1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumArrayLenItCounts, 142 "Number of trip counts computed with array length"); 143 STATISTIC(NumTripCountsComputed, 144 "Number of loops with predictable loop counts"); 145 STATISTIC(NumTripCountsNotComputed, 146 "Number of loops without predictable loop counts"); 147 STATISTIC(NumBruteForceTripCountsComputed, 148 "Number of loops with trip counts computed by force"); 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::ZeroOrMore, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 159 static cl::opt<bool> VerifySCEV( 160 "verify-scev", cl::Hidden, 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 230 //===----------------------------------------------------------------------===// 231 // SCEV class definitions 232 //===----------------------------------------------------------------------===// 233 234 //===----------------------------------------------------------------------===// 235 // Implementation of the SCEV class. 236 // 237 238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 239 LLVM_DUMP_METHOD void SCEV::dump() const { 240 print(dbgs()); 241 dbgs() << '\n'; 242 } 243 #endif 244 245 void SCEV::print(raw_ostream &OS) const { 246 switch (static_cast<SCEVTypes>(getSCEVType())) { 247 case scConstant: 248 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 249 return; 250 case scTruncate: { 251 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 252 const SCEV *Op = Trunc->getOperand(); 253 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 254 << *Trunc->getType() << ")"; 255 return; 256 } 257 case scZeroExtend: { 258 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 259 const SCEV *Op = ZExt->getOperand(); 260 OS << "(zext " << *Op->getType() << " " << *Op << " to " 261 << *ZExt->getType() << ")"; 262 return; 263 } 264 case scSignExtend: { 265 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 266 const SCEV *Op = SExt->getOperand(); 267 OS << "(sext " << *Op->getType() << " " << *Op << " to " 268 << *SExt->getType() << ")"; 269 return; 270 } 271 case scAddRecExpr: { 272 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 273 OS << "{" << *AR->getOperand(0); 274 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 275 OS << ",+," << *AR->getOperand(i); 276 OS << "}<"; 277 if (AR->hasNoUnsignedWrap()) 278 OS << "nuw><"; 279 if (AR->hasNoSignedWrap()) 280 OS << "nsw><"; 281 if (AR->hasNoSelfWrap() && 282 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 283 OS << "nw><"; 284 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 285 OS << ">"; 286 return; 287 } 288 case scAddExpr: 289 case scMulExpr: 290 case scUMaxExpr: 291 case scSMaxExpr: 292 case scUMinExpr: 293 case scSMinExpr: { 294 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 295 const char *OpStr = nullptr; 296 switch (NAry->getSCEVType()) { 297 case scAddExpr: OpStr = " + "; break; 298 case scMulExpr: OpStr = " * "; break; 299 case scUMaxExpr: OpStr = " umax "; break; 300 case scSMaxExpr: OpStr = " smax "; break; 301 case scUMinExpr: 302 OpStr = " umin "; 303 break; 304 case scSMinExpr: 305 OpStr = " smin "; 306 break; 307 } 308 OS << "("; 309 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 310 I != E; ++I) { 311 OS << **I; 312 if (std::next(I) != E) 313 OS << OpStr; 314 } 315 OS << ")"; 316 switch (NAry->getSCEVType()) { 317 case scAddExpr: 318 case scMulExpr: 319 if (NAry->hasNoUnsignedWrap()) 320 OS << "<nuw>"; 321 if (NAry->hasNoSignedWrap()) 322 OS << "<nsw>"; 323 } 324 return; 325 } 326 case scUDivExpr: { 327 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 328 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 329 return; 330 } 331 case scUnknown: { 332 const SCEVUnknown *U = cast<SCEVUnknown>(this); 333 Type *AllocTy; 334 if (U->isSizeOf(AllocTy)) { 335 OS << "sizeof(" << *AllocTy << ")"; 336 return; 337 } 338 if (U->isAlignOf(AllocTy)) { 339 OS << "alignof(" << *AllocTy << ")"; 340 return; 341 } 342 343 Type *CTy; 344 Constant *FieldNo; 345 if (U->isOffsetOf(CTy, FieldNo)) { 346 OS << "offsetof(" << *CTy << ", "; 347 FieldNo->printAsOperand(OS, false); 348 OS << ")"; 349 return; 350 } 351 352 // Otherwise just print it normally. 353 U->getValue()->printAsOperand(OS, false); 354 return; 355 } 356 case scCouldNotCompute: 357 OS << "***COULDNOTCOMPUTE***"; 358 return; 359 } 360 llvm_unreachable("Unknown SCEV kind!"); 361 } 362 363 Type *SCEV::getType() const { 364 switch (static_cast<SCEVTypes>(getSCEVType())) { 365 case scConstant: 366 return cast<SCEVConstant>(this)->getType(); 367 case scTruncate: 368 case scZeroExtend: 369 case scSignExtend: 370 return cast<SCEVCastExpr>(this)->getType(); 371 case scAddRecExpr: 372 case scMulExpr: 373 case scUMaxExpr: 374 case scSMaxExpr: 375 case scUMinExpr: 376 case scSMinExpr: 377 return cast<SCEVNAryExpr>(this)->getType(); 378 case scAddExpr: 379 return cast<SCEVAddExpr>(this)->getType(); 380 case scUDivExpr: 381 return cast<SCEVUDivExpr>(this)->getType(); 382 case scUnknown: 383 return cast<SCEVUnknown>(this)->getType(); 384 case scCouldNotCompute: 385 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 386 } 387 llvm_unreachable("Unknown SCEV kind!"); 388 } 389 390 bool SCEV::isZero() const { 391 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 392 return SC->getValue()->isZero(); 393 return false; 394 } 395 396 bool SCEV::isOne() const { 397 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 398 return SC->getValue()->isOne(); 399 return false; 400 } 401 402 bool SCEV::isAllOnesValue() const { 403 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 404 return SC->getValue()->isMinusOne(); 405 return false; 406 } 407 408 bool SCEV::isNonConstantNegative() const { 409 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 410 if (!Mul) return false; 411 412 // If there is a constant factor, it will be first. 413 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 414 if (!SC) return false; 415 416 // Return true if the value is negative, this matches things like (-42 * V). 417 return SC->getAPInt().isNegative(); 418 } 419 420 SCEVCouldNotCompute::SCEVCouldNotCompute() : 421 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 422 423 bool SCEVCouldNotCompute::classof(const SCEV *S) { 424 return S->getSCEVType() == scCouldNotCompute; 425 } 426 427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 428 FoldingSetNodeID ID; 429 ID.AddInteger(scConstant); 430 ID.AddPointer(V); 431 void *IP = nullptr; 432 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 433 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 434 UniqueSCEVs.InsertNode(S, IP); 435 return S; 436 } 437 438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 439 return getConstant(ConstantInt::get(getContext(), Val)); 440 } 441 442 const SCEV * 443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 444 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 445 return getConstant(ConstantInt::get(ITy, V, isSigned)); 446 } 447 448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 449 unsigned SCEVTy, const SCEV *op, Type *ty) 450 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 451 Operands[0] = op; 452 } 453 454 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 455 const SCEV *op, Type *ty) 456 : SCEVCastExpr(ID, scTruncate, op, ty) { 457 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 458 "Cannot truncate non-integer value!"); 459 } 460 461 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 462 const SCEV *op, Type *ty) 463 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 464 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 465 "Cannot zero extend non-integer value!"); 466 } 467 468 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 469 const SCEV *op, Type *ty) 470 : SCEVCastExpr(ID, scSignExtend, op, ty) { 471 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 472 "Cannot sign extend non-integer value!"); 473 } 474 475 void SCEVUnknown::deleted() { 476 // Clear this SCEVUnknown from various maps. 477 SE->forgetMemoizedResults(this); 478 479 // Remove this SCEVUnknown from the uniquing map. 480 SE->UniqueSCEVs.RemoveNode(this); 481 482 // Release the value. 483 setValPtr(nullptr); 484 } 485 486 void SCEVUnknown::allUsesReplacedWith(Value *New) { 487 // Remove this SCEVUnknown from the uniquing map. 488 SE->UniqueSCEVs.RemoveNode(this); 489 490 // Update this SCEVUnknown to point to the new value. This is needed 491 // because there may still be outstanding SCEVs which still point to 492 // this SCEVUnknown. 493 setValPtr(New); 494 } 495 496 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 497 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 498 if (VCE->getOpcode() == Instruction::PtrToInt) 499 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 500 if (CE->getOpcode() == Instruction::GetElementPtr && 501 CE->getOperand(0)->isNullValue() && 502 CE->getNumOperands() == 2) 503 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 504 if (CI->isOne()) { 505 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 506 ->getElementType(); 507 return true; 508 } 509 510 return false; 511 } 512 513 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 514 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 515 if (VCE->getOpcode() == Instruction::PtrToInt) 516 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 517 if (CE->getOpcode() == Instruction::GetElementPtr && 518 CE->getOperand(0)->isNullValue()) { 519 Type *Ty = 520 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 521 if (StructType *STy = dyn_cast<StructType>(Ty)) 522 if (!STy->isPacked() && 523 CE->getNumOperands() == 3 && 524 CE->getOperand(1)->isNullValue()) { 525 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 526 if (CI->isOne() && 527 STy->getNumElements() == 2 && 528 STy->getElementType(0)->isIntegerTy(1)) { 529 AllocTy = STy->getElementType(1); 530 return true; 531 } 532 } 533 } 534 535 return false; 536 } 537 538 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 539 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 540 if (VCE->getOpcode() == Instruction::PtrToInt) 541 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 542 if (CE->getOpcode() == Instruction::GetElementPtr && 543 CE->getNumOperands() == 3 && 544 CE->getOperand(0)->isNullValue() && 545 CE->getOperand(1)->isNullValue()) { 546 Type *Ty = 547 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 548 // Ignore vector types here so that ScalarEvolutionExpander doesn't 549 // emit getelementptrs that index into vectors. 550 if (Ty->isStructTy() || Ty->isArrayTy()) { 551 CTy = Ty; 552 FieldNo = CE->getOperand(2); 553 return true; 554 } 555 } 556 557 return false; 558 } 559 560 //===----------------------------------------------------------------------===// 561 // SCEV Utilities 562 //===----------------------------------------------------------------------===// 563 564 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 565 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 566 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 567 /// have been previously deemed to be "equally complex" by this routine. It is 568 /// intended to avoid exponential time complexity in cases like: 569 /// 570 /// %a = f(%x, %y) 571 /// %b = f(%a, %a) 572 /// %c = f(%b, %b) 573 /// 574 /// %d = f(%x, %y) 575 /// %e = f(%d, %d) 576 /// %f = f(%e, %e) 577 /// 578 /// CompareValueComplexity(%f, %c) 579 /// 580 /// Since we do not continue running this routine on expression trees once we 581 /// have seen unequal values, there is no need to track them in the cache. 582 static int 583 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 584 const LoopInfo *const LI, Value *LV, Value *RV, 585 unsigned Depth) { 586 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 587 return 0; 588 589 // Order pointer values after integer values. This helps SCEVExpander form 590 // GEPs. 591 bool LIsPointer = LV->getType()->isPointerTy(), 592 RIsPointer = RV->getType()->isPointerTy(); 593 if (LIsPointer != RIsPointer) 594 return (int)LIsPointer - (int)RIsPointer; 595 596 // Compare getValueID values. 597 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 598 if (LID != RID) 599 return (int)LID - (int)RID; 600 601 // Sort arguments by their position. 602 if (const auto *LA = dyn_cast<Argument>(LV)) { 603 const auto *RA = cast<Argument>(RV); 604 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 605 return (int)LArgNo - (int)RArgNo; 606 } 607 608 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 609 const auto *RGV = cast<GlobalValue>(RV); 610 611 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 612 auto LT = GV->getLinkage(); 613 return !(GlobalValue::isPrivateLinkage(LT) || 614 GlobalValue::isInternalLinkage(LT)); 615 }; 616 617 // Use the names to distinguish the two values, but only if the 618 // names are semantically important. 619 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 620 return LGV->getName().compare(RGV->getName()); 621 } 622 623 // For instructions, compare their loop depth, and their operand count. This 624 // is pretty loose. 625 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 626 const auto *RInst = cast<Instruction>(RV); 627 628 // Compare loop depths. 629 const BasicBlock *LParent = LInst->getParent(), 630 *RParent = RInst->getParent(); 631 if (LParent != RParent) { 632 unsigned LDepth = LI->getLoopDepth(LParent), 633 RDepth = LI->getLoopDepth(RParent); 634 if (LDepth != RDepth) 635 return (int)LDepth - (int)RDepth; 636 } 637 638 // Compare the number of operands. 639 unsigned LNumOps = LInst->getNumOperands(), 640 RNumOps = RInst->getNumOperands(); 641 if (LNumOps != RNumOps) 642 return (int)LNumOps - (int)RNumOps; 643 644 for (unsigned Idx : seq(0u, LNumOps)) { 645 int Result = 646 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 647 RInst->getOperand(Idx), Depth + 1); 648 if (Result != 0) 649 return Result; 650 } 651 } 652 653 EqCacheValue.unionSets(LV, RV); 654 return 0; 655 } 656 657 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 658 // than RHS, respectively. A three-way result allows recursive comparisons to be 659 // more efficient. 660 static int CompareSCEVComplexity( 661 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 662 EquivalenceClasses<const Value *> &EqCacheValue, 663 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 664 DominatorTree &DT, unsigned Depth = 0) { 665 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 666 if (LHS == RHS) 667 return 0; 668 669 // Primarily, sort the SCEVs by their getSCEVType(). 670 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 671 if (LType != RType) 672 return (int)LType - (int)RType; 673 674 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 675 return 0; 676 // Aside from the getSCEVType() ordering, the particular ordering 677 // isn't very important except that it's beneficial to be consistent, 678 // so that (a + b) and (b + a) don't end up as different expressions. 679 switch (static_cast<SCEVTypes>(LType)) { 680 case scUnknown: { 681 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 682 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 683 684 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 685 RU->getValue(), Depth + 1); 686 if (X == 0) 687 EqCacheSCEV.unionSets(LHS, RHS); 688 return X; 689 } 690 691 case scConstant: { 692 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 693 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 694 695 // Compare constant values. 696 const APInt &LA = LC->getAPInt(); 697 const APInt &RA = RC->getAPInt(); 698 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 699 if (LBitWidth != RBitWidth) 700 return (int)LBitWidth - (int)RBitWidth; 701 return LA.ult(RA) ? -1 : 1; 702 } 703 704 case scAddRecExpr: { 705 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 706 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 707 708 // There is always a dominance between two recs that are used by one SCEV, 709 // so we can safely sort recs by loop header dominance. We require such 710 // order in getAddExpr. 711 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 712 if (LLoop != RLoop) { 713 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 714 assert(LHead != RHead && "Two loops share the same header?"); 715 if (DT.dominates(LHead, RHead)) 716 return 1; 717 else 718 assert(DT.dominates(RHead, LHead) && 719 "No dominance between recurrences used by one SCEV?"); 720 return -1; 721 } 722 723 // Addrec complexity grows with operand count. 724 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 725 if (LNumOps != RNumOps) 726 return (int)LNumOps - (int)RNumOps; 727 728 // Lexicographically compare. 729 for (unsigned i = 0; i != LNumOps; ++i) { 730 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 731 LA->getOperand(i), RA->getOperand(i), DT, 732 Depth + 1); 733 if (X != 0) 734 return X; 735 } 736 EqCacheSCEV.unionSets(LHS, RHS); 737 return 0; 738 } 739 740 case scAddExpr: 741 case scMulExpr: 742 case scSMaxExpr: 743 case scUMaxExpr: 744 case scSMinExpr: 745 case scUMinExpr: { 746 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 747 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 748 749 // Lexicographically compare n-ary expressions. 750 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 751 if (LNumOps != RNumOps) 752 return (int)LNumOps - (int)RNumOps; 753 754 for (unsigned i = 0; i != LNumOps; ++i) { 755 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 756 LC->getOperand(i), RC->getOperand(i), DT, 757 Depth + 1); 758 if (X != 0) 759 return X; 760 } 761 EqCacheSCEV.unionSets(LHS, RHS); 762 return 0; 763 } 764 765 case scUDivExpr: { 766 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 767 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 768 769 // Lexicographically compare udiv expressions. 770 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 771 RC->getLHS(), DT, Depth + 1); 772 if (X != 0) 773 return X; 774 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 775 RC->getRHS(), DT, Depth + 1); 776 if (X == 0) 777 EqCacheSCEV.unionSets(LHS, RHS); 778 return X; 779 } 780 781 case scTruncate: 782 case scZeroExtend: 783 case scSignExtend: { 784 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 785 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 786 787 // Compare cast expressions by operand. 788 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 789 LC->getOperand(), RC->getOperand(), DT, 790 Depth + 1); 791 if (X == 0) 792 EqCacheSCEV.unionSets(LHS, RHS); 793 return X; 794 } 795 796 case scCouldNotCompute: 797 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 798 } 799 llvm_unreachable("Unknown SCEV kind!"); 800 } 801 802 /// Given a list of SCEV objects, order them by their complexity, and group 803 /// objects of the same complexity together by value. When this routine is 804 /// finished, we know that any duplicates in the vector are consecutive and that 805 /// complexity is monotonically increasing. 806 /// 807 /// Note that we go take special precautions to ensure that we get deterministic 808 /// results from this routine. In other words, we don't want the results of 809 /// this to depend on where the addresses of various SCEV objects happened to 810 /// land in memory. 811 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 812 LoopInfo *LI, DominatorTree &DT) { 813 if (Ops.size() < 2) return; // Noop 814 815 EquivalenceClasses<const SCEV *> EqCacheSCEV; 816 EquivalenceClasses<const Value *> EqCacheValue; 817 if (Ops.size() == 2) { 818 // This is the common case, which also happens to be trivially simple. 819 // Special case it. 820 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 821 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 822 std::swap(LHS, RHS); 823 return; 824 } 825 826 // Do the rough sort by complexity. 827 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 828 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) < 829 0; 830 }); 831 832 // Now that we are sorted by complexity, group elements of the same 833 // complexity. Note that this is, at worst, N^2, but the vector is likely to 834 // be extremely short in practice. Note that we take this approach because we 835 // do not want to depend on the addresses of the objects we are grouping. 836 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 837 const SCEV *S = Ops[i]; 838 unsigned Complexity = S->getSCEVType(); 839 840 // If there are any objects of the same complexity and same value as this 841 // one, group them. 842 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 843 if (Ops[j] == S) { // Found a duplicate. 844 // Move it to immediately after i'th element. 845 std::swap(Ops[i+1], Ops[j]); 846 ++i; // no need to rescan it. 847 if (i == e-2) return; // Done! 848 } 849 } 850 } 851 } 852 853 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 854 /// least HugeExprThreshold nodes). 855 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 856 return any_of(Ops, [](const SCEV *S) { 857 return S->getExpressionSize() >= HugeExprThreshold; 858 }); 859 } 860 861 //===----------------------------------------------------------------------===// 862 // Simple SCEV method implementations 863 //===----------------------------------------------------------------------===// 864 865 /// Compute BC(It, K). The result has width W. Assume, K > 0. 866 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 867 ScalarEvolution &SE, 868 Type *ResultTy) { 869 // Handle the simplest case efficiently. 870 if (K == 1) 871 return SE.getTruncateOrZeroExtend(It, ResultTy); 872 873 // We are using the following formula for BC(It, K): 874 // 875 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 876 // 877 // Suppose, W is the bitwidth of the return value. We must be prepared for 878 // overflow. Hence, we must assure that the result of our computation is 879 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 880 // safe in modular arithmetic. 881 // 882 // However, this code doesn't use exactly that formula; the formula it uses 883 // is something like the following, where T is the number of factors of 2 in 884 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 885 // exponentiation: 886 // 887 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 888 // 889 // This formula is trivially equivalent to the previous formula. However, 890 // this formula can be implemented much more efficiently. The trick is that 891 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 892 // arithmetic. To do exact division in modular arithmetic, all we have 893 // to do is multiply by the inverse. Therefore, this step can be done at 894 // width W. 895 // 896 // The next issue is how to safely do the division by 2^T. The way this 897 // is done is by doing the multiplication step at a width of at least W + T 898 // bits. This way, the bottom W+T bits of the product are accurate. Then, 899 // when we perform the division by 2^T (which is equivalent to a right shift 900 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 901 // truncated out after the division by 2^T. 902 // 903 // In comparison to just directly using the first formula, this technique 904 // is much more efficient; using the first formula requires W * K bits, 905 // but this formula less than W + K bits. Also, the first formula requires 906 // a division step, whereas this formula only requires multiplies and shifts. 907 // 908 // It doesn't matter whether the subtraction step is done in the calculation 909 // width or the input iteration count's width; if the subtraction overflows, 910 // the result must be zero anyway. We prefer here to do it in the width of 911 // the induction variable because it helps a lot for certain cases; CodeGen 912 // isn't smart enough to ignore the overflow, which leads to much less 913 // efficient code if the width of the subtraction is wider than the native 914 // register width. 915 // 916 // (It's possible to not widen at all by pulling out factors of 2 before 917 // the multiplication; for example, K=2 can be calculated as 918 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 919 // extra arithmetic, so it's not an obvious win, and it gets 920 // much more complicated for K > 3.) 921 922 // Protection from insane SCEVs; this bound is conservative, 923 // but it probably doesn't matter. 924 if (K > 1000) 925 return SE.getCouldNotCompute(); 926 927 unsigned W = SE.getTypeSizeInBits(ResultTy); 928 929 // Calculate K! / 2^T and T; we divide out the factors of two before 930 // multiplying for calculating K! / 2^T to avoid overflow. 931 // Other overflow doesn't matter because we only care about the bottom 932 // W bits of the result. 933 APInt OddFactorial(W, 1); 934 unsigned T = 1; 935 for (unsigned i = 3; i <= K; ++i) { 936 APInt Mult(W, i); 937 unsigned TwoFactors = Mult.countTrailingZeros(); 938 T += TwoFactors; 939 Mult.lshrInPlace(TwoFactors); 940 OddFactorial *= Mult; 941 } 942 943 // We need at least W + T bits for the multiplication step 944 unsigned CalculationBits = W + T; 945 946 // Calculate 2^T, at width T+W. 947 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 948 949 // Calculate the multiplicative inverse of K! / 2^T; 950 // this multiplication factor will perform the exact division by 951 // K! / 2^T. 952 APInt Mod = APInt::getSignedMinValue(W+1); 953 APInt MultiplyFactor = OddFactorial.zext(W+1); 954 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 955 MultiplyFactor = MultiplyFactor.trunc(W); 956 957 // Calculate the product, at width T+W 958 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 959 CalculationBits); 960 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 961 for (unsigned i = 1; i != K; ++i) { 962 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 963 Dividend = SE.getMulExpr(Dividend, 964 SE.getTruncateOrZeroExtend(S, CalculationTy)); 965 } 966 967 // Divide by 2^T 968 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 969 970 // Truncate the result, and divide by K! / 2^T. 971 972 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 973 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 974 } 975 976 /// Return the value of this chain of recurrences at the specified iteration 977 /// number. We can evaluate this recurrence by multiplying each element in the 978 /// chain by the binomial coefficient corresponding to it. In other words, we 979 /// can evaluate {A,+,B,+,C,+,D} as: 980 /// 981 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 982 /// 983 /// where BC(It, k) stands for binomial coefficient. 984 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 985 ScalarEvolution &SE) const { 986 const SCEV *Result = getStart(); 987 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 988 // The computation is correct in the face of overflow provided that the 989 // multiplication is performed _after_ the evaluation of the binomial 990 // coefficient. 991 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 992 if (isa<SCEVCouldNotCompute>(Coeff)) 993 return Coeff; 994 995 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 996 } 997 return Result; 998 } 999 1000 //===----------------------------------------------------------------------===// 1001 // SCEV Expression folder implementations 1002 //===----------------------------------------------------------------------===// 1003 1004 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1005 unsigned Depth) { 1006 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1007 "This is not a truncating conversion!"); 1008 assert(isSCEVable(Ty) && 1009 "This is not a conversion to a SCEVable type!"); 1010 Ty = getEffectiveSCEVType(Ty); 1011 1012 FoldingSetNodeID ID; 1013 ID.AddInteger(scTruncate); 1014 ID.AddPointer(Op); 1015 ID.AddPointer(Ty); 1016 void *IP = nullptr; 1017 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1018 1019 // Fold if the operand is constant. 