart, getMulExpr(WideMaxBECount, getSignExtendExprCached( 1881 Step, WideTy, Cache))); 1882 if (SAdd == OperandExtendedAdd) { 1883 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1884 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1885 // Return the expression with the addrec on the outside. 1886 return getAddRecExpr( 1887 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1888 getSignExtendExprCached(Step, Ty, Cache), L, 1889 AR->getNoWrapFlags()); 1890 } 1891 // Similar to above, only this time treat the step value as unsigned. 1892 // This covers loops that count up with an unsigned step. 1893 OperandExtendedAdd = 1894 getAddExpr(WideStart, 1895 getMulExpr(WideMaxBECount, 1896 getZeroExtendExpr(Step, WideTy))); 1897 if (SAdd == OperandExtendedAdd) { 1898 // If AR wraps around then 1899 // 1900 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1901 // => SAdd != OperandExtendedAdd 1902 // 1903 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1904 // (SAdd == OperandExtendedAdd => AR is NW) 1905 1906 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1907 1908 // Return the expression with the addrec on the outside. 1909 return getAddRecExpr( 1910 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1911 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1912 } 1913 } 1914 } 1915 1916 // Normally, in the cases we can prove no-overflow via a 1917 // backedge guarding condition, we can also compute a backedge 1918 // taken count for the loop. The exceptions are assumptions and 1919 // guards present in the loop -- SCEV is not great at exploiting 1920 // these to compute max backedge taken counts, but can still use 1921 // these to prove lack of overflow. Use this fact to avoid 1922 // doing extra work that may not pay off. 1923 1924 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1925 !AC.assumptions().empty()) { 1926 // If the backedge is guarded by a comparison with the pre-inc 1927 // value the addrec is safe. Also, if the entry is guarded by 1928 // a comparison with the start value and the backedge is 1929 // guarded by a comparison with the post-inc value, the addrec 1930 // is safe. 1931 ICmpInst::Predicate Pred; 1932 const SCEV *OverflowLimit = 1933 getSignedOverflowLimitForStep(Step, &Pred, this); 1934 if (OverflowLimit && 1935 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1936 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1937 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1938 OverflowLimit)))) { 1939 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1940 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1941 return getAddRecExpr( 1942 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1943 getSignExtendExprCached(Step, Ty, Cache), L, 1944 AR->getNoWrapFlags()); 1945 } 1946 } 1947 1948 // If Start and Step are constants, check if we can apply this 1949 // transformation: 1950 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1951 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1952 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1953 if (SC1 && SC2) { 1954 const APInt &C1 = SC1->getAPInt(); 1955 const APInt &C2 = SC2->getAPInt(); 1956 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1957 C2.isPowerOf2()) { 1958 Start = getSignExtendExprCached(Start, Ty, Cache); 1959 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1960 AR->getNoWrapFlags()); 1961 return getAddExpr(Start, getSignExtendExprCached(NewAR, Ty, Cache)); 1962 } 1963 } 1964 1965 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1966 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1967 return getAddRecExpr( 1968 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1969 getSignExtendExprCached(Step, Ty, Cache), L, AR->getNoWrapFlags()); 1970 } 1971 } 1972 1973 // If the input value is provably positive and we could not simplify 1974 // away the sext build a zext instead. 1975 if (isKnownNonNegative(Op)) 1976 return getZeroExtendExpr(Op, Ty); 1977 1978 // The cast wasn't folded; create an explicit cast node. 1979 // Recompute the insert position, as it may have been invalidated. 1980 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1981 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1982 Op, Ty); 1983 UniqueSCEVs.InsertNode(S, IP); 1984 return S; 1985 } 1986 1987 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1988 /// unspecified bits out to the given type. 1989 /// 1990 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1991 Type *Ty) { 1992 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1993 "This is not an extending conversion!"); 1994 assert(isSCEVable(Ty) && 1995 "This is not a conversion to a SCEVable type!"); 1996 Ty = getEffectiveSCEVType(Ty); 1997 1998 // Sign-extend negative constants. 1999 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2000 if (SC->getAPInt().isNegative()) 2001 return getSignExtendExpr(Op, Ty); 2002 2003 // Peel off a truncate cast. 2004 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2005 const SCEV *NewOp = T->getOperand(); 2006 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2007 return getAnyExtendExpr(NewOp, Ty); 2008 return getTruncateOrNoop(NewOp, Ty); 2009 } 2010 2011 // Next try a zext cast. If the cast is folded, use it. 2012 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2013 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2014 return ZExt; 2015 2016 // Next try a sext cast. If the cast is folded, use it. 2017 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2018 if (!isa<SCEVSignExtendExpr>(SExt)) 2019 return SExt; 2020 2021 // Force the cast to be folded into the operands of an addrec. 2022 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2023 SmallVector<const SCEV *, 4> Ops; 2024 for (const SCEV *Op : AR->operands()) 2025 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2026 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2027 } 2028 2029 // If the expression is obviously signed, use the sext cast value. 2030 if (isa<SCEVSMaxExpr>(Op)) 2031 return SExt; 2032 2033 // Absent any other information, use the zext cast value. 2034 return ZExt; 2035 } 2036 2037 /// Process the given Ops list, which is a list of operands to be added under 2038 /// the given scale, update the given map. This is a helper function for 2039 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2040 /// that would form an add expression like this: 2041 /// 2042 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2043 /// 2044 /// where A and B are constants, update the map with these values: 2045 /// 2046 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2047 /// 2048 /// and add 13 + A*B*29 to AccumulatedConstant. 2049 /// This will allow getAddRecExpr to produce this: 2050 /// 2051 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2052 /// 2053 /// This form often exposes folding opportunities that are hidden in 2054 /// the original operand list. 2055 /// 2056 /// Return true iff it appears that any interesting folding opportunities 2057 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2058 /// the common case where no interesting opportunities are present, and 2059 /// is also used as a check to avoid infinite recursion. 2060 /// 2061 static bool 2062 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2063 SmallVectorImpl<const SCEV *> &NewOps, 2064 APInt &AccumulatedConstant, 2065 const SCEV *const *Ops, size_t NumOperands, 2066 const APInt &Scale, 2067 ScalarEvolution &SE) { 2068 bool Interesting = false; 2069 2070 // Iterate over the add operands. They are sorted, with constants first. 2071 unsigned i = 0; 2072 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2073 ++i; 2074 // Pull a buried constant out to the outside. 2075 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2076 Interesting = true; 2077 AccumulatedConstant += Scale * C->getAPInt(); 2078 } 2079 2080 // Next comes everything else. We're especially interested in multiplies 2081 // here, but they're in the middle, so just visit the rest with one loop. 2082 for (; i != NumOperands; ++i) { 2083 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2084 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2085 APInt NewScale = 2086 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2087 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2088 // A multiplication of a constant with another add; recurse. 2089 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2090 Interesting |= 2091 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2092 Add->op_begin(), Add->getNumOperands(), 2093 NewScale, SE); 2094 } else { 2095 // A multiplication of a constant with some other value. Update 2096 // the map. 2097 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2098 const SCEV *Key = SE.getMulExpr(MulOps); 2099 auto Pair = M.insert({Key, NewScale}); 2100 if (Pair.second) { 2101 NewOps.push_back(Pair.first->first); 2102 } else { 2103 Pair.first->second += NewScale; 2104 // The map already had an entry for this value, which may indicate 2105 // a folding opportunity. 2106 Interesting = true; 2107 } 2108 } 2109 } else { 2110 // An ordinary operand. Update the map. 2111 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2112 M.insert({Ops[i], Scale}); 2113 if (Pair.second) { 2114 NewOps.push_back(Pair.first->first); 2115 } else { 2116 Pair.first->second += Scale; 2117 // The map already had an entry for this value, which may indicate 2118 // a folding opportunity. 2119 Interesting = true; 2120 } 2121 } 2122 } 2123 2124 return Interesting; 2125 } 2126 2127 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2128 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2129 // can't-overflow flags for the operation if possible. 2130 static SCEV::NoWrapFlags 2131 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2132 const SmallVectorImpl<const SCEV *> &Ops, 2133 SCEV::NoWrapFlags Flags) { 2134 using namespace std::placeholders; 2135 typedef OverflowingBinaryOperator OBO; 2136 2137 bool CanAnalyze = 2138 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2139 (void)CanAnalyze; 2140 assert(CanAnalyze && "don't call from other places!"); 2141 2142 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2143 SCEV::NoWrapFlags SignOrUnsignWrap = 2144 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2145 2146 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2147 auto IsKnownNonNegative = [&](const SCEV *S) { 2148 return SE->isKnownNonNegative(S); 2149 }; 2150 2151 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2152 Flags = 2153 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2154 2155 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2156 2157 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 2158 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 2159 2160 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 2161 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2162 2163 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2164 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2165 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2166 Instruction::Add, C, OBO::NoSignedWrap); 2167 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2168 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2169 } 2170 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2171 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2172 Instruction::Add, C, OBO::NoUnsignedWrap); 2173 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2174 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2175 } 2176 } 2177 2178 return Flags; 2179 } 2180 2181 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2182 if (!isLoopInvariant(S, L)) 2183 return false; 2184 // If a value depends on a SCEVUnknown which is defined after the loop, we 2185 // conservatively assume that we cannot calculate it at the loop's entry. 2186 struct FindDominatedSCEVUnknown { 2187 bool Found = false; 2188 const Loop *L; 2189 DominatorTree &DT; 2190 LoopInfo &LI; 2191 2192 FindDominatedSCEVUnknown(const Loop *L, DominatorTree &DT, LoopInfo &LI) 2193 : L(L), DT(DT), LI(LI) {} 2194 2195 bool checkSCEVUnknown(const SCEVUnknown *SU) { 2196 if (auto *I = dyn_cast<Instruction>(SU->getValue())) { 2197 if (DT.dominates(L->getHeader(), I->getParent())) 2198 Found = true; 2199 else 2200 assert(DT.dominates(I->getParent(), L->getHeader()) && 2201 "No dominance relationship between SCEV and loop?"); 2202 } 2203 return false; 2204 } 2205 2206 bool follow(const SCEV *S) { 2207 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 2208 case scConstant: 2209 return false; 2210 case scAddRecExpr: 2211 case scTruncate: 2212 case scZeroExtend: 2213 case scSignExtend: 2214 case scAddExpr: 2215 case scMulExpr: 2216 case scUMaxExpr: 2217 case scSMaxExpr: 2218 case scUDivExpr: 2219 return true; 2220 case scUnknown: 2221 return checkSCEVUnknown(cast<SCEVUnknown>(S)); 2222 case scCouldNotCompute: 2223 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2224 } 2225 return false; 2226 } 2227 2228 bool isDone() { return Found; } 2229 }; 2230 2231 FindDominatedSCEVUnknown FSU(L, DT, LI); 2232 SCEVTraversal<FindDominatedSCEVUnknown> ST(FSU); 2233 ST.visitAll(S); 2234 return !FSU.Found; 2235 } 2236 2237 /// Get a canonical add expression, or something simpler if possible. 2238 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2239 SCEV::NoWrapFlags Flags, 2240 unsigned Depth) { 2241 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2242 "only nuw or nsw allowed"); 2243 assert(!Ops.empty() && "Cannot get empty add!"); 2244 if (Ops.size() == 1) return Ops[0]; 2245 #ifndef NDEBUG 2246 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2247 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2248 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2249 "SCEVAddExpr operand types don't match!"); 2250 #endif 2251 2252 // Sort by complexity, this groups all similar expression types together. 2253 GroupByComplexity(Ops, &LI, DT); 2254 2255 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2256 2257 // If there are any constants, fold them together. 2258 unsigned Idx = 0; 2259 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2260 ++Idx; 2261 assert(Idx < Ops.size()); 2262 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2263 // We found two constants, fold them together! 2264 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2265 if (Ops.size() == 2) return Ops[0]; 2266 Ops.erase(Ops.begin()+1); // Erase the folded element 2267 LHSC = cast<SCEVConstant>(Ops[0]); 2268 } 2269 2270 // If we are left with a constant zero being added, strip it off. 2271 if (LHSC->getValue()->isZero()) { 2272 Ops.erase(Ops.begin()); 2273 --Idx; 2274 } 2275 2276 if (Ops.size() == 1) return Ops[0]; 2277 } 2278 2279 // Limit recursion calls depth 2280 if (Depth > MaxAddExprDepth) 2281 return getOrCreateAddExpr(Ops, Flags); 2282 2283 // Okay, check to see if the same value occurs in the operand list more than 2284 // once. If so, merge them together into an multiply expression. Since we 2285 // sorted the list, these values are required to be adjacent. 2286 Type *Ty = Ops[0]->getType(); 2287 bool FoundMatch = false; 2288 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2289 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2290 // Scan ahead to count how many equal operands there are. 2291 unsigned Count = 2; 2292 while (i+Count != e && Ops[i+Count] == Ops[i]) 2293 ++Count; 2294 // Merge the values into a multiply. 2295 const SCEV *Scale = getConstant(Ty, Count); 2296 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2297 if (Ops.size() == Count) 2298 return Mul; 2299 Ops[i] = Mul; 2300 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2301 --i; e -= Count - 1; 2302 FoundMatch = true; 2303 } 2304 if (FoundMatch) 2305 return getAddExpr(Ops, Flags); 2306 2307 // Check for truncates. If all the operands are truncated from the same 2308 // type, see if factoring out the truncate would permit the result to be 2309 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2310 // if the contents of the resulting outer trunc fold to something simple. 2311 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2312 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2313 Type *DstType = Trunc->getType(); 2314 Type *SrcType = Trunc->getOperand()->getType(); 2315 SmallVector<const SCEV *, 8> LargeOps; 2316 bool Ok = true; 2317 // Check all the operands to see if they can be represented in the 2318 // source type of the truncate. 2319 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2320 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2321 if (T->getOperand()->getType() != SrcType) { 2322 Ok = false; 2323 break; 2324 } 2325 LargeOps.push_back(T->getOperand()); 2326 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2327 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2328 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2329 SmallVector<const SCEV *, 8> LargeMulOps; 2330 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2331 if (const SCEVTruncateExpr *T = 2332 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2333 if (T->getOperand()->getType() != SrcType) { 2334 Ok = false; 2335 break; 2336 } 2337 LargeMulOps.push_back(T->getOperand()); 2338 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2339 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2340 } else { 2341 Ok = false; 2342 break; 2343 } 2344 } 2345 if (Ok) 2346 LargeOps.push_back(getMulExpr(LargeMulOps)); 2347 } else { 2348 Ok = false; 2349 break; 2350 } 2351 } 2352 if (Ok) { 2353 // Evaluate the expression in the larger type. 2354 const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1); 2355 // If it folds to something simple, use it. Otherwise, don't. 2356 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2357 return getTruncateExpr(Fold, DstType); 2358 } 2359 } 2360 2361 // Skip past any other cast SCEVs. 2362 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2363 ++Idx; 2364 2365 // If there are add operands they would be next. 2366 if (Idx < Ops.size()) { 2367 bool DeletedAdd = false; 2368 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2369 if (Ops.size() > AddOpsInlineThreshold || 2370 Add->getNumOperands() > AddOpsInlineThreshold) 2371 break; 2372 // If we have an add, expand the add operands onto the end of the operands 2373 // list. 2374 Ops.erase(Ops.begin()+Idx); 2375 Ops.append(Add->op_begin(), Add->op_end()); 2376 DeletedAdd = true; 2377 } 2378 2379 // If we deleted at least one add, we added operands to the end of the list, 2380 // and they are not necessarily sorted. Recurse to resort and resimplify 2381 // any operands we just acquired. 2382 if (DeletedAdd) 2383 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2384 } 2385 2386 // Skip over the add expression until we get to a multiply. 2387 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2388 ++Idx; 2389 2390 // Check to see if there are any folding opportunities present with 2391 // operands multiplied by constant values. 2392 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2393 uint64_t BitWidth = getTypeSizeInBits(Ty); 2394 DenseMap<const SCEV *, APInt> M; 2395 SmallVector<const SCEV *, 8> NewOps; 2396 APInt AccumulatedConstant(BitWidth, 0); 2397 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2398 Ops.data(), Ops.size(), 2399 APInt(BitWidth, 1), *this)) { 2400 struct APIntCompare { 2401 bool operator()(const APInt &LHS, const APInt &RHS) const { 2402 return LHS.ult(RHS); 2403 } 2404 }; 2405 2406 // Some interesting folding opportunity is present, so its worthwhile to 2407 // re-generate the operands list. Group the operands by constant scale, 2408 // to avoid multiplying by the same constant scale multiple times. 2409 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2410 for (const SCEV *NewOp : NewOps) 2411 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2412 // Re-generate the operands list. 2413 Ops.clear(); 2414 if (AccumulatedConstant != 0) 2415 Ops.push_back(getConstant(AccumulatedConstant)); 2416 for (auto &MulOp : MulOpLists) 2417 if (MulOp.first != 0) 2418 Ops.push_back(getMulExpr( 2419 getConstant(MulOp.first), 2420 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1))); 2421 if (Ops.empty()) 2422 return getZero(Ty); 2423 if (Ops.size() == 1) 2424 return Ops[0]; 2425 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2426 } 2427 } 2428 2429 // If we are adding something to a multiply expression, make sure the 2430 // something is not already an operand of the multiply. If so, merge it into 2431 // the multiply. 2432 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2433 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2434 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2435 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2436 if (isa<SCEVConstant>(MulOpSCEV)) 2437 continue; 2438 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2439 if (MulOpSCEV == Ops[AddOp]) { 2440 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2441 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2442 if (Mul->getNumOperands() != 2) { 2443 // If the multiply has more than two operands, we must get the 2444 // Y*Z term. 2445 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2446 Mul->op_begin()+MulOp); 2447 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2448 InnerMul = getMulExpr(MulOps); 2449 } 2450 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2451 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2452 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2453 if (Ops.size() == 2) return OuterMul; 2454 if (AddOp < Idx) { 2455 Ops.erase(Ops.begin()+AddOp); 2456 Ops.erase(Ops.begin()+Idx-1); 2457 } else { 2458 Ops.erase(Ops.begin()+Idx); 2459 Ops.erase(Ops.begin()+AddOp-1); 2460 } 2461 Ops.push_back(OuterMul); 2462 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2463 } 2464 2465 // Check this multiply against other multiplies being added together. 2466 for (unsigned OtherMulIdx = Idx+1; 2467 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2468 ++OtherMulIdx) { 2469 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2470 // If MulOp occurs in OtherMul, we can fold the two multiplies 2471 // together. 2472 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2473 OMulOp != e; ++OMulOp) 2474 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2475 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2476 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2477 if (Mul->getNumOperands() != 2) { 2478 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2479 Mul->op_begin()+MulOp); 2480 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2481 InnerMul1 = getMulExpr(MulOps); 2482 } 2483 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2484 if (OtherMul->getNumOperands() != 2) { 2485 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2486 OtherMul->op_begin()+OMulOp); 2487 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2488 InnerMul2 = getMulExpr(MulOps); 2489 } 2490 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2491 const SCEV *InnerMulSum = 2492 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2493 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2494 if (Ops.size() == 2) return OuterMul; 2495 Ops.erase(Ops.begin()+Idx); 2496 Ops.erase(Ops.begin()+OtherMulIdx-1); 2497 Ops.push_back(OuterMul); 2498 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2499 } 2500 } 2501 } 2502 } 2503 2504 // If there are any add recurrences in the operands list, see if any other 2505 // added values are loop invariant. If so, we can fold them into the 2506 // recurrence. 2507 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2508 ++Idx; 2509 2510 // Scan over all recurrences, trying to fold loop invariants into them. 2511 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2512 // Scan all of the other operands to this add and add them to the vector if 2513 // they are loop invariant w.r.t. the recurrence. 2514 SmallVector<const SCEV *, 8> LIOps; 2515 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2516 const Loop *AddRecLoop = AddRec->getLoop(); 2517 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2518 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2519 LIOps.push_back(Ops[i]); 2520 Ops.erase(Ops.begin()+i); 2521 --i; --e; 2522 } 2523 2524 // If we found some loop invariants, fold them into the recurrence. 2525 if (!LIOps.empty()) { 2526 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2527 LIOps.push_back(AddRec->getStart()); 2528 2529 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2530 AddRec->op_end()); 2531 // This follows from the fact that the no-wrap flags on the outer add 2532 // expression are applicable on the 0th iteration, when the add recurrence 2533 // will be equal to its start value. 2534 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2535 2536 // Build the new addrec. Propagate the NUW and NSW flags if both the 2537 // outer add and the inner addrec are guaranteed to have no overflow. 2538 // Always propagate NW. 2539 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2540 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2541 2542 // If all of the other operands were loop invariant, we are done. 2543 if (Ops.size() == 1) return NewRec; 2544 2545 // Otherwise, add the folded AddRec by the non-invariant parts. 2546 for (unsigned i = 0;; ++i) 2547 if (Ops[i] == AddRec) { 2548 Ops[i] = NewRec; 2549 break; 2550 } 2551 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2552 } 2553 2554 // Okay, if there weren't any loop invariants to be folded, check to see if 2555 // there are multiple AddRec's with the same loop induction variable being 2556 // added together. If so, we can fold them. 2557 for (unsigned OtherIdx = Idx+1; 2558 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2559 ++OtherIdx) { 2560 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2561 // so that the 1st found AddRecExpr is dominated by all others. 2562 assert(DT.dominates( 2563 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2564 AddRec->getLoop()->getHeader()) && 2565 "AddRecExprs are not sorted in reverse dominance order?"); 2566 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2567 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2568 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2569 AddRec->op_end()); 2570 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2571 ++OtherIdx) { 2572 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2573 if (OtherAddRec->getLoop() == AddRecLoop) { 2574 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2575 i != e; ++i) { 2576 if (i >= AddRecOps.size()) { 2577 AddRecOps.append(OtherAddRec->op_begin()+i, 2578 OtherAddRec->op_end()); 2579 break; 2580 } 2581 SmallVector<const SCEV *, 2> TwoOps = { 2582 AddRecOps[i], OtherAddRec->getOperand(i)}; 2583 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2584 } 2585 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2586 } 2587 } 2588 // Step size has changed, so we cannot guarantee no self-wraparound. 2589 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2590 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2591 } 2592 } 2593 2594 // Otherwise couldn't fold anything into this recurrence. Move onto the 2595 // next one. 2596 } 2597 2598 // Okay, it looks like we really DO need an add expr. Check to see if we 2599 // already have one, otherwise create a new one. 2600 return getOrCreateAddExpr(Ops, Flags); 2601 } 2602 2603 const SCEV * 2604 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2605 SCEV::NoWrapFlags Flags) { 2606 FoldingSetNodeID ID; 2607 ID.AddInteger(scAddExpr); 2608 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2609 ID.AddPointer(Ops[i]); 2610 void *IP = nullptr; 2611 SCEVAddExpr *S = 2612 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2613 if (!S) { 2614 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2615 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2616 S = new (SCEVAllocator) 2617 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2618 UniqueSCEVs.InsertNode(S, IP); 2619 } 2620 S->setNoWrapFlags(Flags); 2621 return S; 2622 } 2623 2624 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2625 uint64_t k = i*j; 2626 if (j > 1 && k / j != i) Overflow = true; 2627 return k; 2628 } 2629 2630 /// Compute the result of "n choose k", the binomial coefficient. If an 2631 /// intermediate computation overflows, Overflow will be set and the return will 2632 /// be garbage. Overflow is not cleared on absence of overflow. 2633 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2634 // We use the multiplicative formula: 2635 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2636 // At each iteration, we take the n-th term of the numeral and divide by the 2637 // (k-n)th term of the denominator. This division will always produce an 2638 // integral result, and helps reduce the chance of overflow in the 2639 // intermediate computations. However, we can still overflow even when the 2640 // final result would fit. 2641 2642 if (n == 0 || n == k) return 1; 2643 if (k > n) return 0; 2644 2645 if (k > n/2) 2646 k = n-k; 2647 2648 uint64_t r = 1; 2649 for (uint64_t i = 1; i <= k; ++i) { 2650 r = umul_ov(r, n-(i-1), Overflow); 2651 r /= i; 2652 } 2653 return r; 2654 } 2655 2656 /// Determine if any of the operands in this SCEV are a constant or if 2657 /// any of the add or multiply expressions in this SCEV contain a constant. 2658 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2659 SmallVector<const SCEV *, 4> Ops; 2660 Ops.push_back(StartExpr); 2661 while (!Ops.empty()) { 2662 const SCEV *CurrentExpr = Ops.pop_back_val(); 2663 if (isa<SCEVConstant>(*CurrentExpr)) 2664 return true; 2665 2666 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2667 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2668 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2669 } 2670 } 2671 return false; 2672 } 2673 2674 /// Get a canonical multiply expression, or something simpler if possible. 2675 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2676 SCEV::NoWrapFlags Flags) { 2677 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2678 "only nuw or nsw allowed"); 2679 assert(!Ops.empty() && "Cannot get empty mul!"); 2680 if (Ops.size() == 1) return Ops[0]; 2681 #ifndef NDEBUG 2682 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2683 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2684 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2685 "SCEVMulExpr operand types don't match!"); 2686 #endif 2687 2688 // Sort by complexity, this groups all similar expression types together. 2689 GroupByComplexity(Ops, &LI, DT); 2690 2691 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2692 2693 // If there are any constants, fold them together. 2694 unsigned Idx = 0; 2695 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2696 2697 // C1*(C2+V) -> C1*C2 + C1*V 2698 if (Ops.size() == 2) 2699 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2700 // If any of Add's ops are Adds or Muls with a constant, 2701 // apply this transformation as well. 2702 if (Add->getNumOperands() == 2) 2703 if (containsConstantSomewhere(Add)) 2704 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2705 getMulExpr(LHSC, Add->getOperand(1))); 2706 2707 ++Idx; 2708 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2709 // We found two constants, fold them together! 2710 ConstantInt *Fold = 2711 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2712 Ops[0] = getConstant(Fold); 2713 Ops.erase(Ops.begin()+1); // Erase the folded element 2714 if (Ops.size() == 1) return Ops[0]; 2715 LHSC = cast<SCEVConstant>(Ops[0]); 2716 } 2717 2718 // If we are left with a constant one being multiplied, strip it off. 2719 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2720 Ops.erase(Ops.begin()); 2721 --Idx; 2722 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2723 // If we have a multiply of zero, it will always be zero. 2724 return Ops[0]; 2725 } else if (Ops[0]->isAllOnesValue()) { 2726 // If we have a mul by -1 of an add, try distributing the -1 among the 2727 // add operands. 2728 if (Ops.size() == 2) { 2729 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2730 SmallVector<const SCEV *, 4> NewOps; 2731 bool AnyFolded = false; 2732 for (const SCEV *AddOp : Add->operands()) { 2733 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2734 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2735 NewOps.push_back(Mul); 2736 } 2737 if (AnyFolded) 2738 return getAddExpr(NewOps); 2739 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2740 // Negation preserves a recurrence's no self-wrap property. 2741 SmallVector<const SCEV *, 4> Operands; 2742 for (const SCEV *AddRecOp : AddRec->operands()) 2743 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2744 2745 return getAddRecExpr(Operands, AddRec->getLoop(), 2746 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2747 } 2748 } 2749 } 2750 2751 if (Ops.size() == 1) 2752 return Ops[0]; 2753 } 2754 2755 // Skip over the add expression until we get to a multiply. 2756 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2757 ++Idx; 2758 2759 // If there are mul operands inline them all into this expression. 2760 if (Idx < Ops.size()) { 2761 bool DeletedMul = false; 2762 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2763 if (Ops.size() > MulOpsInlineThreshold) 2764 break; 2765 // If we have an mul, expand the mul operands onto the end of the operands 2766 // list. 2767 Ops.erase(Ops.begin()+Idx); 2768 Ops.append(Mul->op_begin(), Mul->op_end()); 2769 DeletedMul = true; 2770 } 2771 2772 // If we deleted at least one mul, we added operands to the end of the list, 2773 // and they are not necessarily sorted. Recurse to resort and resimplify 2774 // any operands we just acquired. 2775 if (DeletedMul) 2776 return getMulExpr(Ops); 2777 } 2778 2779 // If there are any add recurrences in the operands list, see if any other 2780 // added values are loop invariant. If so, we can fold them into the 2781 // recurrence. 2782 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2783 ++Idx; 2784 2785 // Scan over all recurrences, trying to fold loop invariants into them. 2786 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2787 // Scan all of the other operands to this mul and add them to the vector if 2788 // they are loop invariant w.r.t. the recurrence. 2789 SmallVector<const SCEV *, 8> LIOps; 2790 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2791 const Loop *AddRecLoop = AddRec->getLoop(); 2792 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2793 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2794 LIOps.push_back(Ops[i]); 2795 Ops.erase(Ops.begin()+i); 2796 --i; --e; 2797 } 2798 2799 // If we found some loop invariants, fold them into the recurrence. 2800 if (!LIOps.empty()) { 2801 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2802 SmallVector<const SCEV *, 4> NewOps; 2803 NewOps.reserve(AddRec->getNumOperands()); 2804 const SCEV *Scale = getMulExpr(LIOps); 2805 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2806 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2807 2808 // Build the new addrec. Propagate the NUW and NSW flags if both the 2809 // outer mul and the inner addrec are guaranteed to have no overflow. 2810 // 2811 // No self-wrap cannot be guaranteed after changing the step size, but 2812 // will be inferred if either NUW or NSW is true. 2813 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2814 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2815 2816 // If all of the other operands were loop invariant, we are done. 2817 if (Ops.size() == 1) return NewRec; 2818 2819 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2820 for (unsigned i = 0;; ++i) 2821 if (Ops[i] == AddRec) { 2822 Ops[i] = NewRec; 2823 break; 2824 } 2825 return getMulExpr(Ops); 2826 } 2827 2828 // Okay, if there weren't any loop invariants to be folded, check to see if 2829 // there are multiple AddRec's with the same loop induction variable being 2830 // multiplied together. If so, we can fold them. 2831 2832 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2833 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2834 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2835 // ]]],+,...up to x=2n}. 2836 // Note that the arguments to choose() are always integers with values 2837 // known at compile time, never SCEV objects. 2838 // 2839 // The implementation avoids pointless extra computations when the two 2840 // addrec's are of different length (mathematically, it's equivalent to 2841 // an infinite stream of zeros on the right). 2842 bool OpsModified = false; 2843 for (unsigned OtherIdx = Idx+1; 2844 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2845 ++OtherIdx) { 2846 const SCEVAddRecExpr *OtherAddRec = 2847 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2848 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2849 continue; 2850 2851 bool Overflow = false; 2852 Type *Ty = AddRec->getType(); 2853 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2854 SmallVector<const SCEV*, 7> AddRecOps; 2855 for (int x = 0, xe = AddRec->getNumOperands() + 2856 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2857 const SCEV *Term = getZero(Ty); 2858 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2859 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2860 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2861 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2862 z < ze && !Overflow; ++z) { 2863 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2864 uint64_t Coeff; 2865 if (LargerThan64Bits) 2866 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2867 else 2868 Coeff = Coeff1*Coeff2; 2869 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2870 const SCEV *Term1 = AddRec->getOperand(y-z); 2871 const SCEV *Term2 = OtherAddRec->getOperand(z); 2872 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2873 } 2874 } 2875 AddRecOps.push_back(Term); 2876 } 2877 if (!Overflow) { 2878 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2879 SCEV::FlagAnyWrap); 2880 if (Ops.size() == 2) return NewAddRec; 2881 Ops[Idx] = NewAddRec; 2882 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2883 OpsModified = true; 2884 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2885 if (!AddRec) 2886 break; 2887 } 2888 } 2889 if (OpsModified) 2890 return getMulExpr(Ops); 2891 2892 // Otherwise couldn't fold anything into this recurrence. Move onto the 2893 // next one. 2894 } 2895 2896 // Okay, it looks like we really DO need an mul expr. Check to see if we 2897 // already have one, otherwise create a new one. 2898 FoldingSetNodeID ID; 2899 ID.AddInteger(scMulExpr); 2900 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2901 ID.AddPointer(Ops[i]); 2902 void *IP = nullptr; 2903 SCEVMulExpr *S = 2904 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2905 if (!S) { 2906 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2907 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2908 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2909 O, Ops.size()); 2910 UniqueSCEVs.InsertNode(S, IP); 2911 } 2912 S->setNoWrapFlags(Flags); 2913 return S; 2914 } 2915 2916 /// Get a canonical unsigned division expression, or something simpler if 2917 /// possible. 2918 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2919 const SCEV *RHS) { 2920 assert(getEffectiveSCEVType(LHS->getType()) == 2921 getEffectiveSCEVType(RHS->getType()) && 2922 "SCEVUDivExpr operand types don't match!"); 2923 2924 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2925 if (RHSC->getValue()->equalsInt(1)) 2926 return LHS; // X udiv 1 --> x 2927 // If the denominator is zero, the result of the udiv is undefined. Don't 2928 // try to analyze it, because the resolution chosen here may differ from 2929 // the resolution chosen in other parts of the compiler. 2930 if (!RHSC->getValue()->isZero()) { 2931 // Determine if the division can be folded into the operands of 2932 // its operands. 2933 // TODO: Generalize this to non-constants by using known-bits information. 2934 Type *Ty = LHS->getType(); 2935 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2936 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2937 // For non-power-of-two values, effectively round the value up to the 2938 // nearest power of two. 2939 if (!RHSC->getAPInt().isPowerOf2()) 2940 ++MaxShiftAmt; 2941 IntegerType *ExtTy = 2942 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2943 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2944 if (const SCEVConstant *Step = 2945 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2946 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2947 const APInt &StepInt = Step->getAPInt(); 2948 const APInt &DivInt = RHSC->getAPInt(); 2949 if (!StepInt.urem(DivInt) && 2950 getZeroExtendExpr(AR, ExtTy) == 2951 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2952 getZeroExtendExpr(Step, ExtTy), 2953 AR->getLoop(), SCEV::FlagAnyWrap)) { 2954 SmallVector<const SCEV *, 4> Operands; 2955 for (const SCEV *Op : AR->operands()) 2956 Operands.push_back(getUDivExpr(Op, RHS)); 2957 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2958 } 2959 /// Get a canonical UDivExpr for a recurrence. 2960 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2961 // We can currently only fold X%N if X is constant. 