1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Debug.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Support/SaveAndRestore.h" 93 #include <algorithm> 94 using namespace llvm; 95 96 #define DEBUG_TYPE "scalar-evolution" 97 98 STATISTIC(NumArrayLenItCounts, 99 "Number of trip counts computed with array length"); 100 STATISTIC(NumTripCountsComputed, 101 "Number of loops with predictable loop counts"); 102 STATISTIC(NumTripCountsNotComputed, 103 "Number of loops without predictable loop counts"); 104 STATISTIC(NumBruteForceTripCountsComputed, 105 "Number of loops with trip counts computed by force"); 106 107 static cl::opt<unsigned> 108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 109 cl::desc("Maximum number of iterations SCEV will " 110 "symbolically execute a constant " 111 "derived loop"), 112 cl::init(100)); 113 114 // FIXME: Enable this with XDEBUG when the test suite is clean. 115 static cl::opt<bool> 116 VerifySCEV("verify-scev", 117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 118 119 //===----------------------------------------------------------------------===// 120 // SCEV class definitions 121 //===----------------------------------------------------------------------===// 122 123 //===----------------------------------------------------------------------===// 124 // Implementation of the SCEV class. 125 // 126 127 LLVM_DUMP_METHOD 128 void SCEV::dump() const { 129 print(dbgs()); 130 dbgs() << '\n'; 131 } 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getValue()->getValue().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getValue()->getValue(); 537 const APInt &RA = RC->getValue()->getValue(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } // end anonymous namespace 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 // Returns the size of the SCEV S. 670 static inline int sizeOfSCEV(const SCEV *S) { 671 struct FindSCEVSize { 672 int Size; 673 FindSCEVSize() : Size(0) {} 674 675 bool follow(const SCEV *S) { 676 ++Size; 677 // Keep looking at all operands of S. 678 return true; 679 } 680 bool isDone() const { 681 return false; 682 } 683 }; 684 685 FindSCEVSize F; 686 SCEVTraversal<FindSCEVSize> ST(F); 687 ST.visitAll(S); 688 return F.Size; 689 } 690 691 namespace { 692 693 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 694 public: 695 // Computes the Quotient and Remainder of the division of Numerator by 696 // Denominator. 697 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 698 const SCEV *Denominator, const SCEV **Quotient, 699 const SCEV **Remainder) { 700 assert(Numerator && Denominator && "Uninitialized SCEV"); 701 702 SCEVDivision D(SE, Numerator, Denominator); 703 704 // Check for the trivial case here to avoid having to check for it in the 705 // rest of the code. 706 if (Numerator == Denominator) { 707 *Quotient = D.One; 708 *Remainder = D.Zero; 709 return; 710 } 711 712 if (Numerator->isZero()) { 713 *Quotient = D.Zero; 714 *Remainder = D.Zero; 715 return; 716 } 717 718 // A simple case when N/1. The quotient is N. 719 if (Denominator->isOne()) { 720 *Quotient = Numerator; 721 *Remainder = D.Zero; 722 return; 723 } 724 725 // Split the Denominator when it is a product. 726 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 727 const SCEV *Q, *R; 728 *Quotient = Numerator; 729 for (const SCEV *Op : T->operands()) { 730 divide(SE, *Quotient, Op, &Q, &R); 731 *Quotient = Q; 732 733 // Bail out when the Numerator is not divisible by one of the terms of 734 // the Denominator. 735 if (!R->isZero()) { 736 *Quotient = D.Zero; 737 *Remainder = Numerator; 738 return; 739 } 740 } 741 *Remainder = D.Zero; 742 return; 743 } 744 745 D.visit(Numerator); 746 *Quotient = D.Quotient; 747 *Remainder = D.Remainder; 748 } 749 750 // Except in the trivial case described above, we do not know how to divide 751 // Expr by Denominator for the following functions with empty implementation. 752 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 753 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 754 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 755 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 756 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 757 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 758 void visitUnknown(const SCEVUnknown *Numerator) {} 759 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 760 761 void visitConstant(const SCEVConstant *Numerator) { 762 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 763 APInt NumeratorVal = Numerator->getValue()->getValue(); 764 APInt DenominatorVal = D->getValue()->getValue(); 765 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 766 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 767 768 if (NumeratorBW > DenominatorBW) 769 DenominatorVal = DenominatorVal.sext(NumeratorBW); 770 else if (NumeratorBW < DenominatorBW) 771 NumeratorVal = NumeratorVal.sext(DenominatorBW); 772 773 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 774 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 775 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 776 Quotient = SE.getConstant(QuotientVal); 777 Remainder = SE.getConstant(RemainderVal); 778 return; 779 } 780 } 781 782 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 783 const SCEV *StartQ, *StartR, *StepQ, *StepR; 784 if (!Numerator->isAffine()) 785 return cannotDivide(Numerator); 786 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 787 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 788 // Bail out if the types do not match. 789 Type *Ty = Denominator->getType(); 790 if (Ty != StartQ->getType() || Ty != StartR->getType() || 791 Ty != StepQ->getType() || Ty != StepR->getType()) 792 return cannotDivide(Numerator); 793 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 794 Numerator->getNoWrapFlags()); 795 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 } 798 799 void visitAddExpr(const SCEVAddExpr *Numerator) { 800 SmallVector<const SCEV *, 2> Qs, Rs; 801 Type *Ty = Denominator->getType(); 802 803 for (const SCEV *Op : Numerator->operands()) { 804 const SCEV *Q, *R; 805 divide(SE, Op, Denominator, &Q, &R); 806 807 // Bail out if types do not match. 808 if (Ty != Q->getType() || Ty != R->getType()) 809 return cannotDivide(Numerator); 810 811 Qs.push_back(Q); 812 Rs.push_back(R); 813 } 814 815 if (Qs.size() == 1) { 816 Quotient = Qs[0]; 817 Remainder = Rs[0]; 818 return; 819 } 820 821 Quotient = SE.getAddExpr(Qs); 822 Remainder = SE.getAddExpr(Rs); 823 } 824 825 void visitMulExpr(const SCEVMulExpr *Numerator) { 826 SmallVector<const SCEV *, 2> Qs; 827 Type *Ty = Denominator->getType(); 828 829 bool FoundDenominatorTerm = false; 830 for (const SCEV *Op : Numerator->operands()) { 831 // Bail out if types do not match. 832 if (Ty != Op->getType()) 833 return cannotDivide(Numerator); 834 835 if (FoundDenominatorTerm) { 836 Qs.push_back(Op); 837 continue; 838 } 839 840 // Check whether Denominator divides one of the product operands. 841 const SCEV *Q, *R; 842 divide(SE, Op, Denominator, &Q, &R); 843 if (!R->isZero()) { 844 Qs.push_back(Op); 845 continue; 846 } 847 848 // Bail out if types do not match. 849 if (Ty != Q->getType()) 850 return cannotDivide(Numerator); 851 852 FoundDenominatorTerm = true; 853 Qs.push_back(Q); 854 } 855 856 if (FoundDenominatorTerm) { 857 Remainder = Zero; 858 if (Qs.size() == 1) 859 Quotient = Qs[0]; 860 else 861 Quotient = SE.getMulExpr(Qs); 862 return; 863 } 864 865 if (!isa<SCEVUnknown>(Denominator)) 866 return cannotDivide(Numerator); 867 868 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 869 ValueToValueMap RewriteMap; 870 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 871 cast<SCEVConstant>(Zero)->getValue(); 872 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 873 874 if (Remainder->isZero()) { 875 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 876 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 877 cast<SCEVConstant>(One)->getValue(); 878 Quotient = 879 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 880 return; 881 } 882 883 // Quotient is (Numerator - Remainder) divided by Denominator. 884 const SCEV *Q, *R; 885 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 886 // This SCEV does not seem to simplify: fail the division here. 887 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 888 return cannotDivide(Numerator); 889 divide(SE, Diff, Denominator, &Q, &R); 890 if (R != Zero) 891 return cannotDivide(Numerator); 892 Quotient = Q; 893 } 894 895 private: 896 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 897 const SCEV *Denominator) 898 : SE(S), Denominator(Denominator) { 899 Zero = SE.getZero(Denominator->getType()); 900 One = SE.getOne(Denominator->getType()); 901 902 // We generally do not know how to divide Expr by Denominator. We 903 // initialize the division to a "cannot divide" state to simplify the rest 904 // of the code. 905 cannotDivide(Numerator); 906 } 907 908 // Convenience function for giving up on the division. We set the quotient to 909 // be equal to zero and the remainder to be equal to the numerator. 910 void cannotDivide(const SCEV *Numerator) { 911 Quotient = Zero; 912 Remainder = Numerator; 913 } 914 915 ScalarEvolution &SE; 916 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 917 }; 918 919 } 920 921 //===----------------------------------------------------------------------===// 922 // Simple SCEV method implementations 923 //===----------------------------------------------------------------------===// 924 925 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 926 /// Assume, K > 0. 927 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 928 ScalarEvolution &SE, 929 Type *ResultTy) { 930 // Handle the simplest case efficiently. 931 if (K == 1) 932 return SE.getTruncateOrZeroExtend(It, ResultTy); 933 934 // We are using the following formula for BC(It, K): 935 // 936 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 937 // 938 // Suppose, W is the bitwidth of the return value. We must be prepared for 939 // overflow. Hence, we must assure that the result of our computation is 940 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 941 // safe in modular arithmetic. 942 // 943 // However, this code doesn't use exactly that formula; the formula it uses 944 // is something like the following, where T is the number of factors of 2 in 945 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 946 // exponentiation: 947 // 948 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 949 // 950 // This formula is trivially equivalent to the previous formula. However, 951 // this formula can be implemented much more efficiently. The trick is that 952 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 953 // arithmetic. To do exact division in modular arithmetic, all we have 954 // to do is multiply by the inverse. Therefore, this step can be done at 955 // width W. 956 // 957 // The next issue is how to safely do the division by 2^T. The way this 958 // is done is by doing the multiplication step at a width of at least W + T 959 // bits. This way, the bottom W+T bits of the product are accurate. Then, 960 // when we perform the division by 2^T (which is equivalent to a right shift 961 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 962 // truncated out after the division by 2^T. 963 // 964 // In comparison to just directly using the first formula, this technique 965 // is much more efficient; using the first formula requires W * K bits, 966 // but this formula less than W + K bits. Also, the first formula requires 967 // a division step, whereas this formula only requires multiplies and shifts. 968 // 969 // It doesn't matter whether the subtraction step is done in the calculation 970 // width or the input iteration count's width; if the subtraction overflows, 971 // the result must be zero anyway. We prefer here to do it in the width of 972 // the induction variable because it helps a lot for certain cases; CodeGen 973 // isn't smart enough to ignore the overflow, which leads to much less 974 // efficient code if the width of the subtraction is wider than the native 975 // register width. 976 // 977 // (It's possible to not widen at all by pulling out factors of 2 before 978 // the multiplication; for example, K=2 can be calculated as 979 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 980 // extra arithmetic, so it's not an obvious win, and it gets 981 // much more complicated for K > 3.) 982 983 // Protection from insane SCEVs; this bound is conservative, 984 // but it probably doesn't matter. 985 if (K > 1000) 986 return SE.getCouldNotCompute(); 987 988 unsigned W = SE.getTypeSizeInBits(ResultTy); 989 990 // Calculate K! / 2^T and T; we divide out the factors of two before 991 // multiplying for calculating K! / 2^T to avoid overflow. 992 // Other overflow doesn't matter because we only care about the bottom 993 // W bits of the result. 994 APInt OddFactorial(W, 1); 995 unsigned T = 1; 996 for (unsigned i = 3; i <= K; ++i) { 997 APInt Mult(W, i); 998 unsigned TwoFactors = Mult.countTrailingZeros(); 999 T += TwoFactors; 1000 Mult = Mult.lshr(TwoFactors); 1001 OddFactorial *= Mult; 1002 } 1003 1004 // We need at least W + T bits for the multiplication step 1005 unsigned CalculationBits = W + T; 1006 1007 // Calculate 2^T, at width T+W. 1008 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1009 1010 // Calculate the multiplicative inverse of K! / 2^T; 1011 // this multiplication factor will perform the exact division by 1012 // K! / 2^T. 1013 APInt Mod = APInt::getSignedMinValue(W+1); 1014 APInt MultiplyFactor = OddFactorial.zext(W+1); 1015 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1016 MultiplyFactor = MultiplyFactor.trunc(W); 1017 1018 // Calculate the product, at width T+W 1019 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1020 CalculationBits); 1021 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1022 for (unsigned i = 1; i != K; ++i) { 1023 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1024 Dividend = SE.getMulExpr(Dividend, 1025 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1026 } 1027 1028 // Divide by 2^T 1029 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1030 1031 // Truncate the result, and divide by K! / 2^T. 1032 1033 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1034 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1035 } 1036 1037 /// evaluateAtIteration - Return the value of this chain of recurrences at 1038 /// the specified iteration number. We can evaluate this recurrence by 1039 /// multiplying each element in the chain by the binomial coefficient 1040 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1041 /// 1042 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1043 /// 1044 /// where BC(It, k) stands for binomial coefficient. 1045 /// 1046 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1047 ScalarEvolution &SE) const { 1048 const SCEV *Result = getStart(); 1049 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1050 // The computation is correct in the face of overflow provided that the 1051 // multiplication is performed _after_ the evaluation of the binomial 1052 // coefficient. 1053 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1054 if (isa<SCEVCouldNotCompute>(Coeff)) 1055 return Coeff; 1056 1057 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1058 } 1059 return Result; 1060 } 1061 1062 //===----------------------------------------------------------------------===// 1063 // SCEV Expression folder implementations 1064 //===----------------------------------------------------------------------===// 1065 1066 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1067 Type *Ty) { 1068 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1069 "This is not a truncating conversion!"); 1070 assert(isSCEVable(Ty) && 1071 "This is not a conversion to a SCEVable type!"); 1072 Ty = getEffectiveSCEVType(Ty); 1073 1074 FoldingSetNodeID ID; 1075 ID.AddInteger(scTruncate); 1076 ID.AddPointer(Op); 1077 ID.AddPointer(Ty); 1078 void *IP = nullptr; 1079 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1080 1081 // Fold if the operand is constant. 1082 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1083 return getConstant( 1084 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1085 1086 // trunc(trunc(x)) --> trunc(x) 1087 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1088 return getTruncateExpr(ST->getOperand(), Ty); 1089 1090 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1091 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1092 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1093 1094 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1095 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1096 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1097 1098 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1099 // eliminate all the truncates, or we replace other casts with truncates. 1100 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1101 SmallVector<const SCEV *, 4> Operands; 1102 bool hasTrunc = false; 1103 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1104 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1105 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1106 hasTrunc = isa<SCEVTruncateExpr>(S); 1107 Operands.push_back(S); 1108 } 1109 if (!hasTrunc) 1110 return getAddExpr(Operands); 1111 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1112 } 1113 1114 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1115 // eliminate all the truncates, or we replace other casts with truncates. 1116 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1117 SmallVector<const SCEV *, 4> Operands; 1118 bool hasTrunc = false; 1119 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1120 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1121 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1122 hasTrunc = isa<SCEVTruncateExpr>(S); 1123 Operands.push_back(S); 1124 } 1125 if (!hasTrunc) 1126 return getMulExpr(Operands); 1127 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1128 } 1129 1130 // If the input value is a chrec scev, truncate the chrec's operands. 1131 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1132 SmallVector<const SCEV *, 4> Operands; 1133 for (const SCEV *Op : AddRec->operands()) 1134 Operands.push_back(getTruncateExpr(Op, Ty)); 1135 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1136 } 1137 1138 // The cast wasn't folded; create an explicit cast node. We can reuse 1139 // the existing insert position since if we get here, we won't have 1140 // made any changes which would invalidate it. 1141 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1142 Op, Ty); 1143 UniqueSCEVs.InsertNode(S, IP); 1144 return S; 1145 } 1146 1147 // Get the limit of a recurrence such that incrementing by Step cannot cause 1148 // signed overflow as long as the value of the recurrence within the 1149 // loop does not exceed this limit before incrementing. 1150 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1151 ICmpInst::Predicate *Pred, 1152 ScalarEvolution *SE) { 1153 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1154 if (SE->isKnownPositive(Step)) { 1155 *Pred = ICmpInst::ICMP_SLT; 1156 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1157 SE->getSignedRange(Step).getSignedMax()); 1158 } 1159 if (SE->isKnownNegative(Step)) { 1160 *Pred = ICmpInst::ICMP_SGT; 1161 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1162 SE->getSignedRange(Step).getSignedMin()); 1163 } 1164 return nullptr; 1165 } 1166 1167 // Get the limit of a recurrence such that incrementing by Step cannot cause 1168 // unsigned overflow as long as the value of the recurrence within the loop does 1169 // not exceed this limit before incrementing. 1170 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1171 ICmpInst::Predicate *Pred, 1172 ScalarEvolution *SE) { 1173 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1174 *Pred = ICmpInst::ICMP_ULT; 1175 1176 return SE->getConstant(APInt::getMinValue(BitWidth) - 1177 SE->getUnsignedRange(Step).getUnsignedMax()); 1178 } 1179 1180 namespace { 1181 1182 struct ExtendOpTraitsBase { 1183 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1184 }; 1185 1186 // Used to make code generic over signed and unsigned overflow. 1187 template <typename ExtendOp> struct ExtendOpTraits { 1188 // Members present: 1189 // 1190 // static const SCEV::NoWrapFlags WrapType; 1191 // 1192 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1193 // 1194 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1195 // ICmpInst::Predicate *Pred, 1196 // ScalarEvolution *SE); 1197 }; 1198 1199 template <> 1200 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1201 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1202 1203 static const GetExtendExprTy GetExtendExpr; 1204 1205 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1206 ICmpInst::Predicate *Pred, 1207 ScalarEvolution *SE) { 1208 return getSignedOverflowLimitForStep(Step, Pred, SE); 1209 } 1210 }; 1211 1212 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1213 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1214 1215 template <> 1216 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1217 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1218 1219 static const GetExtendExprTy GetExtendExpr; 1220 1221 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1222 ICmpInst::Predicate *Pred, 1223 ScalarEvolution *SE) { 1224 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1225 } 1226 }; 1227 1228 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1229 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1230 } 1231 1232 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1233 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1234 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1235 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1236 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1237 // expression "Step + sext/zext(PreIncAR)" is congruent with 1238 // "sext/zext(PostIncAR)" 1239 template <typename ExtendOpTy> 1240 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1241 ScalarEvolution *SE) { 1242 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1243 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1244 1245 const Loop *L = AR->getLoop(); 1246 const SCEV *Start = AR->getStart(); 1247 const SCEV *Step = AR->getStepRecurrence(*SE); 1248 1249 // Check for a simple looking step prior to loop entry. 1250 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1251 if (!SA) 1252 return nullptr; 1253 1254 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1255 // subtraction is expensive. For this purpose, perform a quick and dirty 1256 // difference, by checking for Step in the operand list. 1257 SmallVector<const SCEV *, 4> DiffOps; 1258 for (const SCEV *Op : SA->operands()) 1259 if (Op != Step) 1260 DiffOps.push_back(Op); 1261 1262 if (DiffOps.size() == SA->getNumOperands()) 1263 return nullptr; 1264 1265 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1266 // `Step`: 1267 1268 // 1. NSW/NUW flags on the step increment. 1269 auto PreStartFlags = 1270 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1274 1275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1276 // "S+X does not sign/unsign-overflow". 1277 // 1278 1279 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1282 return PreStart; 1283 1284 // 2. Direct overflow check on the step operation's expression. 1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1287 const SCEV *OperandExtendedStart = 1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1289 (SE->*GetExtendExpr)(Step, WideTy)); 1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1291 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1296 } 1297 return PreStart; 1298 } 1299 1300 // 3. Loop precondition. 1301 ICmpInst::Predicate Pred; 1302 const SCEV *OverflowLimit = 1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1304 1305 if (OverflowLimit && 1306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1307 return PreStart; 1308 1309 return nullptr; 1310 } 1311 1312 // Get the normalized zero or sign extended expression for this AddRec's Start. 1313 template <typename ExtendOpTy> 1314 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1315 ScalarEvolution *SE) { 1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1317 1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1319 if (!PreStart) 1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1321 1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1323 (SE->*GetExtendExpr)(PreStart, Ty)); 1324 } 1325 1326 // Try to prove away overflow by looking at "nearby" add recurrences. A 1327 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1328 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1329 // 1330 // Formally: 1331 // 1332 // {S,+,X} == {S-T,+,X} + T 1333 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1334 // 1335 // If ({S-T,+,X} + T) does not overflow ... (1) 1336 // 1337 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1338 // 1339 // If {S-T,+,X} does not overflow ... (2) 1340 // 1341 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1342 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1343 // 1344 // If (S-T)+T does not overflow ... (3) 1345 // 1346 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1347 // == {Ext(S),+,Ext(X)} == LHS 1348 // 1349 // Thus, if (1), (2) and (3) are true for some T, then 1350 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1351 // 1352 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1353 // does not overflow" restricted to the 0th iteration. Therefore we only need 1354 // to check for (1) and (2). 1355 // 1356 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1357 // is `Delta` (defined below). 1358 // 1359 template <typename ExtendOpTy> 1360 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1361 const SCEV *Step, 1362 const Loop *L) { 1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1364 1365 // We restrict `Start` to a constant to prevent SCEV from spending too much 1366 // time here. It is correct (but more expensive) to continue with a 1367 // non-constant `Start` and do a general SCEV subtraction to compute 1368 // `PreStart` below. 1369 // 1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1371 if (!StartC) 1372 return false; 1373 1374 APInt StartAI = StartC->getValue()->getValue(); 1375 1376 for (unsigned Delta : {-2, -1, 1, 2}) { 1377 const SCEV *PreStart = getConstant(StartAI - Delta); 1378 1379 FoldingSetNodeID ID; 1380 ID.AddInteger(scAddRecExpr); 1381 ID.AddPointer(PreStart); 1382 ID.AddPointer(Step); 1383 ID.AddPointer(L); 1384 void *IP = nullptr; 1385 const auto *PreAR = 1386 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1387 1388 // Give up if we don't already have the add recurrence we need because 1389 // actually constructing an add recurrence is relatively expensive. 1390 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1391 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1392 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1393 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1394 DeltaS, &Pred, this); 1395 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1396 return true; 1397 } 1398 } 1399 1400 return false; 1401 } 1402 1403 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1404 Type *Ty) { 1405 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1406 "This is not an extending conversion!"); 1407 assert(isSCEVable(Ty) && 1408 "This is not a conversion to a SCEVable type!"); 1409 Ty = getEffectiveSCEVType(Ty); 1410 1411 // Fold if the operand is constant. 1412 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1413 return getConstant( 1414 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1415 1416 // zext(zext(x)) --> zext(x) 1417 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1418 return getZeroExtendExpr(SZ->getOperand(), Ty); 1419 1420 // Before doing any expensive analysis, check to see if we've already 1421 // computed a SCEV for this Op and Ty. 1422 FoldingSetNodeID ID; 1423 ID.AddInteger(scZeroExtend); 1424 ID.AddPointer(Op); 1425 ID.AddPointer(Ty); 1426 void *IP = nullptr; 1427 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1428 1429 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1430 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1431 // It's possible the bits taken off by the truncate were all zero bits. If 1432 // so, we should be able to simplify this further. 1433 const SCEV *X = ST->getOperand(); 1434 ConstantRange CR = getUnsignedRange(X); 1435 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1436 unsigned NewBits = getTypeSizeInBits(Ty); 1437 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1438 CR.zextOrTrunc(NewBits))) 1439 return getTruncateOrZeroExtend(X, Ty); 1440 } 1441 1442 // If the input value is a chrec scev, and we can prove that the value 1443 // did not overflow the old, smaller, value, we can zero extend all of the 1444 // operands (often constants). This allows analysis of something like 1445 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1446 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1447 if (AR->isAffine()) { 1448 const SCEV *Start = AR->getStart(); 1449 const SCEV *Step = AR->getStepRecurrence(*this); 1450 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1451 const Loop *L = AR->getLoop(); 1452 1453 // If we have special knowledge that this addrec won't overflow, 1454 // we don't need to do any further analysis. 1455 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1456 return getAddRecExpr( 1457 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1458 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1459 1460 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1461 // Note that this serves two purposes: It filters out loops that are 1462 // simply not analyzable, and it covers the case where this code is 1463 // being called from within backedge-taken count analysis, such that 1464 // attempting to ask for the backedge-taken count would likely result 1465 // in infinite recursion. In the later case, the analysis code will 1466 // cope with a conservative value, and it will take care to purge 1467 // that value once it has finished. 1468 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1469 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1470 // Manually compute the final value for AR, checking for 1471 // overflow. 1472 1473 // Check whether the backedge-taken count can be losslessly casted to 1474 // the addrec's type. The count is always unsigned. 1475 const SCEV *CastedMaxBECount = 1476 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1477 const SCEV *RecastedMaxBECount = 1478 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1479 if (MaxBECount == RecastedMaxBECount) { 1480 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1481 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1482 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1483 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1484 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1485 const SCEV *WideMaxBECount = 1486 getZeroExtendExpr(CastedMaxBECount, WideTy); 1487 const SCEV *OperandExtendedAdd = 1488 getAddExpr(WideStart, 1489 getMulExpr(WideMaxBECount, 1490 getZeroExtendExpr(Step, WideTy))); 1491 if (ZAdd == OperandExtendedAdd) { 1492 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1493 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1494 // Return the expression with the addrec on the outside. 1495 return getAddRecExpr( 1496 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1497 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1498 } 1499 // Similar to above, only this time treat the step value as signed. 1500 // This covers loops that count down. 1501 OperandExtendedAdd = 1502 getAddExpr(WideStart, 1503 getMulExpr(WideMaxBECount, 1504 getSignExtendExpr(Step, WideTy))); 1505 if (ZAdd == OperandExtendedAdd) { 1506 // Cache knowledge of AR NW, which is propagated to this AddRec. 1507 // Negative step causes unsigned wrap, but it still can't self-wrap. 1508 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1509 // Return the expression with the addrec on the outside. 1510 return getAddRecExpr( 1511 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1512 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1513 } 1514 } 1515 1516 // If the backedge is guarded by a comparison with the pre-inc value 1517 // the addrec is safe. Also, if the entry is guarded by a comparison 1518 // with the start value and the backedge is guarded by a comparison 1519 // with the post-inc value, the addrec is safe. 1520 if (isKnownPositive(Step)) { 1521 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1522 getUnsignedRange(Step).getUnsignedMax()); 1523 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1524 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1525 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1526 AR->getPostIncExpr(*this), N))) { 1527 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1528 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1529 // Return the expression with the addrec on the outside. 1530 return getAddRecExpr( 1531 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1532 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1533 } 1534 } else if (isKnownNegative(Step)) { 1535 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1536 getSignedRange(Step).getSignedMin()); 1537 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1538 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1539 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1540 AR->getPostIncExpr(*this), N))) { 1541 // Cache knowledge of AR NW, which is propagated to this AddRec. 1542 // Negative step causes unsigned wrap, but it still can't self-wrap. 1543 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1544 // Return the expression with the addrec on the outside. 1545 return getAddRecExpr( 1546 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1547 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1548 } 1549 } 1550 } 1551 1552 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1553 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1554 return getAddRecExpr( 1555 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1556 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1557 } 1558 } 1559 1560 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1561 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1562 if (SA->getNoWrapFlags(SCEV::FlagNUW)) { 1563 // If the addition does not unsign overflow then we can, by definition, 1564 // commute the zero extension with the addition operation. 1565 SmallVector<const SCEV *, 4> Ops; 1566 for (const auto *Op : SA->operands()) 1567 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1568 return getAddExpr(Ops, SCEV::FlagNUW); 1569 } 1570 } 1571 1572 // The cast wasn't folded; create an explicit cast node. 1573 // Recompute the insert position, as it may have been invalidated. 1574 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1575 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1576 Op, Ty); 1577 UniqueSCEVs.InsertNode(S, IP); 1578 return S; 1579 } 1580 1581 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1582 Type *Ty) { 1583 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1584 "This is not an extending conversion!"); 1585 assert(isSCEVable(Ty) && 1586 "This is not a conversion to a SCEVable type!"); 1587 Ty = getEffectiveSCEVType(Ty); 1588 1589 // Fold if the operand is constant. 1590 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1591 return getConstant( 1592 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1593 1594 // sext(sext(x)) --> sext(x) 1595 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1596 return getSignExtendExpr(SS->getOperand(), Ty); 1597 1598 // sext(zext(x)) --> zext(x) 1599 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1600 return getZeroExtendExpr(SZ->getOperand(), Ty); 1601 1602 // Before doing any expensive analysis, check to see if we've already 1603 // computed a SCEV for this Op and Ty. 1604 FoldingSetNodeID ID; 1605 ID.AddInteger(scSignExtend); 1606 ID.AddPointer(Op); 1607 ID.AddPointer(Ty); 1608 void *IP = nullptr; 1609 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1610 1611 // If the input value is provably positive, build a zext instead. 1612 if (isKnownNonNegative(Op)) 1613 return getZeroExtendExpr(Op, Ty); 1614 1615 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1616 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1617 // It's possible the bits taken off by the truncate were all sign bits. If 1618 // so, we should be able to simplify this further. 1619 const SCEV *X = ST->getOperand(); 1620 ConstantRange CR = getSignedRange(X); 1621 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1622 unsigned NewBits = getTypeSizeInBits(Ty); 1623 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1624 CR.sextOrTrunc(NewBits))) 1625 return getTruncateOrSignExtend(X, Ty); 1626 } 1627 1628 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1629 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1630 if (SA->getNumOperands() == 2) { 1631 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1632 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1633 if (SMul && SC1) { 1634 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1635 const APInt &C1 = SC1->getValue()->getValue(); 1636 const APInt &C2 = SC2->getValue()->getValue(); 1637 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1638 C2.ugt(C1) && C2.isPowerOf2()) 1639 return getAddExpr(getSignExtendExpr(SC1, Ty), 1640 getSignExtendExpr(SMul, Ty)); 1641 } 1642 } 1643 } 1644 1645 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1646 if (SA->getNoWrapFlags(SCEV::FlagNSW)) { 1647 // If the addition does not sign overflow then we can, by definition, 1648 // commute the sign extension with the addition operation. 1649 SmallVector<const SCEV *, 4> Ops; 1650 for (const auto *Op : SA->operands()) 1651 Ops.push_back(getSignExtendExpr(Op, Ty)); 1652 return getAddExpr(Ops, SCEV::FlagNSW); 1653 } 1654 } 1655 // If the input value is a chrec scev, and we can prove that the value 1656 // did not overflow the old, smaller, value, we can sign extend all of the 1657 // operands (often constants). This allows analysis of something like 1658 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1659 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1660 if (AR->isAffine()) { 1661 const SCEV *Start = AR->getStart(); 1662 const SCEV *Step = AR->getStepRecurrence(*this); 1663 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1664 const Loop *L = AR->getLoop(); 1665 1666 // If we have special knowledge that this addrec won't overflow, 1667 // we don't need to do any further analysis. 1668 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1669 return getAddRecExpr( 1670 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1671 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1672 1673 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1674 // Note that this serves two purposes: It filters out loops that are 1675 // simply not analyzable, and it covers the case where this code is 1676 // being called from within backedge-taken count analysis, such that 1677 // attempting to ask for the backedge-taken count would likely result 1678 // in infinite recursion. In the later case, the analysis code will 1679 // cope with a conservative value, and it will take care to purge 1680 // that value once it has finished. 1681 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1682 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1683 // Manually compute the final value for AR, checking for 1684 // overflow. 1685 1686 // Check whether the backedge-taken count can be losslessly casted to 1687 // the addrec's type. The count is always unsigned. 1688 const SCEV *CastedMaxBECount = 1689 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1690 const SCEV *RecastedMaxBECount = 1691 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1692 if (MaxBECount == RecastedMaxBECount) { 1693 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1694 // Check whether Start+Step*MaxBECount has no signed overflow. 1695 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1696 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1697 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1698 const SCEV *WideMaxBECount = 1699 getZeroExtendExpr(CastedMaxBECount, WideTy); 1700 const SCEV *OperandExtendedAdd = 1701 getAddExpr(WideStart, 1702 getMulExpr(WideMaxBECount, 1703 getSignExtendExpr(Step, WideTy))); 1704 if (SAdd == OperandExtendedAdd) { 1705 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1706 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1707 // Return the expression with the addrec on the outside. 1708 return getAddRecExpr( 1709 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1710 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1711 } 1712 // Similar to above, only this time treat the step value as unsigned. 