1020 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1021 return getConstant( 1022 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1023 1024 // trunc(trunc(x)) --> trunc(x) 1025 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1026 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1027 1028 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1029 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1030 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1031 1032 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1033 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1034 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1035 1036 if (Depth > MaxCastDepth) { 1037 SCEV *S = 1038 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1039 UniqueSCEVs.InsertNode(S, IP); 1040 addToLoopUseLists(S); 1041 return S; 1042 } 1043 1044 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1045 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1046 // if after transforming we have at most one truncate, not counting truncates 1047 // that replace other casts. 1048 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1049 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1050 SmallVector<const SCEV *, 4> Operands; 1051 unsigned numTruncs = 0; 1052 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1053 ++i) { 1054 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1055 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) 1056 numTruncs++; 1057 Operands.push_back(S); 1058 } 1059 if (numTruncs < 2) { 1060 if (isa<SCEVAddExpr>(Op)) 1061 return getAddExpr(Operands); 1062 else if (isa<SCEVMulExpr>(Op)) 1063 return getMulExpr(Operands); 1064 else 1065 llvm_unreachable("Unexpected SCEV type for Op."); 1066 } 1067 // Although we checked in the beginning that ID is not in the cache, it is 1068 // possible that during recursion and different modification ID was inserted 1069 // into the cache. So if we find it, just return it. 1070 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1071 return S; 1072 } 1073 1074 // If the input value is a chrec scev, truncate the chrec's operands. 1075 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1076 SmallVector<const SCEV *, 4> Operands; 1077 for (const SCEV *Op : AddRec->operands()) 1078 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1079 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1080 } 1081 1082 // The cast wasn't folded; create an explicit cast node. We can reuse 1083 // the existing insert position since if we get here, we won't have 1084 // made any changes which would invalidate it. 1085 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1086 Op, Ty); 1087 UniqueSCEVs.InsertNode(S, IP); 1088 addToLoopUseLists(S); 1089 return S; 1090 } 1091 1092 // Get the limit of a recurrence such that incrementing by Step cannot cause 1093 // signed overflow as long as the value of the recurrence within the 1094 // loop does not exceed this limit before incrementing. 1095 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1096 ICmpInst::Predicate *Pred, 1097 ScalarEvolution *SE) { 1098 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1099 if (SE->isKnownPositive(Step)) { 1100 *Pred = ICmpInst::ICMP_SLT; 1101 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1102 SE->getSignedRangeMax(Step)); 1103 } 1104 if (SE->isKnownNegative(Step)) { 1105 *Pred = ICmpInst::ICMP_SGT; 1106 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1107 SE->getSignedRangeMin(Step)); 1108 } 1109 return nullptr; 1110 } 1111 1112 // Get the limit of a recurrence such that incrementing by Step cannot cause 1113 // unsigned overflow as long as the value of the recurrence within the loop does 1114 // not exceed this limit before incrementing. 1115 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1116 ICmpInst::Predicate *Pred, 1117 ScalarEvolution *SE) { 1118 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1119 *Pred = ICmpInst::ICMP_ULT; 1120 1121 return SE->getConstant(APInt::getMinValue(BitWidth) - 1122 SE->getUnsignedRangeMax(Step)); 1123 } 1124 1125 namespace { 1126 1127 struct ExtendOpTraitsBase { 1128 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1129 unsigned); 1130 }; 1131 1132 // Used to make code generic over signed and unsigned overflow. 1133 template <typename ExtendOp> struct ExtendOpTraits { 1134 // Members present: 1135 // 1136 // static const SCEV::NoWrapFlags WrapType; 1137 // 1138 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1139 // 1140 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1141 // ICmpInst::Predicate *Pred, 1142 // ScalarEvolution *SE); 1143 }; 1144 1145 template <> 1146 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1147 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1148 1149 static const GetExtendExprTy GetExtendExpr; 1150 1151 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1152 ICmpInst::Predicate *Pred, 1153 ScalarEvolution *SE) { 1154 return getSignedOverflowLimitForStep(Step, Pred, SE); 1155 } 1156 }; 1157 1158 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1159 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1160 1161 template <> 1162 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1163 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1164 1165 static const GetExtendExprTy GetExtendExpr; 1166 1167 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1168 ICmpInst::Predicate *Pred, 1169 ScalarEvolution *SE) { 1170 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1171 } 1172 }; 1173 1174 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1175 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1176 1177 } // end anonymous namespace 1178 1179 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1180 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1181 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1182 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1183 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1184 // expression "Step + sext/zext(PreIncAR)" is congruent with 1185 // "sext/zext(PostIncAR)" 1186 template <typename ExtendOpTy> 1187 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1188 ScalarEvolution *SE, unsigned Depth) { 1189 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1190 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1191 1192 const Loop *L = AR->getLoop(); 1193 const SCEV *Start = AR->getStart(); 1194 const SCEV *Step = AR->getStepRecurrence(*SE); 1195 1196 // Check for a simple looking step prior to loop entry. 1197 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1198 if (!SA) 1199 return nullptr; 1200 1201 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1202 // subtraction is expensive. For this purpose, perform a quick and dirty 1203 // difference, by checking for Step in the operand list. 1204 SmallVector<const SCEV *, 4> DiffOps; 1205 for (const SCEV *Op : SA->operands()) 1206 if (Op != Step) 1207 DiffOps.push_back(Op); 1208 1209 if (DiffOps.size() == SA->getNumOperands()) 1210 return nullptr; 1211 1212 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1213 // `Step`: 1214 1215 // 1. NSW/NUW flags on the step increment. 1216 auto PreStartFlags = 1217 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1218 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1219 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1220 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1221 1222 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1223 // "S+X does not sign/unsign-overflow". 1224 // 1225 1226 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1227 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1228 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1229 return PreStart; 1230 1231 // 2. Direct overflow check on the step operation's expression. 1232 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1233 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1234 const SCEV *OperandExtendedStart = 1235 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1236 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1237 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1238 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1239 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1240 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1241 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1242 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1243 } 1244 return PreStart; 1245 } 1246 1247 // 3. Loop precondition. 1248 ICmpInst::Predicate Pred; 1249 const SCEV *OverflowLimit = 1250 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1251 1252 if (OverflowLimit && 1253 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1254 return PreStart; 1255 1256 return nullptr; 1257 } 1258 1259 // Get the normalized zero or sign extended expression for this AddRec's Start. 1260 template <typename ExtendOpTy> 1261 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1262 ScalarEvolution *SE, 1263 unsigned Depth) { 1264 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1265 1266 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1267 if (!PreStart) 1268 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1269 1270 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1271 Depth), 1272 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1273 } 1274 1275 // Try to prove away overflow by looking at "nearby" add recurrences. A 1276 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1277 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1278 // 1279 // Formally: 1280 // 1281 // {S,+,X} == {S-T,+,X} + T 1282 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1283 // 1284 // If ({S-T,+,X} + T) does not overflow ... (1) 1285 // 1286 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1287 // 1288 // If {S-T,+,X} does not overflow ... (2) 1289 // 1290 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1291 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1292 // 1293 // If (S-T)+T does not overflow ... (3) 1294 // 1295 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1296 // == {Ext(S),+,Ext(X)} == LHS 1297 // 1298 // Thus, if (1), (2) and (3) are true for some T, then 1299 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1300 // 1301 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1302 // does not overflow" restricted to the 0th iteration. Therefore we only need 1303 // to check for (1) and (2). 1304 // 1305 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1306 // is `Delta` (defined below). 1307 template <typename ExtendOpTy> 1308 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1309 const SCEV *Step, 1310 const Loop *L) { 1311 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1312 1313 // We restrict `Start` to a constant to prevent SCEV from spending too much 1314 // time here. It is correct (but more expensive) to continue with a 1315 // non-constant `Start` and do a general SCEV subtraction to compute 1316 // `PreStart` below. 1317 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1318 if (!StartC) 1319 return false; 1320 1321 APInt StartAI = StartC->getAPInt(); 1322 1323 for (unsigned Delta : {-2, -1, 1, 2}) { 1324 const SCEV *PreStart = getConstant(StartAI - Delta); 1325 1326 FoldingSetNodeID ID; 1327 ID.AddInteger(scAddRecExpr); 1328 ID.AddPointer(PreStart); 1329 ID.AddPointer(Step); 1330 ID.AddPointer(L); 1331 void *IP = nullptr; 1332 const auto *PreAR = 1333 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1334 1335 // Give up if we don't already have the add recurrence we need because 1336 // actually constructing an add recurrence is relatively expensive. 1337 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1338 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1339 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1340 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1341 DeltaS, &Pred, this); 1342 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1343 return true; 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 // Finds an integer D for an expression (C + x + y + ...) such that the top 1351 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1352 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1353 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1354 // the (C + x + y + ...) expression is \p WholeAddExpr. 1355 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1356 const SCEVConstant *ConstantTerm, 1357 const SCEVAddExpr *WholeAddExpr) { 1358 const APInt &C = ConstantTerm->getAPInt(); 1359 const unsigned BitWidth = C.getBitWidth(); 1360 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1361 uint32_t TZ = BitWidth; 1362 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1363 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1364 if (TZ) { 1365 // Set D to be as many least significant bits of C as possible while still 1366 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1367 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1368 } 1369 return APInt(BitWidth, 0); 1370 } 1371 1372 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1373 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1374 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1375 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1376 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1377 const APInt &ConstantStart, 1378 const SCEV *Step) { 1379 const unsigned BitWidth = ConstantStart.getBitWidth(); 1380 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1381 if (TZ) 1382 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1383 : ConstantStart; 1384 return APInt(BitWidth, 0); 1385 } 1386 1387 const SCEV * 1388 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1389 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1390 "This is not an extending conversion!"); 1391 assert(isSCEVable(Ty) && 1392 "This is not a conversion to a SCEVable type!"); 1393 Ty = getEffectiveSCEVType(Ty); 1394 1395 // Fold if the operand is constant. 1396 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1397 return getConstant( 1398 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1399 1400 // zext(zext(x)) --> zext(x) 1401 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1402 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1403 1404 // Before doing any expensive analysis, check to see if we've already 1405 // computed a SCEV for this Op and Ty. 1406 FoldingSetNodeID ID; 1407 ID.AddInteger(scZeroExtend); 1408 ID.AddPointer(Op); 1409 ID.AddPointer(Ty); 1410 void *IP = nullptr; 1411 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1412 if (Depth > MaxCastDepth) { 1413 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1414 Op, Ty); 1415 UniqueSCEVs.InsertNode(S, IP); 1416 addToLoopUseLists(S); 1417 return S; 1418 } 1419 1420 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1421 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1422 // It's possible the bits taken off by the truncate were all zero bits. If 1423 // so, we should be able to simplify this further. 1424 const SCEV *X = ST->getOperand(); 1425 ConstantRange CR = getUnsignedRange(X); 1426 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1427 unsigned NewBits = getTypeSizeInBits(Ty); 1428 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1429 CR.zextOrTrunc(NewBits))) 1430 return getTruncateOrZeroExtend(X, Ty, Depth); 1431 } 1432 1433 // If the input value is a chrec scev, and we can prove that the value 1434 // did not overflow the old, smaller, value, we can zero extend all of the 1435 // operands (often constants). This allows analysis of something like 1436 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1437 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1438 if (AR->isAffine()) { 1439 const SCEV *Start = AR->getStart(); 1440 const SCEV *Step = AR->getStepRecurrence(*this); 1441 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1442 const Loop *L = AR->getLoop(); 1443 1444 if (!AR->hasNoUnsignedWrap()) { 1445 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1446 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1447 } 1448 1449 // If we have special knowledge that this addrec won't overflow, 1450 // we don't need to do any further analysis. 1451 if (AR->hasNoUnsignedWrap()) 1452 return getAddRecExpr( 1453 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1454 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1455 1456 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1457 // Note that this serves two purposes: It filters out loops that are 1458 // simply not analyzable, and it covers the case where this code is 1459 // being called from within backedge-taken count analysis, such that 1460 // attempting to ask for the backedge-taken count would likely result 1461 // in infinite recursion. In the later case, the analysis code will 1462 // cope with a conservative value, and it will take care to purge 1463 // that value once it has finished. 1464 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1465 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1466 // Manually compute the final value for AR, checking for 1467 // overflow. 1468 1469 // Check whether the backedge-taken count can be losslessly casted to 1470 // the addrec's type. The count is always unsigned. 1471 const SCEV *CastedMaxBECount = 1472 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1473 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1474 CastedMaxBECount, MaxBECount->getType(), Depth); 1475 if (MaxBECount == RecastedMaxBECount) { 1476 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1477 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1478 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1479 SCEV::FlagAnyWrap, Depth + 1); 1480 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1481 SCEV::FlagAnyWrap, 1482 Depth + 1), 1483 WideTy, Depth + 1); 1484 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1485 const SCEV *WideMaxBECount = 1486 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1487 const SCEV *OperandExtendedAdd = 1488 getAddExpr(WideStart, 1489 getMulExpr(WideMaxBECount, 1490 getZeroExtendExpr(Step, WideTy, Depth + 1), 1491 SCEV::FlagAnyWrap, Depth + 1), 1492 SCEV::FlagAnyWrap, Depth + 1); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1499 Depth + 1), 1500 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1501 AR->getNoWrapFlags()); 1502 } 1503 // Similar to above, only this time treat the step value as signed. 1504 // This covers loops that count down. 1505 OperandExtendedAdd = 1506 getAddExpr(WideStart, 1507 getMulExpr(WideMaxBECount, 1508 getSignExtendExpr(Step, WideTy, Depth + 1), 1509 SCEV::FlagAnyWrap, Depth + 1), 1510 SCEV::FlagAnyWrap, Depth + 1); 1511 if (ZAdd == OperandExtendedAdd) { 1512 // Cache knowledge of AR NW, which is propagated to this AddRec. 1513 // Negative step causes unsigned wrap, but it still can't self-wrap. 1514 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1515 // Return the expression with the addrec on the outside. 1516 return getAddRecExpr( 1517 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1518 Depth + 1), 1519 getSignExtendExpr(Step, Ty, Depth + 1), L, 1520 AR->getNoWrapFlags()); 1521 } 1522 } 1523 } 1524 1525 // Normally, in the cases we can prove no-overflow via a 1526 // backedge guarding condition, we can also compute a backedge 1527 // taken count for the loop. The exceptions are assumptions and 1528 // guards present in the loop -- SCEV is not great at exploiting 1529 // these to compute max backedge taken counts, but can still use 1530 // these to prove lack of overflow. Use this fact to avoid 1531 // doing extra work that may not pay off. 1532 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1533 !AC.assumptions().empty()) { 1534 // If the backedge is guarded by a comparison with the pre-inc 1535 // value the addrec is safe. Also, if the entry is guarded by 1536 // a comparison with the start value and the backedge is 1537 // guarded by a comparison with the post-inc value, the addrec 1538 // is safe. 1539 if (isKnownPositive(Step)) { 1540 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1541 getUnsignedRangeMax(Step)); 1542 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1543 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1544 // Cache knowledge of AR NUW, which is propagated to this 1545 // AddRec. 1546 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1547 // Return the expression with the addrec on the outside. 1548 return getAddRecExpr( 1549 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1550 Depth + 1), 1551 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1552 AR->getNoWrapFlags()); 1553 } 1554 } else if (isKnownNegative(Step)) { 1555 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1556 getSignedRangeMin(Step)); 1557 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1558 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1559 // Cache knowledge of AR NW, which is propagated to this 1560 // AddRec. Negative step causes unsigned wrap, but it 1561 // still can't self-wrap. 1562 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1563 // Return the expression with the addrec on the outside. 1564 return getAddRecExpr( 1565 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1566 Depth + 1), 1567 getSignExtendExpr(Step, Ty, Depth + 1), L, 1568 AR->getNoWrapFlags()); 1569 } 1570 } 1571 } 1572 1573 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1574 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1575 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1576 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1577 const APInt &C = SC->getAPInt(); 1578 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1579 if (D != 0) { 1580 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1581 const SCEV *SResidual = 1582 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1583 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1584 return getAddExpr(SZExtD, SZExtR, 1585 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1586 Depth + 1); 1587 } 1588 } 1589 1590 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1591 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1592 return getAddRecExpr( 1593 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1594 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1595 } 1596 } 1597 1598 // zext(A % B) --> zext(A) % zext(B) 1599 { 1600 const SCEV *LHS; 1601 const SCEV *RHS; 1602 if (matchURem(Op, LHS, RHS)) 1603 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1604 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1605 } 1606 1607 // zext(A / B) --> zext(A) / zext(B). 1608 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1609 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1610 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1611 1612 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1613 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1614 if (SA->hasNoUnsignedWrap()) { 1615 // If the addition does not unsign overflow then we can, by definition, 1616 // commute the zero extension with the addition operation. 1617 SmallVector<const SCEV *, 4> Ops; 1618 for (const auto *Op : SA->operands()) 1619 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1620 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1621 } 1622 1623 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1624 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1625 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1626 // 1627 // Often address arithmetics contain expressions like 1628 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1629 // This transformation is useful while proving that such expressions are 1630 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1631 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1632 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1633 if (D != 0) { 1634 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1635 const SCEV *SResidual = 1636 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1637 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1638 return getAddExpr(SZExtD, SZExtR, 1639 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1640 Depth + 1); 1641 } 1642 } 1643 } 1644 1645 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1646 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1647 if (SM->hasNoUnsignedWrap()) { 1648 // If the multiply does not unsign overflow then we can, by definition, 1649 // commute the zero extension with the multiply operation. 1650 SmallVector<const SCEV *, 4> Ops; 1651 for (const auto *Op : SM->operands()) 1652 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1653 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1654 } 1655 1656 // zext(2^K * (trunc X to iN)) to iM -> 1657 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1658 // 1659 // Proof: 1660 // 1661 // zext(2^K * (trunc X to iN)) to iM 1662 // = zext((trunc X to iN) << K) to iM 1663 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1664 // (because shl removes the top K bits) 1665 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1666 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1667 // 1668 if (SM->getNumOperands() == 2) 1669 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1670 if (MulLHS->getAPInt().isPowerOf2()) 1671 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1672 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1673 MulLHS->getAPInt().logBase2(); 1674 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1675 return getMulExpr( 1676 getZeroExtendExpr(MulLHS, Ty), 1677 getZeroExtendExpr( 1678 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1679 SCEV::FlagNUW, Depth + 1); 1680 } 1681 } 1682 1683 // The cast wasn't folded; create an explicit cast node. 1684 // Recompute the insert position, as it may have been invalidated. 1685 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1686 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1687 Op, Ty); 1688 UniqueSCEVs.InsertNode(S, IP); 1689 addToLoopUseLists(S); 1690 return S; 1691 } 1692 1693 const SCEV * 1694 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1695 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1696 "This is not an extending conversion!"); 1697 assert(isSCEVable(Ty) && 1698 "This is not a conversion to a SCEVable type!"); 1699 Ty = getEffectiveSCEVType(Ty); 1700 1701 // Fold if the operand is constant. 1702 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1703 return getConstant( 1704 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1705 1706 // sext(sext(x)) --> sext(x) 1707 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1708 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1709 1710 // sext(zext(x)) --> zext(x) 1711 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1712 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1713 1714 // Before doing any expensive analysis, check to see if we've already 1715 // computed a SCEV for this Op and Ty. 1716 FoldingSetNodeID ID; 1717 ID.AddInteger(scSignExtend); 1718 ID.AddPointer(Op); 1719 ID.AddPointer(Ty); 1720 void *IP = nullptr; 1721 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1722 // Limit recursion depth. 1723 if (Depth > MaxCastDepth) { 1724 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1725 Op, Ty); 1726 UniqueSCEVs.InsertNode(S, IP); 1727 addToLoopUseLists(S); 1728 return S; 1729 } 1730 1731 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1732 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1733 // It's possible the bits taken off by the truncate were all sign bits. If 1734 // so, we should be able to simplify this further. 1735 const SCEV *X = ST->getOperand(); 1736 ConstantRange CR = getSignedRange(X); 1737 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1738 unsigned NewBits = getTypeSizeInBits(Ty); 1739 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1740 CR.sextOrTrunc(NewBits))) 1741 return getTruncateOrSignExtend(X, Ty, Depth); 1742 } 1743 1744 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1745 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1746 if (SA->hasNoSignedWrap()) { 1747 // If the addition does not sign overflow then we can, by definition, 1748 // commute the sign extension with the addition operation. 