2962 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2963 if (StartC && !DivInt.urem(StepInt) && 2964 getZeroExtendExpr(AR, ExtTy) == 2965 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2966 getZeroExtendExpr(Step, ExtTy), 2967 AR->getLoop(), SCEV::FlagAnyWrap)) { 2968 const APInt &StartInt = StartC->getAPInt(); 2969 const APInt &StartRem = StartInt.urem(StepInt); 2970 if (StartRem != 0) 2971 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2972 AR->getLoop(), SCEV::FlagNW); 2973 } 2974 } 2975 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2976 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2977 SmallVector<const SCEV *, 4> Operands; 2978 for (const SCEV *Op : M->operands()) 2979 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2980 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2981 // Find an operand that's safely divisible. 2982 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2983 const SCEV *Op = M->getOperand(i); 2984 const SCEV *Div = getUDivExpr(Op, RHSC); 2985 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2986 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2987 M->op_end()); 2988 Operands[i] = Div; 2989 return getMulExpr(Operands); 2990 } 2991 } 2992 } 2993 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2994 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2995 SmallVector<const SCEV *, 4> Operands; 2996 for (const SCEV *Op : A->operands()) 2997 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2998 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2999 Operands.clear(); 3000 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3001 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3002 if (isa<SCEVUDivExpr>(Op) || 3003 getMulExpr(Op, RHS) != A->getOperand(i)) 3004 break; 3005 Operands.push_back(Op); 3006 } 3007 if (Operands.size() == A->getNumOperands()) 3008 return getAddExpr(Operands); 3009 } 3010 } 3011 3012 // Fold if both operands are constant. 3013 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3014 Constant *LHSCV = LHSC->getValue(); 3015 Constant *RHSCV = RHSC->getValue(); 3016 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3017 RHSCV))); 3018 } 3019 } 3020 } 3021 3022 FoldingSetNodeID ID; 3023 ID.AddInteger(scUDivExpr); 3024 ID.AddPointer(LHS); 3025 ID.AddPointer(RHS); 3026 void *IP = nullptr; 3027 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3028 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3029 LHS, RHS); 3030 UniqueSCEVs.InsertNode(S, IP); 3031 return S; 3032 } 3033 3034 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3035 APInt A = C1->getAPInt().abs(); 3036 APInt B = C2->getAPInt().abs(); 3037 uint32_t ABW = A.getBitWidth(); 3038 uint32_t BBW = B.getBitWidth(); 3039 3040 if (ABW > BBW) 3041 B = B.zext(ABW); 3042 else if (ABW < BBW) 3043 A = A.zext(BBW); 3044 3045 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3046 } 3047 3048 /// Get a canonical unsigned division expression, or something simpler if 3049 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3050 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3051 /// it's not exact because the udiv may be clearing bits. 3052 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3053 const SCEV *RHS) { 3054 // TODO: we could try to find factors in all sorts of things, but for now we 3055 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3056 // end of this file for inspiration. 3057 3058 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3059 if (!Mul || !Mul->hasNoUnsignedWrap()) 3060 return getUDivExpr(LHS, RHS); 3061 3062 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3063 // If the mulexpr multiplies by a constant, then that constant must be the 3064 // first element of the mulexpr. 3065 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3066 if (LHSCst == RHSCst) { 3067 SmallVector<const SCEV *, 2> Operands; 3068 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3069 return getMulExpr(Operands); 3070 } 3071 3072 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3073 // that there's a factor provided by one of the other terms. We need to 3074 // check. 3075 APInt Factor = gcd(LHSCst, RHSCst); 3076 if (!Factor.isIntN(1)) { 3077 LHSCst = 3078 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3079 RHSCst = 3080 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3081 SmallVector<const SCEV *, 2> Operands; 3082 Operands.push_back(LHSCst); 3083 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3084 LHS = getMulExpr(Operands); 3085 RHS = RHSCst; 3086 Mul = dyn_cast<SCEVMulExpr>(LHS); 3087 if (!Mul) 3088 return getUDivExactExpr(LHS, RHS); 3089 } 3090 } 3091 } 3092 3093 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3094 if (Mul->getOperand(i) == RHS) { 3095 SmallVector<const SCEV *, 2> Operands; 3096 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3097 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3098 return getMulExpr(Operands); 3099 } 3100 } 3101 3102 return getUDivExpr(LHS, RHS); 3103 } 3104 3105 /// Get an add recurrence expression for the specified loop. Simplify the 3106 /// expression as much as possible. 3107 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3108 const Loop *L, 3109 SCEV::NoWrapFlags Flags) { 3110 SmallVector<const SCEV *, 4> Operands; 3111 Operands.push_back(Start); 3112 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3113 if (StepChrec->getLoop() == L) { 3114 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3115 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3116 } 3117 3118 Operands.push_back(Step); 3119 return getAddRecExpr(Operands, L, Flags); 3120 } 3121 3122 /// Get an add recurrence expression for the specified loop. Simplify the 3123 /// expression as much as possible. 3124 const SCEV * 3125 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3126 const Loop *L, SCEV::NoWrapFlags Flags) { 3127 if (Operands.size() == 1) return Operands[0]; 3128 #ifndef NDEBUG 3129 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3130 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3131 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3132 "SCEVAddRecExpr operand types don't match!"); 3133 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3134 assert(isLoopInvariant(Operands[i], L) && 3135 "SCEVAddRecExpr operand is not loop-invariant!"); 3136 #endif 3137 3138 if (Operands.back()->isZero()) { 3139 Operands.pop_back(); 3140 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3141 } 3142 3143 // It's tempting to want to call getMaxBackedgeTakenCount count here and 3144 // use that information to infer NUW and NSW flags. However, computing a 3145 // BE count requires calling getAddRecExpr, so we may not yet have a 3146 // meaningful BE count at this point (and if we don't, we'd be stuck 3147 // with a SCEVCouldNotCompute as the cached BE count). 3148 3149 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3150 3151 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3152 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3153 const Loop *NestedLoop = NestedAR->getLoop(); 3154 if (L->contains(NestedLoop) 3155 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3156 : (!NestedLoop->contains(L) && 3157 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3158 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3159 NestedAR->op_end()); 3160 Operands[0] = NestedAR->getStart(); 3161 // AddRecs require their operands be loop-invariant with respect to their 3162 // loops. Don't perform this transformation if it would break this 3163 // requirement. 3164 bool AllInvariant = all_of( 3165 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3166 3167 if (AllInvariant) { 3168 // Create a recurrence for the outer loop with the same step size. 3169 // 3170 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3171 // inner recurrence has the same property. 3172 SCEV::NoWrapFlags OuterFlags = 3173 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3174 3175 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3176 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3177 return isLoopInvariant(Op, NestedLoop); 3178 }); 3179 3180 if (AllInvariant) { 3181 // Ok, both add recurrences are valid after the transformation. 3182 // 3183 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3184 // the outer recurrence has the same property. 3185 SCEV::NoWrapFlags InnerFlags = 3186 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3187 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3188 } 3189 } 3190 // Reset Operands to its original state. 3191 Operands[0] = NestedAR; 3192 } 3193 } 3194 3195 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3196 // already have one, otherwise create a new one. 3197 FoldingSetNodeID ID; 3198 ID.AddInteger(scAddRecExpr); 3199 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3200 ID.AddPointer(Operands[i]); 3201 ID.AddPointer(L); 3202 void *IP = nullptr; 3203 SCEVAddRecExpr *S = 3204 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3205 if (!S) { 3206 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 3207 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 3208 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 3209 O, Operands.size(), L); 3210 UniqueSCEVs.InsertNode(S, IP); 3211 } 3212 S->setNoWrapFlags(Flags); 3213 return S; 3214 } 3215 3216 const SCEV * 3217 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3218 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3219 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3220 // getSCEV(Base)->getType() has the same address space as Base->getType() 3221 // because SCEV::getType() preserves the address space. 3222 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3223 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3224 // instruction to its SCEV, because the Instruction may be guarded by control 3225 // flow and the no-overflow bits may not be valid for the expression in any 3226 // context. This can be fixed similarly to how these flags are handled for 3227 // adds. 3228 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3229 : SCEV::FlagAnyWrap; 3230 3231 const SCEV *TotalOffset = getZero(IntPtrTy); 3232 // The array size is unimportant. The first thing we do on CurTy is getting 3233 // its element type. 3234 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3235 for (const SCEV *IndexExpr : IndexExprs) { 3236 // Compute the (potentially symbolic) offset in bytes for this index. 3237 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3238 // For a struct, add the member offset. 3239 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3240 unsigned FieldNo = Index->getZExtValue(); 3241 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3242 3243 // Add the field offset to the running total offset. 3244 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3245 3246 // Update CurTy to the type of the field at Index. 3247 CurTy = STy->getTypeAtIndex(Index); 3248 } else { 3249 // Update CurTy to its element type. 3250 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3251 // For an array, add the element offset, explicitly scaled. 3252 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3253 // Getelementptr indices are signed. 3254 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3255 3256 // Multiply the index by the element size to compute the element offset. 3257 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3258 3259 // Add the element offset to the running total offset. 3260 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3261 } 3262 } 3263 3264 // Add the total offset from all the GEP indices to the base. 3265 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3266 } 3267 3268 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3269 const SCEV *RHS) { 3270 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3271 return getSMaxExpr(Ops); 3272 } 3273 3274 const SCEV * 3275 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3276 assert(!Ops.empty() && "Cannot get empty smax!"); 3277 if (Ops.size() == 1) return Ops[0]; 3278 #ifndef NDEBUG 3279 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3280 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3281 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3282 "SCEVSMaxExpr operand types don't match!"); 3283 #endif 3284 3285 // Sort by complexity, this groups all similar expression types together. 3286 GroupByComplexity(Ops, &LI, DT); 3287 3288 // If there are any constants, fold them together. 3289 unsigned Idx = 0; 3290 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3291 ++Idx; 3292 assert(Idx < Ops.size()); 3293 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3294 // We found two constants, fold them together! 3295 ConstantInt *Fold = ConstantInt::get( 3296 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3297 Ops[0] = getConstant(Fold); 3298 Ops.erase(Ops.begin()+1); // Erase the folded element 3299 if (Ops.size() == 1) return Ops[0]; 3300 LHSC = cast<SCEVConstant>(Ops[0]); 3301 } 3302 3303 // If we are left with a constant minimum-int, strip it off. 3304 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3305 Ops.erase(Ops.begin()); 3306 --Idx; 3307 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3308 // If we have an smax with a constant maximum-int, it will always be 3309 // maximum-int. 3310 return Ops[0]; 3311 } 3312 3313 if (Ops.size() == 1) return Ops[0]; 3314 } 3315 3316 // Find the first SMax 3317 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3318 ++Idx; 3319 3320 // Check to see if one of the operands is an SMax. If so, expand its operands 3321 // onto our operand list, and recurse to simplify. 3322 if (Idx < Ops.size()) { 3323 bool DeletedSMax = false; 3324 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3325 Ops.erase(Ops.begin()+Idx); 3326 Ops.append(SMax->op_begin(), SMax->op_end()); 3327 DeletedSMax = true; 3328 } 3329 3330 if (DeletedSMax) 3331 return getSMaxExpr(Ops); 3332 } 3333 3334 // Okay, check to see if the same value occurs in the operand list twice. If 3335 // so, delete one. Since we sorted the list, these values are required to 3336 // be adjacent. 3337 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3338 // X smax Y smax Y --> X smax Y 3339 // X smax Y --> X, if X is always greater than Y 3340 if (Ops[i] == Ops[i+1] || 3341 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3342 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3343 --i; --e; 3344 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3345 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3346 --i; --e; 3347 } 3348 3349 if (Ops.size() == 1) return Ops[0]; 3350 3351 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3352 3353 // Okay, it looks like we really DO need an smax expr. Check to see if we 3354 // already have one, otherwise create a new one. 3355 FoldingSetNodeID ID; 3356 ID.AddInteger(scSMaxExpr); 3357 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3358 ID.AddPointer(Ops[i]); 3359 void *IP = nullptr; 3360 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3361 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3362 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3363 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3364 O, Ops.size()); 3365 UniqueSCEVs.InsertNode(S, IP); 3366 return S; 3367 } 3368 3369 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3370 const SCEV *RHS) { 3371 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3372 return getUMaxExpr(Ops); 3373 } 3374 3375 const SCEV * 3376 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3377 assert(!Ops.empty() && "Cannot get empty umax!"); 3378 if (Ops.size() == 1) return Ops[0]; 3379 #ifndef NDEBUG 3380 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3381 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3382 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3383 "SCEVUMaxExpr operand types don't match!"); 3384 #endif 3385 3386 // Sort by complexity, this groups all similar expression types together. 3387 GroupByComplexity(Ops, &LI, DT); 3388 3389 // If there are any constants, fold them together. 3390 unsigned Idx = 0; 3391 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3392 ++Idx; 3393 assert(Idx < Ops.size()); 3394 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3395 // We found two constants, fold them together! 3396 ConstantInt *Fold = ConstantInt::get( 3397 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3398 Ops[0] = getConstant(Fold); 3399 Ops.erase(Ops.begin()+1); // Erase the folded element 3400 if (Ops.size() == 1) return Ops[0]; 3401 LHSC = cast<SCEVConstant>(Ops[0]); 3402 } 3403 3404 // If we are left with a constant minimum-int, strip it off. 3405 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3406 Ops.erase(Ops.begin()); 3407 --Idx; 3408 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3409 // If we have an umax with a constant maximum-int, it will always be 3410 // maximum-int. 3411 return Ops[0]; 3412 } 3413 3414 if (Ops.size() == 1) return Ops[0]; 3415 } 3416 3417 // Find the first UMax 3418 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3419 ++Idx; 3420 3421 // Check to see if one of the operands is a UMax. If so, expand its operands 3422 // onto our operand list, and recurse to simplify. 3423 if (Idx < Ops.size()) { 3424 bool DeletedUMax = false; 3425 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3426 Ops.erase(Ops.begin()+Idx); 3427 Ops.append(UMax->op_begin(), UMax->op_end()); 3428 DeletedUMax = true; 3429 } 3430 3431 if (DeletedUMax) 3432 return getUMaxExpr(Ops); 3433 } 3434 3435 // Okay, check to see if the same value occurs in the operand list twice. If 3436 // so, delete one. Since we sorted the list, these values are required to 3437 // be adjacent. 3438 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3439 // X umax Y umax Y --> X umax Y 3440 // X umax Y --> X, if X is always greater than Y 3441 if (Ops[i] == Ops[i+1] || 3442 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3443 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3444 --i; --e; 3445 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3446 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3447 --i; --e; 3448 } 3449 3450 if (Ops.size() == 1) return Ops[0]; 3451 3452 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3453 3454 // Okay, it looks like we really DO need a umax expr. Check to see if we 3455 // already have one, otherwise create a new one. 3456 FoldingSetNodeID ID; 3457 ID.AddInteger(scUMaxExpr); 3458 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3459 ID.AddPointer(Ops[i]); 3460 void *IP = nullptr; 3461 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3462 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3463 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3464 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3465 O, Ops.size()); 3466 UniqueSCEVs.InsertNode(S, IP); 3467 return S; 3468 } 3469 3470 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3471 const SCEV *RHS) { 3472 // ~smax(~x, ~y) == smin(x, y). 3473 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3474 } 3475 3476 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3477 const SCEV *RHS) { 3478 // ~umax(~x, ~y) == umin(x, y) 3479 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3480 } 3481 3482 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3483 // We can bypass creating a target-independent 3484 // constant expression and then folding it back into a ConstantInt. 3485 // This is just a compile-time optimization. 3486 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3487 } 3488 3489 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3490 StructType *STy, 3491 unsigned FieldNo) { 3492 // We can bypass creating a target-independent 3493 // constant expression and then folding it back into a ConstantInt. 3494 // This is just a compile-time optimization. 3495 return getConstant( 3496 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3497 } 3498 3499 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3500 // Don't attempt to do anything other than create a SCEVUnknown object 3501 // here. createSCEV only calls getUnknown after checking for all other 3502 // interesting possibilities, and any other code that calls getUnknown 3503 // is doing so in order to hide a value from SCEV canonicalization. 3504 3505 FoldingSetNodeID ID; 3506 ID.AddInteger(scUnknown); 3507 ID.AddPointer(V); 3508 void *IP = nullptr; 3509 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3510 assert(cast<SCEVUnknown>(S)->getValue() == V && 3511 "Stale SCEVUnknown in uniquing map!"); 3512 return S; 3513 } 3514 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3515 FirstUnknown); 3516 FirstUnknown = cast<SCEVUnknown>(S); 3517 UniqueSCEVs.InsertNode(S, IP); 3518 return S; 3519 } 3520 3521 //===----------------------------------------------------------------------===// 3522 // Basic SCEV Analysis and PHI Idiom Recognition Code 3523 // 3524 3525 /// Test if values of the given type are analyzable within the SCEV 3526 /// framework. This primarily includes integer types, and it can optionally 3527 /// include pointer types if the ScalarEvolution class has access to 3528 /// target-specific information. 3529 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3530 // Integers and pointers are always SCEVable. 3531 return Ty->isIntegerTy() || Ty->isPointerTy(); 3532 } 3533 3534 /// Return the size in bits of the specified type, for which isSCEVable must 3535 /// return true. 3536 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3537 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3538 return getDataLayout().getTypeSizeInBits(Ty); 3539 } 3540 3541 /// Return a type with the same bitwidth as the given type and which represents 3542 /// how SCEV will treat the given type, for which isSCEVable must return 3543 /// true. For pointer types, this is the pointer-sized integer type. 3544 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3545 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3546 3547 if (Ty->isIntegerTy()) 3548 return Ty; 3549 3550 // The only other support type is pointer. 3551 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3552 return getDataLayout().getIntPtrType(Ty); 3553 } 3554 3555 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3556 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3557 } 3558 3559 const SCEV *ScalarEvolution::getCouldNotCompute() { 3560 return CouldNotCompute.get(); 3561 } 3562 3563 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3564 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3565 auto *SU = dyn_cast<SCEVUnknown>(S); 3566 return SU && SU->getValue() == nullptr; 3567 }); 3568 3569 return !ContainsNulls; 3570 } 3571 3572 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3573 HasRecMapType::iterator I = HasRecMap.find(S); 3574 if (I != HasRecMap.end()) 3575 return I->second; 3576 3577 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3578 HasRecMap.insert({S, FoundAddRec}); 3579 return FoundAddRec; 3580 } 3581 3582 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3583 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3584 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3585 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3586 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3587 if (!Add) 3588 return {S, nullptr}; 3589 3590 if (Add->getNumOperands() != 2) 3591 return {S, nullptr}; 3592 3593 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3594 if (!ConstOp) 3595 return {S, nullptr}; 3596 3597 return {Add->getOperand(1), ConstOp->getValue()}; 3598 } 3599 3600 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3601 /// by the value and offset from any ValueOffsetPair in the set. 3602 SetVector<ScalarEvolution::ValueOffsetPair> * 3603 ScalarEvolution::getSCEVValues(const SCEV *S) { 3604 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3605 if (SI == ExprValueMap.end()) 3606 return nullptr; 3607 #ifndef NDEBUG 3608 if (VerifySCEVMap) { 3609 // Check there is no dangling Value in the set returned. 3610 for (const auto &VE : SI->second) 3611 assert(ValueExprMap.count(VE.first)); 3612 } 3613 #endif 3614 return &SI->second; 3615 } 3616 3617 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3618 /// cannot be used separately. eraseValueFromMap should be used to remove 3619 /// V from ValueExprMap and ExprValueMap at the same time. 3620 void ScalarEvolution::eraseValueFromMap(Value *V) { 3621 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3622 if (I != ValueExprMap.end()) { 3623 const SCEV *S = I->second; 3624 // Remove {V, 0} from the set of ExprValueMap[S] 3625 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3626 SV->remove({V, nullptr}); 3627 3628 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3629 const SCEV *Stripped; 3630 ConstantInt *Offset; 3631 std::tie(Stripped, Offset) = splitAddExpr(S); 3632 if (Offset != nullptr) { 3633 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3634 SV->remove({V, Offset}); 3635 } 3636 ValueExprMap.erase(V); 3637 } 3638 } 3639 3640 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3641 /// create a new one. 3642 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3643 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3644 3645 const SCEV *S = getExistingSCEV(V); 3646 if (S == nullptr) { 3647 S = createSCEV(V); 3648 // During PHI resolution, it is possible to create two SCEVs for the same 3649 // V, so it is needed to double check whether V->S is inserted into 3650 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3651 std::pair<ValueExprMapType::iterator, bool> Pair = 3652 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3653 if (Pair.second) { 3654 ExprValueMap[S].insert({V, nullptr}); 3655 3656 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3657 // ExprValueMap. 3658 const SCEV *Stripped = S; 3659 ConstantInt *Offset = nullptr; 3660 std::tie(Stripped, Offset) = splitAddExpr(S); 3661 // If stripped is SCEVUnknown, don't bother to save 3662 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3663 // increase the complexity of the expansion code. 3664 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3665 // because it may generate add/sub instead of GEP in SCEV expansion. 3666 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3667 !isa<GetElementPtrInst>(V)) 3668 ExprValueMap[Stripped].insert({V, Offset}); 3669 } 3670 } 3671 return S; 3672 } 3673 3674 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3675 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3676 3677 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3678 if (I != ValueExprMap.end()) { 3679 const SCEV *S = I->second; 3680 if (checkValidity(S)) 3681 return S; 3682 eraseValueFromMap(V); 3683 forgetMemoizedResults(S); 3684 } 3685 return nullptr; 3686 } 3687 3688 /// Return a SCEV corresponding to -V = -1*V 3689 /// 3690 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3691 SCEV::NoWrapFlags Flags) { 3692 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3693 return getConstant( 3694 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3695 3696 Type *Ty = V->getType(); 3697 Ty = getEffectiveSCEVType(Ty); 3698 return getMulExpr( 3699 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3700 } 3701 3702 /// Return a SCEV corresponding to ~V = -1-V 3703 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3704 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3705 return getConstant( 3706 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3707 3708 Type *Ty = V->getType(); 3709 Ty = getEffectiveSCEVType(Ty); 3710 const SCEV *AllOnes = 3711 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3712 return getMinusSCEV(AllOnes, V); 3713 } 3714 3715 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3716 SCEV::NoWrapFlags Flags) { 3717 // Fast path: X - X --> 0. 3718 if (LHS == RHS) 3719 return getZero(LHS->getType()); 3720 3721 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3722 // makes it so that we cannot make much use of NUW. 3723 auto AddFlags = SCEV::FlagAnyWrap; 3724 const bool RHSIsNotMinSigned = 3725 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3726 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3727 // Let M be the minimum representable signed value. Then (-1)*RHS 3728 // signed-wraps if and only if RHS is M. That can happen even for 3729 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3730 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3731 // (-1)*RHS, we need to prove that RHS != M. 3732 // 3733 // If LHS is non-negative and we know that LHS - RHS does not 3734 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3735 // either by proving that RHS > M or that LHS >= 0. 3736 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3737 AddFlags = SCEV::FlagNSW; 3738 } 3739 } 3740 3741 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3742 // RHS is NSW and LHS >= 0. 3743 // 3744 // The difficulty here is that the NSW flag may have been proven 3745 // relative to a loop that is to be found in a recurrence in LHS and 3746 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3747 // larger scope than intended. 3748 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3749 3750 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3751 } 3752 3753 const SCEV * 3754 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3755 Type *SrcTy = V->getType(); 3756 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3757 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3758 "Cannot truncate or zero extend with non-integer arguments!"); 3759 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3760 return V; // No conversion 3761 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3762 return getTruncateExpr(V, Ty); 3763 return getZeroExtendExpr(V, Ty); 3764 } 3765 3766 const SCEV * 3767 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3768 Type *Ty) { 3769 Type *SrcTy = V->getType(); 3770 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3771 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3772 "Cannot truncate or zero extend with non-integer arguments!"); 3773 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3774 return V; // No conversion 3775 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3776 return getTruncateExpr(V, Ty); 3777 return getSignExtendExpr(V, Ty); 3778 } 3779 3780 const SCEV * 3781 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3782 Type *SrcTy = V->getType(); 3783 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3784 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3785 "Cannot noop or zero extend with non-integer arguments!"); 3786 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3787 "getNoopOrZeroExtend cannot truncate!"); 3788 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3789 return V; // No conversion 3790 return getZeroExtendExpr(V, Ty); 3791 } 3792 3793 const SCEV * 3794 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3795 Type *SrcTy = V->getType(); 3796 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3797 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3798 "Cannot noop or sign extend with non-integer arguments!"); 3799 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3800 "getNoopOrSignExtend cannot truncate!"); 3801 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3802 return V; // No conversion 3803 return getSignExtendExpr(V, Ty); 3804 } 3805 3806 const SCEV * 3807 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3808 Type *SrcTy = V->getType(); 3809 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3810 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3811 "Cannot noop or any extend with non-integer arguments!"); 3812 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3813 "getNoopOrAnyExtend cannot truncate!"); 3814 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3815 return V; // No conversion 3816 return getAnyExtendExpr(V, Ty); 3817 } 3818 3819 const SCEV * 3820 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3821 Type *SrcTy = V->getType(); 3822 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3823 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3824 "Cannot truncate or noop with non-integer arguments!"); 3825 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3826 "getTruncateOrNoop cannot extend!"); 3827 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3828 return V; // No conversion 3829 return getTruncateExpr(V, Ty); 3830 } 3831 3832 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3833 const SCEV *RHS) { 3834 const SCEV *PromotedLHS = LHS; 3835 const SCEV *PromotedRHS = RHS; 3836 3837 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3838 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3839 else 3840 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3841 3842 return getUMaxExpr(PromotedLHS, PromotedRHS); 3843 } 3844 3845 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3846 const SCEV *RHS) { 3847 const SCEV *PromotedLHS = LHS; 3848 const SCEV *PromotedRHS = RHS; 3849 3850 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3851 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3852 else 3853 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3854 3855 return getUMinExpr(PromotedLHS, PromotedRHS); 3856 } 3857 3858 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3859 // A pointer operand may evaluate to a nonpointer expression, such as null. 3860 if (!V->getType()->isPointerTy()) 3861 return V; 3862 3863 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3864 return getPointerBase(Cast->getOperand()); 3865 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3866 const SCEV *PtrOp = nullptr; 3867 for (const SCEV *NAryOp : NAry->operands()) { 3868 if (NAryOp->getType()->isPointerTy()) { 3869 // Cannot find the base of an expression with multiple pointer operands. 3870 if (PtrOp) 3871 return V; 3872 PtrOp = NAryOp; 3873 } 3874 } 3875 if (!PtrOp) 3876 return V; 3877 return getPointerBase(PtrOp); 3878 } 3879 return V; 3880 } 3881 3882 /// Push users of the given Instruction onto the given Worklist. 3883 static void 3884 PushDefUseChildren(Instruction *I, 3885 SmallVectorImpl<Instruction *> &Worklist) { 3886 // Push the def-use children onto the Worklist stack. 3887 for (User *U : I->users()) 3888 Worklist.push_back(cast<Instruction>(U)); 3889 } 3890 3891 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3892 SmallVector<Instruction *, 16> Worklist; 3893 PushDefUseChildren(PN, Worklist); 3894 3895 SmallPtrSet<Instruction *, 8> Visited; 3896 Visited.insert(PN); 3897 while (!Worklist.empty()) { 3898 Instruction *I = Worklist.pop_back_val(); 3899 if (!Visited.insert(I).second) 3900 continue; 3901 3902 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3903 if (It != ValueExprMap.end()) { 3904 const SCEV *Old = It->second; 3905 3906 // Short-circuit the def-use traversal if the symbolic name 3907 // ceases to appear in expressions. 3908 if (Old != SymName && !hasOperand(Old, SymName)) 3909 continue; 3910 3911 // SCEVUnknown for a PHI either means that it has an unrecognized 3912 // structure, it's a PHI that's in the progress of being computed 3913 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3914 // additional loop trip count information isn't going to change anything. 3915 // In the second case, createNodeForPHI will perform the necessary 3916 // updates on its own when it gets to that point. In the third, we do 3917 // want to forget the SCEVUnknown. 3918 if (!isa<PHINode>(I) || 3919 !isa<SCEVUnknown>(Old) || 3920 (I != PN && Old == SymName)) { 3921 eraseValueFromMap(It->first); 3922 forgetMemoizedResults(Old); 3923 } 3924 } 3925 3926 PushDefUseChildren(I, Worklist); 3927 } 3928 } 3929 3930 namespace { 3931 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3932 public: 3933 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3934 ScalarEvolution &SE) { 3935 SCEVInitRewriter Rewriter(L, SE); 3936 const SCEV *Result = Rewriter.visit(S); 3937 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3938 } 3939 3940 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3941 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3942 3943 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3944 if (!SE.isLoopInvariant(Expr, L)) 3945 Valid = false; 3946 return Expr; 3947 } 3948 3949 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3950 // Only allow AddRecExprs for this loop. 3951 if (Expr->getLoop() == L) 3952 return Expr->getStart(); 3953 Valid = false; 3954 return Expr; 3955 } 3956 3957 bool isValid() { return Valid; } 3958 3959 private: 3960 const Loop *L; 3961 bool Valid; 3962 }; 3963 3964 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3965 public: 3966 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3967 ScalarEvolution &SE) { 3968 SCEVShiftRewriter Rewriter(L, SE); 3969 const SCEV *Result = Rewriter.visit(S); 3970 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3971 } 3972 3973 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3974 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3975 3976 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3977 // Only allow AddRecExprs for this loop. 3978 if (!SE.isLoopInvariant(Expr, L)) 3979 Valid = false; 3980 return Expr; 3981 } 3982 3983 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3984 if (Expr->getLoop() == L && Expr->isAffine()) 3985 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3986 Valid = false; 3987 return Expr; 3988 } 3989 bool isValid() { return Valid; } 3990 3991 private: 3992 const Loop *L; 3993 bool Valid; 3994 }; 3995 } // end anonymous namespace 3996 3997 SCEV::NoWrapFlags 3998 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 3999 if (!AR->isAffine()) 4000 return SCEV::FlagAnyWrap; 4001 4002 typedef OverflowingBinaryOperator OBO; 4003 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4004 4005 if (!AR->hasNoSignedWrap()) { 4006 ConstantRange AddRecRange = getSignedRange(AR); 4007 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4008 4009 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4010 Instruction::Add, IncRange, OBO::NoSignedWrap); 4011 if (NSWRegion.contains(AddRecRange)) 4012 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4013 } 4014 4015 if (!AR->hasNoUnsignedWrap()) { 4016 ConstantRange AddRecRange = getUnsignedRange(AR); 4017 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4018 4019 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4020 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4021 if (NUWRegion.contains(AddRecRange)) 4022 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4023 } 4024 4025 return Result; 4026 } 4027 4028 namespace { 4029 /// Represents an abstract binary operation. This may exist as a 4030 /// normal instruction or constant expression, or may have been 4031 /// derived from an expression tree. 4032 struct BinaryOp { 4033 unsigned Opcode; 4034 Value *LHS; 4035 Value *RHS; 4036 bool IsNSW; 4037 bool IsNUW; 4038 4039 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4040 /// constant expression. 4041 Operator *Op; 4042 4043 explicit BinaryOp(Operator *Op) 4044 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4045 IsNSW(false), IsNUW(false), Op(Op) { 4046 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4047 IsNSW = OBO->hasNoSignedWrap(); 4048 IsNUW = OBO->hasNoUnsignedWrap(); 4049 } 4050 } 4051 4052 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4053 bool IsNUW = false) 4054 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 4055 Op(nullptr) {} 4056 }; 4057 } 4058 4059 4060 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4061 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4062 auto *Op = dyn_cast<Operator>(V); 4063 if (!Op) 4064 return None; 4065 4066 // Implementation detail: all the cleverness here should happen without 4067 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4068 // SCEV expressions when possible, and we should not break that. 4069 4070 switch (Op->getOpcode()) { 4071 case Instruction::Add: 4072 case Instruction::Sub: 4073 case Instruction::Mul: 4074 case Instruction::UDiv: 4075 case Instruction::And: 4076 case Instruction::Or: 4077 case Instruction::AShr: 4078 case Instruction::Shl: 4079 return BinaryOp(Op); 4080 4081 case Instruction::Xor: 4082 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4083 // If the RHS of the xor is a signmask, then this is just an add. 4084 // Instcombine turns add of signmask into xor as a strength reduction step. 4085 if (RHSC->getValue().isSignMask()) 4086 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4087 return BinaryOp(Op); 4088 4089 case Instruction::LShr: 4090 // Turn logical shift right of a constant into a unsigned divide. 4091 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4092 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4093 4094 // If the shift count is not less than the bitwidth, the result of 4095 // the shift is undefined. Don't try to analyze it, because the 4096 // resolution chosen here may differ from the resolution chosen in 4097 // other parts of the compiler. 4098 if (SA->getValue().ult(BitWidth)) { 4099 Constant *X = 4100 ConstantInt::get(SA->getContext(), 4101 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4102 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4103 } 4104 } 4105 return BinaryOp(Op); 4106 4107 case Instruction::ExtractValue: { 4108 auto *EVI = cast<ExtractValueInst>(Op); 4109 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4110 break; 4111 4112 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 4113 if (!CI) 4114 break; 4115 4116 if (auto *F = CI->getCalledFunction()) 4117 switch (F->getIntrinsicID()) { 4118 case Intrinsic::sadd_with_overflow: 4119 case Intrinsic::uadd_with_overflow: { 4120 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4121 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4122 CI->getArgOperand(1)); 4123 4124 // Now that we know that all uses of the arithmetic-result component of 4125 // CI are guarded by the overflow check, we can go ahead and pretend 4126 // that the arithmetic is non-overflowing. 