1713 // This covers loops that count up with an unsigned step. 1714 OperandExtendedAdd = 1715 getAddExpr(WideStart, 1716 getMulExpr(WideMaxBECount, 1717 getZeroExtendExpr(Step, WideTy))); 1718 if (SAdd == OperandExtendedAdd) { 1719 // If AR wraps around then 1720 // 1721 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1722 // => SAdd != OperandExtendedAdd 1723 // 1724 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1725 // (SAdd == OperandExtendedAdd => AR is NW) 1726 1727 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1728 1729 // Return the expression with the addrec on the outside. 1730 return getAddRecExpr( 1731 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1732 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1733 } 1734 } 1735 1736 // If the backedge is guarded by a comparison with the pre-inc value 1737 // the addrec is safe. Also, if the entry is guarded by a comparison 1738 // with the start value and the backedge is guarded by a comparison 1739 // with the post-inc value, the addrec is safe. 1740 ICmpInst::Predicate Pred; 1741 const SCEV *OverflowLimit = 1742 getSignedOverflowLimitForStep(Step, &Pred, this); 1743 if (OverflowLimit && 1744 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1745 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1746 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1747 OverflowLimit)))) { 1748 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1749 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1750 return getAddRecExpr( 1751 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1752 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1753 } 1754 } 1755 // If Start and Step are constants, check if we can apply this 1756 // transformation: 1757 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1758 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1759 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1760 if (SC1 && SC2) { 1761 const APInt &C1 = SC1->getValue()->getValue(); 1762 const APInt &C2 = SC2->getValue()->getValue(); 1763 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1764 C2.isPowerOf2()) { 1765 Start = getSignExtendExpr(Start, Ty); 1766 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1767 AR->getNoWrapFlags()); 1768 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1769 } 1770 } 1771 1772 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1773 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1774 return getAddRecExpr( 1775 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1776 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1777 } 1778 } 1779 1780 // The cast wasn't folded; create an explicit cast node. 1781 // Recompute the insert position, as it may have been invalidated. 1782 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1783 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1784 Op, Ty); 1785 UniqueSCEVs.InsertNode(S, IP); 1786 return S; 1787 } 1788 1789 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1790 /// unspecified bits out to the given type. 1791 /// 1792 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1793 Type *Ty) { 1794 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1795 "This is not an extending conversion!"); 1796 assert(isSCEVable(Ty) && 1797 "This is not a conversion to a SCEVable type!"); 1798 Ty = getEffectiveSCEVType(Ty); 1799 1800 // Sign-extend negative constants. 1801 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1802 if (SC->getValue()->getValue().isNegative()) 1803 return getSignExtendExpr(Op, Ty); 1804 1805 // Peel off a truncate cast. 1806 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1807 const SCEV *NewOp = T->getOperand(); 1808 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1809 return getAnyExtendExpr(NewOp, Ty); 1810 return getTruncateOrNoop(NewOp, Ty); 1811 } 1812 1813 // Next try a zext cast. If the cast is folded, use it. 1814 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1815 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1816 return ZExt; 1817 1818 // Next try a sext cast. If the cast is folded, use it. 1819 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1820 if (!isa<SCEVSignExtendExpr>(SExt)) 1821 return SExt; 1822 1823 // Force the cast to be folded into the operands of an addrec. 1824 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1825 SmallVector<const SCEV *, 4> Ops; 1826 for (const SCEV *Op : AR->operands()) 1827 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1828 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1829 } 1830 1831 // If the expression is obviously signed, use the sext cast value. 1832 if (isa<SCEVSMaxExpr>(Op)) 1833 return SExt; 1834 1835 // Absent any other information, use the zext cast value. 1836 return ZExt; 1837 } 1838 1839 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1840 /// a list of operands to be added under the given scale, update the given 1841 /// map. This is a helper function for getAddRecExpr. As an example of 1842 /// what it does, given a sequence of operands that would form an add 1843 /// expression like this: 1844 /// 1845 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1846 /// 1847 /// where A and B are constants, update the map with these values: 1848 /// 1849 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1850 /// 1851 /// and add 13 + A*B*29 to AccumulatedConstant. 1852 /// This will allow getAddRecExpr to produce this: 1853 /// 1854 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1855 /// 1856 /// This form often exposes folding opportunities that are hidden in 1857 /// the original operand list. 1858 /// 1859 /// Return true iff it appears that any interesting folding opportunities 1860 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1861 /// the common case where no interesting opportunities are present, and 1862 /// is also used as a check to avoid infinite recursion. 1863 /// 1864 static bool 1865 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1866 SmallVectorImpl<const SCEV *> &NewOps, 1867 APInt &AccumulatedConstant, 1868 const SCEV *const *Ops, size_t NumOperands, 1869 const APInt &Scale, 1870 ScalarEvolution &SE) { 1871 bool Interesting = false; 1872 1873 // Iterate over the add operands. They are sorted, with constants first. 1874 unsigned i = 0; 1875 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1876 ++i; 1877 // Pull a buried constant out to the outside. 1878 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1879 Interesting = true; 1880 AccumulatedConstant += Scale * C->getValue()->getValue(); 1881 } 1882 1883 // Next comes everything else. We're especially interested in multiplies 1884 // here, but they're in the middle, so just visit the rest with one loop. 1885 for (; i != NumOperands; ++i) { 1886 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1887 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1888 APInt NewScale = 1889 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1890 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1891 // A multiplication of a constant with another add; recurse. 1892 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1893 Interesting |= 1894 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1895 Add->op_begin(), Add->getNumOperands(), 1896 NewScale, SE); 1897 } else { 1898 // A multiplication of a constant with some other value. Update 1899 // the map. 1900 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1901 const SCEV *Key = SE.getMulExpr(MulOps); 1902 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1903 if (Pair.second) { 1904 NewOps.push_back(Pair.first->first); 1905 } else { 1906 Pair.first->second += NewScale; 1907 // The map already had an entry for this value, which may indicate 1908 // a folding opportunity. 1909 Interesting = true; 1910 } 1911 } 1912 } else { 1913 // An ordinary operand. Update the map. 1914 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1915 M.insert(std::make_pair(Ops[i], Scale)); 1916 if (Pair.second) { 1917 NewOps.push_back(Pair.first->first); 1918 } else { 1919 Pair.first->second += Scale; 1920 // The map already had an entry for this value, which may indicate 1921 // a folding opportunity. 1922 Interesting = true; 1923 } 1924 } 1925 } 1926 1927 return Interesting; 1928 } 1929 1930 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1931 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1932 // can't-overflow flags for the operation if possible. 1933 static SCEV::NoWrapFlags 1934 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1935 const SmallVectorImpl<const SCEV *> &Ops, 1936 SCEV::NoWrapFlags Flags) { 1937 using namespace std::placeholders; 1938 typedef OverflowingBinaryOperator OBO; 1939 1940 bool CanAnalyze = 1941 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1942 (void)CanAnalyze; 1943 assert(CanAnalyze && "don't call from other places!"); 1944 1945 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1946 SCEV::NoWrapFlags SignOrUnsignWrap = 1947 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1948 1949 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1950 auto IsKnownNonNegative = [&](const SCEV *S) { 1951 return SE->isKnownNonNegative(S); 1952 }; 1953 1954 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 1955 Flags = 1956 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1957 1958 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1959 1960 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1961 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1962 1963 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1964 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1965 1966 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue(); 1967 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1968 auto NSWRegion = 1969 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap); 1970 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1971 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1972 } 1973 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1974 auto NUWRegion = 1975 ConstantRange::makeNoWrapRegion(Instruction::Add, C, 1976 OBO::NoUnsignedWrap); 1977 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1978 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1979 } 1980 } 1981 1982 return Flags; 1983 } 1984 1985 /// getAddExpr - Get a canonical add expression, or something simpler if 1986 /// possible. 1987 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1988 SCEV::NoWrapFlags Flags) { 1989 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1990 "only nuw or nsw allowed"); 1991 assert(!Ops.empty() && "Cannot get empty add!"); 1992 if (Ops.size() == 1) return Ops[0]; 1993 #ifndef NDEBUG 1994 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1995 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1996 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1997 "SCEVAddExpr operand types don't match!"); 1998 #endif 1999 2000 // Sort by complexity, this groups all similar expression types together. 2001 GroupByComplexity(Ops, &LI); 2002 2003 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2004 2005 // If there are any constants, fold them together. 2006 unsigned Idx = 0; 2007 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2008 ++Idx; 2009 assert(Idx < Ops.size()); 2010 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2011 // We found two constants, fold them together! 2012 Ops[0] = getConstant(LHSC->getValue()->getValue() + 2013 RHSC->getValue()->getValue()); 2014 if (Ops.size() == 2) return Ops[0]; 2015 Ops.erase(Ops.begin()+1); // Erase the folded element 2016 LHSC = cast<SCEVConstant>(Ops[0]); 2017 } 2018 2019 // If we are left with a constant zero being added, strip it off. 2020 if (LHSC->getValue()->isZero()) { 2021 Ops.erase(Ops.begin()); 2022 --Idx; 2023 } 2024 2025 if (Ops.size() == 1) return Ops[0]; 2026 } 2027 2028 // Okay, check to see if the same value occurs in the operand list more than 2029 // once. If so, merge them together into an multiply expression. Since we 2030 // sorted the list, these values are required to be adjacent. 2031 Type *Ty = Ops[0]->getType(); 2032 bool FoundMatch = false; 2033 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2034 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2035 // Scan ahead to count how many equal operands there are. 2036 unsigned Count = 2; 2037 while (i+Count != e && Ops[i+Count] == Ops[i]) 2038 ++Count; 2039 // Merge the values into a multiply. 2040 const SCEV *Scale = getConstant(Ty, Count); 2041 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2042 if (Ops.size() == Count) 2043 return Mul; 2044 Ops[i] = Mul; 2045 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2046 --i; e -= Count - 1; 2047 FoundMatch = true; 2048 } 2049 if (FoundMatch) 2050 return getAddExpr(Ops, Flags); 2051 2052 // Check for truncates. If all the operands are truncated from the same 2053 // type, see if factoring out the truncate would permit the result to be 2054 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2055 // if the contents of the resulting outer trunc fold to something simple. 2056 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2057 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2058 Type *DstType = Trunc->getType(); 2059 Type *SrcType = Trunc->getOperand()->getType(); 2060 SmallVector<const SCEV *, 8> LargeOps; 2061 bool Ok = true; 2062 // Check all the operands to see if they can be represented in the 2063 // source type of the truncate. 2064 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2065 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2066 if (T->getOperand()->getType() != SrcType) { 2067 Ok = false; 2068 break; 2069 } 2070 LargeOps.push_back(T->getOperand()); 2071 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2072 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2073 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2074 SmallVector<const SCEV *, 8> LargeMulOps; 2075 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2076 if (const SCEVTruncateExpr *T = 2077 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2078 if (T->getOperand()->getType() != SrcType) { 2079 Ok = false; 2080 break; 2081 } 2082 LargeMulOps.push_back(T->getOperand()); 2083 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2084 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2085 } else { 2086 Ok = false; 2087 break; 2088 } 2089 } 2090 if (Ok) 2091 LargeOps.push_back(getMulExpr(LargeMulOps)); 2092 } else { 2093 Ok = false; 2094 break; 2095 } 2096 } 2097 if (Ok) { 2098 // Evaluate the expression in the larger type. 2099 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2100 // If it folds to something simple, use it. Otherwise, don't. 2101 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2102 return getTruncateExpr(Fold, DstType); 2103 } 2104 } 2105 2106 // Skip past any other cast SCEVs. 2107 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2108 ++Idx; 2109 2110 // If there are add operands they would be next. 2111 if (Idx < Ops.size()) { 2112 bool DeletedAdd = false; 2113 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2114 // If we have an add, expand the add operands onto the end of the operands 2115 // list. 2116 Ops.erase(Ops.begin()+Idx); 2117 Ops.append(Add->op_begin(), Add->op_end()); 2118 DeletedAdd = true; 2119 } 2120 2121 // If we deleted at least one add, we added operands to the end of the list, 2122 // and they are not necessarily sorted. Recurse to resort and resimplify 2123 // any operands we just acquired. 2124 if (DeletedAdd) 2125 return getAddExpr(Ops); 2126 } 2127 2128 // Skip over the add expression until we get to a multiply. 2129 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2130 ++Idx; 2131 2132 // Check to see if there are any folding opportunities present with 2133 // operands multiplied by constant values. 2134 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2135 uint64_t BitWidth = getTypeSizeInBits(Ty); 2136 DenseMap<const SCEV *, APInt> M; 2137 SmallVector<const SCEV *, 8> NewOps; 2138 APInt AccumulatedConstant(BitWidth, 0); 2139 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2140 Ops.data(), Ops.size(), 2141 APInt(BitWidth, 1), *this)) { 2142 struct APIntCompare { 2143 bool operator()(const APInt &LHS, const APInt &RHS) const { 2144 return LHS.ult(RHS); 2145 } 2146 }; 2147 2148 // Some interesting folding opportunity is present, so its worthwhile to 2149 // re-generate the operands list. Group the operands by constant scale, 2150 // to avoid multiplying by the same constant scale multiple times. 2151 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2152 for (const SCEV *NewOp : NewOps) 2153 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2154 // Re-generate the operands list. 2155 Ops.clear(); 2156 if (AccumulatedConstant != 0) 2157 Ops.push_back(getConstant(AccumulatedConstant)); 2158 for (auto &MulOp : MulOpLists) 2159 if (MulOp.first != 0) 2160 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2161 getAddExpr(MulOp.second))); 2162 if (Ops.empty()) 2163 return getZero(Ty); 2164 if (Ops.size() == 1) 2165 return Ops[0]; 2166 return getAddExpr(Ops); 2167 } 2168 } 2169 2170 // If we are adding something to a multiply expression, make sure the 2171 // something is not already an operand of the multiply. If so, merge it into 2172 // the multiply. 2173 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2174 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2175 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2176 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2177 if (isa<SCEVConstant>(MulOpSCEV)) 2178 continue; 2179 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2180 if (MulOpSCEV == Ops[AddOp]) { 2181 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2182 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2183 if (Mul->getNumOperands() != 2) { 2184 // If the multiply has more than two operands, we must get the 2185 // Y*Z term. 2186 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2187 Mul->op_begin()+MulOp); 2188 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2189 InnerMul = getMulExpr(MulOps); 2190 } 2191 const SCEV *One = getOne(Ty); 2192 const SCEV *AddOne = getAddExpr(One, InnerMul); 2193 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2194 if (Ops.size() == 2) return OuterMul; 2195 if (AddOp < Idx) { 2196 Ops.erase(Ops.begin()+AddOp); 2197 Ops.erase(Ops.begin()+Idx-1); 2198 } else { 2199 Ops.erase(Ops.begin()+Idx); 2200 Ops.erase(Ops.begin()+AddOp-1); 2201 } 2202 Ops.push_back(OuterMul); 2203 return getAddExpr(Ops); 2204 } 2205 2206 // Check this multiply against other multiplies being added together. 2207 for (unsigned OtherMulIdx = Idx+1; 2208 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2209 ++OtherMulIdx) { 2210 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2211 // If MulOp occurs in OtherMul, we can fold the two multiplies 2212 // together. 2213 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2214 OMulOp != e; ++OMulOp) 2215 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2216 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2217 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2218 if (Mul->getNumOperands() != 2) { 2219 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2220 Mul->op_begin()+MulOp); 2221 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2222 InnerMul1 = getMulExpr(MulOps); 2223 } 2224 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2225 if (OtherMul->getNumOperands() != 2) { 2226 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2227 OtherMul->op_begin()+OMulOp); 2228 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2229 InnerMul2 = getMulExpr(MulOps); 2230 } 2231 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2232 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2233 if (Ops.size() == 2) return OuterMul; 2234 Ops.erase(Ops.begin()+Idx); 2235 Ops.erase(Ops.begin()+OtherMulIdx-1); 2236 Ops.push_back(OuterMul); 2237 return getAddExpr(Ops); 2238 } 2239 } 2240 } 2241 } 2242 2243 // If there are any add recurrences in the operands list, see if any other 2244 // added values are loop invariant. If so, we can fold them into the 2245 // recurrence. 2246 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2247 ++Idx; 2248 2249 // Scan over all recurrences, trying to fold loop invariants into them. 2250 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2251 // Scan all of the other operands to this add and add them to the vector if 2252 // they are loop invariant w.r.t. the recurrence. 2253 SmallVector<const SCEV *, 8> LIOps; 2254 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2255 const Loop *AddRecLoop = AddRec->getLoop(); 2256 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2257 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2258 LIOps.push_back(Ops[i]); 2259 Ops.erase(Ops.begin()+i); 2260 --i; --e; 2261 } 2262 2263 // If we found some loop invariants, fold them into the recurrence. 2264 if (!LIOps.empty()) { 2265 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2266 LIOps.push_back(AddRec->getStart()); 2267 2268 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2269 AddRec->op_end()); 2270 AddRecOps[0] = getAddExpr(LIOps); 2271 2272 // Build the new addrec. Propagate the NUW and NSW flags if both the 2273 // outer add and the inner addrec are guaranteed to have no overflow. 2274 // Always propagate NW. 2275 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2276 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2277 2278 // If all of the other operands were loop invariant, we are done. 2279 if (Ops.size() == 1) return NewRec; 2280 2281 // Otherwise, add the folded AddRec by the non-invariant parts. 2282 for (unsigned i = 0;; ++i) 2283 if (Ops[i] == AddRec) { 2284 Ops[i] = NewRec; 2285 break; 2286 } 2287 return getAddExpr(Ops); 2288 } 2289 2290 // Okay, if there weren't any loop invariants to be folded, check to see if 2291 // there are multiple AddRec's with the same loop induction variable being 2292 // added together. If so, we can fold them. 2293 for (unsigned OtherIdx = Idx+1; 2294 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2295 ++OtherIdx) 2296 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2297 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2298 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2299 AddRec->op_end()); 2300 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2301 ++OtherIdx) 2302 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2303 if (OtherAddRec->getLoop() == AddRecLoop) { 2304 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2305 i != e; ++i) { 2306 if (i >= AddRecOps.size()) { 2307 AddRecOps.append(OtherAddRec->op_begin()+i, 2308 OtherAddRec->op_end()); 2309 break; 2310 } 2311 AddRecOps[i] = getAddExpr(AddRecOps[i], 2312 OtherAddRec->getOperand(i)); 2313 } 2314 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2315 } 2316 // Step size has changed, so we cannot guarantee no self-wraparound. 2317 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2318 return getAddExpr(Ops); 2319 } 2320 2321 // Otherwise couldn't fold anything into this recurrence. Move onto the 2322 // next one. 2323 } 2324 2325 // Okay, it looks like we really DO need an add expr. Check to see if we 2326 // already have one, otherwise create a new one. 2327 FoldingSetNodeID ID; 2328 ID.AddInteger(scAddExpr); 2329 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2330 ID.AddPointer(Ops[i]); 2331 void *IP = nullptr; 2332 SCEVAddExpr *S = 2333 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2334 if (!S) { 2335 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2336 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2337 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2338 O, Ops.size()); 2339 UniqueSCEVs.InsertNode(S, IP); 2340 } 2341 S->setNoWrapFlags(Flags); 2342 return S; 2343 } 2344 2345 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2346 uint64_t k = i*j; 2347 if (j > 1 && k / j != i) Overflow = true; 2348 return k; 2349 } 2350 2351 /// Compute the result of "n choose k", the binomial coefficient. If an 2352 /// intermediate computation overflows, Overflow will be set and the return will 2353 /// be garbage. Overflow is not cleared on absence of overflow. 2354 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2355 // We use the multiplicative formula: 2356 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2357 // At each iteration, we take the n-th term of the numeral and divide by the 2358 // (k-n)th term of the denominator. This division will always produce an 2359 // integral result, and helps reduce the chance of overflow in the 2360 // intermediate computations. However, we can still overflow even when the 2361 // final result would fit. 2362 2363 if (n == 0 || n == k) return 1; 2364 if (k > n) return 0; 2365 2366 if (k > n/2) 2367 k = n-k; 2368 2369 uint64_t r = 1; 2370 for (uint64_t i = 1; i <= k; ++i) { 2371 r = umul_ov(r, n-(i-1), Overflow); 2372 r /= i; 2373 } 2374 return r; 2375 } 2376 2377 /// Determine if any of the operands in this SCEV are a constant or if 2378 /// any of the add or multiply expressions in this SCEV contain a constant. 2379 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2380 SmallVector<const SCEV *, 4> Ops; 2381 Ops.push_back(StartExpr); 2382 while (!Ops.empty()) { 2383 const SCEV *CurrentExpr = Ops.pop_back_val(); 2384 if (isa<SCEVConstant>(*CurrentExpr)) 2385 return true; 2386 2387 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2388 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2389 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2390 } 2391 } 2392 return false; 2393 } 2394 2395 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2396 /// possible. 2397 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2398 SCEV::NoWrapFlags Flags) { 2399 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2400 "only nuw or nsw allowed"); 2401 assert(!Ops.empty() && "Cannot get empty mul!"); 2402 if (Ops.size() == 1) return Ops[0]; 2403 #ifndef NDEBUG 2404 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2405 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2406 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2407 "SCEVMulExpr operand types don't match!"); 2408 #endif 2409 2410 // Sort by complexity, this groups all similar expression types together. 2411 GroupByComplexity(Ops, &LI); 2412 2413 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2414 2415 // If there are any constants, fold them together. 2416 unsigned Idx = 0; 2417 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2418 2419 // C1*(C2+V) -> C1*C2 + C1*V 2420 if (Ops.size() == 2) 2421 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2422 // If any of Add's ops are Adds or Muls with a constant, 2423 // apply this transformation as well. 2424 if (Add->getNumOperands() == 2) 2425 if (containsConstantSomewhere(Add)) 2426 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2427 getMulExpr(LHSC, Add->getOperand(1))); 2428 2429 ++Idx; 2430 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2431 // We found two constants, fold them together! 2432 ConstantInt *Fold = ConstantInt::get(getContext(), 2433 LHSC->getValue()->getValue() * 2434 RHSC->getValue()->getValue()); 2435 Ops[0] = getConstant(Fold); 2436 Ops.erase(Ops.begin()+1); // Erase the folded element 2437 if (Ops.size() == 1) return Ops[0]; 2438 LHSC = cast<SCEVConstant>(Ops[0]); 2439 } 2440 2441 // If we are left with a constant one being multiplied, strip it off. 2442 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2443 Ops.erase(Ops.begin()); 2444 --Idx; 2445 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2446 // If we have a multiply of zero, it will always be zero. 2447 return Ops[0]; 2448 } else if (Ops[0]->isAllOnesValue()) { 2449 // If we have a mul by -1 of an add, try distributing the -1 among the 2450 // add operands. 2451 if (Ops.size() == 2) { 2452 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2453 SmallVector<const SCEV *, 4> NewOps; 2454 bool AnyFolded = false; 2455 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2456 E = Add->op_end(); I != E; ++I) { 2457 const SCEV *Mul = getMulExpr(Ops[0], *I); 2458 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2459 NewOps.push_back(Mul); 2460 } 2461 if (AnyFolded) 2462 return getAddExpr(NewOps); 2463 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2464 // Negation preserves a recurrence's no self-wrap property. 2465 SmallVector<const SCEV *, 4> Operands; 2466 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2467 E = AddRec->op_end(); I != E; ++I) { 2468 Operands.push_back(getMulExpr(Ops[0], *I)); 2469 } 2470 return getAddRecExpr(Operands, AddRec->getLoop(), 2471 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2472 } 2473 } 2474 } 2475 2476 if (Ops.size() == 1) 2477 return Ops[0]; 2478 } 2479 2480 // Skip over the add expression until we get to a multiply. 2481 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2482 ++Idx; 2483 2484 // If there are mul operands inline them all into this expression. 2485 if (Idx < Ops.size()) { 2486 bool DeletedMul = false; 2487 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2488 // If we have an mul, expand the mul operands onto the end of the operands 2489 // list. 2490 Ops.erase(Ops.begin()+Idx); 2491 Ops.append(Mul->op_begin(), Mul->op_end()); 2492 DeletedMul = true; 2493 } 2494 2495 // If we deleted at least one mul, we added operands to the end of the list, 2496 // and they are not necessarily sorted. Recurse to resort and resimplify 2497 // any operands we just acquired. 2498 if (DeletedMul) 2499 return getMulExpr(Ops); 2500 } 2501 2502 // If there are any add recurrences in the operands list, see if any other 2503 // added values are loop invariant. If so, we can fold them into the 2504 // recurrence. 2505 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2506 ++Idx; 2507 2508 // Scan over all recurrences, trying to fold loop invariants into them. 2509 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2510 // Scan all of the other operands to this mul and add them to the vector if 2511 // they are loop invariant w.r.t. the recurrence. 2512 SmallVector<const SCEV *, 8> LIOps; 2513 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2514 const Loop *AddRecLoop = AddRec->getLoop(); 2515 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2516 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2517 LIOps.push_back(Ops[i]); 2518 Ops.erase(Ops.begin()+i); 2519 --i; --e; 2520 } 2521 2522 // If we found some loop invariants, fold them into the recurrence. 2523 if (!LIOps.empty()) { 2524 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2525 SmallVector<const SCEV *, 4> NewOps; 2526 NewOps.reserve(AddRec->getNumOperands()); 2527 const SCEV *Scale = getMulExpr(LIOps); 2528 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2529 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2530 2531 // Build the new addrec. Propagate the NUW and NSW flags if both the 2532 // outer mul and the inner addrec are guaranteed to have no overflow. 2533 // 2534 // No self-wrap cannot be guaranteed after changing the step size, but 2535 // will be inferred if either NUW or NSW is true. 2536 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2537 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2538 2539 // If all of the other operands were loop invariant, we are done. 2540 if (Ops.size() == 1) return NewRec; 2541 2542 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2543 for (unsigned i = 0;; ++i) 2544 if (Ops[i] == AddRec) { 2545 Ops[i] = NewRec; 2546 break; 2547 } 2548 return getMulExpr(Ops); 2549 } 2550 2551 // Okay, if there weren't any loop invariants to be folded, check to see if 2552 // there are multiple AddRec's with the same loop induction variable being 2553 // multiplied together. If so, we can fold them. 2554 2555 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2556 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2557 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2558 // ]]],+,...up to x=2n}. 2559 // Note that the arguments to choose() are always integers with values 2560 // known at compile time, never SCEV objects. 2561 // 2562 // The implementation avoids pointless extra computations when the two 2563 // addrec's are of different length (mathematically, it's equivalent to 2564 // an infinite stream of zeros on the right). 2565 bool OpsModified = false; 2566 for (unsigned OtherIdx = Idx+1; 2567 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2568 ++OtherIdx) { 2569 const SCEVAddRecExpr *OtherAddRec = 2570 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2571 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2572 continue; 2573 2574 bool Overflow = false; 2575 Type *Ty = AddRec->getType(); 2576 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2577 SmallVector<const SCEV*, 7> AddRecOps; 2578 for (int x = 0, xe = AddRec->getNumOperands() + 2579 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2580 const SCEV *Term = getZero(Ty); 2581 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2582 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2583 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2584 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2585 z < ze && !Overflow; ++z) { 2586 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2587 uint64_t Coeff; 2588 if (LargerThan64Bits) 2589 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2590 else 2591 Coeff = Coeff1*Coeff2; 2592 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2593 const SCEV *Term1 = AddRec->getOperand(y-z); 2594 const SCEV *Term2 = OtherAddRec->getOperand(z); 2595 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2596 } 2597 } 2598 AddRecOps.push_back(Term); 2599 } 2600 if (!Overflow) { 2601 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2602 SCEV::FlagAnyWrap); 2603 if (Ops.size() == 2) return NewAddRec; 2604 Ops[Idx] = NewAddRec; 2605 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2606 OpsModified = true; 2607 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2608 if (!AddRec) 2609 break; 2610 } 2611 } 2612 if (OpsModified) 2613 return getMulExpr(Ops); 2614 2615 // Otherwise couldn't fold anything into this recurrence. Move onto the 2616 // next one. 2617 } 2618 2619 // Okay, it looks like we really DO need an mul expr. Check to see if we 2620 // already have one, otherwise create a new one. 2621 FoldingSetNodeID ID; 2622 ID.AddInteger(scMulExpr); 2623 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2624 ID.AddPointer(Ops[i]); 2625 void *IP = nullptr; 2626 SCEVMulExpr *S = 2627 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2628 if (!S) { 2629 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2630 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2631 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2632 O, Ops.size()); 2633 UniqueSCEVs.InsertNode(S, IP); 2634 } 2635 S->setNoWrapFlags(Flags); 2636 return S; 2637 } 2638 2639 /// getUDivExpr - Get a canonical unsigned division expression, or something 2640 /// simpler if possible. 2641 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2642 const SCEV *RHS) { 2643 assert(getEffectiveSCEVType(LHS->getType()) == 2644 getEffectiveSCEVType(RHS->getType()) && 2645 "SCEVUDivExpr operand types don't match!"); 2646 2647 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2648 if (RHSC->getValue()->equalsInt(1)) 2649 return LHS; // X udiv 1 --> x 2650 // If the denominator is zero, the result of the udiv is undefined. Don't 2651 // try to analyze it, because the resolution chosen here may differ from 2652 // the resolution chosen in other parts of the compiler. 2653 if (!RHSC->getValue()->isZero()) { 2654 // Determine if the division can be folded into the operands of 2655 // its operands. 2656 // TODO: Generalize this to non-constants by using known-bits information. 2657 Type *Ty = LHS->getType(); 2658 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2659 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2660 // For non-power-of-two values, effectively round the value up to the 2661 // nearest power of two. 2662 if (!RHSC->getValue()->getValue().isPowerOf2()) 2663 ++MaxShiftAmt; 2664 IntegerType *ExtTy = 2665 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2666 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2667 if (const SCEVConstant *Step = 2668 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2669 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2670 const APInt &StepInt = Step->getValue()->getValue(); 2671 const APInt &DivInt = RHSC->getValue()->getValue(); 2672 if (!StepInt.urem(DivInt) && 2673 getZeroExtendExpr(AR, ExtTy) == 2674 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2675 getZeroExtendExpr(Step, ExtTy), 2676 AR->getLoop(), SCEV::FlagAnyWrap)) { 2677 SmallVector<const SCEV *, 4> Operands; 2678 for (const SCEV *Op : AR->operands()) 2679 Operands.push_back(getUDivExpr(Op, RHS)); 2680 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2681 } 2682 /// Get a canonical UDivExpr for a recurrence. 2683 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2684 // We can currently only fold X%N if X is constant. 2685 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2686 if (StartC && !DivInt.urem(StepInt) && 2687 getZeroExtendExpr(AR, ExtTy) == 2688 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2689 getZeroExtendExpr(Step, ExtTy), 2690 AR->getLoop(), SCEV::FlagAnyWrap)) { 2691 const APInt &StartInt = StartC->getValue()->getValue(); 2692 const APInt &StartRem = StartInt.urem(StepInt); 2693 if (StartRem != 0) 2694 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2695 AR->getLoop(), SCEV::FlagNW); 2696 } 2697 } 2698 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2699 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2700 SmallVector<const SCEV *, 4> Operands; 2701 for (const SCEV *Op : M->operands()) 2702 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2703 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2704 // Find an operand that's safely divisible. 2705 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2706 const SCEV *Op = M->getOperand(i); 2707 const SCEV *Div = getUDivExpr(Op, RHSC); 2708 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2709 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2710 M->op_end()); 2711 Operands[i] = Div; 2712 return getMulExpr(Operands); 2713 } 2714 } 2715 } 2716 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2717 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2718 SmallVector<const SCEV *, 4> Operands; 2719 for (const SCEV *Op : A->operands()) 2720 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2721 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2722 Operands.clear(); 2723 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2724 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2725 if (isa<SCEVUDivExpr>(Op) || 2726 getMulExpr(Op, RHS) != A->getOperand(i)) 2727 break; 2728 Operands.push_back(Op); 2729 } 2730 if (Operands.size() == A->getNumOperands()) 2731 return getAddExpr(Operands); 2732 } 2733 } 2734 2735 // Fold if both operands are constant. 2736 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2737 Constant *LHSCV = LHSC->getValue(); 2738 Constant *RHSCV = RHSC->getValue(); 2739 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2740 RHSCV))); 2741 } 2742 } 2743 } 2744 2745 FoldingSetNodeID ID; 2746 ID.AddInteger(scUDivExpr); 2747 ID.AddPointer(LHS); 2748 ID.AddPointer(RHS); 2749 void *IP = nullptr; 2750 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2751 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2752 LHS, RHS); 2753 UniqueSCEVs.InsertNode(S, IP); 2754 return S; 2755 } 2756 2757 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2758 APInt A = C1->getValue()->getValue().abs(); 2759 APInt B = C2->getValue()->getValue().abs(); 2760 uint32_t ABW = A.getBitWidth(); 2761 uint32_t BBW = B.getBitWidth(); 2762 2763 if (ABW > BBW) 2764 B = B.zext(ABW); 2765 else if (ABW < BBW) 2766 A = A.zext(BBW); 2767 2768 return APIntOps::GreatestCommonDivisor(A, B); 2769 } 2770 2771 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2772 /// something simpler if possible. There is no representation for an exact udiv 2773 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2774 /// We can't do this when it's not exact because the udiv may be clearing bits. 2775 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2776 const SCEV *RHS) { 2777 // TODO: we could try to find factors in all sorts of things, but for now we 2778 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2779 // end of this file for inspiration. 2780 2781 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2782 if (!Mul) 2783 return getUDivExpr(LHS, RHS); 2784 2785 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2786 // If the mulexpr multiplies by a constant, then that constant must be the 2787 // first element of the mulexpr. 2788 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2789 if (LHSCst == RHSCst) { 2790 SmallVector<const SCEV *, 2> Operands; 2791 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2792 return getMulExpr(Operands); 2793 } 2794 2795 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2796 // that there's a factor provided by one of the other terms. We need to 2797 // check. 