1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/ConstantFolding.h" 67 #include "llvm/Analysis/InstructionSimplify.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 70 #include "llvm/Analysis/ValueTracking.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/GlobalAlias.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/ConstantRange.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GetElementPtrTypeIterator.h" 85 #include "llvm/Support/InstIterator.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetLibraryInfo.h" 89 #include <algorithm> 90 using namespace llvm; 91 92 STATISTIC(NumArrayLenItCounts, 93 "Number of trip counts computed with array length"); 94 STATISTIC(NumTripCountsComputed, 95 "Number of loops with predictable loop counts"); 96 STATISTIC(NumTripCountsNotComputed, 97 "Number of loops without predictable loop counts"); 98 STATISTIC(NumBruteForceTripCountsComputed, 99 "Number of loops with trip counts computed by force"); 100 101 static cl::opt<unsigned> 102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 103 cl::desc("Maximum number of iterations SCEV will " 104 "symbolically execute a constant " 105 "derived loop"), 106 cl::init(100)); 107 108 // FIXME: Enable this with XDEBUG when the test suite is clean. 109 static cl::opt<bool> 110 VerifySCEV("verify-scev", 111 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 112 113 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 114 "Scalar Evolution Analysis", false, true) 115 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 116 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 117 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 118 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 119 "Scalar Evolution Analysis", false, true) 120 char ScalarEvolution::ID = 0; 121 122 //===----------------------------------------------------------------------===// 123 // SCEV class definitions 124 //===----------------------------------------------------------------------===// 125 126 //===----------------------------------------------------------------------===// 127 // Implementation of the SCEV class. 128 // 129 130 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 131 void SCEV::dump() const { 132 print(dbgs()); 133 dbgs() << '\n'; 134 } 135 #endif 136 137 void SCEV::print(raw_ostream &OS) const { 138 switch (static_cast<SCEVTypes>(getSCEVType())) { 139 case scConstant: 140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 141 return; 142 case scTruncate: { 143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 144 const SCEV *Op = Trunc->getOperand(); 145 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 146 << *Trunc->getType() << ")"; 147 return; 148 } 149 case scZeroExtend: { 150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 151 const SCEV *Op = ZExt->getOperand(); 152 OS << "(zext " << *Op->getType() << " " << *Op << " to " 153 << *ZExt->getType() << ")"; 154 return; 155 } 156 case scSignExtend: { 157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 158 const SCEV *Op = SExt->getOperand(); 159 OS << "(sext " << *Op->getType() << " " << *Op << " to " 160 << *SExt->getType() << ")"; 161 return; 162 } 163 case scAddRecExpr: { 164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 165 OS << "{" << *AR->getOperand(0); 166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 167 OS << ",+," << *AR->getOperand(i); 168 OS << "}<"; 169 if (AR->getNoWrapFlags(FlagNUW)) 170 OS << "nuw><"; 171 if (AR->getNoWrapFlags(FlagNSW)) 172 OS << "nsw><"; 173 if (AR->getNoWrapFlags(FlagNW) && 174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 175 OS << "nw><"; 176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 177 OS << ">"; 178 return; 179 } 180 case scAddExpr: 181 case scMulExpr: 182 case scUMaxExpr: 183 case scSMaxExpr: { 184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 185 const char *OpStr = 0; 186 switch (NAry->getSCEVType()) { 187 case scAddExpr: OpStr = " + "; break; 188 case scMulExpr: OpStr = " * "; break; 189 case scUMaxExpr: OpStr = " umax "; break; 190 case scSMaxExpr: OpStr = " smax "; break; 191 } 192 OS << "("; 193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 194 I != E; ++I) { 195 OS << **I; 196 if (llvm::next(I) != E) 197 OS << OpStr; 198 } 199 OS << ")"; 200 switch (NAry->getSCEVType()) { 201 case scAddExpr: 202 case scMulExpr: 203 if (NAry->getNoWrapFlags(FlagNUW)) 204 OS << "<nuw>"; 205 if (NAry->getNoWrapFlags(FlagNSW)) 206 OS << "<nsw>"; 207 } 208 return; 209 } 210 case scUDivExpr: { 211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 213 return; 214 } 215 case scUnknown: { 216 const SCEVUnknown *U = cast<SCEVUnknown>(this); 217 Type *AllocTy; 218 if (U->isSizeOf(AllocTy)) { 219 OS << "sizeof(" << *AllocTy << ")"; 220 return; 221 } 222 if (U->isAlignOf(AllocTy)) { 223 OS << "alignof(" << *AllocTy << ")"; 224 return; 225 } 226 227 Type *CTy; 228 Constant *FieldNo; 229 if (U->isOffsetOf(CTy, FieldNo)) { 230 OS << "offsetof(" << *CTy << ", "; 231 FieldNo->printAsOperand(OS, false); 232 OS << ")"; 233 return; 234 } 235 236 // Otherwise just print it normally. 237 U->getValue()->printAsOperand(OS, false); 238 return; 239 } 240 case scCouldNotCompute: 241 OS << "***COULDNOTCOMPUTE***"; 242 return; 243 } 244 llvm_unreachable("Unknown SCEV kind!"); 245 } 246 247 Type *SCEV::getType() const { 248 switch (static_cast<SCEVTypes>(getSCEVType())) { 249 case scConstant: 250 return cast<SCEVConstant>(this)->getType(); 251 case scTruncate: 252 case scZeroExtend: 253 case scSignExtend: 254 return cast<SCEVCastExpr>(this)->getType(); 255 case scAddRecExpr: 256 case scMulExpr: 257 case scUMaxExpr: 258 case scSMaxExpr: 259 return cast<SCEVNAryExpr>(this)->getType(); 260 case scAddExpr: 261 return cast<SCEVAddExpr>(this)->getType(); 262 case scUDivExpr: 263 return cast<SCEVUDivExpr>(this)->getType(); 264 case scUnknown: 265 return cast<SCEVUnknown>(this)->getType(); 266 case scCouldNotCompute: 267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 268 } 269 llvm_unreachable("Unknown SCEV kind!"); 270 } 271 272 bool SCEV::isZero() const { 273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 274 return SC->getValue()->isZero(); 275 return false; 276 } 277 278 bool SCEV::isOne() const { 279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 280 return SC->getValue()->isOne(); 281 return false; 282 } 283 284 bool SCEV::isAllOnesValue() const { 285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 286 return SC->getValue()->isAllOnesValue(); 287 return false; 288 } 289 290 /// isNonConstantNegative - Return true if the specified scev is negated, but 291 /// not a constant. 292 bool SCEV::isNonConstantNegative() const { 293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 294 if (!Mul) return false; 295 296 // If there is a constant factor, it will be first. 297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 298 if (!SC) return false; 299 300 // Return true if the value is negative, this matches things like (-42 * V). 301 return SC->getValue()->getValue().isNegative(); 302 } 303 304 SCEVCouldNotCompute::SCEVCouldNotCompute() : 305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 306 307 bool SCEVCouldNotCompute::classof(const SCEV *S) { 308 return S->getSCEVType() == scCouldNotCompute; 309 } 310 311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 312 FoldingSetNodeID ID; 313 ID.AddInteger(scConstant); 314 ID.AddPointer(V); 315 void *IP = 0; 316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 318 UniqueSCEVs.InsertNode(S, IP); 319 return S; 320 } 321 322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 323 return getConstant(ConstantInt::get(getContext(), Val)); 324 } 325 326 const SCEV * 327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 329 return getConstant(ConstantInt::get(ITy, V, isSigned)); 330 } 331 332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 333 unsigned SCEVTy, const SCEV *op, Type *ty) 334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 335 336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 337 const SCEV *op, Type *ty) 338 : SCEVCastExpr(ID, scTruncate, op, ty) { 339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 340 (Ty->isIntegerTy() || Ty->isPointerTy()) && 341 "Cannot truncate non-integer value!"); 342 } 343 344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 345 const SCEV *op, Type *ty) 346 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 348 (Ty->isIntegerTy() || Ty->isPointerTy()) && 349 "Cannot zero extend non-integer value!"); 350 } 351 352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 353 const SCEV *op, Type *ty) 354 : SCEVCastExpr(ID, scSignExtend, op, ty) { 355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 356 (Ty->isIntegerTy() || Ty->isPointerTy()) && 357 "Cannot sign extend non-integer value!"); 358 } 359 360 void SCEVUnknown::deleted() { 361 // Clear this SCEVUnknown from various maps. 362 SE->forgetMemoizedResults(this); 363 364 // Remove this SCEVUnknown from the uniquing map. 365 SE->UniqueSCEVs.RemoveNode(this); 366 367 // Release the value. 368 setValPtr(0); 369 } 370 371 void SCEVUnknown::allUsesReplacedWith(Value *New) { 372 // Clear this SCEVUnknown from various maps. 373 SE->forgetMemoizedResults(this); 374 375 // Remove this SCEVUnknown from the uniquing map. 376 SE->UniqueSCEVs.RemoveNode(this); 377 378 // Update this SCEVUnknown to point to the new value. This is needed 379 // because there may still be outstanding SCEVs which still point to 380 // this SCEVUnknown. 381 setValPtr(New); 382 } 383 384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 386 if (VCE->getOpcode() == Instruction::PtrToInt) 387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 388 if (CE->getOpcode() == Instruction::GetElementPtr && 389 CE->getOperand(0)->isNullValue() && 390 CE->getNumOperands() == 2) 391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 392 if (CI->isOne()) { 393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 394 ->getElementType(); 395 return true; 396 } 397 398 return false; 399 } 400 401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 403 if (VCE->getOpcode() == Instruction::PtrToInt) 404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 405 if (CE->getOpcode() == Instruction::GetElementPtr && 406 CE->getOperand(0)->isNullValue()) { 407 Type *Ty = 408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 409 if (StructType *STy = dyn_cast<StructType>(Ty)) 410 if (!STy->isPacked() && 411 CE->getNumOperands() == 3 && 412 CE->getOperand(1)->isNullValue()) { 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 414 if (CI->isOne() && 415 STy->getNumElements() == 2 && 416 STy->getElementType(0)->isIntegerTy(1)) { 417 AllocTy = STy->getElementType(1); 418 return true; 419 } 420 } 421 } 422 423 return false; 424 } 425 426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 428 if (VCE->getOpcode() == Instruction::PtrToInt) 429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 430 if (CE->getOpcode() == Instruction::GetElementPtr && 431 CE->getNumOperands() == 3 && 432 CE->getOperand(0)->isNullValue() && 433 CE->getOperand(1)->isNullValue()) { 434 Type *Ty = 435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 436 // Ignore vector types here so that ScalarEvolutionExpander doesn't 437 // emit getelementptrs that index into vectors. 438 if (Ty->isStructTy() || Ty->isArrayTy()) { 439 CTy = Ty; 440 FieldNo = CE->getOperand(2); 441 return true; 442 } 443 } 444 445 return false; 446 } 447 448 //===----------------------------------------------------------------------===// 449 // SCEV Utilities 450 //===----------------------------------------------------------------------===// 451 452 namespace { 453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 454 /// than the complexity of the RHS. This comparator is used to canonicalize 455 /// expressions. 456 class SCEVComplexityCompare { 457 const LoopInfo *const LI; 458 public: 459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 460 461 // Return true or false if LHS is less than, or at least RHS, respectively. 462 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 463 return compare(LHS, RHS) < 0; 464 } 465 466 // Return negative, zero, or positive, if LHS is less than, equal to, or 467 // greater than RHS, respectively. A three-way result allows recursive 468 // comparisons to be more efficient. 469 int compare(const SCEV *LHS, const SCEV *RHS) const { 470 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 471 if (LHS == RHS) 472 return 0; 473 474 // Primarily, sort the SCEVs by their getSCEVType(). 475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 476 if (LType != RType) 477 return (int)LType - (int)RType; 478 479 // Aside from the getSCEVType() ordering, the particular ordering 480 // isn't very important except that it's beneficial to be consistent, 481 // so that (a + b) and (b + a) don't end up as different expressions. 482 switch (static_cast<SCEVTypes>(LType)) { 483 case scUnknown: { 484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 486 487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 488 // not as complete as it could be. 489 const Value *LV = LU->getValue(), *RV = RU->getValue(); 490 491 // Order pointer values after integer values. This helps SCEVExpander 492 // form GEPs. 493 bool LIsPointer = LV->getType()->isPointerTy(), 494 RIsPointer = RV->getType()->isPointerTy(); 495 if (LIsPointer != RIsPointer) 496 return (int)LIsPointer - (int)RIsPointer; 497 498 // Compare getValueID values. 499 unsigned LID = LV->getValueID(), 500 RID = RV->getValueID(); 501 if (LID != RID) 502 return (int)LID - (int)RID; 503 504 // Sort arguments by their position. 505 if (const Argument *LA = dyn_cast<Argument>(LV)) { 506 const Argument *RA = cast<Argument>(RV); 507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 508 return (int)LArgNo - (int)RArgNo; 509 } 510 511 // For instructions, compare their loop depth, and their operand 512 // count. This is pretty loose. 513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 514 const Instruction *RInst = cast<Instruction>(RV); 515 516 // Compare loop depths. 517 const BasicBlock *LParent = LInst->getParent(), 518 *RParent = RInst->getParent(); 519 if (LParent != RParent) { 520 unsigned LDepth = LI->getLoopDepth(LParent), 521 RDepth = LI->getLoopDepth(RParent); 522 if (LDepth != RDepth) 523 return (int)LDepth - (int)RDepth; 524 } 525 526 // Compare the number of operands. 527 unsigned LNumOps = LInst->getNumOperands(), 528 RNumOps = RInst->getNumOperands(); 529 return (int)LNumOps - (int)RNumOps; 530 } 531 532 return 0; 533 } 534 535 case scConstant: { 536 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 537 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 538 539 // Compare constant values. 540 const APInt &LA = LC->getValue()->getValue(); 541 const APInt &RA = RC->getValue()->getValue(); 542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 543 if (LBitWidth != RBitWidth) 544 return (int)LBitWidth - (int)RBitWidth; 545 return LA.ult(RA) ? -1 : 1; 546 } 547 548 case scAddRecExpr: { 549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 551 552 // Compare addrec loop depths. 553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 554 if (LLoop != RLoop) { 555 unsigned LDepth = LLoop->getLoopDepth(), 556 RDepth = RLoop->getLoopDepth(); 557 if (LDepth != RDepth) 558 return (int)LDepth - (int)RDepth; 559 } 560 561 // Addrec complexity grows with operand count. 562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 563 if (LNumOps != RNumOps) 564 return (int)LNumOps - (int)RNumOps; 565 566 // Lexicographically compare. 567 for (unsigned i = 0; i != LNumOps; ++i) { 568 long X = compare(LA->getOperand(i), RA->getOperand(i)); 569 if (X != 0) 570 return X; 571 } 572 573 return 0; 574 } 575 576 case scAddExpr: 577 case scMulExpr: 578 case scSMaxExpr: 579 case scUMaxExpr: { 580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 582 583 // Lexicographically compare n-ary expressions. 584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 585 if (LNumOps != RNumOps) 586 return (int)LNumOps - (int)RNumOps; 587 588 for (unsigned i = 0; i != LNumOps; ++i) { 589 if (i >= RNumOps) 590 return 1; 591 long X = compare(LC->getOperand(i), RC->getOperand(i)); 592 if (X != 0) 593 return X; 594 } 595 return (int)LNumOps - (int)RNumOps; 596 } 597 598 case scUDivExpr: { 599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 601 602 // Lexicographically compare udiv expressions. 603 long X = compare(LC->getLHS(), RC->getLHS()); 604 if (X != 0) 605 return X; 606 return compare(LC->getRHS(), RC->getRHS()); 607 } 608 609 case scTruncate: 610 case scZeroExtend: 611 case scSignExtend: { 612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 614 615 // Compare cast expressions by operand. 616 return compare(LC->getOperand(), RC->getOperand()); 617 } 618 619 case scCouldNotCompute: 620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 621 } 622 llvm_unreachable("Unknown SCEV kind!"); 623 } 624 }; 625 } 626 627 /// GroupByComplexity - Given a list of SCEV objects, order them by their 628 /// complexity, and group objects of the same complexity together by value. 629 /// When this routine is finished, we know that any duplicates in the vector are 630 /// consecutive and that complexity is monotonically increasing. 631 /// 632 /// Note that we go take special precautions to ensure that we get deterministic 633 /// results from this routine. In other words, we don't want the results of 634 /// this to depend on where the addresses of various SCEV objects happened to 635 /// land in memory. 636 /// 637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 638 LoopInfo *LI) { 639 if (Ops.size() < 2) return; // Noop 640 if (Ops.size() == 2) { 641 // This is the common case, which also happens to be trivially simple. 642 // Special case it. 643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 644 if (SCEVComplexityCompare(LI)(RHS, LHS)) 645 std::swap(LHS, RHS); 646 return; 647 } 648 649 // Do the rough sort by complexity. 650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 651 652 // Now that we are sorted by complexity, group elements of the same 653 // complexity. Note that this is, at worst, N^2, but the vector is likely to 654 // be extremely short in practice. Note that we take this approach because we 655 // do not want to depend on the addresses of the objects we are grouping. 656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 657 const SCEV *S = Ops[i]; 658 unsigned Complexity = S->getSCEVType(); 659 660 // If there are any objects of the same complexity and same value as this 661 // one, group them. 662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 663 if (Ops[j] == S) { // Found a duplicate. 664 // Move it to immediately after i'th element. 665 std::swap(Ops[i+1], Ops[j]); 666 ++i; // no need to rescan it. 667 if (i == e-2) return; // Done! 668 } 669 } 670 } 671 } 672 673 674 675 //===----------------------------------------------------------------------===// 676 // Simple SCEV method implementations 677 //===----------------------------------------------------------------------===// 678 679 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 680 /// Assume, K > 0. 681 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 682 ScalarEvolution &SE, 683 Type *ResultTy) { 684 // Handle the simplest case efficiently. 685 if (K == 1) 686 return SE.getTruncateOrZeroExtend(It, ResultTy); 687 688 // We are using the following formula for BC(It, K): 689 // 690 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 691 // 692 // Suppose, W is the bitwidth of the return value. We must be prepared for 693 // overflow. Hence, we must assure that the result of our computation is 694 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 695 // safe in modular arithmetic. 696 // 697 // However, this code doesn't use exactly that formula; the formula it uses 698 // is something like the following, where T is the number of factors of 2 in 699 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 700 // exponentiation: 701 // 702 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 703 // 704 // This formula is trivially equivalent to the previous formula. However, 705 // this formula can be implemented much more efficiently. The trick is that 706 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 707 // arithmetic. To do exact division in modular arithmetic, all we have 708 // to do is multiply by the inverse. Therefore, this step can be done at 709 // width W. 710 // 711 // The next issue is how to safely do the division by 2^T. The way this 712 // is done is by doing the multiplication step at a width of at least W + T 713 // bits. This way, the bottom W+T bits of the product are accurate. Then, 714 // when we perform the division by 2^T (which is equivalent to a right shift 715 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 716 // truncated out after the division by 2^T. 717 // 718 // In comparison to just directly using the first formula, this technique 719 // is much more efficient; using the first formula requires W * K bits, 720 // but this formula less than W + K bits. Also, the first formula requires 721 // a division step, whereas this formula only requires multiplies and shifts. 722 // 723 // It doesn't matter whether the subtraction step is done in the calculation 724 // width or the input iteration count's width; if the subtraction overflows, 725 // the result must be zero anyway. We prefer here to do it in the width of 726 // the induction variable because it helps a lot for certain cases; CodeGen 727 // isn't smart enough to ignore the overflow, which leads to much less 728 // efficient code if the width of the subtraction is wider than the native 729 // register width. 730 // 731 // (It's possible to not widen at all by pulling out factors of 2 before 732 // the multiplication; for example, K=2 can be calculated as 733 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 734 // extra arithmetic, so it's not an obvious win, and it gets 735 // much more complicated for K > 3.) 736 737 // Protection from insane SCEVs; this bound is conservative, 738 // but it probably doesn't matter. 739 if (K > 1000) 740 return SE.getCouldNotCompute(); 741 742 unsigned W = SE.getTypeSizeInBits(ResultTy); 743 744 // Calculate K! / 2^T and T; we divide out the factors of two before 745 // multiplying for calculating K! / 2^T to avoid overflow. 746 // Other overflow doesn't matter because we only care about the bottom 747 // W bits of the result. 748 APInt OddFactorial(W, 1); 749 unsigned T = 1; 750 for (unsigned i = 3; i <= K; ++i) { 751 APInt Mult(W, i); 752 unsigned TwoFactors = Mult.countTrailingZeros(); 753 T += TwoFactors; 754 Mult = Mult.lshr(TwoFactors); 755 OddFactorial *= Mult; 756 } 757 758 // We need at least W + T bits for the multiplication step 759 unsigned CalculationBits = W + T; 760 761 // Calculate 2^T, at width T+W. 762 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 763 764 // Calculate the multiplicative inverse of K! / 2^T; 765 // this multiplication factor will perform the exact division by 766 // K! / 2^T. 767 APInt Mod = APInt::getSignedMinValue(W+1); 768 APInt MultiplyFactor = OddFactorial.zext(W+1); 769 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 770 MultiplyFactor = MultiplyFactor.trunc(W); 771 772 // Calculate the product, at width T+W 773 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 774 CalculationBits); 775 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 776 for (unsigned i = 1; i != K; ++i) { 777 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 778 Dividend = SE.getMulExpr(Dividend, 779 SE.getTruncateOrZeroExtend(S, CalculationTy)); 780 } 781 782 // Divide by 2^T 783 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 784 785 // Truncate the result, and divide by K! / 2^T. 786 787 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 788 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 789 } 790 791 /// evaluateAtIteration - Return the value of this chain of recurrences at 792 /// the specified iteration number. We can evaluate this recurrence by 793 /// multiplying each element in the chain by the binomial coefficient 794 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 795 /// 796 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 797 /// 798 /// where BC(It, k) stands for binomial coefficient. 799 /// 800 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 801 ScalarEvolution &SE) const { 802 const SCEV *Result = getStart(); 803 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 804 // The computation is correct in the face of overflow provided that the 805 // multiplication is performed _after_ the evaluation of the binomial 806 // coefficient. 807 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 808 if (isa<SCEVCouldNotCompute>(Coeff)) 809 return Coeff; 810 811 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 812 } 813 return Result; 814 } 815 816 //===----------------------------------------------------------------------===// 817 // SCEV Expression folder implementations 818 //===----------------------------------------------------------------------===// 819 820 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 821 Type *Ty) { 822 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 823 "This is not a truncating conversion!"); 824 assert(isSCEVable(Ty) && 825 "This is not a conversion to a SCEVable type!"); 826 Ty = getEffectiveSCEVType(Ty); 827 828 FoldingSetNodeID ID; 829 ID.AddInteger(scTruncate); 830 ID.AddPointer(Op); 831 ID.AddPointer(Ty); 832 void *IP = 0; 833 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 834 835 // Fold if the operand is constant. 836 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 837 return getConstant( 838 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 839 840 // trunc(trunc(x)) --> trunc(x) 841 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 842 return getTruncateExpr(ST->getOperand(), Ty); 843 844 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 845 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 846 return getTruncateOrSignExtend(SS->getOperand(), Ty); 847 848 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 849 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 850 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 851 852 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 853 // eliminate all the truncates. 854 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 855 SmallVector<const SCEV *, 4> Operands; 856 bool hasTrunc = false; 857 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 858 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 859 hasTrunc = isa<SCEVTruncateExpr>(S); 860 Operands.push_back(S); 861 } 862 if (!hasTrunc) 863 return getAddExpr(Operands); 864 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 865 } 866 867 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 868 // eliminate all the truncates. 869 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 870 SmallVector<const SCEV *, 4> Operands; 871 bool hasTrunc = false; 872 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 873 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 874 hasTrunc = isa<SCEVTruncateExpr>(S); 875 Operands.push_back(S); 876 } 877 if (!hasTrunc) 878 return getMulExpr(Operands); 879 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 880 } 881 882 // If the input value is a chrec scev, truncate the chrec's operands. 883 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 884 SmallVector<const SCEV *, 4> Operands; 885 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 886 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 887 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 888 } 889 890 // The cast wasn't folded; create an explicit cast node. We can reuse 891 // the existing insert position since if we get here, we won't have 892 // made any changes which would invalidate it. 893 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 894 Op, Ty); 895 UniqueSCEVs.InsertNode(S, IP); 896 return S; 897 } 898 899 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 900 Type *Ty) { 901 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 902 "This is not an extending conversion!"); 903 assert(isSCEVable(Ty) && 904 "This is not a conversion to a SCEVable type!"); 905 Ty = getEffectiveSCEVType(Ty); 906 907 // Fold if the operand is constant. 908 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 909 return getConstant( 910 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 911 912 // zext(zext(x)) --> zext(x) 913 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 914 return getZeroExtendExpr(SZ->getOperand(), Ty); 915 916 // Before doing any expensive analysis, check to see if we've already 917 // computed a SCEV for this Op and Ty. 918 FoldingSetNodeID ID; 919 ID.AddInteger(scZeroExtend); 920 ID.AddPointer(Op); 921 ID.AddPointer(Ty); 922 void *IP = 0; 923 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 924 925 // zext(trunc(x)) --> zext(x) or x or trunc(x) 926 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 927 // It's possible the bits taken off by the truncate were all zero bits. If 928 // so, we should be able to simplify this further. 929 const SCEV *X = ST->getOperand(); 930 ConstantRange CR = getUnsignedRange(X); 931 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 932 unsigned NewBits = getTypeSizeInBits(Ty); 933 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 934 CR.zextOrTrunc(NewBits))) 935 return getTruncateOrZeroExtend(X, Ty); 936 } 937 938 // If the input value is a chrec scev, and we can prove that the value 939 // did not overflow the old, smaller, value, we can zero extend all of the 940 // operands (often constants). This allows analysis of something like 941 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 942 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 943 if (AR->isAffine()) { 944 const SCEV *Start = AR->getStart(); 945 const SCEV *Step = AR->getStepRecurrence(*this); 946 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 947 const Loop *L = AR->getLoop(); 948 949 // If we have special knowledge that this addrec won't overflow, 950 // we don't need to do any further analysis. 951 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 952 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 953 getZeroExtendExpr(Step, Ty), 954 L, AR->getNoWrapFlags()); 955 956 // Check whether the backedge-taken count is SCEVCouldNotCompute. 957 // Note that this serves two purposes: It filters out loops that are 958 // simply not analyzable, and it covers the case where this code is 959 // being called from within backedge-taken count analysis, such that 960 // attempting to ask for the backedge-taken count would likely result 961 // in infinite recursion. In the later case, the analysis code will 962 // cope with a conservative value, and it will take care to purge 963 // that value once it has finished. 964 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 965 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 966 // Manually compute the final value for AR, checking for 967 // overflow. 968 969 // Check whether the backedge-taken count can be losslessly casted to 970 // the addrec's type. The count is always unsigned. 971 const SCEV *CastedMaxBECount = 972 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 973 const SCEV *RecastedMaxBECount = 974 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 975 if (MaxBECount == RecastedMaxBECount) { 976 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 977 // Check whether Start+Step*MaxBECount has no unsigned overflow. 978 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 979 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 980 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 981 const SCEV *WideMaxBECount = 982 getZeroExtendExpr(CastedMaxBECount, WideTy); 983 const SCEV *OperandExtendedAdd = 984 getAddExpr(WideStart, 985 getMulExpr(WideMaxBECount, 986 getZeroExtendExpr(Step, WideTy))); 987 if (ZAdd == OperandExtendedAdd) { 988 // Cache knowledge of AR NUW, which is propagated to this AddRec. 989 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 990 // Return the expression with the addrec on the outside. 991 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 992 getZeroExtendExpr(Step, Ty), 993 L, AR->getNoWrapFlags()); 994 } 995 // Similar to above, only this time treat the step value as signed. 996 // This covers loops that count down. 997 OperandExtendedAdd = 998 getAddExpr(WideStart, 999 getMulExpr(WideMaxBECount, 1000 getSignExtendExpr(Step, WideTy))); 1001 if (ZAdd == OperandExtendedAdd) { 1002 // Cache knowledge of AR NW, which is propagated to this AddRec. 1003 // Negative step causes unsigned wrap, but it still can't self-wrap. 1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1005 // Return the expression with the addrec on the outside. 1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1007 getSignExtendExpr(Step, Ty), 1008 L, AR->getNoWrapFlags()); 1009 } 1010 } 1011 1012 // If the backedge is guarded by a comparison with the pre-inc value 1013 // the addrec is safe. Also, if the entry is guarded by a comparison 1014 // with the start value and the backedge is guarded by a comparison 1015 // with the post-inc value, the addrec is safe. 1016 if (isKnownPositive(Step)) { 1017 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1018 getUnsignedRange(Step).getUnsignedMax()); 1019 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1020 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1021 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1022 AR->getPostIncExpr(*this), N))) { 1023 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1024 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1025 // Return the expression with the addrec on the outside. 1026 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1027 getZeroExtendExpr(Step, Ty), 1028 L, AR->getNoWrapFlags()); 1029 } 1030 } else if (isKnownNegative(Step)) { 1031 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1032 getSignedRange(Step).getSignedMin()); 1033 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1034 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1035 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1036 AR->getPostIncExpr(*this), N))) { 1037 // Cache knowledge of AR NW, which is propagated to this AddRec. 1038 // Negative step causes unsigned wrap, but it still can't self-wrap. 1039 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1040 // Return the expression with the addrec on the outside. 1041 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1042 getSignExtendExpr(Step, Ty), 1043 L, AR->getNoWrapFlags()); 1044 } 1045 } 1046 } 1047 } 1048 1049 // The cast wasn't folded; create an explicit cast node. 1050 // Recompute the insert position, as it may have been invalidated. 1051 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1052 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1053 Op, Ty); 1054 UniqueSCEVs.InsertNode(S, IP); 1055 return S; 1056 } 1057 1058 // Get the limit of a recurrence such that incrementing by Step cannot cause 1059 // signed overflow as long as the value of the recurrence within the loop does 1060 // not exceed this limit before incrementing. 1061 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1062 ICmpInst::Predicate *Pred, 1063 ScalarEvolution *SE) { 1064 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1065 if (SE->isKnownPositive(Step)) { 1066 *Pred = ICmpInst::ICMP_SLT; 1067 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1068 SE->getSignedRange(Step).getSignedMax()); 1069 } 1070 if (SE->isKnownNegative(Step)) { 1071 *Pred = ICmpInst::ICMP_SGT; 1072 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1073 SE->getSignedRange(Step).getSignedMin()); 1074 } 1075 return 0; 1076 } 1077 1078 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1079 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1080 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1081 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1082 // result, the expression "Step + sext(PreIncAR)" is congruent with 1083 // "sext(PostIncAR)" 1084 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1085 Type *Ty, 1086 ScalarEvolution *SE) { 1087 const Loop *L = AR->getLoop(); 1088 const SCEV *Start = AR->getStart(); 1089 const SCEV *Step = AR->getStepRecurrence(*SE); 1090 1091 // Check for a simple looking step prior to loop entry. 