4127 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 4128 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4129 CI->getArgOperand(1), /* IsNSW = */ true, 4130 /* IsNUW = */ false); 4131 else 4132 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4133 CI->getArgOperand(1), /* IsNSW = */ false, 4134 /* IsNUW*/ true); 4135 } 4136 4137 case Intrinsic::ssub_with_overflow: 4138 case Intrinsic::usub_with_overflow: 4139 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4140 CI->getArgOperand(1)); 4141 4142 case Intrinsic::smul_with_overflow: 4143 case Intrinsic::umul_with_overflow: 4144 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 4145 CI->getArgOperand(1)); 4146 default: 4147 break; 4148 } 4149 } 4150 4151 default: 4152 break; 4153 } 4154 4155 return None; 4156 } 4157 4158 /// A helper function for createAddRecFromPHI to handle simple cases. 4159 /// 4160 /// This function tries to find an AddRec expression for the simplest (yet most 4161 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4162 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4163 /// technique for finding the AddRec expression. 4164 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4165 Value *BEValueV, 4166 Value *StartValueV) { 4167 const Loop *L = LI.getLoopFor(PN->getParent()); 4168 assert(L && L->getHeader() == PN->getParent()); 4169 assert(BEValueV && StartValueV); 4170 4171 auto BO = MatchBinaryOp(BEValueV, DT); 4172 if (!BO) 4173 return nullptr; 4174 4175 if (BO->Opcode != Instruction::Add) 4176 return nullptr; 4177 4178 const SCEV *Accum = nullptr; 4179 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4180 Accum = getSCEV(BO->RHS); 4181 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4182 Accum = getSCEV(BO->LHS); 4183 4184 if (!Accum) 4185 return nullptr; 4186 4187 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4188 if (BO->IsNUW) 4189 Flags = setFlags(Flags, SCEV::FlagNUW); 4190 if (BO->IsNSW) 4191 Flags = setFlags(Flags, SCEV::FlagNSW); 4192 4193 const SCEV *StartVal = getSCEV(StartValueV); 4194 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4195 4196 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4197 4198 // We can add Flags to the post-inc expression only if we 4199 // know that it is *undefined behavior* for BEValueV to 4200 // overflow. 4201 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4202 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4203 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4204 4205 return PHISCEV; 4206 } 4207 4208 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4209 const Loop *L = LI.getLoopFor(PN->getParent()); 4210 if (!L || L->getHeader() != PN->getParent()) 4211 return nullptr; 4212 4213 // The loop may have multiple entrances or multiple exits; we can analyze 4214 // this phi as an addrec if it has a unique entry value and a unique 4215 // backedge value. 4216 Value *BEValueV = nullptr, *StartValueV = nullptr; 4217 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4218 Value *V = PN->getIncomingValue(i); 4219 if (L->contains(PN->getIncomingBlock(i))) { 4220 if (!BEValueV) { 4221 BEValueV = V; 4222 } else if (BEValueV != V) { 4223 BEValueV = nullptr; 4224 break; 4225 } 4226 } else if (!StartValueV) { 4227 StartValueV = V; 4228 } else if (StartValueV != V) { 4229 StartValueV = nullptr; 4230 break; 4231 } 4232 } 4233 if (!BEValueV || !StartValueV) 4234 return nullptr; 4235 4236 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4237 "PHI node already processed?"); 4238 4239 // First, try to find AddRec expression without creating a fictituos symbolic 4240 // value for PN. 4241 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4242 return S; 4243 4244 // Handle PHI node value symbolically. 4245 const SCEV *SymbolicName = getUnknown(PN); 4246 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4247 4248 // Using this symbolic name for the PHI, analyze the value coming around 4249 // the back-edge. 4250 const SCEV *BEValue = getSCEV(BEValueV); 4251 4252 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4253 // has a special value for the first iteration of the loop. 4254 4255 // If the value coming around the backedge is an add with the symbolic 4256 // value we just inserted, then we found a simple induction variable! 4257 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4258 // If there is a single occurrence of the symbolic value, replace it 4259 // with a recurrence. 4260 unsigned FoundIndex = Add->getNumOperands(); 4261 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4262 if (Add->getOperand(i) == SymbolicName) 4263 if (FoundIndex == e) { 4264 FoundIndex = i; 4265 break; 4266 } 4267 4268 if (FoundIndex != Add->getNumOperands()) { 4269 // Create an add with everything but the specified operand. 4270 SmallVector<const SCEV *, 8> Ops; 4271 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4272 if (i != FoundIndex) 4273 Ops.push_back(Add->getOperand(i)); 4274 const SCEV *Accum = getAddExpr(Ops); 4275 4276 // This is not a valid addrec if the step amount is varying each 4277 // loop iteration, but is not itself an addrec in this loop. 4278 if (isLoopInvariant(Accum, L) || 4279 (isa<SCEVAddRecExpr>(Accum) && 4280 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4281 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4282 4283 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4284 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4285 if (BO->IsNUW) 4286 Flags = setFlags(Flags, SCEV::FlagNUW); 4287 if (BO->IsNSW) 4288 Flags = setFlags(Flags, SCEV::FlagNSW); 4289 } 4290 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4291 // If the increment is an inbounds GEP, then we know the address 4292 // space cannot be wrapped around. We cannot make any guarantee 4293 // about signed or unsigned overflow because pointers are 4294 // unsigned but we may have a negative index from the base 4295 // pointer. We can guarantee that no unsigned wrap occurs if the 4296 // indices form a positive value. 4297 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4298 Flags = setFlags(Flags, SCEV::FlagNW); 4299 4300 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4301 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4302 Flags = setFlags(Flags, SCEV::FlagNUW); 4303 } 4304 4305 // We cannot transfer nuw and nsw flags from subtraction 4306 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4307 // for instance. 4308 } 4309 4310 const SCEV *StartVal = getSCEV(StartValueV); 4311 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4312 4313 // Okay, for the entire analysis of this edge we assumed the PHI 4314 // to be symbolic. We now need to go back and purge all of the 4315 // entries for the scalars that use the symbolic expression. 4316 forgetSymbolicName(PN, SymbolicName); 4317 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4318 4319 // We can add Flags to the post-inc expression only if we 4320 // know that it is *undefined behavior* for BEValueV to 4321 // overflow. 4322 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4323 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4324 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4325 4326 return PHISCEV; 4327 } 4328 } 4329 } else { 4330 // Otherwise, this could be a loop like this: 4331 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4332 // In this case, j = {1,+,1} and BEValue is j. 4333 // Because the other in-value of i (0) fits the evolution of BEValue 4334 // i really is an addrec evolution. 4335 // 4336 // We can generalize this saying that i is the shifted value of BEValue 4337 // by one iteration: 4338 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4339 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4340 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 4341 if (Shifted != getCouldNotCompute() && 4342 Start != getCouldNotCompute()) { 4343 const SCEV *StartVal = getSCEV(StartValueV); 4344 if (Start == StartVal) { 4345 // Okay, for the entire analysis of this edge we assumed the PHI 4346 // to be symbolic. We now need to go back and purge all of the 4347 // entries for the scalars that use the symbolic expression. 4348 forgetSymbolicName(PN, SymbolicName); 4349 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4350 return Shifted; 4351 } 4352 } 4353 } 4354 4355 // Remove the temporary PHI node SCEV that has been inserted while intending 4356 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4357 // as it will prevent later (possibly simpler) SCEV expressions to be added 4358 // to the ValueExprMap. 4359 eraseValueFromMap(PN); 4360 4361 return nullptr; 4362 } 4363 4364 // Checks if the SCEV S is available at BB. S is considered available at BB 4365 // if S can be materialized at BB without introducing a fault. 4366 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4367 BasicBlock *BB) { 4368 struct CheckAvailable { 4369 bool TraversalDone = false; 4370 bool Available = true; 4371 4372 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4373 BasicBlock *BB = nullptr; 4374 DominatorTree &DT; 4375 4376 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4377 : L(L), BB(BB), DT(DT) {} 4378 4379 bool setUnavailable() { 4380 TraversalDone = true; 4381 Available = false; 4382 return false; 4383 } 4384 4385 bool follow(const SCEV *S) { 4386 switch (S->getSCEVType()) { 4387 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4388 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4389 // These expressions are available if their operand(s) is/are. 4390 return true; 4391 4392 case scAddRecExpr: { 4393 // We allow add recurrences that are on the loop BB is in, or some 4394 // outer loop. This guarantees availability because the value of the 4395 // add recurrence at BB is simply the "current" value of the induction 4396 // variable. We can relax this in the future; for instance an add 4397 // recurrence on a sibling dominating loop is also available at BB. 4398 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 4399 if (L && (ARLoop == L || ARLoop->contains(L))) 4400 return true; 4401 4402 return setUnavailable(); 4403 } 4404 4405 case scUnknown: { 4406 // For SCEVUnknown, we check for simple dominance. 4407 const auto *SU = cast<SCEVUnknown>(S); 4408 Value *V = SU->getValue(); 4409 4410 if (isa<Argument>(V)) 4411 return false; 4412 4413 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 4414 return false; 4415 4416 return setUnavailable(); 4417 } 4418 4419 case scUDivExpr: 4420 case scCouldNotCompute: 4421 // We do not try to smart about these at all. 4422 return setUnavailable(); 4423 } 4424 llvm_unreachable("switch should be fully covered!"); 4425 } 4426 4427 bool isDone() { return TraversalDone; } 4428 }; 4429 4430 CheckAvailable CA(L, BB, DT); 4431 SCEVTraversal<CheckAvailable> ST(CA); 4432 4433 ST.visitAll(S); 4434 return CA.Available; 4435 } 4436 4437 // Try to match a control flow sequence that branches out at BI and merges back 4438 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 4439 // match. 4440 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 4441 Value *&C, Value *&LHS, Value *&RHS) { 4442 C = BI->getCondition(); 4443 4444 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 4445 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 4446 4447 if (!LeftEdge.isSingleEdge()) 4448 return false; 4449 4450 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 4451 4452 Use &LeftUse = Merge->getOperandUse(0); 4453 Use &RightUse = Merge->getOperandUse(1); 4454 4455 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 4456 LHS = LeftUse; 4457 RHS = RightUse; 4458 return true; 4459 } 4460 4461 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4462 LHS = RightUse; 4463 RHS = LeftUse; 4464 return true; 4465 } 4466 4467 return false; 4468 } 4469 4470 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4471 auto IsReachable = 4472 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 4473 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 4474 const Loop *L = LI.getLoopFor(PN->getParent()); 4475 4476 // We don't want to break LCSSA, even in a SCEV expression tree. 4477 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4478 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4479 return nullptr; 4480 4481 // Try to match 4482 // 4483 // br %cond, label %left, label %right 4484 // left: 4485 // br label %merge 4486 // right: 4487 // br label %merge 4488 // merge: 4489 // V = phi [ %x, %left ], [ %y, %right ] 4490 // 4491 // as "select %cond, %x, %y" 4492 4493 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4494 assert(IDom && "At least the entry block should dominate PN"); 4495 4496 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4497 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4498 4499 if (BI && BI->isConditional() && 4500 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4501 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4502 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4503 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4504 } 4505 4506 return nullptr; 4507 } 4508 4509 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4510 if (const SCEV *S = createAddRecFromPHI(PN)) 4511 return S; 4512 4513 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4514 return S; 4515 4516 // If the PHI has a single incoming value, follow that value, unless the 4517 // PHI's incoming blocks are in a different loop, in which case doing so 4518 // risks breaking LCSSA form. Instcombine would normally zap these, but 4519 // it doesn't have DominatorTree information, so it may miss cases. 4520 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 4521 if (LI.replacementPreservesLCSSAForm(PN, V)) 4522 return getSCEV(V); 4523 4524 // If it's not a loop phi, we can't handle it yet. 4525 return getUnknown(PN); 4526 } 4527 4528 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4529 Value *Cond, 4530 Value *TrueVal, 4531 Value *FalseVal) { 4532 // Handle "constant" branch or select. This can occur for instance when a 4533 // loop pass transforms an inner loop and moves on to process the outer loop. 4534 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4535 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4536 4537 // Try to match some simple smax or umax patterns. 4538 auto *ICI = dyn_cast<ICmpInst>(Cond); 4539 if (!ICI) 4540 return getUnknown(I); 4541 4542 Value *LHS = ICI->getOperand(0); 4543 Value *RHS = ICI->getOperand(1); 4544 4545 switch (ICI->getPredicate()) { 4546 case ICmpInst::ICMP_SLT: 4547 case ICmpInst::ICMP_SLE: 4548 std::swap(LHS, RHS); 4549 LLVM_FALLTHROUGH; 4550 case ICmpInst::ICMP_SGT: 4551 case ICmpInst::ICMP_SGE: 4552 // a >s b ? a+x : b+x -> smax(a, b)+x 4553 // a >s b ? b+x : a+x -> smin(a, b)+x 4554 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4555 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4556 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4557 const SCEV *LA = getSCEV(TrueVal); 4558 const SCEV *RA = getSCEV(FalseVal); 4559 const SCEV *LDiff = getMinusSCEV(LA, LS); 4560 const SCEV *RDiff = getMinusSCEV(RA, RS); 4561 if (LDiff == RDiff) 4562 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4563 LDiff = getMinusSCEV(LA, RS); 4564 RDiff = getMinusSCEV(RA, LS); 4565 if (LDiff == RDiff) 4566 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4567 } 4568 break; 4569 case ICmpInst::ICMP_ULT: 4570 case ICmpInst::ICMP_ULE: 4571 std::swap(LHS, RHS); 4572 LLVM_FALLTHROUGH; 4573 case ICmpInst::ICMP_UGT: 4574 case ICmpInst::ICMP_UGE: 4575 // a >u b ? a+x : b+x -> umax(a, b)+x 4576 // a >u b ? b+x : a+x -> umin(a, b)+x 4577 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4578 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4579 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4580 const SCEV *LA = getSCEV(TrueVal); 4581 const SCEV *RA = getSCEV(FalseVal); 4582 const SCEV *LDiff = getMinusSCEV(LA, LS); 4583 const SCEV *RDiff = getMinusSCEV(RA, RS); 4584 if (LDiff == RDiff) 4585 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4586 LDiff = getMinusSCEV(LA, RS); 4587 RDiff = getMinusSCEV(RA, LS); 4588 if (LDiff == RDiff) 4589 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4590 } 4591 break; 4592 case ICmpInst::ICMP_NE: 4593 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4594 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4595 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4596 const SCEV *One = getOne(I->getType()); 4597 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4598 const SCEV *LA = getSCEV(TrueVal); 4599 const SCEV *RA = getSCEV(FalseVal); 4600 const SCEV *LDiff = getMinusSCEV(LA, LS); 4601 const SCEV *RDiff = getMinusSCEV(RA, One); 4602 if (LDiff == RDiff) 4603 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4604 } 4605 break; 4606 case ICmpInst::ICMP_EQ: 4607 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4608 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4609 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4610 const SCEV *One = getOne(I->getType()); 4611 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4612 const SCEV *LA = getSCEV(TrueVal); 4613 const SCEV *RA = getSCEV(FalseVal); 4614 const SCEV *LDiff = getMinusSCEV(LA, One); 4615 const SCEV *RDiff = getMinusSCEV(RA, LS); 4616 if (LDiff == RDiff) 4617 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4618 } 4619 break; 4620 default: 4621 break; 4622 } 4623 4624 return getUnknown(I); 4625 } 4626 4627 /// Expand GEP instructions into add and multiply operations. This allows them 4628 /// to be analyzed by regular SCEV code. 4629 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4630 // Don't attempt to analyze GEPs over unsized objects. 4631 if (!GEP->getSourceElementType()->isSized()) 4632 return getUnknown(GEP); 4633 4634 SmallVector<const SCEV *, 4> IndexExprs; 4635 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4636 IndexExprs.push_back(getSCEV(*Index)); 4637 return getGEPExpr(GEP, IndexExprs); 4638 } 4639 4640 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 4641 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4642 return C->getAPInt().countTrailingZeros(); 4643 4644 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4645 return std::min(GetMinTrailingZeros(T->getOperand()), 4646 (uint32_t)getTypeSizeInBits(T->getType())); 4647 4648 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4649 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4650 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 4651 ? getTypeSizeInBits(E->getType()) 4652 : OpRes; 4653 } 4654 4655 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4656 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4657 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 4658 ? getTypeSizeInBits(E->getType()) 4659 : OpRes; 4660 } 4661 4662 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4663 // The result is the min of all operands results. 4664 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4665 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4666 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4667 return MinOpRes; 4668 } 4669 4670 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4671 // The result is the sum of all operands results. 4672 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4673 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4674 for (unsigned i = 1, e = M->getNumOperands(); 4675 SumOpRes != BitWidth && i != e; ++i) 4676 SumOpRes = 4677 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 4678 return SumOpRes; 4679 } 4680 4681 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4682 // The result is the min of all operands results. 4683 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4684 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4685 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4686 return MinOpRes; 4687 } 4688 4689 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4690 // The result is the min of all operands results. 4691 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4692 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4693 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4694 return MinOpRes; 4695 } 4696 4697 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4698 // The result is the min of all operands results. 4699 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4700 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4701 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4702 return MinOpRes; 4703 } 4704 4705 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4706 // For a SCEVUnknown, ask ValueTracking. 4707 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 4708 return Known.countMinTrailingZeros(); 4709 } 4710 4711 // SCEVUDivExpr 4712 return 0; 4713 } 4714 4715 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4716 auto I = MinTrailingZerosCache.find(S); 4717 if (I != MinTrailingZerosCache.end()) 4718 return I->second; 4719 4720 uint32_t Result = GetMinTrailingZerosImpl(S); 4721 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 4722 assert(InsertPair.second && "Should insert a new key"); 4723 return InsertPair.first->second; 4724 } 4725 4726 /// Helper method to assign a range to V from metadata present in the IR. 4727 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4728 if (Instruction *I = dyn_cast<Instruction>(V)) 4729 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4730 return getConstantRangeFromMetadata(*MD); 4731 4732 return None; 4733 } 4734 4735 /// Determine the range for a particular SCEV. If SignHint is 4736 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4737 /// with a "cleaner" unsigned (resp. signed) representation. 4738 ConstantRange 4739 ScalarEvolution::getRange(const SCEV *S, 4740 ScalarEvolution::RangeSignHint SignHint) { 4741 DenseMap<const SCEV *, ConstantRange> &Cache = 4742 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4743 : SignedRanges; 4744 4745 // See if we've computed this range already. 4746 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4747 if (I != Cache.end()) 4748 return I->second; 4749 4750 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4751 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4752 4753 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4754 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4755 4756 // If the value has known zeros, the maximum value will have those known zeros 4757 // as well. 4758 uint32_t TZ = GetMinTrailingZeros(S); 4759 if (TZ != 0) { 4760 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4761 ConservativeResult = 4762 ConstantRange(APInt::getMinValue(BitWidth), 4763 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4764 else 4765 ConservativeResult = ConstantRange( 4766 APInt::getSignedMinValue(BitWidth), 4767 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4768 } 4769 4770 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4771 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4772 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4773 X = X.add(getRange(Add->getOperand(i), SignHint)); 4774 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4775 } 4776 4777 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4778 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4779 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4780 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4781 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4782 } 4783 4784 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4785 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4786 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4787 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4788 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4789 } 4790 4791 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4792 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4793 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4794 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4795 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4796 } 4797 4798 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4799 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4800 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4801 return setRange(UDiv, SignHint, 4802 ConservativeResult.intersectWith(X.udiv(Y))); 4803 } 4804 4805 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4806 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4807 return setRange(ZExt, SignHint, 4808 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4809 } 4810 4811 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4812 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4813 return setRange(SExt, SignHint, 4814 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4815 } 4816 4817 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4818 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4819 return setRange(Trunc, SignHint, 4820 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4821 } 4822 4823 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4824 // If there's no unsigned wrap, the value will never be less than its 4825 // initial value. 4826 if (AddRec->hasNoUnsignedWrap()) 4827 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4828 if (!C->getValue()->isZero()) 4829 ConservativeResult = ConservativeResult.intersectWith( 4830 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4831 4832 // If there's no signed wrap, and all the operands have the same sign or 4833 // zero, the value won't ever change sign. 4834 if (AddRec->hasNoSignedWrap()) { 4835 bool AllNonNeg = true; 4836 bool AllNonPos = true; 4837 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4838 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4839 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4840 } 4841 if (AllNonNeg) 4842 ConservativeResult = ConservativeResult.intersectWith( 4843 ConstantRange(APInt(BitWidth, 0), 4844 APInt::getSignedMinValue(BitWidth))); 4845 else if (AllNonPos) 4846 ConservativeResult = ConservativeResult.intersectWith( 4847 ConstantRange(APInt::getSignedMinValue(BitWidth), 4848 APInt(BitWidth, 1))); 4849 } 4850 4851 // TODO: non-affine addrec 4852 if (AddRec->isAffine()) { 4853 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4854 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4855 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4856 auto RangeFromAffine = getRangeForAffineAR( 4857 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4858 BitWidth); 4859 if (!RangeFromAffine.isFullSet()) 4860 ConservativeResult = 4861 ConservativeResult.intersectWith(RangeFromAffine); 4862 4863 auto RangeFromFactoring = getRangeViaFactoring( 4864 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4865 BitWidth); 4866 if (!RangeFromFactoring.isFullSet()) 4867 ConservativeResult = 4868 ConservativeResult.intersectWith(RangeFromFactoring); 4869 } 4870 } 4871 4872 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 4873 } 4874 4875 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4876 // Check if the IR explicitly contains !range metadata. 4877 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4878 if (MDRange.hasValue()) 4879 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4880 4881 // Split here to avoid paying the compile-time cost of calling both 4882 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4883 // if needed. 4884 const DataLayout &DL = getDataLayout(); 4885 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4886 // For a SCEVUnknown, ask ValueTracking. 4887 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4888 if (Known.One != ~Known.Zero + 1) 4889 ConservativeResult = 4890 ConservativeResult.intersectWith(ConstantRange(Known.One, 4891 ~Known.Zero + 1)); 4892 } else { 4893 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4894 "generalize as needed!"); 4895 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4896 if (NS > 1) 4897 ConservativeResult = ConservativeResult.intersectWith( 4898 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4899 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4900 } 4901 4902 return setRange(U, SignHint, std::move(ConservativeResult)); 4903 } 4904 4905 return setRange(S, SignHint, std::move(ConservativeResult)); 4906 } 4907 4908 // Given a StartRange, Step and MaxBECount for an expression compute a range of 4909 // values that the expression can take. Initially, the expression has a value 4910 // from StartRange and then is changed by Step up to MaxBECount times. Signed 4911 // argument defines if we treat Step as signed or unsigned. 4912 static ConstantRange getRangeForAffineARHelper(APInt Step, 4913 const ConstantRange &StartRange, 4914 const APInt &MaxBECount, 4915 unsigned BitWidth, bool Signed) { 4916 // If either Step or MaxBECount is 0, then the expression won't change, and we 4917 // just need to return the initial range. 4918 if (Step == 0 || MaxBECount == 0) 4919 return StartRange; 4920 4921 // If we don't know anything about the initial value (i.e. StartRange is 4922 // FullRange), then we don't know anything about the final range either. 4923 // Return FullRange. 4924 if (StartRange.isFullSet()) 4925 return ConstantRange(BitWidth, /* isFullSet = */ true); 4926 4927 // If Step is signed and negative, then we use its absolute value, but we also 4928 // note that we're moving in the opposite direction. 4929 bool Descending = Signed && Step.isNegative(); 4930 4931 if (Signed) 4932 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 4933 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 4934 // This equations hold true due to the well-defined wrap-around behavior of 4935 // APInt. 4936 Step = Step.abs(); 4937 4938 // Check if Offset is more than full span of BitWidth. If it is, the 4939 // expression is guaranteed to overflow. 4940 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 4941 return ConstantRange(BitWidth, /* isFullSet = */ true); 4942 4943 // Offset is by how much the expression can change. Checks above guarantee no 4944 // overflow here. 4945 APInt Offset = Step * MaxBECount; 4946 4947 // Minimum value of the final range will match the minimal value of StartRange 4948 // if the expression is increasing and will be decreased by Offset otherwise. 4949 // Maximum value of the final range will match the maximal value of StartRange 4950 // if the expression is decreasing and will be increased by Offset otherwise. 4951 APInt StartLower = StartRange.getLower(); 4952 APInt StartUpper = StartRange.getUpper() - 1; 4953 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 4954 : (StartUpper + std::move(Offset)); 4955 4956 // It's possible that the new minimum/maximum value will fall into the initial 4957 // range (due to wrap around). This means that the expression can take any 4958 // value in this bitwidth, and we have to return full range. 4959 if (StartRange.contains(MovedBoundary)) 4960 return ConstantRange(BitWidth, /* isFullSet = */ true); 4961 4962 APInt NewLower = 4963 Descending ? std::move(MovedBoundary) : std::move(StartLower); 4964 APInt NewUpper = 4965 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 4966 NewUpper += 1; 4967 4968 // If we end up with full range, return a proper full range. 4969 if (NewLower == NewUpper) 4970 return ConstantRange(BitWidth, /* isFullSet = */ true); 4971 4972 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 4973 return ConstantRange(std::move(NewLower), std::move(NewUpper)); 4974 } 4975 4976 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 4977 const SCEV *Step, 4978 const SCEV *MaxBECount, 4979 unsigned BitWidth) { 4980 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 4981 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 4982 "Precondition!"); 4983 4984 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 4985 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4986 APInt MaxBECountValue = MaxBECountRange.getUnsignedMax(); 4987 4988 // First, consider step signed. 4989 ConstantRange StartSRange = getSignedRange(Start); 4990 ConstantRange StepSRange = getSignedRange(Step); 4991 4992 // If Step can be both positive and negative, we need to find ranges for the 4993 // maximum absolute step values in both directions and union them. 4994 ConstantRange SR = 4995 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 4996 MaxBECountValue, BitWidth, /* Signed = */ true); 4997 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 4998 StartSRange, MaxBECountValue, 4999 BitWidth, /* Signed = */ true)); 5000 5001 // Next, consider step unsigned. 5002 ConstantRange UR = getRangeForAffineARHelper( 5003 getUnsignedRange(Step).getUnsignedMax(), getUnsignedRange(Start), 5004 MaxBECountValue, BitWidth, /* Signed = */ false); 5005 5006 // Finally, intersect signed and unsigned ranges. 5007 return SR.intersectWith(UR); 5008 } 5009 5010 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5011 const SCEV *Step, 5012 const SCEV *MaxBECount, 5013 unsigned BitWidth) { 5014 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5015 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5016 5017 struct SelectPattern { 5018 Value *Condition = nullptr; 5019 APInt TrueValue; 5020 APInt FalseValue; 5021 5022 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5023 const SCEV *S) { 5024 Optional<unsigned> CastOp; 5025 APInt Offset(BitWidth, 0); 5026 5027 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5028 "Should be!"); 5029 5030 // Peel off a constant offset: 5031 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5032 // In the future we could consider being smarter here and handle 5033 // {Start+Step,+,Step} too. 5034 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5035 return; 5036 5037 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5038 S = SA->getOperand(1); 5039 } 5040 5041 // Peel off a cast operation 5042 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5043 CastOp = SCast->getSCEVType(); 5044 S = SCast->getOperand(); 5045 } 5046 5047 using namespace llvm::PatternMatch; 5048 5049 auto *SU = dyn_cast<SCEVUnknown>(S); 5050 const APInt *TrueVal, *FalseVal; 5051 if (!SU || 5052 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5053 m_APInt(FalseVal)))) { 5054 Condition = nullptr; 5055 return; 5056 } 5057 5058 TrueValue = *TrueVal; 5059 FalseValue = *FalseVal; 5060 5061 // Re-apply the cast we peeled off earlier 5062 if (CastOp.hasValue()) 5063 switch (*CastOp) { 5064 default: 5065 llvm_unreachable("Unknown SCEV cast type!"); 5066 5067 case scTruncate: 5068 TrueValue = TrueValue.trunc(BitWidth); 5069 FalseValue = FalseValue.trunc(BitWidth); 5070 break; 5071 case scZeroExtend: 5072 TrueValue = TrueValue.zext(BitWidth); 5073 FalseValue = FalseValue.zext(BitWidth); 5074 break; 5075 case scSignExtend: 5076 TrueValue = TrueValue.sext(BitWidth); 5077 FalseValue = FalseValue.sext(BitWidth); 5078 break; 5079 } 5080 5081 // Re-apply the constant offset we peeled off earlier 5082 TrueValue += Offset; 5083 FalseValue += Offset; 5084 } 5085 5086 bool isRecognized() { return Condition != nullptr; } 5087 }; 5088 5089 SelectPattern StartPattern(*this, BitWidth, Start); 5090 if (!StartPattern.isRecognized()) 5091 return ConstantRange(BitWidth, /* isFullSet = */ true); 5092 5093 SelectPattern StepPattern(*this, BitWidth, Step); 5094 if (!StepPattern.isRecognized()) 5095 return ConstantRange(BitWidth, /* isFullSet = */ true); 5096 5097 if (StartPattern.Condition != StepPattern.Condition) { 5098 // We don't handle this case today; but we could, by considering four 5099 // possibilities below instead of two. I'm not sure if there are cases where 5100 // that will help over what getRange already does, though. 5101 return ConstantRange(BitWidth, /* isFullSet = */ true); 5102 } 5103 5104 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5105 // construct arbitrary general SCEV expressions here. This function is called 5106 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5107 // say) can end up caching a suboptimal value. 5108 5109 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5110 // C2352 and C2512 (otherwise it isn't needed). 5111 5112 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5113 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5114 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5115 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5116 5117 ConstantRange TrueRange = 5118 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5119 ConstantRange FalseRange = 5120 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5121 5122 return TrueRange.unionWith(FalseRange); 5123 } 5124 5125 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5126 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5127 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5128 5129 // Return early if there are no flags to propagate to the SCEV. 5130 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5131 if (BinOp->hasNoUnsignedWrap()) 5132 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5133 if (BinOp->hasNoSignedWrap()) 5134 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5135 if (Flags == SCEV::FlagAnyWrap) 5136 return SCEV::FlagAnyWrap; 5137 5138 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5139 } 5140 5141 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5142 // Here we check that I is in the header of the innermost loop containing I, 5143 // since we only deal with instructions in the loop header. The actual loop we 5144 // need to check later will come from an add recurrence, but getting that 5145 // requires computing the SCEV of the operands, which can be expensive. This 5146 // check we can do cheaply to rule out some cases early. 5147 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5148 if (InnermostContainingLoop == nullptr || 5149 InnermostContainingLoop->getHeader() != I->getParent()) 5150 return false; 5151 5152 // Only proceed if we can prove that I does not yield poison. 5153 if (!programUndefinedIfFullPoison(I)) 5154 return false; 5155 5156 // At this point we know that if I is executed, then it does not wrap 5157 // according to at least one of NSW or NUW. If I is not executed, then we do 5158 // not know if the calculation that I represents would wrap. Multiple 5159 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5160 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5161 // derived from other instructions that map to the same SCEV. We cannot make 5162 // that guarantee for cases where I is not executed. So we need to find the 5163 // loop that I is considered in relation to and prove that I is executed for 5164 // every iteration of that loop. That implies that the value that I 5165 // calculates does not wrap anywhere in the loop, so then we can apply the 5166 // flags to the SCEV. 5167 // 5168 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5169 // from different loops, so that we know which loop to prove that I is 5170 // executed in. 5171 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5172 // I could be an extractvalue from a call to an overflow intrinsic. 5173 // TODO: We can do better here in some cases. 5174 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5175 return false; 5176 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5177 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5178 bool AllOtherOpsLoopInvariant = true; 5179 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5180 ++OtherOpIndex) { 5181 if (OtherOpIndex != OpIndex) { 5182 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5183 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5184 AllOtherOpsLoopInvariant = false; 5185 break; 5186 } 5187 } 5188 } 5189 if (AllOtherOpsLoopInvariant && 5190 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5191 return true; 5192 } 5193 } 5194 return false; 5195 } 5196 5197 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5198 // If we know that \c I can never be poison period, then that's enough. 5199 if (isSCEVExprNeverPoison(I)) 5200 return true; 5201 5202 // For an add recurrence specifically, we assume that infinite loops without 5203 // side effects are undefined behavior, and then reason as follows: 5204 // 5205 // If the add recurrence is poison in any iteration, it is poison on all 5206 // future iterations (since incrementing poison yields poison). If the result 5207 // of the add recurrence is fed into the loop latch condition and the loop 5208 // does not contain any throws or exiting blocks other than the latch, we now 5209 // have the ability to "choose" whether the backedge is taken or not (by 5210 // choosing a sufficiently evil value for the poison feeding into the branch) 5211 // for every iteration including and after the one in which \p I first became 5212 // poison. There are two possibilities (let's call the iteration in which \p 5213 // I first became poison as K): 5214 // 5215 // 1. In the set of iterations including and after K, the loop body executes 5216 // no side effects. In this case executing the backege an infinte number 5217 // of times will yield undefined behavior. 5218 // 5219 // 2. In the set of iterations including and after K, the loop body executes 5220 // at least one side effect. In this case, that specific instance of side 5221 // effect is control dependent on poison, which also yields undefined 5222 // behavior. 5223 5224 auto *ExitingBB = L->getExitingBlock(); 5225 auto *LatchBB = L->getLoopLatch(); 5226 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5227 return false; 5228 5229 SmallPtrSet<const Instruction *, 16> Pushed; 5230 SmallVector<const Instruction *, 8> PoisonStack; 5231 5232 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5233 // things that are known to be fully poison under that assumption go on the 5234 // PoisonStack. 