1749 SmallVector<const SCEV *, 4> Ops; 1750 for (const auto *Op : SA->operands()) 1751 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1752 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1753 } 1754 1755 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1756 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1757 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1758 // 1759 // For instance, this will bring two seemingly different expressions: 1760 // 1 + sext(5 + 20 * %x + 24 * %y) and 1761 // sext(6 + 20 * %x + 24 * %y) 1762 // to the same form: 1763 // 2 + sext(4 + 20 * %x + 24 * %y) 1764 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1765 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1766 if (D != 0) { 1767 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1768 const SCEV *SResidual = 1769 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1770 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1771 return getAddExpr(SSExtD, SSExtR, 1772 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1773 Depth + 1); 1774 } 1775 } 1776 } 1777 // If the input value is a chrec scev, and we can prove that the value 1778 // did not overflow the old, smaller, value, we can sign extend all of the 1779 // operands (often constants). This allows analysis of something like 1780 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1781 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1782 if (AR->isAffine()) { 1783 const SCEV *Start = AR->getStart(); 1784 const SCEV *Step = AR->getStepRecurrence(*this); 1785 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1786 const Loop *L = AR->getLoop(); 1787 1788 if (!AR->hasNoSignedWrap()) { 1789 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1790 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1791 } 1792 1793 // If we have special knowledge that this addrec won't overflow, 1794 // we don't need to do any further analysis. 1795 if (AR->hasNoSignedWrap()) 1796 return getAddRecExpr( 1797 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1798 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1799 1800 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1801 // Note that this serves two purposes: It filters out loops that are 1802 // simply not analyzable, and it covers the case where this code is 1803 // being called from within backedge-taken count analysis, such that 1804 // attempting to ask for the backedge-taken count would likely result 1805 // in infinite recursion. In the later case, the analysis code will 1806 // cope with a conservative value, and it will take care to purge 1807 // that value once it has finished. 1808 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1809 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1810 // Manually compute the final value for AR, checking for 1811 // overflow. 1812 1813 // Check whether the backedge-taken count can be losslessly casted to 1814 // the addrec's type. The count is always unsigned. 1815 const SCEV *CastedMaxBECount = 1816 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1817 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1818 CastedMaxBECount, MaxBECount->getType(), Depth); 1819 if (MaxBECount == RecastedMaxBECount) { 1820 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1821 // Check whether Start+Step*MaxBECount has no signed overflow. 1822 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1823 SCEV::FlagAnyWrap, Depth + 1); 1824 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1825 SCEV::FlagAnyWrap, 1826 Depth + 1), 1827 WideTy, Depth + 1); 1828 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1829 const SCEV *WideMaxBECount = 1830 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1831 const SCEV *OperandExtendedAdd = 1832 getAddExpr(WideStart, 1833 getMulExpr(WideMaxBECount, 1834 getSignExtendExpr(Step, WideTy, Depth + 1), 1835 SCEV::FlagAnyWrap, Depth + 1), 1836 SCEV::FlagAnyWrap, Depth + 1); 1837 if (SAdd == OperandExtendedAdd) { 1838 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1839 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1840 // Return the expression with the addrec on the outside. 1841 return getAddRecExpr( 1842 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1843 Depth + 1), 1844 getSignExtendExpr(Step, Ty, Depth + 1), L, 1845 AR->getNoWrapFlags()); 1846 } 1847 // Similar to above, only this time treat the step value as unsigned. 1848 // This covers loops that count up with an unsigned step. 1849 OperandExtendedAdd = 1850 getAddExpr(WideStart, 1851 getMulExpr(WideMaxBECount, 1852 getZeroExtendExpr(Step, WideTy, Depth + 1), 1853 SCEV::FlagAnyWrap, Depth + 1), 1854 SCEV::FlagAnyWrap, Depth + 1); 1855 if (SAdd == OperandExtendedAdd) { 1856 // If AR wraps around then 1857 // 1858 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1859 // => SAdd != OperandExtendedAdd 1860 // 1861 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1862 // (SAdd == OperandExtendedAdd => AR is NW) 1863 1864 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1865 1866 // Return the expression with the addrec on the outside. 1867 return getAddRecExpr( 1868 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1869 Depth + 1), 1870 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1871 AR->getNoWrapFlags()); 1872 } 1873 } 1874 } 1875 1876 // Normally, in the cases we can prove no-overflow via a 1877 // backedge guarding condition, we can also compute a backedge 1878 // taken count for the loop. The exceptions are assumptions and 1879 // guards present in the loop -- SCEV is not great at exploiting 1880 // these to compute max backedge taken counts, but can still use 1881 // these to prove lack of overflow. Use this fact to avoid 1882 // doing extra work that may not pay off. 1883 1884 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1885 !AC.assumptions().empty()) { 1886 // If the backedge is guarded by a comparison with the pre-inc 1887 // value the addrec is safe. Also, if the entry is guarded by 1888 // a comparison with the start value and the backedge is 1889 // guarded by a comparison with the post-inc value, the addrec 1890 // is safe. 1891 ICmpInst::Predicate Pred; 1892 const SCEV *OverflowLimit = 1893 getSignedOverflowLimitForStep(Step, &Pred, this); 1894 if (OverflowLimit && 1895 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1896 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 1897 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1898 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1899 return getAddRecExpr( 1900 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1901 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1902 } 1903 } 1904 1905 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 1906 // if D + (C - D + Step * n) could be proven to not signed wrap 1907 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1908 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1909 const APInt &C = SC->getAPInt(); 1910 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1911 if (D != 0) { 1912 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1913 const SCEV *SResidual = 1914 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1915 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1916 return getAddExpr(SSExtD, SSExtR, 1917 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1918 Depth + 1); 1919 } 1920 } 1921 1922 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1923 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1924 return getAddRecExpr( 1925 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1926 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1927 } 1928 } 1929 1930 // If the input value is provably positive and we could not simplify 1931 // away the sext build a zext instead. 1932 if (isKnownNonNegative(Op)) 1933 return getZeroExtendExpr(Op, Ty, Depth + 1); 1934 1935 // The cast wasn't folded; create an explicit cast node. 1936 // Recompute the insert position, as it may have been invalidated. 1937 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1938 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1939 Op, Ty); 1940 UniqueSCEVs.InsertNode(S, IP); 1941 addToLoopUseLists(S); 1942 return S; 1943 } 1944 1945 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1946 /// unspecified bits out to the given type. 1947 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1948 Type *Ty) { 1949 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1950 "This is not an extending conversion!"); 1951 assert(isSCEVable(Ty) && 1952 "This is not a conversion to a SCEVable type!"); 1953 Ty = getEffectiveSCEVType(Ty); 1954 1955 // Sign-extend negative constants. 1956 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1957 if (SC->getAPInt().isNegative()) 1958 return getSignExtendExpr(Op, Ty); 1959 1960 // Peel off a truncate cast. 1961 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1962 const SCEV *NewOp = T->getOperand(); 1963 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1964 return getAnyExtendExpr(NewOp, Ty); 1965 return getTruncateOrNoop(NewOp, Ty); 1966 } 1967 1968 // Next try a zext cast. If the cast is folded, use it. 1969 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1970 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1971 return ZExt; 1972 1973 // Next try a sext cast. If the cast is folded, use it. 1974 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1975 if (!isa<SCEVSignExtendExpr>(SExt)) 1976 return SExt; 1977 1978 // Force the cast to be folded into the operands of an addrec. 1979 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1980 SmallVector<const SCEV *, 4> Ops; 1981 for (const SCEV *Op : AR->operands()) 1982 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1983 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1984 } 1985 1986 // If the expression is obviously signed, use the sext cast value. 1987 if (isa<SCEVSMaxExpr>(Op)) 1988 return SExt; 1989 1990 // Absent any other information, use the zext cast value. 1991 return ZExt; 1992 } 1993 1994 /// Process the given Ops list, which is a list of operands to be added under 1995 /// the given scale, update the given map. This is a helper function for 1996 /// getAddRecExpr. As an example of what it does, given a sequence of operands 1997 /// that would form an add expression like this: 1998 /// 1999 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2000 /// 2001 /// where A and B are constants, update the map with these values: 2002 /// 2003 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2004 /// 2005 /// and add 13 + A*B*29 to AccumulatedConstant. 2006 /// This will allow getAddRecExpr to produce this: 2007 /// 2008 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2009 /// 2010 /// This form often exposes folding opportunities that are hidden in 2011 /// the original operand list. 2012 /// 2013 /// Return true iff it appears that any interesting folding opportunities 2014 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2015 /// the common case where no interesting opportunities are present, and 2016 /// is also used as a check to avoid infinite recursion. 2017 static bool 2018 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2019 SmallVectorImpl<const SCEV *> &NewOps, 2020 APInt &AccumulatedConstant, 2021 const SCEV *const *Ops, size_t NumOperands, 2022 const APInt &Scale, 2023 ScalarEvolution &SE) { 2024 bool Interesting = false; 2025 2026 // Iterate over the add operands. They are sorted, with constants first. 2027 unsigned i = 0; 2028 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2029 ++i; 2030 // Pull a buried constant out to the outside. 2031 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2032 Interesting = true; 2033 AccumulatedConstant += Scale * C->getAPInt(); 2034 } 2035 2036 // Next comes everything else. We're especially interested in multiplies 2037 // here, but they're in the middle, so just visit the rest with one loop. 2038 for (; i != NumOperands; ++i) { 2039 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2040 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2041 APInt NewScale = 2042 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2043 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2044 // A multiplication of a constant with another add; recurse. 2045 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2046 Interesting |= 2047 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2048 Add->op_begin(), Add->getNumOperands(), 2049 NewScale, SE); 2050 } else { 2051 // A multiplication of a constant with some other value. Update 2052 // the map. 2053 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2054 const SCEV *Key = SE.getMulExpr(MulOps); 2055 auto Pair = M.insert({Key, NewScale}); 2056 if (Pair.second) { 2057 NewOps.push_back(Pair.first->first); 2058 } else { 2059 Pair.first->second += NewScale; 2060 // The map already had an entry for this value, which may indicate 2061 // a folding opportunity. 2062 Interesting = true; 2063 } 2064 } 2065 } else { 2066 // An ordinary operand. Update the map. 2067 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2068 M.insert({Ops[i], Scale}); 2069 if (Pair.second) { 2070 NewOps.push_back(Pair.first->first); 2071 } else { 2072 Pair.first->second += Scale; 2073 // The map already had an entry for this value, which may indicate 2074 // a folding opportunity. 2075 Interesting = true; 2076 } 2077 } 2078 } 2079 2080 return Interesting; 2081 } 2082 2083 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2084 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2085 // can't-overflow flags for the operation if possible. 2086 static SCEV::NoWrapFlags 2087 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2088 const ArrayRef<const SCEV *> Ops, 2089 SCEV::NoWrapFlags Flags) { 2090 using namespace std::placeholders; 2091 2092 using OBO = OverflowingBinaryOperator; 2093 2094 bool CanAnalyze = 2095 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2096 (void)CanAnalyze; 2097 assert(CanAnalyze && "don't call from other places!"); 2098 2099 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2100 SCEV::NoWrapFlags SignOrUnsignWrap = 2101 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2102 2103 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2104 auto IsKnownNonNegative = [&](const SCEV *S) { 2105 return SE->isKnownNonNegative(S); 2106 }; 2107 2108 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2109 Flags = 2110 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2111 2112 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2113 2114 if (SignOrUnsignWrap != SignOrUnsignMask && 2115 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2116 isa<SCEVConstant>(Ops[0])) { 2117 2118 auto Opcode = [&] { 2119 switch (Type) { 2120 case scAddExpr: 2121 return Instruction::Add; 2122 case scMulExpr: 2123 return Instruction::Mul; 2124 default: 2125 llvm_unreachable("Unexpected SCEV op."); 2126 } 2127 }(); 2128 2129 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2130 2131 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2132 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2133 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2134 Opcode, C, OBO::NoSignedWrap); 2135 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2136 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2137 } 2138 2139 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2140 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2141 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2142 Opcode, C, OBO::NoUnsignedWrap); 2143 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2144 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2145 } 2146 } 2147 2148 return Flags; 2149 } 2150 2151 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2152 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2153 } 2154 2155 /// Get a canonical add expression, or something simpler if possible. 2156 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2157 SCEV::NoWrapFlags Flags, 2158 unsigned Depth) { 2159 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2160 "only nuw or nsw allowed"); 2161 assert(!Ops.empty() && "Cannot get empty add!"); 2162 if (Ops.size() == 1) return Ops[0]; 2163 #ifndef NDEBUG 2164 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2165 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2166 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2167 "SCEVAddExpr operand types don't match!"); 2168 #endif 2169 2170 // Sort by complexity, this groups all similar expression types together. 2171 GroupByComplexity(Ops, &LI, DT); 2172 2173 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2174 2175 // If there are any constants, fold them together. 2176 unsigned Idx = 0; 2177 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2178 ++Idx; 2179 assert(Idx < Ops.size()); 2180 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2181 // We found two constants, fold them together! 2182 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2183 if (Ops.size() == 2) return Ops[0]; 2184 Ops.erase(Ops.begin()+1); // Erase the folded element 2185 LHSC = cast<SCEVConstant>(Ops[0]); 2186 } 2187 2188 // If we are left with a constant zero being added, strip it off. 2189 if (LHSC->getValue()->isZero()) { 2190 Ops.erase(Ops.begin()); 2191 --Idx; 2192 } 2193 2194 if (Ops.size() == 1) return Ops[0]; 2195 } 2196 2197 // Limit recursion calls depth. 2198 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2199 return getOrCreateAddExpr(Ops, Flags); 2200 2201 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2202 static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags); 2203 return S; 2204 } 2205 2206 // Okay, check to see if the same value occurs in the operand list more than 2207 // once. If so, merge them together into an multiply expression. Since we 2208 // sorted the list, these values are required to be adjacent. 2209 Type *Ty = Ops[0]->getType(); 2210 bool FoundMatch = false; 2211 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2212 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2213 // Scan ahead to count how many equal operands there are. 2214 unsigned Count = 2; 2215 while (i+Count != e && Ops[i+Count] == Ops[i]) 2216 ++Count; 2217 // Merge the values into a multiply. 2218 const SCEV *Scale = getConstant(Ty, Count); 2219 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2220 if (Ops.size() == Count) 2221 return Mul; 2222 Ops[i] = Mul; 2223 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2224 --i; e -= Count - 1; 2225 FoundMatch = true; 2226 } 2227 if (FoundMatch) 2228 return getAddExpr(Ops, Flags, Depth + 1); 2229 2230 // Check for truncates. If all the operands are truncated from the same 2231 // type, see if factoring out the truncate would permit the result to be 2232 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2233 // if the contents of the resulting outer trunc fold to something simple. 2234 auto FindTruncSrcType = [&]() -> Type * { 2235 // We're ultimately looking to fold an addrec of truncs and muls of only 2236 // constants and truncs, so if we find any other types of SCEV 2237 // as operands of the addrec then we bail and return nullptr here. 2238 // Otherwise, we return the type of the operand of a trunc that we find. 2239 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2240 return T->getOperand()->getType(); 2241 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2242 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2243 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2244 return T->getOperand()->getType(); 2245 } 2246 return nullptr; 2247 }; 2248 if (auto *SrcType = FindTruncSrcType()) { 2249 SmallVector<const SCEV *, 8> LargeOps; 2250 bool Ok = true; 2251 // Check all the operands to see if they can be represented in the 2252 // source type of the truncate. 2253 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2254 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2255 if (T->getOperand()->getType() != SrcType) { 2256 Ok = false; 2257 break; 2258 } 2259 LargeOps.push_back(T->getOperand()); 2260 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2261 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2262 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2263 SmallVector<const SCEV *, 8> LargeMulOps; 2264 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2265 if (const SCEVTruncateExpr *T = 2266 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2267 if (T->getOperand()->getType() != SrcType) { 2268 Ok = false; 2269 break; 2270 } 2271 LargeMulOps.push_back(T->getOperand()); 2272 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2273 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2274 } else { 2275 Ok = false; 2276 break; 2277 } 2278 } 2279 if (Ok) 2280 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2281 } else { 2282 Ok = false; 2283 break; 2284 } 2285 } 2286 if (Ok) { 2287 // Evaluate the expression in the larger type. 2288 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2289 // If it folds to something simple, use it. Otherwise, don't. 2290 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2291 return getTruncateExpr(Fold, Ty); 2292 } 2293 } 2294 2295 // Skip past any other cast SCEVs. 2296 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2297 ++Idx; 2298 2299 // If there are add operands they would be next. 2300 if (Idx < Ops.size()) { 2301 bool DeletedAdd = false; 2302 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2303 if (Ops.size() > AddOpsInlineThreshold || 2304 Add->getNumOperands() > AddOpsInlineThreshold) 2305 break; 2306 // If we have an add, expand the add operands onto the end of the operands 2307 // list. 2308 Ops.erase(Ops.begin()+Idx); 2309 Ops.append(Add->op_begin(), Add->op_end()); 2310 DeletedAdd = true; 2311 } 2312 2313 // If we deleted at least one add, we added operands to the end of the list, 2314 // and they are not necessarily sorted. Recurse to resort and resimplify 2315 // any operands we just acquired. 2316 if (DeletedAdd) 2317 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2318 } 2319 2320 // Skip over the add expression until we get to a multiply. 2321 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2322 ++Idx; 2323 2324 // Check to see if there are any folding opportunities present with 2325 // operands multiplied by constant values. 2326 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2327 uint64_t BitWidth = getTypeSizeInBits(Ty); 2328 DenseMap<const SCEV *, APInt> M; 2329 SmallVector<const SCEV *, 8> NewOps; 2330 APInt AccumulatedConstant(BitWidth, 0); 2331 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2332 Ops.data(), Ops.size(), 2333 APInt(BitWidth, 1), *this)) { 2334 struct APIntCompare { 2335 bool operator()(const APInt &LHS, const APInt &RHS) const { 2336 return LHS.ult(RHS); 2337 } 2338 }; 2339 2340 // Some interesting folding opportunity is present, so its worthwhile to 2341 // re-generate the operands list. Group the operands by constant scale, 2342 // to avoid multiplying by the same constant scale multiple times. 2343 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2344 for (const SCEV *NewOp : NewOps) 2345 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2346 // Re-generate the operands list. 2347 Ops.clear(); 2348 if (AccumulatedConstant != 0) 2349 Ops.push_back(getConstant(AccumulatedConstant)); 2350 for (auto &MulOp : MulOpLists) 2351 if (MulOp.first != 0) 2352 Ops.push_back(getMulExpr( 2353 getConstant(MulOp.first), 2354 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2355 SCEV::FlagAnyWrap, Depth + 1)); 2356 if (Ops.empty()) 2357 return getZero(Ty); 2358 if (Ops.size() == 1) 2359 return Ops[0]; 2360 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2361 } 2362 } 2363 2364 // If we are adding something to a multiply expression, make sure the 2365 // something is not already an operand of the multiply. If so, merge it into 2366 // the multiply. 2367 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2368 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2369 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2370 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2371 if (isa<SCEVConstant>(MulOpSCEV)) 2372 continue; 2373 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2374 if (MulOpSCEV == Ops[AddOp]) { 2375 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2376 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2377 if (Mul->getNumOperands() != 2) { 2378 // If the multiply has more than two operands, we must get the 2379 // Y*Z term. 2380 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2381 Mul->op_begin()+MulOp); 2382 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2383 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2384 } 2385 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2386 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2387 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2388 SCEV::FlagAnyWrap, Depth + 1); 2389 if (Ops.size() == 2) return OuterMul; 2390 if (AddOp < Idx) { 2391 Ops.erase(Ops.begin()+AddOp); 2392 Ops.erase(Ops.begin()+Idx-1); 2393 } else { 2394 Ops.erase(Ops.begin()+Idx); 2395 Ops.erase(Ops.begin()+AddOp-1); 2396 } 2397 Ops.push_back(OuterMul); 2398 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2399 } 2400 2401 // Check this multiply against other multiplies being added together. 2402 for (unsigned OtherMulIdx = Idx+1; 2403 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2404 ++OtherMulIdx) { 2405 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2406 // If MulOp occurs in OtherMul, we can fold the two multiplies 2407 // together. 2408 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2409 OMulOp != e; ++OMulOp) 2410 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2411 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2412 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2413 if (Mul->getNumOperands() != 2) { 2414 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2415 Mul->op_begin()+MulOp); 2416 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2417 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2418 } 2419 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2420 if (OtherMul->getNumOperands() != 2) { 2421 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2422 OtherMul->op_begin()+OMulOp); 2423 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2424 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2425 } 2426 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2427 const SCEV *InnerMulSum = 2428 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2429 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2430 SCEV::FlagAnyWrap, Depth + 1); 2431 if (Ops.size() == 2) return OuterMul; 2432 Ops.erase(Ops.begin()+Idx); 2433 Ops.erase(Ops.begin()+OtherMulIdx-1); 2434 Ops.push_back(OuterMul); 2435 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2436 } 2437 } 2438 } 2439 } 2440 2441 // If there are any add recurrences in the operands list, see if any other 2442 // added values are loop invariant. If so, we can fold them into the 2443 // recurrence. 2444 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2445 ++Idx; 2446 2447 // Scan over all recurrences, trying to fold loop invariants into them. 2448 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2449 // Scan all of the other operands to this add and add them to the vector if 2450 // they are loop invariant w.r.t. the recurrence. 2451 SmallVector<const SCEV *, 8> LIOps; 2452 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2453 const Loop *AddRecLoop = AddRec->getLoop(); 2454 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2455 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2456 LIOps.push_back(Ops[i]); 2457 Ops.erase(Ops.begin()+i); 2458 --i; --e; 2459 } 2460 2461 // If we found some loop invariants, fold them into the recurrence. 