1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/Dominators.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Assembly/Writer.h" 72 #include "llvm/Target/TargetData.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ConstantRange.h" 76 #include "llvm/Support/GetElementPtrTypeIterator.h" 77 #include "llvm/Support/InstIterator.h" 78 #include "llvm/Support/ManagedStatic.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/ADT/Statistic.h" 82 #include "llvm/ADT/STLExtras.h" 83 #include <algorithm> 84 using namespace llvm; 85 86 STATISTIC(NumArrayLenItCounts, 87 "Number of trip counts computed with array length"); 88 STATISTIC(NumTripCountsComputed, 89 "Number of loops with predictable loop counts"); 90 STATISTIC(NumTripCountsNotComputed, 91 "Number of loops without predictable loop counts"); 92 STATISTIC(NumBruteForceTripCountsComputed, 93 "Number of loops with trip counts computed by force"); 94 95 static cl::opt<unsigned> 96 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 97 cl::desc("Maximum number of iterations SCEV will " 98 "symbolically execute a constant derived loop"), 99 cl::init(100)); 100 101 static RegisterPass<ScalarEvolution> 102 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 103 char ScalarEvolution::ID = 0; 104 105 //===----------------------------------------------------------------------===// 106 // SCEV class definitions 107 //===----------------------------------------------------------------------===// 108 109 //===----------------------------------------------------------------------===// 110 // Implementation of the SCEV class. 111 // 112 SCEV::~SCEV() {} 113 void SCEV::dump() const { 114 print(errs()); 115 errs() << '\n'; 116 } 117 118 void SCEV::print(std::ostream &o) const { 119 raw_os_ostream OS(o); 120 print(OS); 121 } 122 123 bool SCEV::isZero() const { 124 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 125 return SC->getValue()->isZero(); 126 return false; 127 } 128 129 bool SCEV::isOne() const { 130 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 131 return SC->getValue()->isOne(); 132 return false; 133 } 134 135 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 136 SCEVCouldNotCompute::~SCEVCouldNotCompute() {} 137 138 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 139 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 140 return false; 141 } 142 143 const Type *SCEVCouldNotCompute::getType() const { 144 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 145 return 0; 146 } 147 148 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 149 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 150 return false; 151 } 152 153 SCEVHandle SCEVCouldNotCompute:: 154 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 155 const SCEVHandle &Conc, 156 ScalarEvolution &SE) const { 157 return this; 158 } 159 160 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 161 OS << "***COULDNOTCOMPUTE***"; 162 } 163 164 bool SCEVCouldNotCompute::classof(const SCEV *S) { 165 return S->getSCEVType() == scCouldNotCompute; 166 } 167 168 169 // SCEVConstants - Only allow the creation of one SCEVConstant for any 170 // particular value. Don't use a SCEVHandle here, or else the object will 171 // never be deleted! 172 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 173 174 175 SCEVConstant::~SCEVConstant() { 176 SCEVConstants->erase(V); 177 } 178 179 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 180 SCEVConstant *&R = (*SCEVConstants)[V]; 181 if (R == 0) R = new SCEVConstant(V); 182 return R; 183 } 184 185 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 186 return getConstant(ConstantInt::get(Val)); 187 } 188 189 SCEVHandle 190 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 191 return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); 192 } 193 194 const Type *SCEVConstant::getType() const { return V->getType(); } 195 196 void SCEVConstant::print(raw_ostream &OS) const { 197 WriteAsOperand(OS, V, false); 198 } 199 200 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, 201 const SCEVHandle &op, const Type *ty) 202 : SCEV(SCEVTy), Op(op), Ty(ty) {} 203 204 SCEVCastExpr::~SCEVCastExpr() {} 205 206 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 207 return Op->dominates(BB, DT); 208 } 209 210 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 211 // particular input. Don't use a SCEVHandle here, or else the object will 212 // never be deleted! 213 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 214 SCEVTruncateExpr*> > SCEVTruncates; 215 216 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 217 : SCEVCastExpr(scTruncate, op, ty) { 218 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 219 (Ty->isInteger() || isa<PointerType>(Ty)) && 220 "Cannot truncate non-integer value!"); 221 } 222 223 SCEVTruncateExpr::~SCEVTruncateExpr() { 224 SCEVTruncates->erase(std::make_pair(Op, Ty)); 225 } 226 227 void SCEVTruncateExpr::print(raw_ostream &OS) const { 228 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 229 } 230 231 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 232 // particular input. Don't use a SCEVHandle here, or else the object will never 233 // be deleted! 234 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 235 SCEVZeroExtendExpr*> > SCEVZeroExtends; 236 237 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 238 : SCEVCastExpr(scZeroExtend, op, ty) { 239 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 240 (Ty->isInteger() || isa<PointerType>(Ty)) && 241 "Cannot zero extend non-integer value!"); 242 } 243 244 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 245 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 246 } 247 248 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 249 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 250 } 251 252 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 253 // particular input. Don't use a SCEVHandle here, or else the object will never 254 // be deleted! 255 static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>, 256 SCEVSignExtendExpr*> > SCEVSignExtends; 257 258 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 259 : SCEVCastExpr(scSignExtend, op, ty) { 260 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 261 (Ty->isInteger() || isa<PointerType>(Ty)) && 262 "Cannot sign extend non-integer value!"); 263 } 264 265 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 266 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 267 } 268 269 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 270 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 271 } 272 273 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 274 // particular input. Don't use a SCEVHandle here, or else the object will never 275 // be deleted! 276 static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >, 277 SCEVCommutativeExpr*> > SCEVCommExprs; 278 279 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 280 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 281 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps)); 282 } 283 284 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 285 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 286 const char *OpStr = getOperationStr(); 287 OS << "(" << *Operands[0]; 288 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 289 OS << OpStr << *Operands[i]; 290 OS << ")"; 291 } 292 293 SCEVHandle SCEVCommutativeExpr:: 294 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 295 const SCEVHandle &Conc, 296 ScalarEvolution &SE) const { 297 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 298 SCEVHandle H = 299 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 300 if (H != getOperand(i)) { 301 SmallVector<SCEVHandle, 8> NewOps; 302 NewOps.reserve(getNumOperands()); 303 for (unsigned j = 0; j != i; ++j) 304 NewOps.push_back(getOperand(j)); 305 NewOps.push_back(H); 306 for (++i; i != e; ++i) 307 NewOps.push_back(getOperand(i)-> 308 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 309 310 if (isa<SCEVAddExpr>(this)) 311 return SE.getAddExpr(NewOps); 312 else if (isa<SCEVMulExpr>(this)) 313 return SE.getMulExpr(NewOps); 314 else if (isa<SCEVSMaxExpr>(this)) 315 return SE.getSMaxExpr(NewOps); 316 else if (isa<SCEVUMaxExpr>(this)) 317 return SE.getUMaxExpr(NewOps); 318 else 319 assert(0 && "Unknown commutative expr!"); 320 } 321 } 322 return this; 323 } 324 325 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 326 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 327 if (!getOperand(i)->dominates(BB, DT)) 328 return false; 329 } 330 return true; 331 } 332 333 334 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 335 // input. Don't use a SCEVHandle here, or else the object will never be 336 // deleted! 337 static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>, 338 SCEVUDivExpr*> > SCEVUDivs; 339 340 SCEVUDivExpr::~SCEVUDivExpr() { 341 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 342 } 343 344 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 345 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 346 } 347 348 void SCEVUDivExpr::print(raw_ostream &OS) const { 349 OS << "(" << *LHS << " /u " << *RHS << ")"; 350 } 351 352 const Type *SCEVUDivExpr::getType() const { 353 // In most cases the types of LHS and RHS will be the same, but in some 354 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 355 // depend on the type for correctness, but handling types carefully can 356 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 357 // a pointer type than the RHS, so use the RHS' type here. 358 return RHS->getType(); 359 } 360 361 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 362 // particular input. Don't use a SCEVHandle here, or else the object will never 363 // be deleted! 364 static ManagedStatic<std::map<std::pair<const Loop *, 365 std::vector<const SCEV*> >, 366 SCEVAddRecExpr*> > SCEVAddRecExprs; 367 368 SCEVAddRecExpr::~SCEVAddRecExpr() { 369 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 370 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps)); 371 } 372 373 SCEVHandle SCEVAddRecExpr:: 374 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 375 const SCEVHandle &Conc, 376 ScalarEvolution &SE) const { 377 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 378 SCEVHandle H = 379 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 380 if (H != getOperand(i)) { 381 SmallVector<SCEVHandle, 8> NewOps; 382 NewOps.reserve(getNumOperands()); 383 for (unsigned j = 0; j != i; ++j) 384 NewOps.push_back(getOperand(j)); 385 NewOps.push_back(H); 386 for (++i; i != e; ++i) 387 NewOps.push_back(getOperand(i)-> 388 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 389 390 return SE.getAddRecExpr(NewOps, L); 391 } 392 } 393 return this; 394 } 395 396 397 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 398 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 399 // contain L and if the start is invariant. 400 // Add recurrences are never invariant in the function-body (null loop). 401 return QueryLoop && 402 !QueryLoop->contains(L->getHeader()) && 403 getOperand(0)->isLoopInvariant(QueryLoop); 404 } 405 406 407 void SCEVAddRecExpr::print(raw_ostream &OS) const { 408 OS << "{" << *Operands[0]; 409 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 410 OS << ",+," << *Operands[i]; 411 OS << "}<" << L->getHeader()->getName() + ">"; 412 } 413 414 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 415 // value. Don't use a SCEVHandle here, or else the object will never be 416 // deleted! 417 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 418 419 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 420 421 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 422 // All non-instruction values are loop invariant. All instructions are loop 423 // invariant if they are not contained in the specified loop. 424 // Instructions are never considered invariant in the function body 425 // (null loop) because they are defined within the "loop". 426 if (Instruction *I = dyn_cast<Instruction>(V)) 427 return L && !L->contains(I->getParent()); 428 return true; 429 } 430 431 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 432 if (Instruction *I = dyn_cast<Instruction>(getValue())) 433 return DT->dominates(I->getParent(), BB); 434 return true; 435 } 436 437 const Type *SCEVUnknown::getType() const { 438 return V->getType(); 439 } 440 441 void SCEVUnknown::print(raw_ostream &OS) const { 442 WriteAsOperand(OS, V, false); 443 } 444 445 //===----------------------------------------------------------------------===// 446 // SCEV Utilities 447 //===----------------------------------------------------------------------===// 448 449 namespace { 450 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 451 /// than the complexity of the RHS. This comparator is used to canonicalize 452 /// expressions. 453 class VISIBILITY_HIDDEN SCEVComplexityCompare { 454 LoopInfo *LI; 455 public: 456 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 457 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 // Primarily, sort the SCEVs by their getSCEVType(). 460 if (LHS->getSCEVType() != RHS->getSCEVType()) 461 return LHS->getSCEVType() < RHS->getSCEVType(); 462 463 // Aside from the getSCEVType() ordering, the particular ordering 464 // isn't very important except that it's beneficial to be consistent, 465 // so that (a + b) and (b + a) don't end up as different expressions. 466 467 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 468 // not as complete as it could be. 469 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 470 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 471 472 // Order pointer values after integer values. This helps SCEVExpander 473 // form GEPs. 474 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) 475 return false; 476 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) 477 return true; 478 479 // Compare getValueID values. 480 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 481 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 482 483 // Sort arguments by their position. 484 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 485 const Argument *RA = cast<Argument>(RU->getValue()); 486 return LA->getArgNo() < RA->getArgNo(); 487 } 488 489 // For instructions, compare their loop depth, and their opcode. 490 // This is pretty loose. 491 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 492 Instruction *RV = cast<Instruction>(RU->getValue()); 493 494 // Compare loop depths. 495 if (LI->getLoopDepth(LV->getParent()) != 496 LI->getLoopDepth(RV->getParent())) 497 return LI->getLoopDepth(LV->getParent()) < 498 LI->getLoopDepth(RV->getParent()); 499 500 // Compare opcodes. 501 if (LV->getOpcode() != RV->getOpcode()) 502 return LV->getOpcode() < RV->getOpcode(); 503 504 // Compare the number of operands. 505 if (LV->getNumOperands() != RV->getNumOperands()) 506 return LV->getNumOperands() < RV->getNumOperands(); 507 } 508 509 return false; 510 } 511 512 // Compare constant values. 513 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 514 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 515 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 516 } 517 518 // Compare addrec loop depths. 519 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 521 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 522 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 523 } 524 525 // Lexicographically compare n-ary expressions. 526 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 527 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 528 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 529 if (i >= RC->getNumOperands()) 530 return false; 531 if (operator()(LC->getOperand(i), RC->getOperand(i))) 532 return true; 533 if (operator()(RC->getOperand(i), LC->getOperand(i))) 534 return false; 535 } 536 return LC->getNumOperands() < RC->getNumOperands(); 537 } 538 539 // Lexicographically compare udiv expressions. 540 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 541 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 542 if (operator()(LC->getLHS(), RC->getLHS())) 543 return true; 544 if (operator()(RC->getLHS(), LC->getLHS())) 545 return false; 546 if (operator()(LC->getRHS(), RC->getRHS())) 547 return true; 548 if (operator()(RC->getRHS(), LC->getRHS())) 549 return false; 550 return false; 551 } 552 553 // Compare cast expressions by operand. 554 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 555 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 556 return operator()(LC->getOperand(), RC->getOperand()); 557 } 558 559 assert(0 && "Unknown SCEV kind!"); 560 return false; 561 } 562 }; 563 } 564 565 /// GroupByComplexity - Given a list of SCEV objects, order them by their 566 /// complexity, and group objects of the same complexity together by value. 567 /// When this routine is finished, we know that any duplicates in the vector are 568 /// consecutive and that complexity is monotonically increasing. 569 /// 570 /// Note that we go take special precautions to ensure that we get determinstic 571 /// results from this routine. In other words, we don't want the results of 572 /// this to depend on where the addresses of various SCEV objects happened to 573 /// land in memory. 574 /// 575 static void GroupByComplexity(SmallVectorImpl<SCEVHandle> &Ops, 576 LoopInfo *LI) { 577 if (Ops.size() < 2) return; // Noop 578 if (Ops.size() == 2) { 579 // This is the common case, which also happens to be trivially simple. 580 // Special case it. 581 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 582 std::swap(Ops[0], Ops[1]); 583 return; 584 } 585 586 // Do the rough sort by complexity. 587 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 588 589 // Now that we are sorted by complexity, group elements of the same 590 // complexity. Note that this is, at worst, N^2, but the vector is likely to 591 // be extremely short in practice. Note that we take this approach because we 592 // do not want to depend on the addresses of the objects we are grouping. 593 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 594 const SCEV *S = Ops[i]; 595 unsigned Complexity = S->getSCEVType(); 596 597 // If there are any objects of the same complexity and same value as this 598 // one, group them. 599 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 600 if (Ops[j] == S) { // Found a duplicate. 601 // Move it to immediately after i'th element. 602 std::swap(Ops[i+1], Ops[j]); 603 ++i; // no need to rescan it. 604 if (i == e-2) return; // Done! 605 } 606 } 607 } 608 } 609 610 611 612 //===----------------------------------------------------------------------===// 613 // Simple SCEV method implementations 614 //===----------------------------------------------------------------------===// 615 616 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 617 /// Assume, K > 0. 618 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 619 ScalarEvolution &SE, 620 const Type* ResultTy) { 621 // Handle the simplest case efficiently. 