5235 Pushed.insert(I); 5236 PoisonStack.push_back(I); 5237 5238 bool LatchControlDependentOnPoison = false; 5239 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5240 const Instruction *Poison = PoisonStack.pop_back_val(); 5241 5242 for (auto *PoisonUser : Poison->users()) { 5243 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 5244 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5245 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5246 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5247 assert(BI->isConditional() && "Only possibility!"); 5248 if (BI->getParent() == LatchBB) { 5249 LatchControlDependentOnPoison = true; 5250 break; 5251 } 5252 } 5253 } 5254 } 5255 5256 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5257 } 5258 5259 ScalarEvolution::LoopProperties 5260 ScalarEvolution::getLoopProperties(const Loop *L) { 5261 typedef ScalarEvolution::LoopProperties LoopProperties; 5262 5263 auto Itr = LoopPropertiesCache.find(L); 5264 if (Itr == LoopPropertiesCache.end()) { 5265 auto HasSideEffects = [](Instruction *I) { 5266 if (auto *SI = dyn_cast<StoreInst>(I)) 5267 return !SI->isSimple(); 5268 5269 return I->mayHaveSideEffects(); 5270 }; 5271 5272 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5273 /*HasNoSideEffects*/ true}; 5274 5275 for (auto *BB : L->getBlocks()) 5276 for (auto &I : *BB) { 5277 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5278 LP.HasNoAbnormalExits = false; 5279 if (HasSideEffects(&I)) 5280 LP.HasNoSideEffects = false; 5281 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5282 break; // We're already as pessimistic as we can get. 5283 } 5284 5285 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5286 assert(InsertPair.second && "We just checked!"); 5287 Itr = InsertPair.first; 5288 } 5289 5290 return Itr->second; 5291 } 5292 5293 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5294 if (!isSCEVable(V->getType())) 5295 return getUnknown(V); 5296 5297 if (Instruction *I = dyn_cast<Instruction>(V)) { 5298 // Don't attempt to analyze instructions in blocks that aren't 5299 // reachable. Such instructions don't matter, and they aren't required 5300 // to obey basic rules for definitions dominating uses which this 5301 // analysis depends on. 5302 if (!DT.isReachableFromEntry(I->getParent())) 5303 return getUnknown(V); 5304 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5305 return getConstant(CI); 5306 else if (isa<ConstantPointerNull>(V)) 5307 return getZero(V->getType()); 5308 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5309 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5310 else if (!isa<ConstantExpr>(V)) 5311 return getUnknown(V); 5312 5313 Operator *U = cast<Operator>(V); 5314 if (auto BO = MatchBinaryOp(U, DT)) { 5315 switch (BO->Opcode) { 5316 case Instruction::Add: { 5317 // The simple thing to do would be to just call getSCEV on both operands 5318 // and call getAddExpr with the result. However if we're looking at a 5319 // bunch of things all added together, this can be quite inefficient, 5320 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5321 // Instead, gather up all the operands and make a single getAddExpr call. 5322 // LLVM IR canonical form means we need only traverse the left operands. 5323 SmallVector<const SCEV *, 4> AddOps; 5324 do { 5325 if (BO->Op) { 5326 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5327 AddOps.push_back(OpSCEV); 5328 break; 5329 } 5330 5331 // If a NUW or NSW flag can be applied to the SCEV for this 5332 // addition, then compute the SCEV for this addition by itself 5333 // with a separate call to getAddExpr. We need to do that 5334 // instead of pushing the operands of the addition onto AddOps, 5335 // since the flags are only known to apply to this particular 5336 // addition - they may not apply to other additions that can be 5337 // formed with operands from AddOps. 5338 const SCEV *RHS = getSCEV(BO->RHS); 5339 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5340 if (Flags != SCEV::FlagAnyWrap) { 5341 const SCEV *LHS = getSCEV(BO->LHS); 5342 if (BO->Opcode == Instruction::Sub) 5343 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 5344 else 5345 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 5346 break; 5347 } 5348 } 5349 5350 if (BO->Opcode == Instruction::Sub) 5351 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 5352 else 5353 AddOps.push_back(getSCEV(BO->RHS)); 5354 5355 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5356 if (!NewBO || (NewBO->Opcode != Instruction::Add && 5357 NewBO->Opcode != Instruction::Sub)) { 5358 AddOps.push_back(getSCEV(BO->LHS)); 5359 break; 5360 } 5361 BO = NewBO; 5362 } while (true); 5363 5364 return getAddExpr(AddOps); 5365 } 5366 5367 case Instruction::Mul: { 5368 SmallVector<const SCEV *, 4> MulOps; 5369 do { 5370 if (BO->Op) { 5371 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5372 MulOps.push_back(OpSCEV); 5373 break; 5374 } 5375 5376 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5377 if (Flags != SCEV::FlagAnyWrap) { 5378 MulOps.push_back( 5379 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 5380 break; 5381 } 5382 } 5383 5384 MulOps.push_back(getSCEV(BO->RHS)); 5385 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5386 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 5387 MulOps.push_back(getSCEV(BO->LHS)); 5388 break; 5389 } 5390 BO = NewBO; 5391 } while (true); 5392 5393 return getMulExpr(MulOps); 5394 } 5395 case Instruction::UDiv: 5396 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 5397 case Instruction::Sub: { 5398 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5399 if (BO->Op) 5400 Flags = getNoWrapFlagsFromUB(BO->Op); 5401 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 5402 } 5403 case Instruction::And: 5404 // For an expression like x&255 that merely masks off the high bits, 5405 // use zext(trunc(x)) as the SCEV expression. 5406 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5407 if (CI->isNullValue()) 5408 return getSCEV(BO->RHS); 5409 if (CI->isAllOnesValue()) 5410 return getSCEV(BO->LHS); 5411 const APInt &A = CI->getValue(); 5412 5413 // Instcombine's ShrinkDemandedConstant may strip bits out of 5414 // constants, obscuring what would otherwise be a low-bits mask. 5415 // Use computeKnownBits to compute what ShrinkDemandedConstant 5416 // knew about to reconstruct a low-bits mask value. 5417 unsigned LZ = A.countLeadingZeros(); 5418 unsigned TZ = A.countTrailingZeros(); 5419 unsigned BitWidth = A.getBitWidth(); 5420 KnownBits Known(BitWidth); 5421 computeKnownBits(BO->LHS, Known, getDataLayout(), 5422 0, &AC, nullptr, &DT); 5423 5424 APInt EffectiveMask = 5425 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 5426 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 5427 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 5428 const SCEV *LHS = getSCEV(BO->LHS); 5429 const SCEV *ShiftedLHS = nullptr; 5430 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 5431 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 5432 // For an expression like (x * 8) & 8, simplify the multiply. 5433 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 5434 unsigned GCD = std::min(MulZeros, TZ); 5435 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 5436 SmallVector<const SCEV*, 4> MulOps; 5437 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 5438 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 5439 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 5440 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 5441 } 5442 } 5443 if (!ShiftedLHS) 5444 ShiftedLHS = getUDivExpr(LHS, MulCount); 5445 return getMulExpr( 5446 getZeroExtendExpr( 5447 getTruncateExpr(ShiftedLHS, 5448 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 5449 BO->LHS->getType()), 5450 MulCount); 5451 } 5452 } 5453 break; 5454 5455 case Instruction::Or: 5456 // If the RHS of the Or is a constant, we may have something like: 5457 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 5458 // optimizations will transparently handle this case. 5459 // 5460 // In order for this transformation to be safe, the LHS must be of the 5461 // form X*(2^n) and the Or constant must be less than 2^n. 5462 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5463 const SCEV *LHS = getSCEV(BO->LHS); 5464 const APInt &CIVal = CI->getValue(); 5465 if (GetMinTrailingZeros(LHS) >= 5466 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 5467 // Build a plain add SCEV. 5468 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 5469 // If the LHS of the add was an addrec and it has no-wrap flags, 5470 // transfer the no-wrap flags, since an or won't introduce a wrap. 5471 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 5472 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 5473 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 5474 OldAR->getNoWrapFlags()); 5475 } 5476 return S; 5477 } 5478 } 5479 break; 5480 5481 case Instruction::Xor: 5482 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5483 // If the RHS of xor is -1, then this is a not operation. 5484 if (CI->isAllOnesValue()) 5485 return getNotSCEV(getSCEV(BO->LHS)); 5486 5487 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 5488 // This is a variant of the check for xor with -1, and it handles 5489 // the case where instcombine has trimmed non-demanded bits out 5490 // of an xor with -1. 5491 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 5492 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 5493 if (LBO->getOpcode() == Instruction::And && 5494 LCI->getValue() == CI->getValue()) 5495 if (const SCEVZeroExtendExpr *Z = 5496 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 5497 Type *UTy = BO->LHS->getType(); 5498 const SCEV *Z0 = Z->getOperand(); 5499 Type *Z0Ty = Z0->getType(); 5500 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 5501 5502 // If C is a low-bits mask, the zero extend is serving to 5503 // mask off the high bits. Complement the operand and 5504 // re-apply the zext. 5505 if (CI->getValue().isMask(Z0TySize)) 5506 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 5507 5508 // If C is a single bit, it may be in the sign-bit position 5509 // before the zero-extend. In this case, represent the xor 5510 // using an add, which is equivalent, and re-apply the zext. 5511 APInt Trunc = CI->getValue().trunc(Z0TySize); 5512 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 5513 Trunc.isSignMask()) 5514 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 5515 UTy); 5516 } 5517 } 5518 break; 5519 5520 case Instruction::Shl: 5521 // Turn shift left of a constant amount into a multiply. 5522 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 5523 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 5524 5525 // If the shift count is not less than the bitwidth, the result of 5526 // the shift is undefined. Don't try to analyze it, because the 5527 // resolution chosen here may differ from the resolution chosen in 5528 // other parts of the compiler. 5529 if (SA->getValue().uge(BitWidth)) 5530 break; 5531 5532 // It is currently not resolved how to interpret NSW for left 5533 // shift by BitWidth - 1, so we avoid applying flags in that 5534 // case. Remove this check (or this comment) once the situation 5535 // is resolved. See 5536 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 5537 // and http://reviews.llvm.org/D8890 . 5538 auto Flags = SCEV::FlagAnyWrap; 5539 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 5540 Flags = getNoWrapFlagsFromUB(BO->Op); 5541 5542 Constant *X = ConstantInt::get(getContext(), 5543 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5544 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 5545 } 5546 break; 5547 5548 case Instruction::AShr: 5549 // AShr X, C, where C is a constant. 5550 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 5551 if (!CI) 5552 break; 5553 5554 Type *OuterTy = BO->LHS->getType(); 5555 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 5556 // If the shift count is not less than the bitwidth, the result of 5557 // the shift is undefined. Don't try to analyze it, because the 5558 // resolution chosen here may differ from the resolution chosen in 5559 // other parts of the compiler. 5560 if (CI->getValue().uge(BitWidth)) 5561 break; 5562 5563 if (CI->isNullValue()) 5564 return getSCEV(BO->LHS); // shift by zero --> noop 5565 5566 uint64_t AShrAmt = CI->getZExtValue(); 5567 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 5568 5569 Operator *L = dyn_cast<Operator>(BO->LHS); 5570 if (L && L->getOpcode() == Instruction::Shl) { 5571 // X = Shl A, n 5572 // Y = AShr X, m 5573 // Both n and m are constant. 5574 5575 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 5576 if (L->getOperand(1) == BO->RHS) 5577 // For a two-shift sext-inreg, i.e. n = m, 5578 // use sext(trunc(x)) as the SCEV expression. 5579 return getSignExtendExpr( 5580 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 5581 5582 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 5583 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 5584 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 5585 if (ShlAmt > AShrAmt) { 5586 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 5587 // expression. We already checked that ShlAmt < BitWidth, so 5588 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 5589 // ShlAmt - AShrAmt < Amt. 5590 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 5591 ShlAmt - AShrAmt); 5592 return getSignExtendExpr( 5593 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 5594 getConstant(Mul)), OuterTy); 5595 } 5596 } 5597 } 5598 break; 5599 } 5600 } 5601 5602 switch (U->getOpcode()) { 5603 case Instruction::Trunc: 5604 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 5605 5606 case Instruction::ZExt: 5607 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5608 5609 case Instruction::SExt: 5610 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5611 5612 case Instruction::BitCast: 5613 // BitCasts are no-op casts so we just eliminate the cast. 5614 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 5615 return getSCEV(U->getOperand(0)); 5616 break; 5617 5618 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 5619 // lead to pointer expressions which cannot safely be expanded to GEPs, 5620 // because ScalarEvolution doesn't respect the GEP aliasing rules when 5621 // simplifying integer expressions. 5622 5623 case Instruction::GetElementPtr: 5624 return createNodeForGEP(cast<GEPOperator>(U)); 5625 5626 case Instruction::PHI: 5627 return createNodeForPHI(cast<PHINode>(U)); 5628 5629 case Instruction::Select: 5630 // U can also be a select constant expr, which let fall through. Since 5631 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 5632 // constant expressions cannot have instructions as operands, we'd have 5633 // returned getUnknown for a select constant expressions anyway. 5634 if (isa<Instruction>(U)) 5635 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 5636 U->getOperand(1), U->getOperand(2)); 5637 break; 5638 5639 case Instruction::Call: 5640 case Instruction::Invoke: 5641 if (Value *RV = CallSite(U).getReturnedArgOperand()) 5642 return getSCEV(RV); 5643 break; 5644 } 5645 5646 return getUnknown(V); 5647 } 5648 5649 5650 5651 //===----------------------------------------------------------------------===// 5652 // Iteration Count Computation Code 5653 // 5654 5655 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 5656 if (!ExitCount) 5657 return 0; 5658 5659 ConstantInt *ExitConst = ExitCount->getValue(); 5660 5661 // Guard against huge trip counts. 5662 if (ExitConst->getValue().getActiveBits() > 32) 5663 return 0; 5664 5665 // In case of integer overflow, this returns 0, which is correct. 5666 return ((unsigned)ExitConst->getZExtValue()) + 1; 5667 } 5668 5669 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 5670 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5671 return getSmallConstantTripCount(L, ExitingBB); 5672 5673 // No trip count information for multiple exits. 5674 return 0; 5675 } 5676 5677 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 5678 BasicBlock *ExitingBlock) { 5679 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5680 assert(L->isLoopExiting(ExitingBlock) && 5681 "Exiting block must actually branch out of the loop!"); 5682 const SCEVConstant *ExitCount = 5683 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 5684 return getConstantTripCount(ExitCount); 5685 } 5686 5687 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 5688 const auto *MaxExitCount = 5689 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 5690 return getConstantTripCount(MaxExitCount); 5691 } 5692 5693 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 5694 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5695 return getSmallConstantTripMultiple(L, ExitingBB); 5696 5697 // No trip multiple information for multiple exits. 5698 return 0; 5699 } 5700 5701 /// Returns the largest constant divisor of the trip count of this loop as a 5702 /// normal unsigned value, if possible. This means that the actual trip count is 5703 /// always a multiple of the returned value (don't forget the trip count could 5704 /// very well be zero as well!). 5705 /// 5706 /// Returns 1 if the trip count is unknown or not guaranteed to be the 5707 /// multiple of a constant (which is also the case if the trip count is simply 5708 /// constant, use getSmallConstantTripCount for that case), Will also return 1 5709 /// if the trip count is very large (>= 2^32). 5710 /// 5711 /// As explained in the comments for getSmallConstantTripCount, this assumes 5712 /// that control exits the loop via ExitingBlock. 5713 unsigned 5714 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 5715 BasicBlock *ExitingBlock) { 5716 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5717 assert(L->isLoopExiting(ExitingBlock) && 5718 "Exiting block must actually branch out of the loop!"); 5719 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 5720 if (ExitCount == getCouldNotCompute()) 5721 return 1; 5722 5723 // Get the trip count from the BE count by adding 1. 5724 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 5725 5726 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 5727 if (!TC) 5728 // Attempt to factor more general cases. Returns the greatest power of 5729 // two divisor. If overflow happens, the trip count expression is still 5730 // divisible by the greatest power of 2 divisor returned. 5731 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 5732 5733 ConstantInt *Result = TC->getValue(); 5734 5735 // Guard against huge trip counts (this requires checking 5736 // for zero to handle the case where the trip count == -1 and the 5737 // addition wraps). 5738 if (!Result || Result->getValue().getActiveBits() > 32 || 5739 Result->getValue().getActiveBits() == 0) 5740 return 1; 5741 5742 return (unsigned)Result->getZExtValue(); 5743 } 5744 5745 /// Get the expression for the number of loop iterations for which this loop is 5746 /// guaranteed not to exit via ExitingBlock. Otherwise return 5747 /// SCEVCouldNotCompute. 5748 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 5749 BasicBlock *ExitingBlock) { 5750 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 5751 } 5752 5753 const SCEV * 5754 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 5755 SCEVUnionPredicate &Preds) { 5756 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds); 5757 } 5758 5759 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 5760 return getBackedgeTakenInfo(L).getExact(this); 5761 } 5762 5763 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 5764 /// known never to be less than the actual backedge taken count. 5765 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 5766 return getBackedgeTakenInfo(L).getMax(this); 5767 } 5768 5769 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 5770 return getBackedgeTakenInfo(L).isMaxOrZero(this); 5771 } 5772 5773 /// Push PHI nodes in the header of the given loop onto the given Worklist. 5774 static void 5775 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5776 BasicBlock *Header = L->getHeader(); 5777 5778 // Push all Loop-header PHIs onto the Worklist stack. 5779 for (BasicBlock::iterator I = Header->begin(); 5780 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5781 Worklist.push_back(PN); 5782 } 5783 5784 const ScalarEvolution::BackedgeTakenInfo & 5785 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 5786 auto &BTI = getBackedgeTakenInfo(L); 5787 if (BTI.hasFullInfo()) 5788 return BTI; 5789 5790 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5791 5792 if (!Pair.second) 5793 return Pair.first->second; 5794 5795 BackedgeTakenInfo Result = 5796 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 5797 5798 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 5799 } 5800 5801 const ScalarEvolution::BackedgeTakenInfo & 5802 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5803 // Initially insert an invalid entry for this loop. If the insertion 5804 // succeeds, proceed to actually compute a backedge-taken count and 5805 // update the value. The temporary CouldNotCompute value tells SCEV 5806 // code elsewhere that it shouldn't attempt to request a new 5807 // backedge-taken count, which could result in infinite recursion. 5808 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5809 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5810 if (!Pair.second) 5811 return Pair.first->second; 5812 5813 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5814 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5815 // must be cleared in this scope. 5816 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5817 5818 if (Result.getExact(this) != getCouldNotCompute()) { 5819 assert(isLoopInvariant(Result.getExact(this), L) && 5820 isLoopInvariant(Result.getMax(this), L) && 5821 "Computed backedge-taken count isn't loop invariant for loop!"); 5822 ++NumTripCountsComputed; 5823 } 5824 else if (Result.getMax(this) == getCouldNotCompute() && 5825 isa<PHINode>(L->getHeader()->begin())) { 5826 // Only count loops that have phi nodes as not being computable. 5827 ++NumTripCountsNotComputed; 5828 } 5829 5830 // Now that we know more about the trip count for this loop, forget any 5831 // existing SCEV values for PHI nodes in this loop since they are only 5832 // conservative estimates made without the benefit of trip count 5833 // information. This is similar to the code in forgetLoop, except that 5834 // it handles SCEVUnknown PHI nodes specially. 5835 if (Result.hasAnyInfo()) { 5836 SmallVector<Instruction *, 16> Worklist; 5837 PushLoopPHIs(L, Worklist); 5838 5839 SmallPtrSet<Instruction *, 8> Visited; 5840 while (!Worklist.empty()) { 5841 Instruction *I = Worklist.pop_back_val(); 5842 if (!Visited.insert(I).second) 5843 continue; 5844 5845 ValueExprMapType::iterator It = 5846 ValueExprMap.find_as(static_cast<Value *>(I)); 5847 if (It != ValueExprMap.end()) { 5848 const SCEV *Old = It->second; 5849 5850 // SCEVUnknown for a PHI either means that it has an unrecognized 5851 // structure, or it's a PHI that's in the progress of being computed 5852 // by createNodeForPHI. In the former case, additional loop trip 5853 // count information isn't going to change anything. In the later 5854 // case, createNodeForPHI will perform the necessary updates on its 5855 // own when it gets to that point. 5856 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5857 eraseValueFromMap(It->first); 5858 forgetMemoizedResults(Old); 5859 } 5860 if (PHINode *PN = dyn_cast<PHINode>(I)) 5861 ConstantEvolutionLoopExitValue.erase(PN); 5862 } 5863 5864 PushDefUseChildren(I, Worklist); 5865 } 5866 } 5867 5868 // Re-lookup the insert position, since the call to 5869 // computeBackedgeTakenCount above could result in a 5870 // recusive call to getBackedgeTakenInfo (on a different 5871 // loop), which would invalidate the iterator computed 5872 // earlier. 5873 return BackedgeTakenCounts.find(L)->second = std::move(Result); 5874 } 5875 5876 void ScalarEvolution::forgetLoop(const Loop *L) { 5877 // Drop any stored trip count value. 5878 auto RemoveLoopFromBackedgeMap = 5879 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 5880 auto BTCPos = Map.find(L); 5881 if (BTCPos != Map.end()) { 5882 BTCPos->second.clear(); 5883 Map.erase(BTCPos); 5884 } 5885 }; 5886 5887 RemoveLoopFromBackedgeMap(BackedgeTakenCounts); 5888 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts); 5889 5890 // Drop information about expressions based on loop-header PHIs. 5891 SmallVector<Instruction *, 16> Worklist; 5892 PushLoopPHIs(L, Worklist); 5893 5894 SmallPtrSet<Instruction *, 8> Visited; 5895 while (!Worklist.empty()) { 5896 Instruction *I = Worklist.pop_back_val(); 5897 if (!Visited.insert(I).second) 5898 continue; 5899 5900 ValueExprMapType::iterator It = 5901 ValueExprMap.find_as(static_cast<Value *>(I)); 5902 if (It != ValueExprMap.end()) { 5903 eraseValueFromMap(It->first); 5904 forgetMemoizedResults(It->second); 5905 if (PHINode *PN = dyn_cast<PHINode>(I)) 5906 ConstantEvolutionLoopExitValue.erase(PN); 5907 } 5908 5909 PushDefUseChildren(I, Worklist); 5910 } 5911 5912 // Forget all contained loops too, to avoid dangling entries in the 5913 // ValuesAtScopes map. 5914 for (Loop *I : *L) 5915 forgetLoop(I); 5916 5917 LoopPropertiesCache.erase(L); 5918 } 5919 5920 void ScalarEvolution::forgetValue(Value *V) { 5921 Instruction *I = dyn_cast<Instruction>(V); 5922 if (!I) return; 5923 5924 // Drop information about expressions based on loop-header PHIs. 5925 SmallVector<Instruction *, 16> Worklist; 5926 Worklist.push_back(I); 5927 5928 SmallPtrSet<Instruction *, 8> Visited; 5929 while (!Worklist.empty()) { 5930 I = Worklist.pop_back_val(); 5931 if (!Visited.insert(I).second) 5932 continue; 5933 5934 ValueExprMapType::iterator It = 5935 ValueExprMap.find_as(static_cast<Value *>(I)); 5936 if (It != ValueExprMap.end()) { 5937 eraseValueFromMap(It->first); 5938 forgetMemoizedResults(It->second); 5939 if (PHINode *PN = dyn_cast<PHINode>(I)) 5940 ConstantEvolutionLoopExitValue.erase(PN); 5941 } 5942 5943 PushDefUseChildren(I, Worklist); 5944 } 5945 } 5946 5947 /// Get the exact loop backedge taken count considering all loop exits. A 5948 /// computable result can only be returned for loops with a single exit. 5949 /// Returning the minimum taken count among all exits is incorrect because one 5950 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that 5951 /// the limit of each loop test is never skipped. This is a valid assumption as 5952 /// long as the loop exits via that test. For precise results, it is the 5953 /// caller's responsibility to specify the relevant loop exit using 5954 /// getExact(ExitingBlock, SE). 5955 const SCEV * 5956 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE, 5957 SCEVUnionPredicate *Preds) const { 5958 // If any exits were not computable, the loop is not computable. 5959 if (!isComplete() || ExitNotTaken.empty()) 5960 return SE->getCouldNotCompute(); 5961 5962 const SCEV *BECount = nullptr; 5963 for (auto &ENT : ExitNotTaken) { 5964 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5965 5966 if (!BECount) 5967 BECount = ENT.ExactNotTaken; 5968 else if (BECount != ENT.ExactNotTaken) 5969 return SE->getCouldNotCompute(); 5970 if (Preds && !ENT.hasAlwaysTruePredicate()) 5971 Preds->add(ENT.Predicate.get()); 5972 5973 assert((Preds || ENT.hasAlwaysTruePredicate()) && 5974 "Predicate should be always true!"); 5975 } 5976 5977 assert(BECount && "Invalid not taken count for loop exit"); 5978 return BECount; 5979 } 5980 5981 /// Get the exact not taken count for this loop exit. 5982 const SCEV * 5983 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5984 ScalarEvolution *SE) const { 5985 for (auto &ENT : ExitNotTaken) 5986 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 5987 return ENT.ExactNotTaken; 5988 5989 return SE->getCouldNotCompute(); 5990 } 5991 5992 /// getMax - Get the max backedge taken count for the loop. 5993 const SCEV * 5994 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5995 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5996 return !ENT.hasAlwaysTruePredicate(); 5997 }; 5998 5999 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6000 return SE->getCouldNotCompute(); 6001 6002 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6003 "No point in having a non-constant max backedge taken count!"); 6004 return getMax(); 6005 } 6006 6007 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6008 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6009 return !ENT.hasAlwaysTruePredicate(); 6010 }; 6011 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6012 } 6013 6014 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6015 ScalarEvolution *SE) const { 6016 if (getMax() && getMax() != SE->getCouldNotCompute() && 6017 SE->hasOperand(getMax(), S)) 6018 return true; 6019 6020 for (auto &ENT : ExitNotTaken) 6021 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6022 SE->hasOperand(ENT.ExactNotTaken, S)) 6023 return true; 6024 6025 return false; 6026 } 6027 6028 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6029 : ExactNotTaken(E), MaxNotTaken(E), MaxOrZero(false) { 6030 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6031 isa<SCEVConstant>(MaxNotTaken)) && 6032 "No point in having a non-constant max backedge taken count!"); 6033 } 6034 6035 ScalarEvolution::ExitLimit::ExitLimit( 6036 const SCEV *E, const SCEV *M, bool MaxOrZero, 6037 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6038 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6039 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6040 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6041 "Exact is not allowed to be less precise than Max"); 6042 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6043 isa<SCEVConstant>(MaxNotTaken)) && 6044 "No point in having a non-constant max backedge taken count!"); 6045 for (auto *PredSet : PredSetList) 6046 for (auto *P : *PredSet) 6047 addPredicate(P); 6048 } 6049 6050 ScalarEvolution::ExitLimit::ExitLimit( 6051 const SCEV *E, const SCEV *M, bool MaxOrZero, 6052 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6053 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6054 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6055 isa<SCEVConstant>(MaxNotTaken)) && 6056 "No point in having a non-constant max backedge taken count!"); 6057 } 6058 6059 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6060 bool MaxOrZero) 6061 : ExitLimit(E, M, MaxOrZero, None) { 6062 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6063 isa<SCEVConstant>(MaxNotTaken)) && 6064 "No point in having a non-constant max backedge taken count!"); 6065 } 6066 6067 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6068 /// computable exit into a persistent ExitNotTakenInfo array. 6069 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6070 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6071 &&ExitCounts, 6072 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6073 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6074 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 6075 ExitNotTaken.reserve(ExitCounts.size()); 6076 std::transform( 6077 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6078 [&](const EdgeExitInfo &EEI) { 6079 BasicBlock *ExitBB = EEI.first; 6080 const ExitLimit &EL = EEI.second; 6081 if (EL.Predicates.empty()) 6082 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 6083 6084 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 6085 for (auto *Pred : EL.Predicates) 6086 Predicate->add(Pred); 6087 6088 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 6089 }); 6090 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 6091 "No point in having a non-constant max backedge taken count!"); 6092 } 6093 6094 /// Invalidate this result and free the ExitNotTakenInfo array. 6095 void ScalarEvolution::BackedgeTakenInfo::clear() { 6096 ExitNotTaken.clear(); 6097 } 6098 6099 /// Compute the number of times the backedge of the specified loop will execute. 6100 ScalarEvolution::BackedgeTakenInfo 6101 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 6102 bool AllowPredicates) { 6103 SmallVector<BasicBlock *, 8> ExitingBlocks; 6104 L->getExitingBlocks(ExitingBlocks); 6105 6106 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 6107 6108 SmallVector<EdgeExitInfo, 4> ExitCounts; 6109 bool CouldComputeBECount = true; 6110 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 6111 const SCEV *MustExitMaxBECount = nullptr; 6112 const SCEV *MayExitMaxBECount = nullptr; 6113 bool MustExitMaxOrZero = false; 6114 6115 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 6116 // and compute maxBECount. 6117 // Do a union of all the predicates here. 6118 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 6119 BasicBlock *ExitBB = ExitingBlocks[i]; 6120 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 6121 6122 assert((AllowPredicates || EL.Predicates.empty()) && 6123 "Predicated exit limit when predicates are not allowed!"); 6124 6125 // 1. For each exit that can be computed, add an entry to ExitCounts. 6126 // CouldComputeBECount is true only if all exits can be computed. 6127 if (EL.ExactNotTaken == getCouldNotCompute()) 6128 // We couldn't compute an exact value for this exit, so 6129 // we won't be able to compute an exact value for the loop. 6130 CouldComputeBECount = false; 6131 else 6132 ExitCounts.emplace_back(ExitBB, EL); 6133 6134 // 2. Derive the loop's MaxBECount from each exit's max number of 6135 // non-exiting iterations. Partition the loop exits into two kinds: 6136 // LoopMustExits and LoopMayExits. 6137 // 6138 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 6139 // is a LoopMayExit. If any computable LoopMustExit is found, then 6140 // MaxBECount is the minimum EL.MaxNotTaken of computable 6141 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 6142 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 6143 // computable EL.MaxNotTaken. 6144 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 6145 DT.dominates(ExitBB, Latch)) { 6146 if (!MustExitMaxBECount) { 6147 MustExitMaxBECount = EL.MaxNotTaken; 6148 MustExitMaxOrZero = EL.MaxOrZero; 6149 } else { 6150 MustExitMaxBECount = 6151 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 6152 } 6153 } else if (MayExitMaxBECount != getCouldNotCompute()) { 6154 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 6155 MayExitMaxBECount = EL.MaxNotTaken; 6156 else { 6157 MayExitMaxBECount = 6158 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 6159 } 6160 } 6161 } 6162 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 6163 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 6164 // The loop backedge will be taken the maximum or zero times if there's 6165 // a single exit that must be taken the maximum or zero times. 6166 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 6167 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 6168 MaxBECount, MaxOrZero); 6169 } 6170 6171 ScalarEvolution::ExitLimit 6172 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 6173 bool AllowPredicates) { 6174 6175 // Okay, we've chosen an exiting block. See what condition causes us to exit 6176 // at this block and remember the exit block and whether all other targets 6177 // lead to the loop header. 6178 bool MustExecuteLoopHeader = true; 6179 BasicBlock *Exit = nullptr; 6180 for (auto *SBB : successors(ExitingBlock)) 6181 if (!L->contains(SBB)) { 6182 if (Exit) // Multiple exit successors. 6183 return getCouldNotCompute(); 6184 Exit = SBB; 6185 } else if (SBB != L->getHeader()) { 6186 MustExecuteLoopHeader = false; 6187 } 6188 6189 // At this point, we know we have a conditional branch that determines whether 6190 // the loop is exited. However, we don't know if the branch is executed each 6191 // time through the loop. If not, then the execution count of the branch will 6192 // not be equal to the trip count of the loop. 6193 // 6194 // Currently we check for this by checking to see if the Exit branch goes to 6195 // the loop header. If so, we know it will always execute the same number of 6196 // times as the loop. We also handle the case where the exit block *is* the 6197 // loop header. This is common for un-rotated loops. 6198 // 6199 // If both of those tests fail, walk up the unique predecessor chain to the 6200 // header, stopping if there is an edge that doesn't exit the loop. If the 6201 // header is reached, the execution count of the branch will be equal to the 6202 // trip count of the loop. 6203 // 6204 // More extensive analysis could be done to handle more cases here. 6205 // 6206 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 6207 // The simple checks failed, try climbing the unique predecessor chain 6208 // up to the header. 6209 bool Ok = false; 6210 for (BasicBlock *BB = ExitingBlock; BB; ) { 6211 BasicBlock *Pred = BB->getUniquePredecessor(); 6212 if (!Pred) 6213 return getCouldNotCompute(); 6214 TerminatorInst *PredTerm = Pred->getTerminator(); 6215 for (const BasicBlock *PredSucc : PredTerm->successors()) { 6216 if (PredSucc == BB) 6217 continue; 6218 // If the predecessor has a successor that isn't BB and isn't 6219 // outside the loop, assume the worst. 6220 if (L->contains(PredSucc)) 6221 return getCouldNotCompute(); 6222 } 6223 if (Pred == L->getHeader()) { 6224 Ok = true; 6225 break; 6226 } 6227 BB = Pred; 6228 } 6229 if (!Ok) 6230 return getCouldNotCompute(); 6231 } 6232 6233 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 6234 TerminatorInst *Term = ExitingBlock->getTerminator(); 6235 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 6236 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 6237 // Proceed to the next level to examine the exit condition expression. 6238 return computeExitLimitFromCond( 6239 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1), 6240 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 6241 } 6242 6243 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 6244 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 6245 /*ControlsExit=*/IsOnlyExit); 6246 6247 return getCouldNotCompute(); 6248 } 6249 6250 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 6251 const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB, 6252 bool ControlsExit, bool AllowPredicates) { 6253 ScalarEvolution::ExitLimitCacheTy Cache(L, TBB, FBB, AllowPredicates); 6254 return computeExitLimitFromCondCached(Cache, L, ExitCond, TBB, FBB, 6255 ControlsExit, AllowPredicates); 6256 } 6257 6258 Optional<ScalarEvolution::ExitLimit> 6259 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 6260 BasicBlock *TBB, BasicBlock *FBB, 6261 bool ControlsExit, bool AllowPredicates) { 6262 (void)this->L; 6263 (void)this->TBB; 6264 (void)this->FBB; 6265 (void)this->AllowPredicates; 6266 6267 assert(this->L == L && this->TBB == TBB && this->FBB == FBB && 6268 this->AllowPredicates == AllowPredicates && 6269 "Variance in assumed invariant key components!"); 6270 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 6271 if (Itr == TripCountMap.end()) 6272 return None; 6273 return Itr->second; 6274 } 6275 6276 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 6277 BasicBlock *TBB, BasicBlock *FBB, 6278 bool ControlsExit, 6279 bool AllowPredicates, 6280 const ExitLimit &EL) { 6281 assert(this->L == L && this->TBB == TBB && this->FBB == FBB && 6282 this->AllowPredicates == AllowPredicates && 6283 "Variance in assumed invariant key components!"); 6284 6285 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 6286 assert(InsertResult.second && "Expected successful insertion!"); 6287 (void)InsertResult; 6288 } 6289 6290 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 6291 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB, 6292 BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) { 6293 6294 if (auto MaybeEL = 6295 Cache.find(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates)) 6296 return *MaybeEL; 6297 6298 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, TBB, FBB, 6299 ControlsExit, AllowPredicates); 6300 Cache.insert(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates, EL); 6301 return EL; 6302 } 6303 6304 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 6305 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB, 6306 BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) { 6307 // Check if the controlling expression for this loop is an And or Or. 6308 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 6309 if (BO->getOpcode() == Instruction::And) { 6310 // Recurse on the operands of the and. 6311 bool EitherMayExit = L->contains(TBB); 6312 ExitLimit EL0 = computeExitLimitFromCondCached( 6313 Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit, 6314 AllowPredicates); 6315 ExitLimit EL1 = computeExitLimitFromCondCached( 6316 Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit, 6317 AllowPredicates); 6318 const SCEV *BECount = getCouldNotCompute(); 6319 const SCEV *MaxBECount = getCouldNotCompute(); 6320 if (EitherMayExit) { 6321 // Both conditions must be true for the loop to continue executing. 6322 // Choose the less conservative count. 6323 if (EL0.ExactNotTaken == getCouldNotCompute() || 6324 EL1.ExactNotTaken == getCouldNotCompute()) 6325 BECount = getCouldNotCompute(); 6326 else 6327 BECount = 6328 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 6329 if (EL0.MaxNotTaken == getCouldNotCompute()) 6330 MaxBECount = EL1.MaxNotTaken; 6331 else if (EL1.MaxNotTaken == getCouldNotCompute()) 6332 MaxBECount = EL0.MaxNotTaken; 6333 else 6334 MaxBECount = 6335 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 6336 } else { 6337 // Both conditions must be true at the same time for the loop to exit. 6338 // For now, be conservative. 