1092 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1093 if (!SA) 1094 return 0; 1095 1096 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1097 // subtraction is expensive. For this purpose, perform a quick and dirty 1098 // difference, by checking for Step in the operand list. 1099 SmallVector<const SCEV *, 4> DiffOps; 1100 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end(); 1101 I != E; ++I) { 1102 if (*I != Step) 1103 DiffOps.push_back(*I); 1104 } 1105 if (DiffOps.size() == SA->getNumOperands()) 1106 return 0; 1107 1108 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1109 // same three conditions that getSignExtendedExpr checks. 1110 1111 // 1. NSW flags on the step increment. 1112 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1113 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1114 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1115 1116 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1117 return PreStart; 1118 1119 // 2. Direct overflow check on the step operation's expression. 1120 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1121 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1122 const SCEV *OperandExtendedStart = 1123 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1124 SE->getSignExtendExpr(Step, WideTy)); 1125 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1126 // Cache knowledge of PreAR NSW. 1127 if (PreAR) 1128 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1129 // FIXME: this optimization needs a unit test 1130 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1131 return PreStart; 1132 } 1133 1134 // 3. Loop precondition. 1135 ICmpInst::Predicate Pred; 1136 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1137 1138 if (OverflowLimit && 1139 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1140 return PreStart; 1141 } 1142 return 0; 1143 } 1144 1145 // Get the normalized sign-extended expression for this AddRec's Start. 1146 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1147 Type *Ty, 1148 ScalarEvolution *SE) { 1149 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1150 if (!PreStart) 1151 return SE->getSignExtendExpr(AR->getStart(), Ty); 1152 1153 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1154 SE->getSignExtendExpr(PreStart, Ty)); 1155 } 1156 1157 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1158 Type *Ty) { 1159 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1160 "This is not an extending conversion!"); 1161 assert(isSCEVable(Ty) && 1162 "This is not a conversion to a SCEVable type!"); 1163 Ty = getEffectiveSCEVType(Ty); 1164 1165 // Fold if the operand is constant. 1166 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1167 return getConstant( 1168 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1169 1170 // sext(sext(x)) --> sext(x) 1171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1172 return getSignExtendExpr(SS->getOperand(), Ty); 1173 1174 // sext(zext(x)) --> zext(x) 1175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1176 return getZeroExtendExpr(SZ->getOperand(), Ty); 1177 1178 // Before doing any expensive analysis, check to see if we've already 1179 // computed a SCEV for this Op and Ty. 1180 FoldingSetNodeID ID; 1181 ID.AddInteger(scSignExtend); 1182 ID.AddPointer(Op); 1183 ID.AddPointer(Ty); 1184 void *IP = 0; 1185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1186 1187 // If the input value is provably positive, build a zext instead. 1188 if (isKnownNonNegative(Op)) 1189 return getZeroExtendExpr(Op, Ty); 1190 1191 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1193 // It's possible the bits taken off by the truncate were all sign bits. If 1194 // so, we should be able to simplify this further. 1195 const SCEV *X = ST->getOperand(); 1196 ConstantRange CR = getSignedRange(X); 1197 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1198 unsigned NewBits = getTypeSizeInBits(Ty); 1199 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1200 CR.sextOrTrunc(NewBits))) 1201 return getTruncateOrSignExtend(X, Ty); 1202 } 1203 1204 // If the input value is a chrec scev, and we can prove that the value 1205 // did not overflow the old, smaller, value, we can sign extend all of the 1206 // operands (often constants). This allows analysis of something like 1207 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1208 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1209 if (AR->isAffine()) { 1210 const SCEV *Start = AR->getStart(); 1211 const SCEV *Step = AR->getStepRecurrence(*this); 1212 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1213 const Loop *L = AR->getLoop(); 1214 1215 // If we have special knowledge that this addrec won't overflow, 1216 // we don't need to do any further analysis. 1217 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1218 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1219 getSignExtendExpr(Step, Ty), 1220 L, SCEV::FlagNSW); 1221 1222 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1223 // Note that this serves two purposes: It filters out loops that are 1224 // simply not analyzable, and it covers the case where this code is 1225 // being called from within backedge-taken count analysis, such that 1226 // attempting to ask for the backedge-taken count would likely result 1227 // in infinite recursion. In the later case, the analysis code will 1228 // cope with a conservative value, and it will take care to purge 1229 // that value once it has finished. 1230 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1231 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1232 // Manually compute the final value for AR, checking for 1233 // overflow. 1234 1235 // Check whether the backedge-taken count can be losslessly casted to 1236 // the addrec's type. The count is always unsigned. 1237 const SCEV *CastedMaxBECount = 1238 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1239 const SCEV *RecastedMaxBECount = 1240 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1241 if (MaxBECount == RecastedMaxBECount) { 1242 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1243 // Check whether Start+Step*MaxBECount has no signed overflow. 1244 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1245 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1246 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1247 const SCEV *WideMaxBECount = 1248 getZeroExtendExpr(CastedMaxBECount, WideTy); 1249 const SCEV *OperandExtendedAdd = 1250 getAddExpr(WideStart, 1251 getMulExpr(WideMaxBECount, 1252 getSignExtendExpr(Step, WideTy))); 1253 if (SAdd == OperandExtendedAdd) { 1254 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1255 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1256 // Return the expression with the addrec on the outside. 1257 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1258 getSignExtendExpr(Step, Ty), 1259 L, AR->getNoWrapFlags()); 1260 } 1261 // Similar to above, only this time treat the step value as unsigned. 1262 // This covers loops that count up with an unsigned step. 1263 OperandExtendedAdd = 1264 getAddExpr(WideStart, 1265 getMulExpr(WideMaxBECount, 1266 getZeroExtendExpr(Step, WideTy))); 1267 if (SAdd == OperandExtendedAdd) { 1268 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1269 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1270 // Return the expression with the addrec on the outside. 1271 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1272 getZeroExtendExpr(Step, Ty), 1273 L, AR->getNoWrapFlags()); 1274 } 1275 } 1276 1277 // If the backedge is guarded by a comparison with the pre-inc value 1278 // the addrec is safe. Also, if the entry is guarded by a comparison 1279 // with the start value and the backedge is guarded by a comparison 1280 // with the post-inc value, the addrec is safe. 1281 ICmpInst::Predicate Pred; 1282 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1283 if (OverflowLimit && 1284 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1285 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1286 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1287 OverflowLimit)))) { 1288 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1289 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1290 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1291 getSignExtendExpr(Step, Ty), 1292 L, AR->getNoWrapFlags()); 1293 } 1294 } 1295 } 1296 1297 // The cast wasn't folded; create an explicit cast node. 1298 // Recompute the insert position, as it may have been invalidated. 1299 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1300 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1301 Op, Ty); 1302 UniqueSCEVs.InsertNode(S, IP); 1303 return S; 1304 } 1305 1306 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1307 /// unspecified bits out to the given type. 1308 /// 1309 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1310 Type *Ty) { 1311 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1312 "This is not an extending conversion!"); 1313 assert(isSCEVable(Ty) && 1314 "This is not a conversion to a SCEVable type!"); 1315 Ty = getEffectiveSCEVType(Ty); 1316 1317 // Sign-extend negative constants. 1318 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1319 if (SC->getValue()->getValue().isNegative()) 1320 return getSignExtendExpr(Op, Ty); 1321 1322 // Peel off a truncate cast. 1323 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1324 const SCEV *NewOp = T->getOperand(); 1325 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1326 return getAnyExtendExpr(NewOp, Ty); 1327 return getTruncateOrNoop(NewOp, Ty); 1328 } 1329 1330 // Next try a zext cast. If the cast is folded, use it. 1331 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1332 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1333 return ZExt; 1334 1335 // Next try a sext cast. If the cast is folded, use it. 1336 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1337 if (!isa<SCEVSignExtendExpr>(SExt)) 1338 return SExt; 1339 1340 // Force the cast to be folded into the operands of an addrec. 1341 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1342 SmallVector<const SCEV *, 4> Ops; 1343 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1344 I != E; ++I) 1345 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1346 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1347 } 1348 1349 // If the expression is obviously signed, use the sext cast value. 1350 if (isa<SCEVSMaxExpr>(Op)) 1351 return SExt; 1352 1353 // Absent any other information, use the zext cast value. 1354 return ZExt; 1355 } 1356 1357 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1358 /// a list of operands to be added under the given scale, update the given 1359 /// map. This is a helper function for getAddRecExpr. As an example of 1360 /// what it does, given a sequence of operands that would form an add 1361 /// expression like this: 1362 /// 1363 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1364 /// 1365 /// where A and B are constants, update the map with these values: 1366 /// 1367 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1368 /// 1369 /// and add 13 + A*B*29 to AccumulatedConstant. 1370 /// This will allow getAddRecExpr to produce this: 1371 /// 1372 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1373 /// 1374 /// This form often exposes folding opportunities that are hidden in 1375 /// the original operand list. 1376 /// 1377 /// Return true iff it appears that any interesting folding opportunities 1378 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1379 /// the common case where no interesting opportunities are present, and 1380 /// is also used as a check to avoid infinite recursion. 1381 /// 1382 static bool 1383 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1384 SmallVectorImpl<const SCEV *> &NewOps, 1385 APInt &AccumulatedConstant, 1386 const SCEV *const *Ops, size_t NumOperands, 1387 const APInt &Scale, 1388 ScalarEvolution &SE) { 1389 bool Interesting = false; 1390 1391 // Iterate over the add operands. They are sorted, with constants first. 1392 unsigned i = 0; 1393 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1394 ++i; 1395 // Pull a buried constant out to the outside. 1396 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1397 Interesting = true; 1398 AccumulatedConstant += Scale * C->getValue()->getValue(); 1399 } 1400 1401 // Next comes everything else. We're especially interested in multiplies 1402 // here, but they're in the middle, so just visit the rest with one loop. 1403 for (; i != NumOperands; ++i) { 1404 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1405 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1406 APInt NewScale = 1407 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1408 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1409 // A multiplication of a constant with another add; recurse. 1410 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1411 Interesting |= 1412 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1413 Add->op_begin(), Add->getNumOperands(), 1414 NewScale, SE); 1415 } else { 1416 // A multiplication of a constant with some other value. Update 1417 // the map. 1418 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1419 const SCEV *Key = SE.getMulExpr(MulOps); 1420 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1421 M.insert(std::make_pair(Key, NewScale)); 1422 if (Pair.second) { 1423 NewOps.push_back(Pair.first->first); 1424 } else { 1425 Pair.first->second += NewScale; 1426 // The map already had an entry for this value, which may indicate 1427 // a folding opportunity. 1428 Interesting = true; 1429 } 1430 } 1431 } else { 1432 // An ordinary operand. Update the map. 1433 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1434 M.insert(std::make_pair(Ops[i], Scale)); 1435 if (Pair.second) { 1436 NewOps.push_back(Pair.first->first); 1437 } else { 1438 Pair.first->second += Scale; 1439 // The map already had an entry for this value, which may indicate 1440 // a folding opportunity. 1441 Interesting = true; 1442 } 1443 } 1444 } 1445 1446 return Interesting; 1447 } 1448 1449 namespace { 1450 struct APIntCompare { 1451 bool operator()(const APInt &LHS, const APInt &RHS) const { 1452 return LHS.ult(RHS); 1453 } 1454 }; 1455 } 1456 1457 /// getAddExpr - Get a canonical add expression, or something simpler if 1458 /// possible. 1459 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1460 SCEV::NoWrapFlags Flags) { 1461 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1462 "only nuw or nsw allowed"); 1463 assert(!Ops.empty() && "Cannot get empty add!"); 1464 if (Ops.size() == 1) return Ops[0]; 1465 #ifndef NDEBUG 1466 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1467 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1468 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1469 "SCEVAddExpr operand types don't match!"); 1470 #endif 1471 1472 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1473 // And vice-versa. 1474 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1475 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1476 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1477 bool All = true; 1478 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1479 E = Ops.end(); I != E; ++I) 1480 if (!isKnownNonNegative(*I)) { 1481 All = false; 1482 break; 1483 } 1484 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1485 } 1486 1487 // Sort by complexity, this groups all similar expression types together. 1488 GroupByComplexity(Ops, LI); 1489 1490 // If there are any constants, fold them together. 1491 unsigned Idx = 0; 1492 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1493 ++Idx; 1494 assert(Idx < Ops.size()); 1495 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1496 // We found two constants, fold them together! 1497 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1498 RHSC->getValue()->getValue()); 1499 if (Ops.size() == 2) return Ops[0]; 1500 Ops.erase(Ops.begin()+1); // Erase the folded element 1501 LHSC = cast<SCEVConstant>(Ops[0]); 1502 } 1503 1504 // If we are left with a constant zero being added, strip it off. 1505 if (LHSC->getValue()->isZero()) { 1506 Ops.erase(Ops.begin()); 1507 --Idx; 1508 } 1509 1510 if (Ops.size() == 1) return Ops[0]; 1511 } 1512 1513 // Okay, check to see if the same value occurs in the operand list more than 1514 // once. If so, merge them together into an multiply expression. Since we 1515 // sorted the list, these values are required to be adjacent. 1516 Type *Ty = Ops[0]->getType(); 1517 bool FoundMatch = false; 1518 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1519 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1520 // Scan ahead to count how many equal operands there are. 1521 unsigned Count = 2; 1522 while (i+Count != e && Ops[i+Count] == Ops[i]) 1523 ++Count; 1524 // Merge the values into a multiply. 1525 const SCEV *Scale = getConstant(Ty, Count); 1526 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1527 if (Ops.size() == Count) 1528 return Mul; 1529 Ops[i] = Mul; 1530 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1531 --i; e -= Count - 1; 1532 FoundMatch = true; 1533 } 1534 if (FoundMatch) 1535 return getAddExpr(Ops, Flags); 1536 1537 // Check for truncates. If all the operands are truncated from the same 1538 // type, see if factoring out the truncate would permit the result to be 1539 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1540 // if the contents of the resulting outer trunc fold to something simple. 1541 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1542 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1543 Type *DstType = Trunc->getType(); 1544 Type *SrcType = Trunc->getOperand()->getType(); 1545 SmallVector<const SCEV *, 8> LargeOps; 1546 bool Ok = true; 1547 // Check all the operands to see if they can be represented in the 1548 // source type of the truncate. 1549 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1550 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1551 if (T->getOperand()->getType() != SrcType) { 1552 Ok = false; 1553 break; 1554 } 1555 LargeOps.push_back(T->getOperand()); 1556 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1557 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1558 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1559 SmallVector<const SCEV *, 8> LargeMulOps; 1560 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1561 if (const SCEVTruncateExpr *T = 1562 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1563 if (T->getOperand()->getType() != SrcType) { 1564 Ok = false; 1565 break; 1566 } 1567 LargeMulOps.push_back(T->getOperand()); 1568 } else if (const SCEVConstant *C = 1569 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1570 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1571 } else { 1572 Ok = false; 1573 break; 1574 } 1575 } 1576 if (Ok) 1577 LargeOps.push_back(getMulExpr(LargeMulOps)); 1578 } else { 1579 Ok = false; 1580 break; 1581 } 1582 } 1583 if (Ok) { 1584 // Evaluate the expression in the larger type. 1585 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1586 // If it folds to something simple, use it. Otherwise, don't. 1587 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1588 return getTruncateExpr(Fold, DstType); 1589 } 1590 } 1591 1592 // Skip past any other cast SCEVs. 1593 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1594 ++Idx; 1595 1596 // If there are add operands they would be next. 1597 if (Idx < Ops.size()) { 1598 bool DeletedAdd = false; 1599 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1600 // If we have an add, expand the add operands onto the end of the operands 1601 // list. 1602 Ops.erase(Ops.begin()+Idx); 1603 Ops.append(Add->op_begin(), Add->op_end()); 1604 DeletedAdd = true; 1605 } 1606 1607 // If we deleted at least one add, we added operands to the end of the list, 1608 // and they are not necessarily sorted. Recurse to resort and resimplify 1609 // any operands we just acquired. 1610 if (DeletedAdd) 1611 return getAddExpr(Ops); 1612 } 1613 1614 // Skip over the add expression until we get to a multiply. 1615 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1616 ++Idx; 1617 1618 // Check to see if there are any folding opportunities present with 1619 // operands multiplied by constant values. 1620 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1621 uint64_t BitWidth = getTypeSizeInBits(Ty); 1622 DenseMap<const SCEV *, APInt> M; 1623 SmallVector<const SCEV *, 8> NewOps; 1624 APInt AccumulatedConstant(BitWidth, 0); 1625 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1626 Ops.data(), Ops.size(), 1627 APInt(BitWidth, 1), *this)) { 1628 // Some interesting folding opportunity is present, so its worthwhile to 1629 // re-generate the operands list. Group the operands by constant scale, 1630 // to avoid multiplying by the same constant scale multiple times. 1631 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1632 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 1633 E = NewOps.end(); I != E; ++I) 1634 MulOpLists[M.find(*I)->second].push_back(*I); 1635 // Re-generate the operands list. 1636 Ops.clear(); 1637 if (AccumulatedConstant != 0) 1638 Ops.push_back(getConstant(AccumulatedConstant)); 1639 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1640 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1641 if (I->first != 0) 1642 Ops.push_back(getMulExpr(getConstant(I->first), 1643 getAddExpr(I->second))); 1644 if (Ops.empty()) 1645 return getConstant(Ty, 0); 1646 if (Ops.size() == 1) 1647 return Ops[0]; 1648 return getAddExpr(Ops); 1649 } 1650 } 1651 1652 // If we are adding something to a multiply expression, make sure the 1653 // something is not already an operand of the multiply. If so, merge it into 1654 // the multiply. 1655 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1656 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1657 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1658 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1659 if (isa<SCEVConstant>(MulOpSCEV)) 1660 continue; 1661 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1662 if (MulOpSCEV == Ops[AddOp]) { 1663 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1664 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1665 if (Mul->getNumOperands() != 2) { 1666 // If the multiply has more than two operands, we must get the 1667 // Y*Z term. 1668 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1669 Mul->op_begin()+MulOp); 1670 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1671 InnerMul = getMulExpr(MulOps); 1672 } 1673 const SCEV *One = getConstant(Ty, 1); 1674 const SCEV *AddOne = getAddExpr(One, InnerMul); 1675 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1676 if (Ops.size() == 2) return OuterMul; 1677 if (AddOp < Idx) { 1678 Ops.erase(Ops.begin()+AddOp); 1679 Ops.erase(Ops.begin()+Idx-1); 1680 } else { 1681 Ops.erase(Ops.begin()+Idx); 1682 Ops.erase(Ops.begin()+AddOp-1); 1683 } 1684 Ops.push_back(OuterMul); 1685 return getAddExpr(Ops); 1686 } 1687 1688 // Check this multiply against other multiplies being added together. 1689 for (unsigned OtherMulIdx = Idx+1; 1690 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1691 ++OtherMulIdx) { 1692 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1693 // If MulOp occurs in OtherMul, we can fold the two multiplies 1694 // together. 1695 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1696 OMulOp != e; ++OMulOp) 1697 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1698 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1699 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1700 if (Mul->getNumOperands() != 2) { 1701 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1702 Mul->op_begin()+MulOp); 1703 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1704 InnerMul1 = getMulExpr(MulOps); 1705 } 1706 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1707 if (OtherMul->getNumOperands() != 2) { 1708 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1709 OtherMul->op_begin()+OMulOp); 1710 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1711 InnerMul2 = getMulExpr(MulOps); 1712 } 1713 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1714 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1715 if (Ops.size() == 2) return OuterMul; 1716 Ops.erase(Ops.begin()+Idx); 1717 Ops.erase(Ops.begin()+OtherMulIdx-1); 1718 Ops.push_back(OuterMul); 1719 return getAddExpr(Ops); 1720 } 1721 } 1722 } 1723 } 1724 1725 // If there are any add recurrences in the operands list, see if any other 1726 // added values are loop invariant. If so, we can fold them into the 1727 // recurrence. 1728 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1729 ++Idx; 1730 1731 // Scan over all recurrences, trying to fold loop invariants into them. 1732 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1733 // Scan all of the other operands to this add and add them to the vector if 1734 // they are loop invariant w.r.t. the recurrence. 1735 SmallVector<const SCEV *, 8> LIOps; 1736 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1737 const Loop *AddRecLoop = AddRec->getLoop(); 1738 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1739 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1740 LIOps.push_back(Ops[i]); 1741 Ops.erase(Ops.begin()+i); 1742 --i; --e; 1743 } 1744 1745 // If we found some loop invariants, fold them into the recurrence. 1746 if (!LIOps.empty()) { 1747 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1748 LIOps.push_back(AddRec->getStart()); 1749 1750 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1751 AddRec->op_end()); 1752 AddRecOps[0] = getAddExpr(LIOps); 1753 1754 // Build the new addrec. Propagate the NUW and NSW flags if both the 1755 // outer add and the inner addrec are guaranteed to have no overflow. 1756 // Always propagate NW. 1757 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1758 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1759 1760 // If all of the other operands were loop invariant, we are done. 1761 if (Ops.size() == 1) return NewRec; 1762 1763 // Otherwise, add the folded AddRec by the non-invariant parts. 1764 for (unsigned i = 0;; ++i) 1765 if (Ops[i] == AddRec) { 1766 Ops[i] = NewRec; 1767 break; 1768 } 1769 return getAddExpr(Ops); 1770 } 1771 1772 // Okay, if there weren't any loop invariants to be folded, check to see if 1773 // there are multiple AddRec's with the same loop induction variable being 1774 // added together. If so, we can fold them. 1775 for (unsigned OtherIdx = Idx+1; 1776 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1777 ++OtherIdx) 1778 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1779 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1780 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1781 AddRec->op_end()); 1782 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1783 ++OtherIdx) 1784 if (const SCEVAddRecExpr *OtherAddRec = 1785 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1786 if (OtherAddRec->getLoop() == AddRecLoop) { 1787 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1788 i != e; ++i) { 1789 if (i >= AddRecOps.size()) { 1790 AddRecOps.append(OtherAddRec->op_begin()+i, 1791 OtherAddRec->op_end()); 1792 break; 1793 } 1794 AddRecOps[i] = getAddExpr(AddRecOps[i], 1795 OtherAddRec->getOperand(i)); 1796 } 1797 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1798 } 1799 // Step size has changed, so we cannot guarantee no self-wraparound. 1800 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1801 return getAddExpr(Ops); 1802 } 1803 1804 // Otherwise couldn't fold anything into this recurrence. Move onto the 1805 // next one. 1806 } 1807 1808 // Okay, it looks like we really DO need an add expr. Check to see if we 1809 // already have one, otherwise create a new one. 1810 FoldingSetNodeID ID; 1811 ID.AddInteger(scAddExpr); 1812 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1813 ID.AddPointer(Ops[i]); 1814 void *IP = 0; 1815 SCEVAddExpr *S = 1816 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1817 if (!S) { 1818 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1819 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1820 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1821 O, Ops.size()); 1822 UniqueSCEVs.InsertNode(S, IP); 1823 } 1824 S->setNoWrapFlags(Flags); 1825 return S; 1826 } 1827 1828 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1829 uint64_t k = i*j; 1830 if (j > 1 && k / j != i) Overflow = true; 1831 return k; 1832 } 1833 1834 /// Compute the result of "n choose k", the binomial coefficient. If an 1835 /// intermediate computation overflows, Overflow will be set and the return will 1836 /// be garbage. Overflow is not cleared on absence of overflow. 1837 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1838 // We use the multiplicative formula: 1839 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1840 // At each iteration, we take the n-th term of the numeral and divide by the 1841 // (k-n)th term of the denominator. This division will always produce an 1842 // integral result, and helps reduce the chance of overflow in the 1843 // intermediate computations. However, we can still overflow even when the 1844 // final result would fit. 1845 1846 if (n == 0 || n == k) return 1; 1847 if (k > n) return 0; 1848 1849 if (k > n/2) 1850 k = n-k; 1851 1852 uint64_t r = 1; 1853 for (uint64_t i = 1; i <= k; ++i) { 1854 r = umul_ov(r, n-(i-1), Overflow); 1855 r /= i; 1856 } 1857 return r; 1858 } 1859 1860 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1861 /// possible. 1862 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1863 SCEV::NoWrapFlags Flags) { 1864 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1865 "only nuw or nsw allowed"); 1866 assert(!Ops.empty() && "Cannot get empty mul!"); 1867 if (Ops.size() == 1) return Ops[0]; 1868 #ifndef NDEBUG 1869 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1870 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1871 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1872 "SCEVMulExpr operand types don't match!"); 1873 #endif 1874 1875 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1876 // And vice-versa. 1877 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1878 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1879 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1880 bool All = true; 1881 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1882 E = Ops.end(); I != E; ++I) 1883 if (!isKnownNonNegative(*I)) { 1884 All = false; 1885 break; 1886 } 1887 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1888 } 1889 1890 // Sort by complexity, this groups all similar expression types together. 1891 GroupByComplexity(Ops, LI); 1892 1893 // If there are any constants, fold them together. 1894 unsigned Idx = 0; 1895 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1896 1897 // C1*(C2+V) -> C1*C2 + C1*V 1898 if (Ops.size() == 2) 1899 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1900 if (Add->getNumOperands() == 2 && 1901 isa<SCEVConstant>(Add->getOperand(0))) 1902 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1903 getMulExpr(LHSC, Add->getOperand(1))); 1904 1905 ++Idx; 1906 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1907 // We found two constants, fold them together! 1908 ConstantInt *Fold = ConstantInt::get(getContext(), 1909 LHSC->getValue()->getValue() * 1910 RHSC->getValue()->getValue()); 1911 Ops[0] = getConstant(Fold); 1912 Ops.erase(Ops.begin()+1); // Erase the folded element 1913 if (Ops.size() == 1) return Ops[0]; 1914 LHSC = cast<SCEVConstant>(Ops[0]); 1915 } 1916 1917 // If we are left with a constant one being multiplied, strip it off. 1918 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1919 Ops.erase(Ops.begin()); 1920 --Idx; 1921 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1922 // If we have a multiply of zero, it will always be zero. 1923 return Ops[0]; 1924 } else if (Ops[0]->isAllOnesValue()) { 1925 // If we have a mul by -1 of an add, try distributing the -1 among the 1926 // add operands. 1927 if (Ops.size() == 2) { 1928 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1929 SmallVector<const SCEV *, 4> NewOps; 1930 bool AnyFolded = false; 1931 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1932 E = Add->op_end(); I != E; ++I) { 1933 const SCEV *Mul = getMulExpr(Ops[0], *I); 1934 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1935 NewOps.push_back(Mul); 1936 } 1937 if (AnyFolded) 1938 return getAddExpr(NewOps); 1939 } 1940 else if (const SCEVAddRecExpr * 1941 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1942 // Negation preserves a recurrence's no self-wrap property. 1943 SmallVector<const SCEV *, 4> Operands; 1944 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1945 E = AddRec->op_end(); I != E; ++I) { 1946 Operands.push_back(getMulExpr(Ops[0], *I)); 1947 } 1948 return getAddRecExpr(Operands, AddRec->getLoop(), 1949 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1950 } 1951 } 1952 } 1953 1954 if (Ops.size() == 1) 1955 return Ops[0]; 1956 } 1957 1958 // Skip over the add expression until we get to a multiply. 1959 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1960 ++Idx; 1961 1962 // If there are mul operands inline them all into this expression. 1963 if (Idx < Ops.size()) { 1964 bool DeletedMul = false; 1965 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1966 // If we have an mul, expand the mul operands onto the end of the operands 1967 // list. 1968 Ops.erase(Ops.begin()+Idx); 1969 Ops.append(Mul->op_begin(), Mul->op_end()); 1970 DeletedMul = true; 1971 } 1972 1973 // If we deleted at least one mul, we added operands to the end of the list, 1974 // and they are not necessarily sorted. Recurse to resort and resimplify 1975 // any operands we just acquired. 1976 if (DeletedMul) 1977 return getMulExpr(Ops); 1978 } 1979 1980 // If there are any add recurrences in the operands list, see if any other 1981 // added values are loop invariant. If so, we can fold them into the 1982 // recurrence. 1983 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1984 ++Idx; 1985 1986 // Scan over all recurrences, trying to fold loop invariants into them. 1987 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1988 // Scan all of the other operands to this mul and add them to the vector if 1989 // they are loop invariant w.r.t. the recurrence. 1990 SmallVector<const SCEV *, 8> LIOps; 1991 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1992 const Loop *AddRecLoop = AddRec->getLoop(); 1993 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1994 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1995 LIOps.push_back(Ops[i]); 1996 Ops.erase(Ops.begin()+i); 1997 --i; --e; 1998 } 1999 2000 // If we found some loop invariants, fold them into the recurrence. 2001 if (!LIOps.empty()) { 2002 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2003 SmallVector<const SCEV *, 4> NewOps; 2004 NewOps.reserve(AddRec->getNumOperands()); 2005 const SCEV *Scale = getMulExpr(LIOps); 2006 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2007 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2008 2009 // Build the new addrec. Propagate the NUW and NSW flags if both the 2010 // outer mul and the inner addrec are guaranteed to have no overflow. 