622 if (K == 1) 623 return SE.getTruncateOrZeroExtend(It, ResultTy); 624 625 // We are using the following formula for BC(It, K): 626 // 627 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 628 // 629 // Suppose, W is the bitwidth of the return value. We must be prepared for 630 // overflow. Hence, we must assure that the result of our computation is 631 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 632 // safe in modular arithmetic. 633 // 634 // However, this code doesn't use exactly that formula; the formula it uses 635 // is something like the following, where T is the number of factors of 2 in 636 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 637 // exponentiation: 638 // 639 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 640 // 641 // This formula is trivially equivalent to the previous formula. However, 642 // this formula can be implemented much more efficiently. The trick is that 643 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 644 // arithmetic. To do exact division in modular arithmetic, all we have 645 // to do is multiply by the inverse. Therefore, this step can be done at 646 // width W. 647 // 648 // The next issue is how to safely do the division by 2^T. The way this 649 // is done is by doing the multiplication step at a width of at least W + T 650 // bits. This way, the bottom W+T bits of the product are accurate. Then, 651 // when we perform the division by 2^T (which is equivalent to a right shift 652 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 653 // truncated out after the division by 2^T. 654 // 655 // In comparison to just directly using the first formula, this technique 656 // is much more efficient; using the first formula requires W * K bits, 657 // but this formula less than W + K bits. Also, the first formula requires 658 // a division step, whereas this formula only requires multiplies and shifts. 659 // 660 // It doesn't matter whether the subtraction step is done in the calculation 661 // width or the input iteration count's width; if the subtraction overflows, 662 // the result must be zero anyway. We prefer here to do it in the width of 663 // the induction variable because it helps a lot for certain cases; CodeGen 664 // isn't smart enough to ignore the overflow, which leads to much less 665 // efficient code if the width of the subtraction is wider than the native 666 // register width. 667 // 668 // (It's possible to not widen at all by pulling out factors of 2 before 669 // the multiplication; for example, K=2 can be calculated as 670 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 671 // extra arithmetic, so it's not an obvious win, and it gets 672 // much more complicated for K > 3.) 673 674 // Protection from insane SCEVs; this bound is conservative, 675 // but it probably doesn't matter. 676 if (K > 1000) 677 return SE.getCouldNotCompute(); 678 679 unsigned W = SE.getTypeSizeInBits(ResultTy); 680 681 // Calculate K! / 2^T and T; we divide out the factors of two before 682 // multiplying for calculating K! / 2^T to avoid overflow. 683 // Other overflow doesn't matter because we only care about the bottom 684 // W bits of the result. 685 APInt OddFactorial(W, 1); 686 unsigned T = 1; 687 for (unsigned i = 3; i <= K; ++i) { 688 APInt Mult(W, i); 689 unsigned TwoFactors = Mult.countTrailingZeros(); 690 T += TwoFactors; 691 Mult = Mult.lshr(TwoFactors); 692 OddFactorial *= Mult; 693 } 694 695 // We need at least W + T bits for the multiplication step 696 unsigned CalculationBits = W + T; 697 698 // Calcuate 2^T, at width T+W. 699 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 700 701 // Calculate the multiplicative inverse of K! / 2^T; 702 // this multiplication factor will perform the exact division by 703 // K! / 2^T. 704 APInt Mod = APInt::getSignedMinValue(W+1); 705 APInt MultiplyFactor = OddFactorial.zext(W+1); 706 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 707 MultiplyFactor = MultiplyFactor.trunc(W); 708 709 // Calculate the product, at width T+W 710 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 711 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 712 for (unsigned i = 1; i != K; ++i) { 713 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 714 Dividend = SE.getMulExpr(Dividend, 715 SE.getTruncateOrZeroExtend(S, CalculationTy)); 716 } 717 718 // Divide by 2^T 719 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 720 721 // Truncate the result, and divide by K! / 2^T. 722 723 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 724 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 725 } 726 727 /// evaluateAtIteration - Return the value of this chain of recurrences at 728 /// the specified iteration number. We can evaluate this recurrence by 729 /// multiplying each element in the chain by the binomial coefficient 730 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 731 /// 732 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 733 /// 734 /// where BC(It, k) stands for binomial coefficient. 735 /// 736 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 737 ScalarEvolution &SE) const { 738 SCEVHandle Result = getStart(); 739 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 740 // The computation is correct in the face of overflow provided that the 741 // multiplication is performed _after_ the evaluation of the binomial 742 // coefficient. 743 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); 744 if (isa<SCEVCouldNotCompute>(Coeff)) 745 return Coeff; 746 747 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 748 } 749 return Result; 750 } 751 752 //===----------------------------------------------------------------------===// 753 // SCEV Expression folder implementations 754 //===----------------------------------------------------------------------===// 755 756 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, 757 const Type *Ty) { 758 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 759 "This is not a truncating conversion!"); 760 assert(isSCEVable(Ty) && 761 "This is not a conversion to a SCEVable type!"); 762 Ty = getEffectiveSCEVType(Ty); 763 764 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 765 return getUnknown( 766 ConstantExpr::getTrunc(SC->getValue(), Ty)); 767 768 // trunc(trunc(x)) --> trunc(x) 769 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 770 return getTruncateExpr(ST->getOperand(), Ty); 771 772 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 773 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 774 return getTruncateOrSignExtend(SS->getOperand(), Ty); 775 776 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 777 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 778 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 779 780 // If the input value is a chrec scev made out of constants, truncate 781 // all of the constants. 782 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 783 SmallVector<SCEVHandle, 4> Operands; 784 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 785 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 786 return getAddRecExpr(Operands, AddRec->getLoop()); 787 } 788 789 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 790 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 791 return Result; 792 } 793 794 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, 795 const Type *Ty) { 796 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 797 "This is not an extending conversion!"); 798 assert(isSCEVable(Ty) && 799 "This is not a conversion to a SCEVable type!"); 800 Ty = getEffectiveSCEVType(Ty); 801 802 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 803 const Type *IntTy = getEffectiveSCEVType(Ty); 804 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 805 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 806 return getUnknown(C); 807 } 808 809 // zext(zext(x)) --> zext(x) 810 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 811 return getZeroExtendExpr(SZ->getOperand(), Ty); 812 813 // If the input value is a chrec scev, and we can prove that the value 814 // did not overflow the old, smaller, value, we can zero extend all of the 815 // operands (often constants). This allows analysis of something like 816 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 817 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 818 if (AR->isAffine()) { 819 // Check whether the backedge-taken count is SCEVCouldNotCompute. 820 // Note that this serves two purposes: It filters out loops that are 821 // simply not analyzable, and it covers the case where this code is 822 // being called from within backedge-taken count analysis, such that 823 // attempting to ask for the backedge-taken count would likely result 824 // in infinite recursion. In the later case, the analysis code will 825 // cope with a conservative value, and it will take care to purge 826 // that value once it has finished. 827 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 828 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 829 // Manually compute the final value for AR, checking for 830 // overflow. 831 SCEVHandle Start = AR->getStart(); 832 SCEVHandle Step = AR->getStepRecurrence(*this); 833 834 // Check whether the backedge-taken count can be losslessly casted to 835 // the addrec's type. The count is always unsigned. 836 SCEVHandle CastedMaxBECount = 837 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 838 SCEVHandle RecastedMaxBECount = 839 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 840 if (MaxBECount == RecastedMaxBECount) { 841 const Type *WideTy = 842 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 843 // Check whether Start+Step*MaxBECount has no unsigned overflow. 844 SCEVHandle ZMul = 845 getMulExpr(CastedMaxBECount, 846 getTruncateOrZeroExtend(Step, Start->getType())); 847 SCEVHandle Add = getAddExpr(Start, ZMul); 848 SCEVHandle OperandExtendedAdd = 849 getAddExpr(getZeroExtendExpr(Start, WideTy), 850 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 851 getZeroExtendExpr(Step, WideTy))); 852 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 853 // Return the expression with the addrec on the outside. 854 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 855 getZeroExtendExpr(Step, Ty), 856 AR->getLoop()); 857 858 // Similar to above, only this time treat the step value as signed. 859 // This covers loops that count down. 860 SCEVHandle SMul = 861 getMulExpr(CastedMaxBECount, 862 getTruncateOrSignExtend(Step, Start->getType())); 863 Add = getAddExpr(Start, SMul); 864 OperandExtendedAdd = 865 getAddExpr(getZeroExtendExpr(Start, WideTy), 866 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 867 getSignExtendExpr(Step, WideTy))); 868 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 869 // Return the expression with the addrec on the outside. 870 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 871 getSignExtendExpr(Step, Ty), 872 AR->getLoop()); 873 } 874 } 875 } 876 877 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 878 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 879 return Result; 880 } 881 882 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, 883 const Type *Ty) { 884 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 885 "This is not an extending conversion!"); 886 assert(isSCEVable(Ty) && 887 "This is not a conversion to a SCEVable type!"); 888 Ty = getEffectiveSCEVType(Ty); 889 890 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 891 const Type *IntTy = getEffectiveSCEVType(Ty); 892 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 893 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 894 return getUnknown(C); 895 } 896 897 // sext(sext(x)) --> sext(x) 898 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 899 return getSignExtendExpr(SS->getOperand(), Ty); 900 901 // If the input value is a chrec scev, and we can prove that the value 902 // did not overflow the old, smaller, value, we can sign extend all of the 903 // operands (often constants). This allows analysis of something like 904 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 906 if (AR->isAffine()) { 907 // Check whether the backedge-taken count is SCEVCouldNotCompute. 908 // Note that this serves two purposes: It filters out loops that are 909 // simply not analyzable, and it covers the case where this code is 910 // being called from within backedge-taken count analysis, such that 911 // attempting to ask for the backedge-taken count would likely result 912 // in infinite recursion. In the later case, the analysis code will 913 // cope with a conservative value, and it will take care to purge 914 // that value once it has finished. 915 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 916 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 917 // Manually compute the final value for AR, checking for 918 // overflow. 919 SCEVHandle Start = AR->getStart(); 920 SCEVHandle Step = AR->getStepRecurrence(*this); 921 922 // Check whether the backedge-taken count can be losslessly casted to 923 // the addrec's type. The count is always unsigned. 924 SCEVHandle CastedMaxBECount = 925 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 926 SCEVHandle RecastedMaxBECount = 927 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 928 if (MaxBECount == RecastedMaxBECount) { 929 const Type *WideTy = 930 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 931 // Check whether Start+Step*MaxBECount has no signed overflow. 932 SCEVHandle SMul = 933 getMulExpr(CastedMaxBECount, 934 getTruncateOrSignExtend(Step, Start->getType())); 935 SCEVHandle Add = getAddExpr(Start, SMul); 936 SCEVHandle OperandExtendedAdd = 937 getAddExpr(getSignExtendExpr(Start, WideTy), 938 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 939 getSignExtendExpr(Step, WideTy))); 940 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 941 // Return the expression with the addrec on the outside. 942 return getAddRecExpr(getSignExtendExpr(Start, Ty), 943 getSignExtendExpr(Step, Ty), 944 AR->getLoop()); 945 } 946 } 947 } 948 949 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 950 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 951 return Result; 952 } 953 954 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 955 /// unspecified bits out to the given type. 956 /// 957 SCEVHandle ScalarEvolution::getAnyExtendExpr(const SCEVHandle &Op, 958 const Type *Ty) { 959 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 960 "This is not an extending conversion!"); 961 assert(isSCEVable(Ty) && 962 "This is not a conversion to a SCEVable type!"); 963 Ty = getEffectiveSCEVType(Ty); 964 965 // Sign-extend negative constants. 966 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 967 if (SC->getValue()->getValue().isNegative()) 968 return getSignExtendExpr(Op, Ty); 969 970 // Peel off a truncate cast. 971 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 972 SCEVHandle NewOp = T->getOperand(); 973 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 974 return getAnyExtendExpr(NewOp, Ty); 975 return getTruncateOrNoop(NewOp, Ty); 976 } 977 978 // Next try a zext cast. If the cast is folded, use it. 979 SCEVHandle ZExt = getZeroExtendExpr(Op, Ty); 980 if (!isa<SCEVZeroExtendExpr>(ZExt)) 981 return ZExt; 982 983 // Next try a sext cast. If the cast is folded, use it. 984 SCEVHandle SExt = getSignExtendExpr(Op, Ty); 985 if (!isa<SCEVSignExtendExpr>(SExt)) 986 return SExt; 987 988 // If the expression is obviously signed, use the sext cast value. 989 if (isa<SCEVSMaxExpr>(Op)) 990 return SExt; 991 992 // Absent any other information, use the zext cast value. 993 return ZExt; 994 } 995 996 /// CollectAddOperandsWithScales - Process the given Ops list, which is 997 /// a list of operands to be added under the given scale, update the given 998 /// map. This is a helper function for getAddRecExpr. As an example of 999 /// what it does, given a sequence of operands that would form an add 1000 /// expression like this: 1001 /// 1002 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1003 /// 1004 /// where A and B are constants, update the map with these values: 1005 /// 1006 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1007 /// 1008 /// and add 13 + A*B*29 to AccumulatedConstant. 1009 /// This will allow getAddRecExpr to produce this: 1010 /// 1011 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1012 /// 1013 /// This form often exposes folding opportunities that are hidden in 1014 /// the original operand list. 1015 /// 1016 /// Return true iff it appears that any interesting folding opportunities 1017 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1018 /// the common case where no interesting opportunities are present, and 1019 /// is also used as a check to avoid infinite recursion. 1020 /// 1021 static bool 1022 CollectAddOperandsWithScales(DenseMap<SCEVHandle, APInt> &M, 1023 SmallVector<SCEVHandle, 8> &NewOps, 1024 APInt &AccumulatedConstant, 1025 const SmallVectorImpl<SCEVHandle> &Ops, 1026 const APInt &Scale, 1027 ScalarEvolution &SE) { 1028 bool Interesting = false; 1029 1030 // Iterate over the add operands. 1031 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1032 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1033 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1034 APInt NewScale = 1035 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1036 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1037 // A multiplication of a constant with another add; recurse. 1038 Interesting |= 1039 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1040 cast<SCEVAddExpr>(Mul->getOperand(1)) 1041 ->getOperands(), 1042 NewScale, SE); 1043 } else { 1044 // A multiplication of a constant with some other value. Update 1045 // the map. 1046 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1047 SCEVHandle Key = SE.getMulExpr(MulOps); 1048 std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair = 1049 M.insert(std::make_pair(Key, APInt())); 1050 if (Pair.second) { 1051 Pair.first->second = NewScale; 1052 NewOps.push_back(Pair.first->first); 1053 } else { 1054 Pair.first->second += NewScale; 1055 // The map already had an entry for this value, which may indicate 1056 // a folding opportunity. 1057 Interesting = true; 1058 } 1059 } 1060 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1061 // Pull a buried constant out to the outside. 1062 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) 1063 Interesting = true; 1064 AccumulatedConstant += Scale * C->getValue()->getValue(); 1065 } else { 1066 // An ordinary operand. Update the map. 1067 std::pair<DenseMap<SCEVHandle, APInt>::iterator, bool> Pair = 1068 M.insert(std::make_pair(Ops[i], APInt())); 1069 if (Pair.second) { 1070 Pair.first->second = Scale; 1071 NewOps.push_back(Pair.first->first); 1072 } else { 1073 Pair.first->second += Scale; 1074 // The map already had an entry for this value, which may indicate 1075 // a folding opportunity. 