6339 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 6340 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 6341 MaxBECount = EL0.MaxNotTaken; 6342 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 6343 BECount = EL0.ExactNotTaken; 6344 } 6345 6346 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 6347 // to be more aggressive when computing BECount than when computing 6348 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 6349 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 6350 // to not. 6351 if (isa<SCEVCouldNotCompute>(MaxBECount) && 6352 !isa<SCEVCouldNotCompute>(BECount)) 6353 MaxBECount = getConstant(getUnsignedRange(BECount).getUnsignedMax()); 6354 6355 return ExitLimit(BECount, MaxBECount, false, 6356 {&EL0.Predicates, &EL1.Predicates}); 6357 } 6358 if (BO->getOpcode() == Instruction::Or) { 6359 // Recurse on the operands of the or. 6360 bool EitherMayExit = L->contains(FBB); 6361 ExitLimit EL0 = computeExitLimitFromCondCached( 6362 Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit, 6363 AllowPredicates); 6364 ExitLimit EL1 = computeExitLimitFromCondCached( 6365 Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit, 6366 AllowPredicates); 6367 const SCEV *BECount = getCouldNotCompute(); 6368 const SCEV *MaxBECount = getCouldNotCompute(); 6369 if (EitherMayExit) { 6370 // Both conditions must be false for the loop to continue executing. 6371 // Choose the less conservative count. 6372 if (EL0.ExactNotTaken == getCouldNotCompute() || 6373 EL1.ExactNotTaken == getCouldNotCompute()) 6374 BECount = getCouldNotCompute(); 6375 else 6376 BECount = 6377 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 6378 if (EL0.MaxNotTaken == getCouldNotCompute()) 6379 MaxBECount = EL1.MaxNotTaken; 6380 else if (EL1.MaxNotTaken == getCouldNotCompute()) 6381 MaxBECount = EL0.MaxNotTaken; 6382 else 6383 MaxBECount = 6384 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 6385 } else { 6386 // Both conditions must be false at the same time for the loop to exit. 6387 // For now, be conservative. 6388 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 6389 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 6390 MaxBECount = EL0.MaxNotTaken; 6391 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 6392 BECount = EL0.ExactNotTaken; 6393 } 6394 6395 return ExitLimit(BECount, MaxBECount, false, 6396 {&EL0.Predicates, &EL1.Predicates}); 6397 } 6398 } 6399 6400 // With an icmp, it may be feasible to compute an exact backedge-taken count. 6401 // Proceed to the next level to examine the icmp. 6402 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 6403 ExitLimit EL = 6404 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 6405 if (EL.hasFullInfo() || !AllowPredicates) 6406 return EL; 6407 6408 // Try again, but use SCEV predicates this time. 6409 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit, 6410 /*AllowPredicates=*/true); 6411 } 6412 6413 // Check for a constant condition. These are normally stripped out by 6414 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 6415 // preserve the CFG and is temporarily leaving constant conditions 6416 // in place. 6417 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 6418 if (L->contains(FBB) == !CI->getZExtValue()) 6419 // The backedge is always taken. 6420 return getCouldNotCompute(); 6421 else 6422 // The backedge is never taken. 6423 return getZero(CI->getType()); 6424 } 6425 6426 // If it's not an integer or pointer comparison then compute it the hard way. 6427 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6428 } 6429 6430 ScalarEvolution::ExitLimit 6431 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 6432 ICmpInst *ExitCond, 6433 BasicBlock *TBB, 6434 BasicBlock *FBB, 6435 bool ControlsExit, 6436 bool AllowPredicates) { 6437 6438 // If the condition was exit on true, convert the condition to exit on false 6439 ICmpInst::Predicate Cond; 6440 if (!L->contains(FBB)) 6441 Cond = ExitCond->getPredicate(); 6442 else 6443 Cond = ExitCond->getInversePredicate(); 6444 6445 // Handle common loops like: for (X = "string"; *X; ++X) 6446 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 6447 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 6448 ExitLimit ItCnt = 6449 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 6450 if (ItCnt.hasAnyInfo()) 6451 return ItCnt; 6452 } 6453 6454 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 6455 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 6456 6457 // Try to evaluate any dependencies out of the loop. 6458 LHS = getSCEVAtScope(LHS, L); 6459 RHS = getSCEVAtScope(RHS, L); 6460 6461 // At this point, we would like to compute how many iterations of the 6462 // loop the predicate will return true for these inputs. 6463 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 6464 // If there is a loop-invariant, force it into the RHS. 6465 std::swap(LHS, RHS); 6466 Cond = ICmpInst::getSwappedPredicate(Cond); 6467 } 6468 6469 // Simplify the operands before analyzing them. 6470 (void)SimplifyICmpOperands(Cond, LHS, RHS); 6471 6472 // If we have a comparison of a chrec against a constant, try to use value 6473 // ranges to answer this query. 6474 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 6475 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 6476 if (AddRec->getLoop() == L) { 6477 // Form the constant range. 6478 ConstantRange CompRange = 6479 ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt()); 6480 6481 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 6482 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 6483 } 6484 6485 switch (Cond) { 6486 case ICmpInst::ICMP_NE: { // while (X != Y) 6487 // Convert to: while (X-Y != 0) 6488 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 6489 AllowPredicates); 6490 if (EL.hasAnyInfo()) return EL; 6491 break; 6492 } 6493 case ICmpInst::ICMP_EQ: { // while (X == Y) 6494 // Convert to: while (X-Y == 0) 6495 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 6496 if (EL.hasAnyInfo()) return EL; 6497 break; 6498 } 6499 case ICmpInst::ICMP_SLT: 6500 case ICmpInst::ICMP_ULT: { // while (X < Y) 6501 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 6502 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 6503 AllowPredicates); 6504 if (EL.hasAnyInfo()) return EL; 6505 break; 6506 } 6507 case ICmpInst::ICMP_SGT: 6508 case ICmpInst::ICMP_UGT: { // while (X > Y) 6509 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 6510 ExitLimit EL = 6511 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 6512 AllowPredicates); 6513 if (EL.hasAnyInfo()) return EL; 6514 break; 6515 } 6516 default: 6517 break; 6518 } 6519 6520 auto *ExhaustiveCount = 6521 computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6522 6523 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 6524 return ExhaustiveCount; 6525 6526 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 6527 ExitCond->getOperand(1), L, Cond); 6528 } 6529 6530 ScalarEvolution::ExitLimit 6531 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 6532 SwitchInst *Switch, 6533 BasicBlock *ExitingBlock, 6534 bool ControlsExit) { 6535 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 6536 6537 // Give up if the exit is the default dest of a switch. 6538 if (Switch->getDefaultDest() == ExitingBlock) 6539 return getCouldNotCompute(); 6540 6541 assert(L->contains(Switch->getDefaultDest()) && 6542 "Default case must not exit the loop!"); 6543 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 6544 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 6545 6546 // while (X != Y) --> while (X-Y != 0) 6547 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 6548 if (EL.hasAnyInfo()) 6549 return EL; 6550 6551 return getCouldNotCompute(); 6552 } 6553 6554 static ConstantInt * 6555 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 6556 ScalarEvolution &SE) { 6557 const SCEV *InVal = SE.getConstant(C); 6558 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 6559 assert(isa<SCEVConstant>(Val) && 6560 "Evaluation of SCEV at constant didn't fold correctly?"); 6561 return cast<SCEVConstant>(Val)->getValue(); 6562 } 6563 6564 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 6565 /// compute the backedge execution count. 6566 ScalarEvolution::ExitLimit 6567 ScalarEvolution::computeLoadConstantCompareExitLimit( 6568 LoadInst *LI, 6569 Constant *RHS, 6570 const Loop *L, 6571 ICmpInst::Predicate predicate) { 6572 6573 if (LI->isVolatile()) return getCouldNotCompute(); 6574 6575 // Check to see if the loaded pointer is a getelementptr of a global. 6576 // TODO: Use SCEV instead of manually grubbing with GEPs. 6577 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 6578 if (!GEP) return getCouldNotCompute(); 6579 6580 // Make sure that it is really a constant global we are gepping, with an 6581 // initializer, and make sure the first IDX is really 0. 6582 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 6583 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 6584 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 6585 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 6586 return getCouldNotCompute(); 6587 6588 // Okay, we allow one non-constant index into the GEP instruction. 6589 Value *VarIdx = nullptr; 6590 std::vector<Constant*> Indexes; 6591 unsigned VarIdxNum = 0; 6592 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 6593 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 6594 Indexes.push_back(CI); 6595 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 6596 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 6597 VarIdx = GEP->getOperand(i); 6598 VarIdxNum = i-2; 6599 Indexes.push_back(nullptr); 6600 } 6601 6602 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 6603 if (!VarIdx) 6604 return getCouldNotCompute(); 6605 6606 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 6607 // Check to see if X is a loop variant variable value now. 6608 const SCEV *Idx = getSCEV(VarIdx); 6609 Idx = getSCEVAtScope(Idx, L); 6610 6611 // We can only recognize very limited forms of loop index expressions, in 6612 // particular, only affine AddRec's like {C1,+,C2}. 6613 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 6614 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 6615 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 6616 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 6617 return getCouldNotCompute(); 6618 6619 unsigned MaxSteps = MaxBruteForceIterations; 6620 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 6621 ConstantInt *ItCst = ConstantInt::get( 6622 cast<IntegerType>(IdxExpr->getType()), IterationNum); 6623 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 6624 6625 // Form the GEP offset. 6626 Indexes[VarIdxNum] = Val; 6627 6628 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 6629 Indexes); 6630 if (!Result) break; // Cannot compute! 6631 6632 // Evaluate the condition for this iteration. 6633 Result = ConstantExpr::getICmp(predicate, Result, RHS); 6634 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 6635 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 6636 ++NumArrayLenItCounts; 6637 return getConstant(ItCst); // Found terminating iteration! 6638 } 6639 } 6640 return getCouldNotCompute(); 6641 } 6642 6643 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 6644 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 6645 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 6646 if (!RHS) 6647 return getCouldNotCompute(); 6648 6649 const BasicBlock *Latch = L->getLoopLatch(); 6650 if (!Latch) 6651 return getCouldNotCompute(); 6652 6653 const BasicBlock *Predecessor = L->getLoopPredecessor(); 6654 if (!Predecessor) 6655 return getCouldNotCompute(); 6656 6657 // Return true if V is of the form "LHS `shift_op` <positive constant>". 6658 // Return LHS in OutLHS and shift_opt in OutOpCode. 6659 auto MatchPositiveShift = 6660 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 6661 6662 using namespace PatternMatch; 6663 6664 ConstantInt *ShiftAmt; 6665 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6666 OutOpCode = Instruction::LShr; 6667 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6668 OutOpCode = Instruction::AShr; 6669 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6670 OutOpCode = Instruction::Shl; 6671 else 6672 return false; 6673 6674 return ShiftAmt->getValue().isStrictlyPositive(); 6675 }; 6676 6677 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 6678 // 6679 // loop: 6680 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 6681 // %iv.shifted = lshr i32 %iv, <positive constant> 6682 // 6683 // Return true on a successful match. Return the corresponding PHI node (%iv 6684 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 6685 auto MatchShiftRecurrence = 6686 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 6687 Optional<Instruction::BinaryOps> PostShiftOpCode; 6688 6689 { 6690 Instruction::BinaryOps OpC; 6691 Value *V; 6692 6693 // If we encounter a shift instruction, "peel off" the shift operation, 6694 // and remember that we did so. Later when we inspect %iv's backedge 6695 // value, we will make sure that the backedge value uses the same 6696 // operation. 6697 // 6698 // Note: the peeled shift operation does not have to be the same 6699 // instruction as the one feeding into the PHI's backedge value. We only 6700 // really care about it being the same *kind* of shift instruction -- 6701 // that's all that is required for our later inferences to hold. 6702 if (MatchPositiveShift(LHS, V, OpC)) { 6703 PostShiftOpCode = OpC; 6704 LHS = V; 6705 } 6706 } 6707 6708 PNOut = dyn_cast<PHINode>(LHS); 6709 if (!PNOut || PNOut->getParent() != L->getHeader()) 6710 return false; 6711 6712 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 6713 Value *OpLHS; 6714 6715 return 6716 // The backedge value for the PHI node must be a shift by a positive 6717 // amount 6718 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 6719 6720 // of the PHI node itself 6721 OpLHS == PNOut && 6722 6723 // and the kind of shift should be match the kind of shift we peeled 6724 // off, if any. 6725 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 6726 }; 6727 6728 PHINode *PN; 6729 Instruction::BinaryOps OpCode; 6730 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 6731 return getCouldNotCompute(); 6732 6733 const DataLayout &DL = getDataLayout(); 6734 6735 // The key rationale for this optimization is that for some kinds of shift 6736 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 6737 // within a finite number of iterations. If the condition guarding the 6738 // backedge (in the sense that the backedge is taken if the condition is true) 6739 // is false for the value the shift recurrence stabilizes to, then we know 6740 // that the backedge is taken only a finite number of times. 6741 6742 ConstantInt *StableValue = nullptr; 6743 switch (OpCode) { 6744 default: 6745 llvm_unreachable("Impossible case!"); 6746 6747 case Instruction::AShr: { 6748 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 6749 // bitwidth(K) iterations. 6750 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 6751 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 6752 Predecessor->getTerminator(), &DT); 6753 auto *Ty = cast<IntegerType>(RHS->getType()); 6754 if (Known.isNonNegative()) 6755 StableValue = ConstantInt::get(Ty, 0); 6756 else if (Known.isNegative()) 6757 StableValue = ConstantInt::get(Ty, -1, true); 6758 else 6759 return getCouldNotCompute(); 6760 6761 break; 6762 } 6763 case Instruction::LShr: 6764 case Instruction::Shl: 6765 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 6766 // stabilize to 0 in at most bitwidth(K) iterations. 6767 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 6768 break; 6769 } 6770 6771 auto *Result = 6772 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 6773 assert(Result->getType()->isIntegerTy(1) && 6774 "Otherwise cannot be an operand to a branch instruction"); 6775 6776 if (Result->isZeroValue()) { 6777 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6778 const SCEV *UpperBound = 6779 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 6780 return ExitLimit(getCouldNotCompute(), UpperBound, false); 6781 } 6782 6783 return getCouldNotCompute(); 6784 } 6785 6786 /// Return true if we can constant fold an instruction of the specified type, 6787 /// assuming that all operands were constants. 6788 static bool CanConstantFold(const Instruction *I) { 6789 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 6790 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6791 isa<LoadInst>(I)) 6792 return true; 6793 6794 if (const CallInst *CI = dyn_cast<CallInst>(I)) 6795 if (const Function *F = CI->getCalledFunction()) 6796 return canConstantFoldCallTo(F); 6797 return false; 6798 } 6799 6800 /// Determine whether this instruction can constant evolve within this loop 6801 /// assuming its operands can all constant evolve. 6802 static bool canConstantEvolve(Instruction *I, const Loop *L) { 6803 // An instruction outside of the loop can't be derived from a loop PHI. 6804 if (!L->contains(I)) return false; 6805 6806 if (isa<PHINode>(I)) { 6807 // We don't currently keep track of the control flow needed to evaluate 6808 // PHIs, so we cannot handle PHIs inside of loops. 6809 return L->getHeader() == I->getParent(); 6810 } 6811 6812 // If we won't be able to constant fold this expression even if the operands 6813 // are constants, bail early. 6814 return CanConstantFold(I); 6815 } 6816 6817 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 6818 /// recursing through each instruction operand until reaching a loop header phi. 6819 static PHINode * 6820 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 6821 DenseMap<Instruction *, PHINode *> &PHIMap, 6822 unsigned Depth) { 6823 if (Depth > MaxConstantEvolvingDepth) 6824 return nullptr; 6825 6826 // Otherwise, we can evaluate this instruction if all of its operands are 6827 // constant or derived from a PHI node themselves. 6828 PHINode *PHI = nullptr; 6829 for (Value *Op : UseInst->operands()) { 6830 if (isa<Constant>(Op)) continue; 6831 6832 Instruction *OpInst = dyn_cast<Instruction>(Op); 6833 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 6834 6835 PHINode *P = dyn_cast<PHINode>(OpInst); 6836 if (!P) 6837 // If this operand is already visited, reuse the prior result. 6838 // We may have P != PHI if this is the deepest point at which the 6839 // inconsistent paths meet. 6840 P = PHIMap.lookup(OpInst); 6841 if (!P) { 6842 // Recurse and memoize the results, whether a phi is found or not. 6843 // This recursive call invalidates pointers into PHIMap. 6844 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 6845 PHIMap[OpInst] = P; 6846 } 6847 if (!P) 6848 return nullptr; // Not evolving from PHI 6849 if (PHI && PHI != P) 6850 return nullptr; // Evolving from multiple different PHIs. 6851 PHI = P; 6852 } 6853 // This is a expression evolving from a constant PHI! 6854 return PHI; 6855 } 6856 6857 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 6858 /// in the loop that V is derived from. We allow arbitrary operations along the 6859 /// way, but the operands of an operation must either be constants or a value 6860 /// derived from a constant PHI. If this expression does not fit with these 6861 /// constraints, return null. 6862 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 6863 Instruction *I = dyn_cast<Instruction>(V); 6864 if (!I || !canConstantEvolve(I, L)) return nullptr; 6865 6866 if (PHINode *PN = dyn_cast<PHINode>(I)) 6867 return PN; 6868 6869 // Record non-constant instructions contained by the loop. 6870 DenseMap<Instruction *, PHINode *> PHIMap; 6871 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 6872 } 6873 6874 /// EvaluateExpression - Given an expression that passes the 6875 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 6876 /// in the loop has the value PHIVal. If we can't fold this expression for some 6877 /// reason, return null. 6878 static Constant *EvaluateExpression(Value *V, const Loop *L, 6879 DenseMap<Instruction *, Constant *> &Vals, 6880 const DataLayout &DL, 6881 const TargetLibraryInfo *TLI) { 6882 // Convenient constant check, but redundant for recursive calls. 6883 if (Constant *C = dyn_cast<Constant>(V)) return C; 6884 Instruction *I = dyn_cast<Instruction>(V); 6885 if (!I) return nullptr; 6886 6887 if (Constant *C = Vals.lookup(I)) return C; 6888 6889 // An instruction inside the loop depends on a value outside the loop that we 6890 // weren't given a mapping for, or a value such as a call inside the loop. 6891 if (!canConstantEvolve(I, L)) return nullptr; 6892 6893 // An unmapped PHI can be due to a branch or another loop inside this loop, 6894 // or due to this not being the initial iteration through a loop where we 6895 // couldn't compute the evolution of this particular PHI last time. 6896 if (isa<PHINode>(I)) return nullptr; 6897 6898 std::vector<Constant*> Operands(I->getNumOperands()); 6899 6900 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 6901 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 6902 if (!Operand) { 6903 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 6904 if (!Operands[i]) return nullptr; 6905 continue; 6906 } 6907 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 6908 Vals[Operand] = C; 6909 if (!C) return nullptr; 6910 Operands[i] = C; 6911 } 6912 6913 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6914 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6915 Operands[1], DL, TLI); 6916 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6917 if (!LI->isVolatile()) 6918 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6919 } 6920 return ConstantFoldInstOperands(I, Operands, DL, TLI); 6921 } 6922 6923 6924 // If every incoming value to PN except the one for BB is a specific Constant, 6925 // return that, else return nullptr. 6926 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6927 Constant *IncomingVal = nullptr; 6928 6929 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6930 if (PN->getIncomingBlock(i) == BB) 6931 continue; 6932 6933 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6934 if (!CurrentVal) 6935 return nullptr; 6936 6937 if (IncomingVal != CurrentVal) { 6938 if (IncomingVal) 6939 return nullptr; 6940 IncomingVal = CurrentVal; 6941 } 6942 } 6943 6944 return IncomingVal; 6945 } 6946 6947 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6948 /// in the header of its containing loop, we know the loop executes a 6949 /// constant number of times, and the PHI node is just a recurrence 6950 /// involving constants, fold it. 6951 Constant * 6952 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6953 const APInt &BEs, 6954 const Loop *L) { 6955 auto I = ConstantEvolutionLoopExitValue.find(PN); 6956 if (I != ConstantEvolutionLoopExitValue.end()) 6957 return I->second; 6958 6959 if (BEs.ugt(MaxBruteForceIterations)) 6960 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6961 6962 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6963 6964 DenseMap<Instruction *, Constant *> CurrentIterVals; 6965 BasicBlock *Header = L->getHeader(); 6966 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6967 6968 BasicBlock *Latch = L->getLoopLatch(); 6969 if (!Latch) 6970 return nullptr; 6971 6972 for (auto &I : *Header) { 6973 PHINode *PHI = dyn_cast<PHINode>(&I); 6974 if (!PHI) break; 6975 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6976 if (!StartCST) continue; 6977 CurrentIterVals[PHI] = StartCST; 6978 } 6979 if (!CurrentIterVals.count(PN)) 6980 return RetVal = nullptr; 6981 6982 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6983 6984 // Execute the loop symbolically to determine the exit value. 6985 if (BEs.getActiveBits() >= 32) 6986 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6987 6988 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6989 unsigned IterationNum = 0; 6990 const DataLayout &DL = getDataLayout(); 6991 for (; ; ++IterationNum) { 6992 if (IterationNum == NumIterations) 6993 return RetVal = CurrentIterVals[PN]; // Got exit value! 6994 6995 // Compute the value of the PHIs for the next iteration. 6996 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6997 DenseMap<Instruction *, Constant *> NextIterVals; 6998 Constant *NextPHI = 6999 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7000 if (!NextPHI) 7001 return nullptr; // Couldn't evaluate! 7002 NextIterVals[PN] = NextPHI; 7003 7004 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7005 7006 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7007 // cease to be able to evaluate one of them or if they stop evolving, 7008 // because that doesn't necessarily prevent us from computing PN. 7009 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7010 for (const auto &I : CurrentIterVals) { 7011 PHINode *PHI = dyn_cast<PHINode>(I.first); 7012 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7013 PHIsToCompute.emplace_back(PHI, I.second); 7014 } 7015 // We use two distinct loops because EvaluateExpression may invalidate any 7016 // iterators into CurrentIterVals. 7017 for (const auto &I : PHIsToCompute) { 7018 PHINode *PHI = I.first; 7019 Constant *&NextPHI = NextIterVals[PHI]; 7020 if (!NextPHI) { // Not already computed. 7021 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7022 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7023 } 7024 if (NextPHI != I.second) 7025 StoppedEvolving = false; 7026 } 7027 7028 // If all entries in CurrentIterVals == NextIterVals then we can stop 7029 // iterating, the loop can't continue to change. 7030 if (StoppedEvolving) 7031 return RetVal = CurrentIterVals[PN]; 7032 7033 CurrentIterVals.swap(NextIterVals); 7034 } 7035 } 7036 7037 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7038 Value *Cond, 7039 bool ExitWhen) { 7040 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7041 if (!PN) return getCouldNotCompute(); 7042 7043 // If the loop is canonicalized, the PHI will have exactly two entries. 7044 // That's the only form we support here. 7045 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7046 7047 DenseMap<Instruction *, Constant *> CurrentIterVals; 7048 BasicBlock *Header = L->getHeader(); 7049 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7050 7051 BasicBlock *Latch = L->getLoopLatch(); 7052 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7053 7054 for (auto &I : *Header) { 7055 PHINode *PHI = dyn_cast<PHINode>(&I); 7056 if (!PHI) 7057 break; 7058 auto *StartCST = getOtherIncomingValue(PHI, Latch); 7059 if (!StartCST) continue; 7060 CurrentIterVals[PHI] = StartCST; 7061 } 7062 if (!CurrentIterVals.count(PN)) 7063 return getCouldNotCompute(); 7064 7065 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7066 // the loop symbolically to determine when the condition gets a value of 7067 // "ExitWhen". 7068 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7069 const DataLayout &DL = getDataLayout(); 7070 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7071 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7072 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7073 7074 // Couldn't symbolically evaluate. 7075 if (!CondVal) return getCouldNotCompute(); 7076 7077 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7078 ++NumBruteForceTripCountsComputed; 7079 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7080 } 7081 7082 // Update all the PHI nodes for the next iteration. 7083 DenseMap<Instruction *, Constant *> NextIterVals; 7084 7085 // Create a list of which PHIs we need to compute. We want to do this before 7086 // calling EvaluateExpression on them because that may invalidate iterators 7087 // into CurrentIterVals. 7088 SmallVector<PHINode *, 8> PHIsToCompute; 7089 for (const auto &I : CurrentIterVals) { 7090 PHINode *PHI = dyn_cast<PHINode>(I.first); 7091 if (!PHI || PHI->getParent() != Header) continue; 7092 PHIsToCompute.push_back(PHI); 7093 } 7094 for (PHINode *PHI : PHIsToCompute) { 7095 Constant *&NextPHI = NextIterVals[PHI]; 7096 if (NextPHI) continue; // Already computed! 7097 7098 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7099 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7100 } 7101 CurrentIterVals.swap(NextIterVals); 7102 } 7103 7104 // Too many iterations were needed to evaluate. 7105 return getCouldNotCompute(); 7106 } 7107 7108 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7109 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7110 ValuesAtScopes[V]; 7111 // Check to see if we've folded this expression at this loop before. 7112 for (auto &LS : Values) 7113 if (LS.first == L) 7114 return LS.second ? LS.second : V; 7115 7116 Values.emplace_back(L, nullptr); 7117 7118 // Otherwise compute it. 7119 const SCEV *C = computeSCEVAtScope(V, L); 7120 for (auto &LS : reverse(ValuesAtScopes[V])) 7121 if (LS.first == L) { 7122 LS.second = C; 7123 break; 7124 } 7125 return C; 7126 } 7127 7128 /// This builds up a Constant using the ConstantExpr interface. That way, we 7129 /// will return Constants for objects which aren't represented by a 7130 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 7131 /// Returns NULL if the SCEV isn't representable as a Constant. 7132 static Constant *BuildConstantFromSCEV(const SCEV *V) { 7133 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 7134 case scCouldNotCompute: 7135 case scAddRecExpr: 7136 break; 7137 case scConstant: 7138 return cast<SCEVConstant>(V)->getValue(); 7139 case scUnknown: 7140 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 7141 case scSignExtend: { 7142 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 7143 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 7144 return ConstantExpr::getSExt(CastOp, SS->getType()); 7145 break; 7146 } 7147 case scZeroExtend: { 7148 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 7149 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 7150 return ConstantExpr::getZExt(CastOp, SZ->getType()); 7151 break; 7152 } 7153 case scTruncate: { 7154 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 7155 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 7156 return ConstantExpr::getTrunc(CastOp, ST->getType()); 7157 break; 7158 } 7159 case scAddExpr: { 7160 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 7161 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 7162 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7163 unsigned AS = PTy->getAddressSpace(); 7164 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7165 C = ConstantExpr::getBitCast(C, DestPtrTy); 7166 } 7167 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 7168 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 7169 if (!C2) return nullptr; 7170 7171 // First pointer! 7172 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 7173 unsigned AS = C2->getType()->getPointerAddressSpace(); 7174 std::swap(C, C2); 7175 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7176 // The offsets have been converted to bytes. We can add bytes to an 7177 // i8* by GEP with the byte count in the first index. 7178 C = ConstantExpr::getBitCast(C, DestPtrTy); 7179 } 7180 7181 // Don't bother trying to sum two pointers. We probably can't 7182 // statically compute a load that results from it anyway. 7183 if (C2->getType()->isPointerTy()) 7184 return nullptr; 7185 7186 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7187 if (PTy->getElementType()->isStructTy()) 7188 C2 = ConstantExpr::getIntegerCast( 7189 C2, Type::getInt32Ty(C->getContext()), true); 7190 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 7191 } else 7192 C = ConstantExpr::getAdd(C, C2); 7193 } 7194 return C; 7195 } 7196 break; 7197 } 7198 case scMulExpr: { 7199 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 7200 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 7201 // Don't bother with pointers at all. 7202 if (C->getType()->isPointerTy()) return nullptr; 7203 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 7204 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 7205 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 7206 C = ConstantExpr::getMul(C, C2); 7207 } 7208 return C; 7209 } 7210 break; 7211 } 7212 case scUDivExpr: { 7213 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 7214 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 7215 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 7216 if (LHS->getType() == RHS->getType()) 7217 return ConstantExpr::getUDiv(LHS, RHS); 7218 break; 7219 } 7220 case scSMaxExpr: 7221 case scUMaxExpr: 7222 break; // TODO: smax, umax. 7223 } 7224 return nullptr; 7225 } 7226 7227 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 7228 if (isa<SCEVConstant>(V)) return V; 7229 7230 // If this instruction is evolved from a constant-evolving PHI, compute the 7231 // exit value from the loop without using SCEVs. 7232 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 7233 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 7234 const Loop *LI = this->LI[I->getParent()]; 7235 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 7236 if (PHINode *PN = dyn_cast<PHINode>(I)) 7237 if (PN->getParent() == LI->getHeader()) { 7238 // Okay, there is no closed form solution for the PHI node. Check 7239 // to see if the loop that contains it has a known backedge-taken 7240 // count. If so, we may be able to force computation of the exit 7241 // value. 7242 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 7243 if (const SCEVConstant *BTCC = 7244 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 7245 // Okay, we know how many times the containing loop executes. If 7246 // this is a constant evolving PHI node, get the final value at 7247 // the specified iteration number. 7248 Constant *RV = 7249 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 7250 if (RV) return getSCEV(RV); 7251 } 7252 } 7253 7254 // Okay, this is an expression that we cannot symbolically evaluate 7255 // into a SCEV. Check to see if it's possible to symbolically evaluate 7256 // the arguments into constants, and if so, try to constant propagate the 7257 // result. This is particularly useful for computing loop exit values. 7258 if (CanConstantFold(I)) { 7259 SmallVector<Constant *, 4> Operands; 7260 bool MadeImprovement = false; 7261 for (Value *Op : I->operands()) { 7262 if (Constant *C = dyn_cast<Constant>(Op)) { 7263 Operands.push_back(C); 7264 continue; 7265 } 7266 7267 // If any of the operands is non-constant and if they are 7268 // non-integer and non-pointer, don't even try to analyze them 7269 // with scev techniques. 7270 if (!isSCEVable(Op->getType())) 7271 return V; 7272 7273 const SCEV *OrigV = getSCEV(Op); 7274 const SCEV *OpV = getSCEVAtScope(OrigV, L); 7275 MadeImprovement |= OrigV != OpV; 7276 7277 Constant *C = BuildConstantFromSCEV(OpV); 7278 if (!C) return V; 7279 if (C->getType() != Op->getType()) 7280 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 7281 Op->getType(), 7282 false), 7283 C, Op->getType()); 7284 Operands.push_back(C); 7285 } 7286 7287 // Check to see if getSCEVAtScope actually made an improvement. 7288 if (MadeImprovement) { 7289 Constant *C = nullptr; 7290 const DataLayout &DL = getDataLayout(); 7291 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 7292 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7293 Operands[1], DL, &TLI); 7294 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 7295 if (!LI->isVolatile()) 7296 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7297 } else 7298 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 7299 if (!C) return V; 7300 return getSCEV(C); 7301 } 7302 } 7303 } 7304 7305 // This is some other type of SCEVUnknown, just return it. 7306 return V; 7307 } 7308 7309 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 7310 // Avoid performing the look-up in the common case where the specified 7311 // expression has no loop-variant portions. 7312 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 7313 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 7314 if (OpAtScope != Comm->getOperand(i)) { 7315 // Okay, at least one of these operands is loop variant but might be 7316 // foldable. Build a new instance of the folded commutative expression. 7317 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 7318 Comm->op_begin()+i); 7319 NewOps.push_back(OpAtScope); 7320 7321 for (++i; i != e; ++i) { 7322 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 7323 NewOps.push_back(OpAtScope); 7324 } 7325 if (isa<SCEVAddExpr>(Comm)) 7326 return getAddExpr(NewOps); 7327 if (isa<SCEVMulExpr>(Comm)) 7328 return getMulExpr(NewOps); 7329 if (isa<SCEVSMaxExpr>(Comm)) 7330 return getSMaxExpr(NewOps); 7331 if (isa<SCEVUMaxExpr>(Comm)) 7332 return getUMaxExpr(NewOps); 7333 llvm_unreachable("Unknown commutative SCEV type!"); 7334 } 7335 } 7336 // If we got here, all operands are loop invariant. 7337 return Comm; 7338 } 7339 7340 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 7341 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 7342 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 7343 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 7344 return Div; // must be loop invariant 7345 return getUDivExpr(LHS, RHS); 7346 } 7347 7348 // If this is a loop recurrence for a loop that does not contain L, then we 7349 // are dealing with the final value computed by the loop. 7350 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 7351 // First, attempt to evaluate each operand. 7352 // Avoid performing the look-up in the common case where the specified 7353 // expression has no loop-variant portions. 7354 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 7355 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 7356 if (OpAtScope == AddRec->getOperand(i)) 7357 continue; 7358 7359 // Okay, at least one of these operands is loop variant but might be 7360 // foldable. Build a new instance of the folded commutative expression. 7361 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 7362 AddRec->op_begin()+i); 7363 NewOps.push_back(OpAtScope); 7364 for (++i; i != e; ++i) 7365 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 7366 7367 const SCEV *FoldedRec = 7368 getAddRecExpr(NewOps, AddRec->getLoop(), 7369 AddRec->getNoWrapFlags(SCEV::FlagNW)); 7370 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 7371 // The addrec may be folded to a nonrecurrence, for example, if the 7372 // induction variable is multiplied by zero after constant folding. Go 7373 // ahead and return the folded value. 7374 if (!AddRec) 7375 return FoldedRec; 7376 break; 7377 } 7378 7379 // If the scope is outside the addrec's loop, evaluate it by using the 7380 // loop exit value of the addrec. 7381 if (!AddRec->getLoop()->contains(L)) { 7382 // To evaluate this recurrence, we need to know how many times the AddRec 7383 // loop iterates. Compute this now. 7384 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 7385 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 7386 7387 // Then, evaluate the AddRec. 7388 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 7389 } 7390 7391 return AddRec; 7392 } 7393 7394 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 7395 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7396 if (Op == Cast->getOperand()) 7397 return Cast; // must be loop invariant 7398 return getZeroExtendExpr(Op, Cast->getType()); 7399 } 7400 7401 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 7402 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7403 if (Op == Cast->getOperand()) 7404 return Cast; // must be loop invariant 7405 return getSignExtendExpr(Op, Cast->getType()); 7406 } 7407 7408 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 7409 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7410 if (Op == Cast->getOperand()) 7411 return Cast; // must be loop invariant 7412 return getTruncateExpr(Op, Cast->getType()); 7413 } 7414 7415 llvm_unreachable("Unknown SCEV type!"); 7416 } 7417 7418 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 7419 return getSCEVAtScope(getSCEV(V), L); 7420 } 7421 7422 /// Finds the minimum unsigned root of the following equation: 7423 /// 7424 /// A * X = B (mod N) 7425 /// 7426 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 7427 /// A and B isn't important. 7428 /// 7429 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 7430 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 7431 ScalarEvolution &SE) { 7432 uint32_t BW = A.getBitWidth(); 7433 assert(BW == SE.getTypeSizeInBits(B->getType())); 7434 assert(A != 0 && "A must be non-zero."); 7435 7436 // 1. D = gcd(A, N) 7437 // 7438 // The gcd of A and N may have only one prime factor: 2. The number of 7439 // trailing zeros in A is its multiplicity 7440 uint32_t Mult2 = A.countTrailingZeros(); 7441 // D = 2^Mult2 7442 7443 // 2. Check if B is divisible by D. 7444 // 7445 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 7446 // is not less than multiplicity of this prime factor for D. 7447 if (SE.GetMinTrailingZeros(B) < Mult2) 7448 return SE.getCouldNotCompute(); 7449 7450 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 7451 // modulo (N / D). 