2011 // 2012 // No self-wrap cannot be guaranteed after changing the step size, but 2013 // will be inferred if either NUW or NSW is true. 2014 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2015 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2016 2017 // If all of the other operands were loop invariant, we are done. 2018 if (Ops.size() == 1) return NewRec; 2019 2020 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2021 for (unsigned i = 0;; ++i) 2022 if (Ops[i] == AddRec) { 2023 Ops[i] = NewRec; 2024 break; 2025 } 2026 return getMulExpr(Ops); 2027 } 2028 2029 // Okay, if there weren't any loop invariants to be folded, check to see if 2030 // there are multiple AddRec's with the same loop induction variable being 2031 // multiplied together. If so, we can fold them. 2032 for (unsigned OtherIdx = Idx+1; 2033 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2034 ++OtherIdx) { 2035 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) 2036 continue; 2037 2038 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2039 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2040 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2041 // ]]],+,...up to x=2n}. 2042 // Note that the arguments to choose() are always integers with values 2043 // known at compile time, never SCEV objects. 2044 // 2045 // The implementation avoids pointless extra computations when the two 2046 // addrec's are of different length (mathematically, it's equivalent to 2047 // an infinite stream of zeros on the right). 2048 bool OpsModified = false; 2049 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2050 ++OtherIdx) { 2051 const SCEVAddRecExpr *OtherAddRec = 2052 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2053 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2054 continue; 2055 2056 bool Overflow = false; 2057 Type *Ty = AddRec->getType(); 2058 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2059 SmallVector<const SCEV*, 7> AddRecOps; 2060 for (int x = 0, xe = AddRec->getNumOperands() + 2061 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2062 const SCEV *Term = getConstant(Ty, 0); 2063 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2064 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2065 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2066 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2067 z < ze && !Overflow; ++z) { 2068 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2069 uint64_t Coeff; 2070 if (LargerThan64Bits) 2071 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2072 else 2073 Coeff = Coeff1*Coeff2; 2074 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2075 const SCEV *Term1 = AddRec->getOperand(y-z); 2076 const SCEV *Term2 = OtherAddRec->getOperand(z); 2077 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2078 } 2079 } 2080 AddRecOps.push_back(Term); 2081 } 2082 if (!Overflow) { 2083 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2084 SCEV::FlagAnyWrap); 2085 if (Ops.size() == 2) return NewAddRec; 2086 Ops[Idx] = NewAddRec; 2087 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2088 OpsModified = true; 2089 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2090 if (!AddRec) 2091 break; 2092 } 2093 } 2094 if (OpsModified) 2095 return getMulExpr(Ops); 2096 } 2097 2098 // Otherwise couldn't fold anything into this recurrence. Move onto the 2099 // next one. 2100 } 2101 2102 // Okay, it looks like we really DO need an mul expr. Check to see if we 2103 // already have one, otherwise create a new one. 2104 FoldingSetNodeID ID; 2105 ID.AddInteger(scMulExpr); 2106 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2107 ID.AddPointer(Ops[i]); 2108 void *IP = 0; 2109 SCEVMulExpr *S = 2110 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2111 if (!S) { 2112 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2113 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2114 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2115 O, Ops.size()); 2116 UniqueSCEVs.InsertNode(S, IP); 2117 } 2118 S->setNoWrapFlags(Flags); 2119 return S; 2120 } 2121 2122 /// getUDivExpr - Get a canonical unsigned division expression, or something 2123 /// simpler if possible. 2124 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2125 const SCEV *RHS) { 2126 assert(getEffectiveSCEVType(LHS->getType()) == 2127 getEffectiveSCEVType(RHS->getType()) && 2128 "SCEVUDivExpr operand types don't match!"); 2129 2130 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2131 if (RHSC->getValue()->equalsInt(1)) 2132 return LHS; // X udiv 1 --> x 2133 // If the denominator is zero, the result of the udiv is undefined. Don't 2134 // try to analyze it, because the resolution chosen here may differ from 2135 // the resolution chosen in other parts of the compiler. 2136 if (!RHSC->getValue()->isZero()) { 2137 // Determine if the division can be folded into the operands of 2138 // its operands. 2139 // TODO: Generalize this to non-constants by using known-bits information. 2140 Type *Ty = LHS->getType(); 2141 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2142 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2143 // For non-power-of-two values, effectively round the value up to the 2144 // nearest power of two. 2145 if (!RHSC->getValue()->getValue().isPowerOf2()) 2146 ++MaxShiftAmt; 2147 IntegerType *ExtTy = 2148 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2150 if (const SCEVConstant *Step = 2151 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2152 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2153 const APInt &StepInt = Step->getValue()->getValue(); 2154 const APInt &DivInt = RHSC->getValue()->getValue(); 2155 if (!StepInt.urem(DivInt) && 2156 getZeroExtendExpr(AR, ExtTy) == 2157 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2158 getZeroExtendExpr(Step, ExtTy), 2159 AR->getLoop(), SCEV::FlagAnyWrap)) { 2160 SmallVector<const SCEV *, 4> Operands; 2161 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2162 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2163 return getAddRecExpr(Operands, AR->getLoop(), 2164 SCEV::FlagNW); 2165 } 2166 /// Get a canonical UDivExpr for a recurrence. 2167 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2168 // We can currently only fold X%N if X is constant. 2169 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2170 if (StartC && !DivInt.urem(StepInt) && 2171 getZeroExtendExpr(AR, ExtTy) == 2172 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2173 getZeroExtendExpr(Step, ExtTy), 2174 AR->getLoop(), SCEV::FlagAnyWrap)) { 2175 const APInt &StartInt = StartC->getValue()->getValue(); 2176 const APInt &StartRem = StartInt.urem(StepInt); 2177 if (StartRem != 0) 2178 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2179 AR->getLoop(), SCEV::FlagNW); 2180 } 2181 } 2182 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2183 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2184 SmallVector<const SCEV *, 4> Operands; 2185 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2186 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2187 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2188 // Find an operand that's safely divisible. 2189 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2190 const SCEV *Op = M->getOperand(i); 2191 const SCEV *Div = getUDivExpr(Op, RHSC); 2192 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2193 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2194 M->op_end()); 2195 Operands[i] = Div; 2196 return getMulExpr(Operands); 2197 } 2198 } 2199 } 2200 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2201 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2202 SmallVector<const SCEV *, 4> Operands; 2203 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2204 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2205 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2206 Operands.clear(); 2207 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2208 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2209 if (isa<SCEVUDivExpr>(Op) || 2210 getMulExpr(Op, RHS) != A->getOperand(i)) 2211 break; 2212 Operands.push_back(Op); 2213 } 2214 if (Operands.size() == A->getNumOperands()) 2215 return getAddExpr(Operands); 2216 } 2217 } 2218 2219 // Fold if both operands are constant. 2220 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2221 Constant *LHSCV = LHSC->getValue(); 2222 Constant *RHSCV = RHSC->getValue(); 2223 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2224 RHSCV))); 2225 } 2226 } 2227 } 2228 2229 FoldingSetNodeID ID; 2230 ID.AddInteger(scUDivExpr); 2231 ID.AddPointer(LHS); 2232 ID.AddPointer(RHS); 2233 void *IP = 0; 2234 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2235 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2236 LHS, RHS); 2237 UniqueSCEVs.InsertNode(S, IP); 2238 return S; 2239 } 2240 2241 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2242 APInt A = C1->getValue()->getValue().abs(); 2243 APInt B = C2->getValue()->getValue().abs(); 2244 uint32_t ABW = A.getBitWidth(); 2245 uint32_t BBW = B.getBitWidth(); 2246 2247 if (ABW > BBW) 2248 B = B.zext(ABW); 2249 else if (ABW < BBW) 2250 A = A.zext(BBW); 2251 2252 return APIntOps::GreatestCommonDivisor(A, B); 2253 } 2254 2255 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2256 /// something simpler if possible. There is no representation for an exact udiv 2257 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2258 /// We can't do this when it's not exact because the udiv may be clearing bits. 2259 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2260 const SCEV *RHS) { 2261 // TODO: we could try to find factors in all sorts of things, but for now we 2262 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2263 // end of this file for inspiration. 2264 2265 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2266 if (!Mul) 2267 return getUDivExpr(LHS, RHS); 2268 2269 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2270 // If the mulexpr multiplies by a constant, then that constant must be the 2271 // first element of the mulexpr. 2272 if (const SCEVConstant *LHSCst = 2273 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2274 if (LHSCst == RHSCst) { 2275 SmallVector<const SCEV *, 2> Operands; 2276 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2277 return getMulExpr(Operands); 2278 } 2279 2280 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2281 // that there's a factor provided by one of the other terms. We need to 2282 // check. 2283 APInt Factor = gcd(LHSCst, RHSCst); 2284 if (!Factor.isIntN(1)) { 2285 LHSCst = cast<SCEVConstant>( 2286 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2287 RHSCst = cast<SCEVConstant>( 2288 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2289 SmallVector<const SCEV *, 2> Operands; 2290 Operands.push_back(LHSCst); 2291 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2292 LHS = getMulExpr(Operands); 2293 RHS = RHSCst; 2294 Mul = dyn_cast<SCEVMulExpr>(LHS); 2295 if (!Mul) 2296 return getUDivExactExpr(LHS, RHS); 2297 } 2298 } 2299 } 2300 2301 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2302 if (Mul->getOperand(i) == RHS) { 2303 SmallVector<const SCEV *, 2> Operands; 2304 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2305 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2306 return getMulExpr(Operands); 2307 } 2308 } 2309 2310 return getUDivExpr(LHS, RHS); 2311 } 2312 2313 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2314 /// Simplify the expression as much as possible. 2315 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2316 const Loop *L, 2317 SCEV::NoWrapFlags Flags) { 2318 SmallVector<const SCEV *, 4> Operands; 2319 Operands.push_back(Start); 2320 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2321 if (StepChrec->getLoop() == L) { 2322 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2323 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2324 } 2325 2326 Operands.push_back(Step); 2327 return getAddRecExpr(Operands, L, Flags); 2328 } 2329 2330 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2331 /// Simplify the expression as much as possible. 2332 const SCEV * 2333 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2334 const Loop *L, SCEV::NoWrapFlags Flags) { 2335 if (Operands.size() == 1) return Operands[0]; 2336 #ifndef NDEBUG 2337 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2338 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2339 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2340 "SCEVAddRecExpr operand types don't match!"); 2341 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2342 assert(isLoopInvariant(Operands[i], L) && 2343 "SCEVAddRecExpr operand is not loop-invariant!"); 2344 #endif 2345 2346 if (Operands.back()->isZero()) { 2347 Operands.pop_back(); 2348 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2349 } 2350 2351 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2352 // use that information to infer NUW and NSW flags. However, computing a 2353 // BE count requires calling getAddRecExpr, so we may not yet have a 2354 // meaningful BE count at this point (and if we don't, we'd be stuck 2355 // with a SCEVCouldNotCompute as the cached BE count). 2356 2357 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2358 // And vice-versa. 2359 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2360 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2361 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2362 bool All = true; 2363 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2364 E = Operands.end(); I != E; ++I) 2365 if (!isKnownNonNegative(*I)) { 2366 All = false; 2367 break; 2368 } 2369 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2370 } 2371 2372 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2373 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2374 const Loop *NestedLoop = NestedAR->getLoop(); 2375 if (L->contains(NestedLoop) ? 2376 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2377 (!NestedLoop->contains(L) && 2378 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2379 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2380 NestedAR->op_end()); 2381 Operands[0] = NestedAR->getStart(); 2382 // AddRecs require their operands be loop-invariant with respect to their 2383 // loops. Don't perform this transformation if it would break this 2384 // requirement. 2385 bool AllInvariant = true; 2386 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2387 if (!isLoopInvariant(Operands[i], L)) { 2388 AllInvariant = false; 2389 break; 2390 } 2391 if (AllInvariant) { 2392 // Create a recurrence for the outer loop with the same step size. 2393 // 2394 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2395 // inner recurrence has the same property. 2396 SCEV::NoWrapFlags OuterFlags = 2397 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2398 2399 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2400 AllInvariant = true; 2401 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2402 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2403 AllInvariant = false; 2404 break; 2405 } 2406 if (AllInvariant) { 2407 // Ok, both add recurrences are valid after the transformation. 2408 // 2409 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2410 // the outer recurrence has the same property. 2411 SCEV::NoWrapFlags InnerFlags = 2412 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2413 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2414 } 2415 } 2416 // Reset Operands to its original state. 2417 Operands[0] = NestedAR; 2418 } 2419 } 2420 2421 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2422 // already have one, otherwise create a new one. 2423 FoldingSetNodeID ID; 2424 ID.AddInteger(scAddRecExpr); 2425 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2426 ID.AddPointer(Operands[i]); 2427 ID.AddPointer(L); 2428 void *IP = 0; 2429 SCEVAddRecExpr *S = 2430 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2431 if (!S) { 2432 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2433 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2434 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2435 O, Operands.size(), L); 2436 UniqueSCEVs.InsertNode(S, IP); 2437 } 2438 S->setNoWrapFlags(Flags); 2439 return S; 2440 } 2441 2442 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2443 const SCEV *RHS) { 2444 SmallVector<const SCEV *, 2> Ops; 2445 Ops.push_back(LHS); 2446 Ops.push_back(RHS); 2447 return getSMaxExpr(Ops); 2448 } 2449 2450 const SCEV * 2451 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2452 assert(!Ops.empty() && "Cannot get empty smax!"); 2453 if (Ops.size() == 1) return Ops[0]; 2454 #ifndef NDEBUG 2455 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2456 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2457 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2458 "SCEVSMaxExpr operand types don't match!"); 2459 #endif 2460 2461 // Sort by complexity, this groups all similar expression types together. 2462 GroupByComplexity(Ops, LI); 2463 2464 // If there are any constants, fold them together. 2465 unsigned Idx = 0; 2466 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2467 ++Idx; 2468 assert(Idx < Ops.size()); 2469 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2470 // We found two constants, fold them together! 2471 ConstantInt *Fold = ConstantInt::get(getContext(), 2472 APIntOps::smax(LHSC->getValue()->getValue(), 2473 RHSC->getValue()->getValue())); 2474 Ops[0] = getConstant(Fold); 2475 Ops.erase(Ops.begin()+1); // Erase the folded element 2476 if (Ops.size() == 1) return Ops[0]; 2477 LHSC = cast<SCEVConstant>(Ops[0]); 2478 } 2479 2480 // If we are left with a constant minimum-int, strip it off. 2481 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2482 Ops.erase(Ops.begin()); 2483 --Idx; 2484 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2485 // If we have an smax with a constant maximum-int, it will always be 2486 // maximum-int. 2487 return Ops[0]; 2488 } 2489 2490 if (Ops.size() == 1) return Ops[0]; 2491 } 2492 2493 // Find the first SMax 2494 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2495 ++Idx; 2496 2497 // Check to see if one of the operands is an SMax. If so, expand its operands 2498 // onto our operand list, and recurse to simplify. 2499 if (Idx < Ops.size()) { 2500 bool DeletedSMax = false; 2501 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2502 Ops.erase(Ops.begin()+Idx); 2503 Ops.append(SMax->op_begin(), SMax->op_end()); 2504 DeletedSMax = true; 2505 } 2506 2507 if (DeletedSMax) 2508 return getSMaxExpr(Ops); 2509 } 2510 2511 // Okay, check to see if the same value occurs in the operand list twice. If 2512 // so, delete one. Since we sorted the list, these values are required to 2513 // be adjacent. 2514 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2515 // X smax Y smax Y --> X smax Y 2516 // X smax Y --> X, if X is always greater than Y 2517 if (Ops[i] == Ops[i+1] || 2518 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2519 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2520 --i; --e; 2521 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2522 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2523 --i; --e; 2524 } 2525 2526 if (Ops.size() == 1) return Ops[0]; 2527 2528 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2529 2530 // Okay, it looks like we really DO need an smax expr. Check to see if we 2531 // already have one, otherwise create a new one. 2532 FoldingSetNodeID ID; 2533 ID.AddInteger(scSMaxExpr); 2534 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2535 ID.AddPointer(Ops[i]); 2536 void *IP = 0; 2537 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2538 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2539 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2540 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2541 O, Ops.size()); 2542 UniqueSCEVs.InsertNode(S, IP); 2543 return S; 2544 } 2545 2546 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2547 const SCEV *RHS) { 2548 SmallVector<const SCEV *, 2> Ops; 2549 Ops.push_back(LHS); 2550 Ops.push_back(RHS); 2551 return getUMaxExpr(Ops); 2552 } 2553 2554 const SCEV * 2555 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2556 assert(!Ops.empty() && "Cannot get empty umax!"); 2557 if (Ops.size() == 1) return Ops[0]; 2558 #ifndef NDEBUG 2559 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2560 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2561 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2562 "SCEVUMaxExpr operand types don't match!"); 2563 #endif 2564 2565 // Sort by complexity, this groups all similar expression types together. 2566 GroupByComplexity(Ops, LI); 2567 2568 // If there are any constants, fold them together. 2569 unsigned Idx = 0; 2570 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2571 ++Idx; 2572 assert(Idx < Ops.size()); 2573 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2574 // We found two constants, fold them together! 2575 ConstantInt *Fold = ConstantInt::get(getContext(), 2576 APIntOps::umax(LHSC->getValue()->getValue(), 2577 RHSC->getValue()->getValue())); 2578 Ops[0] = getConstant(Fold); 2579 Ops.erase(Ops.begin()+1); // Erase the folded element 2580 if (Ops.size() == 1) return Ops[0]; 2581 LHSC = cast<SCEVConstant>(Ops[0]); 2582 } 2583 2584 // If we are left with a constant minimum-int, strip it off. 2585 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2586 Ops.erase(Ops.begin()); 2587 --Idx; 2588 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2589 // If we have an umax with a constant maximum-int, it will always be 2590 // maximum-int. 2591 return Ops[0]; 2592 } 2593 2594 if (Ops.size() == 1) return Ops[0]; 2595 } 2596 2597 // Find the first UMax 2598 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2599 ++Idx; 2600 2601 // Check to see if one of the operands is a UMax. If so, expand its operands 2602 // onto our operand list, and recurse to simplify. 2603 if (Idx < Ops.size()) { 2604 bool DeletedUMax = false; 2605 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2606 Ops.erase(Ops.begin()+Idx); 2607 Ops.append(UMax->op_begin(), UMax->op_end()); 2608 DeletedUMax = true; 2609 } 2610 2611 if (DeletedUMax) 2612 return getUMaxExpr(Ops); 2613 } 2614 2615 // Okay, check to see if the same value occurs in the operand list twice. If 2616 // so, delete one. Since we sorted the list, these values are required to 2617 // be adjacent. 2618 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2619 // X umax Y umax Y --> X umax Y 2620 // X umax Y --> X, if X is always greater than Y 2621 if (Ops[i] == Ops[i+1] || 2622 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2623 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2624 --i; --e; 2625 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2626 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2627 --i; --e; 2628 } 2629 2630 if (Ops.size() == 1) return Ops[0]; 2631 2632 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2633 2634 // Okay, it looks like we really DO need a umax expr. Check to see if we 2635 // already have one, otherwise create a new one. 2636 FoldingSetNodeID ID; 2637 ID.AddInteger(scUMaxExpr); 2638 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2639 ID.AddPointer(Ops[i]); 2640 void *IP = 0; 2641 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2642 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2643 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2644 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2645 O, Ops.size()); 2646 UniqueSCEVs.InsertNode(S, IP); 2647 return S; 2648 } 2649 2650 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2651 const SCEV *RHS) { 2652 // ~smax(~x, ~y) == smin(x, y). 2653 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2654 } 2655 2656 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2657 const SCEV *RHS) { 2658 // ~umax(~x, ~y) == umin(x, y) 2659 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2660 } 2661 2662 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 2663 // If we have DataLayout, we can bypass creating a target-independent 2664 // constant expression and then folding it back into a ConstantInt. 2665 // This is just a compile-time optimization. 2666 if (DL) 2667 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy)); 2668 2669 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2670 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2671 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 2672 C = Folded; 2673 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2674 assert(Ty == IntTy && "Effective SCEV type doesn't match"); 2675 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2676 } 2677 2678 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 2679 StructType *STy, 2680 unsigned FieldNo) { 2681 // If we have DataLayout, we can bypass creating a target-independent 2682 // constant expression and then folding it back into a ConstantInt. 2683 // This is just a compile-time optimization. 2684 if (DL) { 2685 return getConstant(IntTy, 2686 DL->getStructLayout(STy)->getElementOffset(FieldNo)); 2687 } 2688 2689 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2690 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2691 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 2692 C = Folded; 2693 2694 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2695 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2696 } 2697 2698 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2699 // Don't attempt to do anything other than create a SCEVUnknown object 2700 // here. createSCEV only calls getUnknown after checking for all other 2701 // interesting possibilities, and any other code that calls getUnknown 2702 // is doing so in order to hide a value from SCEV canonicalization. 2703 2704 FoldingSetNodeID ID; 2705 ID.AddInteger(scUnknown); 2706 ID.AddPointer(V); 2707 void *IP = 0; 2708 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2709 assert(cast<SCEVUnknown>(S)->getValue() == V && 2710 "Stale SCEVUnknown in uniquing map!"); 2711 return S; 2712 } 2713 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2714 FirstUnknown); 2715 FirstUnknown = cast<SCEVUnknown>(S); 2716 UniqueSCEVs.InsertNode(S, IP); 2717 return S; 2718 } 2719 2720 //===----------------------------------------------------------------------===// 2721 // Basic SCEV Analysis and PHI Idiom Recognition Code 2722 // 2723 2724 /// isSCEVable - Test if values of the given type are analyzable within 2725 /// the SCEV framework. This primarily includes integer types, and it 2726 /// can optionally include pointer types if the ScalarEvolution class 2727 /// has access to target-specific information. 2728 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2729 // Integers and pointers are always SCEVable. 2730 return Ty->isIntegerTy() || Ty->isPointerTy(); 2731 } 2732 2733 /// getTypeSizeInBits - Return the size in bits of the specified type, 2734 /// for which isSCEVable must return true. 2735 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2736 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2737 2738 // If we have a DataLayout, use it! 2739 if (DL) 2740 return DL->getTypeSizeInBits(Ty); 2741 2742 // Integer types have fixed sizes. 2743 if (Ty->isIntegerTy()) 2744 return Ty->getPrimitiveSizeInBits(); 2745 2746 // The only other support type is pointer. Without DataLayout, conservatively 2747 // assume pointers are 64-bit. 2748 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2749 return 64; 2750 } 2751 2752 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2753 /// the given type and which represents how SCEV will treat the given 2754 /// type, for which isSCEVable must return true. For pointer types, 2755 /// this is the pointer-sized integer type. 2756 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2757 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2758 2759 if (Ty->isIntegerTy()) { 2760 return Ty; 2761 } 2762 2763 // The only other support type is pointer. 2764 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2765 2766 if (DL) 2767 return DL->getIntPtrType(Ty); 2768 2769 // Without DataLayout, conservatively assume pointers are 64-bit. 2770 return Type::getInt64Ty(getContext()); 2771 } 2772 2773 const SCEV *ScalarEvolution::getCouldNotCompute() { 2774 return &CouldNotCompute; 2775 } 2776 2777 namespace { 2778 // Helper class working with SCEVTraversal to figure out if a SCEV contains 2779 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 2780 // is set iff if find such SCEVUnknown. 2781 // 2782 struct FindInvalidSCEVUnknown { 2783 bool FindOne; 2784 FindInvalidSCEVUnknown() { FindOne = false; } 2785 bool follow(const SCEV *S) { 2786 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 2787 case scConstant: 2788 return false; 2789 case scUnknown: 2790 if (!cast<SCEVUnknown>(S)->getValue()) 2791 FindOne = true; 2792 return false; 2793 default: 2794 return true; 2795 } 2796 } 2797 bool isDone() const { return FindOne; } 2798 }; 2799 } 2800 2801 bool ScalarEvolution::checkValidity(const SCEV *S) const { 2802 FindInvalidSCEVUnknown F; 2803 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 2804 ST.visitAll(S); 2805 2806 return !F.FindOne; 2807 } 2808 2809 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2810 /// expression and create a new one. 2811 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2812 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2813 2814 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 2815 if (I != ValueExprMap.end()) { 2816 const SCEV *S = I->second; 2817 if (checkValidity(S)) 2818 return S; 2819 else 2820 ValueExprMap.erase(I); 2821 } 2822 const SCEV *S = createSCEV(V); 2823 2824 // The process of creating a SCEV for V may have caused other SCEVs 2825 // to have been created, so it's necessary to insert the new entry 2826 // from scratch, rather than trying to remember the insert position 2827 // above. 2828 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2829 return S; 2830 } 2831 2832 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2833 /// 2834 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2835 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2836 return getConstant( 2837 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2838 2839 Type *Ty = V->getType(); 2840 Ty = getEffectiveSCEVType(Ty); 2841 return getMulExpr(V, 2842 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2843 } 2844 2845 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2846 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2847 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2848 return getConstant( 2849 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2850 2851 Type *Ty = V->getType(); 2852 Ty = getEffectiveSCEVType(Ty); 2853 const SCEV *AllOnes = 2854 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2855 return getMinusSCEV(AllOnes, V); 2856 } 2857 2858 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2859 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2860 SCEV::NoWrapFlags Flags) { 2861 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2862 2863 // Fast path: X - X --> 0. 2864 if (LHS == RHS) 2865 return getConstant(LHS->getType(), 0); 2866 2867 // X - Y --> X + -Y 2868 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2869 } 2870 2871 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2872 /// input value to the specified type. If the type must be extended, it is zero 2873 /// extended. 2874 const SCEV * 2875 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2876 Type *SrcTy = V->getType(); 2877 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2878 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2879 "Cannot truncate or zero extend with non-integer arguments!"); 2880 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2881 return V; // No conversion 2882 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2883 return getTruncateExpr(V, Ty); 2884 return getZeroExtendExpr(V, Ty); 2885 } 2886 2887 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2888 /// input value to the specified type. If the type must be extended, it is sign 2889 /// extended. 2890 const SCEV * 2891 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2892 Type *Ty) { 2893 Type *SrcTy = V->getType(); 2894 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2895 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2896 "Cannot truncate or zero extend with non-integer arguments!"); 2897 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2898 return V; // No conversion 2899 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2900 return getTruncateExpr(V, Ty); 2901 return getSignExtendExpr(V, Ty); 2902 } 2903 2904 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2905 /// input value to the specified type. If the type must be extended, it is zero 2906 /// extended. The conversion must not be narrowing. 2907 const SCEV * 2908 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2909 Type *SrcTy = V->getType(); 2910 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2911 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2912 "Cannot noop or zero extend with non-integer arguments!"); 2913 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2914 "getNoopOrZeroExtend cannot truncate!"); 2915 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2916 return V; // No conversion 2917 return getZeroExtendExpr(V, Ty); 2918 } 2919 2920 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2921 /// input value to the specified type. If the type must be extended, it is sign 2922 /// extended. The conversion must not be narrowing. 2923 const SCEV * 2924 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2925 Type *SrcTy = V->getType(); 2926 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2927 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2928 "Cannot noop or sign extend with non-integer arguments!"); 2929 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2930 "getNoopOrSignExtend cannot truncate!"); 2931 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2932 return V; // No conversion 2933 return getSignExtendExpr(V, Ty); 2934 } 2935 2936 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2937 /// the input value to the specified type. If the type must be extended, 2938 /// it is extended with unspecified bits. The conversion must not be 2939 /// narrowing. 2940 const SCEV * 2941 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2942 Type *SrcTy = V->getType(); 2943 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2944 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2945 "Cannot noop or any extend with non-integer arguments!"); 2946 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2947 "getNoopOrAnyExtend cannot truncate!"); 2948 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2949 return V; // No conversion 2950 return getAnyExtendExpr(V, Ty); 2951 } 2952 2953 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2954 /// input value to the specified type. The conversion must not be widening. 2955 const SCEV * 2956 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2957 Type *SrcTy = V->getType(); 2958 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2959 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2960 "Cannot truncate or noop with non-integer arguments!"); 2961 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2962 "getTruncateOrNoop cannot extend!"); 2963 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2964 return V; // No conversion 2965 return getTruncateExpr(V, Ty); 2966 } 2967 2968 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2969 /// the types using zero-extension, and then perform a umax operation 2970 /// with them. 2971 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2972 const SCEV *RHS) { 2973 const SCEV *PromotedLHS = LHS; 2974 const SCEV *PromotedRHS = RHS; 2975 2976 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2977 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2978 else 2979 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2980 2981 return getUMaxExpr(PromotedLHS, PromotedRHS); 2982 } 2983 2984 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2985 /// the types using zero-extension, and then perform a umin operation 2986 /// with them. 2987 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2988 const SCEV *RHS) { 2989 const SCEV *PromotedLHS = LHS; 2990 const SCEV *PromotedRHS = RHS; 2991 2992 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2993 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2994 else 2995 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2996 2997 return getUMinExpr(PromotedLHS, PromotedRHS); 2998 } 2999 3000 /// getPointerBase - Transitively follow the chain of pointer-type operands 3001 /// until reaching a SCEV that does not have a single pointer operand. This 3002 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3003 /// but corner cases do exist. 