1076 Interesting = true; 1077 } 1078 } 1079 } 1080 1081 return Interesting; 1082 } 1083 1084 namespace { 1085 struct APIntCompare { 1086 bool operator()(const APInt &LHS, const APInt &RHS) const { 1087 return LHS.ult(RHS); 1088 } 1089 }; 1090 } 1091 1092 /// getAddExpr - Get a canonical add expression, or something simpler if 1093 /// possible. 1094 SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1095 assert(!Ops.empty() && "Cannot get empty add!"); 1096 if (Ops.size() == 1) return Ops[0]; 1097 #ifndef NDEBUG 1098 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1099 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1100 getEffectiveSCEVType(Ops[0]->getType()) && 1101 "SCEVAddExpr operand types don't match!"); 1102 #endif 1103 1104 // Sort by complexity, this groups all similar expression types together. 1105 GroupByComplexity(Ops, LI); 1106 1107 // If there are any constants, fold them together. 1108 unsigned Idx = 0; 1109 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1110 ++Idx; 1111 assert(Idx < Ops.size()); 1112 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1113 // We found two constants, fold them together! 1114 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1115 RHSC->getValue()->getValue()); 1116 if (Ops.size() == 2) return Ops[0]; 1117 Ops.erase(Ops.begin()+1); // Erase the folded element 1118 LHSC = cast<SCEVConstant>(Ops[0]); 1119 } 1120 1121 // If we are left with a constant zero being added, strip it off. 1122 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1123 Ops.erase(Ops.begin()); 1124 --Idx; 1125 } 1126 } 1127 1128 if (Ops.size() == 1) return Ops[0]; 1129 1130 // Okay, check to see if the same value occurs in the operand list twice. If 1131 // so, merge them together into an multiply expression. Since we sorted the 1132 // list, these values are required to be adjacent. 1133 const Type *Ty = Ops[0]->getType(); 1134 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1135 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1136 // Found a match, merge the two values into a multiply, and add any 1137 // remaining values to the result. 1138 SCEVHandle Two = getIntegerSCEV(2, Ty); 1139 SCEVHandle Mul = getMulExpr(Ops[i], Two); 1140 if (Ops.size() == 2) 1141 return Mul; 1142 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1143 Ops.push_back(Mul); 1144 return getAddExpr(Ops); 1145 } 1146 1147 // Check for truncates. If all the operands are truncated from the same 1148 // type, see if factoring out the truncate would permit the result to be 1149 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1150 // if the contents of the resulting outer trunc fold to something simple. 1151 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1152 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1153 const Type *DstType = Trunc->getType(); 1154 const Type *SrcType = Trunc->getOperand()->getType(); 1155 SmallVector<SCEVHandle, 8> LargeOps; 1156 bool Ok = true; 1157 // Check all the operands to see if they can be represented in the 1158 // source type of the truncate. 1159 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1160 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1161 if (T->getOperand()->getType() != SrcType) { 1162 Ok = false; 1163 break; 1164 } 1165 LargeOps.push_back(T->getOperand()); 1166 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1167 // This could be either sign or zero extension, but sign extension 1168 // is much more likely to be foldable here. 1169 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 1170 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1171 SmallVector<SCEVHandle, 8> LargeMulOps; 1172 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1173 if (const SCEVTruncateExpr *T = 1174 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1175 if (T->getOperand()->getType() != SrcType) { 1176 Ok = false; 1177 break; 1178 } 1179 LargeMulOps.push_back(T->getOperand()); 1180 } else if (const SCEVConstant *C = 1181 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1182 // This could be either sign or zero extension, but sign extension 1183 // is much more likely to be foldable here. 1184 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1185 } else { 1186 Ok = false; 1187 break; 1188 } 1189 } 1190 if (Ok) 1191 LargeOps.push_back(getMulExpr(LargeMulOps)); 1192 } else { 1193 Ok = false; 1194 break; 1195 } 1196 } 1197 if (Ok) { 1198 // Evaluate the expression in the larger type. 1199 SCEVHandle Fold = getAddExpr(LargeOps); 1200 // If it folds to something simple, use it. Otherwise, don't. 1201 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1202 return getTruncateExpr(Fold, DstType); 1203 } 1204 } 1205 1206 // Skip past any other cast SCEVs. 1207 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1208 ++Idx; 1209 1210 // If there are add operands they would be next. 1211 if (Idx < Ops.size()) { 1212 bool DeletedAdd = false; 1213 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1214 // If we have an add, expand the add operands onto the end of the operands 1215 // list. 1216 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1217 Ops.erase(Ops.begin()+Idx); 1218 DeletedAdd = true; 1219 } 1220 1221 // If we deleted at least one add, we added operands to the end of the list, 1222 // and they are not necessarily sorted. Recurse to resort and resimplify 1223 // any operands we just aquired. 1224 if (DeletedAdd) 1225 return getAddExpr(Ops); 1226 } 1227 1228 // Skip over the add expression until we get to a multiply. 1229 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1230 ++Idx; 1231 1232 // Check to see if there are any folding opportunities present with 1233 // operands multiplied by constant values. 1234 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1235 uint64_t BitWidth = getTypeSizeInBits(Ty); 1236 DenseMap<SCEVHandle, APInt> M; 1237 SmallVector<SCEVHandle, 8> NewOps; 1238 APInt AccumulatedConstant(BitWidth, 0); 1239 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1240 Ops, APInt(BitWidth, 1), *this)) { 1241 // Some interesting folding opportunity is present, so its worthwhile to 1242 // re-generate the operands list. Group the operands by constant scale, 1243 // to avoid multiplying by the same constant scale multiple times. 1244 std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare> MulOpLists; 1245 for (SmallVector<SCEVHandle, 8>::iterator I = NewOps.begin(), 1246 E = NewOps.end(); I != E; ++I) 1247 MulOpLists[M.find(*I)->second].push_back(*I); 1248 // Re-generate the operands list. 1249 Ops.clear(); 1250 if (AccumulatedConstant != 0) 1251 Ops.push_back(getConstant(AccumulatedConstant)); 1252 for (std::map<APInt, SmallVector<SCEVHandle, 4>, APIntCompare>::iterator I = 1253 MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1254 if (I->first != 0) 1255 Ops.push_back(getMulExpr(getConstant(I->first), getAddExpr(I->second))); 1256 if (Ops.empty()) 1257 return getIntegerSCEV(0, Ty); 1258 if (Ops.size() == 1) 1259 return Ops[0]; 1260 return getAddExpr(Ops); 1261 } 1262 } 1263 1264 // If we are adding something to a multiply expression, make sure the 1265 // something is not already an operand of the multiply. If so, merge it into 1266 // the multiply. 1267 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1268 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1269 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1270 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1271 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1272 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1273 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1274 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 1275 if (Mul->getNumOperands() != 2) { 1276 // If the multiply has more than two operands, we must get the 1277 // Y*Z term. 1278 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1279 MulOps.erase(MulOps.begin()+MulOp); 1280 InnerMul = getMulExpr(MulOps); 1281 } 1282 SCEVHandle One = getIntegerSCEV(1, Ty); 1283 SCEVHandle AddOne = getAddExpr(InnerMul, One); 1284 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1285 if (Ops.size() == 2) return OuterMul; 1286 if (AddOp < Idx) { 1287 Ops.erase(Ops.begin()+AddOp); 1288 Ops.erase(Ops.begin()+Idx-1); 1289 } else { 1290 Ops.erase(Ops.begin()+Idx); 1291 Ops.erase(Ops.begin()+AddOp-1); 1292 } 1293 Ops.push_back(OuterMul); 1294 return getAddExpr(Ops); 1295 } 1296 1297 // Check this multiply against other multiplies being added together. 1298 for (unsigned OtherMulIdx = Idx+1; 1299 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1300 ++OtherMulIdx) { 1301 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1302 // If MulOp occurs in OtherMul, we can fold the two multiplies 1303 // together. 1304 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1305 OMulOp != e; ++OMulOp) 1306 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1307 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1308 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 1309 if (Mul->getNumOperands() != 2) { 1310 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1311 MulOps.erase(MulOps.begin()+MulOp); 1312 InnerMul1 = getMulExpr(MulOps); 1313 } 1314 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1315 if (OtherMul->getNumOperands() != 2) { 1316 SmallVector<SCEVHandle, 4> MulOps(OtherMul->op_begin(), 1317 OtherMul->op_end()); 1318 MulOps.erase(MulOps.begin()+OMulOp); 1319 InnerMul2 = getMulExpr(MulOps); 1320 } 1321 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1322 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1323 if (Ops.size() == 2) return OuterMul; 1324 Ops.erase(Ops.begin()+Idx); 1325 Ops.erase(Ops.begin()+OtherMulIdx-1); 1326 Ops.push_back(OuterMul); 1327 return getAddExpr(Ops); 1328 } 1329 } 1330 } 1331 } 1332 1333 // If there are any add recurrences in the operands list, see if any other 1334 // added values are loop invariant. If so, we can fold them into the 1335 // recurrence. 1336 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1337 ++Idx; 1338 1339 // Scan over all recurrences, trying to fold loop invariants into them. 1340 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1341 // Scan all of the other operands to this add and add them to the vector if 1342 // they are loop invariant w.r.t. the recurrence. 1343 SmallVector<SCEVHandle, 8> LIOps; 1344 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1345 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1346 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1347 LIOps.push_back(Ops[i]); 1348 Ops.erase(Ops.begin()+i); 1349 --i; --e; 1350 } 1351 1352 // If we found some loop invariants, fold them into the recurrence. 1353 if (!LIOps.empty()) { 1354 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1355 LIOps.push_back(AddRec->getStart()); 1356 1357 SmallVector<SCEVHandle, 4> AddRecOps(AddRec->op_begin(), 1358 AddRec->op_end()); 1359 AddRecOps[0] = getAddExpr(LIOps); 1360 1361 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1362 // If all of the other operands were loop invariant, we are done. 1363 if (Ops.size() == 1) return NewRec; 1364 1365 // Otherwise, add the folded AddRec by the non-liv parts. 1366 for (unsigned i = 0;; ++i) 1367 if (Ops[i] == AddRec) { 1368 Ops[i] = NewRec; 1369 break; 1370 } 1371 return getAddExpr(Ops); 1372 } 1373 1374 // Okay, if there weren't any loop invariants to be folded, check to see if 1375 // there are multiple AddRec's with the same loop induction variable being 1376 // added together. If so, we can fold them. 1377 for (unsigned OtherIdx = Idx+1; 1378 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1379 if (OtherIdx != Idx) { 1380 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1381 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1382 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1383 SmallVector<SCEVHandle, 4> NewOps(AddRec->op_begin(), AddRec->op_end()); 1384 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1385 if (i >= NewOps.size()) { 1386 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1387 OtherAddRec->op_end()); 1388 break; 1389 } 1390 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1391 } 1392 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1393 1394 if (Ops.size() == 2) return NewAddRec; 1395 1396 Ops.erase(Ops.begin()+Idx); 1397 Ops.erase(Ops.begin()+OtherIdx-1); 1398 Ops.push_back(NewAddRec); 1399 return getAddExpr(Ops); 1400 } 1401 } 1402 1403 // Otherwise couldn't fold anything into this recurrence. Move onto the 1404 // next one. 1405 } 1406 1407 // Okay, it looks like we really DO need an add expr. Check to see if we 1408 // already have one, otherwise create a new one. 1409 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1410 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 1411 SCEVOps)]; 1412 if (Result == 0) Result = new SCEVAddExpr(Ops); 1413 return Result; 1414 } 1415 1416 1417 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1418 /// possible. 1419 SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1420 assert(!Ops.empty() && "Cannot get empty mul!"); 1421 #ifndef NDEBUG 1422 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1423 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1424 getEffectiveSCEVType(Ops[0]->getType()) && 1425 "SCEVMulExpr operand types don't match!"); 1426 #endif 1427 1428 // Sort by complexity, this groups all similar expression types together. 1429 GroupByComplexity(Ops, LI); 1430 1431 // If there are any constants, fold them together. 1432 unsigned Idx = 0; 1433 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1434 1435 // C1*(C2+V) -> C1*C2 + C1*V 1436 if (Ops.size() == 2) 1437 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1438 if (Add->getNumOperands() == 2 && 1439 isa<SCEVConstant>(Add->getOperand(0))) 1440 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1441 getMulExpr(LHSC, Add->getOperand(1))); 1442 1443 1444 ++Idx; 1445 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1446 // We found two constants, fold them together! 1447 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 1448 RHSC->getValue()->getValue()); 1449 Ops[0] = getConstant(Fold); 1450 Ops.erase(Ops.begin()+1); // Erase the folded element 1451 if (Ops.size() == 1) return Ops[0]; 1452 LHSC = cast<SCEVConstant>(Ops[0]); 1453 } 1454 1455 // If we are left with a constant one being multiplied, strip it off. 1456 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1457 Ops.erase(Ops.begin()); 1458 --Idx; 1459 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1460 // If we have a multiply of zero, it will always be zero. 1461 return Ops[0]; 1462 } 1463 } 1464 1465 // Skip over the add expression until we get to a multiply. 1466 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1467 ++Idx; 1468 1469 if (Ops.size() == 1) 1470 return Ops[0]; 1471 1472 // If there are mul operands inline them all into this expression. 1473 if (Idx < Ops.size()) { 1474 bool DeletedMul = false; 1475 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1476 // If we have an mul, expand the mul operands onto the end of the operands 1477 // list. 1478 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1479 Ops.erase(Ops.begin()+Idx); 1480 DeletedMul = true; 1481 } 1482 1483 // If we deleted at least one mul, we added operands to the end of the list, 1484 // and they are not necessarily sorted. Recurse to resort and resimplify 1485 // any operands we just aquired. 1486 if (DeletedMul) 1487 return getMulExpr(Ops); 1488 } 1489 1490 // If there are any add recurrences in the operands list, see if any other 1491 // added values are loop invariant. If so, we can fold them into the 1492 // recurrence. 1493 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1494 ++Idx; 1495 1496 // Scan over all recurrences, trying to fold loop invariants into them. 1497 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1498 // Scan all of the other operands to this mul and add them to the vector if 1499 // they are loop invariant w.r.t. the recurrence. 1500 SmallVector<SCEVHandle, 8> LIOps; 1501 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1502 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1503 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1504 LIOps.push_back(Ops[i]); 1505 Ops.erase(Ops.begin()+i); 1506 --i; --e; 1507 } 1508 1509 // If we found some loop invariants, fold them into the recurrence. 1510 if (!LIOps.empty()) { 1511 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1512 SmallVector<SCEVHandle, 4> NewOps; 1513 NewOps.reserve(AddRec->getNumOperands()); 1514 if (LIOps.size() == 1) { 1515 const SCEV *Scale = LIOps[0]; 1516 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1517 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1518 } else { 1519 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1520 SmallVector<SCEVHandle, 4> MulOps(LIOps.begin(), LIOps.end()); 1521 MulOps.push_back(AddRec->getOperand(i)); 1522 NewOps.push_back(getMulExpr(MulOps)); 1523 } 1524 } 1525 1526 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1527 1528 // If all of the other operands were loop invariant, we are done. 1529 if (Ops.size() == 1) return NewRec; 1530 1531 // Otherwise, multiply the folded AddRec by the non-liv parts. 1532 for (unsigned i = 0;; ++i) 1533 if (Ops[i] == AddRec) { 1534 Ops[i] = NewRec; 1535 break; 1536 } 1537 return getMulExpr(Ops); 1538 } 1539 1540 // Okay, if there weren't any loop invariants to be folded, check to see if 1541 // there are multiple AddRec's with the same loop induction variable being 1542 // multiplied together. If so, we can fold them. 1543 for (unsigned OtherIdx = Idx+1; 1544 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1545 if (OtherIdx != Idx) { 1546 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1547 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1548 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1549 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1550 SCEVHandle NewStart = getMulExpr(F->getStart(), 1551 G->getStart()); 1552 SCEVHandle B = F->getStepRecurrence(*this); 1553 SCEVHandle D = G->getStepRecurrence(*this); 1554 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1555 getMulExpr(G, B), 1556 getMulExpr(B, D)); 1557 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1558 F->getLoop()); 1559 if (Ops.size() == 2) return NewAddRec; 1560 1561 Ops.erase(Ops.begin()+Idx); 1562 Ops.erase(Ops.begin()+OtherIdx-1); 1563 Ops.push_back(NewAddRec); 1564 return getMulExpr(Ops); 1565 } 1566 } 1567 1568 // Otherwise couldn't fold anything into this recurrence. Move onto the 1569 // next one. 1570 } 1571 1572 // Okay, it looks like we really DO need an mul expr. Check to see if we 1573 // already have one, otherwise create a new one. 1574 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1575 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1576 SCEVOps)]; 1577 if (Result == 0) 1578 Result = new SCEVMulExpr(Ops); 1579 return Result; 1580 } 1581 1582 /// getUDivExpr - Get a canonical multiply expression, or something simpler if 1583 /// possible. 