2798 APInt Factor = gcd(LHSCst, RHSCst); 2799 if (!Factor.isIntN(1)) { 2800 LHSCst = cast<SCEVConstant>( 2801 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2802 RHSCst = cast<SCEVConstant>( 2803 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2804 SmallVector<const SCEV *, 2> Operands; 2805 Operands.push_back(LHSCst); 2806 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2807 LHS = getMulExpr(Operands); 2808 RHS = RHSCst; 2809 Mul = dyn_cast<SCEVMulExpr>(LHS); 2810 if (!Mul) 2811 return getUDivExactExpr(LHS, RHS); 2812 } 2813 } 2814 } 2815 2816 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2817 if (Mul->getOperand(i) == RHS) { 2818 SmallVector<const SCEV *, 2> Operands; 2819 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2820 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2821 return getMulExpr(Operands); 2822 } 2823 } 2824 2825 return getUDivExpr(LHS, RHS); 2826 } 2827 2828 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2829 /// Simplify the expression as much as possible. 2830 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2831 const Loop *L, 2832 SCEV::NoWrapFlags Flags) { 2833 SmallVector<const SCEV *, 4> Operands; 2834 Operands.push_back(Start); 2835 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2836 if (StepChrec->getLoop() == L) { 2837 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2838 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2839 } 2840 2841 Operands.push_back(Step); 2842 return getAddRecExpr(Operands, L, Flags); 2843 } 2844 2845 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2846 /// Simplify the expression as much as possible. 2847 const SCEV * 2848 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2849 const Loop *L, SCEV::NoWrapFlags Flags) { 2850 if (Operands.size() == 1) return Operands[0]; 2851 #ifndef NDEBUG 2852 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2853 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2854 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2855 "SCEVAddRecExpr operand types don't match!"); 2856 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2857 assert(isLoopInvariant(Operands[i], L) && 2858 "SCEVAddRecExpr operand is not loop-invariant!"); 2859 #endif 2860 2861 if (Operands.back()->isZero()) { 2862 Operands.pop_back(); 2863 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2864 } 2865 2866 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2867 // use that information to infer NUW and NSW flags. However, computing a 2868 // BE count requires calling getAddRecExpr, so we may not yet have a 2869 // meaningful BE count at this point (and if we don't, we'd be stuck 2870 // with a SCEVCouldNotCompute as the cached BE count). 2871 2872 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2873 2874 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2875 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2876 const Loop *NestedLoop = NestedAR->getLoop(); 2877 if (L->contains(NestedLoop) 2878 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2879 : (!NestedLoop->contains(L) && 2880 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2881 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2882 NestedAR->op_end()); 2883 Operands[0] = NestedAR->getStart(); 2884 // AddRecs require their operands be loop-invariant with respect to their 2885 // loops. Don't perform this transformation if it would break this 2886 // requirement. 2887 bool AllInvariant = all_of( 2888 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2889 2890 if (AllInvariant) { 2891 // Create a recurrence for the outer loop with the same step size. 2892 // 2893 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2894 // inner recurrence has the same property. 2895 SCEV::NoWrapFlags OuterFlags = 2896 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2897 2898 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2899 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 2900 return isLoopInvariant(Op, NestedLoop); 2901 }); 2902 2903 if (AllInvariant) { 2904 // Ok, both add recurrences are valid after the transformation. 2905 // 2906 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2907 // the outer recurrence has the same property. 2908 SCEV::NoWrapFlags InnerFlags = 2909 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2910 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2911 } 2912 } 2913 // Reset Operands to its original state. 2914 Operands[0] = NestedAR; 2915 } 2916 } 2917 2918 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2919 // already have one, otherwise create a new one. 2920 FoldingSetNodeID ID; 2921 ID.AddInteger(scAddRecExpr); 2922 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2923 ID.AddPointer(Operands[i]); 2924 ID.AddPointer(L); 2925 void *IP = nullptr; 2926 SCEVAddRecExpr *S = 2927 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2928 if (!S) { 2929 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2930 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2931 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2932 O, Operands.size(), L); 2933 UniqueSCEVs.InsertNode(S, IP); 2934 } 2935 S->setNoWrapFlags(Flags); 2936 return S; 2937 } 2938 2939 const SCEV * 2940 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2941 const SmallVectorImpl<const SCEV *> &IndexExprs, 2942 bool InBounds) { 2943 // getSCEV(Base)->getType() has the same address space as Base->getType() 2944 // because SCEV::getType() preserves the address space. 2945 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2946 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2947 // instruction to its SCEV, because the Instruction may be guarded by control 2948 // flow and the no-overflow bits may not be valid for the expression in any 2949 // context. This can be fixed similarly to how these flags are handled for 2950 // adds. 2951 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2952 2953 const SCEV *TotalOffset = getZero(IntPtrTy); 2954 // The address space is unimportant. The first thing we do on CurTy is getting 2955 // its element type. 2956 Type *CurTy = PointerType::getUnqual(PointeeType); 2957 for (const SCEV *IndexExpr : IndexExprs) { 2958 // Compute the (potentially symbolic) offset in bytes for this index. 2959 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2960 // For a struct, add the member offset. 2961 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2962 unsigned FieldNo = Index->getZExtValue(); 2963 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2964 2965 // Add the field offset to the running total offset. 2966 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2967 2968 // Update CurTy to the type of the field at Index. 2969 CurTy = STy->getTypeAtIndex(Index); 2970 } else { 2971 // Update CurTy to its element type. 2972 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2973 // For an array, add the element offset, explicitly scaled. 2974 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2975 // Getelementptr indices are signed. 2976 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2977 2978 // Multiply the index by the element size to compute the element offset. 2979 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2980 2981 // Add the element offset to the running total offset. 2982 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2983 } 2984 } 2985 2986 // Add the total offset from all the GEP indices to the base. 2987 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2988 } 2989 2990 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2991 const SCEV *RHS) { 2992 SmallVector<const SCEV *, 2> Ops; 2993 Ops.push_back(LHS); 2994 Ops.push_back(RHS); 2995 return getSMaxExpr(Ops); 2996 } 2997 2998 const SCEV * 2999 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3000 assert(!Ops.empty() && "Cannot get empty smax!"); 3001 if (Ops.size() == 1) return Ops[0]; 3002 #ifndef NDEBUG 3003 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3004 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3005 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3006 "SCEVSMaxExpr operand types don't match!"); 3007 #endif 3008 3009 // Sort by complexity, this groups all similar expression types together. 3010 GroupByComplexity(Ops, &LI); 3011 3012 // If there are any constants, fold them together. 3013 unsigned Idx = 0; 3014 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3015 ++Idx; 3016 assert(Idx < Ops.size()); 3017 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3018 // We found two constants, fold them together! 3019 ConstantInt *Fold = ConstantInt::get(getContext(), 3020 APIntOps::smax(LHSC->getValue()->getValue(), 3021 RHSC->getValue()->getValue())); 3022 Ops[0] = getConstant(Fold); 3023 Ops.erase(Ops.begin()+1); // Erase the folded element 3024 if (Ops.size() == 1) return Ops[0]; 3025 LHSC = cast<SCEVConstant>(Ops[0]); 3026 } 3027 3028 // If we are left with a constant minimum-int, strip it off. 3029 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3030 Ops.erase(Ops.begin()); 3031 --Idx; 3032 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3033 // If we have an smax with a constant maximum-int, it will always be 3034 // maximum-int. 3035 return Ops[0]; 3036 } 3037 3038 if (Ops.size() == 1) return Ops[0]; 3039 } 3040 3041 // Find the first SMax 3042 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3043 ++Idx; 3044 3045 // Check to see if one of the operands is an SMax. If so, expand its operands 3046 // onto our operand list, and recurse to simplify. 3047 if (Idx < Ops.size()) { 3048 bool DeletedSMax = false; 3049 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3050 Ops.erase(Ops.begin()+Idx); 3051 Ops.append(SMax->op_begin(), SMax->op_end()); 3052 DeletedSMax = true; 3053 } 3054 3055 if (DeletedSMax) 3056 return getSMaxExpr(Ops); 3057 } 3058 3059 // Okay, check to see if the same value occurs in the operand list twice. If 3060 // so, delete one. Since we sorted the list, these values are required to 3061 // be adjacent. 3062 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3063 // X smax Y smax Y --> X smax Y 3064 // X smax Y --> X, if X is always greater than Y 3065 if (Ops[i] == Ops[i+1] || 3066 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3067 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3068 --i; --e; 3069 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3070 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3071 --i; --e; 3072 } 3073 3074 if (Ops.size() == 1) return Ops[0]; 3075 3076 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3077 3078 // Okay, it looks like we really DO need an smax expr. Check to see if we 3079 // already have one, otherwise create a new one. 3080 FoldingSetNodeID ID; 3081 ID.AddInteger(scSMaxExpr); 3082 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3083 ID.AddPointer(Ops[i]); 3084 void *IP = nullptr; 3085 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3086 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3087 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3088 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3089 O, Ops.size()); 3090 UniqueSCEVs.InsertNode(S, IP); 3091 return S; 3092 } 3093 3094 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3095 const SCEV *RHS) { 3096 SmallVector<const SCEV *, 2> Ops; 3097 Ops.push_back(LHS); 3098 Ops.push_back(RHS); 3099 return getUMaxExpr(Ops); 3100 } 3101 3102 const SCEV * 3103 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3104 assert(!Ops.empty() && "Cannot get empty umax!"); 3105 if (Ops.size() == 1) return Ops[0]; 3106 #ifndef NDEBUG 3107 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3108 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3109 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3110 "SCEVUMaxExpr operand types don't match!"); 3111 #endif 3112 3113 // Sort by complexity, this groups all similar expression types together. 3114 GroupByComplexity(Ops, &LI); 3115 3116 // If there are any constants, fold them together. 3117 unsigned Idx = 0; 3118 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3119 ++Idx; 3120 assert(Idx < Ops.size()); 3121 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3122 // We found two constants, fold them together! 3123 ConstantInt *Fold = ConstantInt::get(getContext(), 3124 APIntOps::umax(LHSC->getValue()->getValue(), 3125 RHSC->getValue()->getValue())); 3126 Ops[0] = getConstant(Fold); 3127 Ops.erase(Ops.begin()+1); // Erase the folded element 3128 if (Ops.size() == 1) return Ops[0]; 3129 LHSC = cast<SCEVConstant>(Ops[0]); 3130 } 3131 3132 // If we are left with a constant minimum-int, strip it off. 3133 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3134 Ops.erase(Ops.begin()); 3135 --Idx; 3136 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3137 // If we have an umax with a constant maximum-int, it will always be 3138 // maximum-int. 3139 return Ops[0]; 3140 } 3141 3142 if (Ops.size() == 1) return Ops[0]; 3143 } 3144 3145 // Find the first UMax 3146 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3147 ++Idx; 3148 3149 // Check to see if one of the operands is a UMax. If so, expand its operands 3150 // onto our operand list, and recurse to simplify. 3151 if (Idx < Ops.size()) { 3152 bool DeletedUMax = false; 3153 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3154 Ops.erase(Ops.begin()+Idx); 3155 Ops.append(UMax->op_begin(), UMax->op_end()); 3156 DeletedUMax = true; 3157 } 3158 3159 if (DeletedUMax) 3160 return getUMaxExpr(Ops); 3161 } 3162 3163 // Okay, check to see if the same value occurs in the operand list twice. If 3164 // so, delete one. Since we sorted the list, these values are required to 3165 // be adjacent. 3166 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3167 // X umax Y umax Y --> X umax Y 3168 // X umax Y --> X, if X is always greater than Y 3169 if (Ops[i] == Ops[i+1] || 3170 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3171 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3172 --i; --e; 3173 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3174 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3175 --i; --e; 3176 } 3177 3178 if (Ops.size() == 1) return Ops[0]; 3179 3180 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3181 3182 // Okay, it looks like we really DO need a umax expr. Check to see if we 3183 // already have one, otherwise create a new one. 3184 FoldingSetNodeID ID; 3185 ID.AddInteger(scUMaxExpr); 3186 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3187 ID.AddPointer(Ops[i]); 3188 void *IP = nullptr; 3189 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3190 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3191 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3192 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3193 O, Ops.size()); 3194 UniqueSCEVs.InsertNode(S, IP); 3195 return S; 3196 } 3197 3198 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3199 const SCEV *RHS) { 3200 // ~smax(~x, ~y) == smin(x, y). 3201 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3202 } 3203 3204 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3205 const SCEV *RHS) { 3206 // ~umax(~x, ~y) == umin(x, y) 3207 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3208 } 3209 3210 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3211 // We can bypass creating a target-independent 3212 // constant expression and then folding it back into a ConstantInt. 3213 // This is just a compile-time optimization. 3214 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3215 } 3216 3217 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3218 StructType *STy, 3219 unsigned FieldNo) { 3220 // We can bypass creating a target-independent 3221 // constant expression and then folding it back into a ConstantInt. 3222 // This is just a compile-time optimization. 3223 return getConstant( 3224 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3225 } 3226 3227 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3228 // Don't attempt to do anything other than create a SCEVUnknown object 3229 // here. createSCEV only calls getUnknown after checking for all other 3230 // interesting possibilities, and any other code that calls getUnknown 3231 // is doing so in order to hide a value from SCEV canonicalization. 3232 3233 FoldingSetNodeID ID; 3234 ID.AddInteger(scUnknown); 3235 ID.AddPointer(V); 3236 void *IP = nullptr; 3237 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3238 assert(cast<SCEVUnknown>(S)->getValue() == V && 3239 "Stale SCEVUnknown in uniquing map!"); 3240 return S; 3241 } 3242 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3243 FirstUnknown); 3244 FirstUnknown = cast<SCEVUnknown>(S); 3245 UniqueSCEVs.InsertNode(S, IP); 3246 return S; 3247 } 3248 3249 //===----------------------------------------------------------------------===// 3250 // Basic SCEV Analysis and PHI Idiom Recognition Code 3251 // 3252 3253 /// isSCEVable - Test if values of the given type are analyzable within 3254 /// the SCEV framework. This primarily includes integer types, and it 3255 /// can optionally include pointer types if the ScalarEvolution class 3256 /// has access to target-specific information. 3257 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3258 // Integers and pointers are always SCEVable. 3259 return Ty->isIntegerTy() || Ty->isPointerTy(); 3260 } 3261 3262 /// getTypeSizeInBits - Return the size in bits of the specified type, 3263 /// for which isSCEVable must return true. 3264 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3265 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3266 return getDataLayout().getTypeSizeInBits(Ty); 3267 } 3268 3269 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3270 /// the given type and which represents how SCEV will treat the given 3271 /// type, for which isSCEVable must return true. For pointer types, 3272 /// this is the pointer-sized integer type. 3273 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3274 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3275 3276 if (Ty->isIntegerTy()) 3277 return Ty; 3278 3279 // The only other support type is pointer. 3280 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3281 return getDataLayout().getIntPtrType(Ty); 3282 } 3283 3284 const SCEV *ScalarEvolution::getCouldNotCompute() { 3285 return CouldNotCompute.get(); 3286 } 3287 3288 3289 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3290 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3291 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3292 // is set iff if find such SCEVUnknown. 3293 // 3294 struct FindInvalidSCEVUnknown { 3295 bool FindOne; 3296 FindInvalidSCEVUnknown() { FindOne = false; } 3297 bool follow(const SCEV *S) { 3298 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3299 case scConstant: 3300 return false; 3301 case scUnknown: 3302 if (!cast<SCEVUnknown>(S)->getValue()) 3303 FindOne = true; 3304 return false; 3305 default: 3306 return true; 3307 } 3308 } 3309 bool isDone() const { return FindOne; } 3310 }; 3311 3312 FindInvalidSCEVUnknown F; 3313 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3314 ST.visitAll(S); 3315 3316 return !F.FindOne; 3317 } 3318 3319 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3320 /// expression and create a new one. 3321 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3322 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3323 3324 const SCEV *S = getExistingSCEV(V); 3325 if (S == nullptr) { 3326 S = createSCEV(V); 3327 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3328 } 3329 return S; 3330 } 3331 3332 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3333 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3334 3335 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3336 if (I != ValueExprMap.end()) { 3337 const SCEV *S = I->second; 3338 if (checkValidity(S)) 3339 return S; 3340 ValueExprMap.erase(I); 3341 } 3342 return nullptr; 3343 } 3344 3345 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3346 /// 3347 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3348 SCEV::NoWrapFlags Flags) { 3349 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3350 return getConstant( 3351 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3352 3353 Type *Ty = V->getType(); 3354 Ty = getEffectiveSCEVType(Ty); 3355 return getMulExpr( 3356 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3357 } 3358 3359 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3360 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3361 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3362 return getConstant( 3363 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3364 3365 Type *Ty = V->getType(); 3366 Ty = getEffectiveSCEVType(Ty); 3367 const SCEV *AllOnes = 3368 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3369 return getMinusSCEV(AllOnes, V); 3370 } 3371 3372 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3373 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3374 SCEV::NoWrapFlags Flags) { 3375 // Fast path: X - X --> 0. 3376 if (LHS == RHS) 3377 return getZero(LHS->getType()); 3378 3379 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3380 // makes it so that we cannot make much use of NUW. 3381 auto AddFlags = SCEV::FlagAnyWrap; 3382 const bool RHSIsNotMinSigned = 3383 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3384 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3385 // Let M be the minimum representable signed value. Then (-1)*RHS 3386 // signed-wraps if and only if RHS is M. That can happen even for 3387 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3388 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3389 // (-1)*RHS, we need to prove that RHS != M. 3390 // 3391 // If LHS is non-negative and we know that LHS - RHS does not 3392 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3393 // either by proving that RHS > M or that LHS >= 0. 3394 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3395 AddFlags = SCEV::FlagNSW; 3396 } 3397 } 3398 3399 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3400 // RHS is NSW and LHS >= 0. 3401 // 3402 // The difficulty here is that the NSW flag may have been proven 3403 // relative to a loop that is to be found in a recurrence in LHS and 3404 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3405 // larger scope than intended. 3406 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3407 3408 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3409 } 3410 3411 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3412 /// input value to the specified type. If the type must be extended, it is zero 3413 /// extended. 3414 const SCEV * 3415 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3416 Type *SrcTy = V->getType(); 3417 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3418 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3419 "Cannot truncate or zero extend with non-integer arguments!"); 3420 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3421 return V; // No conversion 3422 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3423 return getTruncateExpr(V, Ty); 3424 return getZeroExtendExpr(V, Ty); 3425 } 3426 3427 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3428 /// input value to the specified type. If the type must be extended, it is sign 3429 /// extended. 3430 const SCEV * 3431 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3432 Type *Ty) { 3433 Type *SrcTy = V->getType(); 3434 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3435 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3436 "Cannot truncate or zero extend with non-integer arguments!"); 3437 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3438 return V; // No conversion 3439 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3440 return getTruncateExpr(V, Ty); 3441 return getSignExtendExpr(V, Ty); 3442 } 3443 3444 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3445 /// input value to the specified type. If the type must be extended, it is zero 3446 /// extended. The conversion must not be narrowing. 3447 const SCEV * 3448 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3449 Type *SrcTy = V->getType(); 3450 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3451 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3452 "Cannot noop or zero extend with non-integer arguments!"); 3453 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3454 "getNoopOrZeroExtend cannot truncate!"); 3455 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3456 return V; // No conversion 3457 return getZeroExtendExpr(V, Ty); 3458 } 3459 3460 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3461 /// input value to the specified type. If the type must be extended, it is sign 3462 /// extended. The conversion must not be narrowing. 3463 const SCEV * 3464 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3465 Type *SrcTy = V->getType(); 3466 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3467 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3468 "Cannot noop or sign extend with non-integer arguments!"); 3469 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3470 "getNoopOrSignExtend cannot truncate!"); 3471 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3472 return V; // No conversion 3473 return getSignExtendExpr(V, Ty); 3474 } 3475 3476 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3477 /// the input value to the specified type. If the type must be extended, 3478 /// it is extended with unspecified bits. The conversion must not be 3479 /// narrowing. 3480 const SCEV * 3481 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3482 Type *SrcTy = V->getType(); 3483 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3484 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3485 "Cannot noop or any extend with non-integer arguments!"); 3486 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3487 "getNoopOrAnyExtend cannot truncate!"); 3488 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3489 return V; // No conversion 3490 return getAnyExtendExpr(V, Ty); 3491 } 3492 3493 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3494 /// input value to the specified type. The conversion must not be widening. 3495 const SCEV * 3496 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3497 Type *SrcTy = V->getType(); 3498 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3499 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3500 "Cannot truncate or noop with non-integer arguments!"); 3501 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3502 "getTruncateOrNoop cannot extend!"); 3503 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3504 return V; // No conversion 3505 return getTruncateExpr(V, Ty); 3506 } 3507 3508 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3509 /// the types using zero-extension, and then perform a umax operation 3510 /// with them. 3511 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3512 const SCEV *RHS) { 3513 const SCEV *PromotedLHS = LHS; 3514 const SCEV *PromotedRHS = RHS; 3515 3516 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3517 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3518 else 3519 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3520 3521 return getUMaxExpr(PromotedLHS, PromotedRHS); 3522 } 3523 3524 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3525 /// the types using zero-extension, and then perform a umin operation 3526 /// with them. 3527 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3528 const SCEV *RHS) { 3529 const SCEV *PromotedLHS = LHS; 3530 const SCEV *PromotedRHS = RHS; 3531 3532 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3533 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3534 else 3535 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3536 3537 return getUMinExpr(PromotedLHS, PromotedRHS); 3538 } 3539 3540 /// getPointerBase - Transitively follow the chain of pointer-type operands 3541 /// until reaching a SCEV that does not have a single pointer operand. This 3542 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3543 /// but corner cases do exist. 3544 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3545 // A pointer operand may evaluate to a nonpointer expression, such as null. 3546 if (!V->getType()->isPointerTy()) 3547 return V; 3548 3549 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3550 return getPointerBase(Cast->getOperand()); 3551 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3552 const SCEV *PtrOp = nullptr; 3553 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3554 I != E; ++I) { 3555 if ((*I)->getType()->isPointerTy()) { 3556 // Cannot find the base of an expression with multiple pointer operands. 3557 if (PtrOp) 3558 return V; 3559 PtrOp = *I; 3560 } 3561 } 3562 if (!PtrOp) 3563 return V; 3564 return getPointerBase(PtrOp); 3565 } 3566 return V; 3567 } 3568 3569 /// PushDefUseChildren - Push users of the given Instruction 3570 /// onto the given Worklist. 3571 static void 3572 PushDefUseChildren(Instruction *I, 3573 SmallVectorImpl<Instruction *> &Worklist) { 3574 // Push the def-use children onto the Worklist stack. 3575 for (User *U : I->users()) 3576 Worklist.push_back(cast<Instruction>(U)); 3577 } 3578 3579 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3580 /// instructions that depend on the given instruction and removes them from 3581 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3582 /// resolution. 3583 void 3584 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3585 SmallVector<Instruction *, 16> Worklist; 3586 PushDefUseChildren(PN, Worklist); 3587 3588 SmallPtrSet<Instruction *, 8> Visited; 3589 Visited.insert(PN); 3590 while (!Worklist.empty()) { 3591 Instruction *I = Worklist.pop_back_val(); 3592 if (!Visited.insert(I).second) 3593 continue; 3594 3595 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3596 if (It != ValueExprMap.end()) { 3597 const SCEV *Old = It->second; 3598 3599 // Short-circuit the def-use traversal if the symbolic name 3600 // ceases to appear in expressions. 3601 if (Old != SymName && !hasOperand(Old, SymName)) 3602 continue; 3603 3604 // SCEVUnknown for a PHI either means that it has an unrecognized 3605 // structure, it's a PHI that's in the progress of being computed 3606 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3607 // additional loop trip count information isn't going to change anything. 3608 // In the second case, createNodeForPHI will perform the necessary 3609 // updates on its own when it gets to that point. In the third, we do 3610 // want to forget the SCEVUnknown. 3611 if (!isa<PHINode>(I) || 3612 !isa<SCEVUnknown>(Old) || 3613 (I != PN && Old == SymName)) { 3614 forgetMemoizedResults(Old); 3615 ValueExprMap.erase(It); 3616 } 3617 } 3618 3619 PushDefUseChildren(I, Worklist); 3620 } 3621 } 3622 3623 namespace { 3624 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3625 public: 3626 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 3627 ScalarEvolution &SE) { 3628 SCEVInitRewriter Rewriter(L, SE); 3629 const SCEV *Result = Rewriter.visit(Scev); 3630 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3631 } 3632 3633 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3634 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3635 3636 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3637 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3638 Valid = false; 3639 return Expr; 3640 } 3641 3642 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3643 // Only allow AddRecExprs for this loop. 3644 if (Expr->getLoop() == L) 3645 return Expr->getStart(); 3646 Valid = false; 3647 return Expr; 3648 } 3649 3650 bool isValid() { return Valid; } 3651 3652 private: 3653 const Loop *L; 3654 bool Valid; 3655 }; 3656 3657 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3658 public: 3659 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 3660 ScalarEvolution &SE) { 3661 SCEVShiftRewriter Rewriter(L, SE); 3662 const SCEV *Result = Rewriter.visit(Scev); 3663 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3664 } 3665 3666 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3667 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3668 3669 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3670 // Only allow AddRecExprs for this loop. 3671 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3672 Valid = false; 3673 return Expr; 3674 } 3675 3676 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3677 if (Expr->getLoop() == L && Expr->isAffine()) 3678 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3679 Valid = false; 3680 return Expr; 3681 } 3682 bool isValid() { return Valid; } 3683 3684 private: 3685 const Loop *L; 3686 bool Valid; 3687 }; 3688 } // end anonymous namespace 3689 3690 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3691 const Loop *L = LI.getLoopFor(PN->getParent()); 3692 if (!L || L->getHeader() != PN->getParent()) 3693 return nullptr; 3694 3695 // The loop may have multiple entrances or multiple exits; we can analyze 3696 // this phi as an addrec if it has a unique entry value and a unique 3697 // backedge value. 3698 Value *BEValueV = nullptr, *StartValueV = nullptr; 3699 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3700 Value *V = PN->getIncomingValue(i); 3701 if (L->contains(PN->getIncomingBlock(i))) { 3702 if (!BEValueV) { 3703 BEValueV = V; 3704 } else if (BEValueV != V) { 3705 BEValueV = nullptr; 3706 break; 3707 } 3708 } else if (!StartValueV) { 3709 StartValueV = V; 3710 } else if (StartValueV != V) { 3711 StartValueV = nullptr; 3712 break; 3713 } 3714 } 3715 if (BEValueV && StartValueV) { 3716 // While we are analyzing this PHI node, handle its value symbolically. 3717 const SCEV *SymbolicName = getUnknown(PN); 3718 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3719 "PHI node already processed?"); 3720 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3721 3722 // Using this symbolic name for the PHI, analyze the value coming around 3723 // the back-edge. 3724 const SCEV *BEValue = getSCEV(BEValueV); 3725 3726 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3727 // has a special value for the first iteration of the loop. 3728 3729 // If the value coming around the backedge is an add with the symbolic 3730 // value we just inserted, then we found a simple induction variable! 3731 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3732 // If there is a single occurrence of the symbolic value, replace it 3733 // with a recurrence. 3734 unsigned FoundIndex = Add->getNumOperands(); 3735 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3736 if (Add->getOperand(i) == SymbolicName) 3737 if (FoundIndex == e) { 3738 FoundIndex = i; 3739 break; 3740 } 3741 3742 if (FoundIndex != Add->getNumOperands()) { 3743 // Create an add with everything but the specified operand. 3744 SmallVector<const SCEV *, 8> Ops; 3745 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3746 if (i != FoundIndex) 3747 Ops.push_back(Add->getOperand(i)); 3748 const SCEV *Accum = getAddExpr(Ops); 3749 3750 // This is not a valid addrec if the step amount is varying each 3751 // loop iteration, but is not itself an addrec in this loop. 3752 if (isLoopInvariant(Accum, L) || 3753 (isa<SCEVAddRecExpr>(Accum) && 3754 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3755 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3756 3757 // If the increment doesn't overflow, then neither the addrec nor 3758 // the post-increment will overflow. 3759 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3760 if (OBO->getOperand(0) == PN) { 3761 if (OBO->hasNoUnsignedWrap()) 3762 Flags = setFlags(Flags, SCEV::FlagNUW); 3763 if (OBO->hasNoSignedWrap()) 3764 Flags = setFlags(Flags, SCEV::FlagNSW); 3765 } 3766 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3767 // If the increment is an inbounds GEP, then we know the address 3768 // space cannot be wrapped around. We cannot make any guarantee 3769 // about signed or unsigned overflow because pointers are 3770 // unsigned but we may have a negative index from the base 3771 // pointer. We can guarantee that no unsigned wrap occurs if the 3772 // indices form a positive value. 3773 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3774 Flags = setFlags(Flags, SCEV::FlagNW); 3775 3776 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3777 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3778 Flags = setFlags(Flags, SCEV::FlagNUW); 3779 } 3780 3781 // We cannot transfer nuw and nsw flags from subtraction 3782 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3783 // for instance. 3784 } 3785 3786 const SCEV *StartVal = getSCEV(StartValueV); 3787 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3788 3789 // Since the no-wrap flags are on the increment, they apply to the 3790 // post-incremented value as well. 3791 if (isLoopInvariant(Accum, L)) 3792 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3793 3794 // Okay, for the entire analysis of this edge we assumed the PHI 3795 // to be symbolic. We now need to go back and purge all of the 3796 // entries for the scalars that use the symbolic expression. 3797 ForgetSymbolicName(PN, SymbolicName); 3798 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3799 return PHISCEV; 3800 } 3801 } 3802 } else { 3803 // Otherwise, this could be a loop like this: 3804 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3805 // In this case, j = {1,+,1} and BEValue is j. 3806 // Because the other in-value of i (0) fits the evolution of BEValue 3807 // i really is an addrec evolution. 3808 // 3809 // We can generalize this saying that i is the shifted value of BEValue 3810 // by one iteration: 3811 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 3812 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 3813 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 3814 if (Shifted != getCouldNotCompute() && 3815 Start != getCouldNotCompute()) { 3816 const SCEV *StartVal = getSCEV(StartValueV); 3817 if (Start == StartVal) { 3818 // Okay, for the entire analysis of this edge we assumed the PHI 3819 // to be symbolic. We now need to go back and purge all of the 3820 // entries for the scalars that use the symbolic expression. 3821 ForgetSymbolicName(PN, SymbolicName); 3822 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 3823 return Shifted; 3824 } 3825 } 3826 } 3827 } 3828 3829 return nullptr; 3830 } 3831 3832 // Checks if the SCEV S is available at BB. S is considered available at BB 3833 // if S can be materialized at BB without introducing a fault. 3834 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3835 BasicBlock *BB) { 3836 struct CheckAvailable { 3837 bool TraversalDone = false; 3838 bool Available = true; 3839 3840 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3841 BasicBlock *BB = nullptr; 3842 DominatorTree &DT; 3843 3844 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3845 : L(L), BB(BB), DT(DT) {} 3846 3847 bool setUnavailable() { 3848 TraversalDone = true; 3849 Available = false; 3850 return false; 3851 } 3852 3853 bool follow(const SCEV *S) { 3854 switch (S->getSCEVType()) { 3855 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3856 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3857 // These expressions are available if their operand(s) is/are. 3858 return true; 3859 3860 case scAddRecExpr: { 3861 // We allow add recurrences that are on the loop BB is in, or some 3862 // outer loop. This guarantees availability because the value of the 3863 // add recurrence at BB is simply the "current" value of the induction 3864 // variable. We can relax this in the future; for instance an add 3865 // recurrence on a sibling dominating loop is also available at BB. 3866 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3867 if (L && (ARLoop == L || ARLoop->contains(L))) 3868 return true; 3869 3870 return setUnavailable(); 3871 } 3872 3873 case scUnknown: { 3874 // For SCEVUnknown, we check for simple dominance. 3875 const auto *SU = cast<SCEVUnknown>(S); 3876 Value *V = SU->getValue(); 3877 3878 if (isa<Argument>(V)) 3879 return false; 3880 3881 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3882 return false; 3883 3884 return setUnavailable(); 3885 } 3886 3887 case scUDivExpr: 3888 case scCouldNotCompute: 3889 // We do not try to smart about these at all. 3890 return setUnavailable(); 3891 } 3892 llvm_unreachable("switch should be fully covered!"); 3893 } 3894 3895 bool isDone() { return TraversalDone; } 3896 }; 3897 3898 CheckAvailable CA(L, BB, DT); 3899 SCEVTraversal<CheckAvailable> ST(CA); 3900 3901 ST.visitAll(S); 3902 return CA.Available; 3903 } 3904 3905 // Try to match a control flow sequence that branches out at BI and merges back 3906 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3907 // match. 