3004 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3005 // A pointer operand may evaluate to a nonpointer expression, such as null. 3006 if (!V->getType()->isPointerTy()) 3007 return V; 3008 3009 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3010 return getPointerBase(Cast->getOperand()); 3011 } 3012 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3013 const SCEV *PtrOp = 0; 3014 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3015 I != E; ++I) { 3016 if ((*I)->getType()->isPointerTy()) { 3017 // Cannot find the base of an expression with multiple pointer operands. 3018 if (PtrOp) 3019 return V; 3020 PtrOp = *I; 3021 } 3022 } 3023 if (!PtrOp) 3024 return V; 3025 return getPointerBase(PtrOp); 3026 } 3027 return V; 3028 } 3029 3030 /// PushDefUseChildren - Push users of the given Instruction 3031 /// onto the given Worklist. 3032 static void 3033 PushDefUseChildren(Instruction *I, 3034 SmallVectorImpl<Instruction *> &Worklist) { 3035 // Push the def-use children onto the Worklist stack. 3036 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 3037 UI != UE; ++UI) 3038 Worklist.push_back(cast<Instruction>(*UI)); 3039 } 3040 3041 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3042 /// instructions that depend on the given instruction and removes them from 3043 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3044 /// resolution. 3045 void 3046 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3047 SmallVector<Instruction *, 16> Worklist; 3048 PushDefUseChildren(PN, Worklist); 3049 3050 SmallPtrSet<Instruction *, 8> Visited; 3051 Visited.insert(PN); 3052 while (!Worklist.empty()) { 3053 Instruction *I = Worklist.pop_back_val(); 3054 if (!Visited.insert(I)) continue; 3055 3056 ValueExprMapType::iterator It = 3057 ValueExprMap.find_as(static_cast<Value *>(I)); 3058 if (It != ValueExprMap.end()) { 3059 const SCEV *Old = It->second; 3060 3061 // Short-circuit the def-use traversal if the symbolic name 3062 // ceases to appear in expressions. 3063 if (Old != SymName && !hasOperand(Old, SymName)) 3064 continue; 3065 3066 // SCEVUnknown for a PHI either means that it has an unrecognized 3067 // structure, it's a PHI that's in the progress of being computed 3068 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3069 // additional loop trip count information isn't going to change anything. 3070 // In the second case, createNodeForPHI will perform the necessary 3071 // updates on its own when it gets to that point. In the third, we do 3072 // want to forget the SCEVUnknown. 3073 if (!isa<PHINode>(I) || 3074 !isa<SCEVUnknown>(Old) || 3075 (I != PN && Old == SymName)) { 3076 forgetMemoizedResults(Old); 3077 ValueExprMap.erase(It); 3078 } 3079 } 3080 3081 PushDefUseChildren(I, Worklist); 3082 } 3083 } 3084 3085 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3086 /// a loop header, making it a potential recurrence, or it doesn't. 3087 /// 3088 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3089 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3090 if (L->getHeader() == PN->getParent()) { 3091 // The loop may have multiple entrances or multiple exits; we can analyze 3092 // this phi as an addrec if it has a unique entry value and a unique 3093 // backedge value. 3094 Value *BEValueV = 0, *StartValueV = 0; 3095 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3096 Value *V = PN->getIncomingValue(i); 3097 if (L->contains(PN->getIncomingBlock(i))) { 3098 if (!BEValueV) { 3099 BEValueV = V; 3100 } else if (BEValueV != V) { 3101 BEValueV = 0; 3102 break; 3103 } 3104 } else if (!StartValueV) { 3105 StartValueV = V; 3106 } else if (StartValueV != V) { 3107 StartValueV = 0; 3108 break; 3109 } 3110 } 3111 if (BEValueV && StartValueV) { 3112 // While we are analyzing this PHI node, handle its value symbolically. 3113 const SCEV *SymbolicName = getUnknown(PN); 3114 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3115 "PHI node already processed?"); 3116 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3117 3118 // Using this symbolic name for the PHI, analyze the value coming around 3119 // the back-edge. 3120 const SCEV *BEValue = getSCEV(BEValueV); 3121 3122 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3123 // has a special value for the first iteration of the loop. 3124 3125 // If the value coming around the backedge is an add with the symbolic 3126 // value we just inserted, then we found a simple induction variable! 3127 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3128 // If there is a single occurrence of the symbolic value, replace it 3129 // with a recurrence. 3130 unsigned FoundIndex = Add->getNumOperands(); 3131 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3132 if (Add->getOperand(i) == SymbolicName) 3133 if (FoundIndex == e) { 3134 FoundIndex = i; 3135 break; 3136 } 3137 3138 if (FoundIndex != Add->getNumOperands()) { 3139 // Create an add with everything but the specified operand. 3140 SmallVector<const SCEV *, 8> Ops; 3141 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3142 if (i != FoundIndex) 3143 Ops.push_back(Add->getOperand(i)); 3144 const SCEV *Accum = getAddExpr(Ops); 3145 3146 // This is not a valid addrec if the step amount is varying each 3147 // loop iteration, but is not itself an addrec in this loop. 3148 if (isLoopInvariant(Accum, L) || 3149 (isa<SCEVAddRecExpr>(Accum) && 3150 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3151 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3152 3153 // If the increment doesn't overflow, then neither the addrec nor 3154 // the post-increment will overflow. 3155 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3156 if (OBO->hasNoUnsignedWrap()) 3157 Flags = setFlags(Flags, SCEV::FlagNUW); 3158 if (OBO->hasNoSignedWrap()) 3159 Flags = setFlags(Flags, SCEV::FlagNSW); 3160 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3161 // If the increment is an inbounds GEP, then we know the address 3162 // space cannot be wrapped around. We cannot make any guarantee 3163 // about signed or unsigned overflow because pointers are 3164 // unsigned but we may have a negative index from the base 3165 // pointer. We can guarantee that no unsigned wrap occurs if the 3166 // indices form a positive value. 3167 if (GEP->isInBounds()) { 3168 Flags = setFlags(Flags, SCEV::FlagNW); 3169 3170 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3171 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3172 Flags = setFlags(Flags, SCEV::FlagNUW); 3173 } 3174 } else if (const SubOperator *OBO = 3175 dyn_cast<SubOperator>(BEValueV)) { 3176 if (OBO->hasNoUnsignedWrap()) 3177 Flags = setFlags(Flags, SCEV::FlagNUW); 3178 if (OBO->hasNoSignedWrap()) 3179 Flags = setFlags(Flags, SCEV::FlagNSW); 3180 } 3181 3182 const SCEV *StartVal = getSCEV(StartValueV); 3183 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3184 3185 // Since the no-wrap flags are on the increment, they apply to the 3186 // post-incremented value as well. 3187 if (isLoopInvariant(Accum, L)) 3188 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3189 Accum, L, Flags); 3190 3191 // Okay, for the entire analysis of this edge we assumed the PHI 3192 // to be symbolic. We now need to go back and purge all of the 3193 // entries for the scalars that use the symbolic expression. 3194 ForgetSymbolicName(PN, SymbolicName); 3195 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3196 return PHISCEV; 3197 } 3198 } 3199 } else if (const SCEVAddRecExpr *AddRec = 3200 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3201 // Otherwise, this could be a loop like this: 3202 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3203 // In this case, j = {1,+,1} and BEValue is j. 3204 // Because the other in-value of i (0) fits the evolution of BEValue 3205 // i really is an addrec evolution. 3206 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3207 const SCEV *StartVal = getSCEV(StartValueV); 3208 3209 // If StartVal = j.start - j.stride, we can use StartVal as the 3210 // initial step of the addrec evolution. 3211 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3212 AddRec->getOperand(1))) { 3213 // FIXME: For constant StartVal, we should be able to infer 3214 // no-wrap flags. 3215 const SCEV *PHISCEV = 3216 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3217 SCEV::FlagAnyWrap); 3218 3219 // Okay, for the entire analysis of this edge we assumed the PHI 3220 // to be symbolic. We now need to go back and purge all of the 3221 // entries for the scalars that use the symbolic expression. 3222 ForgetSymbolicName(PN, SymbolicName); 3223 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3224 return PHISCEV; 3225 } 3226 } 3227 } 3228 } 3229 } 3230 3231 // If the PHI has a single incoming value, follow that value, unless the 3232 // PHI's incoming blocks are in a different loop, in which case doing so 3233 // risks breaking LCSSA form. Instcombine would normally zap these, but 3234 // it doesn't have DominatorTree information, so it may miss cases. 3235 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT)) 3236 if (LI->replacementPreservesLCSSAForm(PN, V)) 3237 return getSCEV(V); 3238 3239 // If it's not a loop phi, we can't handle it yet. 3240 return getUnknown(PN); 3241 } 3242 3243 /// createNodeForGEP - Expand GEP instructions into add and multiply 3244 /// operations. This allows them to be analyzed by regular SCEV code. 3245 /// 3246 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3247 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3248 Value *Base = GEP->getOperand(0); 3249 // Don't attempt to analyze GEPs over unsized objects. 3250 if (!Base->getType()->getPointerElementType()->isSized()) 3251 return getUnknown(GEP); 3252 3253 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3254 // Add expression, because the Instruction may be guarded by control flow 3255 // and the no-overflow bits may not be valid for the expression in any 3256 // context. 3257 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3258 3259 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3260 gep_type_iterator GTI = gep_type_begin(GEP); 3261 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 3262 E = GEP->op_end(); 3263 I != E; ++I) { 3264 Value *Index = *I; 3265 // Compute the (potentially symbolic) offset in bytes for this index. 3266 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3267 // For a struct, add the member offset. 3268 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3269 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3270 3271 // Add the field offset to the running total offset. 3272 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3273 } else { 3274 // For an array, add the element offset, explicitly scaled. 3275 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI); 3276 const SCEV *IndexS = getSCEV(Index); 3277 // Getelementptr indices are signed. 3278 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3279 3280 // Multiply the index by the element size to compute the element offset. 3281 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap); 3282 3283 // Add the element offset to the running total offset. 3284 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3285 } 3286 } 3287 3288 // Get the SCEV for the GEP base. 3289 const SCEV *BaseS = getSCEV(Base); 3290 3291 // Add the total offset from all the GEP indices to the base. 3292 return getAddExpr(BaseS, TotalOffset, Wrap); 3293 } 3294 3295 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3296 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3297 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3298 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3299 uint32_t 3300 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3301 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3302 return C->getValue()->getValue().countTrailingZeros(); 3303 3304 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3305 return std::min(GetMinTrailingZeros(T->getOperand()), 3306 (uint32_t)getTypeSizeInBits(T->getType())); 3307 3308 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3309 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3310 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3311 getTypeSizeInBits(E->getType()) : OpRes; 3312 } 3313 3314 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3315 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3316 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3317 getTypeSizeInBits(E->getType()) : OpRes; 3318 } 3319 3320 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3321 // The result is the min of all operands results. 3322 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3323 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3324 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3325 return MinOpRes; 3326 } 3327 3328 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3329 // The result is the sum of all operands results. 3330 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3331 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3332 for (unsigned i = 1, e = M->getNumOperands(); 3333 SumOpRes != BitWidth && i != e; ++i) 3334 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3335 BitWidth); 3336 return SumOpRes; 3337 } 3338 3339 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3340 // The result is the min of all operands results. 3341 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3342 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3343 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3344 return MinOpRes; 3345 } 3346 3347 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3348 // The result is the min of all operands results. 3349 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3350 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3351 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3352 return MinOpRes; 3353 } 3354 3355 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3356 // The result is the min of all operands results. 3357 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3358 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3359 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3360 return MinOpRes; 3361 } 3362 3363 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3364 // For a SCEVUnknown, ask ValueTracking. 3365 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3366 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3367 ComputeMaskedBits(U->getValue(), Zeros, Ones); 3368 return Zeros.countTrailingOnes(); 3369 } 3370 3371 // SCEVUDivExpr 3372 return 0; 3373 } 3374 3375 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3376 /// 3377 ConstantRange 3378 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3379 // See if we've computed this range already. 3380 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3381 if (I != UnsignedRanges.end()) 3382 return I->second; 3383 3384 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3385 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3386 3387 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3388 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3389 3390 // If the value has known zeros, the maximum unsigned value will have those 3391 // known zeros as well. 3392 uint32_t TZ = GetMinTrailingZeros(S); 3393 if (TZ != 0) 3394 ConservativeResult = 3395 ConstantRange(APInt::getMinValue(BitWidth), 3396 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3397 3398 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3399 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3400 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3401 X = X.add(getUnsignedRange(Add->getOperand(i))); 3402 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3403 } 3404 3405 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3406 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3407 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3408 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3409 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3410 } 3411 3412 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3413 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3414 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3415 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3416 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3417 } 3418 3419 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3420 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3421 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3422 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3423 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3424 } 3425 3426 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3427 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3428 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3429 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3430 } 3431 3432 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3433 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3434 return setUnsignedRange(ZExt, 3435 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3436 } 3437 3438 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3439 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3440 return setUnsignedRange(SExt, 3441 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3442 } 3443 3444 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3445 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3446 return setUnsignedRange(Trunc, 3447 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3448 } 3449 3450 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3451 // If there's no unsigned wrap, the value will never be less than its 3452 // initial value. 3453 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3454 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3455 if (!C->getValue()->isZero()) 3456 ConservativeResult = 3457 ConservativeResult.intersectWith( 3458 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3459 3460 // TODO: non-affine addrec 3461 if (AddRec->isAffine()) { 3462 Type *Ty = AddRec->getType(); 3463 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3464 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3465 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3466 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3467 3468 const SCEV *Start = AddRec->getStart(); 3469 const SCEV *Step = AddRec->getStepRecurrence(*this); 3470 3471 ConstantRange StartRange = getUnsignedRange(Start); 3472 ConstantRange StepRange = getSignedRange(Step); 3473 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3474 ConstantRange EndRange = 3475 StartRange.add(MaxBECountRange.multiply(StepRange)); 3476 3477 // Check for overflow. This must be done with ConstantRange arithmetic 3478 // because we could be called from within the ScalarEvolution overflow 3479 // checking code. 3480 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3481 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3482 ConstantRange ExtMaxBECountRange = 3483 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3484 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3485 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3486 ExtEndRange) 3487 return setUnsignedRange(AddRec, ConservativeResult); 3488 3489 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3490 EndRange.getUnsignedMin()); 3491 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3492 EndRange.getUnsignedMax()); 3493 if (Min.isMinValue() && Max.isMaxValue()) 3494 return setUnsignedRange(AddRec, ConservativeResult); 3495 return setUnsignedRange(AddRec, 3496 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3497 } 3498 } 3499 3500 return setUnsignedRange(AddRec, ConservativeResult); 3501 } 3502 3503 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3504 // For a SCEVUnknown, ask ValueTracking. 3505 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3506 ComputeMaskedBits(U->getValue(), Zeros, Ones, DL); 3507 if (Ones == ~Zeros + 1) 3508 return setUnsignedRange(U, ConservativeResult); 3509 return setUnsignedRange(U, 3510 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3511 } 3512 3513 return setUnsignedRange(S, ConservativeResult); 3514 } 3515 3516 /// getSignedRange - Determine the signed range for a particular SCEV. 3517 /// 3518 ConstantRange 3519 ScalarEvolution::getSignedRange(const SCEV *S) { 3520 // See if we've computed this range already. 3521 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3522 if (I != SignedRanges.end()) 3523 return I->second; 3524 3525 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3526 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3527 3528 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3529 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3530 3531 // If the value has known zeros, the maximum signed value will have those 3532 // known zeros as well. 3533 uint32_t TZ = GetMinTrailingZeros(S); 3534 if (TZ != 0) 3535 ConservativeResult = 3536 ConstantRange(APInt::getSignedMinValue(BitWidth), 3537 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3538 3539 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3540 ConstantRange X = getSignedRange(Add->getOperand(0)); 3541 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3542 X = X.add(getSignedRange(Add->getOperand(i))); 3543 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3544 } 3545 3546 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3547 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3548 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3549 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3550 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3551 } 3552 3553 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3554 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3555 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3556 X = X.smax(getSignedRange(SMax->getOperand(i))); 3557 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3558 } 3559 3560 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3561 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3562 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3563 X = X.umax(getSignedRange(UMax->getOperand(i))); 3564 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3565 } 3566 3567 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3568 ConstantRange X = getSignedRange(UDiv->getLHS()); 3569 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3570 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3571 } 3572 3573 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3574 ConstantRange X = getSignedRange(ZExt->getOperand()); 3575 return setSignedRange(ZExt, 3576 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3577 } 3578 3579 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3580 ConstantRange X = getSignedRange(SExt->getOperand()); 3581 return setSignedRange(SExt, 3582 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3583 } 3584 3585 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3586 ConstantRange X = getSignedRange(Trunc->getOperand()); 3587 return setSignedRange(Trunc, 3588 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3589 } 3590 3591 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3592 // If there's no signed wrap, and all the operands have the same sign or 3593 // zero, the value won't ever change sign. 3594 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3595 bool AllNonNeg = true; 3596 bool AllNonPos = true; 3597 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3598 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3599 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3600 } 3601 if (AllNonNeg) 3602 ConservativeResult = ConservativeResult.intersectWith( 3603 ConstantRange(APInt(BitWidth, 0), 3604 APInt::getSignedMinValue(BitWidth))); 3605 else if (AllNonPos) 3606 ConservativeResult = ConservativeResult.intersectWith( 3607 ConstantRange(APInt::getSignedMinValue(BitWidth), 3608 APInt(BitWidth, 1))); 3609 } 3610 3611 // TODO: non-affine addrec 3612 if (AddRec->isAffine()) { 3613 Type *Ty = AddRec->getType(); 3614 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3615 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3616 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3617 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3618 3619 const SCEV *Start = AddRec->getStart(); 3620 const SCEV *Step = AddRec->getStepRecurrence(*this); 3621 3622 ConstantRange StartRange = getSignedRange(Start); 3623 ConstantRange StepRange = getSignedRange(Step); 3624 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3625 ConstantRange EndRange = 3626 StartRange.add(MaxBECountRange.multiply(StepRange)); 3627 3628 // Check for overflow. This must be done with ConstantRange arithmetic 3629 // because we could be called from within the ScalarEvolution overflow 3630 // checking code. 3631 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3632 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3633 ConstantRange ExtMaxBECountRange = 3634 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3635 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3636 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3637 ExtEndRange) 3638 return setSignedRange(AddRec, ConservativeResult); 3639 3640 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3641 EndRange.getSignedMin()); 3642 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3643 EndRange.getSignedMax()); 3644 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3645 return setSignedRange(AddRec, ConservativeResult); 3646 return setSignedRange(AddRec, 3647 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3648 } 3649 } 3650 3651 return setSignedRange(AddRec, ConservativeResult); 3652 } 3653 3654 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3655 // For a SCEVUnknown, ask ValueTracking. 3656 if (!U->getValue()->getType()->isIntegerTy() && !DL) 3657 return setSignedRange(U, ConservativeResult); 3658 unsigned NS = ComputeNumSignBits(U->getValue(), DL); 3659 if (NS <= 1) 3660 return setSignedRange(U, ConservativeResult); 3661 return setSignedRange(U, ConservativeResult.intersectWith( 3662 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3663 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3664 } 3665 3666 return setSignedRange(S, ConservativeResult); 3667 } 3668 3669 /// createSCEV - We know that there is no SCEV for the specified value. 3670 /// Analyze the expression. 3671 /// 3672 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3673 if (!isSCEVable(V->getType())) 3674 return getUnknown(V); 3675 3676 unsigned Opcode = Instruction::UserOp1; 3677 if (Instruction *I = dyn_cast<Instruction>(V)) { 3678 Opcode = I->getOpcode(); 3679 3680 // Don't attempt to analyze instructions in blocks that aren't 3681 // reachable. Such instructions don't matter, and they aren't required 3682 // to obey basic rules for definitions dominating uses which this 3683 // analysis depends on. 3684 if (!DT->isReachableFromEntry(I->getParent())) 3685 return getUnknown(V); 3686 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3687 Opcode = CE->getOpcode(); 3688 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3689 return getConstant(CI); 3690 else if (isa<ConstantPointerNull>(V)) 3691 return getConstant(V->getType(), 0); 3692 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3693 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3694 else 3695 return getUnknown(V); 3696 3697 Operator *U = cast<Operator>(V); 3698 switch (Opcode) { 3699 case Instruction::Add: { 3700 // The simple thing to do would be to just call getSCEV on both operands 3701 // and call getAddExpr with the result. However if we're looking at a 3702 // bunch of things all added together, this can be quite inefficient, 3703 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3704 // Instead, gather up all the operands and make a single getAddExpr call. 3705 // LLVM IR canonical form means we need only traverse the left operands. 3706 // 3707 // Don't apply this instruction's NSW or NUW flags to the new 3708 // expression. The instruction may be guarded by control flow that the 3709 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3710 // mapped to the same SCEV expression, and it would be incorrect to transfer 3711 // NSW/NUW semantics to those operations. 3712 SmallVector<const SCEV *, 4> AddOps; 3713 AddOps.push_back(getSCEV(U->getOperand(1))); 3714 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3715 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3716 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3717 break; 3718 U = cast<Operator>(Op); 3719 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3720 if (Opcode == Instruction::Sub) 3721 AddOps.push_back(getNegativeSCEV(Op1)); 3722 else 3723 AddOps.push_back(Op1); 3724 } 3725 AddOps.push_back(getSCEV(U->getOperand(0))); 3726 return getAddExpr(AddOps); 3727 } 3728 case Instruction::Mul: { 3729 // Don't transfer NSW/NUW for the same reason as AddExpr. 3730 SmallVector<const SCEV *, 4> MulOps; 3731 MulOps.push_back(getSCEV(U->getOperand(1))); 3732 for (Value *Op = U->getOperand(0); 3733 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3734 Op = U->getOperand(0)) { 3735 U = cast<Operator>(Op); 3736 MulOps.push_back(getSCEV(U->getOperand(1))); 3737 } 3738 MulOps.push_back(getSCEV(U->getOperand(0))); 3739 return getMulExpr(MulOps); 3740 } 3741 case Instruction::UDiv: 3742 return getUDivExpr(getSCEV(U->getOperand(0)), 3743 getSCEV(U->getOperand(1))); 3744 case Instruction::Sub: 3745 return getMinusSCEV(getSCEV(U->getOperand(0)), 3746 getSCEV(U->getOperand(1))); 3747 case Instruction::And: 3748 // For an expression like x&255 that merely masks off the high bits, 3749 // use zext(trunc(x)) as the SCEV expression. 3750 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3751 if (CI->isNullValue()) 3752 return getSCEV(U->getOperand(1)); 3753 if (CI->isAllOnesValue()) 3754 return getSCEV(U->getOperand(0)); 3755 const APInt &A = CI->getValue(); 3756 3757 // Instcombine's ShrinkDemandedConstant may strip bits out of 3758 // constants, obscuring what would otherwise be a low-bits mask. 3759 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3760 // knew about to reconstruct a low-bits mask value. 3761 unsigned LZ = A.countLeadingZeros(); 3762 unsigned TZ = A.countTrailingZeros(); 3763 unsigned BitWidth = A.getBitWidth(); 3764 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3765 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, DL); 3766 3767 APInt EffectiveMask = 3768 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 3769 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 3770 const SCEV *MulCount = getConstant( 3771 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 3772 return getMulExpr( 3773 getZeroExtendExpr( 3774 getTruncateExpr( 3775 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 3776 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 3777 U->getType()), 3778 MulCount); 3779 } 3780 } 3781 break; 3782 3783 case Instruction::Or: 3784 // If the RHS of the Or is a constant, we may have something like: 3785 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3786 // optimizations will transparently handle this case. 3787 // 3788 // In order for this transformation to be safe, the LHS must be of the 3789 // form X*(2^n) and the Or constant must be less than 2^n. 3790 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3791 const SCEV *LHS = getSCEV(U->getOperand(0)); 3792 const APInt &CIVal = CI->getValue(); 3793 if (GetMinTrailingZeros(LHS) >= 3794 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3795 // Build a plain add SCEV. 3796 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3797 // If the LHS of the add was an addrec and it has no-wrap flags, 3798 // transfer the no-wrap flags, since an or won't introduce a wrap. 3799 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3800 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3801 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3802 OldAR->getNoWrapFlags()); 3803 } 3804 return S; 3805 } 3806 } 3807 break; 3808 case Instruction::Xor: 3809 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3810 // If the RHS of the xor is a signbit, then this is just an add. 3811 // Instcombine turns add of signbit into xor as a strength reduction step. 3812 if (CI->getValue().isSignBit()) 3813 return getAddExpr(getSCEV(U->getOperand(0)), 3814 getSCEV(U->getOperand(1))); 3815 3816 // If the RHS of xor is -1, then this is a not operation. 3817 if (CI->isAllOnesValue()) 3818 return getNotSCEV(getSCEV(U->getOperand(0))); 3819 3820 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3821 // This is a variant of the check for xor with -1, and it handles 3822 // the case where instcombine has trimmed non-demanded bits out 3823 // of an xor with -1. 3824 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3825 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3826 if (BO->getOpcode() == Instruction::And && 3827 LCI->getValue() == CI->getValue()) 3828 if (const SCEVZeroExtendExpr *Z = 3829 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3830 Type *UTy = U->getType(); 3831 const SCEV *Z0 = Z->getOperand(); 3832 Type *Z0Ty = Z0->getType(); 3833 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3834 3835 // If C is a low-bits mask, the zero extend is serving to 3836 // mask off the high bits. Complement the operand and 3837 // re-apply the zext. 3838 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3839 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3840 3841 // If C is a single bit, it may be in the sign-bit position 3842 // before the zero-extend. In this case, represent the xor 3843 // using an add, which is equivalent, and re-apply the zext. 3844 APInt Trunc = CI->getValue().trunc(Z0TySize); 3845 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3846 Trunc.isSignBit()) 3847 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3848 UTy); 3849 } 3850 } 3851 break; 3852 3853 case Instruction::Shl: 3854 // Turn shift left of a constant amount into a multiply. 3855 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3856 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3857 3858 // If the shift count is not less than the bitwidth, the result of 3859 // the shift is undefined. Don't try to analyze it, because the 3860 // resolution chosen here may differ from the resolution chosen in 3861 // other parts of the compiler. 3862 if (SA->getValue().uge(BitWidth)) 3863 break; 3864 3865 Constant *X = ConstantInt::get(getContext(), 3866 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3867 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3868 } 3869 break; 3870 3871 case Instruction::LShr: 3872 // Turn logical shift right of a constant into a unsigned divide. 3873 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3874 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3875 3876 // If the shift count is not less than the bitwidth, the result of 3877 // the shift is undefined. Don't try to analyze it, because the 3878 // resolution chosen here may differ from the resolution chosen in 3879 // other parts of the compiler. 