7452 // 7453 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 7454 // (N / D) in general. The inverse itself always fits into BW bits, though, 7455 // so we immediately truncate it. 7456 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 7457 APInt Mod(BW + 1, 0); 7458 Mod.setBit(BW - Mult2); // Mod = N / D 7459 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 7460 7461 // 4. Compute the minimum unsigned root of the equation: 7462 // I * (B / D) mod (N / D) 7463 // To simplify the computation, we factor out the divide by D: 7464 // (I * B mod N) / D 7465 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 7466 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 7467 } 7468 7469 /// Find the roots of the quadratic equation for the given quadratic chrec 7470 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 7471 /// two SCEVCouldNotCompute objects. 7472 /// 7473 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 7474 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 7475 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 7476 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 7477 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 7478 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 7479 7480 // We currently can only solve this if the coefficients are constants. 7481 if (!LC || !MC || !NC) 7482 return None; 7483 7484 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 7485 const APInt &L = LC->getAPInt(); 7486 const APInt &M = MC->getAPInt(); 7487 const APInt &N = NC->getAPInt(); 7488 APInt Two(BitWidth, 2); 7489 7490 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 7491 7492 // The A coefficient is N/2 7493 APInt A = N.sdiv(Two); 7494 7495 // The B coefficient is M-N/2 7496 APInt B = M; 7497 B -= A; // A is the same as N/2. 7498 7499 // The C coefficient is L. 7500 const APInt& C = L; 7501 7502 // Compute the B^2-4ac term. 7503 APInt SqrtTerm = B; 7504 SqrtTerm *= B; 7505 SqrtTerm -= 4 * (A * C); 7506 7507 if (SqrtTerm.isNegative()) { 7508 // The loop is provably infinite. 7509 return None; 7510 } 7511 7512 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 7513 // integer value or else APInt::sqrt() will assert. 7514 APInt SqrtVal = SqrtTerm.sqrt(); 7515 7516 // Compute the two solutions for the quadratic formula. 7517 // The divisions must be performed as signed divisions. 7518 APInt NegB = -std::move(B); 7519 APInt TwoA = std::move(A); 7520 TwoA <<= 1; 7521 if (TwoA.isNullValue()) 7522 return None; 7523 7524 LLVMContext &Context = SE.getContext(); 7525 7526 ConstantInt *Solution1 = 7527 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 7528 ConstantInt *Solution2 = 7529 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 7530 7531 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 7532 cast<SCEVConstant>(SE.getConstant(Solution2))); 7533 } 7534 7535 ScalarEvolution::ExitLimit 7536 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 7537 bool AllowPredicates) { 7538 7539 // This is only used for loops with a "x != y" exit test. The exit condition 7540 // is now expressed as a single expression, V = x-y. So the exit test is 7541 // effectively V != 0. We know and take advantage of the fact that this 7542 // expression only being used in a comparison by zero context. 7543 7544 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 7545 // If the value is a constant 7546 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7547 // If the value is already zero, the branch will execute zero times. 7548 if (C->getValue()->isZero()) return C; 7549 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7550 } 7551 7552 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 7553 if (!AddRec && AllowPredicates) 7554 // Try to make this an AddRec using runtime tests, in the first X 7555 // iterations of this loop, where X is the SCEV expression found by the 7556 // algorithm below. 7557 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 7558 7559 if (!AddRec || AddRec->getLoop() != L) 7560 return getCouldNotCompute(); 7561 7562 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 7563 // the quadratic equation to solve it. 7564 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 7565 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 7566 const SCEVConstant *R1 = Roots->first; 7567 const SCEVConstant *R2 = Roots->second; 7568 // Pick the smallest positive root value. 7569 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 7570 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 7571 if (!CB->getZExtValue()) 7572 std::swap(R1, R2); // R1 is the minimum root now. 7573 7574 // We can only use this value if the chrec ends up with an exact zero 7575 // value at this index. When solving for "X*X != 5", for example, we 7576 // should not accept a root of 2. 7577 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 7578 if (Val->isZero()) 7579 // We found a quadratic root! 7580 return ExitLimit(R1, R1, false, Predicates); 7581 } 7582 } 7583 return getCouldNotCompute(); 7584 } 7585 7586 // Otherwise we can only handle this if it is affine. 7587 if (!AddRec->isAffine()) 7588 return getCouldNotCompute(); 7589 7590 // If this is an affine expression, the execution count of this branch is 7591 // the minimum unsigned root of the following equation: 7592 // 7593 // Start + Step*N = 0 (mod 2^BW) 7594 // 7595 // equivalent to: 7596 // 7597 // Step*N = -Start (mod 2^BW) 7598 // 7599 // where BW is the common bit width of Start and Step. 7600 7601 // Get the initial value for the loop. 7602 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 7603 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 7604 7605 // For now we handle only constant steps. 7606 // 7607 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 7608 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 7609 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 7610 // We have not yet seen any such cases. 7611 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 7612 if (!StepC || StepC->getValue()->equalsInt(0)) 7613 return getCouldNotCompute(); 7614 7615 // For positive steps (counting up until unsigned overflow): 7616 // N = -Start/Step (as unsigned) 7617 // For negative steps (counting down to zero): 7618 // N = Start/-Step 7619 // First compute the unsigned distance from zero in the direction of Step. 7620 bool CountDown = StepC->getAPInt().isNegative(); 7621 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 7622 7623 // Handle unitary steps, which cannot wraparound. 7624 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 7625 // N = Distance (as unsigned) 7626 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 7627 APInt MaxBECount = getUnsignedRange(Distance).getUnsignedMax(); 7628 7629 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 7630 // we end up with a loop whose backedge-taken count is n - 1. Detect this 7631 // case, and see if we can improve the bound. 7632 // 7633 // Explicitly handling this here is necessary because getUnsignedRange 7634 // isn't context-sensitive; it doesn't know that we only care about the 7635 // range inside the loop. 7636 const SCEV *Zero = getZero(Distance->getType()); 7637 const SCEV *One = getOne(Distance->getType()); 7638 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 7639 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 7640 // If Distance + 1 doesn't overflow, we can compute the maximum distance 7641 // as "unsigned_max(Distance + 1) - 1". 7642 ConstantRange CR = getUnsignedRange(DistancePlusOne); 7643 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 7644 } 7645 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 7646 } 7647 7648 // If the condition controls loop exit (the loop exits only if the expression 7649 // is true) and the addition is no-wrap we can use unsigned divide to 7650 // compute the backedge count. In this case, the step may not divide the 7651 // distance, but we don't care because if the condition is "missed" the loop 7652 // will have undefined behavior due to wrapping. 7653 if (ControlsExit && AddRec->hasNoSelfWrap() && 7654 loopHasNoAbnormalExits(AddRec->getLoop())) { 7655 const SCEV *Exact = 7656 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 7657 const SCEV *Max = 7658 Exact == getCouldNotCompute() 7659 ? Exact 7660 : getConstant(getUnsignedRange(Exact).getUnsignedMax()); 7661 return ExitLimit(Exact, Max, false, Predicates); 7662 } 7663 7664 // Solve the general equation. 7665 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 7666 getNegativeSCEV(Start), *this); 7667 const SCEV *M = E == getCouldNotCompute() 7668 ? E 7669 : getConstant(getUnsignedRange(E).getUnsignedMax()); 7670 return ExitLimit(E, M, false, Predicates); 7671 } 7672 7673 ScalarEvolution::ExitLimit 7674 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 7675 // Loops that look like: while (X == 0) are very strange indeed. We don't 7676 // handle them yet except for the trivial case. This could be expanded in the 7677 // future as needed. 7678 7679 // If the value is a constant, check to see if it is known to be non-zero 7680 // already. If so, the backedge will execute zero times. 7681 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7682 if (!C->getValue()->isNullValue()) 7683 return getZero(C->getType()); 7684 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7685 } 7686 7687 // We could implement others, but I really doubt anyone writes loops like 7688 // this, and if they did, they would already be constant folded. 7689 return getCouldNotCompute(); 7690 } 7691 7692 std::pair<BasicBlock *, BasicBlock *> 7693 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 7694 // If the block has a unique predecessor, then there is no path from the 7695 // predecessor to the block that does not go through the direct edge 7696 // from the predecessor to the block. 7697 if (BasicBlock *Pred = BB->getSinglePredecessor()) 7698 return {Pred, BB}; 7699 7700 // A loop's header is defined to be a block that dominates the loop. 7701 // If the header has a unique predecessor outside the loop, it must be 7702 // a block that has exactly one successor that can reach the loop. 7703 if (Loop *L = LI.getLoopFor(BB)) 7704 return {L->getLoopPredecessor(), L->getHeader()}; 7705 7706 return {nullptr, nullptr}; 7707 } 7708 7709 /// SCEV structural equivalence is usually sufficient for testing whether two 7710 /// expressions are equal, however for the purposes of looking for a condition 7711 /// guarding a loop, it can be useful to be a little more general, since a 7712 /// front-end may have replicated the controlling expression. 7713 /// 7714 static bool HasSameValue(const SCEV *A, const SCEV *B) { 7715 // Quick check to see if they are the same SCEV. 7716 if (A == B) return true; 7717 7718 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 7719 // Not all instructions that are "identical" compute the same value. For 7720 // instance, two distinct alloca instructions allocating the same type are 7721 // identical and do not read memory; but compute distinct values. 7722 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 7723 }; 7724 7725 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 7726 // two different instructions with the same value. Check for this case. 7727 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 7728 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 7729 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 7730 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 7731 if (ComputesEqualValues(AI, BI)) 7732 return true; 7733 7734 // Otherwise assume they may have a different value. 7735 return false; 7736 } 7737 7738 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 7739 const SCEV *&LHS, const SCEV *&RHS, 7740 unsigned Depth) { 7741 bool Changed = false; 7742 7743 // If we hit the max recursion limit bail out. 7744 if (Depth >= 3) 7745 return false; 7746 7747 // Canonicalize a constant to the right side. 7748 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 7749 // Check for both operands constant. 7750 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 7751 if (ConstantExpr::getICmp(Pred, 7752 LHSC->getValue(), 7753 RHSC->getValue())->isNullValue()) 7754 goto trivially_false; 7755 else 7756 goto trivially_true; 7757 } 7758 // Otherwise swap the operands to put the constant on the right. 7759 std::swap(LHS, RHS); 7760 Pred = ICmpInst::getSwappedPredicate(Pred); 7761 Changed = true; 7762 } 7763 7764 // If we're comparing an addrec with a value which is loop-invariant in the 7765 // addrec's loop, put the addrec on the left. Also make a dominance check, 7766 // as both operands could be addrecs loop-invariant in each other's loop. 7767 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 7768 const Loop *L = AR->getLoop(); 7769 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 7770 std::swap(LHS, RHS); 7771 Pred = ICmpInst::getSwappedPredicate(Pred); 7772 Changed = true; 7773 } 7774 } 7775 7776 // If there's a constant operand, canonicalize comparisons with boundary 7777 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 7778 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 7779 const APInt &RA = RC->getAPInt(); 7780 7781 bool SimplifiedByConstantRange = false; 7782 7783 if (!ICmpInst::isEquality(Pred)) { 7784 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 7785 if (ExactCR.isFullSet()) 7786 goto trivially_true; 7787 else if (ExactCR.isEmptySet()) 7788 goto trivially_false; 7789 7790 APInt NewRHS; 7791 CmpInst::Predicate NewPred; 7792 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 7793 ICmpInst::isEquality(NewPred)) { 7794 // We were able to convert an inequality to an equality. 7795 Pred = NewPred; 7796 RHS = getConstant(NewRHS); 7797 Changed = SimplifiedByConstantRange = true; 7798 } 7799 } 7800 7801 if (!SimplifiedByConstantRange) { 7802 switch (Pred) { 7803 default: 7804 break; 7805 case ICmpInst::ICMP_EQ: 7806 case ICmpInst::ICMP_NE: 7807 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 7808 if (!RA) 7809 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 7810 if (const SCEVMulExpr *ME = 7811 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 7812 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 7813 ME->getOperand(0)->isAllOnesValue()) { 7814 RHS = AE->getOperand(1); 7815 LHS = ME->getOperand(1); 7816 Changed = true; 7817 } 7818 break; 7819 7820 7821 // The "Should have been caught earlier!" messages refer to the fact 7822 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 7823 // should have fired on the corresponding cases, and canonicalized the 7824 // check to trivially_true or trivially_false. 7825 7826 case ICmpInst::ICMP_UGE: 7827 assert(!RA.isMinValue() && "Should have been caught earlier!"); 7828 Pred = ICmpInst::ICMP_UGT; 7829 RHS = getConstant(RA - 1); 7830 Changed = true; 7831 break; 7832 case ICmpInst::ICMP_ULE: 7833 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 7834 Pred = ICmpInst::ICMP_ULT; 7835 RHS = getConstant(RA + 1); 7836 Changed = true; 7837 break; 7838 case ICmpInst::ICMP_SGE: 7839 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 7840 Pred = ICmpInst::ICMP_SGT; 7841 RHS = getConstant(RA - 1); 7842 Changed = true; 7843 break; 7844 case ICmpInst::ICMP_SLE: 7845 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 7846 Pred = ICmpInst::ICMP_SLT; 7847 RHS = getConstant(RA + 1); 7848 Changed = true; 7849 break; 7850 } 7851 } 7852 } 7853 7854 // Check for obvious equality. 7855 if (HasSameValue(LHS, RHS)) { 7856 if (ICmpInst::isTrueWhenEqual(Pred)) 7857 goto trivially_true; 7858 if (ICmpInst::isFalseWhenEqual(Pred)) 7859 goto trivially_false; 7860 } 7861 7862 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7863 // adding or subtracting 1 from one of the operands. 7864 switch (Pred) { 7865 case ICmpInst::ICMP_SLE: 7866 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7867 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7868 SCEV::FlagNSW); 7869 Pred = ICmpInst::ICMP_SLT; 7870 Changed = true; 7871 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7872 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7873 SCEV::FlagNSW); 7874 Pred = ICmpInst::ICMP_SLT; 7875 Changed = true; 7876 } 7877 break; 7878 case ICmpInst::ICMP_SGE: 7879 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7880 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7881 SCEV::FlagNSW); 7882 Pred = ICmpInst::ICMP_SGT; 7883 Changed = true; 7884 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7885 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7886 SCEV::FlagNSW); 7887 Pred = ICmpInst::ICMP_SGT; 7888 Changed = true; 7889 } 7890 break; 7891 case ICmpInst::ICMP_ULE: 7892 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7893 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7894 SCEV::FlagNUW); 7895 Pred = ICmpInst::ICMP_ULT; 7896 Changed = true; 7897 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7898 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7899 Pred = ICmpInst::ICMP_ULT; 7900 Changed = true; 7901 } 7902 break; 7903 case ICmpInst::ICMP_UGE: 7904 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7905 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7906 Pred = ICmpInst::ICMP_UGT; 7907 Changed = true; 7908 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7909 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7910 SCEV::FlagNUW); 7911 Pred = ICmpInst::ICMP_UGT; 7912 Changed = true; 7913 } 7914 break; 7915 default: 7916 break; 7917 } 7918 7919 // TODO: More simplifications are possible here. 7920 7921 // Recursively simplify until we either hit a recursion limit or nothing 7922 // changes. 7923 if (Changed) 7924 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7925 7926 return Changed; 7927 7928 trivially_true: 7929 // Return 0 == 0. 7930 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7931 Pred = ICmpInst::ICMP_EQ; 7932 return true; 7933 7934 trivially_false: 7935 // Return 0 != 0. 7936 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7937 Pred = ICmpInst::ICMP_NE; 7938 return true; 7939 } 7940 7941 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7942 return getSignedRange(S).getSignedMax().isNegative(); 7943 } 7944 7945 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7946 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7947 } 7948 7949 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7950 return !getSignedRange(S).getSignedMin().isNegative(); 7951 } 7952 7953 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7954 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7955 } 7956 7957 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7958 return isKnownNegative(S) || isKnownPositive(S); 7959 } 7960 7961 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7962 const SCEV *LHS, const SCEV *RHS) { 7963 // Canonicalize the inputs first. 7964 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7965 7966 // If LHS or RHS is an addrec, check to see if the condition is true in 7967 // every iteration of the loop. 7968 // If LHS and RHS are both addrec, both conditions must be true in 7969 // every iteration of the loop. 7970 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7971 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7972 bool LeftGuarded = false; 7973 bool RightGuarded = false; 7974 if (LAR) { 7975 const Loop *L = LAR->getLoop(); 7976 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7977 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7978 if (!RAR) return true; 7979 LeftGuarded = true; 7980 } 7981 } 7982 if (RAR) { 7983 const Loop *L = RAR->getLoop(); 7984 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7985 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7986 if (!LAR) return true; 7987 RightGuarded = true; 7988 } 7989 } 7990 if (LeftGuarded && RightGuarded) 7991 return true; 7992 7993 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7994 return true; 7995 7996 // Otherwise see what can be done with known constant ranges. 7997 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7998 } 7999 8000 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 8001 ICmpInst::Predicate Pred, 8002 bool &Increasing) { 8003 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 8004 8005 #ifndef NDEBUG 8006 // Verify an invariant: inverting the predicate should turn a monotonically 8007 // increasing change to a monotonically decreasing one, and vice versa. 8008 bool IncreasingSwapped; 8009 bool ResultSwapped = isMonotonicPredicateImpl( 8010 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 8011 8012 assert(Result == ResultSwapped && "should be able to analyze both!"); 8013 if (ResultSwapped) 8014 assert(Increasing == !IncreasingSwapped && 8015 "monotonicity should flip as we flip the predicate"); 8016 #endif 8017 8018 return Result; 8019 } 8020 8021 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 8022 ICmpInst::Predicate Pred, 8023 bool &Increasing) { 8024 8025 // A zero step value for LHS means the induction variable is essentially a 8026 // loop invariant value. We don't really depend on the predicate actually 8027 // flipping from false to true (for increasing predicates, and the other way 8028 // around for decreasing predicates), all we care about is that *if* the 8029 // predicate changes then it only changes from false to true. 8030 // 8031 // A zero step value in itself is not very useful, but there may be places 8032 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 8033 // as general as possible. 8034 8035 switch (Pred) { 8036 default: 8037 return false; // Conservative answer 8038 8039 case ICmpInst::ICMP_UGT: 8040 case ICmpInst::ICMP_UGE: 8041 case ICmpInst::ICMP_ULT: 8042 case ICmpInst::ICMP_ULE: 8043 if (!LHS->hasNoUnsignedWrap()) 8044 return false; 8045 8046 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 8047 return true; 8048 8049 case ICmpInst::ICMP_SGT: 8050 case ICmpInst::ICMP_SGE: 8051 case ICmpInst::ICMP_SLT: 8052 case ICmpInst::ICMP_SLE: { 8053 if (!LHS->hasNoSignedWrap()) 8054 return false; 8055 8056 const SCEV *Step = LHS->getStepRecurrence(*this); 8057 8058 if (isKnownNonNegative(Step)) { 8059 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 8060 return true; 8061 } 8062 8063 if (isKnownNonPositive(Step)) { 8064 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 8065 return true; 8066 } 8067 8068 return false; 8069 } 8070 8071 } 8072 8073 llvm_unreachable("switch has default clause!"); 8074 } 8075 8076 bool ScalarEvolution::isLoopInvariantPredicate( 8077 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 8078 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 8079 const SCEV *&InvariantRHS) { 8080 8081 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 8082 if (!isLoopInvariant(RHS, L)) { 8083 if (!isLoopInvariant(LHS, L)) 8084 return false; 8085 8086 std::swap(LHS, RHS); 8087 Pred = ICmpInst::getSwappedPredicate(Pred); 8088 } 8089 8090 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8091 if (!ArLHS || ArLHS->getLoop() != L) 8092 return false; 8093 8094 bool Increasing; 8095 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 8096 return false; 8097 8098 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 8099 // true as the loop iterates, and the backedge is control dependent on 8100 // "ArLHS `Pred` RHS" == true then we can reason as follows: 8101 // 8102 // * if the predicate was false in the first iteration then the predicate 8103 // is never evaluated again, since the loop exits without taking the 8104 // backedge. 8105 // * if the predicate was true in the first iteration then it will 8106 // continue to be true for all future iterations since it is 8107 // monotonically increasing. 8108 // 8109 // For both the above possibilities, we can replace the loop varying 8110 // predicate with its value on the first iteration of the loop (which is 8111 // loop invariant). 8112 // 8113 // A similar reasoning applies for a monotonically decreasing predicate, by 8114 // replacing true with false and false with true in the above two bullets. 8115 8116 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 8117 8118 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 8119 return false; 8120 8121 InvariantPred = Pred; 8122 InvariantLHS = ArLHS->getStart(); 8123 InvariantRHS = RHS; 8124 return true; 8125 } 8126 8127 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 8128 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8129 if (HasSameValue(LHS, RHS)) 8130 return ICmpInst::isTrueWhenEqual(Pred); 8131 8132 // This code is split out from isKnownPredicate because it is called from 8133 // within isLoopEntryGuardedByCond. 8134 8135 auto CheckRanges = 8136 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 8137 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 8138 .contains(RangeLHS); 8139 }; 8140 8141 // The check at the top of the function catches the case where the values are 8142 // known to be equal. 8143 if (Pred == CmpInst::ICMP_EQ) 8144 return false; 8145 8146 if (Pred == CmpInst::ICMP_NE) 8147 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 8148 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 8149 isKnownNonZero(getMinusSCEV(LHS, RHS)); 8150 8151 if (CmpInst::isSigned(Pred)) 8152 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 8153 8154 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 8155 } 8156 8157 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 8158 const SCEV *LHS, 8159 const SCEV *RHS) { 8160 8161 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 8162 // Return Y via OutY. 8163 auto MatchBinaryAddToConst = 8164 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 8165 SCEV::NoWrapFlags ExpectedFlags) { 8166 const SCEV *NonConstOp, *ConstOp; 8167 SCEV::NoWrapFlags FlagsPresent; 8168 8169 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 8170 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 8171 return false; 8172 8173 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 8174 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 8175 }; 8176 8177 APInt C; 8178 8179 switch (Pred) { 8180 default: 8181 break; 8182 8183 case ICmpInst::ICMP_SGE: 8184 std::swap(LHS, RHS); 8185 LLVM_FALLTHROUGH; 8186 case ICmpInst::ICMP_SLE: 8187 // X s<= (X + C)<nsw> if C >= 0 8188 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 8189 return true; 8190 8191 // (X + C)<nsw> s<= X if C <= 0 8192 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 8193 !C.isStrictlyPositive()) 8194 return true; 8195 break; 8196 8197 case ICmpInst::ICMP_SGT: 8198 std::swap(LHS, RHS); 8199 LLVM_FALLTHROUGH; 8200 case ICmpInst::ICMP_SLT: 8201 // X s< (X + C)<nsw> if C > 0 8202 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 8203 C.isStrictlyPositive()) 8204 return true; 8205 8206 // (X + C)<nsw> s< X if C < 0 8207 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 8208 return true; 8209 break; 8210 } 8211 8212 return false; 8213 } 8214 8215 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 8216 const SCEV *LHS, 8217 const SCEV *RHS) { 8218 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 8219 return false; 8220 8221 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 8222 // the stack can result in exponential time complexity. 8223 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 8224 8225 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 8226 // 8227 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 8228 // isKnownPredicate. isKnownPredicate is more powerful, but also more 8229 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 8230 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 8231 // use isKnownPredicate later if needed. 8232 return isKnownNonNegative(RHS) && 8233 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 8234 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 8235 } 8236 8237 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 8238 ICmpInst::Predicate Pred, 8239 const SCEV *LHS, const SCEV *RHS) { 8240 // No need to even try if we know the module has no guards. 8241 if (!HasGuards) 8242 return false; 8243 8244 return any_of(*BB, [&](Instruction &I) { 8245 using namespace llvm::PatternMatch; 8246 8247 Value *Condition; 8248 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 8249 m_Value(Condition))) && 8250 isImpliedCond(Pred, LHS, RHS, Condition, false); 8251 }); 8252 } 8253 8254 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 8255 /// protected by a conditional between LHS and RHS. This is used to 8256 /// to eliminate casts. 8257 bool 8258 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 8259 ICmpInst::Predicate Pred, 8260 const SCEV *LHS, const SCEV *RHS) { 8261 // Interpret a null as meaning no loop, where there is obviously no guard 8262 // (interprocedural conditions notwithstanding). 8263 if (!L) return true; 8264 8265 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8266 return true; 8267 8268 BasicBlock *Latch = L->getLoopLatch(); 8269 if (!Latch) 8270 return false; 8271 8272 BranchInst *LoopContinuePredicate = 8273 dyn_cast<BranchInst>(Latch->getTerminator()); 8274 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 8275 isImpliedCond(Pred, LHS, RHS, 8276 LoopContinuePredicate->getCondition(), 8277 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 8278 return true; 8279 8280 // We don't want more than one activation of the following loops on the stack 8281 // -- that can lead to O(n!) time complexity. 8282 if (WalkingBEDominatingConds) 8283 return false; 8284 8285 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 8286 8287 // See if we can exploit a trip count to prove the predicate. 8288 const auto &BETakenInfo = getBackedgeTakenInfo(L); 8289 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 8290 if (LatchBECount != getCouldNotCompute()) { 8291 // We know that Latch branches back to the loop header exactly 8292 // LatchBECount times. This means the backdege condition at Latch is 8293 // equivalent to "{0,+,1} u< LatchBECount". 8294 Type *Ty = LatchBECount->getType(); 8295 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 8296 const SCEV *LoopCounter = 8297 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 8298 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 8299 LatchBECount)) 8300 return true; 8301 } 8302 8303 // Check conditions due to any @llvm.assume intrinsics. 8304 for (auto &AssumeVH : AC.assumptions()) { 8305 if (!AssumeVH) 8306 continue; 8307 auto *CI = cast<CallInst>(AssumeVH); 8308 if (!DT.dominates(CI, Latch->getTerminator())) 8309 continue; 8310 8311 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8312 return true; 8313 } 8314 8315 // If the loop is not reachable from the entry block, we risk running into an 8316 // infinite loop as we walk up into the dom tree. These loops do not matter 8317 // anyway, so we just return a conservative answer when we see them. 8318 if (!DT.isReachableFromEntry(L->getHeader())) 8319 return false; 8320 8321 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 8322 return true; 8323 8324 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 8325 DTN != HeaderDTN; DTN = DTN->getIDom()) { 8326 8327 assert(DTN && "should reach the loop header before reaching the root!"); 8328 8329 BasicBlock *BB = DTN->getBlock(); 8330 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 8331 return true; 8332 8333 BasicBlock *PBB = BB->getSinglePredecessor(); 8334 if (!PBB) 8335 continue; 8336 8337 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 8338 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 8339 continue; 8340 8341 Value *Condition = ContinuePredicate->getCondition(); 8342 8343 // If we have an edge `E` within the loop body that dominates the only 8344 // latch, the condition guarding `E` also guards the backedge. This 8345 // reasoning works only for loops with a single latch. 8346 8347 BasicBlockEdge DominatingEdge(PBB, BB); 8348 if (DominatingEdge.isSingleEdge()) { 8349 // We're constructively (and conservatively) enumerating edges within the 8350 // loop body that dominate the latch. The dominator tree better agree 8351 // with us on this: 8352 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 8353 8354 if (isImpliedCond(Pred, LHS, RHS, Condition, 8355 BB != ContinuePredicate->getSuccessor(0))) 8356 return true; 8357 } 8358 } 8359 8360 return false; 8361 } 8362 8363 bool 8364 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 8365 ICmpInst::Predicate Pred, 8366 const SCEV *LHS, const SCEV *RHS) { 8367 // Interpret a null as meaning no loop, where there is obviously no guard 8368 // (interprocedural conditions notwithstanding). 8369 if (!L) return false; 8370 8371 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8372 return true; 8373 8374 // Starting at the loop predecessor, climb up the predecessor chain, as long 8375 // as there are predecessors that can be found that have unique successors 8376 // leading to the original header. 8377 for (std::pair<BasicBlock *, BasicBlock *> 8378 Pair(L->getLoopPredecessor(), L->getHeader()); 8379 Pair.first; 8380 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 8381 8382 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS)) 8383 return true; 8384 8385 BranchInst *LoopEntryPredicate = 8386 dyn_cast<BranchInst>(Pair.first->getTerminator()); 8387 if (!LoopEntryPredicate || 8388 LoopEntryPredicate->isUnconditional()) 8389 continue; 8390 8391 if (isImpliedCond(Pred, LHS, RHS, 8392 LoopEntryPredicate->getCondition(), 8393 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 8394 return true; 8395 } 8396 8397 // Check conditions due to any @llvm.assume intrinsics. 8398 for (auto &AssumeVH : AC.assumptions()) { 8399 if (!AssumeVH) 8400 continue; 8401 auto *CI = cast<CallInst>(AssumeVH); 8402 if (!DT.dominates(CI, L->getHeader())) 8403 continue; 8404 8405 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8406 return true; 8407 } 8408 8409 return false; 8410 } 8411 8412 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 8413 const SCEV *LHS, const SCEV *RHS, 8414 Value *FoundCondValue, 8415 bool Inverse) { 8416 if (!PendingLoopPredicates.insert(FoundCondValue).second) 8417 return false; 8418 8419 auto ClearOnExit = 8420 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 8421 8422 // Recursively handle And and Or conditions. 8423 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 8424 if (BO->getOpcode() == Instruction::And) { 8425 if (!Inverse) 8426 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8427 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8428 } else if (BO->getOpcode() == Instruction::Or) { 8429 if (Inverse) 8430 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8431 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8432 } 8433 } 8434 8435 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 8436 if (!ICI) return false; 8437 8438 // Now that we found a conditional branch that dominates the loop or controls 8439 // the loop latch. Check to see if it is the comparison we are looking for. 8440 ICmpInst::Predicate FoundPred; 8441 if (Inverse) 8442 FoundPred = ICI->getInversePredicate(); 8443 else 8444 FoundPred = ICI->getPredicate(); 8445 8446 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 8447 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 8448 8449 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 8450 } 8451 8452 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 8453 const SCEV *RHS, 8454 ICmpInst::Predicate FoundPred, 8455 const SCEV *FoundLHS, 8456 const SCEV *FoundRHS) { 8457 // Balance the types. 8458 if (getTypeSizeInBits(LHS->getType()) < 8459 getTypeSizeInBits(FoundLHS->getType())) { 8460 if (CmpInst::isSigned(Pred)) { 8461 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 8462 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 8463 } else { 8464 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 8465 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 8466 } 8467 } else if (getTypeSizeInBits(LHS->getType()) > 8468 getTypeSizeInBits(FoundLHS->getType())) { 8469 if (CmpInst::isSigned(FoundPred)) { 8470 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 8471 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 8472 } else { 8473 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 8474 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 8475 } 8476 } 8477 8478 // Canonicalize the query to match the way instcombine will have 8479 // canonicalized the comparison. 8480 if (SimplifyICmpOperands(Pred, LHS, RHS)) 8481 if (LHS == RHS) 8482 return CmpInst::isTrueWhenEqual(Pred); 8483 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 8484 if (FoundLHS == FoundRHS) 8485 return CmpInst::isFalseWhenEqual(FoundPred); 8486 8487 // Check to see if we can make the LHS or RHS match. 8488 if (LHS == FoundRHS || RHS == FoundLHS) { 8489 if (isa<SCEVConstant>(RHS)) { 8490 std::swap(FoundLHS, FoundRHS); 8491 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 8492 } else { 8493 std::swap(LHS, RHS); 8494 Pred = ICmpInst::getSwappedPredicate(Pred); 8495 } 8496 } 8497 8498 // Check whether the found predicate is the same as the desired predicate. 8499 if (FoundPred == Pred) 8500 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8501 8502 // Check whether swapping the found predicate makes it the same as the 8503 // desired predicate. 8504 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 8505 if (isa<SCEVConstant>(RHS)) 8506 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 8507 else 8508 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 8509 RHS, LHS, FoundLHS, FoundRHS); 8510 } 8511 8512 // Unsigned comparison is the same as signed comparison when both the operands 8513 // are non-negative. 8514 if (CmpInst::isUnsigned(FoundPred) && 8515 CmpInst::getSignedPredicate(FoundPred) == Pred && 8516 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 8517 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8518 8519 // Check if we can make progress by sharpening ranges. 8520 if (FoundPred == ICmpInst::ICMP_NE && 8521 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 8522 8523 const SCEVConstant *C = nullptr; 8524 const SCEV *V = nullptr; 8525 8526 if (isa<SCEVConstant>(FoundLHS)) { 8527 C = cast<SCEVConstant>(FoundLHS); 8528 V = FoundRHS; 8529 } else { 8530 C = cast<SCEVConstant>(FoundRHS); 8531 V = FoundLHS; 8532 } 8533 8534 // The guarding predicate tells us that C != V. If the known range 8535 // of V is [C, t), we can sharpen the range to [C + 1, t). The 8536 // range we consider has to correspond to same signedness as the 8537 // predicate we're interested in folding. 8538 8539 APInt Min = ICmpInst::isSigned(Pred) ? 8540 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 8541 8542 if (Min == C->getAPInt()) { 8543 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 8544 // This is true even if (Min + 1) wraps around -- in case of 8545 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 8546 8547 APInt SharperMin = Min + 1; 8548 8549 switch (Pred) { 8550 case ICmpInst::ICMP_SGE: 8551 case ICmpInst::ICMP_UGE: 8552 // We know V `Pred` SharperMin. If this implies LHS `Pred` 8553 // RHS, we're done. 8554 if (isImpliedCondOperands(Pred, LHS, RHS, V, 8555 getConstant(SharperMin))) 8556 return true; 8557 LLVM_FALLTHROUGH; 8558 8559 case ICmpInst::ICMP_SGT: 8560 case ICmpInst::ICMP_UGT: 8561 // We know from the range information that (V `Pred` Min || 8562 // V == Min). We know from the guarding condition that !(V 8563 // == Min). This gives us 8564 // 8565 // V `Pred` Min || V == Min && !(V == Min) 8566 // => V `Pred` Min 8567 // 8568 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 8569 8570 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 8571 return true; 8572 LLVM_FALLTHROUGH; 8573 8574 default: 8575 // No change 8576 break; 8577 } 8578 } 8579 } 8580 8581 // Check whether the actual condition is beyond sufficient. 8582 if (FoundPred == ICmpInst::ICMP_EQ) 8583 if (ICmpInst::isTrueWhenEqual(Pred)) 8584 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8585 return true; 8586 if (Pred == ICmpInst::ICMP_NE) 8587 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 8588 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 8589 return true; 8590 8591 // Otherwise assume the worst. 8592 return false; 8593 } 8594 8595 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 8596 const SCEV *&L, const SCEV *&R, 8597 SCEV::NoWrapFlags &Flags) { 8598 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 8599 if (!AE || AE->getNumOperands() != 2) 8600 return false; 8601 8602 L = AE->getOperand(0); 8603 R = AE->getOperand(1); 8604 Flags = AE->getNoWrapFlags(); 8605 return true; 8606 } 8607 8608 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 8609 const SCEV *Less) { 8610 // We avoid subtracting expressions here because this function is usually 8611 // fairly deep in the call stack (i.e. is called many times). 8612 8613 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 8614 const auto *LAR = cast<SCEVAddRecExpr>(Less); 8615 const auto *MAR = cast<SCEVAddRecExpr>(More); 8616 8617 if (LAR->getLoop() != MAR->getLoop()) 8618 return None; 8619 8620 // We look at affine expressions only; not for correctness but to keep 8621 // getStepRecurrence cheap. 8622 if (!LAR->isAffine() || !MAR->isAffine()) 8623 return None; 8624 8625 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 8626 return None; 8627 8628 Less = LAR->getStart(); 8629 More = MAR->getStart(); 8630 8631 // fall through 8632 } 8633 8634 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 8635 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 8636 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 8637 return M - L; 8638 } 8639 8640 const SCEV *L, *R; 8641 SCEV::NoWrapFlags Flags; 8642 if (splitBinaryAdd(Less, L, R, Flags)) 8643 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8644 if (R == More) 8645 return -(LC->getAPInt()); 8646 8647 if (splitBinaryAdd(More, L, R, Flags)) 8648 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8649 if (R == Less) 8650 return LC->getAPInt(); 8651 8652 return None; 8653 } 8654 8655 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 8656 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 8657 const SCEV *FoundLHS, const SCEV *FoundRHS) { 8658 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 8659 return false; 8660 8661 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8662 if (!AddRecLHS) 8663 return false; 8664 8665 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 8666 if (!AddRecFoundLHS) 8667 return false; 8668 8669 // We'd like to let SCEV reason about control dependencies, so we constrain 8670 // both the inequalities to be about add recurrences on the same loop. This 8671 // way we can use isLoopEntryGuardedByCond later. 