3908 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3909 Value *&C, Value *&LHS, Value *&RHS) { 3910 C = BI->getCondition(); 3911 3912 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3913 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3914 3915 if (!LeftEdge.isSingleEdge()) 3916 return false; 3917 3918 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3919 3920 Use &LeftUse = Merge->getOperandUse(0); 3921 Use &RightUse = Merge->getOperandUse(1); 3922 3923 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3924 LHS = LeftUse; 3925 RHS = RightUse; 3926 return true; 3927 } 3928 3929 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3930 LHS = RightUse; 3931 RHS = LeftUse; 3932 return true; 3933 } 3934 3935 return false; 3936 } 3937 3938 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3939 if (PN->getNumIncomingValues() == 2) { 3940 const Loop *L = LI.getLoopFor(PN->getParent()); 3941 3942 // We don't want to break LCSSA, even in a SCEV expression tree. 3943 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 3944 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 3945 return nullptr; 3946 3947 // Try to match 3948 // 3949 // br %cond, label %left, label %right 3950 // left: 3951 // br label %merge 3952 // right: 3953 // br label %merge 3954 // merge: 3955 // V = phi [ %x, %left ], [ %y, %right ] 3956 // 3957 // as "select %cond, %x, %y" 3958 3959 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3960 assert(IDom && "At least the entry block should dominate PN"); 3961 3962 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3963 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3964 3965 if (BI && BI->isConditional() && 3966 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3967 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3968 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3969 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3970 } 3971 3972 return nullptr; 3973 } 3974 3975 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3976 if (const SCEV *S = createAddRecFromPHI(PN)) 3977 return S; 3978 3979 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3980 return S; 3981 3982 // If the PHI has a single incoming value, follow that value, unless the 3983 // PHI's incoming blocks are in a different loop, in which case doing so 3984 // risks breaking LCSSA form. Instcombine would normally zap these, but 3985 // it doesn't have DominatorTree information, so it may miss cases. 3986 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 3987 if (LI.replacementPreservesLCSSAForm(PN, V)) 3988 return getSCEV(V); 3989 3990 // If it's not a loop phi, we can't handle it yet. 3991 return getUnknown(PN); 3992 } 3993 3994 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3995 Value *Cond, 3996 Value *TrueVal, 3997 Value *FalseVal) { 3998 // Handle "constant" branch or select. This can occur for instance when a 3999 // loop pass transforms an inner loop and moves on to process the outer loop. 4000 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4001 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4002 4003 // Try to match some simple smax or umax patterns. 4004 auto *ICI = dyn_cast<ICmpInst>(Cond); 4005 if (!ICI) 4006 return getUnknown(I); 4007 4008 Value *LHS = ICI->getOperand(0); 4009 Value *RHS = ICI->getOperand(1); 4010 4011 switch (ICI->getPredicate()) { 4012 case ICmpInst::ICMP_SLT: 4013 case ICmpInst::ICMP_SLE: 4014 std::swap(LHS, RHS); 4015 // fall through 4016 case ICmpInst::ICMP_SGT: 4017 case ICmpInst::ICMP_SGE: 4018 // a >s b ? a+x : b+x -> smax(a, b)+x 4019 // a >s b ? b+x : a+x -> smin(a, b)+x 4020 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4021 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4022 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4023 const SCEV *LA = getSCEV(TrueVal); 4024 const SCEV *RA = getSCEV(FalseVal); 4025 const SCEV *LDiff = getMinusSCEV(LA, LS); 4026 const SCEV *RDiff = getMinusSCEV(RA, RS); 4027 if (LDiff == RDiff) 4028 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4029 LDiff = getMinusSCEV(LA, RS); 4030 RDiff = getMinusSCEV(RA, LS); 4031 if (LDiff == RDiff) 4032 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4033 } 4034 break; 4035 case ICmpInst::ICMP_ULT: 4036 case ICmpInst::ICMP_ULE: 4037 std::swap(LHS, RHS); 4038 // fall through 4039 case ICmpInst::ICMP_UGT: 4040 case ICmpInst::ICMP_UGE: 4041 // a >u b ? a+x : b+x -> umax(a, b)+x 4042 // a >u b ? b+x : a+x -> umin(a, b)+x 4043 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4044 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4045 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4046 const SCEV *LA = getSCEV(TrueVal); 4047 const SCEV *RA = getSCEV(FalseVal); 4048 const SCEV *LDiff = getMinusSCEV(LA, LS); 4049 const SCEV *RDiff = getMinusSCEV(RA, RS); 4050 if (LDiff == RDiff) 4051 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4052 LDiff = getMinusSCEV(LA, RS); 4053 RDiff = getMinusSCEV(RA, LS); 4054 if (LDiff == RDiff) 4055 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4056 } 4057 break; 4058 case ICmpInst::ICMP_NE: 4059 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4060 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4061 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4062 const SCEV *One = getOne(I->getType()); 4063 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4064 const SCEV *LA = getSCEV(TrueVal); 4065 const SCEV *RA = getSCEV(FalseVal); 4066 const SCEV *LDiff = getMinusSCEV(LA, LS); 4067 const SCEV *RDiff = getMinusSCEV(RA, One); 4068 if (LDiff == RDiff) 4069 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4070 } 4071 break; 4072 case ICmpInst::ICMP_EQ: 4073 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4074 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4075 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4076 const SCEV *One = getOne(I->getType()); 4077 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4078 const SCEV *LA = getSCEV(TrueVal); 4079 const SCEV *RA = getSCEV(FalseVal); 4080 const SCEV *LDiff = getMinusSCEV(LA, One); 4081 const SCEV *RDiff = getMinusSCEV(RA, LS); 4082 if (LDiff == RDiff) 4083 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4084 } 4085 break; 4086 default: 4087 break; 4088 } 4089 4090 return getUnknown(I); 4091 } 4092 4093 /// createNodeForGEP - Expand GEP instructions into add and multiply 4094 /// operations. This allows them to be analyzed by regular SCEV code. 4095 /// 4096 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4097 Value *Base = GEP->getOperand(0); 4098 // Don't attempt to analyze GEPs over unsized objects. 4099 if (!Base->getType()->getPointerElementType()->isSized()) 4100 return getUnknown(GEP); 4101 4102 SmallVector<const SCEV *, 4> IndexExprs; 4103 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4104 IndexExprs.push_back(getSCEV(*Index)); 4105 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 4106 GEP->isInBounds()); 4107 } 4108 4109 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4110 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4111 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4112 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4113 uint32_t 4114 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4115 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4116 return C->getValue()->getValue().countTrailingZeros(); 4117 4118 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4119 return std::min(GetMinTrailingZeros(T->getOperand()), 4120 (uint32_t)getTypeSizeInBits(T->getType())); 4121 4122 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4123 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4124 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4125 getTypeSizeInBits(E->getType()) : OpRes; 4126 } 4127 4128 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4129 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4130 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4131 getTypeSizeInBits(E->getType()) : OpRes; 4132 } 4133 4134 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4135 // The result is the min of all operands results. 4136 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4137 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4138 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4139 return MinOpRes; 4140 } 4141 4142 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4143 // The result is the sum of all operands results. 4144 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4145 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4146 for (unsigned i = 1, e = M->getNumOperands(); 4147 SumOpRes != BitWidth && i != e; ++i) 4148 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4149 BitWidth); 4150 return SumOpRes; 4151 } 4152 4153 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4154 // The result is the min of all operands results. 4155 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4156 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4157 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4158 return MinOpRes; 4159 } 4160 4161 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4162 // The result is the min of all operands results. 4163 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4164 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4165 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4166 return MinOpRes; 4167 } 4168 4169 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4170 // The result is the min of all operands results. 4171 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4172 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4173 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4174 return MinOpRes; 4175 } 4176 4177 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4178 // For a SCEVUnknown, ask ValueTracking. 4179 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4180 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4181 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4182 nullptr, &DT); 4183 return Zeros.countTrailingOnes(); 4184 } 4185 4186 // SCEVUDivExpr 4187 return 0; 4188 } 4189 4190 /// GetRangeFromMetadata - Helper method to assign a range to V from 4191 /// metadata present in the IR. 4192 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4193 if (Instruction *I = dyn_cast<Instruction>(V)) 4194 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4195 return getConstantRangeFromMetadata(*MD); 4196 4197 return None; 4198 } 4199 4200 /// getRange - Determine the range for a particular SCEV. If SignHint is 4201 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4202 /// with a "cleaner" unsigned (resp. signed) representation. 4203 /// 4204 ConstantRange 4205 ScalarEvolution::getRange(const SCEV *S, 4206 ScalarEvolution::RangeSignHint SignHint) { 4207 DenseMap<const SCEV *, ConstantRange> &Cache = 4208 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4209 : SignedRanges; 4210 4211 // See if we've computed this range already. 4212 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4213 if (I != Cache.end()) 4214 return I->second; 4215 4216 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4217 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 4218 4219 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4220 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4221 4222 // If the value has known zeros, the maximum value will have those known zeros 4223 // as well. 4224 uint32_t TZ = GetMinTrailingZeros(S); 4225 if (TZ != 0) { 4226 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4227 ConservativeResult = 4228 ConstantRange(APInt::getMinValue(BitWidth), 4229 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4230 else 4231 ConservativeResult = ConstantRange( 4232 APInt::getSignedMinValue(BitWidth), 4233 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4234 } 4235 4236 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4237 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4238 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4239 X = X.add(getRange(Add->getOperand(i), SignHint)); 4240 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4241 } 4242 4243 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4244 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4245 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4246 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4247 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4248 } 4249 4250 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4251 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4252 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4253 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4254 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4255 } 4256 4257 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4258 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4259 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4260 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4261 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4262 } 4263 4264 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4265 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4266 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4267 return setRange(UDiv, SignHint, 4268 ConservativeResult.intersectWith(X.udiv(Y))); 4269 } 4270 4271 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4272 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4273 return setRange(ZExt, SignHint, 4274 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4275 } 4276 4277 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4278 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4279 return setRange(SExt, SignHint, 4280 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4281 } 4282 4283 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4284 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4285 return setRange(Trunc, SignHint, 4286 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4287 } 4288 4289 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4290 // If there's no unsigned wrap, the value will never be less than its 4291 // initial value. 4292 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4293 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4294 if (!C->getValue()->isZero()) 4295 ConservativeResult = 4296 ConservativeResult.intersectWith( 4297 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 4298 4299 // If there's no signed wrap, and all the operands have the same sign or 4300 // zero, the value won't ever change sign. 4301 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4302 bool AllNonNeg = true; 4303 bool AllNonPos = true; 4304 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4305 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4306 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4307 } 4308 if (AllNonNeg) 4309 ConservativeResult = ConservativeResult.intersectWith( 4310 ConstantRange(APInt(BitWidth, 0), 4311 APInt::getSignedMinValue(BitWidth))); 4312 else if (AllNonPos) 4313 ConservativeResult = ConservativeResult.intersectWith( 4314 ConstantRange(APInt::getSignedMinValue(BitWidth), 4315 APInt(BitWidth, 1))); 4316 } 4317 4318 // TODO: non-affine addrec 4319 if (AddRec->isAffine()) { 4320 Type *Ty = AddRec->getType(); 4321 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4322 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4323 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4324 4325 // Check for overflow. This must be done with ConstantRange arithmetic 4326 // because we could be called from within the ScalarEvolution overflow 4327 // checking code. 4328 4329 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4330 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4331 ConstantRange ZExtMaxBECountRange = 4332 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4333 4334 const SCEV *Start = AddRec->getStart(); 4335 const SCEV *Step = AddRec->getStepRecurrence(*this); 4336 ConstantRange StepSRange = getSignedRange(Step); 4337 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4338 4339 ConstantRange StartURange = getUnsignedRange(Start); 4340 ConstantRange EndURange = 4341 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4342 4343 // Check for unsigned overflow. 4344 ConstantRange ZExtStartURange = 4345 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4346 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4347 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4348 ZExtEndURange) { 4349 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4350 EndURange.getUnsignedMin()); 4351 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4352 EndURange.getUnsignedMax()); 4353 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4354 if (!IsFullRange) 4355 ConservativeResult = 4356 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4357 } 4358 4359 ConstantRange StartSRange = getSignedRange(Start); 4360 ConstantRange EndSRange = 4361 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4362 4363 // Check for signed overflow. This must be done with ConstantRange 4364 // arithmetic because we could be called from within the ScalarEvolution 4365 // overflow checking code. 4366 ConstantRange SExtStartSRange = 4367 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4368 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4369 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4370 SExtEndSRange) { 4371 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4372 EndSRange.getSignedMin()); 4373 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4374 EndSRange.getSignedMax()); 4375 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4376 if (!IsFullRange) 4377 ConservativeResult = 4378 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4379 } 4380 } 4381 } 4382 4383 return setRange(AddRec, SignHint, ConservativeResult); 4384 } 4385 4386 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4387 // Check if the IR explicitly contains !range metadata. 4388 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4389 if (MDRange.hasValue()) 4390 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4391 4392 // Split here to avoid paying the compile-time cost of calling both 4393 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4394 // if needed. 4395 const DataLayout &DL = getDataLayout(); 4396 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4397 // For a SCEVUnknown, ask ValueTracking. 4398 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4399 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4400 if (Ones != ~Zeros + 1) 4401 ConservativeResult = 4402 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4403 } else { 4404 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4405 "generalize as needed!"); 4406 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4407 if (NS > 1) 4408 ConservativeResult = ConservativeResult.intersectWith( 4409 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4410 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4411 } 4412 4413 return setRange(U, SignHint, ConservativeResult); 4414 } 4415 4416 return setRange(S, SignHint, ConservativeResult); 4417 } 4418 4419 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4420 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4421 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4422 4423 // Return early if there are no flags to propagate to the SCEV. 4424 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4425 if (BinOp->hasNoUnsignedWrap()) 4426 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4427 if (BinOp->hasNoSignedWrap()) 4428 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4429 if (Flags == SCEV::FlagAnyWrap) { 4430 return SCEV::FlagAnyWrap; 4431 } 4432 4433 // Here we check that BinOp is in the header of the innermost loop 4434 // containing BinOp, since we only deal with instructions in the loop 4435 // header. The actual loop we need to check later will come from an add 4436 // recurrence, but getting that requires computing the SCEV of the operands, 4437 // which can be expensive. This check we can do cheaply to rule out some 4438 // cases early. 4439 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4440 if (innermostContainingLoop == nullptr || 4441 innermostContainingLoop->getHeader() != BinOp->getParent()) 4442 return SCEV::FlagAnyWrap; 4443 4444 // Only proceed if we can prove that BinOp does not yield poison. 4445 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4446 4447 // At this point we know that if V is executed, then it does not wrap 4448 // according to at least one of NSW or NUW. If V is not executed, then we do 4449 // not know if the calculation that V represents would wrap. Multiple 4450 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4451 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4452 // derived from other instructions that map to the same SCEV. We cannot make 4453 // that guarantee for cases where V is not executed. So we need to find the 4454 // loop that V is considered in relation to and prove that V is executed for 4455 // every iteration of that loop. That implies that the value that V 4456 // calculates does not wrap anywhere in the loop, so then we can apply the 4457 // flags to the SCEV. 4458 // 4459 // We check isLoopInvariant to disambiguate in case we are adding two 4460 // recurrences from different loops, so that we know which loop to prove 4461 // that V is executed in. 4462 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4463 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4464 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4465 const int OtherOpIndex = 1 - OpIndex; 4466 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4467 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4468 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4469 return Flags; 4470 } 4471 } 4472 return SCEV::FlagAnyWrap; 4473 } 4474 4475 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4476 /// the expression. 4477 /// 4478 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4479 if (!isSCEVable(V->getType())) 4480 return getUnknown(V); 4481 4482 unsigned Opcode = Instruction::UserOp1; 4483 if (Instruction *I = dyn_cast<Instruction>(V)) { 4484 Opcode = I->getOpcode(); 4485 4486 // Don't attempt to analyze instructions in blocks that aren't 4487 // reachable. Such instructions don't matter, and they aren't required 4488 // to obey basic rules for definitions dominating uses which this 4489 // analysis depends on. 4490 if (!DT.isReachableFromEntry(I->getParent())) 4491 return getUnknown(V); 4492 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4493 Opcode = CE->getOpcode(); 4494 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4495 return getConstant(CI); 4496 else if (isa<ConstantPointerNull>(V)) 4497 return getZero(V->getType()); 4498 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4499 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4500 else 4501 return getUnknown(V); 4502 4503 Operator *U = cast<Operator>(V); 4504 switch (Opcode) { 4505 case Instruction::Add: { 4506 // The simple thing to do would be to just call getSCEV on both operands 4507 // and call getAddExpr with the result. However if we're looking at a 4508 // bunch of things all added together, this can be quite inefficient, 4509 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4510 // Instead, gather up all the operands and make a single getAddExpr call. 4511 // LLVM IR canonical form means we need only traverse the left operands. 4512 SmallVector<const SCEV *, 4> AddOps; 4513 for (Value *Op = U;; Op = U->getOperand(0)) { 4514 U = dyn_cast<Operator>(Op); 4515 unsigned Opcode = U ? U->getOpcode() : 0; 4516 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4517 assert(Op != V && "V should be an add"); 4518 AddOps.push_back(getSCEV(Op)); 4519 break; 4520 } 4521 4522 if (auto *OpSCEV = getExistingSCEV(U)) { 4523 AddOps.push_back(OpSCEV); 4524 break; 4525 } 4526 4527 // If a NUW or NSW flag can be applied to the SCEV for this 4528 // addition, then compute the SCEV for this addition by itself 4529 // with a separate call to getAddExpr. We need to do that 4530 // instead of pushing the operands of the addition onto AddOps, 4531 // since the flags are only known to apply to this particular 4532 // addition - they may not apply to other additions that can be 4533 // formed with operands from AddOps. 4534 const SCEV *RHS = getSCEV(U->getOperand(1)); 4535 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4536 if (Flags != SCEV::FlagAnyWrap) { 4537 const SCEV *LHS = getSCEV(U->getOperand(0)); 4538 if (Opcode == Instruction::Sub) 4539 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4540 else 4541 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4542 break; 4543 } 4544 4545 if (Opcode == Instruction::Sub) 4546 AddOps.push_back(getNegativeSCEV(RHS)); 4547 else 4548 AddOps.push_back(RHS); 4549 } 4550 return getAddExpr(AddOps); 4551 } 4552 4553 case Instruction::Mul: { 4554 SmallVector<const SCEV *, 4> MulOps; 4555 for (Value *Op = U;; Op = U->getOperand(0)) { 4556 U = dyn_cast<Operator>(Op); 4557 if (!U || U->getOpcode() != Instruction::Mul) { 4558 assert(Op != V && "V should be a mul"); 4559 MulOps.push_back(getSCEV(Op)); 4560 break; 4561 } 4562 4563 if (auto *OpSCEV = getExistingSCEV(U)) { 4564 MulOps.push_back(OpSCEV); 4565 break; 4566 } 4567 4568 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4569 if (Flags != SCEV::FlagAnyWrap) { 4570 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4571 getSCEV(U->getOperand(1)), Flags)); 4572 break; 4573 } 4574 4575 MulOps.push_back(getSCEV(U->getOperand(1))); 4576 } 4577 return getMulExpr(MulOps); 4578 } 4579 case Instruction::UDiv: 4580 return getUDivExpr(getSCEV(U->getOperand(0)), 4581 getSCEV(U->getOperand(1))); 4582 case Instruction::Sub: 4583 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4584 getNoWrapFlagsFromUB(U)); 4585 case Instruction::And: 4586 // For an expression like x&255 that merely masks off the high bits, 4587 // use zext(trunc(x)) as the SCEV expression. 4588 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4589 if (CI->isNullValue()) 4590 return getSCEV(U->getOperand(1)); 4591 if (CI->isAllOnesValue()) 4592 return getSCEV(U->getOperand(0)); 4593 const APInt &A = CI->getValue(); 4594 4595 // Instcombine's ShrinkDemandedConstant may strip bits out of 4596 // constants, obscuring what would otherwise be a low-bits mask. 4597 // Use computeKnownBits to compute what ShrinkDemandedConstant 4598 // knew about to reconstruct a low-bits mask value. 4599 unsigned LZ = A.countLeadingZeros(); 4600 unsigned TZ = A.countTrailingZeros(); 4601 unsigned BitWidth = A.getBitWidth(); 4602 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4603 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(), 4604 0, &AC, nullptr, &DT); 4605 4606 APInt EffectiveMask = 4607 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4608 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4609 const SCEV *MulCount = getConstant( 4610 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4611 return getMulExpr( 4612 getZeroExtendExpr( 4613 getTruncateExpr( 4614 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4615 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4616 U->getType()), 4617 MulCount); 4618 } 4619 } 4620 break; 4621 4622 case Instruction::Or: 4623 // If the RHS of the Or is a constant, we may have something like: 4624 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4625 // optimizations will transparently handle this case. 4626 // 4627 // In order for this transformation to be safe, the LHS must be of the 4628 // form X*(2^n) and the Or constant must be less than 2^n. 4629 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4630 const SCEV *LHS = getSCEV(U->getOperand(0)); 4631 const APInt &CIVal = CI->getValue(); 4632 if (GetMinTrailingZeros(LHS) >= 4633 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4634 // Build a plain add SCEV. 4635 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4636 // If the LHS of the add was an addrec and it has no-wrap flags, 4637 // transfer the no-wrap flags, since an or won't introduce a wrap. 4638 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4639 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4640 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4641 OldAR->getNoWrapFlags()); 4642 } 4643 return S; 4644 } 4645 } 4646 break; 4647 case Instruction::Xor: 4648 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4649 // If the RHS of the xor is a signbit, then this is just an add. 4650 // Instcombine turns add of signbit into xor as a strength reduction step. 4651 if (CI->getValue().isSignBit()) 4652 return getAddExpr(getSCEV(U->getOperand(0)), 4653 getSCEV(U->getOperand(1))); 4654 4655 // If the RHS of xor is -1, then this is a not operation. 4656 if (CI->isAllOnesValue()) 4657 return getNotSCEV(getSCEV(U->getOperand(0))); 4658 4659 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4660 // This is a variant of the check for xor with -1, and it handles 4661 // the case where instcombine has trimmed non-demanded bits out 4662 // of an xor with -1. 4663 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4664 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4665 if (BO->getOpcode() == Instruction::And && 4666 LCI->getValue() == CI->getValue()) 4667 if (const SCEVZeroExtendExpr *Z = 4668 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4669 Type *UTy = U->getType(); 4670 const SCEV *Z0 = Z->getOperand(); 4671 Type *Z0Ty = Z0->getType(); 4672 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4673 4674 // If C is a low-bits mask, the zero extend is serving to 4675 // mask off the high bits. Complement the operand and 4676 // re-apply the zext. 4677 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4678 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4679 4680 // If C is a single bit, it may be in the sign-bit position 4681 // before the zero-extend. In this case, represent the xor 4682 // using an add, which is equivalent, and re-apply the zext. 4683 APInt Trunc = CI->getValue().trunc(Z0TySize); 4684 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4685 Trunc.isSignBit()) 4686 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4687 UTy); 4688 } 4689 } 4690 break; 4691 4692 case Instruction::Shl: 4693 // Turn shift left of a constant amount into a multiply. 4694 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4695 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4696 4697 // If the shift count is not less than the bitwidth, the result of 4698 // the shift is undefined. Don't try to analyze it, because the 4699 // resolution chosen here may differ from the resolution chosen in 4700 // other parts of the compiler. 4701 if (SA->getValue().uge(BitWidth)) 4702 break; 4703 4704 // It is currently not resolved how to interpret NSW for left 4705 // shift by BitWidth - 1, so we avoid applying flags in that 4706 // case. Remove this check (or this comment) once the situation 4707 // is resolved. See 4708 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4709 // and http://reviews.llvm.org/D8890 . 4710 auto Flags = SCEV::FlagAnyWrap; 4711 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4712 4713 Constant *X = ConstantInt::get(getContext(), 4714 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4715 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4716 } 4717 break; 4718 4719 case Instruction::LShr: 4720 // Turn logical shift right of a constant into a unsigned divide. 4721 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4722 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4723 4724 // If the shift count is not less than the bitwidth, the result of 4725 // the shift is undefined. Don't try to analyze it, because the 4726 // resolution chosen here may differ from the resolution chosen in 4727 // other parts of the compiler. 4728 if (SA->getValue().uge(BitWidth)) 4729 break; 4730 4731 Constant *X = ConstantInt::get(getContext(), 4732 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4733 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4734 } 4735 break; 4736 4737 case Instruction::AShr: 4738 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4739 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4740 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4741 if (L->getOpcode() == Instruction::Shl && 4742 L->getOperand(1) == U->getOperand(1)) { 4743 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4744 4745 // If the shift count is not less than the bitwidth, the result of 4746 // the shift is undefined. Don't try to analyze it, because the 4747 // resolution chosen here may differ from the resolution chosen in 4748 // other parts of the compiler. 4749 if (CI->getValue().uge(BitWidth)) 4750 break; 4751 4752 uint64_t Amt = BitWidth - CI->getZExtValue(); 4753 if (Amt == BitWidth) 4754 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4755 return 4756 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4757 IntegerType::get(getContext(), 4758 Amt)), 4759 U->getType()); 4760 } 4761 break; 4762 4763 case Instruction::Trunc: 4764 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4765 4766 case Instruction::ZExt: 4767 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4768 4769 case Instruction::SExt: 4770 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4771 4772 case Instruction::BitCast: 4773 // BitCasts are no-op casts so we just eliminate the cast. 4774 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4775 return getSCEV(U->getOperand(0)); 4776 break; 4777 4778 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4779 // lead to pointer expressions which cannot safely be expanded to GEPs, 4780 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4781 // simplifying integer expressions. 4782 4783 case Instruction::GetElementPtr: 4784 return createNodeForGEP(cast<GEPOperator>(U)); 4785 4786 case Instruction::PHI: 4787 return createNodeForPHI(cast<PHINode>(U)); 4788 4789 case Instruction::Select: 4790 // U can also be a select constant expr, which let fall through. Since 4791 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4792 // constant expressions cannot have instructions as operands, we'd have 4793 // returned getUnknown for a select constant expressions anyway. 4794 if (isa<Instruction>(U)) 4795 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4796 U->getOperand(1), U->getOperand(2)); 4797 4798 default: // We cannot analyze this expression. 4799 break; 4800 } 4801 4802 return getUnknown(V); 4803 } 4804 4805 4806 4807 //===----------------------------------------------------------------------===// 4808 // Iteration Count Computation Code 4809 // 4810 4811 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4812 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4813 return getSmallConstantTripCount(L, ExitingBB); 4814 4815 // No trip count information for multiple exits. 4816 return 0; 4817 } 4818 4819 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4820 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4821 /// constant. Will also return 0 if the maximum trip count is very large (>= 4822 /// 2^32). 4823 /// 4824 /// This "trip count" assumes that control exits via ExitingBlock. More 4825 /// precisely, it is the number of times that control may reach ExitingBlock 4826 /// before taking the branch. For loops with multiple exits, it may not be the 4827 /// number times that the loop header executes because the loop may exit 4828 /// prematurely via another branch. 4829 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4830 BasicBlock *ExitingBlock) { 4831 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4832 assert(L->isLoopExiting(ExitingBlock) && 4833 "Exiting block must actually branch out of the loop!"); 4834 const SCEVConstant *ExitCount = 4835 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4836 if (!ExitCount) 4837 return 0; 4838 4839 ConstantInt *ExitConst = ExitCount->getValue(); 4840 4841 // Guard against huge trip counts. 4842 if (ExitConst->getValue().getActiveBits() > 32) 4843 return 0; 4844 4845 // In case of integer overflow, this returns 0, which is correct. 4846 return ((unsigned)ExitConst->getZExtValue()) + 1; 4847 } 4848 4849 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4850 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4851 return getSmallConstantTripMultiple(L, ExitingBB); 4852 4853 // No trip multiple information for multiple exits. 4854 return 0; 4855 } 4856 4857 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4858 /// trip count of this loop as a normal unsigned value, if possible. This 4859 /// means that the actual trip count is always a multiple of the returned 4860 /// value (don't forget the trip count could very well be zero as well!). 4861 /// 4862 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4863 /// multiple of a constant (which is also the case if the trip count is simply 4864 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4865 /// if the trip count is very large (>= 2^32). 4866 /// 4867 /// As explained in the comments for getSmallConstantTripCount, this assumes 4868 /// that control exits the loop via ExitingBlock. 4869 unsigned 4870 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4871 BasicBlock *ExitingBlock) { 4872 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4873 assert(L->isLoopExiting(ExitingBlock) && 4874 "Exiting block must actually branch out of the loop!"); 4875 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4876 if (ExitCount == getCouldNotCompute()) 4877 return 1; 4878 4879 // Get the trip count from the BE count by adding 1. 4880 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4881 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4882 // to factor simple cases. 4883 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4884 TCMul = Mul->getOperand(0); 4885 4886 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4887 if (!MulC) 4888 return 1; 4889 4890 ConstantInt *Result = MulC->getValue(); 4891 4892 // Guard against huge trip counts (this requires checking 4893 // for zero to handle the case where the trip count == -1 and the 4894 // addition wraps). 4895 if (!Result || Result->getValue().getActiveBits() > 32 || 4896 Result->getValue().getActiveBits() == 0) 4897 return 1; 4898 4899 return (unsigned)Result->getZExtValue(); 4900 } 4901 4902 // getExitCount - Get the expression for the number of loop iterations for which 4903 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4904 // SCEVCouldNotCompute. 4905 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4906 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4907 } 4908 4909 /// getBackedgeTakenCount - If the specified loop has a predictable 4910 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4911 /// object. The backedge-taken count is the number of times the loop header 4912 /// will be branched to from within the loop. This is one less than the 4913 /// trip count of the loop, since it doesn't count the first iteration, 4914 /// when the header is branched to from outside the loop. 4915 /// 4916 /// Note that it is not valid to call this method on a loop without a 4917 /// loop-invariant backedge-taken count (see 4918 /// hasLoopInvariantBackedgeTakenCount). 4919 /// 4920 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4921 return getBackedgeTakenInfo(L).getExact(this); 4922 } 4923 4924 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4925 /// return the least SCEV value that is known never to be less than the 4926 /// actual backedge taken count. 4927 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4928 return getBackedgeTakenInfo(L).getMax(this); 4929 } 4930 4931 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4932 /// onto the given Worklist. 4933 static void 4934 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4935 BasicBlock *Header = L->getHeader(); 4936 4937 // Push all Loop-header PHIs onto the Worklist stack. 4938 for (BasicBlock::iterator I = Header->begin(); 4939 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4940 Worklist.push_back(PN); 4941 } 4942 4943 const ScalarEvolution::BackedgeTakenInfo & 4944 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4945 // Initially insert an invalid entry for this loop. If the insertion 4946 // succeeds, proceed to actually compute a backedge-taken count and 4947 // update the value. The temporary CouldNotCompute value tells SCEV 4948 // code elsewhere that it shouldn't attempt to request a new 4949 // backedge-taken count, which could result in infinite recursion. 4950 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4951 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4952 if (!Pair.second) 4953 return Pair.first->second; 4954 4955 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 4956 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4957 // must be cleared in this scope. 4958 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 4959 4960 if (Result.getExact(this) != getCouldNotCompute()) { 4961 assert(isLoopInvariant(Result.getExact(this), L) && 4962 isLoopInvariant(Result.getMax(this), L) && 4963 "Computed backedge-taken count isn't loop invariant for loop!"); 4964 ++NumTripCountsComputed; 4965 } 4966 else if (Result.getMax(this) == getCouldNotCompute() && 4967 isa<PHINode>(L->getHeader()->begin())) { 4968 // Only count loops that have phi nodes as not being computable. 4969 ++NumTripCountsNotComputed; 4970 } 4971 4972 // Now that we know more about the trip count for this loop, forget any 4973 // existing SCEV values for PHI nodes in this loop since they are only 4974 // conservative estimates made without the benefit of trip count 4975 // information. This is similar to the code in forgetLoop, except that 4976 // it handles SCEVUnknown PHI nodes specially. 