3880 if (SA->getValue().uge(BitWidth)) 3881 break; 3882 3883 Constant *X = ConstantInt::get(getContext(), 3884 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3885 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3886 } 3887 break; 3888 3889 case Instruction::AShr: 3890 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3891 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3892 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3893 if (L->getOpcode() == Instruction::Shl && 3894 L->getOperand(1) == U->getOperand(1)) { 3895 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3896 3897 // If the shift count is not less than the bitwidth, the result of 3898 // the shift is undefined. Don't try to analyze it, because the 3899 // resolution chosen here may differ from the resolution chosen in 3900 // other parts of the compiler. 3901 if (CI->getValue().uge(BitWidth)) 3902 break; 3903 3904 uint64_t Amt = BitWidth - CI->getZExtValue(); 3905 if (Amt == BitWidth) 3906 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3907 return 3908 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3909 IntegerType::get(getContext(), 3910 Amt)), 3911 U->getType()); 3912 } 3913 break; 3914 3915 case Instruction::Trunc: 3916 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3917 3918 case Instruction::ZExt: 3919 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3920 3921 case Instruction::SExt: 3922 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3923 3924 case Instruction::BitCast: 3925 // BitCasts are no-op casts so we just eliminate the cast. 3926 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3927 return getSCEV(U->getOperand(0)); 3928 break; 3929 3930 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3931 // lead to pointer expressions which cannot safely be expanded to GEPs, 3932 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3933 // simplifying integer expressions. 3934 3935 case Instruction::GetElementPtr: 3936 return createNodeForGEP(cast<GEPOperator>(U)); 3937 3938 case Instruction::PHI: 3939 return createNodeForPHI(cast<PHINode>(U)); 3940 3941 case Instruction::Select: 3942 // This could be a smax or umax that was lowered earlier. 3943 // Try to recover it. 3944 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3945 Value *LHS = ICI->getOperand(0); 3946 Value *RHS = ICI->getOperand(1); 3947 switch (ICI->getPredicate()) { 3948 case ICmpInst::ICMP_SLT: 3949 case ICmpInst::ICMP_SLE: 3950 std::swap(LHS, RHS); 3951 // fall through 3952 case ICmpInst::ICMP_SGT: 3953 case ICmpInst::ICMP_SGE: 3954 // a >s b ? a+x : b+x -> smax(a, b)+x 3955 // a >s b ? b+x : a+x -> smin(a, b)+x 3956 if (LHS->getType() == U->getType()) { 3957 const SCEV *LS = getSCEV(LHS); 3958 const SCEV *RS = getSCEV(RHS); 3959 const SCEV *LA = getSCEV(U->getOperand(1)); 3960 const SCEV *RA = getSCEV(U->getOperand(2)); 3961 const SCEV *LDiff = getMinusSCEV(LA, LS); 3962 const SCEV *RDiff = getMinusSCEV(RA, RS); 3963 if (LDiff == RDiff) 3964 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3965 LDiff = getMinusSCEV(LA, RS); 3966 RDiff = getMinusSCEV(RA, LS); 3967 if (LDiff == RDiff) 3968 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3969 } 3970 break; 3971 case ICmpInst::ICMP_ULT: 3972 case ICmpInst::ICMP_ULE: 3973 std::swap(LHS, RHS); 3974 // fall through 3975 case ICmpInst::ICMP_UGT: 3976 case ICmpInst::ICMP_UGE: 3977 // a >u b ? a+x : b+x -> umax(a, b)+x 3978 // a >u b ? b+x : a+x -> umin(a, b)+x 3979 if (LHS->getType() == U->getType()) { 3980 const SCEV *LS = getSCEV(LHS); 3981 const SCEV *RS = getSCEV(RHS); 3982 const SCEV *LA = getSCEV(U->getOperand(1)); 3983 const SCEV *RA = getSCEV(U->getOperand(2)); 3984 const SCEV *LDiff = getMinusSCEV(LA, LS); 3985 const SCEV *RDiff = getMinusSCEV(RA, RS); 3986 if (LDiff == RDiff) 3987 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3988 LDiff = getMinusSCEV(LA, RS); 3989 RDiff = getMinusSCEV(RA, LS); 3990 if (LDiff == RDiff) 3991 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3992 } 3993 break; 3994 case ICmpInst::ICMP_NE: 3995 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3996 if (LHS->getType() == U->getType() && 3997 isa<ConstantInt>(RHS) && 3998 cast<ConstantInt>(RHS)->isZero()) { 3999 const SCEV *One = getConstant(LHS->getType(), 1); 4000 const SCEV *LS = getSCEV(LHS); 4001 const SCEV *LA = getSCEV(U->getOperand(1)); 4002 const SCEV *RA = getSCEV(U->getOperand(2)); 4003 const SCEV *LDiff = getMinusSCEV(LA, LS); 4004 const SCEV *RDiff = getMinusSCEV(RA, One); 4005 if (LDiff == RDiff) 4006 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4007 } 4008 break; 4009 case ICmpInst::ICMP_EQ: 4010 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4011 if (LHS->getType() == U->getType() && 4012 isa<ConstantInt>(RHS) && 4013 cast<ConstantInt>(RHS)->isZero()) { 4014 const SCEV *One = getConstant(LHS->getType(), 1); 4015 const SCEV *LS = getSCEV(LHS); 4016 const SCEV *LA = getSCEV(U->getOperand(1)); 4017 const SCEV *RA = getSCEV(U->getOperand(2)); 4018 const SCEV *LDiff = getMinusSCEV(LA, One); 4019 const SCEV *RDiff = getMinusSCEV(RA, LS); 4020 if (LDiff == RDiff) 4021 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4022 } 4023 break; 4024 default: 4025 break; 4026 } 4027 } 4028 4029 default: // We cannot analyze this expression. 4030 break; 4031 } 4032 4033 return getUnknown(V); 4034 } 4035 4036 4037 4038 //===----------------------------------------------------------------------===// 4039 // Iteration Count Computation Code 4040 // 4041 4042 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4043 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4044 /// constant. Will also return 0 if the maximum trip count is very large (>= 4045 /// 2^32). 4046 /// 4047 /// This "trip count" assumes that control exits via ExitingBlock. More 4048 /// precisely, it is the number of times that control may reach ExitingBlock 4049 /// before taking the branch. For loops with multiple exits, it may not be the 4050 /// number times that the loop header executes because the loop may exit 4051 /// prematurely via another branch. 4052 /// 4053 /// FIXME: We conservatively call getBackedgeTakenCount(L) instead of 4054 /// getExitCount(L, ExitingBlock) to compute a safe trip count considering all 4055 /// loop exits. getExitCount() may return an exact count for this branch 4056 /// assuming no-signed-wrap. The number of well-defined iterations may actually 4057 /// be higher than this trip count if this exit test is skipped and the loop 4058 /// exits via a different branch. Ideally, getExitCount() would know whether it 4059 /// depends on a NSW assumption, and we would only fall back to a conservative 4060 /// trip count in that case. 4061 unsigned ScalarEvolution:: 4062 getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) { 4063 const SCEVConstant *ExitCount = 4064 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L)); 4065 if (!ExitCount) 4066 return 0; 4067 4068 ConstantInt *ExitConst = ExitCount->getValue(); 4069 4070 // Guard against huge trip counts. 4071 if (ExitConst->getValue().getActiveBits() > 32) 4072 return 0; 4073 4074 // In case of integer overflow, this returns 0, which is correct. 4075 return ((unsigned)ExitConst->getZExtValue()) + 1; 4076 } 4077 4078 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4079 /// trip count of this loop as a normal unsigned value, if possible. This 4080 /// means that the actual trip count is always a multiple of the returned 4081 /// value (don't forget the trip count could very well be zero as well!). 4082 /// 4083 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4084 /// multiple of a constant (which is also the case if the trip count is simply 4085 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4086 /// if the trip count is very large (>= 2^32). 4087 /// 4088 /// As explained in the comments for getSmallConstantTripCount, this assumes 4089 /// that control exits the loop via ExitingBlock. 4090 unsigned ScalarEvolution:: 4091 getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) { 4092 const SCEV *ExitCount = getBackedgeTakenCount(L); 4093 if (ExitCount == getCouldNotCompute()) 4094 return 1; 4095 4096 // Get the trip count from the BE count by adding 1. 4097 const SCEV *TCMul = getAddExpr(ExitCount, 4098 getConstant(ExitCount->getType(), 1)); 4099 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4100 // to factor simple cases. 4101 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4102 TCMul = Mul->getOperand(0); 4103 4104 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4105 if (!MulC) 4106 return 1; 4107 4108 ConstantInt *Result = MulC->getValue(); 4109 4110 // Guard against huge trip counts (this requires checking 4111 // for zero to handle the case where the trip count == -1 and the 4112 // addition wraps). 4113 if (!Result || Result->getValue().getActiveBits() > 32 || 4114 Result->getValue().getActiveBits() == 0) 4115 return 1; 4116 4117 return (unsigned)Result->getZExtValue(); 4118 } 4119 4120 // getExitCount - Get the expression for the number of loop iterations for which 4121 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4122 // SCEVCouldNotCompute. 4123 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4124 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4125 } 4126 4127 /// getBackedgeTakenCount - If the specified loop has a predictable 4128 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4129 /// object. The backedge-taken count is the number of times the loop header 4130 /// will be branched to from within the loop. This is one less than the 4131 /// trip count of the loop, since it doesn't count the first iteration, 4132 /// when the header is branched to from outside the loop. 4133 /// 4134 /// Note that it is not valid to call this method on a loop without a 4135 /// loop-invariant backedge-taken count (see 4136 /// hasLoopInvariantBackedgeTakenCount). 4137 /// 4138 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4139 return getBackedgeTakenInfo(L).getExact(this); 4140 } 4141 4142 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4143 /// return the least SCEV value that is known never to be less than the 4144 /// actual backedge taken count. 4145 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4146 return getBackedgeTakenInfo(L).getMax(this); 4147 } 4148 4149 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4150 /// onto the given Worklist. 4151 static void 4152 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4153 BasicBlock *Header = L->getHeader(); 4154 4155 // Push all Loop-header PHIs onto the Worklist stack. 4156 for (BasicBlock::iterator I = Header->begin(); 4157 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4158 Worklist.push_back(PN); 4159 } 4160 4161 const ScalarEvolution::BackedgeTakenInfo & 4162 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4163 // Initially insert an invalid entry for this loop. If the insertion 4164 // succeeds, proceed to actually compute a backedge-taken count and 4165 // update the value. The temporary CouldNotCompute value tells SCEV 4166 // code elsewhere that it shouldn't attempt to request a new 4167 // backedge-taken count, which could result in infinite recursion. 4168 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4169 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4170 if (!Pair.second) 4171 return Pair.first->second; 4172 4173 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4174 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4175 // must be cleared in this scope. 4176 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4177 4178 if (Result.getExact(this) != getCouldNotCompute()) { 4179 assert(isLoopInvariant(Result.getExact(this), L) && 4180 isLoopInvariant(Result.getMax(this), L) && 4181 "Computed backedge-taken count isn't loop invariant for loop!"); 4182 ++NumTripCountsComputed; 4183 } 4184 else if (Result.getMax(this) == getCouldNotCompute() && 4185 isa<PHINode>(L->getHeader()->begin())) { 4186 // Only count loops that have phi nodes as not being computable. 4187 ++NumTripCountsNotComputed; 4188 } 4189 4190 // Now that we know more about the trip count for this loop, forget any 4191 // existing SCEV values for PHI nodes in this loop since they are only 4192 // conservative estimates made without the benefit of trip count 4193 // information. This is similar to the code in forgetLoop, except that 4194 // it handles SCEVUnknown PHI nodes specially. 4195 if (Result.hasAnyInfo()) { 4196 SmallVector<Instruction *, 16> Worklist; 4197 PushLoopPHIs(L, Worklist); 4198 4199 SmallPtrSet<Instruction *, 8> Visited; 4200 while (!Worklist.empty()) { 4201 Instruction *I = Worklist.pop_back_val(); 4202 if (!Visited.insert(I)) continue; 4203 4204 ValueExprMapType::iterator It = 4205 ValueExprMap.find_as(static_cast<Value *>(I)); 4206 if (It != ValueExprMap.end()) { 4207 const SCEV *Old = It->second; 4208 4209 // SCEVUnknown for a PHI either means that it has an unrecognized 4210 // structure, or it's a PHI that's in the progress of being computed 4211 // by createNodeForPHI. In the former case, additional loop trip 4212 // count information isn't going to change anything. In the later 4213 // case, createNodeForPHI will perform the necessary updates on its 4214 // own when it gets to that point. 4215 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4216 forgetMemoizedResults(Old); 4217 ValueExprMap.erase(It); 4218 } 4219 if (PHINode *PN = dyn_cast<PHINode>(I)) 4220 ConstantEvolutionLoopExitValue.erase(PN); 4221 } 4222 4223 PushDefUseChildren(I, Worklist); 4224 } 4225 } 4226 4227 // Re-lookup the insert position, since the call to 4228 // ComputeBackedgeTakenCount above could result in a 4229 // recusive call to getBackedgeTakenInfo (on a different 4230 // loop), which would invalidate the iterator computed 4231 // earlier. 4232 return BackedgeTakenCounts.find(L)->second = Result; 4233 } 4234 4235 /// forgetLoop - This method should be called by the client when it has 4236 /// changed a loop in a way that may effect ScalarEvolution's ability to 4237 /// compute a trip count, or if the loop is deleted. 4238 void ScalarEvolution::forgetLoop(const Loop *L) { 4239 // Drop any stored trip count value. 4240 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4241 BackedgeTakenCounts.find(L); 4242 if (BTCPos != BackedgeTakenCounts.end()) { 4243 BTCPos->second.clear(); 4244 BackedgeTakenCounts.erase(BTCPos); 4245 } 4246 4247 // Drop information about expressions based on loop-header PHIs. 4248 SmallVector<Instruction *, 16> Worklist; 4249 PushLoopPHIs(L, Worklist); 4250 4251 SmallPtrSet<Instruction *, 8> Visited; 4252 while (!Worklist.empty()) { 4253 Instruction *I = Worklist.pop_back_val(); 4254 if (!Visited.insert(I)) continue; 4255 4256 ValueExprMapType::iterator It = 4257 ValueExprMap.find_as(static_cast<Value *>(I)); 4258 if (It != ValueExprMap.end()) { 4259 forgetMemoizedResults(It->second); 4260 ValueExprMap.erase(It); 4261 if (PHINode *PN = dyn_cast<PHINode>(I)) 4262 ConstantEvolutionLoopExitValue.erase(PN); 4263 } 4264 4265 PushDefUseChildren(I, Worklist); 4266 } 4267 4268 // Forget all contained loops too, to avoid dangling entries in the 4269 // ValuesAtScopes map. 4270 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4271 forgetLoop(*I); 4272 } 4273 4274 /// forgetValue - This method should be called by the client when it has 4275 /// changed a value in a way that may effect its value, or which may 4276 /// disconnect it from a def-use chain linking it to a loop. 4277 void ScalarEvolution::forgetValue(Value *V) { 4278 Instruction *I = dyn_cast<Instruction>(V); 4279 if (!I) return; 4280 4281 // Drop information about expressions based on loop-header PHIs. 4282 SmallVector<Instruction *, 16> Worklist; 4283 Worklist.push_back(I); 4284 4285 SmallPtrSet<Instruction *, 8> Visited; 4286 while (!Worklist.empty()) { 4287 I = Worklist.pop_back_val(); 4288 if (!Visited.insert(I)) continue; 4289 4290 ValueExprMapType::iterator It = 4291 ValueExprMap.find_as(static_cast<Value *>(I)); 4292 if (It != ValueExprMap.end()) { 4293 forgetMemoizedResults(It->second); 4294 ValueExprMap.erase(It); 4295 if (PHINode *PN = dyn_cast<PHINode>(I)) 4296 ConstantEvolutionLoopExitValue.erase(PN); 4297 } 4298 4299 PushDefUseChildren(I, Worklist); 4300 } 4301 } 4302 4303 /// getExact - Get the exact loop backedge taken count considering all loop 4304 /// exits. A computable result can only be return for loops with a single exit. 4305 /// Returning the minimum taken count among all exits is incorrect because one 4306 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4307 /// the limit of each loop test is never skipped. This is a valid assumption as 4308 /// long as the loop exits via that test. For precise results, it is the 4309 /// caller's responsibility to specify the relevant loop exit using 4310 /// getExact(ExitingBlock, SE). 4311 const SCEV * 4312 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4313 // If any exits were not computable, the loop is not computable. 4314 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4315 4316 // We need exactly one computable exit. 4317 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4318 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4319 4320 const SCEV *BECount = 0; 4321 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4322 ENT != 0; ENT = ENT->getNextExit()) { 4323 4324 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4325 4326 if (!BECount) 4327 BECount = ENT->ExactNotTaken; 4328 else if (BECount != ENT->ExactNotTaken) 4329 return SE->getCouldNotCompute(); 4330 } 4331 assert(BECount && "Invalid not taken count for loop exit"); 4332 return BECount; 4333 } 4334 4335 /// getExact - Get the exact not taken count for this loop exit. 4336 const SCEV * 4337 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4338 ScalarEvolution *SE) const { 4339 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4340 ENT != 0; ENT = ENT->getNextExit()) { 4341 4342 if (ENT->ExitingBlock == ExitingBlock) 4343 return ENT->ExactNotTaken; 4344 } 4345 return SE->getCouldNotCompute(); 4346 } 4347 4348 /// getMax - Get the max backedge taken count for the loop. 4349 const SCEV * 4350 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4351 return Max ? Max : SE->getCouldNotCompute(); 4352 } 4353 4354 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4355 ScalarEvolution *SE) const { 4356 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4357 return true; 4358 4359 if (!ExitNotTaken.ExitingBlock) 4360 return false; 4361 4362 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4363 ENT != 0; ENT = ENT->getNextExit()) { 4364 4365 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4366 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4367 return true; 4368 } 4369 } 4370 return false; 4371 } 4372 4373 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4374 /// computable exit into a persistent ExitNotTakenInfo array. 4375 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4376 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4377 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4378 4379 if (!Complete) 4380 ExitNotTaken.setIncomplete(); 4381 4382 unsigned NumExits = ExitCounts.size(); 4383 if (NumExits == 0) return; 4384 4385 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4386 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4387 if (NumExits == 1) return; 4388 4389 // Handle the rare case of multiple computable exits. 4390 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4391 4392 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4393 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4394 PrevENT->setNextExit(ENT); 4395 ENT->ExitingBlock = ExitCounts[i].first; 4396 ENT->ExactNotTaken = ExitCounts[i].second; 4397 } 4398 } 4399 4400 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4401 void ScalarEvolution::BackedgeTakenInfo::clear() { 4402 ExitNotTaken.ExitingBlock = 0; 4403 ExitNotTaken.ExactNotTaken = 0; 4404 delete[] ExitNotTaken.getNextExit(); 4405 } 4406 4407 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4408 /// of the specified loop will execute. 4409 ScalarEvolution::BackedgeTakenInfo 4410 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4411 SmallVector<BasicBlock *, 8> ExitingBlocks; 4412 L->getExitingBlocks(ExitingBlocks); 4413 4414 // Examine all exits and pick the most conservative values. 4415 const SCEV *MaxBECount = getCouldNotCompute(); 4416 bool CouldComputeBECount = true; 4417 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4418 const SCEV *LatchMaxCount = 0; 4419 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4420 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4421 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4422 if (EL.Exact == getCouldNotCompute()) 4423 // We couldn't compute an exact value for this exit, so 4424 // we won't be able to compute an exact value for the loop. 4425 CouldComputeBECount = false; 4426 else 4427 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4428 4429 if (MaxBECount == getCouldNotCompute()) 4430 MaxBECount = EL.Max; 4431 else if (EL.Max != getCouldNotCompute()) { 4432 // We cannot take the "min" MaxBECount, because non-unit stride loops may 4433 // skip some loop tests. Taking the max over the exits is sufficiently 4434 // conservative. TODO: We could do better taking into consideration 4435 // non-latch exits that dominate the latch. 4436 if (EL.MustExit && ExitingBlocks[i] == Latch) 4437 LatchMaxCount = EL.Max; 4438 else 4439 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max); 4440 } 4441 } 4442 // Be more precise in the easy case of a loop latch that must exit. 4443 if (LatchMaxCount) { 4444 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, LatchMaxCount); 4445 } 4446 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4447 } 4448 4449 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4450 /// loop will execute if it exits via the specified block. 4451 ScalarEvolution::ExitLimit 4452 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4453 4454 // Okay, we've chosen an exiting block. See what condition causes us to 4455 // exit at this block and remember the exit block and whether all other targets 4456 // lead to the loop header. 4457 bool MustExecuteLoopHeader = true; 4458 BasicBlock *Exit = 0; 4459 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 4460 SI != SE; ++SI) 4461 if (!L->contains(*SI)) { 4462 if (Exit) // Multiple exit successors. 4463 return getCouldNotCompute(); 4464 Exit = *SI; 4465 } else if (*SI != L->getHeader()) { 4466 MustExecuteLoopHeader = false; 4467 } 4468 4469 // At this point, we know we have a conditional branch that determines whether 4470 // the loop is exited. However, we don't know if the branch is executed each 4471 // time through the loop. If not, then the execution count of the branch will 4472 // not be equal to the trip count of the loop. 4473 // 4474 // Currently we check for this by checking to see if the Exit branch goes to 4475 // the loop header. If so, we know it will always execute the same number of 4476 // times as the loop. We also handle the case where the exit block *is* the 4477 // loop header. This is common for un-rotated loops. 4478 // 4479 // If both of those tests fail, walk up the unique predecessor chain to the 4480 // header, stopping if there is an edge that doesn't exit the loop. If the 4481 // header is reached, the execution count of the branch will be equal to the 4482 // trip count of the loop. 4483 // 4484 // More extensive analysis could be done to handle more cases here. 4485 // 4486 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 4487 // The simple checks failed, try climbing the unique predecessor chain 4488 // up to the header. 4489 bool Ok = false; 4490 for (BasicBlock *BB = ExitingBlock; BB; ) { 4491 BasicBlock *Pred = BB->getUniquePredecessor(); 4492 if (!Pred) 4493 return getCouldNotCompute(); 4494 TerminatorInst *PredTerm = Pred->getTerminator(); 4495 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4496 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4497 if (PredSucc == BB) 4498 continue; 4499 // If the predecessor has a successor that isn't BB and isn't 4500 // outside the loop, assume the worst. 4501 if (L->contains(PredSucc)) 4502 return getCouldNotCompute(); 4503 } 4504 if (Pred == L->getHeader()) { 4505 Ok = true; 4506 break; 4507 } 4508 BB = Pred; 4509 } 4510 if (!Ok) 4511 return getCouldNotCompute(); 4512 } 4513 4514 TerminatorInst *Term = ExitingBlock->getTerminator(); 4515 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 4516 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 4517 // Proceed to the next level to examine the exit condition expression. 4518 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 4519 BI->getSuccessor(1), 4520 /*IsSubExpr=*/false); 4521 } 4522 4523 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 4524 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 4525 /*IsSubExpr=*/false); 4526 4527 return getCouldNotCompute(); 4528 } 4529 4530 /// ComputeExitLimitFromCond - Compute the number of times the 4531 /// backedge of the specified loop will execute if its exit condition 4532 /// were a conditional branch of ExitCond, TBB, and FBB. 4533 /// 4534 /// @param IsSubExpr is true if ExitCond does not directly control the exit 4535 /// branch. In this case, we cannot assume that the loop only exits when the 4536 /// condition is true and cannot infer that failing to meet the condition prior 4537 /// to integer wraparound results in undefined behavior. 4538 ScalarEvolution::ExitLimit 4539 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4540 Value *ExitCond, 4541 BasicBlock *TBB, 4542 BasicBlock *FBB, 4543 bool IsSubExpr) { 4544 // Check if the controlling expression for this loop is an And or Or. 4545 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4546 if (BO->getOpcode() == Instruction::And) { 4547 // Recurse on the operands of the and. 4548 bool EitherMayExit = L->contains(TBB); 4549 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4550 IsSubExpr || EitherMayExit); 4551 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4552 IsSubExpr || EitherMayExit); 4553 const SCEV *BECount = getCouldNotCompute(); 4554 const SCEV *MaxBECount = getCouldNotCompute(); 4555 bool MustExit = false; 4556 if (EitherMayExit) { 4557 // Both conditions must be true for the loop to continue executing. 4558 // Choose the less conservative count. 4559 if (EL0.Exact == getCouldNotCompute() || 4560 EL1.Exact == getCouldNotCompute()) 4561 BECount = getCouldNotCompute(); 4562 else 4563 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4564 if (EL0.Max == getCouldNotCompute()) 4565 MaxBECount = EL1.Max; 4566 else if (EL1.Max == getCouldNotCompute()) 4567 MaxBECount = EL0.Max; 4568 else 4569 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4570 MustExit = EL0.MustExit || EL1.MustExit; 4571 } else { 4572 // Both conditions must be true at the same time for the loop to exit. 4573 // For now, be conservative. 4574 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4575 if (EL0.Max == EL1.Max) 4576 MaxBECount = EL0.Max; 4577 if (EL0.Exact == EL1.Exact) 4578 BECount = EL0.Exact; 4579 MustExit = EL0.MustExit && EL1.MustExit; 4580 } 4581 4582 return ExitLimit(BECount, MaxBECount, MustExit); 4583 } 4584 if (BO->getOpcode() == Instruction::Or) { 4585 // Recurse on the operands of the or. 4586 bool EitherMayExit = L->contains(FBB); 4587 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4588 IsSubExpr || EitherMayExit); 4589 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4590 IsSubExpr || EitherMayExit); 4591 const SCEV *BECount = getCouldNotCompute(); 4592 const SCEV *MaxBECount = getCouldNotCompute(); 4593 bool MustExit = false; 4594 if (EitherMayExit) { 4595 // Both conditions must be false for the loop to continue executing. 4596 // Choose the less conservative count. 4597 if (EL0.Exact == getCouldNotCompute() || 4598 EL1.Exact == getCouldNotCompute()) 4599 BECount = getCouldNotCompute(); 4600 else 4601 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4602 if (EL0.Max == getCouldNotCompute()) 4603 MaxBECount = EL1.Max; 4604 else if (EL1.Max == getCouldNotCompute()) 4605 MaxBECount = EL0.Max; 4606 else 4607 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4608 MustExit = EL0.MustExit || EL1.MustExit; 4609 } else { 4610 // Both conditions must be false at the same time for the loop to exit. 4611 // For now, be conservative. 4612 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4613 if (EL0.Max == EL1.Max) 4614 MaxBECount = EL0.Max; 4615 if (EL0.Exact == EL1.Exact) 4616 BECount = EL0.Exact; 4617 MustExit = EL0.MustExit && EL1.MustExit; 4618 } 4619 4620 return ExitLimit(BECount, MaxBECount, MustExit); 4621 } 4622 } 4623 4624 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4625 // Proceed to the next level to examine the icmp. 4626 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4627 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr); 4628 4629 // Check for a constant condition. These are normally stripped out by 4630 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4631 // preserve the CFG and is temporarily leaving constant conditions 4632 // in place. 4633 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4634 if (L->contains(FBB) == !CI->getZExtValue()) 4635 // The backedge is always taken. 4636 return getCouldNotCompute(); 4637 else 4638 // The backedge is never taken. 4639 return getConstant(CI->getType(), 0); 4640 } 4641 4642 // If it's not an integer or pointer comparison then compute it the hard way. 4643 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4644 } 4645 4646 /// ComputeExitLimitFromICmp - Compute the number of times the 4647 /// backedge of the specified loop will execute if its exit condition 4648 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4649 ScalarEvolution::ExitLimit 4650 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4651 ICmpInst *ExitCond, 4652 BasicBlock *TBB, 4653 BasicBlock *FBB, 4654 bool IsSubExpr) { 4655 4656 // If the condition was exit on true, convert the condition to exit on false 4657 ICmpInst::Predicate Cond; 4658 if (!L->contains(FBB)) 4659 Cond = ExitCond->getPredicate(); 4660 else 4661 Cond = ExitCond->getInversePredicate(); 4662 4663 // Handle common loops like: for (X = "string"; *X; ++X) 4664 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4665 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4666 ExitLimit ItCnt = 4667 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4668 if (ItCnt.hasAnyInfo()) 4669 return ItCnt; 4670 } 4671 4672 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4673 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4674 4675 // Try to evaluate any dependencies out of the loop. 4676 LHS = getSCEVAtScope(LHS, L); 4677 RHS = getSCEVAtScope(RHS, L); 4678 4679 // At this point, we would like to compute how many iterations of the 4680 // loop the predicate will return true for these inputs. 4681 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4682 // If there is a loop-invariant, force it into the RHS. 4683 std::swap(LHS, RHS); 4684 Cond = ICmpInst::getSwappedPredicate(Cond); 4685 } 4686 4687 // Simplify the operands before analyzing them. 4688 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4689 4690 // If we have a comparison of a chrec against a constant, try to use value 4691 // ranges to answer this query. 4692 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4693 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4694 if (AddRec->getLoop() == L) { 4695 // Form the constant range. 4696 ConstantRange CompRange( 4697 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4698 4699 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4700 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4701 } 4702 4703 switch (Cond) { 4704 case ICmpInst::ICMP_NE: { // while (X != Y) 4705 // Convert to: while (X-Y != 0) 4706 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4707 if (EL.hasAnyInfo()) return EL; 4708 break; 4709 } 4710 case ICmpInst::ICMP_EQ: { // while (X == Y) 4711 // Convert to: while (X-Y == 0) 4712 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4713 if (EL.hasAnyInfo()) return EL; 4714 break; 4715 } 4716 case ICmpInst::ICMP_SLT: 4717 case ICmpInst::ICMP_ULT: { // while (X < Y) 4718 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 4719 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr); 4720 if (EL.hasAnyInfo()) return EL; 4721 break; 4722 } 4723 case ICmpInst::ICMP_SGT: 4724 case ICmpInst::ICMP_UGT: { // while (X > Y) 4725 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 4726 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr); 4727 if (EL.hasAnyInfo()) return EL; 4728 break; 4729 } 4730 default: 4731 #if 0 4732 dbgs() << "ComputeBackedgeTakenCount "; 4733 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4734 dbgs() << "[unsigned] "; 4735 dbgs() << *LHS << " " 4736 << Instruction::getOpcodeName(Instruction::ICmp) 4737 << " " << *RHS << "\n"; 4738 #endif 4739 break; 4740 } 4741 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4742 } 4743 4744 ScalarEvolution::ExitLimit 4745 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 4746 SwitchInst *Switch, 4747 BasicBlock *ExitingBlock, 4748 bool IsSubExpr) { 4749 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 4750 4751 // Give up if the exit is the default dest of a switch. 4752 if (Switch->getDefaultDest() == ExitingBlock) 4753 return getCouldNotCompute(); 4754 4755 assert(L->contains(Switch->getDefaultDest()) && 4756 "Default case must not exit the loop!"); 4757 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 4758 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 4759 4760 // while (X != Y) --> while (X-Y != 0) 4761 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4762 if (EL.hasAnyInfo()) 4763 return EL; 4764 4765 return getCouldNotCompute(); 4766 } 4767 4768 static ConstantInt * 4769 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4770 ScalarEvolution &SE) { 4771 const SCEV *InVal = SE.getConstant(C); 4772 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4773 assert(isa<SCEVConstant>(Val) && 4774 "Evaluation of SCEV at constant didn't fold correctly?"); 4775 return cast<SCEVConstant>(Val)->getValue(); 4776 } 4777 4778 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4779 /// 'icmp op load X, cst', try to see if we can compute the backedge 4780 /// execution count. 4781 ScalarEvolution::ExitLimit 4782 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4783 LoadInst *LI, 4784 Constant *RHS, 4785 const Loop *L, 4786 ICmpInst::Predicate predicate) { 4787 4788 if (LI->isVolatile()) return getCouldNotCompute(); 4789 4790 // Check to see if the loaded pointer is a getelementptr of a global. 4791 // TODO: Use SCEV instead of manually grubbing with GEPs. 4792 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4793 if (!GEP) return getCouldNotCompute(); 4794 4795 // Make sure that it is really a constant global we are gepping, with an 4796 // initializer, and make sure the first IDX is really 0. 4797 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4798 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4799 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4800 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4801 return getCouldNotCompute(); 4802 4803 // Okay, we allow one non-constant index into the GEP instruction. 4804 Value *VarIdx = 0; 4805 std::vector<Constant*> Indexes; 4806 unsigned VarIdxNum = 0; 4807 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4808 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4809 Indexes.push_back(CI); 4810 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4811 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4812 VarIdx = GEP->getOperand(i); 4813 VarIdxNum = i-2; 4814 Indexes.push_back(0); 4815 } 4816 4817 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 4818 if (!VarIdx) 4819 return getCouldNotCompute(); 4820 4821 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4822 // Check to see if X is a loop variant variable value now. 4823 const SCEV *Idx = getSCEV(VarIdx); 4824 Idx = getSCEVAtScope(Idx, L); 4825 4826 // We can only recognize very limited forms of loop index expressions, in 4827 // particular, only affine AddRec's like {C1,+,C2}. 