8672 8673 const Loop *L = AddRecFoundLHS->getLoop(); 8674 if (L != AddRecLHS->getLoop()) 8675 return false; 8676 8677 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 8678 // 8679 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 8680 // ... (2) 8681 // 8682 // Informal proof for (2), assuming (1) [*]: 8683 // 8684 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 8685 // 8686 // Then 8687 // 8688 // FoundLHS s< FoundRHS s< INT_MIN - C 8689 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 8690 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 8691 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 8692 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 8693 // <=> FoundLHS + C s< FoundRHS + C 8694 // 8695 // [*]: (1) can be proved by ruling out overflow. 8696 // 8697 // [**]: This can be proved by analyzing all the four possibilities: 8698 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 8699 // (A s>= 0, B s>= 0). 8700 // 8701 // Note: 8702 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 8703 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 8704 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 8705 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 8706 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 8707 // C)". 8708 8709 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 8710 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 8711 if (!LDiff || !RDiff || *LDiff != *RDiff) 8712 return false; 8713 8714 if (LDiff->isMinValue()) 8715 return true; 8716 8717 APInt FoundRHSLimit; 8718 8719 if (Pred == CmpInst::ICMP_ULT) { 8720 FoundRHSLimit = -(*RDiff); 8721 } else { 8722 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 8723 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 8724 } 8725 8726 // Try to prove (1) or (2), as needed. 8727 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 8728 getConstant(FoundRHSLimit)); 8729 } 8730 8731 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 8732 const SCEV *LHS, const SCEV *RHS, 8733 const SCEV *FoundLHS, 8734 const SCEV *FoundRHS) { 8735 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8736 return true; 8737 8738 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8739 return true; 8740 8741 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 8742 FoundLHS, FoundRHS) || 8743 // ~x < ~y --> x > y 8744 isImpliedCondOperandsHelper(Pred, LHS, RHS, 8745 getNotSCEV(FoundRHS), 8746 getNotSCEV(FoundLHS)); 8747 } 8748 8749 8750 /// If Expr computes ~A, return A else return nullptr 8751 static const SCEV *MatchNotExpr(const SCEV *Expr) { 8752 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 8753 if (!Add || Add->getNumOperands() != 2 || 8754 !Add->getOperand(0)->isAllOnesValue()) 8755 return nullptr; 8756 8757 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 8758 if (!AddRHS || AddRHS->getNumOperands() != 2 || 8759 !AddRHS->getOperand(0)->isAllOnesValue()) 8760 return nullptr; 8761 8762 return AddRHS->getOperand(1); 8763 } 8764 8765 8766 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 8767 template<typename MaxExprType> 8768 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 8769 const SCEV *Candidate) { 8770 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 8771 if (!MaxExpr) return false; 8772 8773 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 8774 } 8775 8776 8777 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 8778 template<typename MaxExprType> 8779 static bool IsMinConsistingOf(ScalarEvolution &SE, 8780 const SCEV *MaybeMinExpr, 8781 const SCEV *Candidate) { 8782 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8783 if (!MaybeMaxExpr) 8784 return false; 8785 8786 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8787 } 8788 8789 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8790 ICmpInst::Predicate Pred, 8791 const SCEV *LHS, const SCEV *RHS) { 8792 8793 // If both sides are affine addrecs for the same loop, with equal 8794 // steps, and we know the recurrences don't wrap, then we only 8795 // need to check the predicate on the starting values. 8796 8797 if (!ICmpInst::isRelational(Pred)) 8798 return false; 8799 8800 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8801 if (!LAR) 8802 return false; 8803 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8804 if (!RAR) 8805 return false; 8806 if (LAR->getLoop() != RAR->getLoop()) 8807 return false; 8808 if (!LAR->isAffine() || !RAR->isAffine()) 8809 return false; 8810 8811 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8812 return false; 8813 8814 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8815 SCEV::FlagNSW : SCEV::FlagNUW; 8816 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8817 return false; 8818 8819 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8820 } 8821 8822 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8823 /// expression? 8824 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8825 ICmpInst::Predicate Pred, 8826 const SCEV *LHS, const SCEV *RHS) { 8827 switch (Pred) { 8828 default: 8829 return false; 8830 8831 case ICmpInst::ICMP_SGE: 8832 std::swap(LHS, RHS); 8833 LLVM_FALLTHROUGH; 8834 case ICmpInst::ICMP_SLE: 8835 return 8836 // min(A, ...) <= A 8837 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8838 // A <= max(A, ...) 8839 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8840 8841 case ICmpInst::ICMP_UGE: 8842 std::swap(LHS, RHS); 8843 LLVM_FALLTHROUGH; 8844 case ICmpInst::ICMP_ULE: 8845 return 8846 // min(A, ...) <= A 8847 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8848 // A <= max(A, ...) 8849 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8850 } 8851 8852 llvm_unreachable("covered switch fell through?!"); 8853 } 8854 8855 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 8856 const SCEV *LHS, const SCEV *RHS, 8857 const SCEV *FoundLHS, 8858 const SCEV *FoundRHS, 8859 unsigned Depth) { 8860 assert(getTypeSizeInBits(LHS->getType()) == 8861 getTypeSizeInBits(RHS->getType()) && 8862 "LHS and RHS have different sizes?"); 8863 assert(getTypeSizeInBits(FoundLHS->getType()) == 8864 getTypeSizeInBits(FoundRHS->getType()) && 8865 "FoundLHS and FoundRHS have different sizes?"); 8866 // We want to avoid hurting the compile time with analysis of too big trees. 8867 if (Depth > MaxSCEVOperationsImplicationDepth) 8868 return false; 8869 // We only want to work with ICMP_SGT comparison so far. 8870 // TODO: Extend to ICMP_UGT? 8871 if (Pred == ICmpInst::ICMP_SLT) { 8872 Pred = ICmpInst::ICMP_SGT; 8873 std::swap(LHS, RHS); 8874 std::swap(FoundLHS, FoundRHS); 8875 } 8876 if (Pred != ICmpInst::ICMP_SGT) 8877 return false; 8878 8879 auto GetOpFromSExt = [&](const SCEV *S) { 8880 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 8881 return Ext->getOperand(); 8882 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 8883 // the constant in some cases. 8884 return S; 8885 }; 8886 8887 // Acquire values from extensions. 8888 auto *OrigFoundLHS = FoundLHS; 8889 LHS = GetOpFromSExt(LHS); 8890 FoundLHS = GetOpFromSExt(FoundLHS); 8891 8892 // Is the SGT predicate can be proved trivially or using the found context. 8893 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 8894 return isKnownViaSimpleReasoning(ICmpInst::ICMP_SGT, S1, S2) || 8895 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 8896 FoundRHS, Depth + 1); 8897 }; 8898 8899 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 8900 // We want to avoid creation of any new non-constant SCEV. Since we are 8901 // going to compare the operands to RHS, we should be certain that we don't 8902 // need any size extensions for this. So let's decline all cases when the 8903 // sizes of types of LHS and RHS do not match. 8904 // TODO: Maybe try to get RHS from sext to catch more cases? 8905 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 8906 return false; 8907 8908 // Should not overflow. 8909 if (!LHSAddExpr->hasNoSignedWrap()) 8910 return false; 8911 8912 auto *LL = LHSAddExpr->getOperand(0); 8913 auto *LR = LHSAddExpr->getOperand(1); 8914 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 8915 8916 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 8917 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 8918 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 8919 }; 8920 // Try to prove the following rule: 8921 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 8922 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 8923 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 8924 return true; 8925 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 8926 Value *LL, *LR; 8927 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 8928 using namespace llvm::PatternMatch; 8929 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 8930 // Rules for division. 8931 // We are going to perform some comparisons with Denominator and its 8932 // derivative expressions. In general case, creating a SCEV for it may 8933 // lead to a complex analysis of the entire graph, and in particular it 8934 // can request trip count recalculation for the same loop. This would 8935 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 8936 // this, we only want to create SCEVs that are constants in this section. 8937 // So we bail if Denominator is not a constant. 8938 if (!isa<ConstantInt>(LR)) 8939 return false; 8940 8941 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 8942 8943 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 8944 // then a SCEV for the numerator already exists and matches with FoundLHS. 8945 auto *Numerator = getExistingSCEV(LL); 8946 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 8947 return false; 8948 8949 // Make sure that the numerator matches with FoundLHS and the denominator 8950 // is positive. 8951 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 8952 return false; 8953 8954 auto *DTy = Denominator->getType(); 8955 auto *FRHSTy = FoundRHS->getType(); 8956 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 8957 // One of types is a pointer and another one is not. We cannot extend 8958 // them properly to a wider type, so let us just reject this case. 8959 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 8960 // to avoid this check. 8961 return false; 8962 8963 // Given that: 8964 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 8965 auto *WTy = getWiderType(DTy, FRHSTy); 8966 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 8967 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 8968 8969 // Try to prove the following rule: 8970 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 8971 // For example, given that FoundLHS > 2. It means that FoundLHS is at 8972 // least 3. If we divide it by Denominator < 4, we will have at least 1. 8973 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 8974 if (isKnownNonPositive(RHS) && 8975 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 8976 return true; 8977 8978 // Try to prove the following rule: 8979 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 8980 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 8981 // If we divide it by Denominator > 2, then: 8982 // 1. If FoundLHS is negative, then the result is 0. 8983 // 2. If FoundLHS is non-negative, then the result is non-negative. 8984 // Anyways, the result is non-negative. 8985 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 8986 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 8987 if (isKnownNegative(RHS) && 8988 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 8989 return true; 8990 } 8991 } 8992 8993 return false; 8994 } 8995 8996 bool 8997 ScalarEvolution::isKnownViaSimpleReasoning(ICmpInst::Predicate Pred, 8998 const SCEV *LHS, const SCEV *RHS) { 8999 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 9000 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 9001 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 9002 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 9003 } 9004 9005 bool 9006 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 9007 const SCEV *LHS, const SCEV *RHS, 9008 const SCEV *FoundLHS, 9009 const SCEV *FoundRHS) { 9010 switch (Pred) { 9011 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 9012 case ICmpInst::ICMP_EQ: 9013 case ICmpInst::ICMP_NE: 9014 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 9015 return true; 9016 break; 9017 case ICmpInst::ICMP_SLT: 9018 case ICmpInst::ICMP_SLE: 9019 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 9020 isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 9021 return true; 9022 break; 9023 case ICmpInst::ICMP_SGT: 9024 case ICmpInst::ICMP_SGE: 9025 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 9026 isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 9027 return true; 9028 break; 9029 case ICmpInst::ICMP_ULT: 9030 case ICmpInst::ICMP_ULE: 9031 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 9032 isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 9033 return true; 9034 break; 9035 case ICmpInst::ICMP_UGT: 9036 case ICmpInst::ICMP_UGE: 9037 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 9038 isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 9039 return true; 9040 break; 9041 } 9042 9043 // Maybe it can be proved via operations? 9044 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9045 return true; 9046 9047 return false; 9048 } 9049 9050 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 9051 const SCEV *LHS, 9052 const SCEV *RHS, 9053 const SCEV *FoundLHS, 9054 const SCEV *FoundRHS) { 9055 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 9056 // The restriction on `FoundRHS` be lifted easily -- it exists only to 9057 // reduce the compile time impact of this optimization. 9058 return false; 9059 9060 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 9061 if (!Addend) 9062 return false; 9063 9064 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 9065 9066 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 9067 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 9068 ConstantRange FoundLHSRange = 9069 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 9070 9071 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 9072 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 9073 9074 // We can also compute the range of values for `LHS` that satisfy the 9075 // consequent, "`LHS` `Pred` `RHS`": 9076 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 9077 ConstantRange SatisfyingLHSRange = 9078 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 9079 9080 // The antecedent implies the consequent if every value of `LHS` that 9081 // satisfies the antecedent also satisfies the consequent. 9082 return SatisfyingLHSRange.contains(LHSRange); 9083 } 9084 9085 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 9086 bool IsSigned, bool NoWrap) { 9087 assert(isKnownPositive(Stride) && "Positive stride expected!"); 9088 9089 if (NoWrap) return false; 9090 9091 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9092 const SCEV *One = getOne(Stride->getType()); 9093 9094 if (IsSigned) { 9095 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 9096 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 9097 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 9098 .getSignedMax(); 9099 9100 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 9101 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 9102 } 9103 9104 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 9105 APInt MaxValue = APInt::getMaxValue(BitWidth); 9106 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 9107 .getUnsignedMax(); 9108 9109 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 9110 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 9111 } 9112 9113 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 9114 bool IsSigned, bool NoWrap) { 9115 if (NoWrap) return false; 9116 9117 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9118 const SCEV *One = getOne(Stride->getType()); 9119 9120 if (IsSigned) { 9121 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 9122 APInt MinValue = APInt::getSignedMinValue(BitWidth); 9123 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 9124 .getSignedMax(); 9125 9126 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 9127 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 9128 } 9129 9130 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 9131 APInt MinValue = APInt::getMinValue(BitWidth); 9132 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 9133 .getUnsignedMax(); 9134 9135 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 9136 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 9137 } 9138 9139 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 9140 bool Equality) { 9141 const SCEV *One = getOne(Step->getType()); 9142 Delta = Equality ? getAddExpr(Delta, Step) 9143 : getAddExpr(Delta, getMinusSCEV(Step, One)); 9144 return getUDivExpr(Delta, Step); 9145 } 9146 9147 ScalarEvolution::ExitLimit 9148 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 9149 const Loop *L, bool IsSigned, 9150 bool ControlsExit, bool AllowPredicates) { 9151 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9152 // We handle only IV < Invariant 9153 if (!isLoopInvariant(RHS, L)) 9154 return getCouldNotCompute(); 9155 9156 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 9157 bool PredicatedIV = false; 9158 9159 if (!IV && AllowPredicates) { 9160 // Try to make this an AddRec using runtime tests, in the first X 9161 // iterations of this loop, where X is the SCEV expression found by the 9162 // algorithm below. 9163 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 9164 PredicatedIV = true; 9165 } 9166 9167 // Avoid weird loops 9168 if (!IV || IV->getLoop() != L || !IV->isAffine()) 9169 return getCouldNotCompute(); 9170 9171 bool NoWrap = ControlsExit && 9172 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 9173 9174 const SCEV *Stride = IV->getStepRecurrence(*this); 9175 9176 bool PositiveStride = isKnownPositive(Stride); 9177 9178 // Avoid negative or zero stride values. 9179 if (!PositiveStride) { 9180 // We can compute the correct backedge taken count for loops with unknown 9181 // strides if we can prove that the loop is not an infinite loop with side 9182 // effects. Here's the loop structure we are trying to handle - 9183 // 9184 // i = start 9185 // do { 9186 // A[i] = i; 9187 // i += s; 9188 // } while (i < end); 9189 // 9190 // The backedge taken count for such loops is evaluated as - 9191 // (max(end, start + stride) - start - 1) /u stride 9192 // 9193 // The additional preconditions that we need to check to prove correctness 9194 // of the above formula is as follows - 9195 // 9196 // a) IV is either nuw or nsw depending upon signedness (indicated by the 9197 // NoWrap flag). 9198 // b) loop is single exit with no side effects. 9199 // 9200 // 9201 // Precondition a) implies that if the stride is negative, this is a single 9202 // trip loop. The backedge taken count formula reduces to zero in this case. 9203 // 9204 // Precondition b) implies that the unknown stride cannot be zero otherwise 9205 // we have UB. 9206 // 9207 // The positive stride case is the same as isKnownPositive(Stride) returning 9208 // true (original behavior of the function). 9209 // 9210 // We want to make sure that the stride is truly unknown as there are edge 9211 // cases where ScalarEvolution propagates no wrap flags to the 9212 // post-increment/decrement IV even though the increment/decrement operation 9213 // itself is wrapping. The computed backedge taken count may be wrong in 9214 // such cases. This is prevented by checking that the stride is not known to 9215 // be either positive or non-positive. For example, no wrap flags are 9216 // propagated to the post-increment IV of this loop with a trip count of 2 - 9217 // 9218 // unsigned char i; 9219 // for(i=127; i<128; i+=129) 9220 // A[i] = i; 9221 // 9222 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 9223 !loopHasNoSideEffects(L)) 9224 return getCouldNotCompute(); 9225 9226 } else if (!Stride->isOne() && 9227 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 9228 // Avoid proven overflow cases: this will ensure that the backedge taken 9229 // count will not generate any unsigned overflow. Relaxed no-overflow 9230 // conditions exploit NoWrapFlags, allowing to optimize in presence of 9231 // undefined behaviors like the case of C language. 9232 return getCouldNotCompute(); 9233 9234 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 9235 : ICmpInst::ICMP_ULT; 9236 const SCEV *Start = IV->getStart(); 9237 const SCEV *End = RHS; 9238 // If the backedge is taken at least once, then it will be taken 9239 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 9240 // is the LHS value of the less-than comparison the first time it is evaluated 9241 // and End is the RHS. 9242 const SCEV *BECountIfBackedgeTaken = 9243 computeBECount(getMinusSCEV(End, Start), Stride, false); 9244 // If the loop entry is guarded by the result of the backedge test of the 9245 // first loop iteration, then we know the backedge will be taken at least 9246 // once and so the backedge taken count is as above. If not then we use the 9247 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 9248 // as if the backedge is taken at least once max(End,Start) is End and so the 9249 // result is as above, and if not max(End,Start) is Start so we get a backedge 9250 // count of zero. 9251 const SCEV *BECount; 9252 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 9253 BECount = BECountIfBackedgeTaken; 9254 else { 9255 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 9256 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 9257 } 9258 9259 const SCEV *MaxBECount; 9260 bool MaxOrZero = false; 9261 if (isa<SCEVConstant>(BECount)) 9262 MaxBECount = BECount; 9263 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 9264 // If we know exactly how many times the backedge will be taken if it's 9265 // taken at least once, then the backedge count will either be that or 9266 // zero. 9267 MaxBECount = BECountIfBackedgeTaken; 9268 MaxOrZero = true; 9269 } else { 9270 // Calculate the maximum backedge count based on the range of values 9271 // permitted by Start, End, and Stride. 9272 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 9273 : getUnsignedRange(Start).getUnsignedMin(); 9274 9275 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 9276 9277 APInt StrideForMaxBECount; 9278 9279 if (PositiveStride) 9280 StrideForMaxBECount = 9281 IsSigned ? getSignedRange(Stride).getSignedMin() 9282 : getUnsignedRange(Stride).getUnsignedMin(); 9283 else 9284 // Using a stride of 1 is safe when computing max backedge taken count for 9285 // a loop with unknown stride. 9286 StrideForMaxBECount = APInt(BitWidth, 1, IsSigned); 9287 9288 APInt Limit = 9289 IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1) 9290 : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1); 9291 9292 // Although End can be a MAX expression we estimate MaxEnd considering only 9293 // the case End = RHS. This is safe because in the other case (End - Start) 9294 // is zero, leading to a zero maximum backedge taken count. 9295 APInt MaxEnd = 9296 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 9297 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 9298 9299 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 9300 getConstant(StrideForMaxBECount), false); 9301 } 9302 9303 if (isa<SCEVCouldNotCompute>(MaxBECount) && 9304 !isa<SCEVCouldNotCompute>(BECount)) 9305 MaxBECount = getConstant(getUnsignedRange(BECount).getUnsignedMax()); 9306 9307 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 9308 } 9309 9310 ScalarEvolution::ExitLimit 9311 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 9312 const Loop *L, bool IsSigned, 9313 bool ControlsExit, bool AllowPredicates) { 9314 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9315 // We handle only IV > Invariant 9316 if (!isLoopInvariant(RHS, L)) 9317 return getCouldNotCompute(); 9318 9319 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 9320 if (!IV && AllowPredicates) 9321 // Try to make this an AddRec using runtime tests, in the first X 9322 // iterations of this loop, where X is the SCEV expression found by the 9323 // algorithm below. 9324 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 9325 9326 // Avoid weird loops 9327 if (!IV || IV->getLoop() != L || !IV->isAffine()) 9328 return getCouldNotCompute(); 9329 9330 bool NoWrap = ControlsExit && 9331 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 9332 9333 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 9334 9335 // Avoid negative or zero stride values 9336 if (!isKnownPositive(Stride)) 9337 return getCouldNotCompute(); 9338 9339 // Avoid proven overflow cases: this will ensure that the backedge taken count 9340 // will not generate any unsigned overflow. Relaxed no-overflow conditions 9341 // exploit NoWrapFlags, allowing to optimize in presence of undefined 9342 // behaviors like the case of C language. 9343 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 9344 return getCouldNotCompute(); 9345 9346 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 9347 : ICmpInst::ICMP_UGT; 9348 9349 const SCEV *Start = IV->getStart(); 9350 const SCEV *End = RHS; 9351 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 9352 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 9353 9354 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 9355 9356 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 9357 : getUnsignedRange(Start).getUnsignedMax(); 9358 9359 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 9360 : getUnsignedRange(Stride).getUnsignedMin(); 9361 9362 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 9363 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 9364 : APInt::getMinValue(BitWidth) + (MinStride - 1); 9365 9366 // Although End can be a MIN expression we estimate MinEnd considering only 9367 // the case End = RHS. This is safe because in the other case (Start - End) 9368 // is zero, leading to a zero maximum backedge taken count. 9369 APInt MinEnd = 9370 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 9371 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 9372 9373 9374 const SCEV *MaxBECount = getCouldNotCompute(); 9375 if (isa<SCEVConstant>(BECount)) 9376 MaxBECount = BECount; 9377 else 9378 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 9379 getConstant(MinStride), false); 9380 9381 if (isa<SCEVCouldNotCompute>(MaxBECount)) 9382 MaxBECount = BECount; 9383 9384 return ExitLimit(BECount, MaxBECount, false, Predicates); 9385 } 9386 9387 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 9388 ScalarEvolution &SE) const { 9389 if (Range.isFullSet()) // Infinite loop. 9390 return SE.getCouldNotCompute(); 9391 9392 // If the start is a non-zero constant, shift the range to simplify things. 9393 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 9394 if (!SC->getValue()->isZero()) { 9395 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 9396 Operands[0] = SE.getZero(SC->getType()); 9397 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 9398 getNoWrapFlags(FlagNW)); 9399 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 9400 return ShiftedAddRec->getNumIterationsInRange( 9401 Range.subtract(SC->getAPInt()), SE); 9402 // This is strange and shouldn't happen. 9403 return SE.getCouldNotCompute(); 9404 } 9405 9406 // The only time we can solve this is when we have all constant indices. 9407 // Otherwise, we cannot determine the overflow conditions. 9408 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 9409 return SE.getCouldNotCompute(); 9410 9411 // Okay at this point we know that all elements of the chrec are constants and 9412 // that the start element is zero. 9413 9414 // First check to see if the range contains zero. If not, the first 9415 // iteration exits. 9416 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 9417 if (!Range.contains(APInt(BitWidth, 0))) 9418 return SE.getZero(getType()); 9419 9420 if (isAffine()) { 9421 // If this is an affine expression then we have this situation: 9422 // Solve {0,+,A} in Range === Ax in Range 9423 9424 // We know that zero is in the range. If A is positive then we know that 9425 // the upper value of the range must be the first possible exit value. 9426 // If A is negative then the lower of the range is the last possible loop 9427 // value. Also note that we already checked for a full range. 9428 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 9429 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 9430 9431 // The exit value should be (End+A)/A. 9432 APInt ExitVal = (End + A).udiv(A); 9433 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 9434 9435 // Evaluate at the exit value. If we really did fall out of the valid 9436 // range, then we computed our trip count, otherwise wrap around or other 9437 // things must have happened. 9438 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 9439 if (Range.contains(Val->getValue())) 9440 return SE.getCouldNotCompute(); // Something strange happened 9441 9442 // Ensure that the previous value is in the range. This is a sanity check. 9443 assert(Range.contains( 9444 EvaluateConstantChrecAtConstant(this, 9445 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 9446 "Linear scev computation is off in a bad way!"); 9447 return SE.getConstant(ExitValue); 9448 } else if (isQuadratic()) { 9449 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 9450 // quadratic equation to solve it. To do this, we must frame our problem in 9451 // terms of figuring out when zero is crossed, instead of when 9452 // Range.getUpper() is crossed. 9453 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 9454 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 9455 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); 9456 9457 // Next, solve the constructed addrec 9458 if (auto Roots = 9459 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 9460 const SCEVConstant *R1 = Roots->first; 9461 const SCEVConstant *R2 = Roots->second; 9462 // Pick the smallest positive root value. 9463 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 9464 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 9465 if (!CB->getZExtValue()) 9466 std::swap(R1, R2); // R1 is the minimum root now. 9467 9468 // Make sure the root is not off by one. The returned iteration should 9469 // not be in the range, but the previous one should be. When solving 9470 // for "X*X < 5", for example, we should not return a root of 2. 9471 ConstantInt *R1Val = 9472 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 9473 if (Range.contains(R1Val->getValue())) { 9474 // The next iteration must be out of the range... 9475 ConstantInt *NextVal = 9476 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 9477 9478 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 9479 if (!Range.contains(R1Val->getValue())) 9480 return SE.getConstant(NextVal); 9481 return SE.getCouldNotCompute(); // Something strange happened 9482 } 9483 9484 // If R1 was not in the range, then it is a good return value. Make 9485 // sure that R1-1 WAS in the range though, just in case. 9486 ConstantInt *NextVal = 9487 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 9488 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 9489 if (Range.contains(R1Val->getValue())) 9490 return R1; 9491 return SE.getCouldNotCompute(); // Something strange happened 9492 } 9493 } 9494 } 9495 9496 return SE.getCouldNotCompute(); 9497 } 9498 9499 // Return true when S contains at least an undef value. 9500 static inline bool containsUndefs(const SCEV *S) { 9501 return SCEVExprContains(S, [](const SCEV *S) { 9502 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 9503 return isa<UndefValue>(SU->getValue()); 9504 else if (const auto *SC = dyn_cast<SCEVConstant>(S)) 9505 return isa<UndefValue>(SC->getValue()); 9506 return false; 9507 }); 9508 } 9509 9510 namespace { 9511 // Collect all steps of SCEV expressions. 9512 struct SCEVCollectStrides { 9513 ScalarEvolution &SE; 9514 SmallVectorImpl<const SCEV *> &Strides; 9515 9516 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 9517 : SE(SE), Strides(S) {} 9518 9519 bool follow(const SCEV *S) { 9520 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 9521 Strides.push_back(AR->getStepRecurrence(SE)); 9522 return true; 9523 } 9524 bool isDone() const { return false; } 9525 }; 9526 9527 // Collect all SCEVUnknown and SCEVMulExpr expressions. 9528 struct SCEVCollectTerms { 9529 SmallVectorImpl<const SCEV *> &Terms; 9530 9531 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 9532 : Terms(T) {} 9533 9534 bool follow(const SCEV *S) { 9535 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 9536 isa<SCEVSignExtendExpr>(S)) { 9537 if (!containsUndefs(S)) 9538 Terms.push_back(S); 9539 9540 // Stop recursion: once we collected a term, do not walk its operands. 9541 return false; 9542 } 9543 9544 // Keep looking. 9545 return true; 9546 } 9547 bool isDone() const { return false; } 9548 }; 9549 9550 // Check if a SCEV contains an AddRecExpr. 9551 struct SCEVHasAddRec { 9552 bool &ContainsAddRec; 9553 9554 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 9555 ContainsAddRec = false; 9556 } 9557 9558 bool follow(const SCEV *S) { 9559 if (isa<SCEVAddRecExpr>(S)) { 9560 ContainsAddRec = true; 9561 9562 // Stop recursion: once we collected a term, do not walk its operands. 9563 return false; 9564 } 9565 9566 // Keep looking. 9567 return true; 9568 } 9569 bool isDone() const { return false; } 9570 }; 9571 9572 // Find factors that are multiplied with an expression that (possibly as a 9573 // subexpression) contains an AddRecExpr. In the expression: 9574 // 9575 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 9576 // 9577 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 9578 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 9579 // parameters as they form a product with an induction variable. 9580 // 9581 // This collector expects all array size parameters to be in the same MulExpr. 9582 // It might be necessary to later add support for collecting parameters that are 9583 // spread over different nested MulExpr. 9584 struct SCEVCollectAddRecMultiplies { 9585 SmallVectorImpl<const SCEV *> &Terms; 9586 ScalarEvolution &SE; 9587 9588 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 9589 : Terms(T), SE(SE) {} 9590 9591 bool follow(const SCEV *S) { 9592 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 9593 bool HasAddRec = false; 9594 SmallVector<const SCEV *, 0> Operands; 9595 for (auto Op : Mul->operands()) { 9596 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 9597 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 9598 Operands.push_back(Op); 9599 } else if (Unknown) { 9600 HasAddRec = true; 9601 } else { 9602 bool ContainsAddRec; 9603 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 9604 visitAll(Op, ContiansAddRec); 9605 HasAddRec |= ContainsAddRec; 9606 } 9607 } 9608 if (Operands.size() == 0) 9609 return true; 9610 9611 if (!HasAddRec) 9612 return false; 9613 9614 Terms.push_back(SE.getMulExpr(Operands)); 9615 // Stop recursion: once we collected a term, do not walk its operands. 9616 return false; 9617 } 9618 9619 // Keep looking. 9620 return true; 9621 } 9622 bool isDone() const { return false; } 9623 }; 9624 } 9625 9626 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 9627 /// two places: 9628 /// 1) The strides of AddRec expressions. 9629 /// 2) Unknowns that are multiplied with AddRec expressions. 9630 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 9631 SmallVectorImpl<const SCEV *> &Terms) { 9632 SmallVector<const SCEV *, 4> Strides; 9633 SCEVCollectStrides StrideCollector(*this, Strides); 9634 visitAll(Expr, StrideCollector); 9635 9636 DEBUG({ 9637 dbgs() << "Strides:\n"; 9638 for (const SCEV *S : Strides) 9639 dbgs() << *S << "\n"; 9640 }); 9641 9642 for (const SCEV *S : Strides) { 9643 SCEVCollectTerms TermCollector(Terms); 9644 visitAll(S, TermCollector); 9645 } 9646 9647 DEBUG({ 9648 dbgs() << "Terms:\n"; 9649 for (const SCEV *T : Terms) 9650 dbgs() << *T << "\n"; 9651 }); 9652 9653 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 9654 visitAll(Expr, MulCollector); 9655 } 9656 9657 static bool findArrayDimensionsRec(ScalarEvolution &SE, 9658 SmallVectorImpl<const SCEV *> &Terms, 9659 SmallVectorImpl<const SCEV *> &Sizes) { 9660 int Last = Terms.size() - 1; 9661 const SCEV *Step = Terms[Last]; 9662 9663 // End of recursion. 9664 if (Last == 0) { 9665 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 9666 SmallVector<const SCEV *, 2> Qs; 9667 for (const SCEV *Op : M->operands()) 9668 if (!isa<SCEVConstant>(Op)) 9669 Qs.push_back(Op); 9670 9671 Step = SE.getMulExpr(Qs); 9672 } 9673 9674 Sizes.push_back(Step); 9675 return true; 9676 } 9677 9678 for (const SCEV *&Term : Terms) { 9679 // Normalize the terms before the next call to findArrayDimensionsRec. 9680 const SCEV *Q, *R; 9681 SCEVDivision::divide(SE, Term, Step, &Q, &R); 9682 9683 // Bail out when GCD does not evenly divide one of the terms. 9684 if (!R->isZero()) 9685 return false; 9686 9687 Term = Q; 9688 } 9689 9690 // Remove all SCEVConstants. 9691 Terms.erase( 9692 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 9693 Terms.end()); 9694 9695 if (Terms.size() > 0) 9696 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 9697 return false; 9698 9699 Sizes.push_back(Step); 9700 return true; 9701 } 9702 9703 9704 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 9705 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 9706 for (const SCEV *T : Terms) 9707 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 9708 return true; 9709 return false; 9710 } 9711 9712 // Return the number of product terms in S. 9713 static inline int numberOfTerms(const SCEV *S) { 9714 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 9715 return Expr->getNumOperands(); 9716 return 1; 9717 } 9718 9719 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 9720 if (isa<SCEVConstant>(T)) 9721 return nullptr; 9722 9723 if (isa<SCEVUnknown>(T)) 9724 return T; 9725 9726 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 9727 SmallVector<const SCEV *, 2> Factors; 9728 for (const SCEV *Op : M->operands()) 9729 if (!isa<SCEVConstant>(Op)) 9730 Factors.push_back(Op); 9731 9732 return SE.getMulExpr(Factors); 9733 } 9734 9735 return T; 9736 } 9737 9738 /// Return the size of an element read or written by Inst. 9739 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 9740 Type *Ty; 9741 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 9742 Ty = Store->getValueOperand()->getType(); 9743 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 9744 Ty = Load->getType(); 9745 else 9746 return nullptr; 9747 9748 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 9749 return getSizeOfExpr(ETy, Ty); 9750 } 9751 9752 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 9753 SmallVectorImpl<const SCEV *> &Sizes, 9754 const SCEV *ElementSize) { 9755 if (Terms.size() < 1 || !ElementSize) 9756 return; 9757 9758 // Early return when Terms do not contain parameters: we do not delinearize 9759 // non parametric SCEVs. 9760 if (!containsParameters(Terms)) 9761 return; 9762 9763 DEBUG({ 9764 dbgs() << "Terms:\n"; 9765 for (const SCEV *T : Terms) 9766 dbgs() << *T << "\n"; 9767 }); 9768 9769 // Remove duplicates. 9770 array_pod_sort(Terms.begin(), Terms.end()); 9771 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 9772 9773 // Put larger terms first. 9774 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 9775 return numberOfTerms(LHS) > numberOfTerms(RHS); 9776 }); 9777 9778 // Try to divide all terms by the element size. If term is not divisible by 9779 // element size, proceed with the original term. 9780 for (const SCEV *&Term : Terms) { 9781 const SCEV *Q, *R; 9782 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 9783 if (!Q->isZero()) 9784 Term = Q; 9785 } 9786 9787 SmallVector<const SCEV *, 4> NewTerms; 9788 9789 // Remove constant factors. 9790 for (const SCEV *T : Terms) 9791 if (const SCEV *NewT = removeConstantFactors(*this, T)) 9792 NewTerms.push_back(NewT); 9793 9794 DEBUG({ 9795 dbgs() << "Terms after sorting:\n"; 9796 for (const SCEV *T : NewTerms) 9797 dbgs() << *T << "\n"; 9798 }); 9799 9800 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 9801 Sizes.clear(); 9802 return; 9803 } 9804 9805 // The last element to be pushed into Sizes is the size of an element. 9806 Sizes.push_back(ElementSize); 9807 9808 DEBUG({ 9809 dbgs() << "Sizes:\n"; 9810 for (const SCEV *S : Sizes) 9811 dbgs() << *S << "\n"; 9812 }); 9813 } 9814 9815 void ScalarEvolution::computeAccessFunctions( 9816 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 9817 SmallVectorImpl<const SCEV *> &Sizes) { 9818 9819 // Early exit in case this SCEV is not an affine multivariate function. 