1584 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, 1585 const SCEVHandle &RHS) { 1586 assert(getEffectiveSCEVType(LHS->getType()) == 1587 getEffectiveSCEVType(RHS->getType()) && 1588 "SCEVUDivExpr operand types don't match!"); 1589 1590 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1591 if (RHSC->getValue()->equalsInt(1)) 1592 return LHS; // X udiv 1 --> x 1593 if (RHSC->isZero()) 1594 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1595 1596 // Determine if the division can be folded into the operands of 1597 // its operands. 1598 // TODO: Generalize this to non-constants by using known-bits information. 1599 const Type *Ty = LHS->getType(); 1600 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1601 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1602 // For non-power-of-two values, effectively round the value up to the 1603 // nearest power of two. 1604 if (!RHSC->getValue()->getValue().isPowerOf2()) 1605 ++MaxShiftAmt; 1606 const IntegerType *ExtTy = 1607 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt); 1608 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1609 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1610 if (const SCEVConstant *Step = 1611 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1612 if (!Step->getValue()->getValue() 1613 .urem(RHSC->getValue()->getValue()) && 1614 getZeroExtendExpr(AR, ExtTy) == 1615 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1616 getZeroExtendExpr(Step, ExtTy), 1617 AR->getLoop())) { 1618 SmallVector<SCEVHandle, 4> Operands; 1619 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1620 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1621 return getAddRecExpr(Operands, AR->getLoop()); 1622 } 1623 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1624 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1625 SmallVector<SCEVHandle, 4> Operands; 1626 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1627 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1628 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1629 // Find an operand that's safely divisible. 1630 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1631 SCEVHandle Op = M->getOperand(i); 1632 SCEVHandle Div = getUDivExpr(Op, RHSC); 1633 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1634 const SmallVectorImpl<SCEVHandle> &MOperands = M->getOperands(); 1635 Operands = SmallVector<SCEVHandle, 4>(MOperands.begin(), 1636 MOperands.end()); 1637 Operands[i] = Div; 1638 return getMulExpr(Operands); 1639 } 1640 } 1641 } 1642 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1643 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1644 SmallVector<SCEVHandle, 4> Operands; 1645 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1646 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1647 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1648 Operands.clear(); 1649 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1650 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS); 1651 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1652 break; 1653 Operands.push_back(Op); 1654 } 1655 if (Operands.size() == A->getNumOperands()) 1656 return getAddExpr(Operands); 1657 } 1658 } 1659 1660 // Fold if both operands are constant. 1661 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1662 Constant *LHSCV = LHSC->getValue(); 1663 Constant *RHSCV = RHSC->getValue(); 1664 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1665 } 1666 } 1667 1668 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1669 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); 1670 return Result; 1671 } 1672 1673 1674 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1675 /// Simplify the expression as much as possible. 1676 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1677 const SCEVHandle &Step, const Loop *L) { 1678 SmallVector<SCEVHandle, 4> Operands; 1679 Operands.push_back(Start); 1680 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1681 if (StepChrec->getLoop() == L) { 1682 Operands.insert(Operands.end(), StepChrec->op_begin(), 1683 StepChrec->op_end()); 1684 return getAddRecExpr(Operands, L); 1685 } 1686 1687 Operands.push_back(Step); 1688 return getAddRecExpr(Operands, L); 1689 } 1690 1691 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1692 /// Simplify the expression as much as possible. 1693 SCEVHandle ScalarEvolution::getAddRecExpr(SmallVectorImpl<SCEVHandle> &Operands, 1694 const Loop *L) { 1695 if (Operands.size() == 1) return Operands[0]; 1696 #ifndef NDEBUG 1697 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1698 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1699 getEffectiveSCEVType(Operands[0]->getType()) && 1700 "SCEVAddRecExpr operand types don't match!"); 1701 #endif 1702 1703 if (Operands.back()->isZero()) { 1704 Operands.pop_back(); 1705 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1706 } 1707 1708 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1709 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1710 const Loop* NestedLoop = NestedAR->getLoop(); 1711 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1712 SmallVector<SCEVHandle, 4> NestedOperands(NestedAR->op_begin(), 1713 NestedAR->op_end()); 1714 SCEVHandle NestedARHandle(NestedAR); 1715 Operands[0] = NestedAR->getStart(); 1716 NestedOperands[0] = getAddRecExpr(Operands, L); 1717 return getAddRecExpr(NestedOperands, NestedLoop); 1718 } 1719 } 1720 1721 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end()); 1722 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)]; 1723 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1724 return Result; 1725 } 1726 1727 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1728 const SCEVHandle &RHS) { 1729 SmallVector<SCEVHandle, 2> Ops; 1730 Ops.push_back(LHS); 1731 Ops.push_back(RHS); 1732 return getSMaxExpr(Ops); 1733 } 1734 1735 SCEVHandle 1736 ScalarEvolution::getSMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1737 assert(!Ops.empty() && "Cannot get empty smax!"); 1738 if (Ops.size() == 1) return Ops[0]; 1739 #ifndef NDEBUG 1740 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1741 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1742 getEffectiveSCEVType(Ops[0]->getType()) && 1743 "SCEVSMaxExpr operand types don't match!"); 1744 #endif 1745 1746 // Sort by complexity, this groups all similar expression types together. 1747 GroupByComplexity(Ops, LI); 1748 1749 // If there are any constants, fold them together. 1750 unsigned Idx = 0; 1751 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1752 ++Idx; 1753 assert(Idx < Ops.size()); 1754 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1755 // We found two constants, fold them together! 1756 ConstantInt *Fold = ConstantInt::get( 1757 APIntOps::smax(LHSC->getValue()->getValue(), 1758 RHSC->getValue()->getValue())); 1759 Ops[0] = getConstant(Fold); 1760 Ops.erase(Ops.begin()+1); // Erase the folded element 1761 if (Ops.size() == 1) return Ops[0]; 1762 LHSC = cast<SCEVConstant>(Ops[0]); 1763 } 1764 1765 // If we are left with a constant -inf, strip it off. 1766 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1767 Ops.erase(Ops.begin()); 1768 --Idx; 1769 } 1770 } 1771 1772 if (Ops.size() == 1) return Ops[0]; 1773 1774 // Find the first SMax 1775 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1776 ++Idx; 1777 1778 // Check to see if one of the operands is an SMax. If so, expand its operands 1779 // onto our operand list, and recurse to simplify. 1780 if (Idx < Ops.size()) { 1781 bool DeletedSMax = false; 1782 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1783 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1784 Ops.erase(Ops.begin()+Idx); 1785 DeletedSMax = true; 1786 } 1787 1788 if (DeletedSMax) 1789 return getSMaxExpr(Ops); 1790 } 1791 1792 // Okay, check to see if the same value occurs in the operand list twice. If 1793 // so, delete one. Since we sorted the list, these values are required to 1794 // be adjacent. 1795 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1796 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1797 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1798 --i; --e; 1799 } 1800 1801 if (Ops.size() == 1) return Ops[0]; 1802 1803 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1804 1805 // Okay, it looks like we really DO need an smax expr. Check to see if we 1806 // already have one, otherwise create a new one. 1807 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1808 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1809 SCEVOps)]; 1810 if (Result == 0) Result = new SCEVSMaxExpr(Ops); 1811 return Result; 1812 } 1813 1814 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1815 const SCEVHandle &RHS) { 1816 SmallVector<SCEVHandle, 2> Ops; 1817 Ops.push_back(LHS); 1818 Ops.push_back(RHS); 1819 return getUMaxExpr(Ops); 1820 } 1821 1822 SCEVHandle 1823 ScalarEvolution::getUMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) { 1824 assert(!Ops.empty() && "Cannot get empty umax!"); 1825 if (Ops.size() == 1) return Ops[0]; 1826 #ifndef NDEBUG 1827 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1828 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1829 getEffectiveSCEVType(Ops[0]->getType()) && 1830 "SCEVUMaxExpr operand types don't match!"); 1831 #endif 1832 1833 // Sort by complexity, this groups all similar expression types together. 1834 GroupByComplexity(Ops, LI); 1835 1836 // If there are any constants, fold them together. 1837 unsigned Idx = 0; 1838 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1839 ++Idx; 1840 assert(Idx < Ops.size()); 1841 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1842 // We found two constants, fold them together! 1843 ConstantInt *Fold = ConstantInt::get( 1844 APIntOps::umax(LHSC->getValue()->getValue(), 1845 RHSC->getValue()->getValue())); 1846 Ops[0] = getConstant(Fold); 1847 Ops.erase(Ops.begin()+1); // Erase the folded element 1848 if (Ops.size() == 1) return Ops[0]; 1849 LHSC = cast<SCEVConstant>(Ops[0]); 1850 } 1851 1852 // If we are left with a constant zero, strip it off. 1853 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1854 Ops.erase(Ops.begin()); 1855 --Idx; 1856 } 1857 } 1858 1859 if (Ops.size() == 1) return Ops[0]; 1860 1861 // Find the first UMax 1862 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1863 ++Idx; 1864 1865 // Check to see if one of the operands is a UMax. If so, expand its operands 1866 // onto our operand list, and recurse to simplify. 1867 if (Idx < Ops.size()) { 1868 bool DeletedUMax = false; 1869 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1870 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1871 Ops.erase(Ops.begin()+Idx); 1872 DeletedUMax = true; 1873 } 1874 1875 if (DeletedUMax) 1876 return getUMaxExpr(Ops); 1877 } 1878 1879 // Okay, check to see if the same value occurs in the operand list twice. If 1880 // so, delete one. Since we sorted the list, these values are required to 1881 // be adjacent. 1882 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1883 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1884 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1885 --i; --e; 1886 } 1887 1888 if (Ops.size() == 1) return Ops[0]; 1889 1890 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1891 1892 // Okay, it looks like we really DO need a umax expr. Check to see if we 1893 // already have one, otherwise create a new one. 1894 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1895 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1896 SCEVOps)]; 1897 if (Result == 0) Result = new SCEVUMaxExpr(Ops); 1898 return Result; 1899 } 1900 1901 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1902 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1903 return getConstant(CI); 1904 if (isa<ConstantPointerNull>(V)) 1905 return getIntegerSCEV(0, V->getType()); 1906 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1907 if (Result == 0) Result = new SCEVUnknown(V); 1908 return Result; 1909 } 1910 1911 //===----------------------------------------------------------------------===// 1912 // Basic SCEV Analysis and PHI Idiom Recognition Code 1913 // 1914 1915 /// isSCEVable - Test if values of the given type are analyzable within 1916 /// the SCEV framework. This primarily includes integer types, and it 1917 /// can optionally include pointer types if the ScalarEvolution class 1918 /// has access to target-specific information. 1919 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 1920 // Integers are always SCEVable. 1921 if (Ty->isInteger()) 1922 return true; 1923 1924 // Pointers are SCEVable if TargetData information is available 1925 // to provide pointer size information. 1926 if (isa<PointerType>(Ty)) 1927 return TD != NULL; 1928 1929 // Otherwise it's not SCEVable. 1930 return false; 1931 } 1932 1933 /// getTypeSizeInBits - Return the size in bits of the specified type, 1934 /// for which isSCEVable must return true. 1935 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 1936 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1937 1938 // If we have a TargetData, use it! 1939 if (TD) 1940 return TD->getTypeSizeInBits(Ty); 1941 1942 // Otherwise, we support only integer types. 1943 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); 1944 return Ty->getPrimitiveSizeInBits(); 1945 } 1946 1947 /// getEffectiveSCEVType - Return a type with the same bitwidth as 1948 /// the given type and which represents how SCEV will treat the given 1949 /// type, for which isSCEVable must return true. For pointer types, 1950 /// this is the pointer-sized integer type. 1951 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 1952 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1953 1954 if (Ty->isInteger()) 1955 return Ty; 1956 1957 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 1958 return TD->getIntPtrType(); 1959 } 1960 1961 SCEVHandle ScalarEvolution::getCouldNotCompute() { 1962 return CouldNotCompute; 1963 } 1964 1965 /// hasSCEV - Return true if the SCEV for this value has already been 1966 /// computed. 1967 bool ScalarEvolution::hasSCEV(Value *V) const { 1968 return Scalars.count(V); 1969 } 1970 1971 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1972 /// expression and create a new one. 1973 SCEVHandle ScalarEvolution::getSCEV(Value *V) { 1974 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 1975 1976 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V); 1977 if (I != Scalars.end()) return I->second; 1978 SCEVHandle S = createSCEV(V); 1979 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 1980 return S; 1981 } 1982 1983 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 1984 /// specified signed integer value and return a SCEV for the constant. 1985 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 1986 Ty = getEffectiveSCEVType(Ty); 1987 Constant *C; 1988 if (Val == 0) 1989 C = Constant::getNullValue(Ty); 1990 else if (Ty->isFloatingPoint()) 1991 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 1992 APFloat::IEEEdouble, Val)); 1993 else 1994 C = ConstantInt::get(Ty, Val); 1995 return getUnknown(C); 1996 } 1997 1998 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 1999 /// 2000 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 2001 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2002 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 2003 2004 const Type *Ty = V->getType(); 2005 Ty = getEffectiveSCEVType(Ty); 2006 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); 2007 } 2008 2009 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2010 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 2011 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2012 return getUnknown(ConstantExpr::getNot(VC->getValue())); 2013 2014 const Type *Ty = V->getType(); 2015 Ty = getEffectiveSCEVType(Ty); 2016 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); 2017 return getMinusSCEV(AllOnes, V); 2018 } 2019 2020 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2021 /// 2022 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 2023 const SCEVHandle &RHS) { 2024 // X - Y --> X + -Y 2025 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2026 } 2027 2028 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2029 /// input value to the specified type. If the type must be extended, it is zero 2030 /// extended. 2031 SCEVHandle 2032 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 2033 const Type *Ty) { 2034 const Type *SrcTy = V->getType(); 2035 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2036 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2037 "Cannot truncate or zero extend with non-integer arguments!"); 2038 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2039 return V; // No conversion 2040 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2041 return getTruncateExpr(V, Ty); 2042 return getZeroExtendExpr(V, Ty); 2043 } 2044 2045 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2046 /// input value to the specified type. If the type must be extended, it is sign 2047 /// extended. 2048 SCEVHandle 2049 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, 2050 const Type *Ty) { 2051 const Type *SrcTy = V->getType(); 2052 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2053 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2054 "Cannot truncate or zero extend with non-integer arguments!"); 2055 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2056 return V; // No conversion 2057 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2058 return getTruncateExpr(V, Ty); 2059 return getSignExtendExpr(V, Ty); 2060 } 2061 2062 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2063 /// input value to the specified type. If the type must be extended, it is zero 2064 /// extended. The conversion must not be narrowing. 2065 SCEVHandle 2066 ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) { 2067 const Type *SrcTy = V->getType(); 2068 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2069 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2070 "Cannot noop or zero extend with non-integer arguments!"); 2071 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2072 "getNoopOrZeroExtend cannot truncate!"); 2073 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2074 return V; // No conversion 2075 return getZeroExtendExpr(V, Ty); 2076 } 2077 2078 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2079 /// input value to the specified type. If the type must be extended, it is sign 2080 /// extended. The conversion must not be narrowing. 