4977 if (Result.hasAnyInfo()) { 4978 SmallVector<Instruction *, 16> Worklist; 4979 PushLoopPHIs(L, Worklist); 4980 4981 SmallPtrSet<Instruction *, 8> Visited; 4982 while (!Worklist.empty()) { 4983 Instruction *I = Worklist.pop_back_val(); 4984 if (!Visited.insert(I).second) 4985 continue; 4986 4987 ValueExprMapType::iterator It = 4988 ValueExprMap.find_as(static_cast<Value *>(I)); 4989 if (It != ValueExprMap.end()) { 4990 const SCEV *Old = It->second; 4991 4992 // SCEVUnknown for a PHI either means that it has an unrecognized 4993 // structure, or it's a PHI that's in the progress of being computed 4994 // by createNodeForPHI. In the former case, additional loop trip 4995 // count information isn't going to change anything. In the later 4996 // case, createNodeForPHI will perform the necessary updates on its 4997 // own when it gets to that point. 4998 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4999 forgetMemoizedResults(Old); 5000 ValueExprMap.erase(It); 5001 } 5002 if (PHINode *PN = dyn_cast<PHINode>(I)) 5003 ConstantEvolutionLoopExitValue.erase(PN); 5004 } 5005 5006 PushDefUseChildren(I, Worklist); 5007 } 5008 } 5009 5010 // Re-lookup the insert position, since the call to 5011 // computeBackedgeTakenCount above could result in a 5012 // recusive call to getBackedgeTakenInfo (on a different 5013 // loop), which would invalidate the iterator computed 5014 // earlier. 5015 return BackedgeTakenCounts.find(L)->second = Result; 5016 } 5017 5018 /// forgetLoop - This method should be called by the client when it has 5019 /// changed a loop in a way that may effect ScalarEvolution's ability to 5020 /// compute a trip count, or if the loop is deleted. 5021 void ScalarEvolution::forgetLoop(const Loop *L) { 5022 // Drop any stored trip count value. 5023 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 5024 BackedgeTakenCounts.find(L); 5025 if (BTCPos != BackedgeTakenCounts.end()) { 5026 BTCPos->second.clear(); 5027 BackedgeTakenCounts.erase(BTCPos); 5028 } 5029 5030 // Drop information about expressions based on loop-header PHIs. 5031 SmallVector<Instruction *, 16> Worklist; 5032 PushLoopPHIs(L, Worklist); 5033 5034 SmallPtrSet<Instruction *, 8> Visited; 5035 while (!Worklist.empty()) { 5036 Instruction *I = Worklist.pop_back_val(); 5037 if (!Visited.insert(I).second) 5038 continue; 5039 5040 ValueExprMapType::iterator It = 5041 ValueExprMap.find_as(static_cast<Value *>(I)); 5042 if (It != ValueExprMap.end()) { 5043 forgetMemoizedResults(It->second); 5044 ValueExprMap.erase(It); 5045 if (PHINode *PN = dyn_cast<PHINode>(I)) 5046 ConstantEvolutionLoopExitValue.erase(PN); 5047 } 5048 5049 PushDefUseChildren(I, Worklist); 5050 } 5051 5052 // Forget all contained loops too, to avoid dangling entries in the 5053 // ValuesAtScopes map. 5054 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5055 forgetLoop(*I); 5056 } 5057 5058 /// forgetValue - This method should be called by the client when it has 5059 /// changed a value in a way that may effect its value, or which may 5060 /// disconnect it from a def-use chain linking it to a loop. 5061 void ScalarEvolution::forgetValue(Value *V) { 5062 Instruction *I = dyn_cast<Instruction>(V); 5063 if (!I) return; 5064 5065 // Drop information about expressions based on loop-header PHIs. 5066 SmallVector<Instruction *, 16> Worklist; 5067 Worklist.push_back(I); 5068 5069 SmallPtrSet<Instruction *, 8> Visited; 5070 while (!Worklist.empty()) { 5071 I = Worklist.pop_back_val(); 5072 if (!Visited.insert(I).second) 5073 continue; 5074 5075 ValueExprMapType::iterator It = 5076 ValueExprMap.find_as(static_cast<Value *>(I)); 5077 if (It != ValueExprMap.end()) { 5078 forgetMemoizedResults(It->second); 5079 ValueExprMap.erase(It); 5080 if (PHINode *PN = dyn_cast<PHINode>(I)) 5081 ConstantEvolutionLoopExitValue.erase(PN); 5082 } 5083 5084 PushDefUseChildren(I, Worklist); 5085 } 5086 } 5087 5088 /// getExact - Get the exact loop backedge taken count considering all loop 5089 /// exits. A computable result can only be returned for loops with a single 5090 /// exit. Returning the minimum taken count among all exits is incorrect 5091 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5092 /// assumes that the limit of each loop test is never skipped. This is a valid 5093 /// assumption as long as the loop exits via that test. For precise results, it 5094 /// is the caller's responsibility to specify the relevant loop exit using 5095 /// getExact(ExitingBlock, SE). 5096 const SCEV * 5097 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5098 // If any exits were not computable, the loop is not computable. 5099 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5100 5101 // We need exactly one computable exit. 5102 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5103 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5104 5105 const SCEV *BECount = nullptr; 5106 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5107 ENT != nullptr; ENT = ENT->getNextExit()) { 5108 5109 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5110 5111 if (!BECount) 5112 BECount = ENT->ExactNotTaken; 5113 else if (BECount != ENT->ExactNotTaken) 5114 return SE->getCouldNotCompute(); 5115 } 5116 assert(BECount && "Invalid not taken count for loop exit"); 5117 return BECount; 5118 } 5119 5120 /// getExact - Get the exact not taken count for this loop exit. 5121 const SCEV * 5122 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5123 ScalarEvolution *SE) const { 5124 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5125 ENT != nullptr; ENT = ENT->getNextExit()) { 5126 5127 if (ENT->ExitingBlock == ExitingBlock) 5128 return ENT->ExactNotTaken; 5129 } 5130 return SE->getCouldNotCompute(); 5131 } 5132 5133 /// getMax - Get the max backedge taken count for the loop. 5134 const SCEV * 5135 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5136 return Max ? Max : SE->getCouldNotCompute(); 5137 } 5138 5139 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5140 ScalarEvolution *SE) const { 5141 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5142 return true; 5143 5144 if (!ExitNotTaken.ExitingBlock) 5145 return false; 5146 5147 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5148 ENT != nullptr; ENT = ENT->getNextExit()) { 5149 5150 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5151 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5152 return true; 5153 } 5154 } 5155 return false; 5156 } 5157 5158 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5159 /// computable exit into a persistent ExitNotTakenInfo array. 5160 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5161 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5162 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5163 5164 if (!Complete) 5165 ExitNotTaken.setIncomplete(); 5166 5167 unsigned NumExits = ExitCounts.size(); 5168 if (NumExits == 0) return; 5169 5170 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5171 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5172 if (NumExits == 1) return; 5173 5174 // Handle the rare case of multiple computable exits. 5175 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5176 5177 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5178 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5179 PrevENT->setNextExit(ENT); 5180 ENT->ExitingBlock = ExitCounts[i].first; 5181 ENT->ExactNotTaken = ExitCounts[i].second; 5182 } 5183 } 5184 5185 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5186 void ScalarEvolution::BackedgeTakenInfo::clear() { 5187 ExitNotTaken.ExitingBlock = nullptr; 5188 ExitNotTaken.ExactNotTaken = nullptr; 5189 delete[] ExitNotTaken.getNextExit(); 5190 } 5191 5192 /// computeBackedgeTakenCount - Compute the number of times the backedge 5193 /// of the specified loop will execute. 5194 ScalarEvolution::BackedgeTakenInfo 5195 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5196 SmallVector<BasicBlock *, 8> ExitingBlocks; 5197 L->getExitingBlocks(ExitingBlocks); 5198 5199 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5200 bool CouldComputeBECount = true; 5201 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5202 const SCEV *MustExitMaxBECount = nullptr; 5203 const SCEV *MayExitMaxBECount = nullptr; 5204 5205 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5206 // and compute maxBECount. 5207 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5208 BasicBlock *ExitBB = ExitingBlocks[i]; 5209 ExitLimit EL = computeExitLimit(L, ExitBB); 5210 5211 // 1. For each exit that can be computed, add an entry to ExitCounts. 5212 // CouldComputeBECount is true only if all exits can be computed. 5213 if (EL.Exact == getCouldNotCompute()) 5214 // We couldn't compute an exact value for this exit, so 5215 // we won't be able to compute an exact value for the loop. 5216 CouldComputeBECount = false; 5217 else 5218 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5219 5220 // 2. Derive the loop's MaxBECount from each exit's max number of 5221 // non-exiting iterations. Partition the loop exits into two kinds: 5222 // LoopMustExits and LoopMayExits. 5223 // 5224 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5225 // is a LoopMayExit. If any computable LoopMustExit is found, then 5226 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5227 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5228 // considered greater than any computable EL.Max. 5229 if (EL.Max != getCouldNotCompute() && Latch && 5230 DT.dominates(ExitBB, Latch)) { 5231 if (!MustExitMaxBECount) 5232 MustExitMaxBECount = EL.Max; 5233 else { 5234 MustExitMaxBECount = 5235 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5236 } 5237 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5238 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5239 MayExitMaxBECount = EL.Max; 5240 else { 5241 MayExitMaxBECount = 5242 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5243 } 5244 } 5245 } 5246 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5247 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5248 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5249 } 5250 5251 ScalarEvolution::ExitLimit 5252 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5253 5254 // Okay, we've chosen an exiting block. See what condition causes us to exit 5255 // at this block and remember the exit block and whether all other targets 5256 // lead to the loop header. 5257 bool MustExecuteLoopHeader = true; 5258 BasicBlock *Exit = nullptr; 5259 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5260 SI != SE; ++SI) 5261 if (!L->contains(*SI)) { 5262 if (Exit) // Multiple exit successors. 5263 return getCouldNotCompute(); 5264 Exit = *SI; 5265 } else if (*SI != L->getHeader()) { 5266 MustExecuteLoopHeader = false; 5267 } 5268 5269 // At this point, we know we have a conditional branch that determines whether 5270 // the loop is exited. However, we don't know if the branch is executed each 5271 // time through the loop. If not, then the execution count of the branch will 5272 // not be equal to the trip count of the loop. 5273 // 5274 // Currently we check for this by checking to see if the Exit branch goes to 5275 // the loop header. If so, we know it will always execute the same number of 5276 // times as the loop. We also handle the case where the exit block *is* the 5277 // loop header. This is common for un-rotated loops. 5278 // 5279 // If both of those tests fail, walk up the unique predecessor chain to the 5280 // header, stopping if there is an edge that doesn't exit the loop. If the 5281 // header is reached, the execution count of the branch will be equal to the 5282 // trip count of the loop. 5283 // 5284 // More extensive analysis could be done to handle more cases here. 5285 // 5286 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5287 // The simple checks failed, try climbing the unique predecessor chain 5288 // up to the header. 5289 bool Ok = false; 5290 for (BasicBlock *BB = ExitingBlock; BB; ) { 5291 BasicBlock *Pred = BB->getUniquePredecessor(); 5292 if (!Pred) 5293 return getCouldNotCompute(); 5294 TerminatorInst *PredTerm = Pred->getTerminator(); 5295 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5296 if (PredSucc == BB) 5297 continue; 5298 // If the predecessor has a successor that isn't BB and isn't 5299 // outside the loop, assume the worst. 5300 if (L->contains(PredSucc)) 5301 return getCouldNotCompute(); 5302 } 5303 if (Pred == L->getHeader()) { 5304 Ok = true; 5305 break; 5306 } 5307 BB = Pred; 5308 } 5309 if (!Ok) 5310 return getCouldNotCompute(); 5311 } 5312 5313 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5314 TerminatorInst *Term = ExitingBlock->getTerminator(); 5315 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5316 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5317 // Proceed to the next level to examine the exit condition expression. 5318 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5319 BI->getSuccessor(1), 5320 /*ControlsExit=*/IsOnlyExit); 5321 } 5322 5323 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5324 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5325 /*ControlsExit=*/IsOnlyExit); 5326 5327 return getCouldNotCompute(); 5328 } 5329 5330 /// computeExitLimitFromCond - Compute the number of times the 5331 /// backedge of the specified loop will execute if its exit condition 5332 /// were a conditional branch of ExitCond, TBB, and FBB. 5333 /// 5334 /// @param ControlsExit is true if ExitCond directly controls the exit 5335 /// branch. In this case, we can assume that the loop exits only if the 5336 /// condition is true and can infer that failing to meet the condition prior to 5337 /// integer wraparound results in undefined behavior. 5338 ScalarEvolution::ExitLimit 5339 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5340 Value *ExitCond, 5341 BasicBlock *TBB, 5342 BasicBlock *FBB, 5343 bool ControlsExit) { 5344 // Check if the controlling expression for this loop is an And or Or. 5345 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5346 if (BO->getOpcode() == Instruction::And) { 5347 // Recurse on the operands of the and. 5348 bool EitherMayExit = L->contains(TBB); 5349 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5350 ControlsExit && !EitherMayExit); 5351 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5352 ControlsExit && !EitherMayExit); 5353 const SCEV *BECount = getCouldNotCompute(); 5354 const SCEV *MaxBECount = getCouldNotCompute(); 5355 if (EitherMayExit) { 5356 // Both conditions must be true for the loop to continue executing. 5357 // Choose the less conservative count. 5358 if (EL0.Exact == getCouldNotCompute() || 5359 EL1.Exact == getCouldNotCompute()) 5360 BECount = getCouldNotCompute(); 5361 else 5362 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5363 if (EL0.Max == getCouldNotCompute()) 5364 MaxBECount = EL1.Max; 5365 else if (EL1.Max == getCouldNotCompute()) 5366 MaxBECount = EL0.Max; 5367 else 5368 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5369 } else { 5370 // Both conditions must be true at the same time for the loop to exit. 5371 // For now, be conservative. 5372 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5373 if (EL0.Max == EL1.Max) 5374 MaxBECount = EL0.Max; 5375 if (EL0.Exact == EL1.Exact) 5376 BECount = EL0.Exact; 5377 } 5378 5379 return ExitLimit(BECount, MaxBECount); 5380 } 5381 if (BO->getOpcode() == Instruction::Or) { 5382 // Recurse on the operands of the or. 5383 bool EitherMayExit = L->contains(FBB); 5384 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5385 ControlsExit && !EitherMayExit); 5386 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5387 ControlsExit && !EitherMayExit); 5388 const SCEV *BECount = getCouldNotCompute(); 5389 const SCEV *MaxBECount = getCouldNotCompute(); 5390 if (EitherMayExit) { 5391 // Both conditions must be false for the loop to continue executing. 5392 // Choose the less conservative count. 5393 if (EL0.Exact == getCouldNotCompute() || 5394 EL1.Exact == getCouldNotCompute()) 5395 BECount = getCouldNotCompute(); 5396 else 5397 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5398 if (EL0.Max == getCouldNotCompute()) 5399 MaxBECount = EL1.Max; 5400 else if (EL1.Max == getCouldNotCompute()) 5401 MaxBECount = EL0.Max; 5402 else 5403 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5404 } else { 5405 // Both conditions must be false at the same time for the loop to exit. 5406 // For now, be conservative. 5407 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5408 if (EL0.Max == EL1.Max) 5409 MaxBECount = EL0.Max; 5410 if (EL0.Exact == EL1.Exact) 5411 BECount = EL0.Exact; 5412 } 5413 5414 return ExitLimit(BECount, MaxBECount); 5415 } 5416 } 5417 5418 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5419 // Proceed to the next level to examine the icmp. 5420 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5421 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5422 5423 // Check for a constant condition. These are normally stripped out by 5424 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5425 // preserve the CFG and is temporarily leaving constant conditions 5426 // in place. 5427 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5428 if (L->contains(FBB) == !CI->getZExtValue()) 5429 // The backedge is always taken. 5430 return getCouldNotCompute(); 5431 else 5432 // The backedge is never taken. 5433 return getZero(CI->getType()); 5434 } 5435 5436 // If it's not an integer or pointer comparison then compute it the hard way. 5437 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5438 } 5439 5440 ScalarEvolution::ExitLimit 5441 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5442 ICmpInst *ExitCond, 5443 BasicBlock *TBB, 5444 BasicBlock *FBB, 5445 bool ControlsExit) { 5446 5447 // If the condition was exit on true, convert the condition to exit on false 5448 ICmpInst::Predicate Cond; 5449 if (!L->contains(FBB)) 5450 Cond = ExitCond->getPredicate(); 5451 else 5452 Cond = ExitCond->getInversePredicate(); 5453 5454 // Handle common loops like: for (X = "string"; *X; ++X) 5455 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5456 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5457 ExitLimit ItCnt = 5458 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5459 if (ItCnt.hasAnyInfo()) 5460 return ItCnt; 5461 } 5462 5463 ExitLimit ShiftEL = computeShiftCompareExitLimit( 5464 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond); 5465 if (ShiftEL.hasAnyInfo()) 5466 return ShiftEL; 5467 5468 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5469 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5470 5471 // Try to evaluate any dependencies out of the loop. 5472 LHS = getSCEVAtScope(LHS, L); 5473 RHS = getSCEVAtScope(RHS, L); 5474 5475 // At this point, we would like to compute how many iterations of the 5476 // loop the predicate will return true for these inputs. 5477 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5478 // If there is a loop-invariant, force it into the RHS. 5479 std::swap(LHS, RHS); 5480 Cond = ICmpInst::getSwappedPredicate(Cond); 5481 } 5482 5483 // Simplify the operands before analyzing them. 5484 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5485 5486 // If we have a comparison of a chrec against a constant, try to use value 5487 // ranges to answer this query. 5488 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5489 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5490 if (AddRec->getLoop() == L) { 5491 // Form the constant range. 5492 ConstantRange CompRange( 5493 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5494 5495 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5496 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5497 } 5498 5499 switch (Cond) { 5500 case ICmpInst::ICMP_NE: { // while (X != Y) 5501 // Convert to: while (X-Y != 0) 5502 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5503 if (EL.hasAnyInfo()) return EL; 5504 break; 5505 } 5506 case ICmpInst::ICMP_EQ: { // while (X == Y) 5507 // Convert to: while (X-Y == 0) 5508 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5509 if (EL.hasAnyInfo()) return EL; 5510 break; 5511 } 5512 case ICmpInst::ICMP_SLT: 5513 case ICmpInst::ICMP_ULT: { // while (X < Y) 5514 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5515 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5516 if (EL.hasAnyInfo()) return EL; 5517 break; 5518 } 5519 case ICmpInst::ICMP_SGT: 5520 case ICmpInst::ICMP_UGT: { // while (X > Y) 5521 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5522 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5523 if (EL.hasAnyInfo()) return EL; 5524 break; 5525 } 5526 default: 5527 break; 5528 } 5529 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5530 } 5531 5532 ScalarEvolution::ExitLimit 5533 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5534 SwitchInst *Switch, 5535 BasicBlock *ExitingBlock, 5536 bool ControlsExit) { 5537 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5538 5539 // Give up if the exit is the default dest of a switch. 5540 if (Switch->getDefaultDest() == ExitingBlock) 5541 return getCouldNotCompute(); 5542 5543 assert(L->contains(Switch->getDefaultDest()) && 5544 "Default case must not exit the loop!"); 5545 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5546 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5547 5548 // while (X != Y) --> while (X-Y != 0) 5549 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5550 if (EL.hasAnyInfo()) 5551 return EL; 5552 5553 return getCouldNotCompute(); 5554 } 5555 5556 static ConstantInt * 5557 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5558 ScalarEvolution &SE) { 5559 const SCEV *InVal = SE.getConstant(C); 5560 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5561 assert(isa<SCEVConstant>(Val) && 5562 "Evaluation of SCEV at constant didn't fold correctly?"); 5563 return cast<SCEVConstant>(Val)->getValue(); 5564 } 5565 5566 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5567 /// 'icmp op load X, cst', try to see if we can compute the backedge 5568 /// execution count. 5569 ScalarEvolution::ExitLimit 5570 ScalarEvolution::computeLoadConstantCompareExitLimit( 5571 LoadInst *LI, 5572 Constant *RHS, 5573 const Loop *L, 5574 ICmpInst::Predicate predicate) { 5575 5576 if (LI->isVolatile()) return getCouldNotCompute(); 5577 5578 // Check to see if the loaded pointer is a getelementptr of a global. 5579 // TODO: Use SCEV instead of manually grubbing with GEPs. 5580 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5581 if (!GEP) return getCouldNotCompute(); 5582 5583 // Make sure that it is really a constant global we are gepping, with an 5584 // initializer, and make sure the first IDX is really 0. 5585 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5586 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5587 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5588 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5589 return getCouldNotCompute(); 5590 5591 // Okay, we allow one non-constant index into the GEP instruction. 5592 Value *VarIdx = nullptr; 5593 std::vector<Constant*> Indexes; 5594 unsigned VarIdxNum = 0; 5595 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5596 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5597 Indexes.push_back(CI); 5598 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5599 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5600 VarIdx = GEP->getOperand(i); 5601 VarIdxNum = i-2; 5602 Indexes.push_back(nullptr); 5603 } 5604 5605 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5606 if (!VarIdx) 5607 return getCouldNotCompute(); 5608 5609 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5610 // Check to see if X is a loop variant variable value now. 5611 const SCEV *Idx = getSCEV(VarIdx); 5612 Idx = getSCEVAtScope(Idx, L); 5613 5614 // We can only recognize very limited forms of loop index expressions, in 5615 // particular, only affine AddRec's like {C1,+,C2}. 5616 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5617 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5618 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5619 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5620 return getCouldNotCompute(); 5621 5622 unsigned MaxSteps = MaxBruteForceIterations; 5623 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5624 ConstantInt *ItCst = ConstantInt::get( 5625 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5626 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5627 5628 // Form the GEP offset. 5629 Indexes[VarIdxNum] = Val; 5630 5631 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5632 Indexes); 5633 if (!Result) break; // Cannot compute! 5634 5635 // Evaluate the condition for this iteration. 5636 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5637 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5638 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5639 ++NumArrayLenItCounts; 5640 return getConstant(ItCst); // Found terminating iteration! 5641 } 5642 } 5643 return getCouldNotCompute(); 5644 } 5645 5646 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 5647 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 5648 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 5649 if (!RHS) 5650 return getCouldNotCompute(); 5651 5652 const BasicBlock *Latch = L->getLoopLatch(); 5653 if (!Latch) 5654 return getCouldNotCompute(); 5655 5656 const BasicBlock *Predecessor = L->getLoopPredecessor(); 5657 if (!Predecessor) 5658 return getCouldNotCompute(); 5659 5660 // Return true if V is of the form "LHS `shift_op` <positive constant>". 5661 // Return LHS in OutLHS and shift_opt in OutOpCode. 5662 auto MatchPositiveShift = 5663 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 5664 5665 using namespace PatternMatch; 5666 5667 ConstantInt *ShiftAmt; 5668 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5669 OutOpCode = Instruction::LShr; 5670 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5671 OutOpCode = Instruction::AShr; 5672 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5673 OutOpCode = Instruction::Shl; 5674 else 5675 return false; 5676 5677 return ShiftAmt->getValue().isStrictlyPositive(); 5678 }; 5679 5680 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 5681 // 5682 // loop: 5683 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 5684 // %iv.shifted = lshr i32 %iv, <positive constant> 5685 // 5686 // Return true on a succesful match. Return the corresponding PHI node (%iv 5687 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 5688 auto MatchShiftRecurrence = 5689 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 5690 Optional<Instruction::BinaryOps> PostShiftOpCode; 5691 5692 { 5693 Instruction::BinaryOps OpC; 5694 Value *V; 5695 5696 // If we encounter a shift instruction, "peel off" the shift operation, 5697 // and remember that we did so. Later when we inspect %iv's backedge 5698 // value, we will make sure that the backedge value uses the same 5699 // operation. 5700 // 5701 // Note: the peeled shift operation does not have to be the same 5702 // instruction as the one feeding into the PHI's backedge value. We only 5703 // really care about it being the same *kind* of shift instruction -- 5704 // that's all that is required for our later inferences to hold. 5705 if (MatchPositiveShift(LHS, V, OpC)) { 5706 PostShiftOpCode = OpC; 5707 LHS = V; 5708 } 5709 } 5710 5711 PNOut = dyn_cast<PHINode>(LHS); 5712 if (!PNOut || PNOut->getParent() != L->getHeader()) 5713 return false; 5714 5715 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 5716 Value *OpLHS; 5717 5718 return 5719 // The backedge value for the PHI node must be a shift by a positive 5720 // amount 5721 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 5722 5723 // of the PHI node itself 5724 OpLHS == PNOut && 5725 5726 // and the kind of shift should be match the kind of shift we peeled 5727 // off, if any. 5728 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 5729 }; 5730 5731 PHINode *PN; 5732 Instruction::BinaryOps OpCode; 5733 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 5734 return getCouldNotCompute(); 5735 5736 const DataLayout &DL = getDataLayout(); 5737 5738 // The key rationale for this optimization is that for some kinds of shift 5739 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 5740 // within a finite number of iterations. If the condition guarding the 5741 // backedge (in the sense that the backedge is taken if the condition is true) 5742 // is false for the value the shift recurrence stabilizes to, then we know 5743 // that the backedge is taken only a finite number of times. 5744 5745 ConstantInt *StableValue = nullptr; 5746 switch (OpCode) { 5747 default: 5748 llvm_unreachable("Impossible case!"); 5749 5750 case Instruction::AShr: { 5751 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 5752 // bitwidth(K) iterations. 5753 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 5754 bool KnownZero, KnownOne; 5755 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 5756 Predecessor->getTerminator(), &DT); 5757 auto *Ty = cast<IntegerType>(RHS->getType()); 5758 if (KnownZero) 5759 StableValue = ConstantInt::get(Ty, 0); 5760 else if (KnownOne) 5761 StableValue = ConstantInt::get(Ty, -1, true); 5762 else 5763 return getCouldNotCompute(); 5764 5765 break; 5766 } 5767 case Instruction::LShr: 5768 case Instruction::Shl: 5769 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 5770 // stabilize to 0 in at most bitwidth(K) iterations. 5771 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 5772 break; 5773 } 5774 5775 auto *Result = 5776 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 5777 assert(Result->getType()->isIntegerTy(1) && 5778 "Otherwise cannot be an operand to a branch instruction"); 5779 5780 if (Result->isZeroValue()) { 5781 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 5782 const SCEV *UpperBound = 5783 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 5784 return ExitLimit(getCouldNotCompute(), UpperBound); 5785 } 5786 5787 return getCouldNotCompute(); 5788 } 5789 5790 /// CanConstantFold - Return true if we can constant fold an instruction of the 5791 /// specified type, assuming that all operands were constants. 5792 static bool CanConstantFold(const Instruction *I) { 5793 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5794 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5795 isa<LoadInst>(I)) 5796 return true; 5797 5798 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5799 if (const Function *F = CI->getCalledFunction()) 5800 return canConstantFoldCallTo(F); 5801 return false; 5802 } 5803 5804 /// Determine whether this instruction can constant evolve within this loop 5805 /// assuming its operands can all constant evolve. 5806 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5807 // An instruction outside of the loop can't be derived from a loop PHI. 5808 if (!L->contains(I)) return false; 5809 5810 if (isa<PHINode>(I)) { 5811 // We don't currently keep track of the control flow needed to evaluate 5812 // PHIs, so we cannot handle PHIs inside of loops. 5813 return L->getHeader() == I->getParent(); 5814 } 5815 5816 // If we won't be able to constant fold this expression even if the operands 5817 // are constants, bail early. 5818 return CanConstantFold(I); 5819 } 5820 5821 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5822 /// recursing through each instruction operand until reaching a loop header phi. 5823 static PHINode * 5824 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5825 DenseMap<Instruction *, PHINode *> &PHIMap) { 5826 5827 // Otherwise, we can evaluate this instruction if all of its operands are 5828 // constant or derived from a PHI node themselves. 5829 PHINode *PHI = nullptr; 5830 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5831 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5832 5833 if (isa<Constant>(*OpI)) continue; 5834 5835 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5836 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5837 5838 PHINode *P = dyn_cast<PHINode>(OpInst); 5839 if (!P) 5840 // If this operand is already visited, reuse the prior result. 5841 // We may have P != PHI if this is the deepest point at which the 5842 // inconsistent paths meet. 5843 P = PHIMap.lookup(OpInst); 5844 if (!P) { 5845 // Recurse and memoize the results, whether a phi is found or not. 5846 // This recursive call invalidates pointers into PHIMap. 5847 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5848 PHIMap[OpInst] = P; 5849 } 5850 if (!P) 5851 return nullptr; // Not evolving from PHI 5852 if (PHI && PHI != P) 5853 return nullptr; // Evolving from multiple different PHIs. 5854 PHI = P; 5855 } 5856 // This is a expression evolving from a constant PHI! 5857 return PHI; 5858 } 5859 5860 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5861 /// in the loop that V is derived from. We allow arbitrary operations along the 5862 /// way, but the operands of an operation must either be constants or a value 5863 /// derived from a constant PHI. If this expression does not fit with these 5864 /// constraints, return null. 5865 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5866 Instruction *I = dyn_cast<Instruction>(V); 5867 if (!I || !canConstantEvolve(I, L)) return nullptr; 5868 5869 if (PHINode *PN = dyn_cast<PHINode>(I)) 5870 return PN; 5871 5872 // Record non-constant instructions contained by the loop. 5873 DenseMap<Instruction *, PHINode *> PHIMap; 5874 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5875 } 5876 5877 /// EvaluateExpression - Given an expression that passes the 5878 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5879 /// in the loop has the value PHIVal. If we can't fold this expression for some 5880 /// reason, return null. 5881 static Constant *EvaluateExpression(Value *V, const Loop *L, 5882 DenseMap<Instruction *, Constant *> &Vals, 5883 const DataLayout &DL, 5884 const TargetLibraryInfo *TLI) { 5885 // Convenient constant check, but redundant for recursive calls. 5886 if (Constant *C = dyn_cast<Constant>(V)) return C; 5887 Instruction *I = dyn_cast<Instruction>(V); 5888 if (!I) return nullptr; 5889 5890 if (Constant *C = Vals.lookup(I)) return C; 5891 5892 // An instruction inside the loop depends on a value outside the loop that we 5893 // weren't given a mapping for, or a value such as a call inside the loop. 5894 if (!canConstantEvolve(I, L)) return nullptr; 5895 5896 // An unmapped PHI can be due to a branch or another loop inside this loop, 5897 // or due to this not being the initial iteration through a loop where we 5898 // couldn't compute the evolution of this particular PHI last time. 5899 if (isa<PHINode>(I)) return nullptr; 5900 5901 std::vector<Constant*> Operands(I->getNumOperands()); 5902 5903 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5904 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5905 if (!Operand) { 5906 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5907 if (!Operands[i]) return nullptr; 5908 continue; 5909 } 5910 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5911 Vals[Operand] = C; 5912 if (!C) return nullptr; 5913 Operands[i] = C; 5914 } 5915 5916 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5917 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5918 Operands[1], DL, TLI); 5919 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5920 if (!LI->isVolatile()) 5921 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5922 } 5923 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5924 TLI); 5925 } 5926 5927 5928 // If every incoming value to PN except the one for BB is a specific Constant, 5929 // return that, else return nullptr. 5930 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 5931 Constant *IncomingVal = nullptr; 5932 5933 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5934 if (PN->getIncomingBlock(i) == BB) 5935 continue; 5936 5937 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 5938 if (!CurrentVal) 5939 return nullptr; 5940 5941 if (IncomingVal != CurrentVal) { 5942 if (IncomingVal) 5943 return nullptr; 5944 IncomingVal = CurrentVal; 5945 } 5946 } 5947 5948 return IncomingVal; 5949 } 5950 5951 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5952 /// in the header of its containing loop, we know the loop executes a 5953 /// constant number of times, and the PHI node is just a recurrence 5954 /// involving constants, fold it. 5955 Constant * 5956 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5957 const APInt &BEs, 5958 const Loop *L) { 5959 auto I = ConstantEvolutionLoopExitValue.find(PN); 5960 if (I != ConstantEvolutionLoopExitValue.end()) 5961 return I->second; 5962 5963 if (BEs.ugt(MaxBruteForceIterations)) 5964 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5965 5966 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5967 5968 DenseMap<Instruction *, Constant *> CurrentIterVals; 5969 BasicBlock *Header = L->getHeader(); 5970 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5971 5972 BasicBlock *Latch = L->getLoopLatch(); 5973 if (!Latch) 5974 return nullptr; 5975 5976 for (auto &I : *Header) { 5977 PHINode *PHI = dyn_cast<PHINode>(&I); 5978 if (!PHI) break; 5979 auto *StartCST = getOtherIncomingValue(PHI, Latch); 5980 if (!StartCST) continue; 5981 CurrentIterVals[PHI] = StartCST; 5982 } 5983 if (!CurrentIterVals.count(PN)) 5984 return RetVal = nullptr; 5985 5986 Value *BEValue = PN->getIncomingValueForBlock(Latch); 5987 5988 // Execute the loop symbolically to determine the exit value. 5989 if (BEs.getActiveBits() >= 32) 5990 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5991 5992 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5993 unsigned IterationNum = 0; 5994 const DataLayout &DL = getDataLayout(); 5995 for (; ; ++IterationNum) { 5996 if (IterationNum == NumIterations) 5997 return RetVal = CurrentIterVals[PN]; // Got exit value! 5998 5999 // Compute the value of the PHIs for the next iteration. 6000 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6001 DenseMap<Instruction *, Constant *> NextIterVals; 6002 Constant *NextPHI = 6003 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6004 if (!NextPHI) 6005 return nullptr; // Couldn't evaluate! 6006 NextIterVals[PN] = NextPHI; 6007 6008 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6009 6010 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6011 // cease to be able to evaluate one of them or if they stop evolving, 6012 // because that doesn't necessarily prevent us from computing PN. 6013 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6014 for (const auto &I : CurrentIterVals) { 6015 PHINode *PHI = dyn_cast<PHINode>(I.first); 6016 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6017 PHIsToCompute.emplace_back(PHI, I.second); 6018 } 6019 // We use two distinct loops because EvaluateExpression may invalidate any 6020 // iterators into CurrentIterVals. 6021 for (const auto &I : PHIsToCompute) { 6022 PHINode *PHI = I.first; 6023 Constant *&NextPHI = NextIterVals[PHI]; 6024 if (!NextPHI) { // Not already computed. 6025 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6026 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6027 } 6028 if (NextPHI != I.second) 6029 StoppedEvolving = false; 6030 } 6031 6032 // If all entries in CurrentIterVals == NextIterVals then we can stop 6033 // iterating, the loop can't continue to change. 6034 if (StoppedEvolving) 6035 return RetVal = CurrentIterVals[PN]; 6036 6037 CurrentIterVals.swap(NextIterVals); 6038 } 6039 } 6040 6041 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6042 Value *Cond, 6043 bool ExitWhen) { 6044 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6045 if (!PN) return getCouldNotCompute(); 6046 6047 // If the loop is canonicalized, the PHI will have exactly two entries. 6048 // That's the only form we support here. 6049 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6050 6051 DenseMap<Instruction *, Constant *> CurrentIterVals; 6052 BasicBlock *Header = L->getHeader(); 6053 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6054 6055 BasicBlock *Latch = L->getLoopLatch(); 6056 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6057 6058 for (auto &I : *Header) { 6059 PHINode *PHI = dyn_cast<PHINode>(&I); 6060 if (!PHI) 6061 break; 6062 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6063 if (!StartCST) continue; 6064 CurrentIterVals[PHI] = StartCST; 6065 } 6066 if (!CurrentIterVals.count(PN)) 6067 return getCouldNotCompute(); 6068 6069 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6070 // the loop symbolically to determine when the condition gets a value of 6071 // "ExitWhen". 6072 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6073 const DataLayout &DL = getDataLayout(); 6074 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6075 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6076 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6077 6078 // Couldn't symbolically evaluate. 6079 if (!CondVal) return getCouldNotCompute(); 6080 6081 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6082 ++NumBruteForceTripCountsComputed; 6083 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6084 } 6085 6086 // Update all the PHI nodes for the next iteration. 6087 DenseMap<Instruction *, Constant *> NextIterVals; 6088 6089 // Create a list of which PHIs we need to compute. We want to do this before 6090 // calling EvaluateExpression on them because that may invalidate iterators 6091 // into CurrentIterVals. 6092 SmallVector<PHINode *, 8> PHIsToCompute; 6093 for (const auto &I : CurrentIterVals) { 6094 PHINode *PHI = dyn_cast<PHINode>(I.first); 6095 if (!PHI || PHI->getParent() != Header) continue; 6096 PHIsToCompute.push_back(PHI); 6097 } 6098 for (PHINode *PHI : PHIsToCompute) { 6099 Constant *&NextPHI = NextIterVals[PHI]; 6100 if (NextPHI) continue; // Already computed! 