2462 if (!LIOps.empty()) { 2463 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2464 LIOps.push_back(AddRec->getStart()); 2465 2466 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2467 AddRec->op_end()); 2468 // This follows from the fact that the no-wrap flags on the outer add 2469 // expression are applicable on the 0th iteration, when the add recurrence 2470 // will be equal to its start value. 2471 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2472 2473 // Build the new addrec. Propagate the NUW and NSW flags if both the 2474 // outer add and the inner addrec are guaranteed to have no overflow. 2475 // Always propagate NW. 2476 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2477 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2478 2479 // If all of the other operands were loop invariant, we are done. 2480 if (Ops.size() == 1) return NewRec; 2481 2482 // Otherwise, add the folded AddRec by the non-invariant parts. 2483 for (unsigned i = 0;; ++i) 2484 if (Ops[i] == AddRec) { 2485 Ops[i] = NewRec; 2486 break; 2487 } 2488 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2489 } 2490 2491 // Okay, if there weren't any loop invariants to be folded, check to see if 2492 // there are multiple AddRec's with the same loop induction variable being 2493 // added together. If so, we can fold them. 2494 for (unsigned OtherIdx = Idx+1; 2495 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2496 ++OtherIdx) { 2497 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2498 // so that the 1st found AddRecExpr is dominated by all others. 2499 assert(DT.dominates( 2500 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2501 AddRec->getLoop()->getHeader()) && 2502 "AddRecExprs are not sorted in reverse dominance order?"); 2503 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2504 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2505 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2506 AddRec->op_end()); 2507 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2508 ++OtherIdx) { 2509 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2510 if (OtherAddRec->getLoop() == AddRecLoop) { 2511 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2512 i != e; ++i) { 2513 if (i >= AddRecOps.size()) { 2514 AddRecOps.append(OtherAddRec->op_begin()+i, 2515 OtherAddRec->op_end()); 2516 break; 2517 } 2518 SmallVector<const SCEV *, 2> TwoOps = { 2519 AddRecOps[i], OtherAddRec->getOperand(i)}; 2520 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2521 } 2522 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2523 } 2524 } 2525 // Step size has changed, so we cannot guarantee no self-wraparound. 2526 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2527 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2528 } 2529 } 2530 2531 // Otherwise couldn't fold anything into this recurrence. Move onto the 2532 // next one. 2533 } 2534 2535 // Okay, it looks like we really DO need an add expr. Check to see if we 2536 // already have one, otherwise create a new one. 2537 return getOrCreateAddExpr(Ops, Flags); 2538 } 2539 2540 const SCEV * 2541 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2542 SCEV::NoWrapFlags Flags) { 2543 FoldingSetNodeID ID; 2544 ID.AddInteger(scAddExpr); 2545 for (const SCEV *Op : Ops) 2546 ID.AddPointer(Op); 2547 void *IP = nullptr; 2548 SCEVAddExpr *S = 2549 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2550 if (!S) { 2551 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2552 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2553 S = new (SCEVAllocator) 2554 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2555 UniqueSCEVs.InsertNode(S, IP); 2556 addToLoopUseLists(S); 2557 } 2558 S->setNoWrapFlags(Flags); 2559 return S; 2560 } 2561 2562 const SCEV * 2563 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2564 const Loop *L, SCEV::NoWrapFlags Flags) { 2565 FoldingSetNodeID ID; 2566 ID.AddInteger(scAddRecExpr); 2567 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2568 ID.AddPointer(Ops[i]); 2569 ID.AddPointer(L); 2570 void *IP = nullptr; 2571 SCEVAddRecExpr *S = 2572 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2573 if (!S) { 2574 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2575 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2576 S = new (SCEVAllocator) 2577 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2578 UniqueSCEVs.InsertNode(S, IP); 2579 addToLoopUseLists(S); 2580 } 2581 S->setNoWrapFlags(Flags); 2582 return S; 2583 } 2584 2585 const SCEV * 2586 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2587 SCEV::NoWrapFlags Flags) { 2588 FoldingSetNodeID ID; 2589 ID.AddInteger(scMulExpr); 2590 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2591 ID.AddPointer(Ops[i]); 2592 void *IP = nullptr; 2593 SCEVMulExpr *S = 2594 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2595 if (!S) { 2596 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2597 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2598 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2599 O, Ops.size()); 2600 UniqueSCEVs.InsertNode(S, IP); 2601 addToLoopUseLists(S); 2602 } 2603 S->setNoWrapFlags(Flags); 2604 return S; 2605 } 2606 2607 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2608 uint64_t k = i*j; 2609 if (j > 1 && k / j != i) Overflow = true; 2610 return k; 2611 } 2612 2613 /// Compute the result of "n choose k", the binomial coefficient. If an 2614 /// intermediate computation overflows, Overflow will be set and the return will 2615 /// be garbage. Overflow is not cleared on absence of overflow. 2616 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2617 // We use the multiplicative formula: 2618 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2619 // At each iteration, we take the n-th term of the numeral and divide by the 2620 // (k-n)th term of the denominator. This division will always produce an 2621 // integral result, and helps reduce the chance of overflow in the 2622 // intermediate computations. However, we can still overflow even when the 2623 // final result would fit. 2624 2625 if (n == 0 || n == k) return 1; 2626 if (k > n) return 0; 2627 2628 if (k > n/2) 2629 k = n-k; 2630 2631 uint64_t r = 1; 2632 for (uint64_t i = 1; i <= k; ++i) { 2633 r = umul_ov(r, n-(i-1), Overflow); 2634 r /= i; 2635 } 2636 return r; 2637 } 2638 2639 /// Determine if any of the operands in this SCEV are a constant or if 2640 /// any of the add or multiply expressions in this SCEV contain a constant. 2641 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2642 struct FindConstantInAddMulChain { 2643 bool FoundConstant = false; 2644 2645 bool follow(const SCEV *S) { 2646 FoundConstant |= isa<SCEVConstant>(S); 2647 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2648 } 2649 2650 bool isDone() const { 2651 return FoundConstant; 2652 } 2653 }; 2654 2655 FindConstantInAddMulChain F; 2656 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2657 ST.visitAll(StartExpr); 2658 return F.FoundConstant; 2659 } 2660 2661 /// Get a canonical multiply expression, or something simpler if possible. 2662 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2663 SCEV::NoWrapFlags Flags, 2664 unsigned Depth) { 2665 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2666 "only nuw or nsw allowed"); 2667 assert(!Ops.empty() && "Cannot get empty mul!"); 2668 if (Ops.size() == 1) return Ops[0]; 2669 #ifndef NDEBUG 2670 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2671 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2672 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2673 "SCEVMulExpr operand types don't match!"); 2674 #endif 2675 2676 // Sort by complexity, this groups all similar expression types together. 2677 GroupByComplexity(Ops, &LI, DT); 2678 2679 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2680 2681 // Limit recursion calls depth, but fold all-constant expressions. 2682 // `Ops` is sorted, so it's enough to check just last one. 2683 if ((Depth > MaxArithDepth || hasHugeExpression(Ops)) && 2684 !isa<SCEVConstant>(Ops.back())) 2685 return getOrCreateMulExpr(Ops, Flags); 2686 2687 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2688 static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags); 2689 return S; 2690 } 2691 2692 // If there are any constants, fold them together. 2693 unsigned Idx = 0; 2694 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2695 2696 if (Ops.size() == 2) 2697 // C1*(C2+V) -> C1*C2 + C1*V 2698 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2699 // If any of Add's ops are Adds or Muls with a constant, apply this 2700 // transformation as well. 2701 // 2702 // TODO: There are some cases where this transformation is not 2703 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2704 // this transformation should be narrowed down. 2705 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2706 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2707 SCEV::FlagAnyWrap, Depth + 1), 2708 getMulExpr(LHSC, Add->getOperand(1), 2709 SCEV::FlagAnyWrap, Depth + 1), 2710 SCEV::FlagAnyWrap, Depth + 1); 2711 2712 ++Idx; 2713 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2714 // We found two constants, fold them together! 2715 ConstantInt *Fold = 2716 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2717 Ops[0] = getConstant(Fold); 2718 Ops.erase(Ops.begin()+1); // Erase the folded element 2719 if (Ops.size() == 1) return Ops[0]; 2720 LHSC = cast<SCEVConstant>(Ops[0]); 2721 } 2722 2723 // If we are left with a constant one being multiplied, strip it off. 2724 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2725 Ops.erase(Ops.begin()); 2726 --Idx; 2727 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2728 // If we have a multiply of zero, it will always be zero. 2729 return Ops[0]; 2730 } else if (Ops[0]->isAllOnesValue()) { 2731 // If we have a mul by -1 of an add, try distributing the -1 among the 2732 // add operands. 2733 if (Ops.size() == 2) { 2734 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2735 SmallVector<const SCEV *, 4> NewOps; 2736 bool AnyFolded = false; 2737 for (const SCEV *AddOp : Add->operands()) { 2738 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2739 Depth + 1); 2740 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2741 NewOps.push_back(Mul); 2742 } 2743 if (AnyFolded) 2744 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2745 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2746 // Negation preserves a recurrence's no self-wrap property. 2747 SmallVector<const SCEV *, 4> Operands; 2748 for (const SCEV *AddRecOp : AddRec->operands()) 2749 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2750 Depth + 1)); 2751 2752 return getAddRecExpr(Operands, AddRec->getLoop(), 2753 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2754 } 2755 } 2756 } 2757 2758 if (Ops.size() == 1) 2759 return Ops[0]; 2760 } 2761 2762 // Skip over the add expression until we get to a multiply. 2763 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2764 ++Idx; 2765 2766 // If there are mul operands inline them all into this expression. 2767 if (Idx < Ops.size()) { 2768 bool DeletedMul = false; 2769 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2770 if (Ops.size() > MulOpsInlineThreshold) 2771 break; 2772 // If we have an mul, expand the mul operands onto the end of the 2773 // operands list. 2774 Ops.erase(Ops.begin()+Idx); 2775 Ops.append(Mul->op_begin(), Mul->op_end()); 2776 DeletedMul = true; 2777 } 2778 2779 // If we deleted at least one mul, we added operands to the end of the 2780 // list, and they are not necessarily sorted. Recurse to resort and 2781 // resimplify any operands we just acquired. 2782 if (DeletedMul) 2783 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2784 } 2785 2786 // If there are any add recurrences in the operands list, see if any other 2787 // added values are loop invariant. If so, we can fold them into the 2788 // recurrence. 2789 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2790 ++Idx; 2791 2792 // Scan over all recurrences, trying to fold loop invariants into them. 2793 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2794 // Scan all of the other operands to this mul and add them to the vector 2795 // if they are loop invariant w.r.t. the recurrence. 2796 SmallVector<const SCEV *, 8> LIOps; 2797 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2798 const Loop *AddRecLoop = AddRec->getLoop(); 2799 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2800 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2801 LIOps.push_back(Ops[i]); 2802 Ops.erase(Ops.begin()+i); 2803 --i; --e; 2804 } 2805 2806 // If we found some loop invariants, fold them into the recurrence. 2807 if (!LIOps.empty()) { 2808 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2809 SmallVector<const SCEV *, 4> NewOps; 2810 NewOps.reserve(AddRec->getNumOperands()); 2811 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2812 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2813 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2814 SCEV::FlagAnyWrap, Depth + 1)); 2815 2816 // Build the new addrec. Propagate the NUW and NSW flags if both the 2817 // outer mul and the inner addrec are guaranteed to have no overflow. 2818 // 2819 // No self-wrap cannot be guaranteed after changing the step size, but 2820 // will be inferred if either NUW or NSW is true. 2821 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2822 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2823 2824 // If all of the other operands were loop invariant, we are done. 2825 if (Ops.size() == 1) return NewRec; 2826 2827 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2828 for (unsigned i = 0;; ++i) 2829 if (Ops[i] == AddRec) { 2830 Ops[i] = NewRec; 2831 break; 2832 } 2833 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2834 } 2835 2836 // Okay, if there weren't any loop invariants to be folded, check to see 2837 // if there are multiple AddRec's with the same loop induction variable 2838 // being multiplied together. If so, we can fold them. 2839 2840 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2841 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2842 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2843 // ]]],+,...up to x=2n}. 2844 // Note that the arguments to choose() are always integers with values 2845 // known at compile time, never SCEV objects. 2846 // 2847 // The implementation avoids pointless extra computations when the two 2848 // addrec's are of different length (mathematically, it's equivalent to 2849 // an infinite stream of zeros on the right). 2850 bool OpsModified = false; 2851 for (unsigned OtherIdx = Idx+1; 2852 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2853 ++OtherIdx) { 2854 const SCEVAddRecExpr *OtherAddRec = 2855 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2856 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2857 continue; 2858 2859 // Limit max number of arguments to avoid creation of unreasonably big 2860 // SCEVAddRecs with very complex operands. 2861 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 2862 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 2863 continue; 2864 2865 bool Overflow = false; 2866 Type *Ty = AddRec->getType(); 2867 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2868 SmallVector<const SCEV*, 7> AddRecOps; 2869 for (int x = 0, xe = AddRec->getNumOperands() + 2870 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2871 SmallVector <const SCEV *, 7> SumOps; 2872 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2873 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2874 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2875 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2876 z < ze && !Overflow; ++z) { 2877 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2878 uint64_t Coeff; 2879 if (LargerThan64Bits) 2880 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2881 else 2882 Coeff = Coeff1*Coeff2; 2883 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2884 const SCEV *Term1 = AddRec->getOperand(y-z); 2885 const SCEV *Term2 = OtherAddRec->getOperand(z); 2886 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 2887 SCEV::FlagAnyWrap, Depth + 1)); 2888 } 2889 } 2890 if (SumOps.empty()) 2891 SumOps.push_back(getZero(Ty)); 2892 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 2893 } 2894 if (!Overflow) { 2895 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 2896 SCEV::FlagAnyWrap); 2897 if (Ops.size() == 2) return NewAddRec; 2898 Ops[Idx] = NewAddRec; 2899 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2900 OpsModified = true; 2901 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2902 if (!AddRec) 2903 break; 2904 } 2905 } 2906 if (OpsModified) 2907 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2908 2909 // Otherwise couldn't fold anything into this recurrence. Move onto the 2910 // next one. 2911 } 2912 2913 // Okay, it looks like we really DO need an mul expr. Check to see if we 2914 // already have one, otherwise create a new one. 2915 return getOrCreateMulExpr(Ops, Flags); 2916 } 2917 2918 /// Represents an unsigned remainder expression based on unsigned division. 2919 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 2920 const SCEV *RHS) { 2921 assert(getEffectiveSCEVType(LHS->getType()) == 2922 getEffectiveSCEVType(RHS->getType()) && 2923 "SCEVURemExpr operand types don't match!"); 2924 2925 // Short-circuit easy cases 2926 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2927 // If constant is one, the result is trivial 2928 if (RHSC->getValue()->isOne()) 2929 return getZero(LHS->getType()); // X urem 1 --> 0 2930 2931 // If constant is a power of two, fold into a zext(trunc(LHS)). 2932 if (RHSC->getAPInt().isPowerOf2()) { 2933 Type *FullTy = LHS->getType(); 2934 Type *TruncTy = 2935 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 2936 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 2937 } 2938 } 2939 2940 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 2941 const SCEV *UDiv = getUDivExpr(LHS, RHS); 2942 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 2943 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 2944 } 2945 2946 /// Get a canonical unsigned division expression, or something simpler if 2947 /// possible. 2948 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2949 const SCEV *RHS) { 2950 assert(getEffectiveSCEVType(LHS->getType()) == 2951 getEffectiveSCEVType(RHS->getType()) && 2952 "SCEVUDivExpr operand types don't match!"); 2953 2954 FoldingSetNodeID ID; 2955 ID.AddInteger(scUDivExpr); 2956 ID.AddPointer(LHS); 2957 ID.AddPointer(RHS); 2958 void *IP = nullptr; 2959 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 2960 return S; 2961 2962 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2963 if (RHSC->getValue()->isOne()) 2964 return LHS; // X udiv 1 --> x 2965 // If the denominator is zero, the result of the udiv is undefined. Don't 2966 // try to analyze it, because the resolution chosen here may differ from 2967 // the resolution chosen in other parts of the compiler. 2968 if (!RHSC->getValue()->isZero()) { 2969 // Determine if the division can be folded into the operands of 2970 // its operands. 2971 // TODO: Generalize this to non-constants by using known-bits information. 2972 Type *Ty = LHS->getType(); 2973 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2974 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2975 // For non-power-of-two values, effectively round the value up to the 2976 // nearest power of two. 2977 if (!RHSC->getAPInt().isPowerOf2()) 2978 ++MaxShiftAmt; 2979 IntegerType *ExtTy = 2980 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2981 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2982 if (const SCEVConstant *Step = 2983 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2984 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2985 const APInt &StepInt = Step->getAPInt(); 2986 const APInt &DivInt = RHSC->getAPInt(); 2987 if (!StepInt.urem(DivInt) && 2988 getZeroExtendExpr(AR, ExtTy) == 2989 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2990 getZeroExtendExpr(Step, ExtTy), 2991 AR->getLoop(), SCEV::FlagAnyWrap)) { 2992 SmallVector<const SCEV *, 4> Operands; 2993 for (const SCEV *Op : AR->operands()) 2994 Operands.push_back(getUDivExpr(Op, RHS)); 2995 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2996 } 2997 /// Get a canonical UDivExpr for a recurrence. 2998 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2999 // We can currently only fold X%N if X is constant. 3000 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3001 if (StartC && !DivInt.urem(StepInt) && 3002 getZeroExtendExpr(AR, ExtTy) == 3003 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3004 getZeroExtendExpr(Step, ExtTy), 3005 AR->getLoop(), SCEV::FlagAnyWrap)) { 3006 const APInt &StartInt = StartC->getAPInt(); 3007 const APInt &StartRem = StartInt.urem(StepInt); 3008 if (StartRem != 0) { 3009 const SCEV *NewLHS = 3010 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3011 AR->getLoop(), SCEV::FlagNW); 3012 if (LHS != NewLHS) { 3013 LHS = NewLHS; 3014 3015 // Reset the ID to include the new LHS, and check if it is 3016 // already cached. 3017 ID.clear(); 3018 ID.AddInteger(scUDivExpr); 3019 ID.AddPointer(LHS); 3020 ID.AddPointer(RHS); 3021 IP = nullptr; 3022 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3023 return S; 3024 } 3025 } 3026 } 3027 } 3028 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3029 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3030 SmallVector<const SCEV *, 4> Operands; 3031 for (const SCEV *Op : M->operands()) 3032 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3033 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3034 // Find an operand that's safely divisible. 3035 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3036 const SCEV *Op = M->getOperand(i); 3037 const SCEV *Div = getUDivExpr(Op, RHSC); 3038 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3039 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3040 M->op_end()); 3041 Operands[i] = Div; 3042 return getMulExpr(Operands); 3043 } 3044 } 3045 } 3046 3047 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3048 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3049 if (auto *DivisorConstant = 3050 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3051 bool Overflow = false; 3052 APInt NewRHS = 3053 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3054 if (Overflow) { 3055 return getConstant(RHSC->getType(), 0, false); 3056 } 3057 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3058 } 3059 } 3060 3061 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3062 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3063 SmallVector<const SCEV *, 4> Operands; 3064 for (const SCEV *Op : A->operands()) 3065 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3066 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3067 Operands.clear(); 3068 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3069 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3070 if (isa<SCEVUDivExpr>(Op) || 3071 getMulExpr(Op, RHS) != A->getOperand(i)) 3072 break; 3073 Operands.push_back(Op); 3074 } 3075 if (Operands.size() == A->getNumOperands()) 3076 return getAddExpr(Operands); 3077 } 3078 } 3079 3080 // Fold if both operands are constant. 3081 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3082 Constant *LHSCV = LHSC->getValue(); 3083 Constant *RHSCV = RHSC->getValue(); 3084 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3085 RHSCV))); 3086 } 3087 } 3088 } 3089 3090 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3091 // changes). Make sure we get a new one. 3092 IP = nullptr; 3093 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3094 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3095 LHS, RHS); 3096 UniqueSCEVs.InsertNode(S, IP); 3097 addToLoopUseLists(S); 3098 return S; 3099 } 3100 3101 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3102 APInt A = C1->getAPInt().abs(); 3103 APInt B = C2->getAPInt().abs(); 3104 uint32_t ABW = A.getBitWidth(); 3105 uint32_t BBW = B.getBitWidth(); 3106 3107 if (ABW > BBW) 3108 B = B.zext(ABW); 3109 else if (ABW < BBW) 3110 A = A.zext(BBW); 3111 3112 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3113 } 3114 3115 /// Get a canonical unsigned division expression, or something simpler if 3116 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3117 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3118 /// it's not exact because the udiv may be clearing bits. 3119 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3120 const SCEV *RHS) { 3121 // TODO: we could try to find factors in all sorts of things, but for now we 3122 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3123 // end of this file for inspiration. 3124 3125 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3126 if (!Mul || !Mul->hasNoUnsignedWrap()) 3127 return getUDivExpr(LHS, RHS); 3128 3129 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3130 // If the mulexpr multiplies by a constant, then that constant must be the 3131 // first element of the mulexpr. 3132 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3133 if (LHSCst == RHSCst) { 3134 SmallVector<const SCEV *, 2> Operands; 3135 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3136 return getMulExpr(Operands); 3137 } 3138 3139 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3140 // that there's a factor provided by one of the other terms. We need to 3141 // check. 3142 APInt Factor = gcd(LHSCst, RHSCst); 3143 if (!Factor.isIntN(1)) { 3144 LHSCst = 3145 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3146 RHSCst = 3147 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3148 SmallVector<const SCEV *, 2> Operands; 3149 Operands.push_back(LHSCst); 3150 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3151 LHS = getMulExpr(Operands); 3152 RHS = RHSCst; 3153 Mul = dyn_cast<SCEVMulExpr>(LHS); 3154 if (!Mul) 3155 return getUDivExactExpr(LHS, RHS); 3156 } 3157 } 3158 } 3159 3160 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3161 if (Mul->getOperand(i) == RHS) { 3162 SmallVector<const SCEV *, 2> Operands; 3163 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3164 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3165 return getMulExpr(Operands); 3166 } 3167 } 3168 3169 return getUDivExpr(LHS, RHS); 3170 } 3171 3172 /// Get an add recurrence expression for the specified loop. Simplify the 3173 /// expression as much as possible. 3174 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3175 const Loop *L, 3176 SCEV::NoWrapFlags Flags) { 3177 SmallVector<const SCEV *, 4> Operands; 3178 Operands.push_back(Start); 3179 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3180 if (StepChrec->getLoop() == L) { 3181 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3182 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3183 } 3184 3185 Operands.push_back(Step); 3186 return getAddRecExpr(Operands, L, Flags); 3187 } 3188 3189 /// Get an add recurrence expression for the specified loop. Simplify the 3190 /// expression as much as possible. 3191 const SCEV * 3192 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3193 const Loop *L, SCEV::NoWrapFlags Flags) { 3194 if (Operands.size() == 1) return Operands[0]; 3195 #ifndef NDEBUG 3196 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3197 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3198 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3199 "SCEVAddRecExpr operand types don't match!"); 3200 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3201 assert(isLoopInvariant(Operands[i], L) && 3202 "SCEVAddRecExpr operand is not loop-invariant!"); 3203 #endif 3204 3205 if (Operands.back()->isZero()) { 3206 Operands.pop_back(); 3207 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3208 } 3209 3210 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3211 // use that information to infer NUW and NSW flags. However, computing a 3212 // BE count requires calling getAddRecExpr, so we may not yet have a 3213 // meaningful BE count at this point (and if we don't, we'd be stuck 3214 // with a SCEVCouldNotCompute as the cached BE count). 