4828 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4829 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4830 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4831 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4832 return getCouldNotCompute(); 4833 4834 unsigned MaxSteps = MaxBruteForceIterations; 4835 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4836 ConstantInt *ItCst = ConstantInt::get( 4837 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4838 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4839 4840 // Form the GEP offset. 4841 Indexes[VarIdxNum] = Val; 4842 4843 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 4844 Indexes); 4845 if (Result == 0) break; // Cannot compute! 4846 4847 // Evaluate the condition for this iteration. 4848 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4849 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4850 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4851 #if 0 4852 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4853 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4854 << "***\n"; 4855 #endif 4856 ++NumArrayLenItCounts; 4857 return getConstant(ItCst); // Found terminating iteration! 4858 } 4859 } 4860 return getCouldNotCompute(); 4861 } 4862 4863 4864 /// CanConstantFold - Return true if we can constant fold an instruction of the 4865 /// specified type, assuming that all operands were constants. 4866 static bool CanConstantFold(const Instruction *I) { 4867 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4868 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4869 isa<LoadInst>(I)) 4870 return true; 4871 4872 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4873 if (const Function *F = CI->getCalledFunction()) 4874 return canConstantFoldCallTo(F); 4875 return false; 4876 } 4877 4878 /// Determine whether this instruction can constant evolve within this loop 4879 /// assuming its operands can all constant evolve. 4880 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4881 // An instruction outside of the loop can't be derived from a loop PHI. 4882 if (!L->contains(I)) return false; 4883 4884 if (isa<PHINode>(I)) { 4885 if (L->getHeader() == I->getParent()) 4886 return true; 4887 else 4888 // We don't currently keep track of the control flow needed to evaluate 4889 // PHIs, so we cannot handle PHIs inside of loops. 4890 return false; 4891 } 4892 4893 // If we won't be able to constant fold this expression even if the operands 4894 // are constants, bail early. 4895 return CanConstantFold(I); 4896 } 4897 4898 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4899 /// recursing through each instruction operand until reaching a loop header phi. 4900 static PHINode * 4901 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4902 DenseMap<Instruction *, PHINode *> &PHIMap) { 4903 4904 // Otherwise, we can evaluate this instruction if all of its operands are 4905 // constant or derived from a PHI node themselves. 4906 PHINode *PHI = 0; 4907 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4908 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4909 4910 if (isa<Constant>(*OpI)) continue; 4911 4912 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4913 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0; 4914 4915 PHINode *P = dyn_cast<PHINode>(OpInst); 4916 if (!P) 4917 // If this operand is already visited, reuse the prior result. 4918 // We may have P != PHI if this is the deepest point at which the 4919 // inconsistent paths meet. 4920 P = PHIMap.lookup(OpInst); 4921 if (!P) { 4922 // Recurse and memoize the results, whether a phi is found or not. 4923 // This recursive call invalidates pointers into PHIMap. 4924 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4925 PHIMap[OpInst] = P; 4926 } 4927 if (P == 0) return 0; // Not evolving from PHI 4928 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs. 4929 PHI = P; 4930 } 4931 // This is a expression evolving from a constant PHI! 4932 return PHI; 4933 } 4934 4935 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4936 /// in the loop that V is derived from. We allow arbitrary operations along the 4937 /// way, but the operands of an operation must either be constants or a value 4938 /// derived from a constant PHI. If this expression does not fit with these 4939 /// constraints, return null. 4940 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4941 Instruction *I = dyn_cast<Instruction>(V); 4942 if (I == 0 || !canConstantEvolve(I, L)) return 0; 4943 4944 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4945 return PN; 4946 } 4947 4948 // Record non-constant instructions contained by the loop. 4949 DenseMap<Instruction *, PHINode *> PHIMap; 4950 return getConstantEvolvingPHIOperands(I, L, PHIMap); 4951 } 4952 4953 /// EvaluateExpression - Given an expression that passes the 4954 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4955 /// in the loop has the value PHIVal. If we can't fold this expression for some 4956 /// reason, return null. 4957 static Constant *EvaluateExpression(Value *V, const Loop *L, 4958 DenseMap<Instruction *, Constant *> &Vals, 4959 const DataLayout *DL, 4960 const TargetLibraryInfo *TLI) { 4961 // Convenient constant check, but redundant for recursive calls. 4962 if (Constant *C = dyn_cast<Constant>(V)) return C; 4963 Instruction *I = dyn_cast<Instruction>(V); 4964 if (!I) return 0; 4965 4966 if (Constant *C = Vals.lookup(I)) return C; 4967 4968 // An instruction inside the loop depends on a value outside the loop that we 4969 // weren't given a mapping for, or a value such as a call inside the loop. 4970 if (!canConstantEvolve(I, L)) return 0; 4971 4972 // An unmapped PHI can be due to a branch or another loop inside this loop, 4973 // or due to this not being the initial iteration through a loop where we 4974 // couldn't compute the evolution of this particular PHI last time. 4975 if (isa<PHINode>(I)) return 0; 4976 4977 std::vector<Constant*> Operands(I->getNumOperands()); 4978 4979 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4980 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 4981 if (!Operand) { 4982 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 4983 if (!Operands[i]) return 0; 4984 continue; 4985 } 4986 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 4987 Vals[Operand] = C; 4988 if (!C) return 0; 4989 Operands[i] = C; 4990 } 4991 4992 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4993 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4994 Operands[1], DL, TLI); 4995 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4996 if (!LI->isVolatile()) 4997 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 4998 } 4999 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5000 TLI); 5001 } 5002 5003 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5004 /// in the header of its containing loop, we know the loop executes a 5005 /// constant number of times, and the PHI node is just a recurrence 5006 /// involving constants, fold it. 5007 Constant * 5008 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5009 const APInt &BEs, 5010 const Loop *L) { 5011 DenseMap<PHINode*, Constant*>::const_iterator I = 5012 ConstantEvolutionLoopExitValue.find(PN); 5013 if (I != ConstantEvolutionLoopExitValue.end()) 5014 return I->second; 5015 5016 if (BEs.ugt(MaxBruteForceIterations)) 5017 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 5018 5019 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5020 5021 DenseMap<Instruction *, Constant *> CurrentIterVals; 5022 BasicBlock *Header = L->getHeader(); 5023 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5024 5025 // Since the loop is canonicalized, the PHI node must have two entries. One 5026 // entry must be a constant (coming in from outside of the loop), and the 5027 // second must be derived from the same PHI. 5028 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5029 PHINode *PHI = 0; 5030 for (BasicBlock::iterator I = Header->begin(); 5031 (PHI = dyn_cast<PHINode>(I)); ++I) { 5032 Constant *StartCST = 5033 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5034 if (StartCST == 0) continue; 5035 CurrentIterVals[PHI] = StartCST; 5036 } 5037 if (!CurrentIterVals.count(PN)) 5038 return RetVal = 0; 5039 5040 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5041 5042 // Execute the loop symbolically to determine the exit value. 5043 if (BEs.getActiveBits() >= 32) 5044 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 5045 5046 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5047 unsigned IterationNum = 0; 5048 for (; ; ++IterationNum) { 5049 if (IterationNum == NumIterations) 5050 return RetVal = CurrentIterVals[PN]; // Got exit value! 5051 5052 // Compute the value of the PHIs for the next iteration. 5053 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5054 DenseMap<Instruction *, Constant *> NextIterVals; 5055 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, 5056 TLI); 5057 if (NextPHI == 0) 5058 return 0; // Couldn't evaluate! 5059 NextIterVals[PN] = NextPHI; 5060 5061 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5062 5063 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5064 // cease to be able to evaluate one of them or if they stop evolving, 5065 // because that doesn't necessarily prevent us from computing PN. 5066 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5067 for (DenseMap<Instruction *, Constant *>::const_iterator 5068 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5069 PHINode *PHI = dyn_cast<PHINode>(I->first); 5070 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5071 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5072 } 5073 // We use two distinct loops because EvaluateExpression may invalidate any 5074 // iterators into CurrentIterVals. 5075 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5076 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5077 PHINode *PHI = I->first; 5078 Constant *&NextPHI = NextIterVals[PHI]; 5079 if (!NextPHI) { // Not already computed. 5080 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5081 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5082 } 5083 if (NextPHI != I->second) 5084 StoppedEvolving = false; 5085 } 5086 5087 // If all entries in CurrentIterVals == NextIterVals then we can stop 5088 // iterating, the loop can't continue to change. 5089 if (StoppedEvolving) 5090 return RetVal = CurrentIterVals[PN]; 5091 5092 CurrentIterVals.swap(NextIterVals); 5093 } 5094 } 5095 5096 /// ComputeExitCountExhaustively - If the loop is known to execute a 5097 /// constant number of times (the condition evolves only from constants), 5098 /// try to evaluate a few iterations of the loop until we get the exit 5099 /// condition gets a value of ExitWhen (true or false). If we cannot 5100 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5101 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5102 Value *Cond, 5103 bool ExitWhen) { 5104 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5105 if (PN == 0) return getCouldNotCompute(); 5106 5107 // If the loop is canonicalized, the PHI will have exactly two entries. 5108 // That's the only form we support here. 5109 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5110 5111 DenseMap<Instruction *, Constant *> CurrentIterVals; 5112 BasicBlock *Header = L->getHeader(); 5113 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5114 5115 // One entry must be a constant (coming in from outside of the loop), and the 5116 // second must be derived from the same PHI. 5117 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5118 PHINode *PHI = 0; 5119 for (BasicBlock::iterator I = Header->begin(); 5120 (PHI = dyn_cast<PHINode>(I)); ++I) { 5121 Constant *StartCST = 5122 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5123 if (StartCST == 0) continue; 5124 CurrentIterVals[PHI] = StartCST; 5125 } 5126 if (!CurrentIterVals.count(PN)) 5127 return getCouldNotCompute(); 5128 5129 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5130 // the loop symbolically to determine when the condition gets a value of 5131 // "ExitWhen". 5132 5133 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5134 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5135 ConstantInt *CondVal = 5136 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 5137 DL, TLI)); 5138 5139 // Couldn't symbolically evaluate. 5140 if (!CondVal) return getCouldNotCompute(); 5141 5142 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5143 ++NumBruteForceTripCountsComputed; 5144 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5145 } 5146 5147 // Update all the PHI nodes for the next iteration. 5148 DenseMap<Instruction *, Constant *> NextIterVals; 5149 5150 // Create a list of which PHIs we need to compute. We want to do this before 5151 // calling EvaluateExpression on them because that may invalidate iterators 5152 // into CurrentIterVals. 5153 SmallVector<PHINode *, 8> PHIsToCompute; 5154 for (DenseMap<Instruction *, Constant *>::const_iterator 5155 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5156 PHINode *PHI = dyn_cast<PHINode>(I->first); 5157 if (!PHI || PHI->getParent() != Header) continue; 5158 PHIsToCompute.push_back(PHI); 5159 } 5160 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5161 E = PHIsToCompute.end(); I != E; ++I) { 5162 PHINode *PHI = *I; 5163 Constant *&NextPHI = NextIterVals[PHI]; 5164 if (NextPHI) continue; // Already computed! 5165 5166 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5167 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5168 } 5169 CurrentIterVals.swap(NextIterVals); 5170 } 5171 5172 // Too many iterations were needed to evaluate. 5173 return getCouldNotCompute(); 5174 } 5175 5176 /// getSCEVAtScope - Return a SCEV expression for the specified value 5177 /// at the specified scope in the program. The L value specifies a loop 5178 /// nest to evaluate the expression at, where null is the top-level or a 5179 /// specified loop is immediately inside of the loop. 5180 /// 5181 /// This method can be used to compute the exit value for a variable defined 5182 /// in a loop by querying what the value will hold in the parent loop. 5183 /// 5184 /// In the case that a relevant loop exit value cannot be computed, the 5185 /// original value V is returned. 5186 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5187 // Check to see if we've folded this expression at this loop before. 5188 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5189 for (unsigned u = 0; u < Values.size(); u++) { 5190 if (Values[u].first == L) 5191 return Values[u].second ? Values[u].second : V; 5192 } 5193 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(0))); 5194 // Otherwise compute it. 5195 const SCEV *C = computeSCEVAtScope(V, L); 5196 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5197 for (unsigned u = Values2.size(); u > 0; u--) { 5198 if (Values2[u - 1].first == L) { 5199 Values2[u - 1].second = C; 5200 break; 5201 } 5202 } 5203 return C; 5204 } 5205 5206 /// This builds up a Constant using the ConstantExpr interface. That way, we 5207 /// will return Constants for objects which aren't represented by a 5208 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5209 /// Returns NULL if the SCEV isn't representable as a Constant. 5210 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5211 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5212 case scCouldNotCompute: 5213 case scAddRecExpr: 5214 break; 5215 case scConstant: 5216 return cast<SCEVConstant>(V)->getValue(); 5217 case scUnknown: 5218 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5219 case scSignExtend: { 5220 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5221 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5222 return ConstantExpr::getSExt(CastOp, SS->getType()); 5223 break; 5224 } 5225 case scZeroExtend: { 5226 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5227 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5228 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5229 break; 5230 } 5231 case scTruncate: { 5232 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5233 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5234 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5235 break; 5236 } 5237 case scAddExpr: { 5238 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5239 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5240 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5241 unsigned AS = PTy->getAddressSpace(); 5242 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5243 C = ConstantExpr::getBitCast(C, DestPtrTy); 5244 } 5245 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5246 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5247 if (!C2) return 0; 5248 5249 // First pointer! 5250 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5251 unsigned AS = C2->getType()->getPointerAddressSpace(); 5252 std::swap(C, C2); 5253 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5254 // The offsets have been converted to bytes. We can add bytes to an 5255 // i8* by GEP with the byte count in the first index. 5256 C = ConstantExpr::getBitCast(C, DestPtrTy); 5257 } 5258 5259 // Don't bother trying to sum two pointers. We probably can't 5260 // statically compute a load that results from it anyway. 5261 if (C2->getType()->isPointerTy()) 5262 return 0; 5263 5264 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5265 if (PTy->getElementType()->isStructTy()) 5266 C2 = ConstantExpr::getIntegerCast( 5267 C2, Type::getInt32Ty(C->getContext()), true); 5268 C = ConstantExpr::getGetElementPtr(C, C2); 5269 } else 5270 C = ConstantExpr::getAdd(C, C2); 5271 } 5272 return C; 5273 } 5274 break; 5275 } 5276 case scMulExpr: { 5277 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5278 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5279 // Don't bother with pointers at all. 5280 if (C->getType()->isPointerTy()) return 0; 5281 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5282 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5283 if (!C2 || C2->getType()->isPointerTy()) return 0; 5284 C = ConstantExpr::getMul(C, C2); 5285 } 5286 return C; 5287 } 5288 break; 5289 } 5290 case scUDivExpr: { 5291 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5292 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5293 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5294 if (LHS->getType() == RHS->getType()) 5295 return ConstantExpr::getUDiv(LHS, RHS); 5296 break; 5297 } 5298 case scSMaxExpr: 5299 case scUMaxExpr: 5300 break; // TODO: smax, umax. 5301 } 5302 return 0; 5303 } 5304 5305 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5306 if (isa<SCEVConstant>(V)) return V; 5307 5308 // If this instruction is evolved from a constant-evolving PHI, compute the 5309 // exit value from the loop without using SCEVs. 5310 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5311 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5312 const Loop *LI = (*this->LI)[I->getParent()]; 5313 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5314 if (PHINode *PN = dyn_cast<PHINode>(I)) 5315 if (PN->getParent() == LI->getHeader()) { 5316 // Okay, there is no closed form solution for the PHI node. Check 5317 // to see if the loop that contains it has a known backedge-taken 5318 // count. If so, we may be able to force computation of the exit 5319 // value. 5320 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5321 if (const SCEVConstant *BTCC = 5322 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5323 // Okay, we know how many times the containing loop executes. If 5324 // this is a constant evolving PHI node, get the final value at 5325 // the specified iteration number. 5326 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5327 BTCC->getValue()->getValue(), 5328 LI); 5329 if (RV) return getSCEV(RV); 5330 } 5331 } 5332 5333 // Okay, this is an expression that we cannot symbolically evaluate 5334 // into a SCEV. Check to see if it's possible to symbolically evaluate 5335 // the arguments into constants, and if so, try to constant propagate the 5336 // result. This is particularly useful for computing loop exit values. 5337 if (CanConstantFold(I)) { 5338 SmallVector<Constant *, 4> Operands; 5339 bool MadeImprovement = false; 5340 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5341 Value *Op = I->getOperand(i); 5342 if (Constant *C = dyn_cast<Constant>(Op)) { 5343 Operands.push_back(C); 5344 continue; 5345 } 5346 5347 // If any of the operands is non-constant and if they are 5348 // non-integer and non-pointer, don't even try to analyze them 5349 // with scev techniques. 5350 if (!isSCEVable(Op->getType())) 5351 return V; 5352 5353 const SCEV *OrigV = getSCEV(Op); 5354 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5355 MadeImprovement |= OrigV != OpV; 5356 5357 Constant *C = BuildConstantFromSCEV(OpV); 5358 if (!C) return V; 5359 if (C->getType() != Op->getType()) 5360 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5361 Op->getType(), 5362 false), 5363 C, Op->getType()); 5364 Operands.push_back(C); 5365 } 5366 5367 // Check to see if getSCEVAtScope actually made an improvement. 5368 if (MadeImprovement) { 5369 Constant *C = 0; 5370 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5371 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5372 Operands[0], Operands[1], DL, 5373 TLI); 5374 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5375 if (!LI->isVolatile()) 5376 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5377 } else 5378 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5379 Operands, DL, TLI); 5380 if (!C) return V; 5381 return getSCEV(C); 5382 } 5383 } 5384 } 5385 5386 // This is some other type of SCEVUnknown, just return it. 5387 return V; 5388 } 5389 5390 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5391 // Avoid performing the look-up in the common case where the specified 5392 // expression has no loop-variant portions. 5393 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5394 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5395 if (OpAtScope != Comm->getOperand(i)) { 5396 // Okay, at least one of these operands is loop variant but might be 5397 // foldable. Build a new instance of the folded commutative expression. 5398 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5399 Comm->op_begin()+i); 5400 NewOps.push_back(OpAtScope); 5401 5402 for (++i; i != e; ++i) { 5403 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5404 NewOps.push_back(OpAtScope); 5405 } 5406 if (isa<SCEVAddExpr>(Comm)) 5407 return getAddExpr(NewOps); 5408 if (isa<SCEVMulExpr>(Comm)) 5409 return getMulExpr(NewOps); 5410 if (isa<SCEVSMaxExpr>(Comm)) 5411 return getSMaxExpr(NewOps); 5412 if (isa<SCEVUMaxExpr>(Comm)) 5413 return getUMaxExpr(NewOps); 5414 llvm_unreachable("Unknown commutative SCEV type!"); 5415 } 5416 } 5417 // If we got here, all operands are loop invariant. 5418 return Comm; 5419 } 5420 5421 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5422 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5423 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5424 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5425 return Div; // must be loop invariant 5426 return getUDivExpr(LHS, RHS); 5427 } 5428 5429 // If this is a loop recurrence for a loop that does not contain L, then we 5430 // are dealing with the final value computed by the loop. 5431 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5432 // First, attempt to evaluate each operand. 5433 // Avoid performing the look-up in the common case where the specified 5434 // expression has no loop-variant portions. 5435 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5436 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5437 if (OpAtScope == AddRec->getOperand(i)) 5438 continue; 5439 5440 // Okay, at least one of these operands is loop variant but might be 5441 // foldable. Build a new instance of the folded commutative expression. 5442 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5443 AddRec->op_begin()+i); 5444 NewOps.push_back(OpAtScope); 5445 for (++i; i != e; ++i) 5446 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5447 5448 const SCEV *FoldedRec = 5449 getAddRecExpr(NewOps, AddRec->getLoop(), 5450 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5451 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5452 // The addrec may be folded to a nonrecurrence, for example, if the 5453 // induction variable is multiplied by zero after constant folding. Go 5454 // ahead and return the folded value. 5455 if (!AddRec) 5456 return FoldedRec; 5457 break; 5458 } 5459 5460 // If the scope is outside the addrec's loop, evaluate it by using the 5461 // loop exit value of the addrec. 5462 if (!AddRec->getLoop()->contains(L)) { 5463 // To evaluate this recurrence, we need to know how many times the AddRec 5464 // loop iterates. Compute this now. 5465 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5466 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5467 5468 // Then, evaluate the AddRec. 5469 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5470 } 5471 5472 return AddRec; 5473 } 5474 5475 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5476 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5477 if (Op == Cast->getOperand()) 5478 return Cast; // must be loop invariant 5479 return getZeroExtendExpr(Op, Cast->getType()); 5480 } 5481 5482 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5483 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5484 if (Op == Cast->getOperand()) 5485 return Cast; // must be loop invariant 5486 return getSignExtendExpr(Op, Cast->getType()); 5487 } 5488 5489 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5490 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5491 if (Op == Cast->getOperand()) 5492 return Cast; // must be loop invariant 5493 return getTruncateExpr(Op, Cast->getType()); 5494 } 5495 5496 llvm_unreachable("Unknown SCEV type!"); 5497 } 5498 5499 /// getSCEVAtScope - This is a convenience function which does 5500 /// getSCEVAtScope(getSCEV(V), L). 5501 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5502 return getSCEVAtScope(getSCEV(V), L); 5503 } 5504 5505 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5506 /// following equation: 5507 /// 5508 /// A * X = B (mod N) 5509 /// 5510 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5511 /// A and B isn't important. 5512 /// 5513 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5514 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5515 ScalarEvolution &SE) { 5516 uint32_t BW = A.getBitWidth(); 5517 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5518 assert(A != 0 && "A must be non-zero."); 5519 5520 // 1. D = gcd(A, N) 5521 // 5522 // The gcd of A and N may have only one prime factor: 2. The number of 5523 // trailing zeros in A is its multiplicity 5524 uint32_t Mult2 = A.countTrailingZeros(); 5525 // D = 2^Mult2 5526 5527 // 2. Check if B is divisible by D. 5528 // 5529 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5530 // is not less than multiplicity of this prime factor for D. 5531 if (B.countTrailingZeros() < Mult2) 5532 return SE.getCouldNotCompute(); 5533 5534 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5535 // modulo (N / D). 5536 // 5537 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5538 // bit width during computations. 5539 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5540 APInt Mod(BW + 1, 0); 5541 Mod.setBit(BW - Mult2); // Mod = N / D 5542 APInt I = AD.multiplicativeInverse(Mod); 5543 5544 // 4. Compute the minimum unsigned root of the equation: 5545 // I * (B / D) mod (N / D) 5546 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5547 5548 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5549 // bits. 5550 return SE.getConstant(Result.trunc(BW)); 5551 } 5552 5553 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5554 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5555 /// might be the same) or two SCEVCouldNotCompute objects. 5556 /// 5557 static std::pair<const SCEV *,const SCEV *> 5558 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5559 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5560 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5561 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5562 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5563 5564 // We currently can only solve this if the coefficients are constants. 5565 if (!LC || !MC || !NC) { 5566 const SCEV *CNC = SE.getCouldNotCompute(); 5567 return std::make_pair(CNC, CNC); 5568 } 5569 5570 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5571 const APInt &L = LC->getValue()->getValue(); 5572 const APInt &M = MC->getValue()->getValue(); 5573 const APInt &N = NC->getValue()->getValue(); 5574 APInt Two(BitWidth, 2); 5575 APInt Four(BitWidth, 4); 5576 5577 { 5578 using namespace APIntOps; 5579 const APInt& C = L; 5580 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5581 // The B coefficient is M-N/2 5582 APInt B(M); 5583 B -= sdiv(N,Two); 5584 5585 // The A coefficient is N/2 5586 APInt A(N.sdiv(Two)); 5587 5588 // Compute the B^2-4ac term. 5589 APInt SqrtTerm(B); 5590 SqrtTerm *= B; 5591 SqrtTerm -= Four * (A * C); 5592 5593 if (SqrtTerm.isNegative()) { 5594 // The loop is provably infinite. 5595 const SCEV *CNC = SE.getCouldNotCompute(); 5596 return std::make_pair(CNC, CNC); 5597 } 5598 5599 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5600 // integer value or else APInt::sqrt() will assert. 5601 APInt SqrtVal(SqrtTerm.sqrt()); 5602 5603 // Compute the two solutions for the quadratic formula. 5604 // The divisions must be performed as signed divisions. 5605 APInt NegB(-B); 5606 APInt TwoA(A << 1); 5607 if (TwoA.isMinValue()) { 5608 const SCEV *CNC = SE.getCouldNotCompute(); 5609 return std::make_pair(CNC, CNC); 5610 } 5611 5612 LLVMContext &Context = SE.getContext(); 5613 5614 ConstantInt *Solution1 = 5615 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5616 ConstantInt *Solution2 = 5617 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5618 5619 return std::make_pair(SE.getConstant(Solution1), 5620 SE.getConstant(Solution2)); 5621 } // end APIntOps namespace 5622 } 5623 5624 /// HowFarToZero - Return the number of times a backedge comparing the specified 5625 /// value to zero will execute. If not computable, return CouldNotCompute. 5626 /// 5627 /// This is only used for loops with a "x != y" exit test. The exit condition is 5628 /// now expressed as a single expression, V = x-y. So the exit test is 5629 /// effectively V != 0. We know and take advantage of the fact that this 5630 /// expression only being used in a comparison by zero context. 5631 ScalarEvolution::ExitLimit 5632 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) { 5633 // If the value is a constant 5634 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5635 // If the value is already zero, the branch will execute zero times. 5636 if (C->getValue()->isZero()) return C; 5637 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5638 } 5639 5640 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5641 if (!AddRec || AddRec->getLoop() != L) 5642 return getCouldNotCompute(); 5643 5644 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5645 // the quadratic equation to solve it. 5646 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5647 std::pair<const SCEV *,const SCEV *> Roots = 5648 SolveQuadraticEquation(AddRec, *this); 5649 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5650 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5651 if (R1 && R2) { 5652 #if 0 5653 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5654 << " sol#2: " << *R2 << "\n"; 5655 #endif 5656 // Pick the smallest positive root value. 5657 if (ConstantInt *CB = 5658 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5659 R1->getValue(), 5660 R2->getValue()))) { 5661 if (CB->getZExtValue() == false) 5662 std::swap(R1, R2); // R1 is the minimum root now. 5663 5664 // We can only use this value if the chrec ends up with an exact zero 5665 // value at this index. When solving for "X*X != 5", for example, we 5666 // should not accept a root of 2. 5667 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5668 if (Val->isZero()) 5669 return R1; // We found a quadratic root! 5670 } 5671 } 5672 return getCouldNotCompute(); 5673 } 5674 5675 // Otherwise we can only handle this if it is affine. 5676 if (!AddRec->isAffine()) 5677 return getCouldNotCompute(); 5678 5679 // If this is an affine expression, the execution count of this branch is 5680 // the minimum unsigned root of the following equation: 5681 // 5682 // Start + Step*N = 0 (mod 2^BW) 5683 // 5684 // equivalent to: 5685 // 5686 // Step*N = -Start (mod 2^BW) 5687 // 5688 // where BW is the common bit width of Start and Step. 5689 5690 // Get the initial value for the loop. 5691 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5692 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5693 5694 // For now we handle only constant steps. 5695 // 5696 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5697 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5698 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5699 // We have not yet seen any such cases. 5700 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5701 if (StepC == 0 || StepC->getValue()->equalsInt(0)) 5702 return getCouldNotCompute(); 5703 5704 // For positive steps (counting up until unsigned overflow): 5705 // N = -Start/Step (as unsigned) 5706 // For negative steps (counting down to zero): 5707 // N = Start/-Step 5708 // First compute the unsigned distance from zero in the direction of Step. 5709 bool CountDown = StepC->getValue()->getValue().isNegative(); 5710 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5711 5712 // Handle unitary steps, which cannot wraparound. 5713 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5714 // N = Distance (as unsigned) 5715 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5716 ConstantRange CR = getUnsignedRange(Start); 5717 const SCEV *MaxBECount; 5718 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5719 // When counting up, the worst starting value is 1, not 0. 5720 MaxBECount = CR.getUnsignedMax().isMinValue() 5721 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5722 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5723 else 5724 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5725 : -CR.getUnsignedMin()); 5726 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true); 5727 } 5728 5729 // If the recurrence is known not to wraparound, unsigned divide computes the 5730 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know 5731 // that the value will either become zero (and thus the loop terminates), that 5732 // the loop will terminate through some other exit condition first, or that 5733 // the loop has undefined behavior. This means we can't "miss" the exit 5734 // value, even with nonunit stride, and exit later via the same branch. Note 5735 // that we can skip this exit if loop later exits via a different 5736 // branch. Hence MustExit=false. 5737 // 5738 // This is only valid for expressions that directly compute the loop exit. It 5739 // is invalid for subexpressions in which the loop may exit through this 5740 // branch even if this subexpression is false. In that case, the trip count 5741 // computed by this udiv could be smaller than the number of well-defined 5742 // iterations. 5743 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 5744 const SCEV *Exact = 5745 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5746 return ExitLimit(Exact, Exact, /*MustExit=*/false); 5747 } 5748 // Then, try to solve the above equation provided that Start is constant. 