6101 6102 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6103 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6104 } 6105 CurrentIterVals.swap(NextIterVals); 6106 } 6107 6108 // Too many iterations were needed to evaluate. 6109 return getCouldNotCompute(); 6110 } 6111 6112 /// getSCEVAtScope - Return a SCEV expression for the specified value 6113 /// at the specified scope in the program. The L value specifies a loop 6114 /// nest to evaluate the expression at, where null is the top-level or a 6115 /// specified loop is immediately inside of the loop. 6116 /// 6117 /// This method can be used to compute the exit value for a variable defined 6118 /// in a loop by querying what the value will hold in the parent loop. 6119 /// 6120 /// In the case that a relevant loop exit value cannot be computed, the 6121 /// original value V is returned. 6122 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6123 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6124 ValuesAtScopes[V]; 6125 // Check to see if we've folded this expression at this loop before. 6126 for (auto &LS : Values) 6127 if (LS.first == L) 6128 return LS.second ? LS.second : V; 6129 6130 Values.emplace_back(L, nullptr); 6131 6132 // Otherwise compute it. 6133 const SCEV *C = computeSCEVAtScope(V, L); 6134 for (auto &LS : reverse(ValuesAtScopes[V])) 6135 if (LS.first == L) { 6136 LS.second = C; 6137 break; 6138 } 6139 return C; 6140 } 6141 6142 /// This builds up a Constant using the ConstantExpr interface. That way, we 6143 /// will return Constants for objects which aren't represented by a 6144 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6145 /// Returns NULL if the SCEV isn't representable as a Constant. 6146 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6147 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6148 case scCouldNotCompute: 6149 case scAddRecExpr: 6150 break; 6151 case scConstant: 6152 return cast<SCEVConstant>(V)->getValue(); 6153 case scUnknown: 6154 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6155 case scSignExtend: { 6156 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6157 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6158 return ConstantExpr::getSExt(CastOp, SS->getType()); 6159 break; 6160 } 6161 case scZeroExtend: { 6162 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6163 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6164 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6165 break; 6166 } 6167 case scTruncate: { 6168 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6169 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6170 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6171 break; 6172 } 6173 case scAddExpr: { 6174 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6175 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6176 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6177 unsigned AS = PTy->getAddressSpace(); 6178 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6179 C = ConstantExpr::getBitCast(C, DestPtrTy); 6180 } 6181 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6182 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6183 if (!C2) return nullptr; 6184 6185 // First pointer! 6186 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6187 unsigned AS = C2->getType()->getPointerAddressSpace(); 6188 std::swap(C, C2); 6189 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6190 // The offsets have been converted to bytes. We can add bytes to an 6191 // i8* by GEP with the byte count in the first index. 6192 C = ConstantExpr::getBitCast(C, DestPtrTy); 6193 } 6194 6195 // Don't bother trying to sum two pointers. We probably can't 6196 // statically compute a load that results from it anyway. 6197 if (C2->getType()->isPointerTy()) 6198 return nullptr; 6199 6200 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6201 if (PTy->getElementType()->isStructTy()) 6202 C2 = ConstantExpr::getIntegerCast( 6203 C2, Type::getInt32Ty(C->getContext()), true); 6204 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6205 } else 6206 C = ConstantExpr::getAdd(C, C2); 6207 } 6208 return C; 6209 } 6210 break; 6211 } 6212 case scMulExpr: { 6213 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6214 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6215 // Don't bother with pointers at all. 6216 if (C->getType()->isPointerTy()) return nullptr; 6217 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6218 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6219 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6220 C = ConstantExpr::getMul(C, C2); 6221 } 6222 return C; 6223 } 6224 break; 6225 } 6226 case scUDivExpr: { 6227 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6228 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6229 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6230 if (LHS->getType() == RHS->getType()) 6231 return ConstantExpr::getUDiv(LHS, RHS); 6232 break; 6233 } 6234 case scSMaxExpr: 6235 case scUMaxExpr: 6236 break; // TODO: smax, umax. 6237 } 6238 return nullptr; 6239 } 6240 6241 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6242 if (isa<SCEVConstant>(V)) return V; 6243 6244 // If this instruction is evolved from a constant-evolving PHI, compute the 6245 // exit value from the loop without using SCEVs. 6246 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6247 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6248 const Loop *LI = this->LI[I->getParent()]; 6249 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6250 if (PHINode *PN = dyn_cast<PHINode>(I)) 6251 if (PN->getParent() == LI->getHeader()) { 6252 // Okay, there is no closed form solution for the PHI node. Check 6253 // to see if the loop that contains it has a known backedge-taken 6254 // count. If so, we may be able to force computation of the exit 6255 // value. 6256 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6257 if (const SCEVConstant *BTCC = 6258 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6259 // Okay, we know how many times the containing loop executes. If 6260 // this is a constant evolving PHI node, get the final value at 6261 // the specified iteration number. 6262 Constant *RV = getConstantEvolutionLoopExitValue(PN, 6263 BTCC->getValue()->getValue(), 6264 LI); 6265 if (RV) return getSCEV(RV); 6266 } 6267 } 6268 6269 // Okay, this is an expression that we cannot symbolically evaluate 6270 // into a SCEV. Check to see if it's possible to symbolically evaluate 6271 // the arguments into constants, and if so, try to constant propagate the 6272 // result. This is particularly useful for computing loop exit values. 6273 if (CanConstantFold(I)) { 6274 SmallVector<Constant *, 4> Operands; 6275 bool MadeImprovement = false; 6276 for (Value *Op : I->operands()) { 6277 if (Constant *C = dyn_cast<Constant>(Op)) { 6278 Operands.push_back(C); 6279 continue; 6280 } 6281 6282 // If any of the operands is non-constant and if they are 6283 // non-integer and non-pointer, don't even try to analyze them 6284 // with scev techniques. 6285 if (!isSCEVable(Op->getType())) 6286 return V; 6287 6288 const SCEV *OrigV = getSCEV(Op); 6289 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6290 MadeImprovement |= OrigV != OpV; 6291 6292 Constant *C = BuildConstantFromSCEV(OpV); 6293 if (!C) return V; 6294 if (C->getType() != Op->getType()) 6295 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6296 Op->getType(), 6297 false), 6298 C, Op->getType()); 6299 Operands.push_back(C); 6300 } 6301 6302 // Check to see if getSCEVAtScope actually made an improvement. 6303 if (MadeImprovement) { 6304 Constant *C = nullptr; 6305 const DataLayout &DL = getDataLayout(); 6306 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6307 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6308 Operands[1], DL, &TLI); 6309 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6310 if (!LI->isVolatile()) 6311 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 6312 } else 6313 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 6314 DL, &TLI); 6315 if (!C) return V; 6316 return getSCEV(C); 6317 } 6318 } 6319 } 6320 6321 // This is some other type of SCEVUnknown, just return it. 6322 return V; 6323 } 6324 6325 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6326 // Avoid performing the look-up in the common case where the specified 6327 // expression has no loop-variant portions. 6328 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6329 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6330 if (OpAtScope != Comm->getOperand(i)) { 6331 // Okay, at least one of these operands is loop variant but might be 6332 // foldable. Build a new instance of the folded commutative expression. 6333 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6334 Comm->op_begin()+i); 6335 NewOps.push_back(OpAtScope); 6336 6337 for (++i; i != e; ++i) { 6338 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6339 NewOps.push_back(OpAtScope); 6340 } 6341 if (isa<SCEVAddExpr>(Comm)) 6342 return getAddExpr(NewOps); 6343 if (isa<SCEVMulExpr>(Comm)) 6344 return getMulExpr(NewOps); 6345 if (isa<SCEVSMaxExpr>(Comm)) 6346 return getSMaxExpr(NewOps); 6347 if (isa<SCEVUMaxExpr>(Comm)) 6348 return getUMaxExpr(NewOps); 6349 llvm_unreachable("Unknown commutative SCEV type!"); 6350 } 6351 } 6352 // If we got here, all operands are loop invariant. 6353 return Comm; 6354 } 6355 6356 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6357 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6358 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6359 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6360 return Div; // must be loop invariant 6361 return getUDivExpr(LHS, RHS); 6362 } 6363 6364 // If this is a loop recurrence for a loop that does not contain L, then we 6365 // are dealing with the final value computed by the loop. 6366 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6367 // First, attempt to evaluate each operand. 6368 // Avoid performing the look-up in the common case where the specified 6369 // expression has no loop-variant portions. 6370 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6371 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6372 if (OpAtScope == AddRec->getOperand(i)) 6373 continue; 6374 6375 // Okay, at least one of these operands is loop variant but might be 6376 // foldable. Build a new instance of the folded commutative expression. 6377 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6378 AddRec->op_begin()+i); 6379 NewOps.push_back(OpAtScope); 6380 for (++i; i != e; ++i) 6381 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6382 6383 const SCEV *FoldedRec = 6384 getAddRecExpr(NewOps, AddRec->getLoop(), 6385 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6386 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6387 // The addrec may be folded to a nonrecurrence, for example, if the 6388 // induction variable is multiplied by zero after constant folding. Go 6389 // ahead and return the folded value. 6390 if (!AddRec) 6391 return FoldedRec; 6392 break; 6393 } 6394 6395 // If the scope is outside the addrec's loop, evaluate it by using the 6396 // loop exit value of the addrec. 6397 if (!AddRec->getLoop()->contains(L)) { 6398 // To evaluate this recurrence, we need to know how many times the AddRec 6399 // loop iterates. Compute this now. 6400 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6401 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6402 6403 // Then, evaluate the AddRec. 6404 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6405 } 6406 6407 return AddRec; 6408 } 6409 6410 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6411 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6412 if (Op == Cast->getOperand()) 6413 return Cast; // must be loop invariant 6414 return getZeroExtendExpr(Op, Cast->getType()); 6415 } 6416 6417 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6418 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6419 if (Op == Cast->getOperand()) 6420 return Cast; // must be loop invariant 6421 return getSignExtendExpr(Op, Cast->getType()); 6422 } 6423 6424 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6425 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6426 if (Op == Cast->getOperand()) 6427 return Cast; // must be loop invariant 6428 return getTruncateExpr(Op, Cast->getType()); 6429 } 6430 6431 llvm_unreachable("Unknown SCEV type!"); 6432 } 6433 6434 /// getSCEVAtScope - This is a convenience function which does 6435 /// getSCEVAtScope(getSCEV(V), L). 6436 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6437 return getSCEVAtScope(getSCEV(V), L); 6438 } 6439 6440 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6441 /// following equation: 6442 /// 6443 /// A * X = B (mod N) 6444 /// 6445 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6446 /// A and B isn't important. 6447 /// 6448 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6449 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6450 ScalarEvolution &SE) { 6451 uint32_t BW = A.getBitWidth(); 6452 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6453 assert(A != 0 && "A must be non-zero."); 6454 6455 // 1. D = gcd(A, N) 6456 // 6457 // The gcd of A and N may have only one prime factor: 2. The number of 6458 // trailing zeros in A is its multiplicity 6459 uint32_t Mult2 = A.countTrailingZeros(); 6460 // D = 2^Mult2 6461 6462 // 2. Check if B is divisible by D. 6463 // 6464 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6465 // is not less than multiplicity of this prime factor for D. 6466 if (B.countTrailingZeros() < Mult2) 6467 return SE.getCouldNotCompute(); 6468 6469 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6470 // modulo (N / D). 6471 // 6472 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6473 // bit width during computations. 6474 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6475 APInt Mod(BW + 1, 0); 6476 Mod.setBit(BW - Mult2); // Mod = N / D 6477 APInt I = AD.multiplicativeInverse(Mod); 6478 6479 // 4. Compute the minimum unsigned root of the equation: 6480 // I * (B / D) mod (N / D) 6481 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6482 6483 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6484 // bits. 6485 return SE.getConstant(Result.trunc(BW)); 6486 } 6487 6488 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6489 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6490 /// might be the same) or two SCEVCouldNotCompute objects. 6491 /// 6492 static std::pair<const SCEV *,const SCEV *> 6493 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6494 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6495 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6496 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6497 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6498 6499 // We currently can only solve this if the coefficients are constants. 6500 if (!LC || !MC || !NC) { 6501 const SCEV *CNC = SE.getCouldNotCompute(); 6502 return std::make_pair(CNC, CNC); 6503 } 6504 6505 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6506 const APInt &L = LC->getValue()->getValue(); 6507 const APInt &M = MC->getValue()->getValue(); 6508 const APInt &N = NC->getValue()->getValue(); 6509 APInt Two(BitWidth, 2); 6510 APInt Four(BitWidth, 4); 6511 6512 { 6513 using namespace APIntOps; 6514 const APInt& C = L; 6515 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6516 // The B coefficient is M-N/2 6517 APInt B(M); 6518 B -= sdiv(N,Two); 6519 6520 // The A coefficient is N/2 6521 APInt A(N.sdiv(Two)); 6522 6523 // Compute the B^2-4ac term. 6524 APInt SqrtTerm(B); 6525 SqrtTerm *= B; 6526 SqrtTerm -= Four * (A * C); 6527 6528 if (SqrtTerm.isNegative()) { 6529 // The loop is provably infinite. 6530 const SCEV *CNC = SE.getCouldNotCompute(); 6531 return std::make_pair(CNC, CNC); 6532 } 6533 6534 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6535 // integer value or else APInt::sqrt() will assert. 6536 APInt SqrtVal(SqrtTerm.sqrt()); 6537 6538 // Compute the two solutions for the quadratic formula. 6539 // The divisions must be performed as signed divisions. 6540 APInt NegB(-B); 6541 APInt TwoA(A << 1); 6542 if (TwoA.isMinValue()) { 6543 const SCEV *CNC = SE.getCouldNotCompute(); 6544 return std::make_pair(CNC, CNC); 6545 } 6546 6547 LLVMContext &Context = SE.getContext(); 6548 6549 ConstantInt *Solution1 = 6550 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6551 ConstantInt *Solution2 = 6552 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6553 6554 return std::make_pair(SE.getConstant(Solution1), 6555 SE.getConstant(Solution2)); 6556 } // end APIntOps namespace 6557 } 6558 6559 /// HowFarToZero - Return the number of times a backedge comparing the specified 6560 /// value to zero will execute. If not computable, return CouldNotCompute. 6561 /// 6562 /// This is only used for loops with a "x != y" exit test. The exit condition is 6563 /// now expressed as a single expression, V = x-y. So the exit test is 6564 /// effectively V != 0. We know and take advantage of the fact that this 6565 /// expression only being used in a comparison by zero context. 6566 ScalarEvolution::ExitLimit 6567 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6568 // If the value is a constant 6569 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6570 // If the value is already zero, the branch will execute zero times. 6571 if (C->getValue()->isZero()) return C; 6572 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6573 } 6574 6575 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6576 if (!AddRec || AddRec->getLoop() != L) 6577 return getCouldNotCompute(); 6578 6579 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6580 // the quadratic equation to solve it. 6581 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6582 std::pair<const SCEV *,const SCEV *> Roots = 6583 SolveQuadraticEquation(AddRec, *this); 6584 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6585 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6586 if (R1 && R2) { 6587 // Pick the smallest positive root value. 6588 if (ConstantInt *CB = 6589 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6590 R1->getValue(), 6591 R2->getValue()))) { 6592 if (!CB->getZExtValue()) 6593 std::swap(R1, R2); // R1 is the minimum root now. 6594 6595 // We can only use this value if the chrec ends up with an exact zero 6596 // value at this index. When solving for "X*X != 5", for example, we 6597 // should not accept a root of 2. 6598 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6599 if (Val->isZero()) 6600 return R1; // We found a quadratic root! 6601 } 6602 } 6603 return getCouldNotCompute(); 6604 } 6605 6606 // Otherwise we can only handle this if it is affine. 6607 if (!AddRec->isAffine()) 6608 return getCouldNotCompute(); 6609 6610 // If this is an affine expression, the execution count of this branch is 6611 // the minimum unsigned root of the following equation: 6612 // 6613 // Start + Step*N = 0 (mod 2^BW) 6614 // 6615 // equivalent to: 6616 // 6617 // Step*N = -Start (mod 2^BW) 6618 // 6619 // where BW is the common bit width of Start and Step. 6620 6621 // Get the initial value for the loop. 6622 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6623 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6624 6625 // For now we handle only constant steps. 6626 // 6627 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6628 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6629 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6630 // We have not yet seen any such cases. 6631 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6632 if (!StepC || StepC->getValue()->equalsInt(0)) 6633 return getCouldNotCompute(); 6634 6635 // For positive steps (counting up until unsigned overflow): 6636 // N = -Start/Step (as unsigned) 6637 // For negative steps (counting down to zero): 6638 // N = Start/-Step 6639 // First compute the unsigned distance from zero in the direction of Step. 6640 bool CountDown = StepC->getValue()->getValue().isNegative(); 6641 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6642 6643 // Handle unitary steps, which cannot wraparound. 6644 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6645 // N = Distance (as unsigned) 6646 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6647 ConstantRange CR = getUnsignedRange(Start); 6648 const SCEV *MaxBECount; 6649 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6650 // When counting up, the worst starting value is 1, not 0. 6651 MaxBECount = CR.getUnsignedMax().isMinValue() 6652 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6653 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6654 else 6655 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6656 : -CR.getUnsignedMin()); 6657 return ExitLimit(Distance, MaxBECount); 6658 } 6659 6660 // As a special case, handle the instance where Step is a positive power of 6661 // two. In this case, determining whether Step divides Distance evenly can be 6662 // done by counting and comparing the number of trailing zeros of Step and 6663 // Distance. 6664 if (!CountDown) { 6665 const APInt &StepV = StepC->getValue()->getValue(); 6666 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6667 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6668 // case is not handled as this code is guarded by !CountDown. 6669 if (StepV.isPowerOf2() && 6670 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6671 // Here we've constrained the equation to be of the form 6672 // 6673 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6674 // 6675 // where we're operating on a W bit wide integer domain and k is 6676 // non-negative. The smallest unsigned solution for X is the trip count. 6677 // 6678 // (0) is equivalent to: 6679 // 6680 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6681 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6682 // <=> 2^k * Distance' - X = L * 2^(W - N) 6683 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6684 // 6685 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6686 // by 2^(W - N). 6687 // 6688 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6689 // 6690 // E.g. say we're solving 6691 // 6692 // 2 * Val = 2 * X (in i8) ... (3) 6693 // 6694 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6695 // 6696 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6697 // necessarily the smallest unsigned value of X that satisfies (3). 6698 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6699 // is i8 1, not i8 -127 6700 6701 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6702 6703 // Since SCEV does not have a URem node, we construct one using a truncate 6704 // and a zero extend. 6705 6706 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6707 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6708 auto *WideTy = Distance->getType(); 6709 6710 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6711 } 6712 } 6713 6714 // If the condition controls loop exit (the loop exits only if the expression 6715 // is true) and the addition is no-wrap we can use unsigned divide to 6716 // compute the backedge count. In this case, the step may not divide the 6717 // distance, but we don't care because if the condition is "missed" the loop 6718 // will have undefined behavior due to wrapping. 6719 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6720 const SCEV *Exact = 6721 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6722 return ExitLimit(Exact, Exact); 6723 } 6724 6725 // Then, try to solve the above equation provided that Start is constant. 6726 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6727 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6728 -StartC->getValue()->getValue(), 6729 *this); 6730 return getCouldNotCompute(); 6731 } 6732 6733 /// HowFarToNonZero - Return the number of times a backedge checking the 6734 /// specified value for nonzero will execute. If not computable, return 6735 /// CouldNotCompute 6736 ScalarEvolution::ExitLimit 6737 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6738 // Loops that look like: while (X == 0) are very strange indeed. We don't 6739 // handle them yet except for the trivial case. This could be expanded in the 6740 // future as needed. 6741 6742 // If the value is a constant, check to see if it is known to be non-zero 6743 // already. If so, the backedge will execute zero times. 6744 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6745 if (!C->getValue()->isNullValue()) 6746 return getZero(C->getType()); 6747 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6748 } 6749 6750 // We could implement others, but I really doubt anyone writes loops like 6751 // this, and if they did, they would already be constant folded. 6752 return getCouldNotCompute(); 6753 } 6754 6755 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6756 /// (which may not be an immediate predecessor) which has exactly one 6757 /// successor from which BB is reachable, or null if no such block is 6758 /// found. 6759 /// 6760 std::pair<BasicBlock *, BasicBlock *> 6761 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6762 // If the block has a unique predecessor, then there is no path from the 6763 // predecessor to the block that does not go through the direct edge 6764 // from the predecessor to the block. 6765 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6766 return std::make_pair(Pred, BB); 6767 6768 // A loop's header is defined to be a block that dominates the loop. 6769 // If the header has a unique predecessor outside the loop, it must be 6770 // a block that has exactly one successor that can reach the loop. 6771 if (Loop *L = LI.getLoopFor(BB)) 6772 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6773 6774 return std::pair<BasicBlock *, BasicBlock *>(); 6775 } 6776 6777 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6778 /// testing whether two expressions are equal, however for the purposes of 6779 /// looking for a condition guarding a loop, it can be useful to be a little 6780 /// more general, since a front-end may have replicated the controlling 6781 /// expression. 6782 /// 6783 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6784 // Quick check to see if they are the same SCEV. 6785 if (A == B) return true; 6786 6787 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6788 // Not all instructions that are "identical" compute the same value. For 6789 // instance, two distinct alloca instructions allocating the same type are 6790 // identical and do not read memory; but compute distinct values. 6791 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6792 }; 6793 6794 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6795 // two different instructions with the same value. Check for this case. 6796 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6797 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6798 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6799 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6800 if (ComputesEqualValues(AI, BI)) 6801 return true; 6802 6803 // Otherwise assume they may have a different value. 6804 return false; 6805 } 6806 6807 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6808 /// predicate Pred. Return true iff any changes were made. 6809 /// 6810 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6811 const SCEV *&LHS, const SCEV *&RHS, 6812 unsigned Depth) { 6813 bool Changed = false; 6814 6815 // If we hit the max recursion limit bail out. 6816 if (Depth >= 3) 6817 return false; 6818 6819 // Canonicalize a constant to the right side. 6820 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6821 // Check for both operands constant. 6822 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6823 if (ConstantExpr::getICmp(Pred, 6824 LHSC->getValue(), 6825 RHSC->getValue())->isNullValue()) 6826 goto trivially_false; 6827 else 6828 goto trivially_true; 6829 } 6830 // Otherwise swap the operands to put the constant on the right. 6831 std::swap(LHS, RHS); 6832 Pred = ICmpInst::getSwappedPredicate(Pred); 6833 Changed = true; 6834 } 6835 6836 // If we're comparing an addrec with a value which is loop-invariant in the 6837 // addrec's loop, put the addrec on the left. Also make a dominance check, 6838 // as both operands could be addrecs loop-invariant in each other's loop. 6839 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6840 const Loop *L = AR->getLoop(); 6841 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6842 std::swap(LHS, RHS); 6843 Pred = ICmpInst::getSwappedPredicate(Pred); 6844 Changed = true; 6845 } 6846 } 6847 6848 // If there's a constant operand, canonicalize comparisons with boundary 6849 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6850 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6851 const APInt &RA = RC->getValue()->getValue(); 6852 switch (Pred) { 6853 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6854 case ICmpInst::ICMP_EQ: 6855 case ICmpInst::ICMP_NE: 6856 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6857 if (!RA) 6858 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6859 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6860 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6861 ME->getOperand(0)->isAllOnesValue()) { 6862 RHS = AE->getOperand(1); 6863 LHS = ME->getOperand(1); 6864 Changed = true; 6865 } 6866 break; 6867 case ICmpInst::ICMP_UGE: 6868 if ((RA - 1).isMinValue()) { 6869 Pred = ICmpInst::ICMP_NE; 6870 RHS = getConstant(RA - 1); 6871 Changed = true; 6872 break; 6873 } 6874 if (RA.isMaxValue()) { 6875 Pred = ICmpInst::ICMP_EQ; 6876 Changed = true; 6877 break; 6878 } 6879 if (RA.isMinValue()) goto trivially_true; 6880 6881 Pred = ICmpInst::ICMP_UGT; 6882 RHS = getConstant(RA - 1); 6883 Changed = true; 6884 break; 6885 case ICmpInst::ICMP_ULE: 6886 if ((RA + 1).isMaxValue()) { 6887 Pred = ICmpInst::ICMP_NE; 6888 RHS = getConstant(RA + 1); 6889 Changed = true; 6890 break; 6891 } 6892 if (RA.isMinValue()) { 6893 Pred = ICmpInst::ICMP_EQ; 6894 Changed = true; 6895 break; 6896 } 6897 if (RA.isMaxValue()) goto trivially_true; 6898 6899 Pred = ICmpInst::ICMP_ULT; 6900 RHS = getConstant(RA + 1); 6901 Changed = true; 6902 break; 6903 case ICmpInst::ICMP_SGE: 6904 if ((RA - 1).isMinSignedValue()) { 6905 Pred = ICmpInst::ICMP_NE; 6906 RHS = getConstant(RA - 1); 6907 Changed = true; 6908 break; 6909 } 6910 if (RA.isMaxSignedValue()) { 6911 Pred = ICmpInst::ICMP_EQ; 6912 Changed = true; 6913 break; 6914 } 6915 if (RA.isMinSignedValue()) goto trivially_true; 6916 6917 Pred = ICmpInst::ICMP_SGT; 6918 RHS = getConstant(RA - 1); 6919 Changed = true; 6920 break; 6921 case ICmpInst::ICMP_SLE: 6922 if ((RA + 1).isMaxSignedValue()) { 6923 Pred = ICmpInst::ICMP_NE; 6924 RHS = getConstant(RA + 1); 6925 Changed = true; 6926 break; 6927 } 6928 if (RA.isMinSignedValue()) { 6929 Pred = ICmpInst::ICMP_EQ; 6930 Changed = true; 6931 break; 6932 } 6933 if (RA.isMaxSignedValue()) goto trivially_true; 6934 6935 Pred = ICmpInst::ICMP_SLT; 6936 RHS = getConstant(RA + 1); 6937 Changed = true; 6938 break; 6939 case ICmpInst::ICMP_UGT: 6940 if (RA.isMinValue()) { 6941 Pred = ICmpInst::ICMP_NE; 6942 Changed = true; 6943 break; 6944 } 6945 if ((RA + 1).isMaxValue()) { 6946 Pred = ICmpInst::ICMP_EQ; 6947 RHS = getConstant(RA + 1); 6948 Changed = true; 6949 break; 6950 } 6951 if (RA.isMaxValue()) goto trivially_false; 6952 break; 6953 case ICmpInst::ICMP_ULT: 6954 if (RA.isMaxValue()) { 6955 Pred = ICmpInst::ICMP_NE; 6956 Changed = true; 6957 break; 6958 } 6959 if ((RA - 1).isMinValue()) { 6960 Pred = ICmpInst::ICMP_EQ; 6961 RHS = getConstant(RA - 1); 6962 Changed = true; 6963 break; 6964 } 6965 if (RA.isMinValue()) goto trivially_false; 6966 break; 6967 case ICmpInst::ICMP_SGT: 6968 if (RA.isMinSignedValue()) { 6969 Pred = ICmpInst::ICMP_NE; 6970 Changed = true; 6971 break; 6972 } 6973 if ((RA + 1).isMaxSignedValue()) { 6974 Pred = ICmpInst::ICMP_EQ; 6975 RHS = getConstant(RA + 1); 6976 Changed = true; 6977 break; 6978 } 6979 if (RA.isMaxSignedValue()) goto trivially_false; 6980 break; 6981 case ICmpInst::ICMP_SLT: 6982 if (RA.isMaxSignedValue()) { 6983 Pred = ICmpInst::ICMP_NE; 6984 Changed = true; 6985 break; 6986 } 6987 if ((RA - 1).isMinSignedValue()) { 6988 Pred = ICmpInst::ICMP_EQ; 6989 RHS = getConstant(RA - 1); 6990 Changed = true; 6991 break; 6992 } 6993 if (RA.isMinSignedValue()) goto trivially_false; 6994 break; 6995 } 6996 } 6997 6998 // Check for obvious equality. 6999 if (HasSameValue(LHS, RHS)) { 7000 if (ICmpInst::isTrueWhenEqual(Pred)) 7001 goto trivially_true; 7002 if (ICmpInst::isFalseWhenEqual(Pred)) 7003 goto trivially_false; 7004 } 7005 7006 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7007 // adding or subtracting 1 from one of the operands. 7008 switch (Pred) { 7009 case ICmpInst::ICMP_SLE: 7010 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7011 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7012 SCEV::FlagNSW); 7013 Pred = ICmpInst::ICMP_SLT; 7014 Changed = true; 7015 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7016 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7017 SCEV::FlagNSW); 7018 Pred = ICmpInst::ICMP_SLT; 7019 Changed = true; 7020 } 7021 break; 7022 case ICmpInst::ICMP_SGE: 7023 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7024 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7025 SCEV::FlagNSW); 7026 Pred = ICmpInst::ICMP_SGT; 7027 Changed = true; 7028 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7029 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7030 SCEV::FlagNSW); 7031 Pred = ICmpInst::ICMP_SGT; 7032 Changed = true; 7033 } 7034 break; 7035 case ICmpInst::ICMP_ULE: 7036 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7037 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7038 SCEV::FlagNUW); 7039 Pred = ICmpInst::ICMP_ULT; 7040 Changed = true; 7041 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7042 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7043 Pred = ICmpInst::ICMP_ULT; 7044 Changed = true; 7045 } 7046 break; 7047 case ICmpInst::ICMP_UGE: 7048 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7049 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7050 Pred = ICmpInst::ICMP_UGT; 7051 Changed = true; 7052 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7053 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7054 SCEV::FlagNUW); 7055 Pred = ICmpInst::ICMP_UGT; 7056 Changed = true; 7057 } 7058 break; 7059 default: 7060 break; 7061 } 7062 7063 // TODO: More simplifications are possible here. 7064 7065 // Recursively simplify until we either hit a recursion limit or nothing 7066 // changes. 7067 if (Changed) 7068 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7069 7070 return Changed; 7071 7072 trivially_true: 7073 // Return 0 == 0. 7074 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7075 Pred = ICmpInst::ICMP_EQ; 7076 return true; 7077 7078 trivially_false: 7079 // Return 0 != 0. 7080 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7081 Pred = ICmpInst::ICMP_NE; 7082 return true; 7083 } 7084 7085 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7086 return getSignedRange(S).getSignedMax().isNegative(); 7087 } 7088 7089 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7090 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7091 } 7092 7093 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7094 return !getSignedRange(S).getSignedMin().isNegative(); 7095 } 7096 7097 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7098 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7099 } 7100 7101 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7102 return isKnownNegative(S) || isKnownPositive(S); 7103 } 7104 7105 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7106 const SCEV *LHS, const SCEV *RHS) { 7107 // Canonicalize the inputs first. 7108 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7109 7110 // If LHS or RHS is an addrec, check to see if the condition is true in 7111 // every iteration of the loop. 7112 // If LHS and RHS are both addrec, both conditions must be true in 7113 // every iteration of the loop. 7114 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7115 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7116 bool LeftGuarded = false; 7117 bool RightGuarded = false; 7118 if (LAR) { 7119 const Loop *L = LAR->getLoop(); 7120 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7121 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7122 if (!RAR) return true; 7123 LeftGuarded = true; 7124 } 7125 } 7126 if (RAR) { 7127 const Loop *L = RAR->getLoop(); 7128 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7129 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7130 if (!LAR) return true; 7131 RightGuarded = true; 7132 } 7133 } 7134 if (LeftGuarded && RightGuarded) 7135 return true; 7136 7137 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7138 return true; 7139 7140 // Otherwise see what can be done with known constant ranges. 7141 return isKnownPredicateWithRanges(Pred, LHS, RHS); 7142 } 7143 7144 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7145 ICmpInst::Predicate Pred, 7146 bool &Increasing) { 7147 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7148 7149 #ifndef NDEBUG 7150 // Verify an invariant: inverting the predicate should turn a monotonically 7151 // increasing change to a monotonically decreasing one, and vice versa. 7152 bool IncreasingSwapped; 7153 bool ResultSwapped = isMonotonicPredicateImpl( 7154 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7155 7156 assert(Result == ResultSwapped && "should be able to analyze both!"); 7157 if (ResultSwapped) 7158 assert(Increasing == !IncreasingSwapped && 7159 "monotonicity should flip as we flip the predicate"); 7160 #endif 7161 7162 return Result; 7163 } 7164 7165 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7166 ICmpInst::Predicate Pred, 7167 bool &Increasing) { 7168 7169 // A zero step value for LHS means the induction variable is essentially a 7170 // loop invariant value. We don't really depend on the predicate actually 7171 // flipping from false to true (for increasing predicates, and the other way 7172 // around for decreasing predicates), all we care about is that *if* the 7173 // predicate changes then it only changes from false to true. 7174 // 7175 // A zero step value in itself is not very useful, but there may be places 7176 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7177 // as general as possible. 7178 7179 switch (Pred) { 7180 default: 7181 return false; // Conservative answer 7182 7183 case ICmpInst::ICMP_UGT: 7184 case ICmpInst::ICMP_UGE: 7185 case ICmpInst::ICMP_ULT: 7186 case ICmpInst::ICMP_ULE: 7187 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 7188 return false; 7189 7190 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7191 return true; 7192 7193 case ICmpInst::ICMP_SGT: 7194 case ICmpInst::ICMP_SGE: 7195 case ICmpInst::ICMP_SLT: 7196 case ICmpInst::ICMP_SLE: { 7197 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 7198 return false; 7199 7200 const SCEV *Step = LHS->getStepRecurrence(*this); 7201 7202 if (isKnownNonNegative(Step)) { 7203 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7204 return true; 7205 } 7206 7207 if (isKnownNonPositive(Step)) { 7208 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7209 return true; 7210 } 7211 7212 return false; 7213 } 7214 7215 } 7216 7217 llvm_unreachable("switch has default clause!"); 7218 } 7219 7220 bool ScalarEvolution::isLoopInvariantPredicate( 7221 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7222 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7223 const SCEV *&InvariantRHS) { 7224 7225 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7226 if (!isLoopInvariant(RHS, L)) { 7227 if (!isLoopInvariant(LHS, L)) 7228 return false; 7229 7230 std::swap(LHS, RHS); 7231 Pred = ICmpInst::getSwappedPredicate(Pred); 7232 } 7233 7234 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7235 if (!ArLHS || ArLHS->getLoop() != L) 7236 return false; 7237 7238 bool Increasing; 7239 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7240 return false; 7241 7242 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7243 // true as the loop iterates, and the backedge is control dependent on 7244 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7245 // 7246 // * if the predicate was false in the first iteration then the predicate 7247 // is never evaluated again, since the loop exits without taking the 7248 // backedge. 7249 // * if the predicate was true in the first iteration then it will 7250 // continue to be true for all future iterations since it is 7251 // monotonically increasing. 7252 // 7253 // For both the above possibilities, we can replace the loop varying 7254 // predicate with its value on the first iteration of the loop (which is 7255 // loop invariant). 7256 // 7257 // A similar reasoning applies for a monotonically decreasing predicate, by 7258 // replacing true with false and false with true in the above two bullets. 