2081 SCEVHandle 2082 ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) { 2083 const Type *SrcTy = V->getType(); 2084 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2085 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2086 "Cannot noop or sign extend with non-integer arguments!"); 2087 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2088 "getNoopOrSignExtend cannot truncate!"); 2089 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2090 return V; // No conversion 2091 return getSignExtendExpr(V, Ty); 2092 } 2093 2094 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2095 /// the input value to the specified type. If the type must be extended, 2096 /// it is extended with unspecified bits. The conversion must not be 2097 /// narrowing. 2098 SCEVHandle 2099 ScalarEvolution::getNoopOrAnyExtend(const SCEVHandle &V, const Type *Ty) { 2100 const Type *SrcTy = V->getType(); 2101 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2102 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2103 "Cannot noop or any extend with non-integer arguments!"); 2104 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2105 "getNoopOrAnyExtend cannot truncate!"); 2106 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2107 return V; // No conversion 2108 return getAnyExtendExpr(V, Ty); 2109 } 2110 2111 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2112 /// input value to the specified type. The conversion must not be widening. 2113 SCEVHandle 2114 ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) { 2115 const Type *SrcTy = V->getType(); 2116 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 2117 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 2118 "Cannot truncate or noop with non-integer arguments!"); 2119 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2120 "getTruncateOrNoop cannot extend!"); 2121 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2122 return V; // No conversion 2123 return getTruncateExpr(V, Ty); 2124 } 2125 2126 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 2127 /// the specified instruction and replaces any references to the symbolic value 2128 /// SymName with the specified value. This is used during PHI resolution. 2129 void ScalarEvolution:: 2130 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 2131 const SCEVHandle &NewVal) { 2132 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI = 2133 Scalars.find(SCEVCallbackVH(I, this)); 2134 if (SI == Scalars.end()) return; 2135 2136 SCEVHandle NV = 2137 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); 2138 if (NV == SI->second) return; // No change. 2139 2140 SI->second = NV; // Update the scalars map! 2141 2142 // Any instruction values that use this instruction might also need to be 2143 // updated! 2144 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 2145 UI != E; ++UI) 2146 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 2147 } 2148 2149 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2150 /// a loop header, making it a potential recurrence, or it doesn't. 2151 /// 2152 SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { 2153 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 2154 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2155 if (L->getHeader() == PN->getParent()) { 2156 // If it lives in the loop header, it has two incoming values, one 2157 // from outside the loop, and one from inside. 2158 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 2159 unsigned BackEdge = IncomingEdge^1; 2160 2161 // While we are analyzing this PHI node, handle its value symbolically. 2162 SCEVHandle SymbolicName = getUnknown(PN); 2163 assert(Scalars.find(PN) == Scalars.end() && 2164 "PHI node already processed?"); 2165 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2166 2167 // Using this symbolic name for the PHI, analyze the value coming around 2168 // the back-edge. 2169 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 2170 2171 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2172 // has a special value for the first iteration of the loop. 2173 2174 // If the value coming around the backedge is an add with the symbolic 2175 // value we just inserted, then we found a simple induction variable! 2176 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2177 // If there is a single occurrence of the symbolic value, replace it 2178 // with a recurrence. 2179 unsigned FoundIndex = Add->getNumOperands(); 2180 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2181 if (Add->getOperand(i) == SymbolicName) 2182 if (FoundIndex == e) { 2183 FoundIndex = i; 2184 break; 2185 } 2186 2187 if (FoundIndex != Add->getNumOperands()) { 2188 // Create an add with everything but the specified operand. 2189 SmallVector<SCEVHandle, 8> Ops; 2190 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2191 if (i != FoundIndex) 2192 Ops.push_back(Add->getOperand(i)); 2193 SCEVHandle Accum = getAddExpr(Ops); 2194 2195 // This is not a valid addrec if the step amount is varying each 2196 // loop iteration, but is not itself an addrec in this loop. 2197 if (Accum->isLoopInvariant(L) || 2198 (isa<SCEVAddRecExpr>(Accum) && 2199 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2200 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2201 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L); 2202 2203 // Okay, for the entire analysis of this edge we assumed the PHI 2204 // to be symbolic. We now need to go back and update all of the 2205 // entries for the scalars that use the PHI (except for the PHI 2206 // itself) to use the new analyzed value instead of the "symbolic" 2207 // value. 2208 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2209 return PHISCEV; 2210 } 2211 } 2212 } else if (const SCEVAddRecExpr *AddRec = 2213 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2214 // Otherwise, this could be a loop like this: 2215 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2216 // In this case, j = {1,+,1} and BEValue is j. 2217 // Because the other in-value of i (0) fits the evolution of BEValue 2218 // i really is an addrec evolution. 2219 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2220 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2221 2222 // If StartVal = j.start - j.stride, we can use StartVal as the 2223 // initial step of the addrec evolution. 2224 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2225 AddRec->getOperand(1))) { 2226 SCEVHandle PHISCEV = 2227 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2228 2229 // Okay, for the entire analysis of this edge we assumed the PHI 2230 // to be symbolic. We now need to go back and update all of the 2231 // entries for the scalars that use the PHI (except for the PHI 2232 // itself) to use the new analyzed value instead of the "symbolic" 2233 // value. 2234 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 2235 return PHISCEV; 2236 } 2237 } 2238 } 2239 2240 return SymbolicName; 2241 } 2242 2243 // If it's not a loop phi, we can't handle it yet. 2244 return getUnknown(PN); 2245 } 2246 2247 /// createNodeForGEP - Expand GEP instructions into add and multiply 2248 /// operations. This allows them to be analyzed by regular SCEV code. 2249 /// 2250 SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) { 2251 2252 const Type *IntPtrTy = TD->getIntPtrType(); 2253 Value *Base = GEP->getOperand(0); 2254 // Don't attempt to analyze GEPs over unsized objects. 2255 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2256 return getUnknown(GEP); 2257 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy); 2258 gep_type_iterator GTI = gep_type_begin(GEP); 2259 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2260 E = GEP->op_end(); 2261 I != E; ++I) { 2262 Value *Index = *I; 2263 // Compute the (potentially symbolic) offset in bytes for this index. 2264 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2265 // For a struct, add the member offset. 2266 const StructLayout &SL = *TD->getStructLayout(STy); 2267 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2268 uint64_t Offset = SL.getElementOffset(FieldNo); 2269 TotalOffset = getAddExpr(TotalOffset, 2270 getIntegerSCEV(Offset, IntPtrTy)); 2271 } else { 2272 // For an array, add the element offset, explicitly scaled. 2273 SCEVHandle LocalOffset = getSCEV(Index); 2274 if (!isa<PointerType>(LocalOffset->getType())) 2275 // Getelementptr indicies are signed. 2276 LocalOffset = getTruncateOrSignExtend(LocalOffset, 2277 IntPtrTy); 2278 LocalOffset = 2279 getMulExpr(LocalOffset, 2280 getIntegerSCEV(TD->getTypeAllocSize(*GTI), 2281 IntPtrTy)); 2282 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2283 } 2284 } 2285 return getAddExpr(getSCEV(Base), TotalOffset); 2286 } 2287 2288 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2289 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2290 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2291 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2292 static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) { 2293 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2294 return C->getValue()->getValue().countTrailingZeros(); 2295 2296 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2297 return std::min(GetMinTrailingZeros(T->getOperand(), SE), 2298 (uint32_t)SE.getTypeSizeInBits(T->getType())); 2299 2300 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2301 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); 2302 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? 2303 SE.getTypeSizeInBits(E->getType()) : OpRes; 2304 } 2305 2306 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2307 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); 2308 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? 2309 SE.getTypeSizeInBits(E->getType()) : OpRes; 2310 } 2311 2312 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2313 // The result is the min of all operands results. 2314 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); 2315 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2316 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); 2317 return MinOpRes; 2318 } 2319 2320 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2321 // The result is the sum of all operands results. 2322 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 2323 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType()); 2324 for (unsigned i = 1, e = M->getNumOperands(); 2325 SumOpRes != BitWidth && i != e; ++i) 2326 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE), 2327 BitWidth); 2328 return SumOpRes; 2329 } 2330 2331 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2332 // The result is the min of all operands results. 2333 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); 2334 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2335 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); 2336 return MinOpRes; 2337 } 2338 2339 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2340 // The result is the min of all operands results. 2341 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 2342 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2343 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); 2344 return MinOpRes; 2345 } 2346 2347 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2348 // The result is the min of all operands results. 2349 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 2350 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2351 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); 2352 return MinOpRes; 2353 } 2354 2355 // SCEVUDivExpr, SCEVUnknown 2356 return 0; 2357 } 2358 2359 /// createSCEV - We know that there is no SCEV for the specified value. 2360 /// Analyze the expression. 2361 /// 2362 SCEVHandle ScalarEvolution::createSCEV(Value *V) { 2363 if (!isSCEVable(V->getType())) 2364 return getUnknown(V); 2365 2366 unsigned Opcode = Instruction::UserOp1; 2367 if (Instruction *I = dyn_cast<Instruction>(V)) 2368 Opcode = I->getOpcode(); 2369 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2370 Opcode = CE->getOpcode(); 2371 else 2372 return getUnknown(V); 2373 2374 User *U = cast<User>(V); 2375 switch (Opcode) { 2376 case Instruction::Add: 2377 return getAddExpr(getSCEV(U->getOperand(0)), 2378 getSCEV(U->getOperand(1))); 2379 case Instruction::Mul: 2380 return getMulExpr(getSCEV(U->getOperand(0)), 2381 getSCEV(U->getOperand(1))); 2382 case Instruction::UDiv: 2383 return getUDivExpr(getSCEV(U->getOperand(0)), 2384 getSCEV(U->getOperand(1))); 2385 case Instruction::Sub: 2386 return getMinusSCEV(getSCEV(U->getOperand(0)), 2387 getSCEV(U->getOperand(1))); 2388 case Instruction::And: 2389 // For an expression like x&255 that merely masks off the high bits, 2390 // use zext(trunc(x)) as the SCEV expression. 2391 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2392 if (CI->isNullValue()) 2393 return getSCEV(U->getOperand(1)); 2394 if (CI->isAllOnesValue()) 2395 return getSCEV(U->getOperand(0)); 2396 const APInt &A = CI->getValue(); 2397 unsigned Ones = A.countTrailingOnes(); 2398 if (APIntOps::isMask(Ones, A)) 2399 return 2400 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 2401 IntegerType::get(Ones)), 2402 U->getType()); 2403 } 2404 break; 2405 case Instruction::Or: 2406 // If the RHS of the Or is a constant, we may have something like: 2407 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 2408 // optimizations will transparently handle this case. 2409 // 2410 // In order for this transformation to be safe, the LHS must be of the 2411 // form X*(2^n) and the Or constant must be less than 2^n. 2412 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2413 SCEVHandle LHS = getSCEV(U->getOperand(0)); 2414 const APInt &CIVal = CI->getValue(); 2415 if (GetMinTrailingZeros(LHS, *this) >= 2416 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 2417 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 2418 } 2419 break; 2420 case Instruction::Xor: 2421 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2422 // If the RHS of the xor is a signbit, then this is just an add. 2423 // Instcombine turns add of signbit into xor as a strength reduction step. 2424 if (CI->getValue().isSignBit()) 2425 return getAddExpr(getSCEV(U->getOperand(0)), 2426 getSCEV(U->getOperand(1))); 2427 2428 // If the RHS of xor is -1, then this is a not operation. 2429 if (CI->isAllOnesValue()) 2430 return getNotSCEV(getSCEV(U->getOperand(0))); 2431 2432 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 2433 // This is a variant of the check for xor with -1, and it handles 2434 // the case where instcombine has trimmed non-demanded bits out 2435 // of an xor with -1. 2436 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 2437 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 2438 if (BO->getOpcode() == Instruction::And && 2439 LCI->getValue() == CI->getValue()) 2440 if (const SCEVZeroExtendExpr *Z = 2441 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) 2442 return getZeroExtendExpr(getNotSCEV(Z->getOperand()), 2443 U->getType()); 2444 } 2445 break; 2446 2447 case Instruction::Shl: 2448 // Turn shift left of a constant amount into a multiply. 2449 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2450 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2451 Constant *X = ConstantInt::get( 2452 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2453 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2454 } 2455 break; 2456 2457 case Instruction::LShr: 2458 // Turn logical shift right of a constant into a unsigned divide. 2459 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 2460 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2461 Constant *X = ConstantInt::get( 2462 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 2463 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 2464 } 2465 break; 2466 2467 case Instruction::AShr: 2468 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 2469 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 2470 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 2471 if (L->getOpcode() == Instruction::Shl && 2472 L->getOperand(1) == U->getOperand(1)) { 2473 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2474 uint64_t Amt = BitWidth - CI->getZExtValue(); 2475 if (Amt == BitWidth) 2476 return getSCEV(L->getOperand(0)); // shift by zero --> noop 2477 if (Amt > BitWidth) 2478 return getIntegerSCEV(0, U->getType()); // value is undefined 2479 return 2480 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 2481 IntegerType::get(Amt)), 2482 U->getType()); 2483 } 2484 break; 2485 2486 case Instruction::Trunc: 2487 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 2488 2489 case Instruction::ZExt: 2490 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2491 2492 case Instruction::SExt: 2493 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 2494 2495 case Instruction::BitCast: 2496 // BitCasts are no-op casts so we just eliminate the cast. 2497 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 2498 return getSCEV(U->getOperand(0)); 2499 break; 2500 2501 case Instruction::IntToPtr: 2502 if (!TD) break; // Without TD we can't analyze pointers. 2503 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2504 TD->getIntPtrType()); 2505 2506 case Instruction::PtrToInt: 2507 if (!TD) break; // Without TD we can't analyze pointers. 2508 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 2509 U->getType()); 2510 2511 case Instruction::GetElementPtr: 2512 if (!TD) break; // Without TD we can't analyze pointers. 2513 return createNodeForGEP(U); 2514 2515 case Instruction::PHI: 2516 return createNodeForPHI(cast<PHINode>(U)); 2517 2518 case Instruction::Select: 2519 // This could be a smax or umax that was lowered earlier. 2520 // Try to recover it. 2521 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 2522 Value *LHS = ICI->getOperand(0); 2523 Value *RHS = ICI->getOperand(1); 2524 switch (ICI->getPredicate()) { 2525 case ICmpInst::ICMP_SLT: 2526 case ICmpInst::ICMP_SLE: 2527 std::swap(LHS, RHS); 2528 // fall through 2529 case ICmpInst::ICMP_SGT: 2530 case ICmpInst::ICMP_SGE: 2531 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2532 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2533 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2534 // ~smax(~x, ~y) == smin(x, y). 2535 return getNotSCEV(getSMaxExpr( 2536 getNotSCEV(getSCEV(LHS)), 2537 getNotSCEV(getSCEV(RHS)))); 2538 break; 2539 case ICmpInst::ICMP_ULT: 2540 case ICmpInst::ICMP_ULE: 2541 std::swap(LHS, RHS); 2542 // fall through 2543 case ICmpInst::ICMP_UGT: 2544 case ICmpInst::ICMP_UGE: 2545 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2546 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2547 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2548 // ~umax(~x, ~y) == umin(x, y) 2549 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)), 2550 getNotSCEV(getSCEV(RHS)))); 2551 break; 2552 default: 2553 break; 2554 } 2555 } 2556 2557 default: // We cannot analyze this expression. 