9820 if (Sizes.empty()) 9821 return; 9822 9823 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 9824 if (!AR->isAffine()) 9825 return; 9826 9827 const SCEV *Res = Expr; 9828 int Last = Sizes.size() - 1; 9829 for (int i = Last; i >= 0; i--) { 9830 const SCEV *Q, *R; 9831 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 9832 9833 DEBUG({ 9834 dbgs() << "Res: " << *Res << "\n"; 9835 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 9836 dbgs() << "Res divided by Sizes[i]:\n"; 9837 dbgs() << "Quotient: " << *Q << "\n"; 9838 dbgs() << "Remainder: " << *R << "\n"; 9839 }); 9840 9841 Res = Q; 9842 9843 // Do not record the last subscript corresponding to the size of elements in 9844 // the array. 9845 if (i == Last) { 9846 9847 // Bail out if the remainder is too complex. 9848 if (isa<SCEVAddRecExpr>(R)) { 9849 Subscripts.clear(); 9850 Sizes.clear(); 9851 return; 9852 } 9853 9854 continue; 9855 } 9856 9857 // Record the access function for the current subscript. 9858 Subscripts.push_back(R); 9859 } 9860 9861 // Also push in last position the remainder of the last division: it will be 9862 // the access function of the innermost dimension. 9863 Subscripts.push_back(Res); 9864 9865 std::reverse(Subscripts.begin(), Subscripts.end()); 9866 9867 DEBUG({ 9868 dbgs() << "Subscripts:\n"; 9869 for (const SCEV *S : Subscripts) 9870 dbgs() << *S << "\n"; 9871 }); 9872 } 9873 9874 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 9875 /// sizes of an array access. Returns the remainder of the delinearization that 9876 /// is the offset start of the array. The SCEV->delinearize algorithm computes 9877 /// the multiples of SCEV coefficients: that is a pattern matching of sub 9878 /// expressions in the stride and base of a SCEV corresponding to the 9879 /// computation of a GCD (greatest common divisor) of base and stride. When 9880 /// SCEV->delinearize fails, it returns the SCEV unchanged. 9881 /// 9882 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 9883 /// 9884 /// void foo(long n, long m, long o, double A[n][m][o]) { 9885 /// 9886 /// for (long i = 0; i < n; i++) 9887 /// for (long j = 0; j < m; j++) 9888 /// for (long k = 0; k < o; k++) 9889 /// A[i][j][k] = 1.0; 9890 /// } 9891 /// 9892 /// the delinearization input is the following AddRec SCEV: 9893 /// 9894 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 9895 /// 9896 /// From this SCEV, we are able to say that the base offset of the access is %A 9897 /// because it appears as an offset that does not divide any of the strides in 9898 /// the loops: 9899 /// 9900 /// CHECK: Base offset: %A 9901 /// 9902 /// and then SCEV->delinearize determines the size of some of the dimensions of 9903 /// the array as these are the multiples by which the strides are happening: 9904 /// 9905 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 9906 /// 9907 /// Note that the outermost dimension remains of UnknownSize because there are 9908 /// no strides that would help identifying the size of the last dimension: when 9909 /// the array has been statically allocated, one could compute the size of that 9910 /// dimension by dividing the overall size of the array by the size of the known 9911 /// dimensions: %m * %o * 8. 9912 /// 9913 /// Finally delinearize provides the access functions for the array reference 9914 /// that does correspond to A[i][j][k] of the above C testcase: 9915 /// 9916 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 9917 /// 9918 /// The testcases are checking the output of a function pass: 9919 /// DelinearizationPass that walks through all loads and stores of a function 9920 /// asking for the SCEV of the memory access with respect to all enclosing 9921 /// loops, calling SCEV->delinearize on that and printing the results. 9922 9923 void ScalarEvolution::delinearize(const SCEV *Expr, 9924 SmallVectorImpl<const SCEV *> &Subscripts, 9925 SmallVectorImpl<const SCEV *> &Sizes, 9926 const SCEV *ElementSize) { 9927 // First step: collect parametric terms. 9928 SmallVector<const SCEV *, 4> Terms; 9929 collectParametricTerms(Expr, Terms); 9930 9931 if (Terms.empty()) 9932 return; 9933 9934 // Second step: find subscript sizes. 9935 findArrayDimensions(Terms, Sizes, ElementSize); 9936 9937 if (Sizes.empty()) 9938 return; 9939 9940 // Third step: compute the access functions for each subscript. 9941 computeAccessFunctions(Expr, Subscripts, Sizes); 9942 9943 if (Subscripts.empty()) 9944 return; 9945 9946 DEBUG({ 9947 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9948 dbgs() << "ArrayDecl[UnknownSize]"; 9949 for (const SCEV *S : Sizes) 9950 dbgs() << "[" << *S << "]"; 9951 9952 dbgs() << "\nArrayRef"; 9953 for (const SCEV *S : Subscripts) 9954 dbgs() << "[" << *S << "]"; 9955 dbgs() << "\n"; 9956 }); 9957 } 9958 9959 //===----------------------------------------------------------------------===// 9960 // SCEVCallbackVH Class Implementation 9961 //===----------------------------------------------------------------------===// 9962 9963 void ScalarEvolution::SCEVCallbackVH::deleted() { 9964 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9965 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9966 SE->ConstantEvolutionLoopExitValue.erase(PN); 9967 SE->eraseValueFromMap(getValPtr()); 9968 // this now dangles! 9969 } 9970 9971 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9972 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9973 9974 // Forget all the expressions associated with users of the old value, 9975 // so that future queries will recompute the expressions using the new 9976 // value. 9977 Value *Old = getValPtr(); 9978 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9979 SmallPtrSet<User *, 8> Visited; 9980 while (!Worklist.empty()) { 9981 User *U = Worklist.pop_back_val(); 9982 // Deleting the Old value will cause this to dangle. Postpone 9983 // that until everything else is done. 9984 if (U == Old) 9985 continue; 9986 if (!Visited.insert(U).second) 9987 continue; 9988 if (PHINode *PN = dyn_cast<PHINode>(U)) 9989 SE->ConstantEvolutionLoopExitValue.erase(PN); 9990 SE->eraseValueFromMap(U); 9991 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9992 } 9993 // Delete the Old value. 9994 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9995 SE->ConstantEvolutionLoopExitValue.erase(PN); 9996 SE->eraseValueFromMap(Old); 9997 // this now dangles! 9998 } 9999 10000 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 10001 : CallbackVH(V), SE(se) {} 10002 10003 //===----------------------------------------------------------------------===// 10004 // ScalarEvolution Class Implementation 10005 //===----------------------------------------------------------------------===// 10006 10007 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 10008 AssumptionCache &AC, DominatorTree &DT, 10009 LoopInfo &LI) 10010 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 10011 CouldNotCompute(new SCEVCouldNotCompute()), 10012 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 10013 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 10014 FirstUnknown(nullptr) { 10015 10016 // To use guards for proving predicates, we need to scan every instruction in 10017 // relevant basic blocks, and not just terminators. Doing this is a waste of 10018 // time if the IR does not actually contain any calls to 10019 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 10020 // 10021 // This pessimizes the case where a pass that preserves ScalarEvolution wants 10022 // to _add_ guards to the module when there weren't any before, and wants 10023 // ScalarEvolution to optimize based on those guards. For now we prefer to be 10024 // efficient in lieu of being smart in that rather obscure case. 10025 10026 auto *GuardDecl = F.getParent()->getFunction( 10027 Intrinsic::getName(Intrinsic::experimental_guard)); 10028 HasGuards = GuardDecl && !GuardDecl->use_empty(); 10029 } 10030 10031 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 10032 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 10033 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 10034 ValueExprMap(std::move(Arg.ValueExprMap)), 10035 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 10036 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 10037 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 10038 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 10039 PredicatedBackedgeTakenCounts( 10040 std::move(Arg.PredicatedBackedgeTakenCounts)), 10041 ConstantEvolutionLoopExitValue( 10042 std::move(Arg.ConstantEvolutionLoopExitValue)), 10043 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 10044 LoopDispositions(std::move(Arg.LoopDispositions)), 10045 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 10046 BlockDispositions(std::move(Arg.BlockDispositions)), 10047 UnsignedRanges(std::move(Arg.UnsignedRanges)), 10048 SignedRanges(std::move(Arg.SignedRanges)), 10049 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 10050 UniquePreds(std::move(Arg.UniquePreds)), 10051 SCEVAllocator(std::move(Arg.SCEVAllocator)), 10052 FirstUnknown(Arg.FirstUnknown) { 10053 Arg.FirstUnknown = nullptr; 10054 } 10055 10056 ScalarEvolution::~ScalarEvolution() { 10057 // Iterate through all the SCEVUnknown instances and call their 10058 // destructors, so that they release their references to their values. 10059 for (SCEVUnknown *U = FirstUnknown; U;) { 10060 SCEVUnknown *Tmp = U; 10061 U = U->Next; 10062 Tmp->~SCEVUnknown(); 10063 } 10064 FirstUnknown = nullptr; 10065 10066 ExprValueMap.clear(); 10067 ValueExprMap.clear(); 10068 HasRecMap.clear(); 10069 10070 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 10071 // that a loop had multiple computable exits. 10072 for (auto &BTCI : BackedgeTakenCounts) 10073 BTCI.second.clear(); 10074 for (auto &BTCI : PredicatedBackedgeTakenCounts) 10075 BTCI.second.clear(); 10076 10077 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 10078 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 10079 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 10080 } 10081 10082 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 10083 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 10084 } 10085 10086 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 10087 const Loop *L) { 10088 // Print all inner loops first 10089 for (Loop *I : *L) 10090 PrintLoopInfo(OS, SE, I); 10091 10092 OS << "Loop "; 10093 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10094 OS << ": "; 10095 10096 SmallVector<BasicBlock *, 8> ExitBlocks; 10097 L->getExitBlocks(ExitBlocks); 10098 if (ExitBlocks.size() != 1) 10099 OS << "<multiple exits> "; 10100 10101 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 10102 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 10103 } else { 10104 OS << "Unpredictable backedge-taken count. "; 10105 } 10106 10107 OS << "\n" 10108 "Loop "; 10109 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10110 OS << ": "; 10111 10112 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 10113 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 10114 if (SE->isBackedgeTakenCountMaxOrZero(L)) 10115 OS << ", actual taken count either this or zero."; 10116 } else { 10117 OS << "Unpredictable max backedge-taken count. "; 10118 } 10119 10120 OS << "\n" 10121 "Loop "; 10122 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10123 OS << ": "; 10124 10125 SCEVUnionPredicate Pred; 10126 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 10127 if (!isa<SCEVCouldNotCompute>(PBT)) { 10128 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 10129 OS << " Predicates:\n"; 10130 Pred.print(OS, 4); 10131 } else { 10132 OS << "Unpredictable predicated backedge-taken count. "; 10133 } 10134 OS << "\n"; 10135 10136 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 10137 OS << "Loop "; 10138 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10139 OS << ": "; 10140 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 10141 } 10142 } 10143 10144 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 10145 switch (LD) { 10146 case ScalarEvolution::LoopVariant: 10147 return "Variant"; 10148 case ScalarEvolution::LoopInvariant: 10149 return "Invariant"; 10150 case ScalarEvolution::LoopComputable: 10151 return "Computable"; 10152 } 10153 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 10154 } 10155 10156 void ScalarEvolution::print(raw_ostream &OS) const { 10157 // ScalarEvolution's implementation of the print method is to print 10158 // out SCEV values of all instructions that are interesting. Doing 10159 // this potentially causes it to create new SCEV objects though, 10160 // which technically conflicts with the const qualifier. This isn't 10161 // observable from outside the class though, so casting away the 10162 // const isn't dangerous. 10163 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 10164 10165 OS << "Classifying expressions for: "; 10166 F.printAsOperand(OS, /*PrintType=*/false); 10167 OS << "\n"; 10168 for (Instruction &I : instructions(F)) 10169 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 10170 OS << I << '\n'; 10171 OS << " --> "; 10172 const SCEV *SV = SE.getSCEV(&I); 10173 SV->print(OS); 10174 if (!isa<SCEVCouldNotCompute>(SV)) { 10175 OS << " U: "; 10176 SE.getUnsignedRange(SV).print(OS); 10177 OS << " S: "; 10178 SE.getSignedRange(SV).print(OS); 10179 } 10180 10181 const Loop *L = LI.getLoopFor(I.getParent()); 10182 10183 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 10184 if (AtUse != SV) { 10185 OS << " --> "; 10186 AtUse->print(OS); 10187 if (!isa<SCEVCouldNotCompute>(AtUse)) { 10188 OS << " U: "; 10189 SE.getUnsignedRange(AtUse).print(OS); 10190 OS << " S: "; 10191 SE.getSignedRange(AtUse).print(OS); 10192 } 10193 } 10194 10195 if (L) { 10196 OS << "\t\t" "Exits: "; 10197 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 10198 if (!SE.isLoopInvariant(ExitValue, L)) { 10199 OS << "<<Unknown>>"; 10200 } else { 10201 OS << *ExitValue; 10202 } 10203 10204 bool First = true; 10205 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 10206 if (First) { 10207 OS << "\t\t" "LoopDispositions: { "; 10208 First = false; 10209 } else { 10210 OS << ", "; 10211 } 10212 10213 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10214 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 10215 } 10216 10217 for (auto *InnerL : depth_first(L)) { 10218 if (InnerL == L) 10219 continue; 10220 if (First) { 10221 OS << "\t\t" "LoopDispositions: { "; 10222 First = false; 10223 } else { 10224 OS << ", "; 10225 } 10226 10227 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10228 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 10229 } 10230 10231 OS << " }"; 10232 } 10233 10234 OS << "\n"; 10235 } 10236 10237 OS << "Determining loop execution counts for: "; 10238 F.printAsOperand(OS, /*PrintType=*/false); 10239 OS << "\n"; 10240 for (Loop *I : LI) 10241 PrintLoopInfo(OS, &SE, I); 10242 } 10243 10244 ScalarEvolution::LoopDisposition 10245 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 10246 auto &Values = LoopDispositions[S]; 10247 for (auto &V : Values) { 10248 if (V.getPointer() == L) 10249 return V.getInt(); 10250 } 10251 Values.emplace_back(L, LoopVariant); 10252 LoopDisposition D = computeLoopDisposition(S, L); 10253 auto &Values2 = LoopDispositions[S]; 10254 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 10255 if (V.getPointer() == L) { 10256 V.setInt(D); 10257 break; 10258 } 10259 } 10260 return D; 10261 } 10262 10263 ScalarEvolution::LoopDisposition 10264 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 10265 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 10266 case scConstant: 10267 return LoopInvariant; 10268 case scTruncate: 10269 case scZeroExtend: 10270 case scSignExtend: 10271 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 10272 case scAddRecExpr: { 10273 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 10274 10275 // If L is the addrec's loop, it's computable. 10276 if (AR->getLoop() == L) 10277 return LoopComputable; 10278 10279 // Add recurrences are never invariant in the function-body (null loop). 10280 if (!L) 10281 return LoopVariant; 10282 10283 // This recurrence is variant w.r.t. L if L contains AR's loop. 10284 if (L->contains(AR->getLoop())) 10285 return LoopVariant; 10286 10287 // This recurrence is invariant w.r.t. L if AR's loop contains L. 10288 if (AR->getLoop()->contains(L)) 10289 return LoopInvariant; 10290 10291 // This recurrence is variant w.r.t. L if any of its operands 10292 // are variant. 10293 for (auto *Op : AR->operands()) 10294 if (!isLoopInvariant(Op, L)) 10295 return LoopVariant; 10296 10297 // Otherwise it's loop-invariant. 10298 return LoopInvariant; 10299 } 10300 case scAddExpr: 10301 case scMulExpr: 10302 case scUMaxExpr: 10303 case scSMaxExpr: { 10304 bool HasVarying = false; 10305 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 10306 LoopDisposition D = getLoopDisposition(Op, L); 10307 if (D == LoopVariant) 10308 return LoopVariant; 10309 if (D == LoopComputable) 10310 HasVarying = true; 10311 } 10312 return HasVarying ? LoopComputable : LoopInvariant; 10313 } 10314 case scUDivExpr: { 10315 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 10316 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 10317 if (LD == LoopVariant) 10318 return LoopVariant; 10319 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 10320 if (RD == LoopVariant) 10321 return LoopVariant; 10322 return (LD == LoopInvariant && RD == LoopInvariant) ? 10323 LoopInvariant : LoopComputable; 10324 } 10325 case scUnknown: 10326 // All non-instruction values are loop invariant. All instructions are loop 10327 // invariant if they are not contained in the specified loop. 10328 // Instructions are never considered invariant in the function body 10329 // (null loop) because they are defined within the "loop". 10330 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 10331 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 10332 return LoopInvariant; 10333 case scCouldNotCompute: 10334 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10335 } 10336 llvm_unreachable("Unknown SCEV kind!"); 10337 } 10338 10339 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 10340 return getLoopDisposition(S, L) == LoopInvariant; 10341 } 10342 10343 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 10344 return getLoopDisposition(S, L) == LoopComputable; 10345 } 10346 10347 ScalarEvolution::BlockDisposition 10348 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 10349 auto &Values = BlockDispositions[S]; 10350 for (auto &V : Values) { 10351 if (V.getPointer() == BB) 10352 return V.getInt(); 10353 } 10354 Values.emplace_back(BB, DoesNotDominateBlock); 10355 BlockDisposition D = computeBlockDisposition(S, BB); 10356 auto &Values2 = BlockDispositions[S]; 10357 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 10358 if (V.getPointer() == BB) { 10359 V.setInt(D); 10360 break; 10361 } 10362 } 10363 return D; 10364 } 10365 10366 ScalarEvolution::BlockDisposition 10367 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 10368 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 10369 case scConstant: 10370 return ProperlyDominatesBlock; 10371 case scTruncate: 10372 case scZeroExtend: 10373 case scSignExtend: 10374 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 10375 case scAddRecExpr: { 10376 // This uses a "dominates" query instead of "properly dominates" query 10377 // to test for proper dominance too, because the instruction which 10378 // produces the addrec's value is a PHI, and a PHI effectively properly 10379 // dominates its entire containing block. 10380 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 10381 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 10382 return DoesNotDominateBlock; 10383 10384 // Fall through into SCEVNAryExpr handling. 10385 LLVM_FALLTHROUGH; 10386 } 10387 case scAddExpr: 10388 case scMulExpr: 10389 case scUMaxExpr: 10390 case scSMaxExpr: { 10391 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 10392 bool Proper = true; 10393 for (const SCEV *NAryOp : NAry->operands()) { 10394 BlockDisposition D = getBlockDisposition(NAryOp, BB); 10395 if (D == DoesNotDominateBlock) 10396 return DoesNotDominateBlock; 10397 if (D == DominatesBlock) 10398 Proper = false; 10399 } 10400 return Proper ? ProperlyDominatesBlock : DominatesBlock; 10401 } 10402 case scUDivExpr: { 10403 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 10404 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 10405 BlockDisposition LD = getBlockDisposition(LHS, BB); 10406 if (LD == DoesNotDominateBlock) 10407 return DoesNotDominateBlock; 10408 BlockDisposition RD = getBlockDisposition(RHS, BB); 10409 if (RD == DoesNotDominateBlock) 10410 return DoesNotDominateBlock; 10411 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 10412 ProperlyDominatesBlock : DominatesBlock; 10413 } 10414 case scUnknown: 10415 if (Instruction *I = 10416 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 10417 if (I->getParent() == BB) 10418 return DominatesBlock; 10419 if (DT.properlyDominates(I->getParent(), BB)) 10420 return ProperlyDominatesBlock; 10421 return DoesNotDominateBlock; 10422 } 10423 return ProperlyDominatesBlock; 10424 case scCouldNotCompute: 10425 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10426 } 10427 llvm_unreachable("Unknown SCEV kind!"); 10428 } 10429 10430 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 10431 return getBlockDisposition(S, BB) >= DominatesBlock; 10432 } 10433 10434 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 10435 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 10436 } 10437 10438 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 10439 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 10440 } 10441 10442 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 10443 ValuesAtScopes.erase(S); 10444 LoopDispositions.erase(S); 10445 BlockDispositions.erase(S); 10446 UnsignedRanges.erase(S); 10447 SignedRanges.erase(S); 10448 ExprValueMap.erase(S); 10449 HasRecMap.erase(S); 10450 MinTrailingZerosCache.erase(S); 10451 10452 auto RemoveSCEVFromBackedgeMap = 10453 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 10454 for (auto I = Map.begin(), E = Map.end(); I != E;) { 10455 BackedgeTakenInfo &BEInfo = I->second; 10456 if (BEInfo.hasOperand(S, this)) { 10457 BEInfo.clear(); 10458 Map.erase(I++); 10459 } else 10460 ++I; 10461 } 10462 }; 10463 10464 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 10465 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 10466 } 10467 10468 void ScalarEvolution::verify() const { 10469 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 10470 ScalarEvolution SE2(F, TLI, AC, DT, LI); 10471 10472 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 10473 10474 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 10475 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 10476 const SCEV *visitConstant(const SCEVConstant *Constant) { 10477 return SE.getConstant(Constant->getAPInt()); 10478 } 10479 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 10480 return SE.getUnknown(Expr->getValue()); 10481 } 10482 10483 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 10484 return SE.getCouldNotCompute(); 10485 } 10486 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 10487 }; 10488 10489 SCEVMapper SCM(SE2); 10490 10491 while (!LoopStack.empty()) { 10492 auto *L = LoopStack.pop_back_val(); 10493 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 10494 10495 auto *CurBECount = SCM.visit( 10496 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 10497 auto *NewBECount = SE2.getBackedgeTakenCount(L); 10498 10499 if (CurBECount == SE2.getCouldNotCompute() || 10500 NewBECount == SE2.getCouldNotCompute()) { 10501 // NB! This situation is legal, but is very suspicious -- whatever pass 10502 // change the loop to make a trip count go from could not compute to 10503 // computable or vice-versa *should have* invalidated SCEV. However, we 10504 // choose not to assert here (for now) since we don't want false 10505 // positives. 10506 continue; 10507 } 10508 10509 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 10510 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 10511 // not propagate undef aggressively). This means we can (and do) fail 10512 // verification in cases where a transform makes the trip count of a loop 10513 // go from "undef" to "undef+1" (say). The transform is fine, since in 10514 // both cases the loop iterates "undef" times, but SCEV thinks we 10515 // increased the trip count of the loop by 1 incorrectly. 10516 continue; 10517 } 10518 10519 if (SE.getTypeSizeInBits(CurBECount->getType()) > 10520 SE.getTypeSizeInBits(NewBECount->getType())) 10521 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 10522 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 10523 SE.getTypeSizeInBits(NewBECount->getType())) 10524 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 10525 10526 auto *ConstantDelta = 10527 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount)); 10528 10529 if (ConstantDelta && ConstantDelta->getAPInt() != 0) { 10530 dbgs() << "Trip Count Changed!\n"; 10531 dbgs() << "Old: " << *CurBECount << "\n"; 10532 dbgs() << "New: " << *NewBECount << "\n"; 10533 dbgs() << "Delta: " << *ConstantDelta << "\n"; 10534 std::abort(); 10535 } 10536 } 10537 } 10538 10539 bool ScalarEvolution::invalidate( 10540 Function &F, const PreservedAnalyses &PA, 10541 FunctionAnalysisManager::Invalidator &Inv) { 10542 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 10543 // of its dependencies is invalidated. 10544 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 10545 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 10546 Inv.invalidate<AssumptionAnalysis>(F, PA) || 10547 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 10548 Inv.invalidate<LoopAnalysis>(F, PA); 10549 } 10550 10551 AnalysisKey ScalarEvolutionAnalysis::Key; 10552 10553 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 10554 FunctionAnalysisManager &AM) { 10555 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 10556 AM.getResult<AssumptionAnalysis>(F), 10557 AM.getResult<DominatorTreeAnalysis>(F), 10558 AM.getResult<LoopAnalysis>(F)); 10559 } 10560 10561 PreservedAnalyses 10562 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 10563 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 10564 return PreservedAnalyses::all(); 10565 } 10566 10567 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 10568 "Scalar Evolution Analysis", false, true) 10569 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10570 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 10571 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 10572 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 10573 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 10574 "Scalar Evolution Analysis", false, true) 10575 char ScalarEvolutionWrapperPass::ID = 0; 10576 10577 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 10578 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 10579 } 10580 10581 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 10582 SE.reset(new ScalarEvolution( 10583 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 10584 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 10585 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 10586 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 10587 return false; 10588 } 10589 10590 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 10591 10592 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 10593 SE->print(OS); 10594 } 10595 10596 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 10597 if (!VerifySCEV) 10598 return; 10599 10600 SE->verify(); 10601 } 10602 10603 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 10604 AU.setPreservesAll(); 10605 AU.addRequiredTransitive<AssumptionCacheTracker>(); 10606 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 10607 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 10608 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 10609 } 10610 10611 const SCEVPredicate * 10612 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 10613 const SCEVConstant *RHS) { 10614 FoldingSetNodeID ID; 10615 // Unique this node based on the arguments 10616 ID.AddInteger(SCEVPredicate::P_Equal); 10617 ID.AddPointer(LHS); 10618 ID.AddPointer(RHS); 10619 void *IP = nullptr; 10620 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10621 return S; 10622 SCEVEqualPredicate *Eq = new (SCEVAllocator) 10623 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 10624 UniquePreds.InsertNode(Eq, IP); 10625 return Eq; 10626 } 10627 10628 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 10629 const SCEVAddRecExpr *AR, 10630 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10631 FoldingSetNodeID ID; 10632 // Unique this node based on the arguments 10633 ID.AddInteger(SCEVPredicate::P_Wrap); 10634 ID.AddPointer(AR); 10635 ID.AddInteger(AddedFlags); 10636 void *IP = nullptr; 10637 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10638 return S; 10639 auto *OF = new (SCEVAllocator) 10640 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 10641 UniquePreds.InsertNode(OF, IP); 10642 return OF; 10643 } 10644 10645 namespace { 10646 10647 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 10648 public: 10649 /// Rewrites \p S in the context of a loop L and the SCEV predication 10650 /// infrastructure. 10651 /// 10652 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 10653 /// equivalences present in \p Pred. 10654 /// 10655 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 10656 /// \p NewPreds such that the result will be an AddRecExpr. 10657 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 10658 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10659 SCEVUnionPredicate *Pred) { 10660 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 10661 return Rewriter.visit(S); 10662 } 10663 10664 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 10665 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10666 SCEVUnionPredicate *Pred) 10667 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 10668 10669 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 10670 if (Pred) { 10671 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 10672 for (auto *Pred : ExprPreds) 10673 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 10674 if (IPred->getLHS() == Expr) 10675 return IPred->getRHS(); 10676 } 10677 10678 return Expr; 10679 } 10680 10681 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 10682 const SCEV *Operand = visit(Expr->getOperand()); 10683 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10684 if (AR && AR->getLoop() == L && AR->isAffine()) { 10685 // This couldn't be folded because the operand didn't have the nuw 10686 // flag. Add the nusw flag as an assumption that we could make. 10687 const SCEV *Step = AR->getStepRecurrence(SE); 10688 Type *Ty = Expr->getType(); 10689 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 10690 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 10691 SE.getSignExtendExpr(Step, Ty), L, 10692 AR->getNoWrapFlags()); 10693 } 10694 return SE.getZeroExtendExpr(Operand, Expr->getType()); 10695 } 10696 10697 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 10698 const SCEV *Operand = visit(Expr->getOperand()); 10699 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10700 if (AR && AR->getLoop() == L && AR->isAffine()) { 10701 // This couldn't be folded because the operand didn't have the nsw 10702 // flag. Add the nssw flag as an assumption that we could make. 10703 const SCEV *Step = AR->getStepRecurrence(SE); 10704 Type *Ty = Expr->getType(); 10705 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 10706 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 10707 SE.getSignExtendExpr(Step, Ty), L, 10708 AR->getNoWrapFlags()); 10709 } 10710 return SE.getSignExtendExpr(Operand, Expr->getType()); 10711 } 10712 10713 private: 10714 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 10715 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10716 auto *A = SE.getWrapPredicate(AR, AddedFlags); 10717 if (!NewPreds) { 10718 // Check if we've already made this assumption. 10719 return Pred && Pred->implies(A); 10720 } 10721 NewPreds->insert(A); 10722 return true; 10723 } 10724 10725 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 10726 SCEVUnionPredicate *Pred; 10727 const Loop *L; 10728 }; 10729 } // end anonymous namespace 10730 10731 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 10732 SCEVUnionPredicate &Preds) { 10733 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 10734 } 10735 10736 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 10737 const SCEV *S, const Loop *L, 10738 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 10739 10740 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 10741 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 10742 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 10743 10744 if (!AddRec) 10745 return nullptr; 10746 10747 // Since the transformation was successful, we can now transfer the SCEV 10748 // predicates. 10749 for (auto *P : TransformPreds) 10750 Preds.insert(P); 10751 10752 return AddRec; 10753 } 10754 10755 /// SCEV predicates 10756 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 10757 SCEVPredicateKind Kind) 10758 : FastID(ID), Kind(Kind) {} 10759 10760 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 10761 const SCEVUnknown *LHS, 10762 const SCEVConstant *RHS) 10763 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 10764 10765 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 10766 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 10767 10768 if (!Op) 10769 return false; 10770 10771 return Op->LHS == LHS && Op->RHS == RHS; 10772 } 10773 10774 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 10775 10776 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 10777 10778 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 10779 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 10780 } 10781 10782 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 10783 const SCEVAddRecExpr *AR, 10784 IncrementWrapFlags Flags) 10785 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 10786 10787 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 10788 10789 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 10790 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 10791 10792 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 10793 } 10794 10795 bool SCEVWrapPredicate::isAlwaysTrue() const { 10796 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 10797 IncrementWrapFlags IFlags = Flags; 10798 10799 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 10800 IFlags = clearFlags(IFlags, IncrementNSSW); 10801 10802 return IFlags == IncrementAnyWrap; 10803 } 10804 10805 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 10806 OS.indent(Depth) << *getExpr() << " Added Flags: "; 10807 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 10808 OS << "<nusw>"; 10809 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 10810 OS << "<nssw>"; 10811 OS << "\n"; 10812 } 10813 10814 SCEVWrapPredicate::IncrementWrapFlags 10815 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 10816 ScalarEvolution &SE) { 10817 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 10818 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 10819 10820 // We can safely transfer the NSW flag as NSSW. 10821 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 10822 ImpliedFlags = IncrementNSSW; 10823 10824 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 10825 // If the increment is positive, the SCEV NUW flag will also imply the 10826 // WrapPredicate NUSW flag. 10827 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 10828 if (Step->getValue()->getValue().isNonNegative()) 10829 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 10830 } 10831 10832 return ImpliedFlags; 10833 } 10834 10835 /// Union predicates don't get cached so create a dummy set ID for it. 10836 SCEVUnionPredicate::SCEVUnionPredicate() 10837 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 10838 10839 bool SCEVUnionPredicate::isAlwaysTrue() const { 10840 return all_of(Preds, 10841 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 10842 } 10843 10844 ArrayRef<const SCEVPredicate *> 10845 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 10846 auto I = SCEVToPreds.find(Expr); 10847 if (I == SCEVToPreds.end()) 10848 return ArrayRef<const SCEVPredicate *>(); 10849 return I->second; 10850 } 10851 10852 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 10853 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 10854 return all_of(Set->Preds, 10855 [this](const SCEVPredicate *I) { return this->implies(I); }); 10856 10857 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 10858 if (ScevPredsIt == SCEVToPreds.end()) 10859 return false; 10860 auto &SCEVPreds = ScevPredsIt->second; 10861 10862 return any_of(SCEVPreds, 10863 [N](const SCEVPredicate *I) { return I->implies(N); }); 10864 } 10865 10866 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 10867 10868 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 10869 for (auto Pred : Preds) 10870 Pred->print(OS, Depth); 10871 } 10872 10873 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 10874 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 10875 for (auto Pred : Set->Preds) 10876 add(Pred); 10877 return; 10878 } 10879 10880 if (implies(N)) 10881 return; 10882 10883 const SCEV *Key = N->getExpr(); 10884 assert(Key && "Only SCEVUnionPredicate doesn't have an " 10885 " associated expression!"); 10886 10887 SCEVToPreds[Key].push_back(N); 10888 Preds.push_back(N); 10889 } 10890 10891 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 10892 Loop &L) 10893 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {} 10894 10895 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 10896 const SCEV *Expr = SE.getSCEV(V); 10897 RewriteEntry &Entry = RewriteMap[Expr]; 10898 10899 // If we already have an entry and the version matches, return it. 10900 if (Entry.second && Generation == Entry.first) 10901 return Entry.second; 10902 10903 // We found an entry but it's stale. Rewrite the stale entry 10904 // according to the current predicate. 10905 if (Entry.second) 10906 Expr = Entry.second; 10907 10908 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 10909 Entry = {Generation, NewSCEV}; 10910 10911 return NewSCEV; 10912 } 10913 10914 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 10915 if (!BackedgeCount) { 10916 SCEVUnionPredicate BackedgePred; 10917 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 10918 addPredicate(BackedgePred); 10919 } 10920 return BackedgeCount; 10921 } 10922 10923 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 10924 if (Preds.implies(&Pred)) 10925 return; 10926 Preds.add(&Pred); 10927 updateGeneration(); 10928 } 10929 10930 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 10931 return Preds; 10932 } 10933 10934 void PredicatedScalarEvolution::updateGeneration() { 10935 // If the generation number wrapped recompute everything. 10936 if (++Generation == 0) { 10937 for (auto &II : RewriteMap) { 10938 const SCEV *Rewritten = II.second.second; 10939 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 10940 } 10941 } 10942 } 10943 10944 void PredicatedScalarEvolution::setNoOverflow( 10945 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10946 const SCEV *Expr = getSCEV(V); 10947 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10948 10949 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 10950 10951 // Clear the statically implied flags. 10952 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 10953 addPredicate(*SE.getWrapPredicate(AR, Flags)); 10954 10955 auto II = FlagsMap.insert({V, Flags}); 10956 if (!II.second) 10957 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 10958 } 10959 10960 bool PredicatedScalarEvolution::hasNoOverflow( 10961 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10962 const SCEV *Expr = getSCEV(V); 10963 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10964 10965 Flags = SCEVWrapPredicate::clearFlags( 10966 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 10967 10968 auto II = FlagsMap.find(V); 10969 10970 if (II != FlagsMap.end()) 10971 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 10972 10973 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 10974 } 10975 10976 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 10977 const SCEV *Expr = this->getSCEV(V); 10978 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 10979 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 10980 10981 if (!New) 10982 return nullptr; 10983 10984 for (auto *P : NewPreds) 10985 Preds.add(P); 10986 10987 updateGeneration(); 10988 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 10989 return New; 10990 } 10991 10992 PredicatedScalarEvolution::PredicatedScalarEvolution( 10993 const PredicatedScalarEvolution &Init) 10994 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 10995 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 10996 for (const auto &I : Init.FlagsMap) 10997 FlagsMap.insert(I); 10998 } 10999 11000 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 11001 // For each block. 11002 for (auto *BB : L.getBlocks()) 11003 for (auto &I : *BB) { 11004 if (!SE.isSCEVable(I.getType())) 11005 continue; 11006 11007 auto *Expr = SE.getSCEV(&I); 11008 auto II = RewriteMap.find(Expr); 11009 11010 if (II == RewriteMap.end()) 11011 continue; 11012 11013 // Don't print things that are not interesting. 11014 if (II->second.second == Expr) 11015 continue; 11016 11017 OS.indent(Depth) << "[PSE]" << I << ":\n"; 11018 OS.indent(Depth + 2) << *Expr << "\n"; 11019 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 11020 } 11021 } 11022