7259 7260 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7261 7262 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7263 return false; 7264 7265 InvariantPred = Pred; 7266 InvariantLHS = ArLHS->getStart(); 7267 InvariantRHS = RHS; 7268 return true; 7269 } 7270 7271 bool 7272 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 7273 const SCEV *LHS, const SCEV *RHS) { 7274 if (HasSameValue(LHS, RHS)) 7275 return ICmpInst::isTrueWhenEqual(Pred); 7276 7277 // This code is split out from isKnownPredicate because it is called from 7278 // within isLoopEntryGuardedByCond. 7279 switch (Pred) { 7280 default: 7281 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7282 case ICmpInst::ICMP_SGT: 7283 std::swap(LHS, RHS); 7284 case ICmpInst::ICMP_SLT: { 7285 ConstantRange LHSRange = getSignedRange(LHS); 7286 ConstantRange RHSRange = getSignedRange(RHS); 7287 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7288 return true; 7289 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7290 return false; 7291 break; 7292 } 7293 case ICmpInst::ICMP_SGE: 7294 std::swap(LHS, RHS); 7295 case ICmpInst::ICMP_SLE: { 7296 ConstantRange LHSRange = getSignedRange(LHS); 7297 ConstantRange RHSRange = getSignedRange(RHS); 7298 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7299 return true; 7300 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7301 return false; 7302 break; 7303 } 7304 case ICmpInst::ICMP_UGT: 7305 std::swap(LHS, RHS); 7306 case ICmpInst::ICMP_ULT: { 7307 ConstantRange LHSRange = getUnsignedRange(LHS); 7308 ConstantRange RHSRange = getUnsignedRange(RHS); 7309 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7310 return true; 7311 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7312 return false; 7313 break; 7314 } 7315 case ICmpInst::ICMP_UGE: 7316 std::swap(LHS, RHS); 7317 case ICmpInst::ICMP_ULE: { 7318 ConstantRange LHSRange = getUnsignedRange(LHS); 7319 ConstantRange RHSRange = getUnsignedRange(RHS); 7320 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7321 return true; 7322 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7323 return false; 7324 break; 7325 } 7326 case ICmpInst::ICMP_NE: { 7327 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7328 return true; 7329 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7330 return true; 7331 7332 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7333 if (isKnownNonZero(Diff)) 7334 return true; 7335 break; 7336 } 7337 case ICmpInst::ICMP_EQ: 7338 // The check at the top of the function catches the case where 7339 // the values are known to be equal. 7340 break; 7341 } 7342 return false; 7343 } 7344 7345 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7346 const SCEV *LHS, 7347 const SCEV *RHS) { 7348 7349 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7350 // Return Y via OutY. 7351 auto MatchBinaryAddToConst = 7352 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7353 SCEV::NoWrapFlags ExpectedFlags) { 7354 const SCEV *NonConstOp, *ConstOp; 7355 SCEV::NoWrapFlags FlagsPresent; 7356 7357 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7358 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7359 return false; 7360 7361 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue(); 7362 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7363 }; 7364 7365 APInt C; 7366 7367 switch (Pred) { 7368 default: 7369 break; 7370 7371 case ICmpInst::ICMP_SGE: 7372 std::swap(LHS, RHS); 7373 case ICmpInst::ICMP_SLE: 7374 // X s<= (X + C)<nsw> if C >= 0 7375 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7376 return true; 7377 7378 // (X + C)<nsw> s<= X if C <= 0 7379 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7380 !C.isStrictlyPositive()) 7381 return true; 7382 break; 7383 7384 case ICmpInst::ICMP_SGT: 7385 std::swap(LHS, RHS); 7386 case ICmpInst::ICMP_SLT: 7387 // X s< (X + C)<nsw> if C > 0 7388 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7389 C.isStrictlyPositive()) 7390 return true; 7391 7392 // (X + C)<nsw> s< X if C < 0 7393 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7394 return true; 7395 break; 7396 } 7397 7398 return false; 7399 } 7400 7401 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7402 const SCEV *LHS, 7403 const SCEV *RHS) { 7404 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7405 return false; 7406 7407 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7408 // the stack can result in exponential time complexity. 7409 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7410 7411 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7412 // 7413 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7414 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7415 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7416 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7417 // use isKnownPredicate later if needed. 7418 return isKnownNonNegative(RHS) && 7419 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7420 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7421 } 7422 7423 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7424 /// protected by a conditional between LHS and RHS. This is used to 7425 /// to eliminate casts. 7426 bool 7427 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7428 ICmpInst::Predicate Pred, 7429 const SCEV *LHS, const SCEV *RHS) { 7430 // Interpret a null as meaning no loop, where there is obviously no guard 7431 // (interprocedural conditions notwithstanding). 7432 if (!L) return true; 7433 7434 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7435 7436 BasicBlock *Latch = L->getLoopLatch(); 7437 if (!Latch) 7438 return false; 7439 7440 BranchInst *LoopContinuePredicate = 7441 dyn_cast<BranchInst>(Latch->getTerminator()); 7442 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7443 isImpliedCond(Pred, LHS, RHS, 7444 LoopContinuePredicate->getCondition(), 7445 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7446 return true; 7447 7448 // We don't want more than one activation of the following loops on the stack 7449 // -- that can lead to O(n!) time complexity. 7450 if (WalkingBEDominatingConds) 7451 return false; 7452 7453 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7454 7455 // See if we can exploit a trip count to prove the predicate. 7456 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7457 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7458 if (LatchBECount != getCouldNotCompute()) { 7459 // We know that Latch branches back to the loop header exactly 7460 // LatchBECount times. This means the backdege condition at Latch is 7461 // equivalent to "{0,+,1} u< LatchBECount". 7462 Type *Ty = LatchBECount->getType(); 7463 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7464 const SCEV *LoopCounter = 7465 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7466 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7467 LatchBECount)) 7468 return true; 7469 } 7470 7471 // Check conditions due to any @llvm.assume intrinsics. 7472 for (auto &AssumeVH : AC.assumptions()) { 7473 if (!AssumeVH) 7474 continue; 7475 auto *CI = cast<CallInst>(AssumeVH); 7476 if (!DT.dominates(CI, Latch->getTerminator())) 7477 continue; 7478 7479 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7480 return true; 7481 } 7482 7483 // If the loop is not reachable from the entry block, we risk running into an 7484 // infinite loop as we walk up into the dom tree. These loops do not matter 7485 // anyway, so we just return a conservative answer when we see them. 7486 if (!DT.isReachableFromEntry(L->getHeader())) 7487 return false; 7488 7489 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7490 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7491 7492 assert(DTN && "should reach the loop header before reaching the root!"); 7493 7494 BasicBlock *BB = DTN->getBlock(); 7495 BasicBlock *PBB = BB->getSinglePredecessor(); 7496 if (!PBB) 7497 continue; 7498 7499 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7500 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7501 continue; 7502 7503 Value *Condition = ContinuePredicate->getCondition(); 7504 7505 // If we have an edge `E` within the loop body that dominates the only 7506 // latch, the condition guarding `E` also guards the backedge. This 7507 // reasoning works only for loops with a single latch. 7508 7509 BasicBlockEdge DominatingEdge(PBB, BB); 7510 if (DominatingEdge.isSingleEdge()) { 7511 // We're constructively (and conservatively) enumerating edges within the 7512 // loop body that dominate the latch. The dominator tree better agree 7513 // with us on this: 7514 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7515 7516 if (isImpliedCond(Pred, LHS, RHS, Condition, 7517 BB != ContinuePredicate->getSuccessor(0))) 7518 return true; 7519 } 7520 } 7521 7522 return false; 7523 } 7524 7525 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7526 /// by a conditional between LHS and RHS. This is used to help avoid max 7527 /// expressions in loop trip counts, and to eliminate casts. 7528 bool 7529 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7530 ICmpInst::Predicate Pred, 7531 const SCEV *LHS, const SCEV *RHS) { 7532 // Interpret a null as meaning no loop, where there is obviously no guard 7533 // (interprocedural conditions notwithstanding). 7534 if (!L) return false; 7535 7536 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7537 7538 // Starting at the loop predecessor, climb up the predecessor chain, as long 7539 // as there are predecessors that can be found that have unique successors 7540 // leading to the original header. 7541 for (std::pair<BasicBlock *, BasicBlock *> 7542 Pair(L->getLoopPredecessor(), L->getHeader()); 7543 Pair.first; 7544 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7545 7546 BranchInst *LoopEntryPredicate = 7547 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7548 if (!LoopEntryPredicate || 7549 LoopEntryPredicate->isUnconditional()) 7550 continue; 7551 7552 if (isImpliedCond(Pred, LHS, RHS, 7553 LoopEntryPredicate->getCondition(), 7554 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7555 return true; 7556 } 7557 7558 // Check conditions due to any @llvm.assume intrinsics. 7559 for (auto &AssumeVH : AC.assumptions()) { 7560 if (!AssumeVH) 7561 continue; 7562 auto *CI = cast<CallInst>(AssumeVH); 7563 if (!DT.dominates(CI, L->getHeader())) 7564 continue; 7565 7566 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7567 return true; 7568 } 7569 7570 return false; 7571 } 7572 7573 namespace { 7574 /// RAII wrapper to prevent recursive application of isImpliedCond. 7575 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7576 /// currently evaluating isImpliedCond. 7577 struct MarkPendingLoopPredicate { 7578 Value *Cond; 7579 DenseSet<Value*> &LoopPreds; 7580 bool Pending; 7581 7582 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7583 : Cond(C), LoopPreds(LP) { 7584 Pending = !LoopPreds.insert(Cond).second; 7585 } 7586 ~MarkPendingLoopPredicate() { 7587 if (!Pending) 7588 LoopPreds.erase(Cond); 7589 } 7590 }; 7591 } // end anonymous namespace 7592 7593 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7594 /// and RHS is true whenever the given Cond value evaluates to true. 7595 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7596 const SCEV *LHS, const SCEV *RHS, 7597 Value *FoundCondValue, 7598 bool Inverse) { 7599 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7600 if (Mark.Pending) 7601 return false; 7602 7603 // Recursively handle And and Or conditions. 7604 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7605 if (BO->getOpcode() == Instruction::And) { 7606 if (!Inverse) 7607 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7608 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7609 } else if (BO->getOpcode() == Instruction::Or) { 7610 if (Inverse) 7611 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7612 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7613 } 7614 } 7615 7616 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7617 if (!ICI) return false; 7618 7619 // Now that we found a conditional branch that dominates the loop or controls 7620 // the loop latch. Check to see if it is the comparison we are looking for. 7621 ICmpInst::Predicate FoundPred; 7622 if (Inverse) 7623 FoundPred = ICI->getInversePredicate(); 7624 else 7625 FoundPred = ICI->getPredicate(); 7626 7627 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7628 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7629 7630 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7631 } 7632 7633 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7634 const SCEV *RHS, 7635 ICmpInst::Predicate FoundPred, 7636 const SCEV *FoundLHS, 7637 const SCEV *FoundRHS) { 7638 // Balance the types. 7639 if (getTypeSizeInBits(LHS->getType()) < 7640 getTypeSizeInBits(FoundLHS->getType())) { 7641 if (CmpInst::isSigned(Pred)) { 7642 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7643 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7644 } else { 7645 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7646 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7647 } 7648 } else if (getTypeSizeInBits(LHS->getType()) > 7649 getTypeSizeInBits(FoundLHS->getType())) { 7650 if (CmpInst::isSigned(FoundPred)) { 7651 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7652 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7653 } else { 7654 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7655 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7656 } 7657 } 7658 7659 // Canonicalize the query to match the way instcombine will have 7660 // canonicalized the comparison. 7661 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7662 if (LHS == RHS) 7663 return CmpInst::isTrueWhenEqual(Pred); 7664 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7665 if (FoundLHS == FoundRHS) 7666 return CmpInst::isFalseWhenEqual(FoundPred); 7667 7668 // Check to see if we can make the LHS or RHS match. 7669 if (LHS == FoundRHS || RHS == FoundLHS) { 7670 if (isa<SCEVConstant>(RHS)) { 7671 std::swap(FoundLHS, FoundRHS); 7672 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7673 } else { 7674 std::swap(LHS, RHS); 7675 Pred = ICmpInst::getSwappedPredicate(Pred); 7676 } 7677 } 7678 7679 // Check whether the found predicate is the same as the desired predicate. 7680 if (FoundPred == Pred) 7681 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7682 7683 // Check whether swapping the found predicate makes it the same as the 7684 // desired predicate. 7685 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7686 if (isa<SCEVConstant>(RHS)) 7687 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7688 else 7689 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7690 RHS, LHS, FoundLHS, FoundRHS); 7691 } 7692 7693 // Unsigned comparison is the same as signed comparison when both the operands 7694 // are non-negative. 7695 if (CmpInst::isUnsigned(FoundPred) && 7696 CmpInst::getSignedPredicate(FoundPred) == Pred && 7697 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7698 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7699 7700 // Check if we can make progress by sharpening ranges. 7701 if (FoundPred == ICmpInst::ICMP_NE && 7702 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7703 7704 const SCEVConstant *C = nullptr; 7705 const SCEV *V = nullptr; 7706 7707 if (isa<SCEVConstant>(FoundLHS)) { 7708 C = cast<SCEVConstant>(FoundLHS); 7709 V = FoundRHS; 7710 } else { 7711 C = cast<SCEVConstant>(FoundRHS); 7712 V = FoundLHS; 7713 } 7714 7715 // The guarding predicate tells us that C != V. If the known range 7716 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7717 // range we consider has to correspond to same signedness as the 7718 // predicate we're interested in folding. 7719 7720 APInt Min = ICmpInst::isSigned(Pred) ? 7721 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7722 7723 if (Min == C->getValue()->getValue()) { 7724 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7725 // This is true even if (Min + 1) wraps around -- in case of 7726 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7727 7728 APInt SharperMin = Min + 1; 7729 7730 switch (Pred) { 7731 case ICmpInst::ICMP_SGE: 7732 case ICmpInst::ICMP_UGE: 7733 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7734 // RHS, we're done. 7735 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7736 getConstant(SharperMin))) 7737 return true; 7738 7739 case ICmpInst::ICMP_SGT: 7740 case ICmpInst::ICMP_UGT: 7741 // We know from the range information that (V `Pred` Min || 7742 // V == Min). We know from the guarding condition that !(V 7743 // == Min). This gives us 7744 // 7745 // V `Pred` Min || V == Min && !(V == Min) 7746 // => V `Pred` Min 7747 // 7748 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7749 7750 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7751 return true; 7752 7753 default: 7754 // No change 7755 break; 7756 } 7757 } 7758 } 7759 7760 // Check whether the actual condition is beyond sufficient. 7761 if (FoundPred == ICmpInst::ICMP_EQ) 7762 if (ICmpInst::isTrueWhenEqual(Pred)) 7763 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7764 return true; 7765 if (Pred == ICmpInst::ICMP_NE) 7766 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7767 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7768 return true; 7769 7770 // Otherwise assume the worst. 7771 return false; 7772 } 7773 7774 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7775 const SCEV *&L, const SCEV *&R, 7776 SCEV::NoWrapFlags &Flags) { 7777 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7778 if (!AE || AE->getNumOperands() != 2) 7779 return false; 7780 7781 L = AE->getOperand(0); 7782 R = AE->getOperand(1); 7783 Flags = AE->getNoWrapFlags(); 7784 return true; 7785 } 7786 7787 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7788 const SCEV *More, 7789 APInt &C) { 7790 // We avoid subtracting expressions here because this function is usually 7791 // fairly deep in the call stack (i.e. is called many times). 7792 7793 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7794 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7795 const auto *MAR = cast<SCEVAddRecExpr>(More); 7796 7797 if (LAR->getLoop() != MAR->getLoop()) 7798 return false; 7799 7800 // We look at affine expressions only; not for correctness but to keep 7801 // getStepRecurrence cheap. 7802 if (!LAR->isAffine() || !MAR->isAffine()) 7803 return false; 7804 7805 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7806 return false; 7807 7808 Less = LAR->getStart(); 7809 More = MAR->getStart(); 7810 7811 // fall through 7812 } 7813 7814 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7815 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7816 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7817 C = M - L; 7818 return true; 7819 } 7820 7821 const SCEV *L, *R; 7822 SCEV::NoWrapFlags Flags; 7823 if (splitBinaryAdd(Less, L, R, Flags)) 7824 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7825 if (R == More) { 7826 C = -(LC->getValue()->getValue()); 7827 return true; 7828 } 7829 7830 if (splitBinaryAdd(More, L, R, Flags)) 7831 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7832 if (R == Less) { 7833 C = LC->getValue()->getValue(); 7834 return true; 7835 } 7836 7837 return false; 7838 } 7839 7840 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7841 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7842 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7843 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7844 return false; 7845 7846 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7847 if (!AddRecLHS) 7848 return false; 7849 7850 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7851 if (!AddRecFoundLHS) 7852 return false; 7853 7854 // We'd like to let SCEV reason about control dependencies, so we constrain 7855 // both the inequalities to be about add recurrences on the same loop. This 7856 // way we can use isLoopEntryGuardedByCond later. 7857 7858 const Loop *L = AddRecFoundLHS->getLoop(); 7859 if (L != AddRecLHS->getLoop()) 7860 return false; 7861 7862 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7863 // 7864 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7865 // ... (2) 7866 // 7867 // Informal proof for (2), assuming (1) [*]: 7868 // 7869 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7870 // 7871 // Then 7872 // 7873 // FoundLHS s< FoundRHS s< INT_MIN - C 7874 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7875 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7876 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7877 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7878 // <=> FoundLHS + C s< FoundRHS + C 7879 // 7880 // [*]: (1) can be proved by ruling out overflow. 7881 // 7882 // [**]: This can be proved by analyzing all the four possibilities: 7883 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7884 // (A s>= 0, B s>= 0). 7885 // 7886 // Note: 7887 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7888 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7889 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7890 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7891 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7892 // C)". 7893 7894 APInt LDiff, RDiff; 7895 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7896 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7897 LDiff != RDiff) 7898 return false; 7899 7900 if (LDiff == 0) 7901 return true; 7902 7903 APInt FoundRHSLimit; 7904 7905 if (Pred == CmpInst::ICMP_ULT) { 7906 FoundRHSLimit = -RDiff; 7907 } else { 7908 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7909 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7910 } 7911 7912 // Try to prove (1) or (2), as needed. 7913 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7914 getConstant(FoundRHSLimit)); 7915 } 7916 7917 /// isImpliedCondOperands - Test whether the condition described by Pred, 7918 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7919 /// and FoundRHS is true. 7920 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7921 const SCEV *LHS, const SCEV *RHS, 7922 const SCEV *FoundLHS, 7923 const SCEV *FoundRHS) { 7924 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7925 return true; 7926 7927 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7928 return true; 7929 7930 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7931 FoundLHS, FoundRHS) || 7932 // ~x < ~y --> x > y 7933 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7934 getNotSCEV(FoundRHS), 7935 getNotSCEV(FoundLHS)); 7936 } 7937 7938 7939 /// If Expr computes ~A, return A else return nullptr 7940 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7941 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7942 if (!Add || Add->getNumOperands() != 2 || 7943 !Add->getOperand(0)->isAllOnesValue()) 7944 return nullptr; 7945 7946 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7947 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7948 !AddRHS->getOperand(0)->isAllOnesValue()) 7949 return nullptr; 7950 7951 return AddRHS->getOperand(1); 7952 } 7953 7954 7955 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7956 template<typename MaxExprType> 7957 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7958 const SCEV *Candidate) { 7959 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7960 if (!MaxExpr) return false; 7961 7962 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 7963 } 7964 7965 7966 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7967 template<typename MaxExprType> 7968 static bool IsMinConsistingOf(ScalarEvolution &SE, 7969 const SCEV *MaybeMinExpr, 7970 const SCEV *Candidate) { 7971 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7972 if (!MaybeMaxExpr) 7973 return false; 7974 7975 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7976 } 7977 7978 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7979 ICmpInst::Predicate Pred, 7980 const SCEV *LHS, const SCEV *RHS) { 7981 7982 // If both sides are affine addrecs for the same loop, with equal 7983 // steps, and we know the recurrences don't wrap, then we only 7984 // need to check the predicate on the starting values. 7985 7986 if (!ICmpInst::isRelational(Pred)) 7987 return false; 7988 7989 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7990 if (!LAR) 7991 return false; 7992 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7993 if (!RAR) 7994 return false; 7995 if (LAR->getLoop() != RAR->getLoop()) 7996 return false; 7997 if (!LAR->isAffine() || !RAR->isAffine()) 7998 return false; 7999 8000 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8001 return false; 8002 8003 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8004 SCEV::FlagNSW : SCEV::FlagNUW; 8005 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8006 return false; 8007 8008 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8009 } 8010 8011 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8012 /// expression? 8013 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8014 ICmpInst::Predicate Pred, 8015 const SCEV *LHS, const SCEV *RHS) { 8016 switch (Pred) { 8017 default: 8018 return false; 8019 8020 case ICmpInst::ICMP_SGE: 8021 std::swap(LHS, RHS); 8022 // fall through 8023 case ICmpInst::ICMP_SLE: 8024 return 8025 // min(A, ...) <= A 8026 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8027 // A <= max(A, ...) 8028 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8029 8030 case ICmpInst::ICMP_UGE: 8031 std::swap(LHS, RHS); 8032 // fall through 8033 case ICmpInst::ICMP_ULE: 8034 return 8035 // min(A, ...) <= A 8036 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8037 // A <= max(A, ...) 8038 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8039 } 8040 8041 llvm_unreachable("covered switch fell through?!"); 8042 } 8043 8044 /// isImpliedCondOperandsHelper - Test whether the condition described by 8045 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 8046 /// FoundLHS, and FoundRHS is true. 8047 bool 8048 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8049 const SCEV *LHS, const SCEV *RHS, 8050 const SCEV *FoundLHS, 8051 const SCEV *FoundRHS) { 8052 auto IsKnownPredicateFull = 8053 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8054 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 8055 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8056 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8057 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8058 }; 8059 8060 switch (Pred) { 8061 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8062 case ICmpInst::ICMP_EQ: 8063 case ICmpInst::ICMP_NE: 8064 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8065 return true; 8066 break; 8067 case ICmpInst::ICMP_SLT: 8068 case ICmpInst::ICMP_SLE: 8069 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8070 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8071 return true; 8072 break; 8073 case ICmpInst::ICMP_SGT: 8074 case ICmpInst::ICMP_SGE: 8075 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8076 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8077 return true; 8078 break; 8079 case ICmpInst::ICMP_ULT: 8080 case ICmpInst::ICMP_ULE: 8081 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8082 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8083 return true; 8084 break; 8085 case ICmpInst::ICMP_UGT: 8086 case ICmpInst::ICMP_UGE: 8087 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8088 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8089 return true; 8090 break; 8091 } 8092 8093 return false; 8094 } 8095 8096 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 8097 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 8098 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8099 const SCEV *LHS, 8100 const SCEV *RHS, 8101 const SCEV *FoundLHS, 8102 const SCEV *FoundRHS) { 8103 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8104 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8105 // reduce the compile time impact of this optimization. 8106 return false; 8107 8108 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 8109 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 8110 !isa<SCEVConstant>(AddLHS->getOperand(0))) 8111 return false; 8112 8113 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 8114 8115 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8116 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8117 ConstantRange FoundLHSRange = 8118 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8119 8120 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 8121 // for `LHS`: 8122 APInt Addend = 8123 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 8124 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 8125 8126 // We can also compute the range of values for `LHS` that satisfy the 8127 // consequent, "`LHS` `Pred` `RHS`": 8128 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 8129 ConstantRange SatisfyingLHSRange = 8130 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8131 8132 // The antecedent implies the consequent if every value of `LHS` that 8133 // satisfies the antecedent also satisfies the consequent. 8134 return SatisfyingLHSRange.contains(LHSRange); 8135 } 8136 8137 // Verify if an linear IV with positive stride can overflow when in a 8138 // less-than comparison, knowing the invariant term of the comparison, the 8139 // stride and the knowledge of NSW/NUW flags on the recurrence. 8140 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8141 bool IsSigned, bool NoWrap) { 8142 if (NoWrap) return false; 8143 8144 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8145 const SCEV *One = getOne(Stride->getType()); 8146 8147 if (IsSigned) { 8148 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8149 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8150 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8151 .getSignedMax(); 8152 8153 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8154 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8155 } 8156 8157 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8158 APInt MaxValue = APInt::getMaxValue(BitWidth); 8159 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8160 .getUnsignedMax(); 8161 8162 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8163 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8164 } 8165 8166 // Verify if an linear IV with negative stride can overflow when in a 8167 // greater-than comparison, knowing the invariant term of the comparison, 8168 // the stride and the knowledge of NSW/NUW flags on the recurrence. 8169 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8170 bool IsSigned, bool NoWrap) { 8171 if (NoWrap) return false; 8172 8173 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8174 const SCEV *One = getOne(Stride->getType()); 8175 8176 if (IsSigned) { 8177 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8178 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8179 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8180 .getSignedMax(); 8181 8182 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8183 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8184 } 8185 8186 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8187 APInt MinValue = APInt::getMinValue(BitWidth); 8188 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8189 .getUnsignedMax(); 8190 8191 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8192 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8193 } 8194 8195 // Compute the backedge taken count knowing the interval difference, the 8196 // stride and presence of the equality in the comparison. 8197 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8198 bool Equality) { 8199 const SCEV *One = getOne(Step->getType()); 8200 Delta = Equality ? getAddExpr(Delta, Step) 8201 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8202 return getUDivExpr(Delta, Step); 8203 } 8204 8205 /// HowManyLessThans - Return the number of times a backedge containing the 8206 /// specified less-than comparison will execute. If not computable, return 8207 /// CouldNotCompute. 8208 /// 8209 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8210 /// the branch (loops exits only if condition is true). In this case, we can use 8211 /// NoWrapFlags to skip overflow checks. 8212 ScalarEvolution::ExitLimit 8213 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8214 const Loop *L, bool IsSigned, 8215 bool ControlsExit) { 8216 // We handle only IV < Invariant 8217 if (!isLoopInvariant(RHS, L)) 8218 return getCouldNotCompute(); 8219 8220 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8221 8222 // Avoid weird loops 8223 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8224 return getCouldNotCompute(); 8225 8226 bool NoWrap = ControlsExit && 8227 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8228 8229 const SCEV *Stride = IV->getStepRecurrence(*this); 8230 8231 // Avoid negative or zero stride values 8232 if (!isKnownPositive(Stride)) 8233 return getCouldNotCompute(); 8234 8235 // Avoid proven overflow cases: this will ensure that the backedge taken count 8236 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8237 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8238 // behaviors like the case of C language. 8239 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8240 return getCouldNotCompute(); 8241 8242 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8243 : ICmpInst::ICMP_ULT; 8244 const SCEV *Start = IV->getStart(); 8245 const SCEV *End = RHS; 8246 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8247 const SCEV *Diff = getMinusSCEV(RHS, Start); 8248 // If we have NoWrap set, then we can assume that the increment won't 8249 // overflow, in which case if RHS - Start is a constant, we don't need to 8250 // do a max operation since we can just figure it out statically 8251 if (NoWrap && isa<SCEVConstant>(Diff)) { 8252 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8253 if (D.isNegative()) 8254 End = Start; 8255 } else 8256 End = IsSigned ? getSMaxExpr(RHS, Start) 8257 : getUMaxExpr(RHS, Start); 8258 } 8259 8260 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8261 8262 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8263 : getUnsignedRange(Start).getUnsignedMin(); 8264 8265 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8266 : getUnsignedRange(Stride).getUnsignedMin(); 8267 8268 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8269 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8270 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8271 8272 // Although End can be a MAX expression we estimate MaxEnd considering only 8273 // the case End = RHS. This is safe because in the other case (End - Start) 8274 // is zero, leading to a zero maximum backedge taken count. 8275 APInt MaxEnd = 8276 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8277 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8278 8279 const SCEV *MaxBECount; 8280 if (isa<SCEVConstant>(BECount)) 8281 MaxBECount = BECount; 8282 else 8283 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8284 getConstant(MinStride), false); 8285 8286 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8287 MaxBECount = BECount; 8288 8289 return ExitLimit(BECount, MaxBECount); 8290 } 8291 8292 ScalarEvolution::ExitLimit 8293 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8294 const Loop *L, bool IsSigned, 8295 bool ControlsExit) { 8296 // We handle only IV > Invariant 8297 if (!isLoopInvariant(RHS, L)) 8298 return getCouldNotCompute(); 8299 8300 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8301 8302 // Avoid weird loops 8303 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8304 return getCouldNotCompute(); 8305 8306 bool NoWrap = ControlsExit && 8307 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8308 8309 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8310 8311 // Avoid negative or zero stride values 8312 if (!isKnownPositive(Stride)) 8313 return getCouldNotCompute(); 8314 8315 // Avoid proven overflow cases: this will ensure that the backedge taken count 8316 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8317 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8318 // behaviors like the case of C language. 8319 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8320 return getCouldNotCompute(); 8321 8322 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8323 : ICmpInst::ICMP_UGT; 8324 8325 const SCEV *Start = IV->getStart(); 8326 const SCEV *End = RHS; 8327 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8328 const SCEV *Diff = getMinusSCEV(RHS, Start); 8329 // If we have NoWrap set, then we can assume that the increment won't 8330 // overflow, in which case if RHS - Start is a constant, we don't need to 8331 // do a max operation since we can just figure it out statically 8332 if (NoWrap && isa<SCEVConstant>(Diff)) { 8333 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8334 if (!D.isNegative()) 8335 End = Start; 8336 } else 8337 End = IsSigned ? getSMinExpr(RHS, Start) 8338 : getUMinExpr(RHS, Start); 8339 } 8340 8341 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8342 8343 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8344 : getUnsignedRange(Start).getUnsignedMax(); 8345 8346 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8347 : getUnsignedRange(Stride).getUnsignedMin(); 8348 8349 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8350 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8351 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8352 8353 // Although End can be a MIN expression we estimate MinEnd considering only 8354 // the case End = RHS. This is safe because in the other case (Start - End) 8355 // is zero, leading to a zero maximum backedge taken count. 8356 APInt MinEnd = 8357 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8358 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8359 8360 8361 const SCEV *MaxBECount = getCouldNotCompute(); 8362 if (isa<SCEVConstant>(BECount)) 8363 MaxBECount = BECount; 8364 else 8365 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8366 getConstant(MinStride), false); 8367 8368 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8369 MaxBECount = BECount; 8370 8371 return ExitLimit(BECount, MaxBECount); 8372 } 8373 8374 /// getNumIterationsInRange - Return the number of iterations of this loop that 8375 /// produce values in the specified constant range. Another way of looking at 8376 /// this is that it returns the first iteration number where the value is not in 8377 /// the condition, thus computing the exit count. If the iteration count can't 8378 /// be computed, an instance of SCEVCouldNotCompute is returned. 8379 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8380 ScalarEvolution &SE) const { 8381 if (Range.isFullSet()) // Infinite loop. 8382 return SE.getCouldNotCompute(); 8383 8384 // If the start is a non-zero constant, shift the range to simplify things. 8385 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8386 if (!SC->getValue()->isZero()) { 8387 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8388 Operands[0] = SE.getZero(SC->getType()); 8389 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8390 getNoWrapFlags(FlagNW)); 8391 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8392 return ShiftedAddRec->getNumIterationsInRange( 8393 Range.subtract(SC->getValue()->getValue()), SE); 8394 // This is strange and shouldn't happen. 8395 return SE.getCouldNotCompute(); 8396 } 8397 8398 // The only time we can solve this is when we have all constant indices. 8399 // Otherwise, we cannot determine the overflow conditions. 8400 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8401 return SE.getCouldNotCompute(); 8402 8403 // Okay at this point we know that all elements of the chrec are constants and 8404 // that the start element is zero. 8405 8406 // First check to see if the range contains zero. If not, the first 8407 // iteration exits. 8408 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8409 if (!Range.contains(APInt(BitWidth, 0))) 8410 return SE.getZero(getType()); 8411 8412 if (isAffine()) { 8413 // If this is an affine expression then we have this situation: 8414 // Solve {0,+,A} in Range === Ax in Range 8415 8416 // We know that zero is in the range. If A is positive then we know that 8417 // the upper value of the range must be the first possible exit value. 8418 // If A is negative then the lower of the range is the last possible loop 8419 // value. Also note that we already checked for a full range. 8420 APInt One(BitWidth,1); 8421 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 8422 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8423 8424 // The exit value should be (End+A)/A. 8425 APInt ExitVal = (End + A).udiv(A); 8426 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8427 8428 // Evaluate at the exit value. If we really did fall out of the valid 8429 // range, then we computed our trip count, otherwise wrap around or other 8430 // things must have happened. 8431 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8432 if (Range.contains(Val->getValue())) 8433 return SE.getCouldNotCompute(); // Something strange happened 8434 8435 // Ensure that the previous value is in the range. This is a sanity check. 