3215 3216 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3217 3218 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3219 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3220 const Loop *NestedLoop = NestedAR->getLoop(); 3221 if (L->contains(NestedLoop) 3222 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3223 : (!NestedLoop->contains(L) && 3224 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3225 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3226 NestedAR->op_end()); 3227 Operands[0] = NestedAR->getStart(); 3228 // AddRecs require their operands be loop-invariant with respect to their 3229 // loops. Don't perform this transformation if it would break this 3230 // requirement. 3231 bool AllInvariant = all_of( 3232 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3233 3234 if (AllInvariant) { 3235 // Create a recurrence for the outer loop with the same step size. 3236 // 3237 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3238 // inner recurrence has the same property. 3239 SCEV::NoWrapFlags OuterFlags = 3240 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3241 3242 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3243 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3244 return isLoopInvariant(Op, NestedLoop); 3245 }); 3246 3247 if (AllInvariant) { 3248 // Ok, both add recurrences are valid after the transformation. 3249 // 3250 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3251 // the outer recurrence has the same property. 3252 SCEV::NoWrapFlags InnerFlags = 3253 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3254 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3255 } 3256 } 3257 // Reset Operands to its original state. 3258 Operands[0] = NestedAR; 3259 } 3260 } 3261 3262 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3263 // already have one, otherwise create a new one. 3264 return getOrCreateAddRecExpr(Operands, L, Flags); 3265 } 3266 3267 const SCEV * 3268 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3269 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3270 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3271 // getSCEV(Base)->getType() has the same address space as Base->getType() 3272 // because SCEV::getType() preserves the address space. 3273 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3274 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3275 // instruction to its SCEV, because the Instruction may be guarded by control 3276 // flow and the no-overflow bits may not be valid for the expression in any 3277 // context. This can be fixed similarly to how these flags are handled for 3278 // adds. 3279 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3280 : SCEV::FlagAnyWrap; 3281 3282 const SCEV *TotalOffset = getZero(IntIdxTy); 3283 Type *CurTy = GEP->getType(); 3284 bool FirstIter = true; 3285 for (const SCEV *IndexExpr : IndexExprs) { 3286 // Compute the (potentially symbolic) offset in bytes for this index. 3287 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3288 // For a struct, add the member offset. 3289 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3290 unsigned FieldNo = Index->getZExtValue(); 3291 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3292 3293 // Add the field offset to the running total offset. 3294 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3295 3296 // Update CurTy to the type of the field at Index. 3297 CurTy = STy->getTypeAtIndex(Index); 3298 } else { 3299 // Update CurTy to its element type. 3300 if (FirstIter) { 3301 assert(isa<PointerType>(CurTy) && 3302 "The first index of a GEP indexes a pointer"); 3303 CurTy = GEP->getSourceElementType(); 3304 FirstIter = false; 3305 } else { 3306 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3307 } 3308 // For an array, add the element offset, explicitly scaled. 3309 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3310 // Getelementptr indices are signed. 3311 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3312 3313 // Multiply the index by the element size to compute the element offset. 3314 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3315 3316 // Add the element offset to the running total offset. 3317 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3318 } 3319 } 3320 3321 // Add the total offset from all the GEP indices to the base. 3322 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3323 } 3324 3325 std::tuple<SCEV *, FoldingSetNodeID, void *> 3326 ScalarEvolution::findExistingSCEVInCache(int SCEVType, 3327 ArrayRef<const SCEV *> Ops) { 3328 FoldingSetNodeID ID; 3329 void *IP = nullptr; 3330 ID.AddInteger(SCEVType); 3331 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3332 ID.AddPointer(Ops[i]); 3333 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3334 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3335 } 3336 3337 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind, 3338 SmallVectorImpl<const SCEV *> &Ops) { 3339 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3340 if (Ops.size() == 1) return Ops[0]; 3341 #ifndef NDEBUG 3342 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3343 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3344 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3345 "Operand types don't match!"); 3346 #endif 3347 3348 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3349 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3350 3351 // Sort by complexity, this groups all similar expression types together. 3352 GroupByComplexity(Ops, &LI, DT); 3353 3354 // Check if we have created the same expression before. 3355 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3356 return S; 3357 } 3358 3359 // If there are any constants, fold them together. 3360 unsigned Idx = 0; 3361 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3362 ++Idx; 3363 assert(Idx < Ops.size()); 3364 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3365 if (Kind == scSMaxExpr) 3366 return APIntOps::smax(LHS, RHS); 3367 else if (Kind == scSMinExpr) 3368 return APIntOps::smin(LHS, RHS); 3369 else if (Kind == scUMaxExpr) 3370 return APIntOps::umax(LHS, RHS); 3371 else if (Kind == scUMinExpr) 3372 return APIntOps::umin(LHS, RHS); 3373 llvm_unreachable("Unknown SCEV min/max opcode"); 3374 }; 3375 3376 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3377 // We found two constants, fold them together! 3378 ConstantInt *Fold = ConstantInt::get( 3379 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3380 Ops[0] = getConstant(Fold); 3381 Ops.erase(Ops.begin()+1); // Erase the folded element 3382 if (Ops.size() == 1) return Ops[0]; 3383 LHSC = cast<SCEVConstant>(Ops[0]); 3384 } 3385 3386 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3387 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3388 3389 if (IsMax ? IsMinV : IsMaxV) { 3390 // If we are left with a constant minimum(/maximum)-int, strip it off. 3391 Ops.erase(Ops.begin()); 3392 --Idx; 3393 } else if (IsMax ? IsMaxV : IsMinV) { 3394 // If we have a max(/min) with a constant maximum(/minimum)-int, 3395 // it will always be the extremum. 3396 return LHSC; 3397 } 3398 3399 if (Ops.size() == 1) return Ops[0]; 3400 } 3401 3402 // Find the first operation of the same kind 3403 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3404 ++Idx; 3405 3406 // Check to see if one of the operands is of the same kind. If so, expand its 3407 // operands onto our operand list, and recurse to simplify. 3408 if (Idx < Ops.size()) { 3409 bool DeletedAny = false; 3410 while (Ops[Idx]->getSCEVType() == Kind) { 3411 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3412 Ops.erase(Ops.begin()+Idx); 3413 Ops.append(SMME->op_begin(), SMME->op_end()); 3414 DeletedAny = true; 3415 } 3416 3417 if (DeletedAny) 3418 return getMinMaxExpr(Kind, Ops); 3419 } 3420 3421 // Okay, check to see if the same value occurs in the operand list twice. If 3422 // so, delete one. Since we sorted the list, these values are required to 3423 // be adjacent. 3424 llvm::CmpInst::Predicate GEPred = 3425 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3426 llvm::CmpInst::Predicate LEPred = 3427 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3428 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3429 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3430 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3431 if (Ops[i] == Ops[i + 1] || 3432 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3433 // X op Y op Y --> X op Y 3434 // X op Y --> X, if we know X, Y are ordered appropriately 3435 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3436 --i; 3437 --e; 3438 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3439 Ops[i + 1])) { 3440 // X op Y --> Y, if we know X, Y are ordered appropriately 3441 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3442 --i; 3443 --e; 3444 } 3445 } 3446 3447 if (Ops.size() == 1) return Ops[0]; 3448 3449 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3450 3451 // Okay, it looks like we really DO need an expr. Check to see if we 3452 // already have one, otherwise create a new one. 3453 const SCEV *ExistingSCEV; 3454 FoldingSetNodeID ID; 3455 void *IP; 3456 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3457 if (ExistingSCEV) 3458 return ExistingSCEV; 3459 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3460 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3461 SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr( 3462 ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size()); 3463 3464 UniqueSCEVs.InsertNode(S, IP); 3465 addToLoopUseLists(S); 3466 return S; 3467 } 3468 3469 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3470 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3471 return getSMaxExpr(Ops); 3472 } 3473 3474 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3475 return getMinMaxExpr(scSMaxExpr, Ops); 3476 } 3477 3478 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3479 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3480 return getUMaxExpr(Ops); 3481 } 3482 3483 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3484 return getMinMaxExpr(scUMaxExpr, Ops); 3485 } 3486 3487 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3488 const SCEV *RHS) { 3489 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3490 return getSMinExpr(Ops); 3491 } 3492 3493 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3494 return getMinMaxExpr(scSMinExpr, Ops); 3495 } 3496 3497 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3498 const SCEV *RHS) { 3499 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3500 return getUMinExpr(Ops); 3501 } 3502 3503 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3504 return getMinMaxExpr(scUMinExpr, Ops); 3505 } 3506 3507 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3508 // We can bypass creating a target-independent 3509 // constant expression and then folding it back into a ConstantInt. 3510 // This is just a compile-time optimization. 3511 if (isa<ScalableVectorType>(AllocTy)) { 3512 Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo()); 3513 Constant *One = ConstantInt::get(IntTy, 1); 3514 Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One); 3515 return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy)); 3516 } 3517 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3518 } 3519 3520 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3521 StructType *STy, 3522 unsigned FieldNo) { 3523 // We can bypass creating a target-independent 3524 // constant expression and then folding it back into a ConstantInt. 3525 // This is just a compile-time optimization. 3526 return getConstant( 3527 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3528 } 3529 3530 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3531 // Don't attempt to do anything other than create a SCEVUnknown object 3532 // here. createSCEV only calls getUnknown after checking for all other 3533 // interesting possibilities, and any other code that calls getUnknown 3534 // is doing so in order to hide a value from SCEV canonicalization. 3535 3536 FoldingSetNodeID ID; 3537 ID.AddInteger(scUnknown); 3538 ID.AddPointer(V); 3539 void *IP = nullptr; 3540 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3541 assert(cast<SCEVUnknown>(S)->getValue() == V && 3542 "Stale SCEVUnknown in uniquing map!"); 3543 return S; 3544 } 3545 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3546 FirstUnknown); 3547 FirstUnknown = cast<SCEVUnknown>(S); 3548 UniqueSCEVs.InsertNode(S, IP); 3549 return S; 3550 } 3551 3552 //===----------------------------------------------------------------------===// 3553 // Basic SCEV Analysis and PHI Idiom Recognition Code 3554 // 3555 3556 /// Test if values of the given type are analyzable within the SCEV 3557 /// framework. This primarily includes integer types, and it can optionally 3558 /// include pointer types if the ScalarEvolution class has access to 3559 /// target-specific information. 3560 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3561 // Integers and pointers are always SCEVable. 3562 return Ty->isIntOrPtrTy(); 3563 } 3564 3565 /// Return the size in bits of the specified type, for which isSCEVable must 3566 /// return true. 3567 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3568 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3569 if (Ty->isPointerTy()) 3570 return getDataLayout().getIndexTypeSizeInBits(Ty); 3571 return getDataLayout().getTypeSizeInBits(Ty); 3572 } 3573 3574 /// Return a type with the same bitwidth as the given type and which represents 3575 /// how SCEV will treat the given type, for which isSCEVable must return 3576 /// true. For pointer types, this is the pointer index sized integer type. 3577 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3578 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3579 3580 if (Ty->isIntegerTy()) 3581 return Ty; 3582 3583 // The only other support type is pointer. 3584 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3585 return getDataLayout().getIndexType(Ty); 3586 } 3587 3588 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3589 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3590 } 3591 3592 const SCEV *ScalarEvolution::getCouldNotCompute() { 3593 return CouldNotCompute.get(); 3594 } 3595 3596 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3597 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3598 auto *SU = dyn_cast<SCEVUnknown>(S); 3599 return SU && SU->getValue() == nullptr; 3600 }); 3601 3602 return !ContainsNulls; 3603 } 3604 3605 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3606 HasRecMapType::iterator I = HasRecMap.find(S); 3607 if (I != HasRecMap.end()) 3608 return I->second; 3609 3610 bool FoundAddRec = 3611 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3612 HasRecMap.insert({S, FoundAddRec}); 3613 return FoundAddRec; 3614 } 3615 3616 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3617 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3618 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3619 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3620 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3621 if (!Add) 3622 return {S, nullptr}; 3623 3624 if (Add->getNumOperands() != 2) 3625 return {S, nullptr}; 3626 3627 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3628 if (!ConstOp) 3629 return {S, nullptr}; 3630 3631 return {Add->getOperand(1), ConstOp->getValue()}; 3632 } 3633 3634 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3635 /// by the value and offset from any ValueOffsetPair in the set. 3636 SetVector<ScalarEvolution::ValueOffsetPair> * 3637 ScalarEvolution::getSCEVValues(const SCEV *S) { 3638 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3639 if (SI == ExprValueMap.end()) 3640 return nullptr; 3641 #ifndef NDEBUG 3642 if (VerifySCEVMap) { 3643 // Check there is no dangling Value in the set returned. 3644 for (const auto &VE : SI->second) 3645 assert(ValueExprMap.count(VE.first)); 3646 } 3647 #endif 3648 return &SI->second; 3649 } 3650 3651 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3652 /// cannot be used separately. eraseValueFromMap should be used to remove 3653 /// V from ValueExprMap and ExprValueMap at the same time. 3654 void ScalarEvolution::eraseValueFromMap(Value *V) { 3655 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3656 if (I != ValueExprMap.end()) { 3657 const SCEV *S = I->second; 3658 // Remove {V, 0} from the set of ExprValueMap[S] 3659 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3660 SV->remove({V, nullptr}); 3661 3662 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3663 const SCEV *Stripped; 3664 ConstantInt *Offset; 3665 std::tie(Stripped, Offset) = splitAddExpr(S); 3666 if (Offset != nullptr) { 3667 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3668 SV->remove({V, Offset}); 3669 } 3670 ValueExprMap.erase(V); 3671 } 3672 } 3673 3674 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3675 /// TODO: In reality it is better to check the poison recursively 3676 /// but this is better than nothing. 3677 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3678 if (auto *I = dyn_cast<Instruction>(V)) { 3679 if (isa<OverflowingBinaryOperator>(I)) { 3680 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3681 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3682 return true; 3683 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3684 return true; 3685 } 3686 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3687 return true; 3688 } 3689 return false; 3690 } 3691 3692 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3693 /// create a new one. 3694 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3695 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3696 3697 const SCEV *S = getExistingSCEV(V); 3698 if (S == nullptr) { 3699 S = createSCEV(V); 3700 // During PHI resolution, it is possible to create two SCEVs for the same 3701 // V, so it is needed to double check whether V->S is inserted into 3702 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3703 std::pair<ValueExprMapType::iterator, bool> Pair = 3704 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3705 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3706 ExprValueMap[S].insert({V, nullptr}); 3707 3708 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3709 // ExprValueMap. 3710 const SCEV *Stripped = S; 3711 ConstantInt *Offset = nullptr; 3712 std::tie(Stripped, Offset) = splitAddExpr(S); 3713 // If stripped is SCEVUnknown, don't bother to save 3714 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3715 // increase the complexity of the expansion code. 3716 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3717 // because it may generate add/sub instead of GEP in SCEV expansion. 3718 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3719 !isa<GetElementPtrInst>(V)) 3720 ExprValueMap[Stripped].insert({V, Offset}); 3721 } 3722 } 3723 return S; 3724 } 3725 3726 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3727 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3728 3729 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3730 if (I != ValueExprMap.end()) { 3731 const SCEV *S = I->second; 3732 if (checkValidity(S)) 3733 return S; 3734 eraseValueFromMap(V); 3735 forgetMemoizedResults(S); 3736 } 3737 return nullptr; 3738 } 3739 3740 /// Return a SCEV corresponding to -V = -1*V 3741 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3742 SCEV::NoWrapFlags Flags) { 3743 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3744 return getConstant( 3745 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3746 3747 Type *Ty = V->getType(); 3748 Ty = getEffectiveSCEVType(Ty); 3749 return getMulExpr( 3750 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3751 } 3752 3753 /// If Expr computes ~A, return A else return nullptr 3754 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3755 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3756 if (!Add || Add->getNumOperands() != 2 || 3757 !Add->getOperand(0)->isAllOnesValue()) 3758 return nullptr; 3759 3760 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3761 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3762 !AddRHS->getOperand(0)->isAllOnesValue()) 3763 return nullptr; 3764 3765 return AddRHS->getOperand(1); 3766 } 3767 3768 /// Return a SCEV corresponding to ~V = -1-V 3769 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3770 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3771 return getConstant( 3772 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3773 3774 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3775 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3776 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3777 SmallVector<const SCEV *, 2> MatchedOperands; 3778 for (const SCEV *Operand : MME->operands()) { 3779 const SCEV *Matched = MatchNotExpr(Operand); 3780 if (!Matched) 3781 return (const SCEV *)nullptr; 3782 MatchedOperands.push_back(Matched); 3783 } 3784 return getMinMaxExpr( 3785 SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())), 3786 MatchedOperands); 3787 }; 3788 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3789 return Replaced; 3790 } 3791 3792 Type *Ty = V->getType(); 3793 Ty = getEffectiveSCEVType(Ty); 3794 const SCEV *AllOnes = 3795 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3796 return getMinusSCEV(AllOnes, V); 3797 } 3798 3799 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3800 SCEV::NoWrapFlags Flags, 3801 unsigned Depth) { 3802 // Fast path: X - X --> 0. 3803 if (LHS == RHS) 3804 return getZero(LHS->getType()); 3805 3806 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3807 // makes it so that we cannot make much use of NUW. 3808 auto AddFlags = SCEV::FlagAnyWrap; 3809 const bool RHSIsNotMinSigned = 3810 !getSignedRangeMin(RHS).isMinSignedValue(); 3811 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3812 // Let M be the minimum representable signed value. Then (-1)*RHS 3813 // signed-wraps if and only if RHS is M. That can happen even for 3814 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3815 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3816 // (-1)*RHS, we need to prove that RHS != M. 3817 // 3818 // If LHS is non-negative and we know that LHS - RHS does not 3819 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3820 // either by proving that RHS > M or that LHS >= 0. 3821 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3822 AddFlags = SCEV::FlagNSW; 3823 } 3824 } 3825 3826 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3827 // RHS is NSW and LHS >= 0. 3828 // 3829 // The difficulty here is that the NSW flag may have been proven 3830 // relative to a loop that is to be found in a recurrence in LHS and 3831 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3832 // larger scope than intended. 3833 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3834 3835 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 3836 } 3837 3838 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 3839 unsigned Depth) { 3840 Type *SrcTy = V->getType(); 3841 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3842 "Cannot truncate or zero extend with non-integer arguments!"); 3843 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3844 return V; // No conversion 3845 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3846 return getTruncateExpr(V, Ty, Depth); 3847 return getZeroExtendExpr(V, Ty, Depth); 3848 } 3849 3850 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 3851 unsigned Depth) { 3852 Type *SrcTy = V->getType(); 3853 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3854 "Cannot truncate or zero extend with non-integer arguments!"); 3855 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3856 return V; // No conversion 3857 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3858 return getTruncateExpr(V, Ty, Depth); 3859 return getSignExtendExpr(V, Ty, Depth); 3860 } 3861 3862 const SCEV * 3863 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3864 Type *SrcTy = V->getType(); 3865 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3866 "Cannot noop or zero extend with non-integer arguments!"); 3867 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3868 "getNoopOrZeroExtend cannot truncate!"); 3869 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3870 return V; // No conversion 3871 return getZeroExtendExpr(V, Ty); 3872 } 3873 3874 const SCEV * 3875 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3876 Type *SrcTy = V->getType(); 3877 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3878 "Cannot noop or sign extend with non-integer arguments!"); 3879 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3880 "getNoopOrSignExtend cannot truncate!"); 3881 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3882 return V; // No conversion 3883 return getSignExtendExpr(V, Ty); 3884 } 3885 3886 const SCEV * 3887 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3888 Type *SrcTy = V->getType(); 3889 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3890 "Cannot noop or any extend with non-integer arguments!"); 3891 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3892 "getNoopOrAnyExtend cannot truncate!"); 3893 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3894 return V; // No conversion 3895 return getAnyExtendExpr(V, Ty); 3896 } 3897 3898 const SCEV * 3899 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3900 Type *SrcTy = V->getType(); 3901 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3902 "Cannot truncate or noop with non-integer arguments!"); 3903 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3904 "getTruncateOrNoop cannot extend!"); 3905 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3906 return V; // No conversion 3907 return getTruncateExpr(V, Ty); 3908 } 3909 3910 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3911 const SCEV *RHS) { 3912 const SCEV *PromotedLHS = LHS; 3913 const SCEV *PromotedRHS = RHS; 3914 3915 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3916 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3917 else 3918 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3919 3920 return getUMaxExpr(PromotedLHS, PromotedRHS); 3921 } 3922 3923 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3924 const SCEV *RHS) { 3925 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3926 return getUMinFromMismatchedTypes(Ops); 3927 } 3928 3929 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 3930 SmallVectorImpl<const SCEV *> &Ops) { 3931 assert(!Ops.empty() && "At least one operand must be!"); 3932 // Trivial case. 3933 if (Ops.size() == 1) 3934 return Ops[0]; 3935 3936 // Find the max type first. 3937 Type *MaxType = nullptr; 3938 for (auto *S : Ops) 3939 if (MaxType) 3940 MaxType = getWiderType(MaxType, S->getType()); 3941 else 3942 MaxType = S->getType(); 3943 3944 // Extend all ops to max type. 3945 SmallVector<const SCEV *, 2> PromotedOps; 3946 for (auto *S : Ops) 3947 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 3948 3949 // Generate umin. 3950 return getUMinExpr(PromotedOps); 3951 } 3952 3953 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3954 // A pointer operand may evaluate to a nonpointer expression, such as null. 3955 if (!V->getType()->isPointerTy()) 3956 return V; 3957 3958 while (true) { 3959 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3960 V = Cast->getOperand(); 3961 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3962 const SCEV *PtrOp = nullptr; 3963 for (const SCEV *NAryOp : NAry->operands()) { 3964 if (NAryOp->getType()->isPointerTy()) { 3965 // Cannot find the base of an expression with multiple pointer ops. 3966 if (PtrOp) 3967 return V; 3968 PtrOp = NAryOp; 3969 } 3970 } 3971 if (!PtrOp) // All operands were non-pointer. 