2558 break; 2559 } 2560 2561 return getUnknown(V); 2562 } 2563 2564 2565 2566 //===----------------------------------------------------------------------===// 2567 // Iteration Count Computation Code 2568 // 2569 2570 /// getBackedgeTakenCount - If the specified loop has a predictable 2571 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 2572 /// object. The backedge-taken count is the number of times the loop header 2573 /// will be branched to from within the loop. This is one less than the 2574 /// trip count of the loop, since it doesn't count the first iteration, 2575 /// when the header is branched to from outside the loop. 2576 /// 2577 /// Note that it is not valid to call this method on a loop without a 2578 /// loop-invariant backedge-taken count (see 2579 /// hasLoopInvariantBackedgeTakenCount). 2580 /// 2581 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 2582 return getBackedgeTakenInfo(L).Exact; 2583 } 2584 2585 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 2586 /// return the least SCEV value that is known never to be less than the 2587 /// actual backedge taken count. 2588 SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 2589 return getBackedgeTakenInfo(L).Max; 2590 } 2591 2592 const ScalarEvolution::BackedgeTakenInfo & 2593 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 2594 // Initially insert a CouldNotCompute for this loop. If the insertion 2595 // succeeds, procede to actually compute a backedge-taken count and 2596 // update the value. The temporary CouldNotCompute value tells SCEV 2597 // code elsewhere that it shouldn't attempt to request a new 2598 // backedge-taken count, which could result in infinite recursion. 2599 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = 2600 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 2601 if (Pair.second) { 2602 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); 2603 if (ItCount.Exact != CouldNotCompute) { 2604 assert(ItCount.Exact->isLoopInvariant(L) && 2605 ItCount.Max->isLoopInvariant(L) && 2606 "Computed trip count isn't loop invariant for loop!"); 2607 ++NumTripCountsComputed; 2608 2609 // Update the value in the map. 2610 Pair.first->second = ItCount; 2611 } else if (isa<PHINode>(L->getHeader()->begin())) { 2612 // Only count loops that have phi nodes as not being computable. 2613 ++NumTripCountsNotComputed; 2614 } 2615 2616 // Now that we know more about the trip count for this loop, forget any 2617 // existing SCEV values for PHI nodes in this loop since they are only 2618 // conservative estimates made without the benefit 2619 // of trip count information. 2620 if (ItCount.hasAnyInfo()) 2621 forgetLoopPHIs(L); 2622 } 2623 return Pair.first->second; 2624 } 2625 2626 /// forgetLoopBackedgeTakenCount - This method should be called by the 2627 /// client when it has changed a loop in a way that may effect 2628 /// ScalarEvolution's ability to compute a trip count, or if the loop 2629 /// is deleted. 2630 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 2631 BackedgeTakenCounts.erase(L); 2632 forgetLoopPHIs(L); 2633 } 2634 2635 /// forgetLoopPHIs - Delete the memoized SCEVs associated with the 2636 /// PHI nodes in the given loop. This is used when the trip count of 2637 /// the loop may have changed. 2638 void ScalarEvolution::forgetLoopPHIs(const Loop *L) { 2639 BasicBlock *Header = L->getHeader(); 2640 2641 // Push all Loop-header PHIs onto the Worklist stack, except those 2642 // that are presently represented via a SCEVUnknown. SCEVUnknown for 2643 // a PHI either means that it has an unrecognized structure, or it's 2644 // a PHI that's in the progress of being computed by createNodeForPHI. 2645 // In the former case, additional loop trip count information isn't 2646 // going to change anything. In the later case, createNodeForPHI will 2647 // perform the necessary updates on its own when it gets to that point. 2648 SmallVector<Instruction *, 16> Worklist; 2649 for (BasicBlock::iterator I = Header->begin(); 2650 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2651 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I); 2652 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second)) 2653 Worklist.push_back(PN); 2654 } 2655 2656 while (!Worklist.empty()) { 2657 Instruction *I = Worklist.pop_back_val(); 2658 if (Scalars.erase(I)) 2659 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2660 UI != UE; ++UI) 2661 Worklist.push_back(cast<Instruction>(UI)); 2662 } 2663 } 2664 2665 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 2666 /// of the specified loop will execute. 2667 ScalarEvolution::BackedgeTakenInfo 2668 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 2669 // If the loop has a non-one exit block count, we can't analyze it. 2670 BasicBlock *ExitBlock = L->getExitBlock(); 2671 if (!ExitBlock) 2672 return CouldNotCompute; 2673 2674 // Okay, there is one exit block. Try to find the condition that causes the 2675 // loop to be exited. 2676 BasicBlock *ExitingBlock = L->getExitingBlock(); 2677 if (!ExitingBlock) 2678 return CouldNotCompute; // More than one block exiting! 2679 2680 // Okay, we've computed the exiting block. See what condition causes us to 2681 // exit. 2682 // 2683 // FIXME: we should be able to handle switch instructions (with a single exit) 2684 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2685 if (ExitBr == 0) return CouldNotCompute; 2686 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2687 2688 // At this point, we know we have a conditional branch that determines whether 2689 // the loop is exited. However, we don't know if the branch is executed each 2690 // time through the loop. If not, then the execution count of the branch will 2691 // not be equal to the trip count of the loop. 2692 // 2693 // Currently we check for this by checking to see if the Exit branch goes to 2694 // the loop header. If so, we know it will always execute the same number of 2695 // times as the loop. We also handle the case where the exit block *is* the 2696 // loop header. This is common for un-rotated loops. More extensive analysis 2697 // could be done to handle more cases here. 2698 if (ExitBr->getSuccessor(0) != L->getHeader() && 2699 ExitBr->getSuccessor(1) != L->getHeader() && 2700 ExitBr->getParent() != L->getHeader()) 2701 return CouldNotCompute; 2702 2703 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 2704 2705 // If it's not an integer or pointer comparison then compute it the hard way. 2706 if (ExitCond == 0) 2707 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(), 2708 ExitBr->getSuccessor(0) == ExitBlock); 2709 2710 // If the condition was exit on true, convert the condition to exit on false 2711 ICmpInst::Predicate Cond; 2712 if (ExitBr->getSuccessor(1) == ExitBlock) 2713 Cond = ExitCond->getPredicate(); 2714 else 2715 Cond = ExitCond->getInversePredicate(); 2716 2717 // Handle common loops like: for (X = "string"; *X; ++X) 2718 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 2719 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 2720 SCEVHandle ItCnt = 2721 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 2722 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 2723 } 2724 2725 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 2726 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 2727 2728 // Try to evaluate any dependencies out of the loop. 2729 LHS = getSCEVAtScope(LHS, L); 2730 RHS = getSCEVAtScope(RHS, L); 2731 2732 // At this point, we would like to compute how many iterations of the 2733 // loop the predicate will return true for these inputs. 2734 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 2735 // If there is a loop-invariant, force it into the RHS. 2736 std::swap(LHS, RHS); 2737 Cond = ICmpInst::getSwappedPredicate(Cond); 2738 } 2739 2740 // If we have a comparison of a chrec against a constant, try to use value 2741 // ranges to answer this query. 2742 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 2743 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 2744 if (AddRec->getLoop() == L) { 2745 // Form the constant range. 2746 ConstantRange CompRange( 2747 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 2748 2749 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this); 2750 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 2751 } 2752 2753 switch (Cond) { 2754 case ICmpInst::ICMP_NE: { // while (X != Y) 2755 // Convert to: while (X-Y != 0) 2756 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 2757 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2758 break; 2759 } 2760 case ICmpInst::ICMP_EQ: { 2761 // Convert to: while (X-Y == 0) // while (X == Y) 2762 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 2763 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2764 break; 2765 } 2766 case ICmpInst::ICMP_SLT: { 2767 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 2768 if (BTI.hasAnyInfo()) return BTI; 2769 break; 2770 } 2771 case ICmpInst::ICMP_SGT: { 2772 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 2773 getNotSCEV(RHS), L, true); 2774 if (BTI.hasAnyInfo()) return BTI; 2775 break; 2776 } 2777 case ICmpInst::ICMP_ULT: { 2778 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 2779 if (BTI.hasAnyInfo()) return BTI; 2780 break; 2781 } 2782 case ICmpInst::ICMP_UGT: { 2783 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 2784 getNotSCEV(RHS), L, false); 2785 if (BTI.hasAnyInfo()) return BTI; 2786 break; 2787 } 2788 default: 2789 #if 0 2790 errs() << "ComputeBackedgeTakenCount "; 2791 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 2792 errs() << "[unsigned] "; 2793 errs() << *LHS << " " 2794 << Instruction::getOpcodeName(Instruction::ICmp) 2795 << " " << *RHS << "\n"; 2796 #endif 2797 break; 2798 } 2799 return 2800 ComputeBackedgeTakenCountExhaustively(L, ExitCond, 2801 ExitBr->getSuccessor(0) == ExitBlock); 2802 } 2803 2804 static ConstantInt * 2805 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 2806 ScalarEvolution &SE) { 2807 SCEVHandle InVal = SE.getConstant(C); 2808 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 2809 assert(isa<SCEVConstant>(Val) && 2810 "Evaluation of SCEV at constant didn't fold correctly?"); 2811 return cast<SCEVConstant>(Val)->getValue(); 2812 } 2813 2814 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 2815 /// and a GEP expression (missing the pointer index) indexing into it, return 2816 /// the addressed element of the initializer or null if the index expression is 2817 /// invalid. 2818 static Constant * 2819 GetAddressedElementFromGlobal(GlobalVariable *GV, 2820 const std::vector<ConstantInt*> &Indices) { 2821 Constant *Init = GV->getInitializer(); 2822 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 2823 uint64_t Idx = Indices[i]->getZExtValue(); 2824 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2825 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 2826 Init = cast<Constant>(CS->getOperand(Idx)); 2827 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2828 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 2829 Init = cast<Constant>(CA->getOperand(Idx)); 2830 } else if (isa<ConstantAggregateZero>(Init)) { 2831 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2832 assert(Idx < STy->getNumElements() && "Bad struct index!"); 2833 Init = Constant::getNullValue(STy->getElementType(Idx)); 2834 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 2835 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 2836 Init = Constant::getNullValue(ATy->getElementType()); 2837 } else { 2838 assert(0 && "Unknown constant aggregate type!"); 2839 } 2840 return 0; 2841 } else { 2842 return 0; // Unknown initializer type 2843 } 2844 } 2845 return Init; 2846 } 2847 2848 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 2849 /// 'icmp op load X, cst', try to see if we can compute the backedge 2850 /// execution count. 2851 SCEVHandle ScalarEvolution:: 2852 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, 2853 const Loop *L, 2854 ICmpInst::Predicate predicate) { 2855 if (LI->isVolatile()) return CouldNotCompute; 2856 2857 // Check to see if the loaded pointer is a getelementptr of a global. 2858 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 2859 if (!GEP) return CouldNotCompute; 2860 2861 // Make sure that it is really a constant global we are gepping, with an 2862 // initializer, and make sure the first IDX is really 0. 2863 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 2864 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 2865 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 2866 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 2867 return CouldNotCompute; 2868 2869 // Okay, we allow one non-constant index into the GEP instruction. 2870 Value *VarIdx = 0; 2871 std::vector<ConstantInt*> Indexes; 2872 unsigned VarIdxNum = 0; 2873 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 2874 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 2875 Indexes.push_back(CI); 2876 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 2877 if (VarIdx) return CouldNotCompute; // Multiple non-constant idx's. 2878 VarIdx = GEP->getOperand(i); 2879 VarIdxNum = i-2; 2880 Indexes.push_back(0); 2881 } 2882 2883 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 2884 // Check to see if X is a loop variant variable value now. 2885 SCEVHandle Idx = getSCEV(VarIdx); 2886 Idx = getSCEVAtScope(Idx, L); 2887 2888 // We can only recognize very limited forms of loop index expressions, in 2889 // particular, only affine AddRec's like {C1,+,C2}. 2890 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 2891 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 2892 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 2893 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 2894 return CouldNotCompute; 2895 2896 unsigned MaxSteps = MaxBruteForceIterations; 2897 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 2898 ConstantInt *ItCst = 2899 ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum); 2900 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 2901 2902 // Form the GEP offset. 2903 Indexes[VarIdxNum] = Val; 2904 2905 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 2906 if (Result == 0) break; // Cannot compute! 2907 2908 // Evaluate the condition for this iteration. 2909 Result = ConstantExpr::getICmp(predicate, Result, RHS); 2910 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 2911 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 2912 #if 0 2913 errs() << "\n***\n*** Computed loop count " << *ItCst 2914 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 2915 << "***\n"; 2916 #endif 2917 ++NumArrayLenItCounts; 2918 return getConstant(ItCst); // Found terminating iteration! 2919 } 2920 } 2921 return CouldNotCompute; 2922 } 2923 2924 2925 /// CanConstantFold - Return true if we can constant fold an instruction of the 2926 /// specified type, assuming that all operands were constants. 2927 static bool CanConstantFold(const Instruction *I) { 2928 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 2929 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 2930 return true; 2931 2932 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2933 if (const Function *F = CI->getCalledFunction()) 2934 return canConstantFoldCallTo(F); 2935 return false; 2936 } 2937 2938 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 2939 /// in the loop that V is derived from. We allow arbitrary operations along the 2940 /// way, but the operands of an operation must either be constants or a value 2941 /// derived from a constant PHI. If this expression does not fit with these 2942 /// constraints, return null. 2943 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 2944 // If this is not an instruction, or if this is an instruction outside of the 2945 // loop, it can't be derived from a loop PHI. 2946 Instruction *I = dyn_cast<Instruction>(V); 2947 if (I == 0 || !L->contains(I->getParent())) return 0; 2948 2949 if (PHINode *PN = dyn_cast<PHINode>(I)) { 2950 if (L->getHeader() == I->getParent()) 2951 return PN; 2952 else 2953 // We don't currently keep track of the control flow needed to evaluate 2954 // PHIs, so we cannot handle PHIs inside of loops. 2955 return 0; 2956 } 2957 2958 // If we won't be able to constant fold this expression even if the operands 2959 // are constants, return early. 2960 if (!CanConstantFold(I)) return 0; 2961 2962 // Otherwise, we can evaluate this instruction if all of its operands are 2963 // constant or derived from a PHI node themselves. 2964 PHINode *PHI = 0; 2965 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 2966 if (!(isa<Constant>(I->getOperand(Op)) || 2967 isa<GlobalValue>(I->getOperand(Op)))) { 2968 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 2969 if (P == 0) return 0; // Not evolving from PHI 2970 if (PHI == 0) 2971 PHI = P; 2972 else if (PHI != P) 2973 return 0; // Evolving from multiple different PHIs. 2974 } 2975 2976 // This is a expression evolving from a constant PHI! 2977 return PHI; 2978 } 2979 2980 /// EvaluateExpression - Given an expression that passes the 2981 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 2982 /// in the loop has the value PHIVal. If we can't fold this expression for some 2983 /// reason, return null. 2984 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 2985 if (isa<PHINode>(V)) return PHIVal; 2986 if (Constant *C = dyn_cast<Constant>(V)) return C; 2987 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 2988 Instruction *I = cast<Instruction>(V); 2989 2990 std::vector<Constant*> Operands; 2991 Operands.resize(I->getNumOperands()); 2992 2993 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2994 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 2995 if (Operands[i] == 0) return 0; 2996 } 2997 2998 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2999 return ConstantFoldCompareInstOperands(CI->getPredicate(), 3000 &Operands[0], Operands.size()); 3001 else 3002 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3003 &Operands[0], Operands.size()); 3004 } 3005 3006 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 3007 /// in the header of its containing loop, we know the loop executes a 3008 /// constant number of times, and the PHI node is just a recurrence 3009 /// involving constants, fold it. 3010 Constant *ScalarEvolution:: 3011 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ 3012 std::map<PHINode*, Constant*>::iterator I = 3013 ConstantEvolutionLoopExitValue.find(PN); 3014 if (I != ConstantEvolutionLoopExitValue.end()) 3015 return I->second; 3016 3017 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 3018 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 3019 3020 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 3021 3022 // Since the loop is canonicalized, the PHI node must have two entries. One 3023 // entry must be a constant (coming in from outside of the loop), and the 3024 // second must be derived from the same PHI. 3025 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3026 Constant *StartCST = 3027 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3028 if (StartCST == 0) 3029 return RetVal = 0; // Must be a constant. 