5749 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5750 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5751 -StartC->getValue()->getValue(), 5752 *this); 5753 return getCouldNotCompute(); 5754 } 5755 5756 /// HowFarToNonZero - Return the number of times a backedge checking the 5757 /// specified value for nonzero will execute. If not computable, return 5758 /// CouldNotCompute 5759 ScalarEvolution::ExitLimit 5760 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5761 // Loops that look like: while (X == 0) are very strange indeed. We don't 5762 // handle them yet except for the trivial case. This could be expanded in the 5763 // future as needed. 5764 5765 // If the value is a constant, check to see if it is known to be non-zero 5766 // already. If so, the backedge will execute zero times. 5767 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5768 if (!C->getValue()->isNullValue()) 5769 return getConstant(C->getType(), 0); 5770 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5771 } 5772 5773 // We could implement others, but I really doubt anyone writes loops like 5774 // this, and if they did, they would already be constant folded. 5775 return getCouldNotCompute(); 5776 } 5777 5778 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5779 /// (which may not be an immediate predecessor) which has exactly one 5780 /// successor from which BB is reachable, or null if no such block is 5781 /// found. 5782 /// 5783 std::pair<BasicBlock *, BasicBlock *> 5784 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5785 // If the block has a unique predecessor, then there is no path from the 5786 // predecessor to the block that does not go through the direct edge 5787 // from the predecessor to the block. 5788 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5789 return std::make_pair(Pred, BB); 5790 5791 // A loop's header is defined to be a block that dominates the loop. 5792 // If the header has a unique predecessor outside the loop, it must be 5793 // a block that has exactly one successor that can reach the loop. 5794 if (Loop *L = LI->getLoopFor(BB)) 5795 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5796 5797 return std::pair<BasicBlock *, BasicBlock *>(); 5798 } 5799 5800 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5801 /// testing whether two expressions are equal, however for the purposes of 5802 /// looking for a condition guarding a loop, it can be useful to be a little 5803 /// more general, since a front-end may have replicated the controlling 5804 /// expression. 5805 /// 5806 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5807 // Quick check to see if they are the same SCEV. 5808 if (A == B) return true; 5809 5810 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5811 // two different instructions with the same value. Check for this case. 5812 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5813 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5814 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5815 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5816 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5817 return true; 5818 5819 // Otherwise assume they may have a different value. 5820 return false; 5821 } 5822 5823 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5824 /// predicate Pred. Return true iff any changes were made. 5825 /// 5826 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5827 const SCEV *&LHS, const SCEV *&RHS, 5828 unsigned Depth) { 5829 bool Changed = false; 5830 5831 // If we hit the max recursion limit bail out. 5832 if (Depth >= 3) 5833 return false; 5834 5835 // Canonicalize a constant to the right side. 5836 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5837 // Check for both operands constant. 5838 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5839 if (ConstantExpr::getICmp(Pred, 5840 LHSC->getValue(), 5841 RHSC->getValue())->isNullValue()) 5842 goto trivially_false; 5843 else 5844 goto trivially_true; 5845 } 5846 // Otherwise swap the operands to put the constant on the right. 5847 std::swap(LHS, RHS); 5848 Pred = ICmpInst::getSwappedPredicate(Pred); 5849 Changed = true; 5850 } 5851 5852 // If we're comparing an addrec with a value which is loop-invariant in the 5853 // addrec's loop, put the addrec on the left. Also make a dominance check, 5854 // as both operands could be addrecs loop-invariant in each other's loop. 5855 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5856 const Loop *L = AR->getLoop(); 5857 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5858 std::swap(LHS, RHS); 5859 Pred = ICmpInst::getSwappedPredicate(Pred); 5860 Changed = true; 5861 } 5862 } 5863 5864 // If there's a constant operand, canonicalize comparisons with boundary 5865 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5866 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5867 const APInt &RA = RC->getValue()->getValue(); 5868 switch (Pred) { 5869 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5870 case ICmpInst::ICMP_EQ: 5871 case ICmpInst::ICMP_NE: 5872 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 5873 if (!RA) 5874 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 5875 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 5876 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 5877 ME->getOperand(0)->isAllOnesValue()) { 5878 RHS = AE->getOperand(1); 5879 LHS = ME->getOperand(1); 5880 Changed = true; 5881 } 5882 break; 5883 case ICmpInst::ICMP_UGE: 5884 if ((RA - 1).isMinValue()) { 5885 Pred = ICmpInst::ICMP_NE; 5886 RHS = getConstant(RA - 1); 5887 Changed = true; 5888 break; 5889 } 5890 if (RA.isMaxValue()) { 5891 Pred = ICmpInst::ICMP_EQ; 5892 Changed = true; 5893 break; 5894 } 5895 if (RA.isMinValue()) goto trivially_true; 5896 5897 Pred = ICmpInst::ICMP_UGT; 5898 RHS = getConstant(RA - 1); 5899 Changed = true; 5900 break; 5901 case ICmpInst::ICMP_ULE: 5902 if ((RA + 1).isMaxValue()) { 5903 Pred = ICmpInst::ICMP_NE; 5904 RHS = getConstant(RA + 1); 5905 Changed = true; 5906 break; 5907 } 5908 if (RA.isMinValue()) { 5909 Pred = ICmpInst::ICMP_EQ; 5910 Changed = true; 5911 break; 5912 } 5913 if (RA.isMaxValue()) goto trivially_true; 5914 5915 Pred = ICmpInst::ICMP_ULT; 5916 RHS = getConstant(RA + 1); 5917 Changed = true; 5918 break; 5919 case ICmpInst::ICMP_SGE: 5920 if ((RA - 1).isMinSignedValue()) { 5921 Pred = ICmpInst::ICMP_NE; 5922 RHS = getConstant(RA - 1); 5923 Changed = true; 5924 break; 5925 } 5926 if (RA.isMaxSignedValue()) { 5927 Pred = ICmpInst::ICMP_EQ; 5928 Changed = true; 5929 break; 5930 } 5931 if (RA.isMinSignedValue()) goto trivially_true; 5932 5933 Pred = ICmpInst::ICMP_SGT; 5934 RHS = getConstant(RA - 1); 5935 Changed = true; 5936 break; 5937 case ICmpInst::ICMP_SLE: 5938 if ((RA + 1).isMaxSignedValue()) { 5939 Pred = ICmpInst::ICMP_NE; 5940 RHS = getConstant(RA + 1); 5941 Changed = true; 5942 break; 5943 } 5944 if (RA.isMinSignedValue()) { 5945 Pred = ICmpInst::ICMP_EQ; 5946 Changed = true; 5947 break; 5948 } 5949 if (RA.isMaxSignedValue()) goto trivially_true; 5950 5951 Pred = ICmpInst::ICMP_SLT; 5952 RHS = getConstant(RA + 1); 5953 Changed = true; 5954 break; 5955 case ICmpInst::ICMP_UGT: 5956 if (RA.isMinValue()) { 5957 Pred = ICmpInst::ICMP_NE; 5958 Changed = true; 5959 break; 5960 } 5961 if ((RA + 1).isMaxValue()) { 5962 Pred = ICmpInst::ICMP_EQ; 5963 RHS = getConstant(RA + 1); 5964 Changed = true; 5965 break; 5966 } 5967 if (RA.isMaxValue()) goto trivially_false; 5968 break; 5969 case ICmpInst::ICMP_ULT: 5970 if (RA.isMaxValue()) { 5971 Pred = ICmpInst::ICMP_NE; 5972 Changed = true; 5973 break; 5974 } 5975 if ((RA - 1).isMinValue()) { 5976 Pred = ICmpInst::ICMP_EQ; 5977 RHS = getConstant(RA - 1); 5978 Changed = true; 5979 break; 5980 } 5981 if (RA.isMinValue()) goto trivially_false; 5982 break; 5983 case ICmpInst::ICMP_SGT: 5984 if (RA.isMinSignedValue()) { 5985 Pred = ICmpInst::ICMP_NE; 5986 Changed = true; 5987 break; 5988 } 5989 if ((RA + 1).isMaxSignedValue()) { 5990 Pred = ICmpInst::ICMP_EQ; 5991 RHS = getConstant(RA + 1); 5992 Changed = true; 5993 break; 5994 } 5995 if (RA.isMaxSignedValue()) goto trivially_false; 5996 break; 5997 case ICmpInst::ICMP_SLT: 5998 if (RA.isMaxSignedValue()) { 5999 Pred = ICmpInst::ICMP_NE; 6000 Changed = true; 6001 break; 6002 } 6003 if ((RA - 1).isMinSignedValue()) { 6004 Pred = ICmpInst::ICMP_EQ; 6005 RHS = getConstant(RA - 1); 6006 Changed = true; 6007 break; 6008 } 6009 if (RA.isMinSignedValue()) goto trivially_false; 6010 break; 6011 } 6012 } 6013 6014 // Check for obvious equality. 6015 if (HasSameValue(LHS, RHS)) { 6016 if (ICmpInst::isTrueWhenEqual(Pred)) 6017 goto trivially_true; 6018 if (ICmpInst::isFalseWhenEqual(Pred)) 6019 goto trivially_false; 6020 } 6021 6022 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6023 // adding or subtracting 1 from one of the operands. 6024 switch (Pred) { 6025 case ICmpInst::ICMP_SLE: 6026 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6027 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6028 SCEV::FlagNSW); 6029 Pred = ICmpInst::ICMP_SLT; 6030 Changed = true; 6031 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6032 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6033 SCEV::FlagNSW); 6034 Pred = ICmpInst::ICMP_SLT; 6035 Changed = true; 6036 } 6037 break; 6038 case ICmpInst::ICMP_SGE: 6039 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6040 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6041 SCEV::FlagNSW); 6042 Pred = ICmpInst::ICMP_SGT; 6043 Changed = true; 6044 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6045 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6046 SCEV::FlagNSW); 6047 Pred = ICmpInst::ICMP_SGT; 6048 Changed = true; 6049 } 6050 break; 6051 case ICmpInst::ICMP_ULE: 6052 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6053 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6054 SCEV::FlagNUW); 6055 Pred = ICmpInst::ICMP_ULT; 6056 Changed = true; 6057 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6058 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6059 SCEV::FlagNUW); 6060 Pred = ICmpInst::ICMP_ULT; 6061 Changed = true; 6062 } 6063 break; 6064 case ICmpInst::ICMP_UGE: 6065 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6066 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6067 SCEV::FlagNUW); 6068 Pred = ICmpInst::ICMP_UGT; 6069 Changed = true; 6070 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6071 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6072 SCEV::FlagNUW); 6073 Pred = ICmpInst::ICMP_UGT; 6074 Changed = true; 6075 } 6076 break; 6077 default: 6078 break; 6079 } 6080 6081 // TODO: More simplifications are possible here. 6082 6083 // Recursively simplify until we either hit a recursion limit or nothing 6084 // changes. 6085 if (Changed) 6086 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6087 6088 return Changed; 6089 6090 trivially_true: 6091 // Return 0 == 0. 6092 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6093 Pred = ICmpInst::ICMP_EQ; 6094 return true; 6095 6096 trivially_false: 6097 // Return 0 != 0. 6098 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6099 Pred = ICmpInst::ICMP_NE; 6100 return true; 6101 } 6102 6103 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6104 return getSignedRange(S).getSignedMax().isNegative(); 6105 } 6106 6107 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6108 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6109 } 6110 6111 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6112 return !getSignedRange(S).getSignedMin().isNegative(); 6113 } 6114 6115 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6116 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6117 } 6118 6119 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6120 return isKnownNegative(S) || isKnownPositive(S); 6121 } 6122 6123 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6124 const SCEV *LHS, const SCEV *RHS) { 6125 // Canonicalize the inputs first. 6126 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6127 6128 // If LHS or RHS is an addrec, check to see if the condition is true in 6129 // every iteration of the loop. 6130 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 6131 if (isLoopEntryGuardedByCond( 6132 AR->getLoop(), Pred, AR->getStart(), RHS) && 6133 isLoopBackedgeGuardedByCond( 6134 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 6135 return true; 6136 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 6137 if (isLoopEntryGuardedByCond( 6138 AR->getLoop(), Pred, LHS, AR->getStart()) && 6139 isLoopBackedgeGuardedByCond( 6140 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 6141 return true; 6142 6143 // Otherwise see what can be done with known constant ranges. 6144 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6145 } 6146 6147 bool 6148 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6149 const SCEV *LHS, const SCEV *RHS) { 6150 if (HasSameValue(LHS, RHS)) 6151 return ICmpInst::isTrueWhenEqual(Pred); 6152 6153 // This code is split out from isKnownPredicate because it is called from 6154 // within isLoopEntryGuardedByCond. 6155 switch (Pred) { 6156 default: 6157 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6158 case ICmpInst::ICMP_SGT: 6159 Pred = ICmpInst::ICMP_SLT; 6160 std::swap(LHS, RHS); 6161 case ICmpInst::ICMP_SLT: { 6162 ConstantRange LHSRange = getSignedRange(LHS); 6163 ConstantRange RHSRange = getSignedRange(RHS); 6164 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6165 return true; 6166 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6167 return false; 6168 break; 6169 } 6170 case ICmpInst::ICMP_SGE: 6171 Pred = ICmpInst::ICMP_SLE; 6172 std::swap(LHS, RHS); 6173 case ICmpInst::ICMP_SLE: { 6174 ConstantRange LHSRange = getSignedRange(LHS); 6175 ConstantRange RHSRange = getSignedRange(RHS); 6176 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6177 return true; 6178 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6179 return false; 6180 break; 6181 } 6182 case ICmpInst::ICMP_UGT: 6183 Pred = ICmpInst::ICMP_ULT; 6184 std::swap(LHS, RHS); 6185 case ICmpInst::ICMP_ULT: { 6186 ConstantRange LHSRange = getUnsignedRange(LHS); 6187 ConstantRange RHSRange = getUnsignedRange(RHS); 6188 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6189 return true; 6190 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6191 return false; 6192 break; 6193 } 6194 case ICmpInst::ICMP_UGE: 6195 Pred = ICmpInst::ICMP_ULE; 6196 std::swap(LHS, RHS); 6197 case ICmpInst::ICMP_ULE: { 6198 ConstantRange LHSRange = getUnsignedRange(LHS); 6199 ConstantRange RHSRange = getUnsignedRange(RHS); 6200 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6201 return true; 6202 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6203 return false; 6204 break; 6205 } 6206 case ICmpInst::ICMP_NE: { 6207 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6208 return true; 6209 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6210 return true; 6211 6212 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6213 if (isKnownNonZero(Diff)) 6214 return true; 6215 break; 6216 } 6217 case ICmpInst::ICMP_EQ: 6218 // The check at the top of the function catches the case where 6219 // the values are known to be equal. 6220 break; 6221 } 6222 return false; 6223 } 6224 6225 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6226 /// protected by a conditional between LHS and RHS. This is used to 6227 /// to eliminate casts. 6228 bool 6229 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6230 ICmpInst::Predicate Pred, 6231 const SCEV *LHS, const SCEV *RHS) { 6232 // Interpret a null as meaning no loop, where there is obviously no guard 6233 // (interprocedural conditions notwithstanding). 6234 if (!L) return true; 6235 6236 BasicBlock *Latch = L->getLoopLatch(); 6237 if (!Latch) 6238 return false; 6239 6240 BranchInst *LoopContinuePredicate = 6241 dyn_cast<BranchInst>(Latch->getTerminator()); 6242 if (!LoopContinuePredicate || 6243 LoopContinuePredicate->isUnconditional()) 6244 return false; 6245 6246 return isImpliedCond(Pred, LHS, RHS, 6247 LoopContinuePredicate->getCondition(), 6248 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6249 } 6250 6251 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6252 /// by a conditional between LHS and RHS. This is used to help avoid max 6253 /// expressions in loop trip counts, and to eliminate casts. 6254 bool 6255 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6256 ICmpInst::Predicate Pred, 6257 const SCEV *LHS, const SCEV *RHS) { 6258 // Interpret a null as meaning no loop, where there is obviously no guard 6259 // (interprocedural conditions notwithstanding). 6260 if (!L) return false; 6261 6262 // Starting at the loop predecessor, climb up the predecessor chain, as long 6263 // as there are predecessors that can be found that have unique successors 6264 // leading to the original header. 6265 for (std::pair<BasicBlock *, BasicBlock *> 6266 Pair(L->getLoopPredecessor(), L->getHeader()); 6267 Pair.first; 6268 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6269 6270 BranchInst *LoopEntryPredicate = 6271 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6272 if (!LoopEntryPredicate || 6273 LoopEntryPredicate->isUnconditional()) 6274 continue; 6275 6276 if (isImpliedCond(Pred, LHS, RHS, 6277 LoopEntryPredicate->getCondition(), 6278 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6279 return true; 6280 } 6281 6282 return false; 6283 } 6284 6285 /// RAII wrapper to prevent recursive application of isImpliedCond. 6286 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6287 /// currently evaluating isImpliedCond. 6288 struct MarkPendingLoopPredicate { 6289 Value *Cond; 6290 DenseSet<Value*> &LoopPreds; 6291 bool Pending; 6292 6293 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6294 : Cond(C), LoopPreds(LP) { 6295 Pending = !LoopPreds.insert(Cond).second; 6296 } 6297 ~MarkPendingLoopPredicate() { 6298 if (!Pending) 6299 LoopPreds.erase(Cond); 6300 } 6301 }; 6302 6303 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6304 /// and RHS is true whenever the given Cond value evaluates to true. 6305 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6306 const SCEV *LHS, const SCEV *RHS, 6307 Value *FoundCondValue, 6308 bool Inverse) { 6309 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6310 if (Mark.Pending) 6311 return false; 6312 6313 // Recursively handle And and Or conditions. 6314 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6315 if (BO->getOpcode() == Instruction::And) { 6316 if (!Inverse) 6317 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6318 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6319 } else if (BO->getOpcode() == Instruction::Or) { 6320 if (Inverse) 6321 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6322 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6323 } 6324 } 6325 6326 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6327 if (!ICI) return false; 6328 6329 // Bail if the ICmp's operands' types are wider than the needed type 6330 // before attempting to call getSCEV on them. This avoids infinite 6331 // recursion, since the analysis of widening casts can require loop 6332 // exit condition information for overflow checking, which would 6333 // lead back here. 6334 if (getTypeSizeInBits(LHS->getType()) < 6335 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6336 return false; 6337 6338 // Now that we found a conditional branch that dominates the loop or controls 6339 // the loop latch. Check to see if it is the comparison we are looking for. 6340 ICmpInst::Predicate FoundPred; 6341 if (Inverse) 6342 FoundPred = ICI->getInversePredicate(); 6343 else 6344 FoundPred = ICI->getPredicate(); 6345 6346 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6347 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6348 6349 // Balance the types. The case where FoundLHS' type is wider than 6350 // LHS' type is checked for above. 6351 if (getTypeSizeInBits(LHS->getType()) > 6352 getTypeSizeInBits(FoundLHS->getType())) { 6353 if (CmpInst::isSigned(FoundPred)) { 6354 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6355 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6356 } else { 6357 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6358 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6359 } 6360 } 6361 6362 // Canonicalize the query to match the way instcombine will have 6363 // canonicalized the comparison. 6364 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6365 if (LHS == RHS) 6366 return CmpInst::isTrueWhenEqual(Pred); 6367 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6368 if (FoundLHS == FoundRHS) 6369 return CmpInst::isFalseWhenEqual(FoundPred); 6370 6371 // Check to see if we can make the LHS or RHS match. 6372 if (LHS == FoundRHS || RHS == FoundLHS) { 6373 if (isa<SCEVConstant>(RHS)) { 6374 std::swap(FoundLHS, FoundRHS); 6375 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6376 } else { 6377 std::swap(LHS, RHS); 6378 Pred = ICmpInst::getSwappedPredicate(Pred); 6379 } 6380 } 6381 6382 // Check whether the found predicate is the same as the desired predicate. 6383 if (FoundPred == Pred) 6384 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6385 6386 // Check whether swapping the found predicate makes it the same as the 6387 // desired predicate. 6388 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6389 if (isa<SCEVConstant>(RHS)) 6390 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6391 else 6392 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6393 RHS, LHS, FoundLHS, FoundRHS); 6394 } 6395 6396 // Check whether the actual condition is beyond sufficient. 6397 if (FoundPred == ICmpInst::ICMP_EQ) 6398 if (ICmpInst::isTrueWhenEqual(Pred)) 6399 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6400 return true; 6401 if (Pred == ICmpInst::ICMP_NE) 6402 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6403 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6404 return true; 6405 6406 // Otherwise assume the worst. 6407 return false; 6408 } 6409 6410 /// isImpliedCondOperands - Test whether the condition described by Pred, 6411 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6412 /// and FoundRHS is true. 6413 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6414 const SCEV *LHS, const SCEV *RHS, 6415 const SCEV *FoundLHS, 6416 const SCEV *FoundRHS) { 6417 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6418 FoundLHS, FoundRHS) || 6419 // ~x < ~y --> x > y 6420 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6421 getNotSCEV(FoundRHS), 6422 getNotSCEV(FoundLHS)); 6423 } 6424 6425 /// isImpliedCondOperandsHelper - Test whether the condition described by 6426 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6427 /// FoundLHS, and FoundRHS is true. 6428 bool 6429 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6430 const SCEV *LHS, const SCEV *RHS, 6431 const SCEV *FoundLHS, 6432 const SCEV *FoundRHS) { 6433 switch (Pred) { 6434 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6435 case ICmpInst::ICMP_EQ: 6436 case ICmpInst::ICMP_NE: 6437 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6438 return true; 6439 break; 6440 case ICmpInst::ICMP_SLT: 6441 case ICmpInst::ICMP_SLE: 6442 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6443 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6444 return true; 6445 break; 6446 case ICmpInst::ICMP_SGT: 6447 case ICmpInst::ICMP_SGE: 6448 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6449 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6450 return true; 6451 break; 6452 case ICmpInst::ICMP_ULT: 6453 case ICmpInst::ICMP_ULE: 6454 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6455 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6456 return true; 6457 break; 6458 case ICmpInst::ICMP_UGT: 6459 case ICmpInst::ICMP_UGE: 6460 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6461 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6462 return true; 6463 break; 6464 } 6465 6466 return false; 6467 } 6468 6469 // Verify if an linear IV with positive stride can overflow when in a 6470 // less-than comparison, knowing the invariant term of the comparison, the 6471 // stride and the knowledge of NSW/NUW flags on the recurrence. 6472 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 6473 bool IsSigned, bool NoWrap) { 6474 if (NoWrap) return false; 6475 6476 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6477 const SCEV *One = getConstant(Stride->getType(), 1); 6478 6479 if (IsSigned) { 6480 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 6481 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 6482 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 6483 .getSignedMax(); 6484 6485 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 6486 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 6487 } 6488 6489 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 6490 APInt MaxValue = APInt::getMaxValue(BitWidth); 6491 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 6492 .getUnsignedMax(); 6493 6494 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 6495 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 6496 } 6497 6498 // Verify if an linear IV with negative stride can overflow when in a 6499 // greater-than comparison, knowing the invariant term of the comparison, 6500 // the stride and the knowledge of NSW/NUW flags on the recurrence. 6501 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 6502 bool IsSigned, bool NoWrap) { 6503 if (NoWrap) return false; 6504 6505 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6506 const SCEV *One = getConstant(Stride->getType(), 1); 6507 6508 if (IsSigned) { 6509 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 6510 APInt MinValue = APInt::getSignedMinValue(BitWidth); 6511 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 6512 .getSignedMax(); 6513 6514 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 6515 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 6516 } 6517 6518 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 6519 APInt MinValue = APInt::getMinValue(BitWidth); 6520 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 6521 .getUnsignedMax(); 6522 6523 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 6524 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 6525 } 6526 6527 // Compute the backedge taken count knowing the interval difference, the 6528 // stride and presence of the equality in the comparison. 6529 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 6530 bool Equality) { 6531 const SCEV *One = getConstant(Step->getType(), 1); 6532 Delta = Equality ? getAddExpr(Delta, Step) 6533 : getAddExpr(Delta, getMinusSCEV(Step, One)); 6534 return getUDivExpr(Delta, Step); 6535 } 6536 6537 /// HowManyLessThans - Return the number of times a backedge containing the 6538 /// specified less-than comparison will execute. If not computable, return 6539 /// CouldNotCompute. 6540 /// 6541 /// @param IsSubExpr is true when the LHS < RHS condition does not directly 6542 /// control the branch. In this case, we can only compute an iteration count for 6543 /// a subexpression that cannot overflow before evaluating true. 6544 ScalarEvolution::ExitLimit 6545 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6546 const Loop *L, bool IsSigned, 6547 bool IsSubExpr) { 6548 // We handle only IV < Invariant 6549 if (!isLoopInvariant(RHS, L)) 6550 return getCouldNotCompute(); 6551 6552 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 6553 6554 // Avoid weird loops 6555 if (!IV || IV->getLoop() != L || !IV->isAffine()) 6556 return getCouldNotCompute(); 6557 6558 bool NoWrap = !IsSubExpr && 6559 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 6560 6561 const SCEV *Stride = IV->getStepRecurrence(*this); 6562 6563 // Avoid negative or zero stride values 6564 if (!isKnownPositive(Stride)) 6565 return getCouldNotCompute(); 6566 6567 // Avoid proven overflow cases: this will ensure that the backedge taken count 6568 // will not generate any unsigned overflow. Relaxed no-overflow conditions 6569 // exploit NoWrapFlags, allowing to optimize in presence of undefined 6570 // behaviors like the case of C language. 6571 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 6572 return getCouldNotCompute(); 6573 6574 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 6575 : ICmpInst::ICMP_ULT; 6576 const SCEV *Start = IV->getStart(); 6577 const SCEV *End = RHS; 6578 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 6579 End = IsSigned ? getSMaxExpr(RHS, Start) 6580 : getUMaxExpr(RHS, Start); 6581 6582 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 6583 6584 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 6585 : getUnsignedRange(Start).getUnsignedMin(); 6586 6587 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 6588 : getUnsignedRange(Stride).getUnsignedMin(); 6589 6590 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 6591 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 6592 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 6593 6594 // Although End can be a MAX expression we estimate MaxEnd considering only 6595 // the case End = RHS. This is safe because in the other case (End - Start) 6596 // is zero, leading to a zero maximum backedge taken count. 6597 APInt MaxEnd = 6598 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 6599 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 6600 6601 const SCEV *MaxBECount = getCouldNotCompute(); 6602 if (isa<SCEVConstant>(BECount)) 6603 MaxBECount = BECount; 6604 else 6605 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 6606 getConstant(MinStride), false); 6607 6608 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6609 MaxBECount = BECount; 6610 6611 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); 6612 } 6613 6614 ScalarEvolution::ExitLimit 6615 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 6616 const Loop *L, bool IsSigned, 6617 bool IsSubExpr) { 6618 // We handle only IV > Invariant 6619 if (!isLoopInvariant(RHS, L)) 6620 return getCouldNotCompute(); 6621 6622 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 6623 6624 // Avoid weird loops 6625 if (!IV || IV->getLoop() != L || !IV->isAffine()) 6626 return getCouldNotCompute(); 6627 6628 bool NoWrap = !IsSubExpr && 6629 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 6630 6631 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 6632 6633 // Avoid negative or zero stride values 6634 if (!isKnownPositive(Stride)) 6635 return getCouldNotCompute(); 6636 6637 // Avoid proven overflow cases: this will ensure that the backedge taken count 6638 // will not generate any unsigned overflow. Relaxed no-overflow conditions 6639 // exploit NoWrapFlags, allowing to optimize in presence of undefined 6640 // behaviors like the case of C language. 6641 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 6642 return getCouldNotCompute(); 6643 6644 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 6645 : ICmpInst::ICMP_UGT; 6646 6647 const SCEV *Start = IV->getStart(); 6648 const SCEV *End = RHS; 6649 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 6650 End = IsSigned ? getSMinExpr(RHS, Start) 6651 : getUMinExpr(RHS, Start); 6652 6653 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 6654 6655 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 6656 : getUnsignedRange(Start).getUnsignedMax(); 6657 6658 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 6659 : getUnsignedRange(Stride).getUnsignedMin(); 6660 6661 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 6662 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 6663 : APInt::getMinValue(BitWidth) + (MinStride - 1); 6664 6665 // Although End can be a MIN expression we estimate MinEnd considering only 6666 // the case End = RHS. This is safe because in the other case (Start - End) 6667 // is zero, leading to a zero maximum backedge taken count. 6668 APInt MinEnd = 6669 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 6670 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 6671 6672 6673 const SCEV *MaxBECount = getCouldNotCompute(); 6674 if (isa<SCEVConstant>(BECount)) 6675 MaxBECount = BECount; 6676 else 6677 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 6678 getConstant(MinStride), false); 6679 6680 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6681 MaxBECount = BECount; 6682 6683 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); 6684 } 6685 6686 /// getNumIterationsInRange - Return the number of iterations of this loop that 6687 /// produce values in the specified constant range. Another way of looking at 6688 /// this is that it returns the first iteration number where the value is not in 6689 /// the condition, thus computing the exit count. If the iteration count can't 6690 /// be computed, an instance of SCEVCouldNotCompute is returned. 6691 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6692 ScalarEvolution &SE) const { 6693 if (Range.isFullSet()) // Infinite loop. 6694 return SE.getCouldNotCompute(); 6695 6696 // If the start is a non-zero constant, shift the range to simplify things. 6697 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6698 if (!SC->getValue()->isZero()) { 6699 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6700 Operands[0] = SE.getConstant(SC->getType(), 0); 6701 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6702 getNoWrapFlags(FlagNW)); 6703 if (const SCEVAddRecExpr *ShiftedAddRec = 6704 dyn_cast<SCEVAddRecExpr>(Shifted)) 6705 return ShiftedAddRec->getNumIterationsInRange( 6706 Range.subtract(SC->getValue()->getValue()), SE); 6707 // This is strange and shouldn't happen. 6708 return SE.getCouldNotCompute(); 6709 } 6710 6711 // The only time we can solve this is when we have all constant indices. 6712 // Otherwise, we cannot determine the overflow conditions. 6713 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6714 if (!isa<SCEVConstant>(getOperand(i))) 6715 return SE.getCouldNotCompute(); 6716 6717 6718 // Okay at this point we know that all elements of the chrec are constants and 6719 // that the start element is zero. 6720 6721 // First check to see if the range contains zero. If not, the first 6722 // iteration exits. 6723 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6724 if (!Range.contains(APInt(BitWidth, 0))) 6725 return SE.getConstant(getType(), 0); 6726 6727 if (isAffine()) { 6728 // If this is an affine expression then we have this situation: 6729 // Solve {0,+,A} in Range === Ax in Range 6730 6731 // We know that zero is in the range. If A is positive then we know that 6732 // the upper value of the range must be the first possible exit value. 6733 // If A is negative then the lower of the range is the last possible loop 6734 // value. Also note that we already checked for a full range. 6735 APInt One(BitWidth,1); 6736 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6737 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6738 6739 // The exit value should be (End+A)/A. 6740 APInt ExitVal = (End + A).udiv(A); 6741 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6742 6743 // Evaluate at the exit value. If we really did fall out of the valid 6744 // range, then we computed our trip count, otherwise wrap around or other 6745 // things must have happened. 6746 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6747 if (Range.contains(Val->getValue())) 6748 return SE.getCouldNotCompute(); // Something strange happened 6749 6750 // Ensure that the previous value is in the range. This is a sanity check. 6751 assert(Range.contains( 6752 EvaluateConstantChrecAtConstant(this, 6753 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6754 "Linear scev computation is off in a bad way!"); 6755 return SE.getConstant(ExitValue); 6756 } else if (isQuadratic()) { 6757 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6758 // quadratic equation to solve it. To do this, we must frame our problem in 6759 // terms of figuring out when zero is crossed, instead of when 6760 // Range.getUpper() is crossed. 