8436 assert(Range.contains( 8437 EvaluateConstantChrecAtConstant(this, 8438 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8439 "Linear scev computation is off in a bad way!"); 8440 return SE.getConstant(ExitValue); 8441 } else if (isQuadratic()) { 8442 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8443 // quadratic equation to solve it. To do this, we must frame our problem in 8444 // terms of figuring out when zero is crossed, instead of when 8445 // Range.getUpper() is crossed. 8446 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8447 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8448 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8449 // getNoWrapFlags(FlagNW) 8450 FlagAnyWrap); 8451 8452 // Next, solve the constructed addrec 8453 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8454 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8455 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8456 if (R1) { 8457 // Pick the smallest positive root value. 8458 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8459 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8460 if (!CB->getZExtValue()) 8461 std::swap(R1, R2); // R1 is the minimum root now. 8462 8463 // Make sure the root is not off by one. The returned iteration should 8464 // not be in the range, but the previous one should be. When solving 8465 // for "X*X < 5", for example, we should not return a root of 2. 8466 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8467 R1->getValue(), 8468 SE); 8469 if (Range.contains(R1Val->getValue())) { 8470 // The next iteration must be out of the range... 8471 ConstantInt *NextVal = 8472 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8473 8474 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8475 if (!Range.contains(R1Val->getValue())) 8476 return SE.getConstant(NextVal); 8477 return SE.getCouldNotCompute(); // Something strange happened 8478 } 8479 8480 // If R1 was not in the range, then it is a good return value. Make 8481 // sure that R1-1 WAS in the range though, just in case. 8482 ConstantInt *NextVal = 8483 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8484 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8485 if (Range.contains(R1Val->getValue())) 8486 return R1; 8487 return SE.getCouldNotCompute(); // Something strange happened 8488 } 8489 } 8490 } 8491 8492 return SE.getCouldNotCompute(); 8493 } 8494 8495 namespace { 8496 struct FindUndefs { 8497 bool Found; 8498 FindUndefs() : Found(false) {} 8499 8500 bool follow(const SCEV *S) { 8501 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8502 if (isa<UndefValue>(C->getValue())) 8503 Found = true; 8504 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8505 if (isa<UndefValue>(C->getValue())) 8506 Found = true; 8507 } 8508 8509 // Keep looking if we haven't found it yet. 8510 return !Found; 8511 } 8512 bool isDone() const { 8513 // Stop recursion if we have found an undef. 8514 return Found; 8515 } 8516 }; 8517 } 8518 8519 // Return true when S contains at least an undef value. 8520 static inline bool 8521 containsUndefs(const SCEV *S) { 8522 FindUndefs F; 8523 SCEVTraversal<FindUndefs> ST(F); 8524 ST.visitAll(S); 8525 8526 return F.Found; 8527 } 8528 8529 namespace { 8530 // Collect all steps of SCEV expressions. 8531 struct SCEVCollectStrides { 8532 ScalarEvolution &SE; 8533 SmallVectorImpl<const SCEV *> &Strides; 8534 8535 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8536 : SE(SE), Strides(S) {} 8537 8538 bool follow(const SCEV *S) { 8539 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8540 Strides.push_back(AR->getStepRecurrence(SE)); 8541 return true; 8542 } 8543 bool isDone() const { return false; } 8544 }; 8545 8546 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8547 struct SCEVCollectTerms { 8548 SmallVectorImpl<const SCEV *> &Terms; 8549 8550 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8551 : Terms(T) {} 8552 8553 bool follow(const SCEV *S) { 8554 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8555 if (!containsUndefs(S)) 8556 Terms.push_back(S); 8557 8558 // Stop recursion: once we collected a term, do not walk its operands. 8559 return false; 8560 } 8561 8562 // Keep looking. 8563 return true; 8564 } 8565 bool isDone() const { return false; } 8566 }; 8567 8568 // Check if a SCEV contains an AddRecExpr. 8569 struct SCEVHasAddRec { 8570 bool &ContainsAddRec; 8571 8572 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8573 ContainsAddRec = false; 8574 } 8575 8576 bool follow(const SCEV *S) { 8577 if (isa<SCEVAddRecExpr>(S)) { 8578 ContainsAddRec = true; 8579 8580 // Stop recursion: once we collected a term, do not walk its operands. 8581 return false; 8582 } 8583 8584 // Keep looking. 8585 return true; 8586 } 8587 bool isDone() const { return false; } 8588 }; 8589 8590 // Find factors that are multiplied with an expression that (possibly as a 8591 // subexpression) contains an AddRecExpr. In the expression: 8592 // 8593 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8594 // 8595 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8596 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8597 // parameters as they form a product with an induction variable. 8598 // 8599 // This collector expects all array size parameters to be in the same MulExpr. 8600 // It might be necessary to later add support for collecting parameters that are 8601 // spread over different nested MulExpr. 8602 struct SCEVCollectAddRecMultiplies { 8603 SmallVectorImpl<const SCEV *> &Terms; 8604 ScalarEvolution &SE; 8605 8606 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8607 : Terms(T), SE(SE) {} 8608 8609 bool follow(const SCEV *S) { 8610 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8611 bool HasAddRec = false; 8612 SmallVector<const SCEV *, 0> Operands; 8613 for (auto Op : Mul->operands()) { 8614 if (isa<SCEVUnknown>(Op)) { 8615 Operands.push_back(Op); 8616 } else { 8617 bool ContainsAddRec; 8618 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8619 visitAll(Op, ContiansAddRec); 8620 HasAddRec |= ContainsAddRec; 8621 } 8622 } 8623 if (Operands.size() == 0) 8624 return true; 8625 8626 if (!HasAddRec) 8627 return false; 8628 8629 Terms.push_back(SE.getMulExpr(Operands)); 8630 // Stop recursion: once we collected a term, do not walk its operands. 8631 return false; 8632 } 8633 8634 // Keep looking. 8635 return true; 8636 } 8637 bool isDone() const { return false; } 8638 }; 8639 } 8640 8641 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8642 /// two places: 8643 /// 1) The strides of AddRec expressions. 8644 /// 2) Unknowns that are multiplied with AddRec expressions. 8645 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8646 SmallVectorImpl<const SCEV *> &Terms) { 8647 SmallVector<const SCEV *, 4> Strides; 8648 SCEVCollectStrides StrideCollector(*this, Strides); 8649 visitAll(Expr, StrideCollector); 8650 8651 DEBUG({ 8652 dbgs() << "Strides:\n"; 8653 for (const SCEV *S : Strides) 8654 dbgs() << *S << "\n"; 8655 }); 8656 8657 for (const SCEV *S : Strides) { 8658 SCEVCollectTerms TermCollector(Terms); 8659 visitAll(S, TermCollector); 8660 } 8661 8662 DEBUG({ 8663 dbgs() << "Terms:\n"; 8664 for (const SCEV *T : Terms) 8665 dbgs() << *T << "\n"; 8666 }); 8667 8668 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8669 visitAll(Expr, MulCollector); 8670 } 8671 8672 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8673 SmallVectorImpl<const SCEV *> &Terms, 8674 SmallVectorImpl<const SCEV *> &Sizes) { 8675 int Last = Terms.size() - 1; 8676 const SCEV *Step = Terms[Last]; 8677 8678 // End of recursion. 8679 if (Last == 0) { 8680 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8681 SmallVector<const SCEV *, 2> Qs; 8682 for (const SCEV *Op : M->operands()) 8683 if (!isa<SCEVConstant>(Op)) 8684 Qs.push_back(Op); 8685 8686 Step = SE.getMulExpr(Qs); 8687 } 8688 8689 Sizes.push_back(Step); 8690 return true; 8691 } 8692 8693 for (const SCEV *&Term : Terms) { 8694 // Normalize the terms before the next call to findArrayDimensionsRec. 8695 const SCEV *Q, *R; 8696 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8697 8698 // Bail out when GCD does not evenly divide one of the terms. 8699 if (!R->isZero()) 8700 return false; 8701 8702 Term = Q; 8703 } 8704 8705 // Remove all SCEVConstants. 8706 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8707 return isa<SCEVConstant>(E); 8708 }), 8709 Terms.end()); 8710 8711 if (Terms.size() > 0) 8712 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8713 return false; 8714 8715 Sizes.push_back(Step); 8716 return true; 8717 } 8718 8719 // Returns true when S contains at least a SCEVUnknown parameter. 8720 static inline bool 8721 containsParameters(const SCEV *S) { 8722 struct FindParameter { 8723 bool FoundParameter; 8724 FindParameter() : FoundParameter(false) {} 8725 8726 bool follow(const SCEV *S) { 8727 if (isa<SCEVUnknown>(S)) { 8728 FoundParameter = true; 8729 // Stop recursion: we found a parameter. 8730 return false; 8731 } 8732 // Keep looking. 8733 return true; 8734 } 8735 bool isDone() const { 8736 // Stop recursion if we have found a parameter. 8737 return FoundParameter; 8738 } 8739 }; 8740 8741 FindParameter F; 8742 SCEVTraversal<FindParameter> ST(F); 8743 ST.visitAll(S); 8744 8745 return F.FoundParameter; 8746 } 8747 8748 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8749 static inline bool 8750 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8751 for (const SCEV *T : Terms) 8752 if (containsParameters(T)) 8753 return true; 8754 return false; 8755 } 8756 8757 // Return the number of product terms in S. 8758 static inline int numberOfTerms(const SCEV *S) { 8759 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8760 return Expr->getNumOperands(); 8761 return 1; 8762 } 8763 8764 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8765 if (isa<SCEVConstant>(T)) 8766 return nullptr; 8767 8768 if (isa<SCEVUnknown>(T)) 8769 return T; 8770 8771 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8772 SmallVector<const SCEV *, 2> Factors; 8773 for (const SCEV *Op : M->operands()) 8774 if (!isa<SCEVConstant>(Op)) 8775 Factors.push_back(Op); 8776 8777 return SE.getMulExpr(Factors); 8778 } 8779 8780 return T; 8781 } 8782 8783 /// Return the size of an element read or written by Inst. 8784 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8785 Type *Ty; 8786 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8787 Ty = Store->getValueOperand()->getType(); 8788 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8789 Ty = Load->getType(); 8790 else 8791 return nullptr; 8792 8793 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8794 return getSizeOfExpr(ETy, Ty); 8795 } 8796 8797 /// Second step of delinearization: compute the array dimensions Sizes from the 8798 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8799 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8800 SmallVectorImpl<const SCEV *> &Sizes, 8801 const SCEV *ElementSize) const { 8802 8803 if (Terms.size() < 1 || !ElementSize) 8804 return; 8805 8806 // Early return when Terms do not contain parameters: we do not delinearize 8807 // non parametric SCEVs. 8808 if (!containsParameters(Terms)) 8809 return; 8810 8811 DEBUG({ 8812 dbgs() << "Terms:\n"; 8813 for (const SCEV *T : Terms) 8814 dbgs() << *T << "\n"; 8815 }); 8816 8817 // Remove duplicates. 8818 std::sort(Terms.begin(), Terms.end()); 8819 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8820 8821 // Put larger terms first. 8822 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8823 return numberOfTerms(LHS) > numberOfTerms(RHS); 8824 }); 8825 8826 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8827 8828 // Try to divide all terms by the element size. If term is not divisible by 8829 // element size, proceed with the original term. 8830 for (const SCEV *&Term : Terms) { 8831 const SCEV *Q, *R; 8832 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8833 if (!Q->isZero()) 8834 Term = Q; 8835 } 8836 8837 SmallVector<const SCEV *, 4> NewTerms; 8838 8839 // Remove constant factors. 8840 for (const SCEV *T : Terms) 8841 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8842 NewTerms.push_back(NewT); 8843 8844 DEBUG({ 8845 dbgs() << "Terms after sorting:\n"; 8846 for (const SCEV *T : NewTerms) 8847 dbgs() << *T << "\n"; 8848 }); 8849 8850 if (NewTerms.empty() || 8851 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8852 Sizes.clear(); 8853 return; 8854 } 8855 8856 // The last element to be pushed into Sizes is the size of an element. 8857 Sizes.push_back(ElementSize); 8858 8859 DEBUG({ 8860 dbgs() << "Sizes:\n"; 8861 for (const SCEV *S : Sizes) 8862 dbgs() << *S << "\n"; 8863 }); 8864 } 8865 8866 /// Third step of delinearization: compute the access functions for the 8867 /// Subscripts based on the dimensions in Sizes. 8868 void ScalarEvolution::computeAccessFunctions( 8869 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8870 SmallVectorImpl<const SCEV *> &Sizes) { 8871 8872 // Early exit in case this SCEV is not an affine multivariate function. 8873 if (Sizes.empty()) 8874 return; 8875 8876 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8877 if (!AR->isAffine()) 8878 return; 8879 8880 const SCEV *Res = Expr; 8881 int Last = Sizes.size() - 1; 8882 for (int i = Last; i >= 0; i--) { 8883 const SCEV *Q, *R; 8884 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8885 8886 DEBUG({ 8887 dbgs() << "Res: " << *Res << "\n"; 8888 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8889 dbgs() << "Res divided by Sizes[i]:\n"; 8890 dbgs() << "Quotient: " << *Q << "\n"; 8891 dbgs() << "Remainder: " << *R << "\n"; 8892 }); 8893 8894 Res = Q; 8895 8896 // Do not record the last subscript corresponding to the size of elements in 8897 // the array. 8898 if (i == Last) { 8899 8900 // Bail out if the remainder is too complex. 8901 if (isa<SCEVAddRecExpr>(R)) { 8902 Subscripts.clear(); 8903 Sizes.clear(); 8904 return; 8905 } 8906 8907 continue; 8908 } 8909 8910 // Record the access function for the current subscript. 8911 Subscripts.push_back(R); 8912 } 8913 8914 // Also push in last position the remainder of the last division: it will be 8915 // the access function of the innermost dimension. 8916 Subscripts.push_back(Res); 8917 8918 std::reverse(Subscripts.begin(), Subscripts.end()); 8919 8920 DEBUG({ 8921 dbgs() << "Subscripts:\n"; 8922 for (const SCEV *S : Subscripts) 8923 dbgs() << *S << "\n"; 8924 }); 8925 } 8926 8927 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8928 /// sizes of an array access. Returns the remainder of the delinearization that 8929 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8930 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8931 /// expressions in the stride and base of a SCEV corresponding to the 8932 /// computation of a GCD (greatest common divisor) of base and stride. When 8933 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8934 /// 8935 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8936 /// 8937 /// void foo(long n, long m, long o, double A[n][m][o]) { 8938 /// 8939 /// for (long i = 0; i < n; i++) 8940 /// for (long j = 0; j < m; j++) 8941 /// for (long k = 0; k < o; k++) 8942 /// A[i][j][k] = 1.0; 8943 /// } 8944 /// 8945 /// the delinearization input is the following AddRec SCEV: 8946 /// 8947 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8948 /// 8949 /// From this SCEV, we are able to say that the base offset of the access is %A 8950 /// because it appears as an offset that does not divide any of the strides in 8951 /// the loops: 8952 /// 8953 /// CHECK: Base offset: %A 8954 /// 8955 /// and then SCEV->delinearize determines the size of some of the dimensions of 8956 /// the array as these are the multiples by which the strides are happening: 8957 /// 8958 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8959 /// 8960 /// Note that the outermost dimension remains of UnknownSize because there are 8961 /// no strides that would help identifying the size of the last dimension: when 8962 /// the array has been statically allocated, one could compute the size of that 8963 /// dimension by dividing the overall size of the array by the size of the known 8964 /// dimensions: %m * %o * 8. 8965 /// 8966 /// Finally delinearize provides the access functions for the array reference 8967 /// that does correspond to A[i][j][k] of the above C testcase: 8968 /// 8969 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8970 /// 8971 /// The testcases are checking the output of a function pass: 8972 /// DelinearizationPass that walks through all loads and stores of a function 8973 /// asking for the SCEV of the memory access with respect to all enclosing 8974 /// loops, calling SCEV->delinearize on that and printing the results. 8975 8976 void ScalarEvolution::delinearize(const SCEV *Expr, 8977 SmallVectorImpl<const SCEV *> &Subscripts, 8978 SmallVectorImpl<const SCEV *> &Sizes, 8979 const SCEV *ElementSize) { 8980 // First step: collect parametric terms. 8981 SmallVector<const SCEV *, 4> Terms; 8982 collectParametricTerms(Expr, Terms); 8983 8984 if (Terms.empty()) 8985 return; 8986 8987 // Second step: find subscript sizes. 8988 findArrayDimensions(Terms, Sizes, ElementSize); 8989 8990 if (Sizes.empty()) 8991 return; 8992 8993 // Third step: compute the access functions for each subscript. 8994 computeAccessFunctions(Expr, Subscripts, Sizes); 8995 8996 if (Subscripts.empty()) 8997 return; 8998 8999 DEBUG({ 9000 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9001 dbgs() << "ArrayDecl[UnknownSize]"; 9002 for (const SCEV *S : Sizes) 9003 dbgs() << "[" << *S << "]"; 9004 9005 dbgs() << "\nArrayRef"; 9006 for (const SCEV *S : Subscripts) 9007 dbgs() << "[" << *S << "]"; 9008 dbgs() << "\n"; 9009 }); 9010 } 9011 9012 //===----------------------------------------------------------------------===// 9013 // SCEVCallbackVH Class Implementation 9014 //===----------------------------------------------------------------------===// 9015 9016 void ScalarEvolution::SCEVCallbackVH::deleted() { 9017 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9018 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9019 SE->ConstantEvolutionLoopExitValue.erase(PN); 9020 SE->ValueExprMap.erase(getValPtr()); 9021 // this now dangles! 9022 } 9023 9024 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9025 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9026 9027 // Forget all the expressions associated with users of the old value, 9028 // so that future queries will recompute the expressions using the new 9029 // value. 9030 Value *Old = getValPtr(); 9031 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9032 SmallPtrSet<User *, 8> Visited; 9033 while (!Worklist.empty()) { 9034 User *U = Worklist.pop_back_val(); 9035 // Deleting the Old value will cause this to dangle. Postpone 9036 // that until everything else is done. 9037 if (U == Old) 9038 continue; 9039 if (!Visited.insert(U).second) 9040 continue; 9041 if (PHINode *PN = dyn_cast<PHINode>(U)) 9042 SE->ConstantEvolutionLoopExitValue.erase(PN); 9043 SE->ValueExprMap.erase(U); 9044 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9045 } 9046 // Delete the Old value. 9047 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9048 SE->ConstantEvolutionLoopExitValue.erase(PN); 9049 SE->ValueExprMap.erase(Old); 9050 // this now dangles! 9051 } 9052 9053 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9054 : CallbackVH(V), SE(se) {} 9055 9056 //===----------------------------------------------------------------------===// 9057 // ScalarEvolution Class Implementation 9058 //===----------------------------------------------------------------------===// 9059 9060 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9061 AssumptionCache &AC, DominatorTree &DT, 9062 LoopInfo &LI) 9063 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9064 CouldNotCompute(new SCEVCouldNotCompute()), 9065 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9066 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9067 FirstUnknown(nullptr) {} 9068 9069 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9070 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 9071 CouldNotCompute(std::move(Arg.CouldNotCompute)), 9072 ValueExprMap(std::move(Arg.ValueExprMap)), 9073 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9074 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9075 ConstantEvolutionLoopExitValue( 9076 std::move(Arg.ConstantEvolutionLoopExitValue)), 9077 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9078 LoopDispositions(std::move(Arg.LoopDispositions)), 9079 BlockDispositions(std::move(Arg.BlockDispositions)), 9080 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9081 SignedRanges(std::move(Arg.SignedRanges)), 9082 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9083 UniquePreds(std::move(Arg.UniquePreds)), 9084 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9085 FirstUnknown(Arg.FirstUnknown) { 9086 Arg.FirstUnknown = nullptr; 9087 } 9088 9089 ScalarEvolution::~ScalarEvolution() { 9090 // Iterate through all the SCEVUnknown instances and call their 9091 // destructors, so that they release their references to their values. 9092 for (SCEVUnknown *U = FirstUnknown; U;) { 9093 SCEVUnknown *Tmp = U; 9094 U = U->Next; 9095 Tmp->~SCEVUnknown(); 9096 } 9097 FirstUnknown = nullptr; 9098 9099 ValueExprMap.clear(); 9100 9101 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9102 // that a loop had multiple computable exits. 9103 for (auto &BTCI : BackedgeTakenCounts) 9104 BTCI.second.clear(); 9105 9106 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9107 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9108 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9109 } 9110 9111 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9112 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9113 } 9114 9115 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9116 const Loop *L) { 9117 // Print all inner loops first 9118 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 9119 PrintLoopInfo(OS, SE, *I); 9120 9121 OS << "Loop "; 9122 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9123 OS << ": "; 9124 9125 SmallVector<BasicBlock *, 8> ExitBlocks; 9126 L->getExitBlocks(ExitBlocks); 9127 if (ExitBlocks.size() != 1) 9128 OS << "<multiple exits> "; 9129 9130 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9131 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9132 } else { 9133 OS << "Unpredictable backedge-taken count. "; 9134 } 9135 9136 OS << "\n" 9137 "Loop "; 9138 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9139 OS << ": "; 9140 9141 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9142 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9143 } else { 9144 OS << "Unpredictable max backedge-taken count. "; 9145 } 9146 9147 OS << "\n"; 9148 } 9149 9150 void ScalarEvolution::print(raw_ostream &OS) const { 9151 // ScalarEvolution's implementation of the print method is to print 9152 // out SCEV values of all instructions that are interesting. Doing 9153 // this potentially causes it to create new SCEV objects though, 9154 // which technically conflicts with the const qualifier. This isn't 9155 // observable from outside the class though, so casting away the 9156 // const isn't dangerous. 9157 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9158 9159 OS << "Classifying expressions for: "; 9160 F.printAsOperand(OS, /*PrintType=*/false); 9161 OS << "\n"; 9162 for (Instruction &I : instructions(F)) 9163 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9164 OS << I << '\n'; 9165 OS << " --> "; 9166 const SCEV *SV = SE.getSCEV(&I); 9167 SV->print(OS); 9168 if (!isa<SCEVCouldNotCompute>(SV)) { 9169 OS << " U: "; 9170 SE.getUnsignedRange(SV).print(OS); 9171 OS << " S: "; 9172 SE.getSignedRange(SV).print(OS); 9173 } 9174 9175 const Loop *L = LI.getLoopFor(I.getParent()); 9176 9177 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9178 if (AtUse != SV) { 9179 OS << " --> "; 9180 AtUse->print(OS); 9181 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9182 OS << " U: "; 9183 SE.getUnsignedRange(AtUse).print(OS); 9184 OS << " S: "; 9185 SE.getSignedRange(AtUse).print(OS); 9186 } 9187 } 9188 9189 if (L) { 9190 OS << "\t\t" "Exits: "; 9191 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9192 if (!SE.isLoopInvariant(ExitValue, L)) { 9193 OS << "<<Unknown>>"; 9194 } else { 9195 OS << *ExitValue; 9196 } 9197 } 9198 9199 OS << "\n"; 9200 } 9201 9202 OS << "Determining loop execution counts for: "; 9203 F.printAsOperand(OS, /*PrintType=*/false); 9204 OS << "\n"; 9205 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9206 PrintLoopInfo(OS, &SE, *I); 9207 } 9208 9209 ScalarEvolution::LoopDisposition 9210 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9211 auto &Values = LoopDispositions[S]; 9212 for (auto &V : Values) { 9213 if (V.getPointer() == L) 9214 return V.getInt(); 9215 } 9216 Values.emplace_back(L, LoopVariant); 9217 LoopDisposition D = computeLoopDisposition(S, L); 9218 auto &Values2 = LoopDispositions[S]; 9219 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9220 if (V.getPointer() == L) { 9221 V.setInt(D); 9222 break; 9223 } 9224 } 9225 return D; 9226 } 9227 9228 ScalarEvolution::LoopDisposition 9229 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9230 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9231 case scConstant: 9232 return LoopInvariant; 9233 case scTruncate: 9234 case scZeroExtend: 9235 case scSignExtend: 9236 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9237 case scAddRecExpr: { 9238 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9239 9240 // If L is the addrec's loop, it's computable. 9241 if (AR->getLoop() == L) 9242 return LoopComputable; 9243 9244 // Add recurrences are never invariant in the function-body (null loop). 9245 if (!L) 9246 return LoopVariant; 9247 9248 // This recurrence is variant w.r.t. L if L contains AR's loop. 9249 if (L->contains(AR->getLoop())) 9250 return LoopVariant; 9251 9252 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9253 if (AR->getLoop()->contains(L)) 9254 return LoopInvariant; 9255 9256 // This recurrence is variant w.r.t. L if any of its operands 9257 // are variant. 9258 for (auto *Op : AR->operands()) 9259 if (!isLoopInvariant(Op, L)) 9260 return LoopVariant; 9261 9262 // Otherwise it's loop-invariant. 9263 return LoopInvariant; 9264 } 9265 case scAddExpr: 9266 case scMulExpr: 9267 case scUMaxExpr: 9268 case scSMaxExpr: { 9269 bool HasVarying = false; 9270 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9271 LoopDisposition D = getLoopDisposition(Op, L); 9272 if (D == LoopVariant) 9273 return LoopVariant; 9274 if (D == LoopComputable) 9275 HasVarying = true; 9276 } 9277 return HasVarying ? LoopComputable : LoopInvariant; 9278 } 9279 case scUDivExpr: { 9280 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9281 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9282 if (LD == LoopVariant) 9283 return LoopVariant; 9284 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9285 if (RD == LoopVariant) 9286 return LoopVariant; 9287 return (LD == LoopInvariant && RD == LoopInvariant) ? 9288 LoopInvariant : LoopComputable; 9289 } 9290 case scUnknown: 9291 // All non-instruction values are loop invariant. All instructions are loop 9292 // invariant if they are not contained in the specified loop. 9293 // Instructions are never considered invariant in the function body 9294 // (null loop) because they are defined within the "loop". 9295 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9296 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9297 return LoopInvariant; 9298 case scCouldNotCompute: 9299 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9300 } 9301 llvm_unreachable("Unknown SCEV kind!"); 9302 } 9303 9304 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9305 return getLoopDisposition(S, L) == LoopInvariant; 9306 } 9307 9308 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9309 return getLoopDisposition(S, L) == LoopComputable; 9310 } 9311 9312 ScalarEvolution::BlockDisposition 9313 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9314 auto &Values = BlockDispositions[S]; 9315 for (auto &V : Values) { 9316 if (V.getPointer() == BB) 9317 return V.getInt(); 9318 } 9319 Values.emplace_back(BB, DoesNotDominateBlock); 9320 BlockDisposition D = computeBlockDisposition(S, BB); 9321 auto &Values2 = BlockDispositions[S]; 9322 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9323 if (V.getPointer() == BB) { 9324 V.setInt(D); 9325 break; 9326 } 9327 } 9328 return D; 9329 } 9330 9331 ScalarEvolution::BlockDisposition 9332 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9333 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9334 case scConstant: 9335 return ProperlyDominatesBlock; 9336 case scTruncate: 9337 case scZeroExtend: 9338 case scSignExtend: 9339 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9340 case scAddRecExpr: { 9341 // This uses a "dominates" query instead of "properly dominates" query 9342 // to test for proper dominance too, because the instruction which 9343 // produces the addrec's value is a PHI, and a PHI effectively properly 9344 // dominates its entire containing block. 9345 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9346 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9347 return DoesNotDominateBlock; 9348 } 9349 // FALL THROUGH into SCEVNAryExpr handling. 9350 case scAddExpr: 9351 case scMulExpr: 9352 case scUMaxExpr: 9353 case scSMaxExpr: { 9354 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9355 bool Proper = true; 9356 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9357 I != E; ++I) { 9358 BlockDisposition D = getBlockDisposition(*I, BB); 9359 if (D == DoesNotDominateBlock) 9360 return DoesNotDominateBlock; 9361 if (D == DominatesBlock) 9362 Proper = false; 9363 } 9364 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9365 } 9366 case scUDivExpr: { 9367 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9368 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9369 BlockDisposition LD = getBlockDisposition(LHS, BB); 9370 if (LD == DoesNotDominateBlock) 9371 return DoesNotDominateBlock; 9372 BlockDisposition RD = getBlockDisposition(RHS, BB); 9373 if (RD == DoesNotDominateBlock) 9374 return DoesNotDominateBlock; 9375 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9376 ProperlyDominatesBlock : DominatesBlock; 9377 } 9378 case scUnknown: 9379 if (Instruction *I = 9380 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9381 if (I->getParent() == BB) 9382 return DominatesBlock; 9383 if (DT.properlyDominates(I->getParent(), BB)) 9384 return ProperlyDominatesBlock; 9385 return DoesNotDominateBlock; 9386 } 9387 return ProperlyDominatesBlock; 9388 case scCouldNotCompute: 9389 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9390 } 9391 llvm_unreachable("Unknown SCEV kind!"); 9392 } 9393 9394 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9395 return getBlockDisposition(S, BB) >= DominatesBlock; 9396 } 9397 9398 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9399 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9400 } 9401 9402 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9403 // Search for a SCEV expression node within an expression tree. 9404 // Implements SCEVTraversal::Visitor. 9405 struct SCEVSearch { 9406 const SCEV *Node; 9407 bool IsFound; 9408 9409 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9410 9411 bool follow(const SCEV *S) { 9412 IsFound |= (S == Node); 9413 return !IsFound; 9414 } 9415 bool isDone() const { return IsFound; } 9416 }; 9417 9418 SCEVSearch Search(Op); 9419 visitAll(S, Search); 9420 return Search.IsFound; 9421 } 9422 9423 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9424 ValuesAtScopes.erase(S); 9425 LoopDispositions.erase(S); 9426 BlockDispositions.erase(S); 9427 UnsignedRanges.erase(S); 9428 SignedRanges.erase(S); 9429 9430 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9431 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9432 BackedgeTakenInfo &BEInfo = I->second; 9433 if (BEInfo.hasOperand(S, this)) { 9434 BEInfo.clear(); 9435 BackedgeTakenCounts.erase(I++); 9436 } 9437 else 9438 ++I; 9439 } 9440 } 9441 9442 typedef DenseMap<const Loop *, std::string> VerifyMap; 9443 9444 /// replaceSubString - Replaces all occurrences of From in Str with To. 9445 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9446 size_t Pos = 0; 9447 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9448 Str.replace(Pos, From.size(), To.data(), To.size()); 9449 Pos += To.size(); 9450 } 9451 } 9452 9453 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9454 static void 9455 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9456 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 9457 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 9458 9459 std::string &S = Map[L]; 9460 if (S.empty()) { 9461 raw_string_ostream OS(S); 9462 SE.getBackedgeTakenCount(L)->print(OS); 9463 9464 // false and 0 are semantically equivalent. This can happen in dead loops. 9465 replaceSubString(OS.str(), "false", "0"); 9466 // Remove wrap flags, their use in SCEV is highly fragile. 9467 // FIXME: Remove this when SCEV gets smarter about them. 9468 replaceSubString(OS.str(), "<nw>", ""); 9469 replaceSubString(OS.str(), "<nsw>", ""); 9470 replaceSubString(OS.str(), "<nuw>", ""); 9471 } 9472 } 9473 } 9474 9475 void ScalarEvolution::verify() const { 9476 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9477 9478 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9479 // FIXME: It would be much better to store actual values instead of strings, 9480 // but SCEV pointers will change if we drop the caches. 9481 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9482 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9483 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9484 9485 // Gather stringified backedge taken counts for all loops using a fresh 9486 // ScalarEvolution object. 9487 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9488 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9489 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9490 9491 // Now compare whether they're the same with and without caches. This allows 9492 // verifying that no pass changed the cache. 9493 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9494 "New loops suddenly appeared!"); 9495 9496 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9497 OldE = BackedgeDumpsOld.end(), 9498 NewI = BackedgeDumpsNew.begin(); 9499 OldI != OldE; ++OldI, ++NewI) { 9500 assert(OldI->first == NewI->first && "Loop order changed!"); 9501 9502 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9503 // changes. 9504 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9505 // means that a pass is buggy or SCEV has to learn a new pattern but is 9506 // usually not harmful. 9507 if (OldI->second != NewI->second && 9508 OldI->second.find("undef") == std::string::npos && 9509 NewI->second.find("undef") == std::string::npos && 9510 OldI->second != "***COULDNOTCOMPUTE***" && 9511 NewI->second != "***COULDNOTCOMPUTE***") { 9512 dbgs() << "SCEVValidator: SCEV for loop '" 9513 << OldI->first->getHeader()->getName() 9514 << "' changed from '" << OldI->second 9515 << "' to '" << NewI->second << "'!\n"; 9516 std::abort(); 9517 } 9518 } 9519 9520 // TODO: Verify more things. 9521 } 9522 9523 char ScalarEvolutionAnalysis::PassID; 9524 9525 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9526 AnalysisManager<Function> *AM) { 9527 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9528 AM->getResult<AssumptionAnalysis>(F), 9529 AM->getResult<DominatorTreeAnalysis>(F), 9530 AM->getResult<LoopAnalysis>(F)); 9531 } 9532 9533 PreservedAnalyses 9534 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9535 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9536 return PreservedAnalyses::all(); 9537 } 9538 9539 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9540 "Scalar Evolution Analysis", false, true) 9541 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9542 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9543 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9544 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9545 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9546 "Scalar Evolution Analysis", false, true) 9547 char ScalarEvolutionWrapperPass::ID = 0; 9548 9549 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9550 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9551 } 9552 9553 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9554 SE.reset(new ScalarEvolution( 9555 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9556 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9557 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9558 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9559 return false; 9560 } 9561 9562 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9563 9564 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9565 SE->print(OS); 9566 } 9567 9568 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9569 if (!VerifySCEV) 9570 return; 9571 9572 SE->verify(); 9573 } 9574 9575 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9576 AU.setPreservesAll(); 9577 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9578 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9579 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9580 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9581 } 9582 9583 const SCEVPredicate * 9584 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 9585 const SCEVConstant *RHS) { 9586 FoldingSetNodeID ID; 9587 // Unique this node based on the arguments 9588 ID.AddInteger(SCEVPredicate::P_Equal); 9589 ID.AddPointer(LHS); 9590 ID.AddPointer(RHS); 9591 void *IP = nullptr; 9592 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 9593 return S; 9594 SCEVEqualPredicate *Eq = new (SCEVAllocator) 9595 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 9596 UniquePreds.InsertNode(Eq, IP); 9597 return Eq; 9598 } 9599 9600 namespace { 9601 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 9602 public: 9603 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, 9604 SCEVUnionPredicate &A) { 9605 SCEVPredicateRewriter Rewriter(SE, A); 9606 return Rewriter.visit(Scev); 9607 } 9608 9609 SCEVPredicateRewriter(ScalarEvolution &SE, SCEVUnionPredicate &P) 9610 : SCEVRewriteVisitor(SE), P(P) {} 9611 9612 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 9613 auto ExprPreds = P.getPredicatesForExpr(Expr); 9614 for (auto *Pred : ExprPreds) 9615 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred)) 9616 if (IPred->getLHS() == Expr) 9617 return IPred->getRHS(); 9618 9619 return Expr; 9620 } 9621 9622 private: 9623 SCEVUnionPredicate &P; 9624 }; 9625 } // end anonymous namespace 9626 9627 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev, 9628 SCEVUnionPredicate &Preds) { 9629 return SCEVPredicateRewriter::rewrite(Scev, *this, Preds); 9630 } 9631 9632 /// SCEV predicates 9633 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 9634 SCEVPredicateKind Kind) 9635 : FastID(ID), Kind(Kind) {} 9636 9637 SCEVPredicate::~SCEVPredicate() {} 9638 9639 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 9640 const SCEVUnknown *LHS, 9641 const SCEVConstant *RHS) 9642 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 9643 9644 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 9645 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N); 9646 9647 if (!Op) 9648 return false; 9649 9650 return Op->LHS == LHS && Op->RHS == RHS; 9651 } 9652 9653 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 9654 9655 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 9656 9657 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 9658 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 9659 } 9660 9661 /// Union predicates don't get cached so create a dummy set ID for it. 9662 SCEVUnionPredicate::SCEVUnionPredicate() 9663 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 9664 9665 bool SCEVUnionPredicate::isAlwaysTrue() const { 9666 return all_of(Preds, 9667 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 9668 } 9669 9670 ArrayRef<const SCEVPredicate *> 9671 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 9672 auto I = SCEVToPreds.find(Expr); 9673 if (I == SCEVToPreds.end()) 9674 return ArrayRef<const SCEVPredicate *>(); 9675 return I->second; 9676 } 9677 9678 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 9679 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) 9680 return all_of(Set->Preds, 9681 [this](const SCEVPredicate *I) { return this->implies(I); }); 9682 9683 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 9684 if (ScevPredsIt == SCEVToPreds.end()) 9685 return false; 9686 auto &SCEVPreds = ScevPredsIt->second; 9687 9688 return any_of(SCEVPreds, 9689 [N](const SCEVPredicate *I) { return I->implies(N); }); 9690 } 9691 9692 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 9693 9694 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 9695 for (auto Pred : Preds) 9696 Pred->print(OS, Depth); 9697 } 9698 9699 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 9700 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) { 9701 for (auto Pred : Set->Preds) 9702 add(Pred); 9703 return; 9704 } 9705 9706 if (implies(N)) 9707 return; 9708 9709 const SCEV *Key = N->getExpr(); 9710 assert(Key && "Only SCEVUnionPredicate doesn't have an " 9711 " associated expression!"); 9712 9713 SCEVToPreds[Key].push_back(N); 9714 Preds.push_back(N); 9715 } 9716