3972 return V; 3973 V = PtrOp; 3974 } else // Not something we can look further into. 3975 return V; 3976 } 3977 } 3978 3979 /// Push users of the given Instruction onto the given Worklist. 3980 static void 3981 PushDefUseChildren(Instruction *I, 3982 SmallVectorImpl<Instruction *> &Worklist) { 3983 // Push the def-use children onto the Worklist stack. 3984 for (User *U : I->users()) 3985 Worklist.push_back(cast<Instruction>(U)); 3986 } 3987 3988 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3989 SmallVector<Instruction *, 16> Worklist; 3990 PushDefUseChildren(PN, Worklist); 3991 3992 SmallPtrSet<Instruction *, 8> Visited; 3993 Visited.insert(PN); 3994 while (!Worklist.empty()) { 3995 Instruction *I = Worklist.pop_back_val(); 3996 if (!Visited.insert(I).second) 3997 continue; 3998 3999 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4000 if (It != ValueExprMap.end()) { 4001 const SCEV *Old = It->second; 4002 4003 // Short-circuit the def-use traversal if the symbolic name 4004 // ceases to appear in expressions. 4005 if (Old != SymName && !hasOperand(Old, SymName)) 4006 continue; 4007 4008 // SCEVUnknown for a PHI either means that it has an unrecognized 4009 // structure, it's a PHI that's in the progress of being computed 4010 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4011 // additional loop trip count information isn't going to change anything. 4012 // In the second case, createNodeForPHI will perform the necessary 4013 // updates on its own when it gets to that point. In the third, we do 4014 // want to forget the SCEVUnknown. 4015 if (!isa<PHINode>(I) || 4016 !isa<SCEVUnknown>(Old) || 4017 (I != PN && Old == SymName)) { 4018 eraseValueFromMap(It->first); 4019 forgetMemoizedResults(Old); 4020 } 4021 } 4022 4023 PushDefUseChildren(I, Worklist); 4024 } 4025 } 4026 4027 namespace { 4028 4029 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4030 /// expression in case its Loop is L. If it is not L then 4031 /// if IgnoreOtherLoops is true then use AddRec itself 4032 /// otherwise rewrite cannot be done. 4033 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4034 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4035 public: 4036 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4037 bool IgnoreOtherLoops = true) { 4038 SCEVInitRewriter Rewriter(L, SE); 4039 const SCEV *Result = Rewriter.visit(S); 4040 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4041 return SE.getCouldNotCompute(); 4042 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4043 ? SE.getCouldNotCompute() 4044 : Result; 4045 } 4046 4047 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4048 if (!SE.isLoopInvariant(Expr, L)) 4049 SeenLoopVariantSCEVUnknown = true; 4050 return Expr; 4051 } 4052 4053 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4054 // Only re-write AddRecExprs for this loop. 4055 if (Expr->getLoop() == L) 4056 return Expr->getStart(); 4057 SeenOtherLoops = true; 4058 return Expr; 4059 } 4060 4061 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4062 4063 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4064 4065 private: 4066 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4067 : SCEVRewriteVisitor(SE), L(L) {} 4068 4069 const Loop *L; 4070 bool SeenLoopVariantSCEVUnknown = false; 4071 bool SeenOtherLoops = false; 4072 }; 4073 4074 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4075 /// increment expression in case its Loop is L. If it is not L then 4076 /// use AddRec itself. 4077 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4078 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4079 public: 4080 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4081 SCEVPostIncRewriter Rewriter(L, SE); 4082 const SCEV *Result = Rewriter.visit(S); 4083 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4084 ? SE.getCouldNotCompute() 4085 : Result; 4086 } 4087 4088 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4089 if (!SE.isLoopInvariant(Expr, L)) 4090 SeenLoopVariantSCEVUnknown = true; 4091 return Expr; 4092 } 4093 4094 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4095 // Only re-write AddRecExprs for this loop. 4096 if (Expr->getLoop() == L) 4097 return Expr->getPostIncExpr(SE); 4098 SeenOtherLoops = true; 4099 return Expr; 4100 } 4101 4102 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4103 4104 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4105 4106 private: 4107 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4108 : SCEVRewriteVisitor(SE), L(L) {} 4109 4110 const Loop *L; 4111 bool SeenLoopVariantSCEVUnknown = false; 4112 bool SeenOtherLoops = false; 4113 }; 4114 4115 /// This class evaluates the compare condition by matching it against the 4116 /// condition of loop latch. If there is a match we assume a true value 4117 /// for the condition while building SCEV nodes. 4118 class SCEVBackedgeConditionFolder 4119 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4120 public: 4121 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4122 ScalarEvolution &SE) { 4123 bool IsPosBECond = false; 4124 Value *BECond = nullptr; 4125 if (BasicBlock *Latch = L->getLoopLatch()) { 4126 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4127 if (BI && BI->isConditional()) { 4128 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4129 "Both outgoing branches should not target same header!"); 4130 BECond = BI->getCondition(); 4131 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4132 } else { 4133 return S; 4134 } 4135 } 4136 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4137 return Rewriter.visit(S); 4138 } 4139 4140 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4141 const SCEV *Result = Expr; 4142 bool InvariantF = SE.isLoopInvariant(Expr, L); 4143 4144 if (!InvariantF) { 4145 Instruction *I = cast<Instruction>(Expr->getValue()); 4146 switch (I->getOpcode()) { 4147 case Instruction::Select: { 4148 SelectInst *SI = cast<SelectInst>(I); 4149 Optional<const SCEV *> Res = 4150 compareWithBackedgeCondition(SI->getCondition()); 4151 if (Res.hasValue()) { 4152 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4153 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4154 } 4155 break; 4156 } 4157 default: { 4158 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4159 if (Res.hasValue()) 4160 Result = Res.getValue(); 4161 break; 4162 } 4163 } 4164 } 4165 return Result; 4166 } 4167 4168 private: 4169 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4170 bool IsPosBECond, ScalarEvolution &SE) 4171 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4172 IsPositiveBECond(IsPosBECond) {} 4173 4174 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4175 4176 const Loop *L; 4177 /// Loop back condition. 4178 Value *BackedgeCond = nullptr; 4179 /// Set to true if loop back is on positive branch condition. 4180 bool IsPositiveBECond; 4181 }; 4182 4183 Optional<const SCEV *> 4184 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4185 4186 // If value matches the backedge condition for loop latch, 4187 // then return a constant evolution node based on loopback 4188 // branch taken. 4189 if (BackedgeCond == IC) 4190 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4191 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4192 return None; 4193 } 4194 4195 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4196 public: 4197 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4198 ScalarEvolution &SE) { 4199 SCEVShiftRewriter Rewriter(L, SE); 4200 const SCEV *Result = Rewriter.visit(S); 4201 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4202 } 4203 4204 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4205 // Only allow AddRecExprs for this loop. 4206 if (!SE.isLoopInvariant(Expr, L)) 4207 Valid = false; 4208 return Expr; 4209 } 4210 4211 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4212 if (Expr->getLoop() == L && Expr->isAffine()) 4213 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4214 Valid = false; 4215 return Expr; 4216 } 4217 4218 bool isValid() { return Valid; } 4219 4220 private: 4221 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4222 : SCEVRewriteVisitor(SE), L(L) {} 4223 4224 const Loop *L; 4225 bool Valid = true; 4226 }; 4227 4228 } // end anonymous namespace 4229 4230 SCEV::NoWrapFlags 4231 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4232 if (!AR->isAffine()) 4233 return SCEV::FlagAnyWrap; 4234 4235 using OBO = OverflowingBinaryOperator; 4236 4237 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4238 4239 if (!AR->hasNoSignedWrap()) { 4240 ConstantRange AddRecRange = getSignedRange(AR); 4241 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4242 4243 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4244 Instruction::Add, IncRange, OBO::NoSignedWrap); 4245 if (NSWRegion.contains(AddRecRange)) 4246 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4247 } 4248 4249 if (!AR->hasNoUnsignedWrap()) { 4250 ConstantRange AddRecRange = getUnsignedRange(AR); 4251 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4252 4253 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4254 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4255 if (NUWRegion.contains(AddRecRange)) 4256 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4257 } 4258 4259 return Result; 4260 } 4261 4262 namespace { 4263 4264 /// Represents an abstract binary operation. This may exist as a 4265 /// normal instruction or constant expression, or may have been 4266 /// derived from an expression tree. 4267 struct BinaryOp { 4268 unsigned Opcode; 4269 Value *LHS; 4270 Value *RHS; 4271 bool IsNSW = false; 4272 bool IsNUW = false; 4273 4274 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4275 /// constant expression. 4276 Operator *Op = nullptr; 4277 4278 explicit BinaryOp(Operator *Op) 4279 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4280 Op(Op) { 4281 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4282 IsNSW = OBO->hasNoSignedWrap(); 4283 IsNUW = OBO->hasNoUnsignedWrap(); 4284 } 4285 } 4286 4287 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4288 bool IsNUW = false) 4289 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4290 }; 4291 4292 } // end anonymous namespace 4293 4294 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4295 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4296 auto *Op = dyn_cast<Operator>(V); 4297 if (!Op) 4298 return None; 4299 4300 // Implementation detail: all the cleverness here should happen without 4301 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4302 // SCEV expressions when possible, and we should not break that. 4303 4304 switch (Op->getOpcode()) { 4305 case Instruction::Add: 4306 case Instruction::Sub: 4307 case Instruction::Mul: 4308 case Instruction::UDiv: 4309 case Instruction::URem: 4310 case Instruction::And: 4311 case Instruction::Or: 4312 case Instruction::AShr: 4313 case Instruction::Shl: 4314 return BinaryOp(Op); 4315 4316 case Instruction::Xor: 4317 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4318 // If the RHS of the xor is a signmask, then this is just an add. 4319 // Instcombine turns add of signmask into xor as a strength reduction step. 4320 if (RHSC->getValue().isSignMask()) 4321 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4322 return BinaryOp(Op); 4323 4324 case Instruction::LShr: 4325 // Turn logical shift right of a constant into a unsigned divide. 4326 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4327 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4328 4329 // If the shift count is not less than the bitwidth, the result of 4330 // the shift is undefined. Don't try to analyze it, because the 4331 // resolution chosen here may differ from the resolution chosen in 4332 // other parts of the compiler. 4333 if (SA->getValue().ult(BitWidth)) { 4334 Constant *X = 4335 ConstantInt::get(SA->getContext(), 4336 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4337 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4338 } 4339 } 4340 return BinaryOp(Op); 4341 4342 case Instruction::ExtractValue: { 4343 auto *EVI = cast<ExtractValueInst>(Op); 4344 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4345 break; 4346 4347 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4348 if (!WO) 4349 break; 4350 4351 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4352 bool Signed = WO->isSigned(); 4353 // TODO: Should add nuw/nsw flags for mul as well. 4354 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4355 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4356 4357 // Now that we know that all uses of the arithmetic-result component of 4358 // CI are guarded by the overflow check, we can go ahead and pretend 4359 // that the arithmetic is non-overflowing. 4360 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4361 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4362 } 4363 4364 default: 4365 break; 4366 } 4367 4368 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4369 // semantics as a Sub, return a binary sub expression. 4370 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4371 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4372 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4373 4374 return None; 4375 } 4376 4377 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4378 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4379 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4380 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4381 /// follows one of the following patterns: 4382 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4383 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4384 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4385 /// we return the type of the truncation operation, and indicate whether the 4386 /// truncated type should be treated as signed/unsigned by setting 4387 /// \p Signed to true/false, respectively. 4388 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4389 bool &Signed, ScalarEvolution &SE) { 4390 // The case where Op == SymbolicPHI (that is, with no type conversions on 4391 // the way) is handled by the regular add recurrence creating logic and 4392 // would have already been triggered in createAddRecForPHI. Reaching it here 4393 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4394 // because one of the other operands of the SCEVAddExpr updating this PHI is 4395 // not invariant). 4396 // 4397 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4398 // this case predicates that allow us to prove that Op == SymbolicPHI will 4399 // be added. 4400 if (Op == SymbolicPHI) 4401 return nullptr; 4402 4403 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4404 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4405 if (SourceBits != NewBits) 4406 return nullptr; 4407 4408 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4409 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4410 if (!SExt && !ZExt) 4411 return nullptr; 4412 const SCEVTruncateExpr *Trunc = 4413 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4414 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4415 if (!Trunc) 4416 return nullptr; 4417 const SCEV *X = Trunc->getOperand(); 4418 if (X != SymbolicPHI) 4419 return nullptr; 4420 Signed = SExt != nullptr; 4421 return Trunc->getType(); 4422 } 4423 4424 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4425 if (!PN->getType()->isIntegerTy()) 4426 return nullptr; 4427 const Loop *L = LI.getLoopFor(PN->getParent()); 4428 if (!L || L->getHeader() != PN->getParent()) 4429 return nullptr; 4430 return L; 4431 } 4432 4433 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4434 // computation that updates the phi follows the following pattern: 4435 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4436 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4437 // If so, try to see if it can be rewritten as an AddRecExpr under some 4438 // Predicates. If successful, return them as a pair. Also cache the results 4439 // of the analysis. 4440 // 4441 // Example usage scenario: 4442 // Say the Rewriter is called for the following SCEV: 4443 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4444 // where: 4445 // %X = phi i64 (%Start, %BEValue) 4446 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4447 // and call this function with %SymbolicPHI = %X. 4448 // 4449 // The analysis will find that the value coming around the backedge has 4450 // the following SCEV: 4451 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4452 // Upon concluding that this matches the desired pattern, the function 4453 // will return the pair {NewAddRec, SmallPredsVec} where: 4454 // NewAddRec = {%Start,+,%Step} 4455 // SmallPredsVec = {P1, P2, P3} as follows: 4456 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4457 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4458 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4459 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4460 // under the predicates {P1,P2,P3}. 4461 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4462 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4463 // 4464 // TODO's: 4465 // 4466 // 1) Extend the Induction descriptor to also support inductions that involve 4467 // casts: When needed (namely, when we are called in the context of the 4468 // vectorizer induction analysis), a Set of cast instructions will be 4469 // populated by this method, and provided back to isInductionPHI. This is 4470 // needed to allow the vectorizer to properly record them to be ignored by 4471 // the cost model and to avoid vectorizing them (otherwise these casts, 4472 // which are redundant under the runtime overflow checks, will be 4473 // vectorized, which can be costly). 4474 // 4475 // 2) Support additional induction/PHISCEV patterns: We also want to support 4476 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4477 // after the induction update operation (the induction increment): 4478 // 4479 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4480 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4481 // 4482 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4483 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4484 // 4485 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4486 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4487 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4488 SmallVector<const SCEVPredicate *, 3> Predicates; 4489 4490 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4491 // return an AddRec expression under some predicate. 4492 4493 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4494 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4495 assert(L && "Expecting an integer loop header phi"); 4496 4497 // The loop may have multiple entrances or multiple exits; we can analyze 4498 // this phi as an addrec if it has a unique entry value and a unique 4499 // backedge value. 4500 Value *BEValueV = nullptr, *StartValueV = nullptr; 4501 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4502 Value *V = PN->getIncomingValue(i); 4503 if (L->contains(PN->getIncomingBlock(i))) { 4504 if (!BEValueV) { 4505 BEValueV = V; 4506 } else if (BEValueV != V) { 4507 BEValueV = nullptr; 4508 break; 4509 } 4510 } else if (!StartValueV) { 4511 StartValueV = V; 4512 } else if (StartValueV != V) { 4513 StartValueV = nullptr; 4514 break; 4515 } 4516 } 4517 if (!BEValueV || !StartValueV) 4518 return None; 4519 4520 const SCEV *BEValue = getSCEV(BEValueV); 4521 4522 // If the value coming around the backedge is an add with the symbolic 4523 // value we just inserted, possibly with casts that we can ignore under 4524 // an appropriate runtime guard, then we found a simple induction variable! 4525 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4526 if (!Add) 4527 return None; 4528 4529 // If there is a single occurrence of the symbolic value, possibly 4530 // casted, replace it with a recurrence. 4531 unsigned FoundIndex = Add->getNumOperands(); 4532 Type *TruncTy = nullptr; 4533 bool Signed; 4534 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4535 if ((TruncTy = 4536 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4537 if (FoundIndex == e) { 4538 FoundIndex = i; 4539 break; 4540 } 4541 4542 if (FoundIndex == Add->getNumOperands()) 4543 return None; 4544 4545 // Create an add with everything but the specified operand. 4546 SmallVector<const SCEV *, 8> Ops; 4547 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4548 if (i != FoundIndex) 4549 Ops.push_back(Add->getOperand(i)); 4550 const SCEV *Accum = getAddExpr(Ops); 4551 4552 // The runtime checks will not be valid if the step amount is 4553 // varying inside the loop. 4554 if (!isLoopInvariant(Accum, L)) 4555 return None; 4556 4557 // *** Part2: Create the predicates 4558 4559 // Analysis was successful: we have a phi-with-cast pattern for which we 4560 // can return an AddRec expression under the following predicates: 4561 // 4562 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4563 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4564 // P2: An Equal predicate that guarantees that 4565 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4566 // P3: An Equal predicate that guarantees that 4567 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4568 // 4569 // As we next prove, the above predicates guarantee that: 4570 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4571 // 4572 // 4573 // More formally, we want to prove that: 4574 // Expr(i+1) = Start + (i+1) * Accum 4575 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4576 // 4577 // Given that: 4578 // 1) Expr(0) = Start 4579 // 2) Expr(1) = Start + Accum 4580 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4581 // 3) Induction hypothesis (step i): 4582 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4583 // 4584 // Proof: 4585 // Expr(i+1) = 4586 // = Start + (i+1)*Accum 4587 // = (Start + i*Accum) + Accum 4588 // = Expr(i) + Accum 4589 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4590 // :: from step i 4591 // 4592 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4593 // 4594 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4595 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4596 // + Accum :: from P3 4597 // 4598 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4599 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4600 // 4601 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4602 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4603 // 4604 // By induction, the same applies to all iterations 1<=i<n: 4605 // 4606 4607 // Create a truncated addrec for which we will add a no overflow check (P1). 4608 const SCEV *StartVal = getSCEV(StartValueV); 4609 const SCEV *PHISCEV = 4610 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4611 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4612 4613 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4614 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4615 // will be constant. 4616 // 4617 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4618 // add P1. 4619 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4620 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4621 Signed ? SCEVWrapPredicate::IncrementNSSW 4622 : SCEVWrapPredicate::IncrementNUSW; 4623 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4624 Predicates.push_back(AddRecPred); 4625 } 4626 4627 // Create the Equal Predicates P2,P3: 4628 4629 // It is possible that the predicates P2 and/or P3 are computable at 4630 // compile time due to StartVal and/or Accum being constants. 4631 // If either one is, then we can check that now and escape if either P2 4632 // or P3 is false. 4633 4634 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4635 // for each of StartVal and Accum 4636 auto getExtendedExpr = [&](const SCEV *Expr, 4637 bool CreateSignExtend) -> const SCEV * { 4638 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4639 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4640 const SCEV *ExtendedExpr = 4641 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4642 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4643 return ExtendedExpr; 4644 }; 4645 4646 // Given: 4647 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4648 // = getExtendedExpr(Expr) 4649 // Determine whether the predicate P: Expr == ExtendedExpr 4650 // is known to be false at compile time 4651 auto PredIsKnownFalse = [&](const SCEV *Expr, 4652 const SCEV *ExtendedExpr) -> bool { 4653 return Expr != ExtendedExpr && 4654 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4655 }; 4656 4657 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4658 if (PredIsKnownFalse(StartVal, StartExtended)) { 4659 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4660 return None; 4661 } 4662 4663 // The Step is always Signed (because the overflow checks are either 4664 // NSSW or NUSW) 4665 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4666 if (PredIsKnownFalse(Accum, AccumExtended)) { 4667 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4668 return None; 4669 } 4670 4671 auto AppendPredicate = [&](const SCEV *Expr, 4672 const SCEV *ExtendedExpr) -> void { 4673 if (Expr != ExtendedExpr && 4674 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4675 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4676 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4677 Predicates.push_back(Pred); 4678 } 4679 }; 4680 4681 AppendPredicate(StartVal, StartExtended); 4682 AppendPredicate(Accum, AccumExtended); 4683 4684 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4685 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4686 // into NewAR if it will also add the runtime overflow checks specified in 4687 // Predicates. 4688 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4689 4690 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4691 std::make_pair(NewAR, Predicates); 4692 // Remember the result of the analysis for this SCEV at this locayyytion. 4693 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4694 return PredRewrite; 4695 } 4696 4697 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4698 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4699 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4700 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4701 if (!L) 4702 return None; 4703 4704 // Check to see if we already analyzed this PHI. 4705 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4706 if (I != PredicatedSCEVRewrites.end()) { 4707 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4708 I->second; 4709 // Analysis was done before and failed to create an AddRec: 4710 if (Rewrite.first == SymbolicPHI) 4711 return None; 4712 // Analysis was done before and succeeded to create an AddRec under 4713 // a predicate: 4714 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4715 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4716 return Rewrite; 4717 } 4718 4719 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4720 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4721 4722 // Record in the cache that the analysis failed 4723 if (!Rewrite) { 4724 SmallVector<const SCEVPredicate *, 3> Predicates; 4725 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4726 return None; 4727 } 4728 4729 return Rewrite; 4730 } 4731 4732 // FIXME: This utility is currently required because the Rewriter currently 4733 // does not rewrite this expression: 4734 // {0, +, (sext ix (trunc iy to ix) to iy)} 4735 // into {0, +, %step}, 4736 // even when the following Equal predicate exists: 4737 // "%step == (sext ix (trunc iy to ix) to iy)". 