3030 3031 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3032 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3033 if (PN2 != PN) 3034 return RetVal = 0; // Not derived from same PHI. 3035 3036 // Execute the loop symbolically to determine the exit value. 3037 if (BEs.getActiveBits() >= 32) 3038 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 3039 3040 unsigned NumIterations = BEs.getZExtValue(); // must be in range 3041 unsigned IterationNum = 0; 3042 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 3043 if (IterationNum == NumIterations) 3044 return RetVal = PHIVal; // Got exit value! 3045 3046 // Compute the value of the PHI node for the next iteration. 3047 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3048 if (NextPHI == PHIVal) 3049 return RetVal = NextPHI; // Stopped evolving! 3050 if (NextPHI == 0) 3051 return 0; // Couldn't evaluate! 3052 PHIVal = NextPHI; 3053 } 3054 } 3055 3056 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a 3057 /// constant number of times (the condition evolves only from constants), 3058 /// try to evaluate a few iterations of the loop until we get the exit 3059 /// condition gets a value of ExitWhen (true or false). If we cannot 3060 /// evaluate the trip count of the loop, return CouldNotCompute. 3061 SCEVHandle ScalarEvolution:: 3062 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 3063 PHINode *PN = getConstantEvolvingPHI(Cond, L); 3064 if (PN == 0) return CouldNotCompute; 3065 3066 // Since the loop is canonicalized, the PHI node must have two entries. One 3067 // entry must be a constant (coming in from outside of the loop), and the 3068 // second must be derived from the same PHI. 3069 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3070 Constant *StartCST = 3071 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3072 if (StartCST == 0) return CouldNotCompute; // Must be a constant. 3073 3074 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3075 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3076 if (PN2 != PN) return CouldNotCompute; // Not derived from same PHI. 3077 3078 // Okay, we find a PHI node that defines the trip count of this loop. Execute 3079 // the loop symbolically to determine when the condition gets a value of 3080 // "ExitWhen". 3081 unsigned IterationNum = 0; 3082 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 3083 for (Constant *PHIVal = StartCST; 3084 IterationNum != MaxIterations; ++IterationNum) { 3085 ConstantInt *CondVal = 3086 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 3087 3088 // Couldn't symbolically evaluate. 3089 if (!CondVal) return CouldNotCompute; 3090 3091 if (CondVal->getValue() == uint64_t(ExitWhen)) { 3092 ConstantEvolutionLoopExitValue[PN] = PHIVal; 3093 ++NumBruteForceTripCountsComputed; 3094 return getConstant(Type::Int32Ty, IterationNum); 3095 } 3096 3097 // Compute the value of the PHI node for the next iteration. 3098 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3099 if (NextPHI == 0 || NextPHI == PHIVal) 3100 return CouldNotCompute; // Couldn't evaluate or not making progress... 3101 PHIVal = NextPHI; 3102 } 3103 3104 // Too many iterations were needed to evaluate. 3105 return CouldNotCompute; 3106 } 3107 3108 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 3109 /// at the specified scope in the program. The L value specifies a loop 3110 /// nest to evaluate the expression at, where null is the top-level or a 3111 /// specified loop is immediately inside of the loop. 3112 /// 3113 /// This method can be used to compute the exit value for a variable defined 3114 /// in a loop by querying what the value will hold in the parent loop. 3115 /// 3116 /// In the case that a relevant loop exit value cannot be computed, the 3117 /// original value V is returned. 3118 SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 3119 // FIXME: this should be turned into a virtual method on SCEV! 3120 3121 if (isa<SCEVConstant>(V)) return V; 3122 3123 // If this instruction is evolved from a constant-evolving PHI, compute the 3124 // exit value from the loop without using SCEVs. 3125 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 3126 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 3127 const Loop *LI = (*this->LI)[I->getParent()]; 3128 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 3129 if (PHINode *PN = dyn_cast<PHINode>(I)) 3130 if (PN->getParent() == LI->getHeader()) { 3131 // Okay, there is no closed form solution for the PHI node. Check 3132 // to see if the loop that contains it has a known backedge-taken 3133 // count. If so, we may be able to force computation of the exit 3134 // value. 3135 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); 3136 if (const SCEVConstant *BTCC = 3137 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 3138 // Okay, we know how many times the containing loop executes. If 3139 // this is a constant evolving PHI node, get the final value at 3140 // the specified iteration number. 3141 Constant *RV = getConstantEvolutionLoopExitValue(PN, 3142 BTCC->getValue()->getValue(), 3143 LI); 3144 if (RV) return getUnknown(RV); 3145 } 3146 } 3147 3148 // Okay, this is an expression that we cannot symbolically evaluate 3149 // into a SCEV. Check to see if it's possible to symbolically evaluate 3150 // the arguments into constants, and if so, try to constant propagate the 3151 // result. This is particularly useful for computing loop exit values. 3152 if (CanConstantFold(I)) { 3153 // Check to see if we've folded this instruction at this loop before. 3154 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I]; 3155 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair = 3156 Values.insert(std::make_pair(L, static_cast<Constant *>(0))); 3157 if (!Pair.second) 3158 return Pair.first->second ? &*getUnknown(Pair.first->second) : V; 3159 3160 std::vector<Constant*> Operands; 3161 Operands.reserve(I->getNumOperands()); 3162 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3163 Value *Op = I->getOperand(i); 3164 if (Constant *C = dyn_cast<Constant>(Op)) { 3165 Operands.push_back(C); 3166 } else { 3167 // If any of the operands is non-constant and if they are 3168 // non-integer and non-pointer, don't even try to analyze them 3169 // with scev techniques. 3170 if (!isSCEVable(Op->getType())) 3171 return V; 3172 3173 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 3174 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 3175 Constant *C = SC->getValue(); 3176 if (C->getType() != Op->getType()) 3177 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3178 Op->getType(), 3179 false), 3180 C, Op->getType()); 3181 Operands.push_back(C); 3182 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 3183 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 3184 if (C->getType() != Op->getType()) 3185 C = 3186 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3187 Op->getType(), 3188 false), 3189 C, Op->getType()); 3190 Operands.push_back(C); 3191 } else 3192 return V; 3193 } else { 3194 return V; 3195 } 3196 } 3197 } 3198 3199 Constant *C; 3200 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3201 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 3202 &Operands[0], Operands.size()); 3203 else 3204 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3205 &Operands[0], Operands.size()); 3206 Pair.first->second = C; 3207 return getUnknown(C); 3208 } 3209 } 3210 3211 // This is some other type of SCEVUnknown, just return it. 3212 return V; 3213 } 3214 3215 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 3216 // Avoid performing the look-up in the common case where the specified 3217 // expression has no loop-variant portions. 3218 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 3219 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3220 if (OpAtScope != Comm->getOperand(i)) { 3221 // Okay, at least one of these operands is loop variant but might be 3222 // foldable. Build a new instance of the folded commutative expression. 3223 SmallVector<SCEVHandle, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i); 3224 NewOps.push_back(OpAtScope); 3225 3226 for (++i; i != e; ++i) { 3227 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 3228 NewOps.push_back(OpAtScope); 3229 } 3230 if (isa<SCEVAddExpr>(Comm)) 3231 return getAddExpr(NewOps); 3232 if (isa<SCEVMulExpr>(Comm)) 3233 return getMulExpr(NewOps); 3234 if (isa<SCEVSMaxExpr>(Comm)) 3235 return getSMaxExpr(NewOps); 3236 if (isa<SCEVUMaxExpr>(Comm)) 3237 return getUMaxExpr(NewOps); 3238 assert(0 && "Unknown commutative SCEV type!"); 3239 } 3240 } 3241 // If we got here, all operands are loop invariant. 3242 return Comm; 3243 } 3244 3245 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 3246 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 3247 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 3248 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 3249 return Div; // must be loop invariant 3250 return getUDivExpr(LHS, RHS); 3251 } 3252 3253 // If this is a loop recurrence for a loop that does not contain L, then we 3254 // are dealing with the final value computed by the loop. 3255 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 3256 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 3257 // To evaluate this recurrence, we need to know how many times the AddRec 3258 // loop iterates. Compute this now. 3259 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 3260 if (BackedgeTakenCount == CouldNotCompute) return AddRec; 3261 3262 // Then, evaluate the AddRec. 3263 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 3264 } 3265 return AddRec; 3266 } 3267 3268 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 3269 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3270 if (Op == Cast->getOperand()) 3271 return Cast; // must be loop invariant 3272 return getZeroExtendExpr(Op, Cast->getType()); 3273 } 3274 3275 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 3276 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3277 if (Op == Cast->getOperand()) 3278 return Cast; // must be loop invariant 3279 return getSignExtendExpr(Op, Cast->getType()); 3280 } 3281 3282 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 3283 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 3284 if (Op == Cast->getOperand()) 3285 return Cast; // must be loop invariant 3286 return getTruncateExpr(Op, Cast->getType()); 3287 } 3288 3289 assert(0 && "Unknown SCEV type!"); 3290 return 0; 3291 } 3292 3293 /// getSCEVAtScope - This is a convenience function which does 3294 /// getSCEVAtScope(getSCEV(V), L). 3295 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 3296 return getSCEVAtScope(getSCEV(V), L); 3297 } 3298 3299 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 3300 /// following equation: 3301 /// 3302 /// A * X = B (mod N) 3303 /// 3304 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 3305 /// A and B isn't important. 3306 /// 3307 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 3308 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 3309 ScalarEvolution &SE) { 3310 uint32_t BW = A.getBitWidth(); 3311 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 3312 assert(A != 0 && "A must be non-zero."); 3313 3314 // 1. D = gcd(A, N) 3315 // 3316 // The gcd of A and N may have only one prime factor: 2. The number of 3317 // trailing zeros in A is its multiplicity 3318 uint32_t Mult2 = A.countTrailingZeros(); 3319 // D = 2^Mult2 3320 3321 // 2. Check if B is divisible by D. 3322 // 3323 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 3324 // is not less than multiplicity of this prime factor for D. 3325 if (B.countTrailingZeros() < Mult2) 3326 return SE.getCouldNotCompute(); 3327 3328 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 3329 // modulo (N / D). 3330 // 3331 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 3332 // bit width during computations. 3333 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 3334 APInt Mod(BW + 1, 0); 3335 Mod.set(BW - Mult2); // Mod = N / D 3336 APInt I = AD.multiplicativeInverse(Mod); 3337 3338 // 4. Compute the minimum unsigned root of the equation: 3339 // I * (B / D) mod (N / D) 3340 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 3341 3342 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 3343 // bits. 3344 return SE.getConstant(Result.trunc(BW)); 3345 } 3346 3347 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 3348 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 3349 /// might be the same) or two SCEVCouldNotCompute objects. 3350 /// 3351 static std::pair<SCEVHandle,SCEVHandle> 3352 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 3353 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 3354 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 3355 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 3356 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 3357 3358 // We currently can only solve this if the coefficients are constants. 3359 if (!LC || !MC || !NC) { 3360 const SCEV *CNC = SE.getCouldNotCompute(); 3361 return std::make_pair(CNC, CNC); 3362 } 3363 3364 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 3365 const APInt &L = LC->getValue()->getValue(); 3366 const APInt &M = MC->getValue()->getValue(); 3367 const APInt &N = NC->getValue()->getValue(); 3368 APInt Two(BitWidth, 2); 3369 APInt Four(BitWidth, 4); 3370 3371 { 3372 using namespace APIntOps; 3373 const APInt& C = L; 3374 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 3375 // The B coefficient is M-N/2 3376 APInt B(M); 3377 B -= sdiv(N,Two); 3378 3379 // The A coefficient is N/2 3380 APInt A(N.sdiv(Two)); 3381 3382 // Compute the B^2-4ac term. 3383 APInt SqrtTerm(B); 3384 SqrtTerm *= B; 3385 SqrtTerm -= Four * (A * C); 3386 3387 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 3388 // integer value or else APInt::sqrt() will assert. 3389 APInt SqrtVal(SqrtTerm.sqrt()); 3390 3391 // Compute the two solutions for the quadratic formula. 3392 // The divisions must be performed as signed divisions. 3393 APInt NegB(-B); 3394 APInt TwoA( A << 1 ); 3395 if (TwoA.isMinValue()) { 3396 const SCEV *CNC = SE.getCouldNotCompute(); 3397 return std::make_pair(CNC, CNC); 3398 } 3399 3400 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 3401 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 3402 3403 return std::make_pair(SE.getConstant(Solution1), 3404 SE.getConstant(Solution2)); 3405 } // end APIntOps namespace 3406 } 3407 3408 /// HowFarToZero - Return the number of times a backedge comparing the specified 3409 /// value to zero will execute. If not computable, return CouldNotCompute. 3410 SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 3411 // If the value is a constant 3412 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3413 // If the value is already zero, the branch will execute zero times. 3414 if (C->getValue()->isZero()) return C; 3415 return CouldNotCompute; // Otherwise it will loop infinitely. 3416 } 3417 3418 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 3419 if (!AddRec || AddRec->getLoop() != L) 3420 return CouldNotCompute; 3421 3422 if (AddRec->isAffine()) { 3423 // If this is an affine expression, the execution count of this branch is 3424 // the minimum unsigned root of the following equation: 3425 // 3426 // Start + Step*N = 0 (mod 2^BW) 3427 // 3428 // equivalent to: 3429 // 3430 // Step*N = -Start (mod 2^BW) 3431 // 3432 // where BW is the common bit width of Start and Step. 3433 3434 // Get the initial value for the loop. 3435 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 3436 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 3437 3438 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 3439 // For now we handle only constant steps. 3440 3441 // First, handle unitary steps. 3442 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 3443 return getNegativeSCEV(Start); // N = -Start (as unsigned) 3444 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 3445 return Start; // N = Start (as unsigned) 3446 3447 // Then, try to solve the above equation provided that Start is constant. 3448 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 3449 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 3450 -StartC->getValue()->getValue(), 3451 *this); 3452 } 3453 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 3454 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 3455 // the quadratic equation to solve it. 3456 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, 3457 *this); 3458 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3459 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3460 if (R1) { 3461 #if 0 3462 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 3463 << " sol#2: " << *R2 << "\n"; 3464 #endif 3465 // Pick the smallest positive root value. 3466 if (ConstantInt *CB = 3467 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3468 R1->getValue(), R2->getValue()))) { 3469 if (CB->getZExtValue() == false) 3470 std::swap(R1, R2); // R1 is the minimum root now. 3471 3472 // We can only use this value if the chrec ends up with an exact zero 3473 // value at this index. When solving for "X*X != 5", for example, we 3474 // should not accept a root of 2. 3475 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this); 3476 if (Val->isZero()) 3477 return R1; // We found a quadratic root! 3478 } 3479 } 3480 } 3481 3482 return CouldNotCompute; 3483 } 3484 3485 /// HowFarToNonZero - Return the number of times a backedge checking the 3486 /// specified value for nonzero will execute. If not computable, return 3487 /// CouldNotCompute 3488 SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 3489 // Loops that look like: while (X == 0) are very strange indeed. We don't 3490 // handle them yet except for the trivial case. This could be expanded in the 3491 // future as needed. 3492 3493 // If the value is a constant, check to see if it is known to be non-zero 3494 // already. If so, the backedge will execute zero times. 3495 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 3496 if (!C->getValue()->isNullValue()) 3497 return getIntegerSCEV(0, C->getType()); 3498 return CouldNotCompute; // Otherwise it will loop infinitely. 3499 } 3500 3501 // We could implement others, but I really doubt anyone writes loops like 3502 // this, and if they did, they would already be constant folded. 3503 return CouldNotCompute; 3504 } 3505 3506 /// getLoopPredecessor - If the given loop's header has exactly one unique 3507 /// predecessor outside the loop, return it. Otherwise return null. 3508 /// 3509 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { 3510 BasicBlock *Header = L->getHeader(); 3511 BasicBlock *Pred = 0; 3512 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); 3513 PI != E; ++PI) 3514 if (!L->contains(*PI)) { 3515 if (Pred && Pred != *PI) return 0; // Multiple predecessors. 3516 Pred = *PI; 3517 } 3518 return Pred; 3519 } 3520 3521 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 3522 /// (which may not be an immediate predecessor) which has exactly one 3523 /// successor from which BB is reachable, or null if no such block is 3524 /// found. 