6761 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6762 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6763 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6764 // getNoWrapFlags(FlagNW) 6765 FlagAnyWrap); 6766 6767 // Next, solve the constructed addrec 6768 std::pair<const SCEV *,const SCEV *> Roots = 6769 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6770 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6771 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6772 if (R1) { 6773 // Pick the smallest positive root value. 6774 if (ConstantInt *CB = 6775 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6776 R1->getValue(), R2->getValue()))) { 6777 if (CB->getZExtValue() == false) 6778 std::swap(R1, R2); // R1 is the minimum root now. 6779 6780 // Make sure the root is not off by one. The returned iteration should 6781 // not be in the range, but the previous one should be. When solving 6782 // for "X*X < 5", for example, we should not return a root of 2. 6783 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6784 R1->getValue(), 6785 SE); 6786 if (Range.contains(R1Val->getValue())) { 6787 // The next iteration must be out of the range... 6788 ConstantInt *NextVal = 6789 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6790 6791 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6792 if (!Range.contains(R1Val->getValue())) 6793 return SE.getConstant(NextVal); 6794 return SE.getCouldNotCompute(); // Something strange happened 6795 } 6796 6797 // If R1 was not in the range, then it is a good return value. Make 6798 // sure that R1-1 WAS in the range though, just in case. 6799 ConstantInt *NextVal = 6800 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6801 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6802 if (Range.contains(R1Val->getValue())) 6803 return R1; 6804 return SE.getCouldNotCompute(); // Something strange happened 6805 } 6806 } 6807 } 6808 6809 return SE.getCouldNotCompute(); 6810 } 6811 6812 static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) { 6813 APInt A = C1->getValue()->getValue(); 6814 APInt B = C2->getValue()->getValue(); 6815 uint32_t ABW = A.getBitWidth(); 6816 uint32_t BBW = B.getBitWidth(); 6817 6818 if (ABW > BBW) 6819 B = B.sext(ABW); 6820 else if (ABW < BBW) 6821 A = A.sext(BBW); 6822 6823 return APIntOps::srem(A, B); 6824 } 6825 6826 static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) { 6827 APInt A = C1->getValue()->getValue(); 6828 APInt B = C2->getValue()->getValue(); 6829 uint32_t ABW = A.getBitWidth(); 6830 uint32_t BBW = B.getBitWidth(); 6831 6832 if (ABW > BBW) 6833 B = B.sext(ABW); 6834 else if (ABW < BBW) 6835 A = A.sext(BBW); 6836 6837 return APIntOps::sdiv(A, B); 6838 } 6839 6840 namespace { 6841 struct SCEVGCD : public SCEVVisitor<SCEVGCD, const SCEV *> { 6842 public: 6843 // Pattern match Step into Start. When Step is a multiply expression, find 6844 // the largest subexpression of Step that appears in Start. When Start is an 6845 // add expression, try to match Step in the subexpressions of Start, non 6846 // matching subexpressions are returned under Remainder. 6847 static const SCEV *findGCD(ScalarEvolution &SE, const SCEV *Start, 6848 const SCEV *Step, const SCEV **Remainder) { 6849 assert(Remainder && "Remainder should not be NULL"); 6850 SCEVGCD R(SE, Step, SE.getConstant(Step->getType(), 0)); 6851 const SCEV *Res = R.visit(Start); 6852 *Remainder = R.Remainder; 6853 return Res; 6854 } 6855 6856 SCEVGCD(ScalarEvolution &S, const SCEV *G, const SCEV *R) 6857 : SE(S), GCD(G), Remainder(R) { 6858 Zero = SE.getConstant(GCD->getType(), 0); 6859 One = SE.getConstant(GCD->getType(), 1); 6860 } 6861 6862 const SCEV *visitConstant(const SCEVConstant *Constant) { 6863 if (GCD == Constant || Constant == Zero) 6864 return GCD; 6865 6866 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) { 6867 const SCEV *Res = SE.getConstant(gcd(Constant, CGCD)); 6868 if (Res != One) 6869 return Res; 6870 6871 Remainder = SE.getConstant(srem(Constant, CGCD)); 6872 Constant = cast<SCEVConstant>(SE.getMinusSCEV(Constant, Remainder)); 6873 Res = SE.getConstant(gcd(Constant, CGCD)); 6874 return Res; 6875 } 6876 6877 // When GCD is not a constant, it could be that the GCD is an Add, Mul, 6878 // AddRec, etc., in which case we want to find out how many times the 6879 // Constant divides the GCD: we then return that as the new GCD. 6880 const SCEV *Rem = Zero; 6881 const SCEV *Res = findGCD(SE, GCD, Constant, &Rem); 6882 6883 if (Res == One || Rem != Zero) { 6884 Remainder = Constant; 6885 return One; 6886 } 6887 6888 assert(isa<SCEVConstant>(Res) && "Res should be a constant"); 6889 Remainder = SE.getConstant(srem(Constant, cast<SCEVConstant>(Res))); 6890 return Res; 6891 } 6892 6893 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { 6894 if (GCD != Expr) 6895 Remainder = Expr; 6896 return GCD; 6897 } 6898 6899 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 6900 if (GCD != Expr) 6901 Remainder = Expr; 6902 return GCD; 6903 } 6904 6905 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 6906 if (GCD != Expr) 6907 Remainder = Expr; 6908 return GCD; 6909 } 6910 6911 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 6912 if (GCD == Expr) 6913 return GCD; 6914 6915 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 6916 const SCEV *Rem = Zero; 6917 const SCEV *Res = findGCD(SE, Expr->getOperand(e - 1 - i), GCD, &Rem); 6918 6919 // FIXME: There may be ambiguous situations: for instance, 6920 // GCD(-4 + (3 * %m), 2 * %m) where 2 divides -4 and %m divides (3 * %m). 6921 // The order in which the AddExpr is traversed computes a different GCD 6922 // and Remainder. 6923 if (Res != One) 6924 GCD = Res; 6925 if (Rem != Zero) 6926 Remainder = SE.getAddExpr(Remainder, Rem); 6927 } 6928 6929 return GCD; 6930 } 6931 6932 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 6933 if (GCD == Expr) 6934 return GCD; 6935 6936 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 6937 if (Expr->getOperand(i) == GCD) 6938 return GCD; 6939 } 6940 6941 // If we have not returned yet, it means that GCD is not part of Expr. 6942 const SCEV *PartialGCD = One; 6943 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 6944 const SCEV *Rem = Zero; 6945 const SCEV *Res = findGCD(SE, Expr->getOperand(i), GCD, &Rem); 6946 if (Rem != Zero) 6947 // GCD does not divide Expr->getOperand(i). 6948 continue; 6949 6950 if (Res == GCD) 6951 return GCD; 6952 PartialGCD = SE.getMulExpr(PartialGCD, Res); 6953 if (PartialGCD == GCD) 6954 return GCD; 6955 } 6956 6957 if (PartialGCD != One) 6958 return PartialGCD; 6959 6960 Remainder = Expr; 6961 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(GCD); 6962 if (!Mul) 6963 return PartialGCD; 6964 6965 // When the GCD is a multiply expression, try to decompose it: 6966 // this occurs when Step does not divide the Start expression 6967 // as in: {(-4 + (3 * %m)),+,(2 * %m)} 6968 for (int i = 0, e = Mul->getNumOperands(); i < e; ++i) { 6969 const SCEV *Rem = Zero; 6970 const SCEV *Res = findGCD(SE, Expr, Mul->getOperand(i), &Rem); 6971 if (Rem == Zero) { 6972 Remainder = Rem; 6973 return Res; 6974 } 6975 } 6976 6977 return PartialGCD; 6978 } 6979 6980 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { 6981 if (GCD != Expr) 6982 Remainder = Expr; 6983 return GCD; 6984 } 6985 6986 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 6987 if (GCD == Expr) 6988 return GCD; 6989 6990 if (!Expr->isAffine()) { 6991 Remainder = Expr; 6992 return GCD; 6993 } 6994 6995 const SCEV *Rem = Zero; 6996 const SCEV *Res = findGCD(SE, Expr->getOperand(0), GCD, &Rem); 6997 if (Rem != Zero) 6998 Remainder = SE.getAddExpr(Remainder, Rem); 6999 7000 Rem = Zero; 7001 Res = findGCD(SE, Expr->getOperand(1), Res, &Rem); 7002 if (Rem != Zero) { 7003 Remainder = Expr; 7004 return GCD; 7005 } 7006 7007 return Res; 7008 } 7009 7010 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { 7011 if (GCD != Expr) 7012 Remainder = Expr; 7013 return GCD; 7014 } 7015 7016 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { 7017 if (GCD != Expr) 7018 Remainder = Expr; 7019 return GCD; 7020 } 7021 7022 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 7023 if (GCD != Expr) 7024 Remainder = Expr; 7025 return GCD; 7026 } 7027 7028 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 7029 return One; 7030 } 7031 7032 private: 7033 ScalarEvolution &SE; 7034 const SCEV *GCD, *Remainder, *Zero, *One; 7035 }; 7036 7037 struct SCEVDivision : public SCEVVisitor<SCEVDivision, const SCEV *> { 7038 public: 7039 // Remove from Start all multiples of Step. 7040 static const SCEV *divide(ScalarEvolution &SE, const SCEV *Start, 7041 const SCEV *Step) { 7042 SCEVDivision D(SE, Step); 7043 const SCEV *Rem = D.Zero; 7044 (void)Rem; 7045 // The division is guaranteed to succeed: Step should divide Start with no 7046 // remainder. 7047 assert(Step == SCEVGCD::findGCD(SE, Start, Step, &Rem) && Rem == D.Zero && 7048 "Step should divide Start with no remainder."); 7049 return D.visit(Start); 7050 } 7051 7052 SCEVDivision(ScalarEvolution &S, const SCEV *G) : SE(S), GCD(G) { 7053 Zero = SE.getConstant(GCD->getType(), 0); 7054 One = SE.getConstant(GCD->getType(), 1); 7055 } 7056 7057 const SCEV *visitConstant(const SCEVConstant *Constant) { 7058 if (GCD == Constant) 7059 return One; 7060 7061 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) 7062 return SE.getConstant(sdiv(Constant, CGCD)); 7063 return Constant; 7064 } 7065 7066 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { 7067 if (GCD == Expr) 7068 return One; 7069 return Expr; 7070 } 7071 7072 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 7073 if (GCD == Expr) 7074 return One; 7075 return Expr; 7076 } 7077 7078 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 7079 if (GCD == Expr) 7080 return One; 7081 return Expr; 7082 } 7083 7084 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 7085 if (GCD == Expr) 7086 return One; 7087 7088 SmallVector<const SCEV *, 2> Operands; 7089 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) 7090 Operands.push_back(divide(SE, Expr->getOperand(i), GCD)); 7091 7092 if (Operands.size() == 1) 7093 return Operands[0]; 7094 return SE.getAddExpr(Operands); 7095 } 7096 7097 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 7098 if (GCD == Expr) 7099 return One; 7100 7101 bool FoundGCDTerm = false; 7102 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) 7103 if (Expr->getOperand(i) == GCD) 7104 FoundGCDTerm = true; 7105 7106 SmallVector<const SCEV *, 2> Operands; 7107 if (FoundGCDTerm) { 7108 FoundGCDTerm = false; 7109 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 7110 if (FoundGCDTerm) 7111 Operands.push_back(Expr->getOperand(i)); 7112 else if (Expr->getOperand(i) == GCD) 7113 FoundGCDTerm = true; 7114 else 7115 Operands.push_back(Expr->getOperand(i)); 7116 } 7117 } else { 7118 FoundGCDTerm = false; 7119 const SCEV *PartialGCD = One; 7120 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 7121 if (PartialGCD == GCD) { 7122 Operands.push_back(Expr->getOperand(i)); 7123 continue; 7124 } 7125 7126 const SCEV *Rem = Zero; 7127 const SCEV *Res = SCEVGCD::findGCD(SE, Expr->getOperand(i), GCD, &Rem); 7128 if (Rem == Zero) { 7129 PartialGCD = SE.getMulExpr(PartialGCD, Res); 7130 Operands.push_back(divide(SE, Expr->getOperand(i), GCD)); 7131 } else { 7132 Operands.push_back(Expr->getOperand(i)); 7133 } 7134 } 7135 } 7136 7137 if (Operands.size() == 1) 7138 return Operands[0]; 7139 return SE.getMulExpr(Operands); 7140 } 7141 7142 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { 7143 if (GCD == Expr) 7144 return One; 7145 return Expr; 7146 } 7147 7148 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 7149 if (GCD == Expr) 7150 return One; 7151 7152 assert(Expr->isAffine() && "Expr should be affine"); 7153 7154 const SCEV *Start = divide(SE, Expr->getStart(), GCD); 7155 const SCEV *Step = divide(SE, Expr->getStepRecurrence(SE), GCD); 7156 7157 return SE.getAddRecExpr(Start, Step, Expr->getLoop(), 7158 Expr->getNoWrapFlags()); 7159 } 7160 7161 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { 7162 if (GCD == Expr) 7163 return One; 7164 return Expr; 7165 } 7166 7167 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { 7168 if (GCD == Expr) 7169 return One; 7170 return Expr; 7171 } 7172 7173 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 7174 if (GCD == Expr) 7175 return One; 7176 return Expr; 7177 } 7178 7179 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 7180 return Expr; 7181 } 7182 7183 private: 7184 ScalarEvolution &SE; 7185 const SCEV *GCD, *Zero, *One; 7186 }; 7187 } 7188 7189 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 7190 /// sizes of an array access. Returns the remainder of the delinearization that 7191 /// is the offset start of the array. The SCEV->delinearize algorithm computes 7192 /// the multiples of SCEV coefficients: that is a pattern matching of sub 7193 /// expressions in the stride and base of a SCEV corresponding to the 7194 /// computation of a GCD (greatest common divisor) of base and stride. When 7195 /// SCEV->delinearize fails, it returns the SCEV unchanged. 7196 /// 7197 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 7198 /// 7199 /// void foo(long n, long m, long o, double A[n][m][o]) { 7200 /// 7201 /// for (long i = 0; i < n; i++) 7202 /// for (long j = 0; j < m; j++) 7203 /// for (long k = 0; k < o; k++) 7204 /// A[i][j][k] = 1.0; 7205 /// } 7206 /// 7207 /// the delinearization input is the following AddRec SCEV: 7208 /// 7209 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 7210 /// 7211 /// From this SCEV, we are able to say that the base offset of the access is %A 7212 /// because it appears as an offset that does not divide any of the strides in 7213 /// the loops: 7214 /// 7215 /// CHECK: Base offset: %A 7216 /// 7217 /// and then SCEV->delinearize determines the size of some of the dimensions of 7218 /// the array as these are the multiples by which the strides are happening: 7219 /// 7220 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 7221 /// 7222 /// Note that the outermost dimension remains of UnknownSize because there are 7223 /// no strides that would help identifying the size of the last dimension: when 7224 /// the array has been statically allocated, one could compute the size of that 7225 /// dimension by dividing the overall size of the array by the size of the known 7226 /// dimensions: %m * %o * 8. 7227 /// 7228 /// Finally delinearize provides the access functions for the array reference 7229 /// that does correspond to A[i][j][k] of the above C testcase: 7230 /// 7231 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 7232 /// 7233 /// The testcases are checking the output of a function pass: 7234 /// DelinearizationPass that walks through all loads and stores of a function 7235 /// asking for the SCEV of the memory access with respect to all enclosing 7236 /// loops, calling SCEV->delinearize on that and printing the results. 7237 7238 const SCEV * 7239 SCEVAddRecExpr::delinearize(ScalarEvolution &SE, 7240 SmallVectorImpl<const SCEV *> &Subscripts, 7241 SmallVectorImpl<const SCEV *> &Sizes) const { 7242 // Early exit in case this SCEV is not an affine multivariate function. 7243 if (!this->isAffine()) 7244 return this; 7245 7246 const SCEV *Start = this->getStart(); 7247 const SCEV *Step = this->getStepRecurrence(SE); 7248 7249 // Build the SCEV representation of the canonical induction variable in the 7250 // loop of this SCEV. 7251 const SCEV *Zero = SE.getConstant(this->getType(), 0); 7252 const SCEV *One = SE.getConstant(this->getType(), 1); 7253 const SCEV *IV = 7254 SE.getAddRecExpr(Zero, One, this->getLoop(), this->getNoWrapFlags()); 7255 7256 DEBUG(dbgs() << "(delinearize: " << *this << "\n"); 7257 7258 // Currently we fail to delinearize when the stride of this SCEV is 1. We 7259 // could decide to not fail in this case: we could just return 1 for the size 7260 // of the subscript, and this same SCEV for the access function. 7261 if (Step == One) { 7262 DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n"); 7263 return this; 7264 } 7265 7266 // Find the GCD and Remainder of the Start and Step coefficients of this SCEV. 7267 const SCEV *Remainder = NULL; 7268 const SCEV *GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder); 7269 7270 DEBUG(dbgs() << "GCD: " << *GCD << "\n"); 7271 DEBUG(dbgs() << "Remainder: " << *Remainder << "\n"); 7272 7273 // Same remark as above: we currently fail the delinearization, although we 7274 // can very well handle this special case. 7275 if (GCD == One) { 7276 DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n"); 7277 return this; 7278 } 7279 7280 // As findGCD computed Remainder, GCD divides "Start - Remainder." The 7281 // Quotient is then this SCEV without Remainder, scaled down by the GCD. The 7282 // Quotient is what will be used in the next subscript delinearization. 7283 const SCEV *Quotient = 7284 SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD); 7285 DEBUG(dbgs() << "Quotient: " << *Quotient << "\n"); 7286 7287 const SCEV *Rem; 7288 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Quotient)) 7289 // Recursively call delinearize on the Quotient until there are no more 7290 // multiples that can be recognized. 7291 Rem = AR->delinearize(SE, Subscripts, Sizes); 7292 else 7293 Rem = Quotient; 7294 7295 // Scale up the canonical induction variable IV by whatever remains from the 7296 // Step after division by the GCD: the GCD is the size of all the sub-array. 7297 if (Step != GCD) { 7298 Step = SCEVDivision::divide(SE, Step, GCD); 7299 IV = SE.getMulExpr(IV, Step); 7300 } 7301 // The access function in the current subscript is computed as the canonical 7302 // induction variable IV (potentially scaled up by the step) and offset by 7303 // Rem, the offset of delinearization in the sub-array. 7304 const SCEV *Index = SE.getAddExpr(IV, Rem); 7305 7306 // Record the access function and the size of the current subscript. 7307 Subscripts.push_back(Index); 7308 Sizes.push_back(GCD); 7309 7310 #ifndef NDEBUG 7311 int Size = Sizes.size(); 7312 DEBUG(dbgs() << "succeeded to delinearize " << *this << "\n"); 7313 DEBUG(dbgs() << "ArrayDecl[UnknownSize]"); 7314 for (int i = 0; i < Size - 1; i++) 7315 DEBUG(dbgs() << "[" << *Sizes[i] << "]"); 7316 DEBUG(dbgs() << " with elements of " << *Sizes[Size - 1] << " bytes.\n"); 7317 7318 DEBUG(dbgs() << "ArrayRef"); 7319 for (int i = 0; i < Size; i++) 7320 DEBUG(dbgs() << "[" << *Subscripts[i] << "]"); 7321 DEBUG(dbgs() << "\n)\n"); 7322 #endif 7323 7324 return Remainder; 7325 } 7326 7327 //===----------------------------------------------------------------------===// 7328 // SCEVCallbackVH Class Implementation 7329 //===----------------------------------------------------------------------===// 7330 7331 void ScalarEvolution::SCEVCallbackVH::deleted() { 7332 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7333 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 7334 SE->ConstantEvolutionLoopExitValue.erase(PN); 7335 SE->ValueExprMap.erase(getValPtr()); 7336 // this now dangles! 7337 } 7338 7339 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 7340 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7341 7342 // Forget all the expressions associated with users of the old value, 7343 // so that future queries will recompute the expressions using the new 7344 // value. 7345 Value *Old = getValPtr(); 7346 SmallVector<User *, 16> Worklist; 7347 SmallPtrSet<User *, 8> Visited; 7348 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 7349 UI != UE; ++UI) 7350 Worklist.push_back(*UI); 7351 while (!Worklist.empty()) { 7352 User *U = Worklist.pop_back_val(); 7353 // Deleting the Old value will cause this to dangle. Postpone 7354 // that until everything else is done. 7355 if (U == Old) 7356 continue; 7357 if (!Visited.insert(U)) 7358 continue; 7359 if (PHINode *PN = dyn_cast<PHINode>(U)) 7360 SE->ConstantEvolutionLoopExitValue.erase(PN); 7361 SE->ValueExprMap.erase(U); 7362 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 7363 UI != UE; ++UI) 7364 Worklist.push_back(*UI); 7365 } 7366 // Delete the Old value. 7367 if (PHINode *PN = dyn_cast<PHINode>(Old)) 7368 SE->ConstantEvolutionLoopExitValue.erase(PN); 7369 SE->ValueExprMap.erase(Old); 7370 // this now dangles! 7371 } 7372 7373 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 7374 : CallbackVH(V), SE(se) {} 7375 7376 //===----------------------------------------------------------------------===// 7377 // ScalarEvolution Class Implementation 7378 //===----------------------------------------------------------------------===// 7379 7380 ScalarEvolution::ScalarEvolution() 7381 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), FirstUnknown(0) { 7382 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 7383 } 7384 7385 bool ScalarEvolution::runOnFunction(Function &F) { 7386 this->F = &F; 7387 LI = &getAnalysis<LoopInfo>(); 7388 DL = getAnalysisIfAvailable<DataLayout>(); 7389 TLI = &getAnalysis<TargetLibraryInfo>(); 7390 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7391 return false; 7392 } 7393 7394 void ScalarEvolution::releaseMemory() { 7395 // Iterate through all the SCEVUnknown instances and call their 7396 // destructors, so that they release their references to their values. 7397 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 7398 U->~SCEVUnknown(); 7399 FirstUnknown = 0; 7400 7401 ValueExprMap.clear(); 7402 7403 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 7404 // that a loop had multiple computable exits. 7405 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7406 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 7407 I != E; ++I) { 7408 I->second.clear(); 7409 } 7410 7411 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 7412 7413 BackedgeTakenCounts.clear(); 7414 ConstantEvolutionLoopExitValue.clear(); 7415 ValuesAtScopes.clear(); 7416 LoopDispositions.clear(); 7417 BlockDispositions.clear(); 7418 UnsignedRanges.clear(); 7419 SignedRanges.clear(); 7420 UniqueSCEVs.clear(); 7421 SCEVAllocator.Reset(); 7422 } 7423 7424 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 7425 AU.setPreservesAll(); 7426 AU.addRequiredTransitive<LoopInfo>(); 7427 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 7428 AU.addRequired<TargetLibraryInfo>(); 7429 } 7430 7431 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 7432 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 7433 } 7434 7435 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 7436 const Loop *L) { 7437 // Print all inner loops first 7438 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 7439 PrintLoopInfo(OS, SE, *I); 7440 7441 OS << "Loop "; 7442 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 7443 OS << ": "; 7444 7445 SmallVector<BasicBlock *, 8> ExitBlocks; 7446 L->getExitBlocks(ExitBlocks); 7447 if (ExitBlocks.size() != 1) 7448 OS << "<multiple exits> "; 7449 7450 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 7451 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 7452 } else { 7453 OS << "Unpredictable backedge-taken count. "; 7454 } 7455 7456 OS << "\n" 7457 "Loop "; 7458 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 7459 OS << ": "; 7460 7461 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 7462 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 7463 } else { 7464 OS << "Unpredictable max backedge-taken count. "; 7465 } 7466 7467 OS << "\n"; 7468 } 7469 7470 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 7471 // ScalarEvolution's implementation of the print method is to print 7472 // out SCEV values of all instructions that are interesting. Doing 7473 // this potentially causes it to create new SCEV objects though, 7474 // which technically conflicts with the const qualifier. This isn't 7475 // observable from outside the class though, so casting away the 7476 // const isn't dangerous. 7477 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7478 7479 OS << "Classifying expressions for: "; 7480 F->printAsOperand(OS, /*PrintType=*/false); 7481 OS << "\n"; 7482 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 7483 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 7484 OS << *I << '\n'; 7485 OS << " --> "; 7486 const SCEV *SV = SE.getSCEV(&*I); 7487 SV->print(OS); 7488 7489 const Loop *L = LI->getLoopFor((*I).getParent()); 7490 7491 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 7492 if (AtUse != SV) { 7493 OS << " --> "; 7494 AtUse->print(OS); 7495 } 7496 7497 if (L) { 7498 OS << "\t\t" "Exits: "; 7499 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 7500 if (!SE.isLoopInvariant(ExitValue, L)) { 7501 OS << "<<Unknown>>"; 7502 } else { 7503 OS << *ExitValue; 7504 } 7505 } 7506 7507 OS << "\n"; 7508 } 7509 7510 OS << "Determining loop execution counts for: "; 7511 F->printAsOperand(OS, /*PrintType=*/false); 7512 OS << "\n"; 7513 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 7514 PrintLoopInfo(OS, &SE, *I); 7515 } 7516 7517 ScalarEvolution::LoopDisposition 7518 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 7519 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S]; 7520 for (unsigned u = 0; u < Values.size(); u++) { 7521 if (Values[u].first == L) 7522 return Values[u].second; 7523 } 7524 Values.push_back(std::make_pair(L, LoopVariant)); 7525 LoopDisposition D = computeLoopDisposition(S, L); 7526 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S]; 7527 for (unsigned u = Values2.size(); u > 0; u--) { 7528 if (Values2[u - 1].first == L) { 7529 Values2[u - 1].second = D; 7530 break; 7531 } 7532 } 7533 return D; 7534 } 7535 7536 ScalarEvolution::LoopDisposition 7537 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 7538 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 7539 case scConstant: 7540 return LoopInvariant; 7541 case scTruncate: 7542 case scZeroExtend: 7543 case scSignExtend: 7544 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 7545 case scAddRecExpr: { 7546 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 7547 7548 // If L is the addrec's loop, it's computable. 7549 if (AR->getLoop() == L) 7550 return LoopComputable; 7551 7552 // Add recurrences are never invariant in the function-body (null loop). 7553 if (!L) 7554 return LoopVariant; 7555 7556 // This recurrence is variant w.r.t. L if L contains AR's loop. 7557 if (L->contains(AR->getLoop())) 7558 return LoopVariant; 7559 7560 // This recurrence is invariant w.r.t. L if AR's loop contains L. 7561 if (AR->getLoop()->contains(L)) 7562 return LoopInvariant; 7563 7564 // This recurrence is variant w.r.t. L if any of its operands 7565 // are variant. 7566 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 7567 I != E; ++I) 7568 if (!isLoopInvariant(*I, L)) 7569 return LoopVariant; 7570 7571 // Otherwise it's loop-invariant. 7572 return LoopInvariant; 7573 } 7574 case scAddExpr: 7575 case scMulExpr: 7576 case scUMaxExpr: 7577 case scSMaxExpr: { 7578 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 7579 bool HasVarying = false; 7580 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 7581 I != E; ++I) { 7582 LoopDisposition D = getLoopDisposition(*I, L); 7583 if (D == LoopVariant) 7584 return LoopVariant; 7585 if (D == LoopComputable) 7586 HasVarying = true; 7587 } 7588 return HasVarying ? LoopComputable : LoopInvariant; 7589 } 7590 case scUDivExpr: { 7591 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 7592 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 7593 if (LD == LoopVariant) 7594 return LoopVariant; 7595 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 7596 if (RD == LoopVariant) 7597 return LoopVariant; 7598 return (LD == LoopInvariant && RD == LoopInvariant) ? 7599 LoopInvariant : LoopComputable; 7600 } 7601 case scUnknown: 7602 // All non-instruction values are loop invariant. All instructions are loop 7603 // invariant if they are not contained in the specified loop. 7604 // Instructions are never considered invariant in the function body 7605 // (null loop) because they are defined within the "loop". 7606 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 7607 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 7608 return LoopInvariant; 7609 case scCouldNotCompute: 7610 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7611 } 7612 llvm_unreachable("Unknown SCEV kind!"); 7613 } 7614 7615 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 7616 return getLoopDisposition(S, L) == LoopInvariant; 7617 } 7618 7619 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 7620 return getLoopDisposition(S, L) == LoopComputable; 7621 } 7622 7623 ScalarEvolution::BlockDisposition 7624 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 7625 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S]; 7626 for (unsigned u = 0; u < Values.size(); u++) { 7627 if (Values[u].first == BB) 7628 return Values[u].second; 7629 } 7630 Values.push_back(std::make_pair(BB, DoesNotDominateBlock)); 7631 BlockDisposition D = computeBlockDisposition(S, BB); 7632 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S]; 7633 for (unsigned u = Values2.size(); u > 0; u--) { 7634 if (Values2[u - 1].first == BB) { 7635 Values2[u - 1].second = D; 7636 break; 7637 } 7638 } 7639 return D; 7640 } 7641 7642 ScalarEvolution::BlockDisposition 7643 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 7644 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 7645 case scConstant: 7646 return ProperlyDominatesBlock; 7647 case scTruncate: 7648 case scZeroExtend: 7649 case scSignExtend: 7650 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 7651 case scAddRecExpr: { 7652 // This uses a "dominates" query instead of "properly dominates" query 7653 // to test for proper dominance too, because the instruction which 7654 // produces the addrec's value is a PHI, and a PHI effectively properly 7655 // dominates its entire containing block. 7656 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 7657 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 7658 return DoesNotDominateBlock; 7659 } 7660 // FALL THROUGH into SCEVNAryExpr handling. 7661 case scAddExpr: 7662 case scMulExpr: 7663 case scUMaxExpr: 7664 case scSMaxExpr: { 7665 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 7666 bool Proper = true; 7667 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 7668 I != E; ++I) { 7669 BlockDisposition D = getBlockDisposition(*I, BB); 7670 if (D == DoesNotDominateBlock) 7671 return DoesNotDominateBlock; 7672 if (D == DominatesBlock) 7673 Proper = false; 7674 } 7675 return Proper ? ProperlyDominatesBlock : DominatesBlock; 7676 } 7677 case scUDivExpr: { 7678 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 7679 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 7680 BlockDisposition LD = getBlockDisposition(LHS, BB); 7681 if (LD == DoesNotDominateBlock) 7682 return DoesNotDominateBlock; 7683 BlockDisposition RD = getBlockDisposition(RHS, BB); 7684 if (RD == DoesNotDominateBlock) 7685 return DoesNotDominateBlock; 7686 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 7687 ProperlyDominatesBlock : DominatesBlock; 7688 } 7689 case scUnknown: 7690 if (Instruction *I = 7691 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 7692 if (I->getParent() == BB) 7693 return DominatesBlock; 7694 if (DT->properlyDominates(I->getParent(), BB)) 7695 return ProperlyDominatesBlock; 7696 return DoesNotDominateBlock; 7697 } 7698 return ProperlyDominatesBlock; 7699 case scCouldNotCompute: 7700 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7701 } 7702 llvm_unreachable("Unknown SCEV kind!"); 7703 } 7704 7705 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 7706 return getBlockDisposition(S, BB) >= DominatesBlock; 7707 } 7708 7709 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 7710 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 7711 } 7712 7713 namespace { 7714 // Search for a SCEV expression node within an expression tree. 7715 // Implements SCEVTraversal::Visitor. 7716 struct SCEVSearch { 7717 const SCEV *Node; 7718 bool IsFound; 7719 7720 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 7721 7722 bool follow(const SCEV *S) { 7723 IsFound |= (S == Node); 7724 return !IsFound; 7725 } 7726 bool isDone() const { return IsFound; } 7727 }; 7728 } 7729 7730 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 7731 SCEVSearch Search(Op); 7732 visitAll(S, Search); 7733 return Search.IsFound; 7734 } 7735 7736 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 7737 ValuesAtScopes.erase(S); 7738 LoopDispositions.erase(S); 7739 BlockDispositions.erase(S); 7740 UnsignedRanges.erase(S); 7741 SignedRanges.erase(S); 7742 7743 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7744 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 7745 BackedgeTakenInfo &BEInfo = I->second; 7746 if (BEInfo.hasOperand(S, this)) { 7747 BEInfo.clear(); 7748 BackedgeTakenCounts.erase(I++); 7749 } 7750 else 7751 ++I; 7752 } 7753 } 7754 7755 typedef DenseMap<const Loop *, std::string> VerifyMap; 7756 7757 /// replaceSubString - Replaces all occurrences of From in Str with To. 7758 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 7759 size_t Pos = 0; 7760 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 7761 Str.replace(Pos, From.size(), To.data(), To.size()); 7762 Pos += To.size(); 7763 } 7764 } 7765 7766 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 7767 static void 7768 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 7769 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 7770 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 7771 7772 std::string &S = Map[L]; 7773 if (S.empty()) { 7774 raw_string_ostream OS(S); 7775 SE.getBackedgeTakenCount(L)->print(OS); 7776 7777 // false and 0 are semantically equivalent. This can happen in dead loops. 7778 replaceSubString(OS.str(), "false", "0"); 7779 // Remove wrap flags, their use in SCEV is highly fragile. 7780 // FIXME: Remove this when SCEV gets smarter about them. 7781 replaceSubString(OS.str(), "<nw>", ""); 7782 replaceSubString(OS.str(), "<nsw>", ""); 7783 replaceSubString(OS.str(), "<nuw>", ""); 7784 } 7785 } 7786 } 7787 7788 void ScalarEvolution::verifyAnalysis() const { 7789 if (!VerifySCEV) 7790 return; 7791 7792 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7793 7794 // Gather stringified backedge taken counts for all loops using SCEV's caches. 7795 // FIXME: It would be much better to store actual values instead of strings, 7796 // but SCEV pointers will change if we drop the caches. 7797 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 7798 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 7799 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 7800 7801 // Gather stringified backedge taken counts for all loops without using 7802 // SCEV's caches. 7803 SE.releaseMemory(); 7804 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 7805 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 7806 7807 // Now compare whether they're the same with and without caches. This allows 7808 // verifying that no pass changed the cache. 7809 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 7810 "New loops suddenly appeared!"); 7811 7812 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 7813 OldE = BackedgeDumpsOld.end(), 7814 NewI = BackedgeDumpsNew.begin(); 7815 OldI != OldE; ++OldI, ++NewI) { 7816 assert(OldI->first == NewI->first && "Loop order changed!"); 7817 7818 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 7819 // changes. 7820 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 7821 // means that a pass is buggy or SCEV has to learn a new pattern but is 7822 // usually not harmful. 7823 if (OldI->second != NewI->second && 7824 OldI->second.find("undef") == std::string::npos && 7825 NewI->second.find("undef") == std::string::npos && 7826 OldI->second != "***COULDNOTCOMPUTE***" && 7827 NewI->second != "***COULDNOTCOMPUTE***") { 7828 dbgs() << "SCEVValidator: SCEV for loop '" 7829 << OldI->first->getHeader()->getName() 7830 << "' changed from '" << OldI->second 7831 << "' to '" << NewI->second << "'!\n"; 7832 std::abort(); 7833 } 7834 } 7835 7836 // TODO: Verify more things. 7837 } 7838