4738 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4739 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4740 if (AR1 == AR2) 4741 return true; 4742 4743 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4744 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4745 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4746 return false; 4747 return true; 4748 }; 4749 4750 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4751 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4752 return false; 4753 return true; 4754 } 4755 4756 /// A helper function for createAddRecFromPHI to handle simple cases. 4757 /// 4758 /// This function tries to find an AddRec expression for the simplest (yet most 4759 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4760 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4761 /// technique for finding the AddRec expression. 4762 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4763 Value *BEValueV, 4764 Value *StartValueV) { 4765 const Loop *L = LI.getLoopFor(PN->getParent()); 4766 assert(L && L->getHeader() == PN->getParent()); 4767 assert(BEValueV && StartValueV); 4768 4769 auto BO = MatchBinaryOp(BEValueV, DT); 4770 if (!BO) 4771 return nullptr; 4772 4773 if (BO->Opcode != Instruction::Add) 4774 return nullptr; 4775 4776 const SCEV *Accum = nullptr; 4777 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4778 Accum = getSCEV(BO->RHS); 4779 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4780 Accum = getSCEV(BO->LHS); 4781 4782 if (!Accum) 4783 return nullptr; 4784 4785 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4786 if (BO->IsNUW) 4787 Flags = setFlags(Flags, SCEV::FlagNUW); 4788 if (BO->IsNSW) 4789 Flags = setFlags(Flags, SCEV::FlagNSW); 4790 4791 const SCEV *StartVal = getSCEV(StartValueV); 4792 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4793 4794 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4795 4796 // We can add Flags to the post-inc expression only if we 4797 // know that it is *undefined behavior* for BEValueV to 4798 // overflow. 4799 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4800 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4801 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4802 4803 return PHISCEV; 4804 } 4805 4806 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4807 const Loop *L = LI.getLoopFor(PN->getParent()); 4808 if (!L || L->getHeader() != PN->getParent()) 4809 return nullptr; 4810 4811 // The loop may have multiple entrances or multiple exits; we can analyze 4812 // this phi as an addrec if it has a unique entry value and a unique 4813 // backedge value. 4814 Value *BEValueV = nullptr, *StartValueV = nullptr; 4815 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4816 Value *V = PN->getIncomingValue(i); 4817 if (L->contains(PN->getIncomingBlock(i))) { 4818 if (!BEValueV) { 4819 BEValueV = V; 4820 } else if (BEValueV != V) { 4821 BEValueV = nullptr; 4822 break; 4823 } 4824 } else if (!StartValueV) { 4825 StartValueV = V; 4826 } else if (StartValueV != V) { 4827 StartValueV = nullptr; 4828 break; 4829 } 4830 } 4831 if (!BEValueV || !StartValueV) 4832 return nullptr; 4833 4834 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4835 "PHI node already processed?"); 4836 4837 // First, try to find AddRec expression without creating a fictituos symbolic 4838 // value for PN. 4839 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4840 return S; 4841 4842 // Handle PHI node value symbolically. 4843 const SCEV *SymbolicName = getUnknown(PN); 4844 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4845 4846 // Using this symbolic name for the PHI, analyze the value coming around 4847 // the back-edge. 4848 const SCEV *BEValue = getSCEV(BEValueV); 4849 4850 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4851 // has a special value for the first iteration of the loop. 4852 4853 // If the value coming around the backedge is an add with the symbolic 4854 // value we just inserted, then we found a simple induction variable! 4855 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4856 // If there is a single occurrence of the symbolic value, replace it 4857 // with a recurrence. 4858 unsigned FoundIndex = Add->getNumOperands(); 4859 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4860 if (Add->getOperand(i) == SymbolicName) 4861 if (FoundIndex == e) { 4862 FoundIndex = i; 4863 break; 4864 } 4865 4866 if (FoundIndex != Add->getNumOperands()) { 4867 // Create an add with everything but the specified operand. 4868 SmallVector<const SCEV *, 8> Ops; 4869 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4870 if (i != FoundIndex) 4871 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 4872 L, *this)); 4873 const SCEV *Accum = getAddExpr(Ops); 4874 4875 // This is not a valid addrec if the step amount is varying each 4876 // loop iteration, but is not itself an addrec in this loop. 4877 if (isLoopInvariant(Accum, L) || 4878 (isa<SCEVAddRecExpr>(Accum) && 4879 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4880 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4881 4882 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4883 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4884 if (BO->IsNUW) 4885 Flags = setFlags(Flags, SCEV::FlagNUW); 4886 if (BO->IsNSW) 4887 Flags = setFlags(Flags, SCEV::FlagNSW); 4888 } 4889 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4890 // If the increment is an inbounds GEP, then we know the address 4891 // space cannot be wrapped around. We cannot make any guarantee 4892 // about signed or unsigned overflow because pointers are 4893 // unsigned but we may have a negative index from the base 4894 // pointer. We can guarantee that no unsigned wrap occurs if the 4895 // indices form a positive value. 4896 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4897 Flags = setFlags(Flags, SCEV::FlagNW); 4898 4899 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4900 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4901 Flags = setFlags(Flags, SCEV::FlagNUW); 4902 } 4903 4904 // We cannot transfer nuw and nsw flags from subtraction 4905 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4906 // for instance. 4907 } 4908 4909 const SCEV *StartVal = getSCEV(StartValueV); 4910 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4911 4912 // Okay, for the entire analysis of this edge we assumed the PHI 4913 // to be symbolic. We now need to go back and purge all of the 4914 // entries for the scalars that use the symbolic expression. 4915 forgetSymbolicName(PN, SymbolicName); 4916 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4917 4918 // We can add Flags to the post-inc expression only if we 4919 // know that it is *undefined behavior* for BEValueV to 4920 // overflow. 4921 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4922 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4923 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4924 4925 return PHISCEV; 4926 } 4927 } 4928 } else { 4929 // Otherwise, this could be a loop like this: 4930 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4931 // In this case, j = {1,+,1} and BEValue is j. 4932 // Because the other in-value of i (0) fits the evolution of BEValue 4933 // i really is an addrec evolution. 4934 // 4935 // We can generalize this saying that i is the shifted value of BEValue 4936 // by one iteration: 4937 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4938 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4939 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 4940 if (Shifted != getCouldNotCompute() && 4941 Start != getCouldNotCompute()) { 4942 const SCEV *StartVal = getSCEV(StartValueV); 4943 if (Start == StartVal) { 4944 // Okay, for the entire analysis of this edge we assumed the PHI 4945 // to be symbolic. We now need to go back and purge all of the 4946 // entries for the scalars that use the symbolic expression. 4947 forgetSymbolicName(PN, SymbolicName); 4948 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4949 return Shifted; 4950 } 4951 } 4952 } 4953 4954 // Remove the temporary PHI node SCEV that has been inserted while intending 4955 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4956 // as it will prevent later (possibly simpler) SCEV expressions to be added 4957 // to the ValueExprMap. 4958 eraseValueFromMap(PN); 4959 4960 return nullptr; 4961 } 4962 4963 // Checks if the SCEV S is available at BB. S is considered available at BB 4964 // if S can be materialized at BB without introducing a fault. 4965 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4966 BasicBlock *BB) { 4967 struct CheckAvailable { 4968 bool TraversalDone = false; 4969 bool Available = true; 4970 4971 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4972 BasicBlock *BB = nullptr; 4973 DominatorTree &DT; 4974 4975 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4976 : L(L), BB(BB), DT(DT) {} 4977 4978 bool setUnavailable() { 4979 TraversalDone = true; 4980 Available = false; 4981 return false; 4982 } 4983 4984 bool follow(const SCEV *S) { 4985 switch (S->getSCEVType()) { 4986 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4987 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4988 case scUMinExpr: 4989 case scSMinExpr: 4990 // These expressions are available if their operand(s) is/are. 4991 return true; 4992 4993 case scAddRecExpr: { 4994 // We allow add recurrences that are on the loop BB is in, or some 4995 // outer loop. This guarantees availability because the value of the 4996 // add recurrence at BB is simply the "current" value of the induction 4997 // variable. We can relax this in the future; for instance an add 4998 // recurrence on a sibling dominating loop is also available at BB. 4999 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5000 if (L && (ARLoop == L || ARLoop->contains(L))) 5001 return true; 5002 5003 return setUnavailable(); 5004 } 5005 5006 case scUnknown: { 5007 // For SCEVUnknown, we check for simple dominance. 5008 const auto *SU = cast<SCEVUnknown>(S); 5009 Value *V = SU->getValue(); 5010 5011 if (isa<Argument>(V)) 5012 return false; 5013 5014 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5015 return false; 5016 5017 return setUnavailable(); 5018 } 5019 5020 case scUDivExpr: 5021 case scCouldNotCompute: 5022 // We do not try to smart about these at all. 5023 return setUnavailable(); 5024 } 5025 llvm_unreachable("switch should be fully covered!"); 5026 } 5027 5028 bool isDone() { return TraversalDone; } 5029 }; 5030 5031 CheckAvailable CA(L, BB, DT); 5032 SCEVTraversal<CheckAvailable> ST(CA); 5033 5034 ST.visitAll(S); 5035 return CA.Available; 5036 } 5037 5038 // Try to match a control flow sequence that branches out at BI and merges back 5039 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5040 // match. 5041 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5042 Value *&C, Value *&LHS, Value *&RHS) { 5043 C = BI->getCondition(); 5044 5045 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5046 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5047 5048 if (!LeftEdge.isSingleEdge()) 5049 return false; 5050 5051 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5052 5053 Use &LeftUse = Merge->getOperandUse(0); 5054 Use &RightUse = Merge->getOperandUse(1); 5055 5056 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5057 LHS = LeftUse; 5058 RHS = RightUse; 5059 return true; 5060 } 5061 5062 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5063 LHS = RightUse; 5064 RHS = LeftUse; 5065 return true; 5066 } 5067 5068 return false; 5069 } 5070 5071 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5072 auto IsReachable = 5073 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5074 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5075 const Loop *L = LI.getLoopFor(PN->getParent()); 5076 5077 // We don't want to break LCSSA, even in a SCEV expression tree. 5078 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5079 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5080 return nullptr; 5081 5082 // Try to match 5083 // 5084 // br %cond, label %left, label %right 5085 // left: 5086 // br label %merge 5087 // right: 5088 // br label %merge 5089 // merge: 5090 // V = phi [ %x, %left ], [ %y, %right ] 5091 // 5092 // as "select %cond, %x, %y" 5093 5094 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5095 assert(IDom && "At least the entry block should dominate PN"); 5096 5097 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5098 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5099 5100 if (BI && BI->isConditional() && 5101 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5102 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5103 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5104 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5105 } 5106 5107 return nullptr; 5108 } 5109 5110 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5111 if (const SCEV *S = createAddRecFromPHI(PN)) 5112 return S; 5113 5114 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5115 return S; 5116 5117 // If the PHI has a single incoming value, follow that value, unless the 5118 // PHI's incoming blocks are in a different loop, in which case doing so 5119 // risks breaking LCSSA form. Instcombine would normally zap these, but 5120 // it doesn't have DominatorTree information, so it may miss cases. 5121 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5122 if (LI.replacementPreservesLCSSAForm(PN, V)) 5123 return getSCEV(V); 5124 5125 // If it's not a loop phi, we can't handle it yet. 5126 return getUnknown(PN); 5127 } 5128 5129 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5130 Value *Cond, 5131 Value *TrueVal, 5132 Value *FalseVal) { 5133 // Handle "constant" branch or select. This can occur for instance when a 5134 // loop pass transforms an inner loop and moves on to process the outer loop. 5135 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5136 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5137 5138 // Try to match some simple smax or umax patterns. 5139 auto *ICI = dyn_cast<ICmpInst>(Cond); 5140 if (!ICI) 5141 return getUnknown(I); 5142 5143 Value *LHS = ICI->getOperand(0); 5144 Value *RHS = ICI->getOperand(1); 5145 5146 switch (ICI->getPredicate()) { 5147 case ICmpInst::ICMP_SLT: 5148 case ICmpInst::ICMP_SLE: 5149 std::swap(LHS, RHS); 5150 LLVM_FALLTHROUGH; 5151 case ICmpInst::ICMP_SGT: 5152 case ICmpInst::ICMP_SGE: 5153 // a >s b ? a+x : b+x -> smax(a, b)+x 5154 // a >s b ? b+x : a+x -> smin(a, b)+x 5155 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5156 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5157 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5158 const SCEV *LA = getSCEV(TrueVal); 5159 const SCEV *RA = getSCEV(FalseVal); 5160 const SCEV *LDiff = getMinusSCEV(LA, LS); 5161 const SCEV *RDiff = getMinusSCEV(RA, RS); 5162 if (LDiff == RDiff) 5163 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5164 LDiff = getMinusSCEV(LA, RS); 5165 RDiff = getMinusSCEV(RA, LS); 5166 if (LDiff == RDiff) 5167 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5168 } 5169 break; 5170 case ICmpInst::ICMP_ULT: 5171 case ICmpInst::ICMP_ULE: 5172 std::swap(LHS, RHS); 5173 LLVM_FALLTHROUGH; 5174 case ICmpInst::ICMP_UGT: 5175 case ICmpInst::ICMP_UGE: 5176 // a >u b ? a+x : b+x -> umax(a, b)+x 5177 // a >u b ? b+x : a+x -> umin(a, b)+x 5178 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5179 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5180 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5181 const SCEV *LA = getSCEV(TrueVal); 5182 const SCEV *RA = getSCEV(FalseVal); 5183 const SCEV *LDiff = getMinusSCEV(LA, LS); 5184 const SCEV *RDiff = getMinusSCEV(RA, RS); 5185 if (LDiff == RDiff) 5186 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5187 LDiff = getMinusSCEV(LA, RS); 5188 RDiff = getMinusSCEV(RA, LS); 5189 if (LDiff == RDiff) 5190 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5191 } 5192 break; 5193 case ICmpInst::ICMP_NE: 5194 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5195 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5196 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5197 const SCEV *One = getOne(I->getType()); 5198 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5199 const SCEV *LA = getSCEV(TrueVal); 5200 const SCEV *RA = getSCEV(FalseVal); 5201 const SCEV *LDiff = getMinusSCEV(LA, LS); 5202 const SCEV *RDiff = getMinusSCEV(RA, One); 5203 if (LDiff == RDiff) 5204 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5205 } 5206 break; 5207 case ICmpInst::ICMP_EQ: 5208 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5209 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5210 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5211 const SCEV *One = getOne(I->getType()); 5212 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5213 const SCEV *LA = getSCEV(TrueVal); 5214 const SCEV *RA = getSCEV(FalseVal); 5215 const SCEV *LDiff = getMinusSCEV(LA, One); 5216 const SCEV *RDiff = getMinusSCEV(RA, LS); 5217 if (LDiff == RDiff) 5218 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5219 } 5220 break; 5221 default: 5222 break; 5223 } 5224 5225 return getUnknown(I); 5226 } 5227 5228 /// Expand GEP instructions into add and multiply operations. This allows them 5229 /// to be analyzed by regular SCEV code. 5230 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5231 // Don't attempt to analyze GEPs over unsized objects. 5232 if (!GEP->getSourceElementType()->isSized()) 5233 return getUnknown(GEP); 5234 5235 SmallVector<const SCEV *, 4> IndexExprs; 5236 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5237 IndexExprs.push_back(getSCEV(*Index)); 5238 return getGEPExpr(GEP, IndexExprs); 5239 } 5240 5241 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5242 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5243 return C->getAPInt().countTrailingZeros(); 5244 5245 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5246 return std::min(GetMinTrailingZeros(T->getOperand()), 5247 (uint32_t)getTypeSizeInBits(T->getType())); 5248 5249 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5250 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5251 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5252 ? getTypeSizeInBits(E->getType()) 5253 : OpRes; 5254 } 5255 5256 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5257 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5258 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5259 ? getTypeSizeInBits(E->getType()) 5260 : OpRes; 5261 } 5262 5263 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5264 // The result is the min of all operands results. 5265 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5266 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5267 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5268 return MinOpRes; 5269 } 5270 5271 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5272 // The result is the sum of all operands results. 5273 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5274 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5275 for (unsigned i = 1, e = M->getNumOperands(); 5276 SumOpRes != BitWidth && i != e; ++i) 5277 SumOpRes = 5278 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5279 return SumOpRes; 5280 } 5281 5282 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5283 // The result is the min of all operands results. 5284 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5285 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5286 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5287 return MinOpRes; 5288 } 5289 5290 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5291 // The result is the min of all operands results. 5292 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5293 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5294 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5295 return MinOpRes; 5296 } 5297 5298 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5299 // The result is the min of all operands results. 5300 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5301 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5302 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5303 return MinOpRes; 5304 } 5305 5306 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5307 // For a SCEVUnknown, ask ValueTracking. 5308 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5309 return Known.countMinTrailingZeros(); 5310 } 5311 5312 // SCEVUDivExpr 5313 return 0; 5314 } 5315 5316 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5317 auto I = MinTrailingZerosCache.find(S); 5318 if (I != MinTrailingZerosCache.end()) 5319 return I->second; 5320 5321 uint32_t Result = GetMinTrailingZerosImpl(S); 5322 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5323 assert(InsertPair.second && "Should insert a new key"); 5324 return InsertPair.first->second; 5325 } 5326 5327 /// Helper method to assign a range to V from metadata present in the IR. 5328 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5329 if (Instruction *I = dyn_cast<Instruction>(V)) 5330 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5331 return getConstantRangeFromMetadata(*MD); 5332 5333 return None; 5334 } 5335 5336 /// Determine the range for a particular SCEV. If SignHint is 5337 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5338 /// with a "cleaner" unsigned (resp. signed) representation. 5339 const ConstantRange & 5340 ScalarEvolution::getRangeRef(const SCEV *S, 5341 ScalarEvolution::RangeSignHint SignHint) { 5342 DenseMap<const SCEV *, ConstantRange> &Cache = 5343 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5344 : SignedRanges; 5345 ConstantRange::PreferredRangeType RangeType = 5346 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5347 ? ConstantRange::Unsigned : ConstantRange::Signed; 5348 5349 // See if we've computed this range already. 5350 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5351 if (I != Cache.end()) 5352 return I->second; 5353 5354 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5355 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5356 5357 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5358 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5359 using OBO = OverflowingBinaryOperator; 5360 5361 // If the value has known zeros, the maximum value will have those known zeros 5362 // as well. 5363 uint32_t TZ = GetMinTrailingZeros(S); 5364 if (TZ != 0) { 5365 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5366 ConservativeResult = 5367 ConstantRange(APInt::getMinValue(BitWidth), 5368 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5369 else 5370 ConservativeResult = ConstantRange( 5371 APInt::getSignedMinValue(BitWidth), 5372 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5373 } 5374 5375 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5376 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5377 unsigned WrapType = OBO::AnyWrap; 5378 if (Add->hasNoSignedWrap()) 5379 WrapType |= OBO::NoSignedWrap; 5380 if (Add->hasNoUnsignedWrap()) 5381 WrapType |= OBO::NoUnsignedWrap; 5382 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5383 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5384 WrapType, RangeType); 5385 return setRange(Add, SignHint, 5386 ConservativeResult.intersectWith(X, RangeType)); 5387 } 5388 5389 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5390 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5391 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5392 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5393 return setRange(Mul, SignHint, 5394 ConservativeResult.intersectWith(X, RangeType)); 5395 } 5396 5397 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5398 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5399 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5400 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5401 return setRange(SMax, SignHint, 5402 ConservativeResult.intersectWith(X, RangeType)); 5403 } 5404 5405 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5406 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5407 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5408 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5409 return setRange(UMax, SignHint, 5410 ConservativeResult.intersectWith(X, RangeType)); 5411 } 5412 5413 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5414 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5415 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5416 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5417 return setRange(SMin, SignHint, 5418 ConservativeResult.intersectWith(X, RangeType)); 5419 } 5420 5421 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5422 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5423 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5424 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5425 return setRange(UMin, SignHint, 5426 ConservativeResult.intersectWith(X, RangeType)); 5427 } 5428 5429 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5430 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5431 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5432 return setRange(UDiv, SignHint, 5433 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5434 } 5435 5436 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5437 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5438 return setRange(ZExt, SignHint, 5439 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5440 RangeType)); 5441 } 5442 5443 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5444 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5445 return setRange(SExt, SignHint, 5446 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5447 RangeType)); 5448 } 5449 5450 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5451 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5452 return setRange(Trunc, SignHint, 5453 ConservativeResult.intersectWith(X.truncate(BitWidth), 5454 RangeType)); 5455 } 5456 5457 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5458 // If there's no unsigned wrap, the value will never be less than its 5459 // initial value. 5460 if (AddRec->hasNoUnsignedWrap()) { 5461 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5462 if (!UnsignedMinValue.isNullValue()) 5463 ConservativeResult = ConservativeResult.intersectWith( 5464 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5465 } 5466 5467 // If there's no signed wrap, and all the operands except initial value have 5468 // the same sign or zero, the value won't ever be: 5469 // 1: smaller than initial value if operands are non negative, 5470 // 2: bigger than initial value if operands are non positive. 5471 // For both cases, value can not cross signed min/max boundary. 5472 if (AddRec->hasNoSignedWrap()) { 5473 bool AllNonNeg = true; 5474 bool AllNonPos = true; 5475 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5476 if (!isKnownNonNegative(AddRec->getOperand(i))) 5477 AllNonNeg = false; 5478 if (!isKnownNonPositive(AddRec->getOperand(i))) 5479 AllNonPos = false; 5480 } 5481 if (AllNonNeg) 5482 ConservativeResult = ConservativeResult.intersectWith( 5483 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5484 APInt::getSignedMinValue(BitWidth)), 5485 RangeType); 5486 else if (AllNonPos) 5487 ConservativeResult = ConservativeResult.intersectWith( 5488 ConstantRange::getNonEmpty( 5489 APInt::getSignedMinValue(BitWidth), 5490 getSignedRangeMax(AddRec->getStart()) + 1), 5491 RangeType); 5492 } 5493 5494 // TODO: non-affine addrec 5495 if (AddRec->isAffine()) { 5496 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5497 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5498 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5499 auto RangeFromAffine = getRangeForAffineAR( 5500 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5501 BitWidth); 5502 if (!RangeFromAffine.isFullSet()) 5503 ConservativeResult = 5504 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5505 5506 auto RangeFromFactoring = getRangeViaFactoring( 5507 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5508 BitWidth); 5509 if (!RangeFromFactoring.isFullSet()) 5510 ConservativeResult = 5511 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5512 } 5513 } 5514 5515 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5516 } 5517 5518 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5519 // Check if the IR explicitly contains !range metadata. 