3525 /// 3526 BasicBlock * 3527 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 3528 // If the block has a unique predecessor, then there is no path from the 3529 // predecessor to the block that does not go through the direct edge 3530 // from the predecessor to the block. 3531 if (BasicBlock *Pred = BB->getSinglePredecessor()) 3532 return Pred; 3533 3534 // A loop's header is defined to be a block that dominates the loop. 3535 // If the header has a unique predecessor outside the loop, it must be 3536 // a block that has exactly one successor that can reach the loop. 3537 if (Loop *L = LI->getLoopFor(BB)) 3538 return getLoopPredecessor(L); 3539 3540 return 0; 3541 } 3542 3543 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 3544 /// a conditional between LHS and RHS. This is used to help avoid max 3545 /// expressions in loop trip counts. 3546 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 3547 ICmpInst::Predicate Pred, 3548 const SCEV *LHS, const SCEV *RHS) { 3549 // Interpret a null as meaning no loop, where there is obviously no guard 3550 // (interprocedural conditions notwithstanding). 3551 if (!L) return false; 3552 3553 BasicBlock *Predecessor = getLoopPredecessor(L); 3554 BasicBlock *PredecessorDest = L->getHeader(); 3555 3556 // Starting at the loop predecessor, climb up the predecessor chain, as long 3557 // as there are predecessors that can be found that have unique successors 3558 // leading to the original header. 3559 for (; Predecessor; 3560 PredecessorDest = Predecessor, 3561 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { 3562 3563 BranchInst *LoopEntryPredicate = 3564 dyn_cast<BranchInst>(Predecessor->getTerminator()); 3565 if (!LoopEntryPredicate || 3566 LoopEntryPredicate->isUnconditional()) 3567 continue; 3568 3569 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 3570 if (!ICI) continue; 3571 3572 // Now that we found a conditional branch that dominates the loop, check to 3573 // see if it is the comparison we are looking for. 3574 Value *PreCondLHS = ICI->getOperand(0); 3575 Value *PreCondRHS = ICI->getOperand(1); 3576 ICmpInst::Predicate Cond; 3577 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest) 3578 Cond = ICI->getPredicate(); 3579 else 3580 Cond = ICI->getInversePredicate(); 3581 3582 if (Cond == Pred) 3583 ; // An exact match. 3584 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 3585 ; // The actual condition is beyond sufficient. 3586 else 3587 // Check a few special cases. 3588 switch (Cond) { 3589 case ICmpInst::ICMP_UGT: 3590 if (Pred == ICmpInst::ICMP_ULT) { 3591 std::swap(PreCondLHS, PreCondRHS); 3592 Cond = ICmpInst::ICMP_ULT; 3593 break; 3594 } 3595 continue; 3596 case ICmpInst::ICMP_SGT: 3597 if (Pred == ICmpInst::ICMP_SLT) { 3598 std::swap(PreCondLHS, PreCondRHS); 3599 Cond = ICmpInst::ICMP_SLT; 3600 break; 3601 } 3602 continue; 3603 case ICmpInst::ICMP_NE: 3604 // Expressions like (x >u 0) are often canonicalized to (x != 0), 3605 // so check for this case by checking if the NE is comparing against 3606 // a minimum or maximum constant. 3607 if (!ICmpInst::isTrueWhenEqual(Pred)) 3608 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 3609 const APInt &A = CI->getValue(); 3610 switch (Pred) { 3611 case ICmpInst::ICMP_SLT: 3612 if (A.isMaxSignedValue()) break; 3613 continue; 3614 case ICmpInst::ICMP_SGT: 3615 if (A.isMinSignedValue()) break; 3616 continue; 3617 case ICmpInst::ICMP_ULT: 3618 if (A.isMaxValue()) break; 3619 continue; 3620 case ICmpInst::ICMP_UGT: 3621 if (A.isMinValue()) break; 3622 continue; 3623 default: 3624 continue; 3625 } 3626 Cond = ICmpInst::ICMP_NE; 3627 // NE is symmetric but the original comparison may not be. Swap 3628 // the operands if necessary so that they match below. 3629 if (isa<SCEVConstant>(LHS)) 3630 std::swap(PreCondLHS, PreCondRHS); 3631 break; 3632 } 3633 continue; 3634 default: 3635 // We weren't able to reconcile the condition. 3636 continue; 3637 } 3638 3639 if (!PreCondLHS->getType()->isInteger()) continue; 3640 3641 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 3642 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 3643 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || 3644 (LHS == getNotSCEV(PreCondRHSSCEV) && 3645 RHS == getNotSCEV(PreCondLHSSCEV))) 3646 return true; 3647 } 3648 3649 return false; 3650 } 3651 3652 /// HowManyLessThans - Return the number of times a backedge containing the 3653 /// specified less-than comparison will execute. If not computable, return 3654 /// CouldNotCompute. 3655 ScalarEvolution::BackedgeTakenInfo ScalarEvolution:: 3656 HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 3657 const Loop *L, bool isSigned) { 3658 // Only handle: "ADDREC < LoopInvariant". 3659 if (!RHS->isLoopInvariant(L)) return CouldNotCompute; 3660 3661 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 3662 if (!AddRec || AddRec->getLoop() != L) 3663 return CouldNotCompute; 3664 3665 if (AddRec->isAffine()) { 3666 // FORNOW: We only support unit strides. 3667 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 3668 SCEVHandle Step = AddRec->getStepRecurrence(*this); 3669 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType()); 3670 3671 // TODO: handle non-constant strides. 3672 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); 3673 if (!CStep || CStep->isZero()) 3674 return CouldNotCompute; 3675 if (CStep->isOne()) { 3676 // With unit stride, the iteration never steps past the limit value. 3677 } else if (CStep->getValue()->getValue().isStrictlyPositive()) { 3678 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { 3679 // Test whether a positive iteration iteration can step past the limit 3680 // value and past the maximum value for its type in a single step. 3681 if (isSigned) { 3682 APInt Max = APInt::getSignedMaxValue(BitWidth); 3683 if ((Max - CStep->getValue()->getValue()) 3684 .slt(CLimit->getValue()->getValue())) 3685 return CouldNotCompute; 3686 } else { 3687 APInt Max = APInt::getMaxValue(BitWidth); 3688 if ((Max - CStep->getValue()->getValue()) 3689 .ult(CLimit->getValue()->getValue())) 3690 return CouldNotCompute; 3691 } 3692 } else 3693 // TODO: handle non-constant limit values below. 3694 return CouldNotCompute; 3695 } else 3696 // TODO: handle negative strides below. 3697 return CouldNotCompute; 3698 3699 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 3700 // m. So, we count the number of iterations in which {n,+,s} < m is true. 3701 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 3702 // treat m-n as signed nor unsigned due to overflow possibility. 3703 3704 // First, we get the value of the LHS in the first iteration: n 3705 SCEVHandle Start = AddRec->getOperand(0); 3706 3707 // Determine the minimum constant start value. 3708 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start : 3709 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : 3710 APInt::getMinValue(BitWidth)); 3711 3712 // If we know that the condition is true in order to enter the loop, 3713 // then we know that it will run exactly (m-n)/s times. Otherwise, we 3714 // only know that it will execute (max(m,n)-n)/s times. In both cases, 3715 // the division must round up. 3716 SCEVHandle End = RHS; 3717 if (!isLoopGuardedByCond(L, 3718 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 3719 getMinusSCEV(Start, Step), RHS)) 3720 End = isSigned ? getSMaxExpr(RHS, Start) 3721 : getUMaxExpr(RHS, Start); 3722 3723 // Determine the maximum constant end value. 3724 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End : 3725 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) : 3726 APInt::getMaxValue(BitWidth)); 3727 3728 // Finally, we subtract these two values and divide, rounding up, to get 3729 // the number of times the backedge is executed. 3730 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start), 3731 getAddExpr(Step, NegOne)), 3732 Step); 3733 3734 // The maximum backedge count is similar, except using the minimum start 3735 // value and the maximum end value. 3736 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd, 3737 MinStart), 3738 getAddExpr(Step, NegOne)), 3739 Step); 3740 3741 return BackedgeTakenInfo(BECount, MaxBECount); 3742 } 3743 3744 return CouldNotCompute; 3745 } 3746 3747 /// getNumIterationsInRange - Return the number of iterations of this loop that 3748 /// produce values in the specified constant range. Another way of looking at 3749 /// this is that it returns the first iteration number where the value is not in 3750 /// the condition, thus computing the exit count. If the iteration count can't 3751 /// be computed, an instance of SCEVCouldNotCompute is returned. 3752 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 3753 ScalarEvolution &SE) const { 3754 if (Range.isFullSet()) // Infinite loop. 3755 return SE.getCouldNotCompute(); 3756 3757 // If the start is a non-zero constant, shift the range to simplify things. 3758 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 3759 if (!SC->getValue()->isZero()) { 3760 SmallVector<SCEVHandle, 4> Operands(op_begin(), op_end()); 3761 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 3762 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 3763 if (const SCEVAddRecExpr *ShiftedAddRec = 3764 dyn_cast<SCEVAddRecExpr>(Shifted)) 3765 return ShiftedAddRec->getNumIterationsInRange( 3766 Range.subtract(SC->getValue()->getValue()), SE); 3767 // This is strange and shouldn't happen. 3768 return SE.getCouldNotCompute(); 3769 } 3770 3771 // The only time we can solve this is when we have all constant indices. 3772 // Otherwise, we cannot determine the overflow conditions. 3773 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 3774 if (!isa<SCEVConstant>(getOperand(i))) 3775 return SE.getCouldNotCompute(); 3776 3777 3778 // Okay at this point we know that all elements of the chrec are constants and 3779 // that the start element is zero. 3780 3781 // First check to see if the range contains zero. If not, the first 3782 // iteration exits. 3783 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 3784 if (!Range.contains(APInt(BitWidth, 0))) 3785 return SE.getIntegerSCEV(0, getType()); 3786 3787 if (isAffine()) { 3788 // If this is an affine expression then we have this situation: 3789 // Solve {0,+,A} in Range === Ax in Range 3790 3791 // We know that zero is in the range. If A is positive then we know that 3792 // the upper value of the range must be the first possible exit value. 3793 // If A is negative then the lower of the range is the last possible loop 3794 // value. Also note that we already checked for a full range. 3795 APInt One(BitWidth,1); 3796 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 3797 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 3798 3799 // The exit value should be (End+A)/A. 3800 APInt ExitVal = (End + A).udiv(A); 3801 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 3802 3803 // Evaluate at the exit value. If we really did fall out of the valid 3804 // range, then we computed our trip count, otherwise wrap around or other 3805 // things must have happened. 3806 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 3807 if (Range.contains(Val->getValue())) 3808 return SE.getCouldNotCompute(); // Something strange happened 3809 3810 // Ensure that the previous value is in the range. This is a sanity check. 3811 assert(Range.contains( 3812 EvaluateConstantChrecAtConstant(this, 3813 ConstantInt::get(ExitVal - One), SE)->getValue()) && 3814 "Linear scev computation is off in a bad way!"); 3815 return SE.getConstant(ExitValue); 3816 } else if (isQuadratic()) { 3817 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 3818 // quadratic equation to solve it. To do this, we must frame our problem in 3819 // terms of figuring out when zero is crossed, instead of when 3820 // Range.getUpper() is crossed. 3821 SmallVector<SCEVHandle, 4> NewOps(op_begin(), op_end()); 3822 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 3823 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 3824 3825 // Next, solve the constructed addrec 3826 std::pair<SCEVHandle,SCEVHandle> Roots = 3827 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 3828 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3829 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3830 if (R1) { 3831 // Pick the smallest positive root value. 3832 if (ConstantInt *CB = 3833 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3834 R1->getValue(), R2->getValue()))) { 3835 if (CB->getZExtValue() == false) 3836 std::swap(R1, R2); // R1 is the minimum root now. 3837 3838 // Make sure the root is not off by one. The returned iteration should 3839 // not be in the range, but the previous one should be. When solving 3840 // for "X*X < 5", for example, we should not return a root of 2. 3841 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 3842 R1->getValue(), 3843 SE); 3844 if (Range.contains(R1Val->getValue())) { 3845 // The next iteration must be out of the range... 3846 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 3847 3848 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3849 if (!Range.contains(R1Val->getValue())) 3850 return SE.getConstant(NextVal); 3851 return SE.getCouldNotCompute(); // Something strange happened 3852 } 3853 3854 // If R1 was not in the range, then it is a good return value. Make 3855 // sure that R1-1 WAS in the range though, just in case. 3856 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 3857 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3858 if (Range.contains(R1Val->getValue())) 3859 return R1; 3860 return SE.getCouldNotCompute(); // Something strange happened 3861 } 3862 } 3863 } 3864 3865 return SE.getCouldNotCompute(); 3866 } 3867 3868 3869 3870 //===----------------------------------------------------------------------===// 3871 // SCEVCallbackVH Class Implementation 3872 //===----------------------------------------------------------------------===// 3873 3874 void ScalarEvolution::SCEVCallbackVH::deleted() { 3875 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 3876 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 3877 SE->ConstantEvolutionLoopExitValue.erase(PN); 3878 if (Instruction *I = dyn_cast<Instruction>(getValPtr())) 3879 SE->ValuesAtScopes.erase(I); 3880 SE->Scalars.erase(getValPtr()); 3881 // this now dangles! 3882 } 3883 3884 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 3885 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!"); 3886 3887 // Forget all the expressions associated with users of the old value, 3888 // so that future queries will recompute the expressions using the new 3889 // value. 3890 SmallVector<User *, 16> Worklist; 3891 Value *Old = getValPtr(); 3892 bool DeleteOld = false; 3893 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 3894 UI != UE; ++UI) 3895 Worklist.push_back(*UI); 3896 while (!Worklist.empty()) { 3897 User *U = Worklist.pop_back_val(); 3898 // Deleting the Old value will cause this to dangle. Postpone 3899 // that until everything else is done. 3900 if (U == Old) { 3901 DeleteOld = true; 3902 continue; 3903 } 3904 if (PHINode *PN = dyn_cast<PHINode>(U)) 3905 SE->ConstantEvolutionLoopExitValue.erase(PN); 3906 if (Instruction *I = dyn_cast<Instruction>(U)) 3907 SE->ValuesAtScopes.erase(I); 3908 if (SE->Scalars.erase(U)) 3909 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 3910 UI != UE; ++UI) 3911 Worklist.push_back(*UI); 3912 } 3913 if (DeleteOld) { 3914 if (PHINode *PN = dyn_cast<PHINode>(Old)) 3915 SE->ConstantEvolutionLoopExitValue.erase(PN); 3916 if (Instruction *I = dyn_cast<Instruction>(Old)) 3917 SE->ValuesAtScopes.erase(I); 3918 SE->Scalars.erase(Old); 3919 // this now dangles! 3920 } 3921 // this may dangle! 3922 } 3923 3924 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 3925 : CallbackVH(V), SE(se) {} 3926 3927 //===----------------------------------------------------------------------===// 3928 // ScalarEvolution Class Implementation 3929 //===----------------------------------------------------------------------===// 3930 3931 ScalarEvolution::ScalarEvolution() 3932 : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute()) { 3933 } 3934 3935 bool ScalarEvolution::runOnFunction(Function &F) { 3936 this->F = &F; 3937 LI = &getAnalysis<LoopInfo>(); 3938 TD = getAnalysisIfAvailable<TargetData>(); 3939 return false; 3940 } 3941 3942 void ScalarEvolution::releaseMemory() { 3943 Scalars.clear(); 3944 BackedgeTakenCounts.clear(); 3945 ConstantEvolutionLoopExitValue.clear(); 3946 ValuesAtScopes.clear(); 3947 } 3948 3949 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 3950 AU.setPreservesAll(); 3951 AU.addRequiredTransitive<LoopInfo>(); 3952 } 3953 3954 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 3955 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 3956 } 3957 3958 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 3959 const Loop *L) { 3960 // Print all inner loops first 3961 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3962 PrintLoopInfo(OS, SE, *I); 3963 3964 OS << "Loop " << L->getHeader()->getName() << ": "; 3965 3966 SmallVector<BasicBlock*, 8> ExitBlocks; 3967 L->getExitBlocks(ExitBlocks); 3968 if (ExitBlocks.size() != 1) 3969 OS << "<multiple exits> "; 3970 3971 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 3972 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 3973 } else { 3974 OS << "Unpredictable backedge-taken count. "; 3975 } 3976 3977 OS << "\n"; 3978 } 3979 3980 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 3981 // ScalarEvolution's implementaiton of the print method is to print 3982 // out SCEV values of all instructions that are interesting. Doing 3983 // this potentially causes it to create new SCEV objects though, 3984 // which technically conflicts with the const qualifier. This isn't 3985 // observable from outside the class though (the hasSCEV function 3986 // notwithstanding), so casting away the const isn't dangerous. 3987 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 3988 3989 OS << "Classifying expressions for: " << F->getName() << "\n"; 3990 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 3991 if (isSCEVable(I->getType())) { 3992 OS << *I; 3993 OS << " --> "; 3994 SCEVHandle SV = SE.getSCEV(&*I); 3995 SV->print(OS); 3996 OS << "\t\t"; 3997 3998 if (const Loop *L = LI->getLoopFor((*I).getParent())) { 3999 OS << "Exits: "; 4000 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop()); 4001 if (!ExitValue->isLoopInvariant(L)) { 4002 OS << "<<Unknown>>"; 4003 } else { 4004 OS << *ExitValue; 4005 } 4006 } 4007 4008 OS << "\n"; 4009 } 4010 4011 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 4012 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 4013 PrintLoopInfo(OS, &SE, *I); 4014 } 4015 4016 void ScalarEvolution::print(std::ostream &o, const Module *M) const { 4017 raw_os_ostream OS(o); 4018 print(OS, M); 4019 } 4020