5520 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5521 if (MDRange.hasValue()) 5522 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5523 RangeType); 5524 5525 // Split here to avoid paying the compile-time cost of calling both 5526 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5527 // if needed. 5528 const DataLayout &DL = getDataLayout(); 5529 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5530 // For a SCEVUnknown, ask ValueTracking. 5531 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5532 if (Known.getBitWidth() != BitWidth) 5533 Known = Known.zextOrTrunc(BitWidth); 5534 // If Known does not result in full-set, intersect with it. 5535 if (Known.getMinValue() != Known.getMaxValue() + 1) 5536 ConservativeResult = ConservativeResult.intersectWith( 5537 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 5538 RangeType); 5539 } else { 5540 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5541 "generalize as needed!"); 5542 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5543 // If the pointer size is larger than the index size type, this can cause 5544 // NS to be larger than BitWidth. So compensate for this. 5545 if (U->getType()->isPointerTy()) { 5546 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5547 int ptrIdxDiff = ptrSize - BitWidth; 5548 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5549 NS -= ptrIdxDiff; 5550 } 5551 5552 if (NS > 1) 5553 ConservativeResult = ConservativeResult.intersectWith( 5554 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5555 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 5556 RangeType); 5557 } 5558 5559 // A range of Phi is a subset of union of all ranges of its input. 5560 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5561 // Make sure that we do not run over cycled Phis. 5562 if (PendingPhiRanges.insert(Phi).second) { 5563 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5564 for (auto &Op : Phi->operands()) { 5565 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5566 RangeFromOps = RangeFromOps.unionWith(OpRange); 5567 // No point to continue if we already have a full set. 5568 if (RangeFromOps.isFullSet()) 5569 break; 5570 } 5571 ConservativeResult = 5572 ConservativeResult.intersectWith(RangeFromOps, RangeType); 5573 bool Erased = PendingPhiRanges.erase(Phi); 5574 assert(Erased && "Failed to erase Phi properly?"); 5575 (void) Erased; 5576 } 5577 } 5578 5579 return setRange(U, SignHint, std::move(ConservativeResult)); 5580 } 5581 5582 return setRange(S, SignHint, std::move(ConservativeResult)); 5583 } 5584 5585 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5586 // values that the expression can take. Initially, the expression has a value 5587 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5588 // argument defines if we treat Step as signed or unsigned. 5589 static ConstantRange getRangeForAffineARHelper(APInt Step, 5590 const ConstantRange &StartRange, 5591 const APInt &MaxBECount, 5592 unsigned BitWidth, bool Signed) { 5593 // If either Step or MaxBECount is 0, then the expression won't change, and we 5594 // just need to return the initial range. 5595 if (Step == 0 || MaxBECount == 0) 5596 return StartRange; 5597 5598 // If we don't know anything about the initial value (i.e. StartRange is 5599 // FullRange), then we don't know anything about the final range either. 5600 // Return FullRange. 5601 if (StartRange.isFullSet()) 5602 return ConstantRange::getFull(BitWidth); 5603 5604 // If Step is signed and negative, then we use its absolute value, but we also 5605 // note that we're moving in the opposite direction. 5606 bool Descending = Signed && Step.isNegative(); 5607 5608 if (Signed) 5609 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5610 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5611 // This equations hold true due to the well-defined wrap-around behavior of 5612 // APInt. 5613 Step = Step.abs(); 5614 5615 // Check if Offset is more than full span of BitWidth. If it is, the 5616 // expression is guaranteed to overflow. 5617 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5618 return ConstantRange::getFull(BitWidth); 5619 5620 // Offset is by how much the expression can change. Checks above guarantee no 5621 // overflow here. 5622 APInt Offset = Step * MaxBECount; 5623 5624 // Minimum value of the final range will match the minimal value of StartRange 5625 // if the expression is increasing and will be decreased by Offset otherwise. 5626 // Maximum value of the final range will match the maximal value of StartRange 5627 // if the expression is decreasing and will be increased by Offset otherwise. 5628 APInt StartLower = StartRange.getLower(); 5629 APInt StartUpper = StartRange.getUpper() - 1; 5630 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5631 : (StartUpper + std::move(Offset)); 5632 5633 // It's possible that the new minimum/maximum value will fall into the initial 5634 // range (due to wrap around). This means that the expression can take any 5635 // value in this bitwidth, and we have to return full range. 5636 if (StartRange.contains(MovedBoundary)) 5637 return ConstantRange::getFull(BitWidth); 5638 5639 APInt NewLower = 5640 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5641 APInt NewUpper = 5642 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5643 NewUpper += 1; 5644 5645 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5646 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 5647 } 5648 5649 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5650 const SCEV *Step, 5651 const SCEV *MaxBECount, 5652 unsigned BitWidth) { 5653 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5654 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5655 "Precondition!"); 5656 5657 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5658 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5659 5660 // First, consider step signed. 5661 ConstantRange StartSRange = getSignedRange(Start); 5662 ConstantRange StepSRange = getSignedRange(Step); 5663 5664 // If Step can be both positive and negative, we need to find ranges for the 5665 // maximum absolute step values in both directions and union them. 5666 ConstantRange SR = 5667 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5668 MaxBECountValue, BitWidth, /* Signed = */ true); 5669 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5670 StartSRange, MaxBECountValue, 5671 BitWidth, /* Signed = */ true)); 5672 5673 // Next, consider step unsigned. 5674 ConstantRange UR = getRangeForAffineARHelper( 5675 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5676 MaxBECountValue, BitWidth, /* Signed = */ false); 5677 5678 // Finally, intersect signed and unsigned ranges. 5679 return SR.intersectWith(UR, ConstantRange::Smallest); 5680 } 5681 5682 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5683 const SCEV *Step, 5684 const SCEV *MaxBECount, 5685 unsigned BitWidth) { 5686 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5687 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5688 5689 struct SelectPattern { 5690 Value *Condition = nullptr; 5691 APInt TrueValue; 5692 APInt FalseValue; 5693 5694 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5695 const SCEV *S) { 5696 Optional<unsigned> CastOp; 5697 APInt Offset(BitWidth, 0); 5698 5699 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5700 "Should be!"); 5701 5702 // Peel off a constant offset: 5703 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5704 // In the future we could consider being smarter here and handle 5705 // {Start+Step,+,Step} too. 5706 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5707 return; 5708 5709 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5710 S = SA->getOperand(1); 5711 } 5712 5713 // Peel off a cast operation 5714 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5715 CastOp = SCast->getSCEVType(); 5716 S = SCast->getOperand(); 5717 } 5718 5719 using namespace llvm::PatternMatch; 5720 5721 auto *SU = dyn_cast<SCEVUnknown>(S); 5722 const APInt *TrueVal, *FalseVal; 5723 if (!SU || 5724 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5725 m_APInt(FalseVal)))) { 5726 Condition = nullptr; 5727 return; 5728 } 5729 5730 TrueValue = *TrueVal; 5731 FalseValue = *FalseVal; 5732 5733 // Re-apply the cast we peeled off earlier 5734 if (CastOp.hasValue()) 5735 switch (*CastOp) { 5736 default: 5737 llvm_unreachable("Unknown SCEV cast type!"); 5738 5739 case scTruncate: 5740 TrueValue = TrueValue.trunc(BitWidth); 5741 FalseValue = FalseValue.trunc(BitWidth); 5742 break; 5743 case scZeroExtend: 5744 TrueValue = TrueValue.zext(BitWidth); 5745 FalseValue = FalseValue.zext(BitWidth); 5746 break; 5747 case scSignExtend: 5748 TrueValue = TrueValue.sext(BitWidth); 5749 FalseValue = FalseValue.sext(BitWidth); 5750 break; 5751 } 5752 5753 // Re-apply the constant offset we peeled off earlier 5754 TrueValue += Offset; 5755 FalseValue += Offset; 5756 } 5757 5758 bool isRecognized() { return Condition != nullptr; } 5759 }; 5760 5761 SelectPattern StartPattern(*this, BitWidth, Start); 5762 if (!StartPattern.isRecognized()) 5763 return ConstantRange::getFull(BitWidth); 5764 5765 SelectPattern StepPattern(*this, BitWidth, Step); 5766 if (!StepPattern.isRecognized()) 5767 return ConstantRange::getFull(BitWidth); 5768 5769 if (StartPattern.Condition != StepPattern.Condition) { 5770 // We don't handle this case today; but we could, by considering four 5771 // possibilities below instead of two. I'm not sure if there are cases where 5772 // that will help over what getRange already does, though. 5773 return ConstantRange::getFull(BitWidth); 5774 } 5775 5776 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5777 // construct arbitrary general SCEV expressions here. This function is called 5778 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5779 // say) can end up caching a suboptimal value. 5780 5781 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5782 // C2352 and C2512 (otherwise it isn't needed). 5783 5784 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5785 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5786 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5787 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5788 5789 ConstantRange TrueRange = 5790 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5791 ConstantRange FalseRange = 5792 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5793 5794 return TrueRange.unionWith(FalseRange); 5795 } 5796 5797 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5798 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5799 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5800 5801 // Return early if there are no flags to propagate to the SCEV. 5802 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5803 if (BinOp->hasNoUnsignedWrap()) 5804 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5805 if (BinOp->hasNoSignedWrap()) 5806 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5807 if (Flags == SCEV::FlagAnyWrap) 5808 return SCEV::FlagAnyWrap; 5809 5810 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5811 } 5812 5813 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5814 // Here we check that I is in the header of the innermost loop containing I, 5815 // since we only deal with instructions in the loop header. The actual loop we 5816 // need to check later will come from an add recurrence, but getting that 5817 // requires computing the SCEV of the operands, which can be expensive. This 5818 // check we can do cheaply to rule out some cases early. 5819 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5820 if (InnermostContainingLoop == nullptr || 5821 InnermostContainingLoop->getHeader() != I->getParent()) 5822 return false; 5823 5824 // Only proceed if we can prove that I does not yield poison. 5825 if (!programUndefinedIfPoison(I)) 5826 return false; 5827 5828 // At this point we know that if I is executed, then it does not wrap 5829 // according to at least one of NSW or NUW. If I is not executed, then we do 5830 // not know if the calculation that I represents would wrap. Multiple 5831 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5832 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5833 // derived from other instructions that map to the same SCEV. We cannot make 5834 // that guarantee for cases where I is not executed. So we need to find the 5835 // loop that I is considered in relation to and prove that I is executed for 5836 // every iteration of that loop. That implies that the value that I 5837 // calculates does not wrap anywhere in the loop, so then we can apply the 5838 // flags to the SCEV. 5839 // 5840 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5841 // from different loops, so that we know which loop to prove that I is 5842 // executed in. 5843 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5844 // I could be an extractvalue from a call to an overflow intrinsic. 5845 // TODO: We can do better here in some cases. 5846 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5847 return false; 5848 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5849 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5850 bool AllOtherOpsLoopInvariant = true; 5851 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5852 ++OtherOpIndex) { 5853 if (OtherOpIndex != OpIndex) { 5854 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5855 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5856 AllOtherOpsLoopInvariant = false; 5857 break; 5858 } 5859 } 5860 } 5861 if (AllOtherOpsLoopInvariant && 5862 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5863 return true; 5864 } 5865 } 5866 return false; 5867 } 5868 5869 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5870 // If we know that \c I can never be poison period, then that's enough. 5871 if (isSCEVExprNeverPoison(I)) 5872 return true; 5873 5874 // For an add recurrence specifically, we assume that infinite loops without 5875 // side effects are undefined behavior, and then reason as follows: 5876 // 5877 // If the add recurrence is poison in any iteration, it is poison on all 5878 // future iterations (since incrementing poison yields poison). If the result 5879 // of the add recurrence is fed into the loop latch condition and the loop 5880 // does not contain any throws or exiting blocks other than the latch, we now 5881 // have the ability to "choose" whether the backedge is taken or not (by 5882 // choosing a sufficiently evil value for the poison feeding into the branch) 5883 // for every iteration including and after the one in which \p I first became 5884 // poison. There are two possibilities (let's call the iteration in which \p 5885 // I first became poison as K): 5886 // 5887 // 1. In the set of iterations including and after K, the loop body executes 5888 // no side effects. In this case executing the backege an infinte number 5889 // of times will yield undefined behavior. 5890 // 5891 // 2. In the set of iterations including and after K, the loop body executes 5892 // at least one side effect. In this case, that specific instance of side 5893 // effect is control dependent on poison, which also yields undefined 5894 // behavior. 5895 5896 auto *ExitingBB = L->getExitingBlock(); 5897 auto *LatchBB = L->getLoopLatch(); 5898 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5899 return false; 5900 5901 SmallPtrSet<const Instruction *, 16> Pushed; 5902 SmallVector<const Instruction *, 8> PoisonStack; 5903 5904 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5905 // things that are known to be poison under that assumption go on the 5906 // PoisonStack. 5907 Pushed.insert(I); 5908 PoisonStack.push_back(I); 5909 5910 bool LatchControlDependentOnPoison = false; 5911 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5912 const Instruction *Poison = PoisonStack.pop_back_val(); 5913 5914 for (auto *PoisonUser : Poison->users()) { 5915 if (propagatesPoison(cast<Instruction>(PoisonUser))) { 5916 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5917 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5918 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5919 assert(BI->isConditional() && "Only possibility!"); 5920 if (BI->getParent() == LatchBB) { 5921 LatchControlDependentOnPoison = true; 5922 break; 5923 } 5924 } 5925 } 5926 } 5927 5928 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5929 } 5930 5931 ScalarEvolution::LoopProperties 5932 ScalarEvolution::getLoopProperties(const Loop *L) { 5933 using LoopProperties = ScalarEvolution::LoopProperties; 5934 5935 auto Itr = LoopPropertiesCache.find(L); 5936 if (Itr == LoopPropertiesCache.end()) { 5937 auto HasSideEffects = [](Instruction *I) { 5938 if (auto *SI = dyn_cast<StoreInst>(I)) 5939 return !SI->isSimple(); 5940 5941 return I->mayHaveSideEffects(); 5942 }; 5943 5944 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5945 /*HasNoSideEffects*/ true}; 5946 5947 for (auto *BB : L->getBlocks()) 5948 for (auto &I : *BB) { 5949 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5950 LP.HasNoAbnormalExits = false; 5951 if (HasSideEffects(&I)) 5952 LP.HasNoSideEffects = false; 5953 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5954 break; // We're already as pessimistic as we can get. 5955 } 5956 5957 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5958 assert(InsertPair.second && "We just checked!"); 5959 Itr = InsertPair.first; 5960 } 5961 5962 return Itr->second; 5963 } 5964 5965 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5966 if (!isSCEVable(V->getType())) 5967 return getUnknown(V); 5968 5969 if (Instruction *I = dyn_cast<Instruction>(V)) { 5970 // Don't attempt to analyze instructions in blocks that aren't 5971 // reachable. Such instructions don't matter, and they aren't required 5972 // to obey basic rules for definitions dominating uses which this 5973 // analysis depends on. 5974 if (!DT.isReachableFromEntry(I->getParent())) 5975 return getUnknown(UndefValue::get(V->getType())); 5976 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5977 return getConstant(CI); 5978 else if (isa<ConstantPointerNull>(V)) 5979 return getZero(V->getType()); 5980 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5981 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5982 else if (!isa<ConstantExpr>(V)) 5983 return getUnknown(V); 5984 5985 Operator *U = cast<Operator>(V); 5986 if (auto BO = MatchBinaryOp(U, DT)) { 5987 switch (BO->Opcode) { 5988 case Instruction::Add: { 5989 // The simple thing to do would be to just call getSCEV on both operands 5990 // and call getAddExpr with the result. However if we're looking at a 5991 // bunch of things all added together, this can be quite inefficient, 5992 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5993 // Instead, gather up all the operands and make a single getAddExpr call. 5994 // LLVM IR canonical form means we need only traverse the left operands. 5995 SmallVector<const SCEV *, 4> AddOps; 5996 do { 5997 if (BO->Op) { 5998 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5999 AddOps.push_back(OpSCEV); 6000 break; 6001 } 6002 6003 // If a NUW or NSW flag can be applied to the SCEV for this 6004 // addition, then compute the SCEV for this addition by itself 6005 // with a separate call to getAddExpr. We need to do that 6006 // instead of pushing the operands of the addition onto AddOps, 6007 // since the flags are only known to apply to this particular 6008 // addition - they may not apply to other additions that can be 6009 // formed with operands from AddOps. 6010 const SCEV *RHS = getSCEV(BO->RHS); 6011 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6012 if (Flags != SCEV::FlagAnyWrap) { 6013 const SCEV *LHS = getSCEV(BO->LHS); 6014 if (BO->Opcode == Instruction::Sub) 6015 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6016 else 6017 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6018 break; 6019 } 6020 } 6021 6022 if (BO->Opcode == Instruction::Sub) 6023 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6024 else 6025 AddOps.push_back(getSCEV(BO->RHS)); 6026 6027 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6028 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6029 NewBO->Opcode != Instruction::Sub)) { 6030 AddOps.push_back(getSCEV(BO->LHS)); 6031 break; 6032 } 6033 BO = NewBO; 6034 } while (true); 6035 6036 return getAddExpr(AddOps); 6037 } 6038 6039 case Instruction::Mul: { 6040 SmallVector<const SCEV *, 4> MulOps; 6041 do { 6042 if (BO->Op) { 6043 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6044 MulOps.push_back(OpSCEV); 6045 break; 6046 } 6047 6048 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6049 if (Flags != SCEV::FlagAnyWrap) { 6050 MulOps.push_back( 6051 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6052 break; 6053 } 6054 } 6055 6056 MulOps.push_back(getSCEV(BO->RHS)); 6057 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6058 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6059 MulOps.push_back(getSCEV(BO->LHS)); 6060 break; 6061 } 6062 BO = NewBO; 6063 } while (true); 6064 6065 return getMulExpr(MulOps); 6066 } 6067 case Instruction::UDiv: 6068 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6069 case Instruction::URem: 6070 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6071 case Instruction::Sub: { 6072 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6073 if (BO->Op) 6074 Flags = getNoWrapFlagsFromUB(BO->Op); 6075 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6076 } 6077 case Instruction::And: 6078 // For an expression like x&255 that merely masks off the high bits, 6079 // use zext(trunc(x)) as the SCEV expression. 6080 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6081 if (CI->isZero()) 6082 return getSCEV(BO->RHS); 6083 if (CI->isMinusOne()) 6084 return getSCEV(BO->LHS); 6085 const APInt &A = CI->getValue(); 6086 6087 // Instcombine's ShrinkDemandedConstant may strip bits out of 6088 // constants, obscuring what would otherwise be a low-bits mask. 6089 // Use computeKnownBits to compute what ShrinkDemandedConstant 6090 // knew about to reconstruct a low-bits mask value. 6091 unsigned LZ = A.countLeadingZeros(); 6092 unsigned TZ = A.countTrailingZeros(); 6093 unsigned BitWidth = A.getBitWidth(); 6094 KnownBits Known(BitWidth); 6095 computeKnownBits(BO->LHS, Known, getDataLayout(), 6096 0, &AC, nullptr, &DT); 6097 6098 APInt EffectiveMask = 6099 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6100 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6101 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6102 const SCEV *LHS = getSCEV(BO->LHS); 6103 const SCEV *ShiftedLHS = nullptr; 6104 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6105 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6106 // For an expression like (x * 8) & 8, simplify the multiply. 6107 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6108 unsigned GCD = std::min(MulZeros, TZ); 6109 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6110 SmallVector<const SCEV*, 4> MulOps; 6111 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6112 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6113 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6114 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6115 } 6116 } 6117 if (!ShiftedLHS) 6118 ShiftedLHS = getUDivExpr(LHS, MulCount); 6119 return getMulExpr( 6120 getZeroExtendExpr( 6121 getTruncateExpr(ShiftedLHS, 6122 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6123 BO->LHS->getType()), 6124 MulCount); 6125 } 6126 } 6127 break; 6128 6129 case Instruction::Or: 6130 // If the RHS of the Or is a constant, we may have something like: 6131 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6132 // optimizations will transparently handle this case. 6133 // 6134 // In order for this transformation to be safe, the LHS must be of the 6135 // form X*(2^n) and the Or constant must be less than 2^n. 6136 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6137 const SCEV *LHS = getSCEV(BO->LHS); 6138 const APInt &CIVal = CI->getValue(); 6139 if (GetMinTrailingZeros(LHS) >= 6140 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6141 // Build a plain add SCEV. 6142 return getAddExpr(LHS, getSCEV(CI), 6143 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6144 } 6145 } 6146 break; 6147 6148 case Instruction::Xor: 6149 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6150 // If the RHS of xor is -1, then this is a not operation. 6151 if (CI->isMinusOne()) 6152 return getNotSCEV(getSCEV(BO->LHS)); 6153 6154 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6155 // This is a variant of the check for xor with -1, and it handles 6156 // the case where instcombine has trimmed non-demanded bits out 6157 // of an xor with -1. 6158 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6159 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6160 if (LBO->getOpcode() == Instruction::And && 6161 LCI->getValue() == CI->getValue()) 6162 if (const SCEVZeroExtendExpr *Z = 6163 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6164 Type *UTy = BO->LHS->getType(); 6165 const SCEV *Z0 = Z->getOperand(); 6166 Type *Z0Ty = Z0->getType(); 6167 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6168 6169 // If C is a low-bits mask, the zero extend is serving to 6170 // mask off the high bits. Complement the operand and 6171 // re-apply the zext. 6172 if (CI->getValue().isMask(Z0TySize)) 6173 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6174 6175 // If C is a single bit, it may be in the sign-bit position 6176 // before the zero-extend. In this case, represent the xor 6177 // using an add, which is equivalent, and re-apply the zext. 6178 APInt Trunc = CI->getValue().trunc(Z0TySize); 6179 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6180 Trunc.isSignMask()) 6181 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6182 UTy); 6183 } 6184 } 6185 break; 6186 6187 case Instruction::Shl: 6188 // Turn shift left of a constant amount into a multiply. 6189 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6190 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6191 6192 // If the shift count is not less than the bitwidth, the result of 6193 // the shift is undefined. Don't try to analyze it, because the 6194 // resolution chosen here may differ from the resolution chosen in 6195 // other parts of the compiler. 6196 if (SA->getValue().uge(BitWidth)) 6197 break; 6198 6199 // We can safely preserve the nuw flag in all cases. It's also safe to 6200 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6201 // requires special handling. It can be preserved as long as we're not 6202 // left shifting by bitwidth - 1. 6203 auto Flags = SCEV::FlagAnyWrap; 6204 if (BO->Op) { 6205 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6206 if ((MulFlags & SCEV::FlagNSW) && 6207 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6208 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6209 if (MulFlags & SCEV::FlagNUW) 6210 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6211 } 6212 6213 Constant *X = ConstantInt::get( 6214 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6215 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6216 } 6217 break; 6218 6219 case Instruction::AShr: { 6220 // AShr X, C, where C is a constant. 6221 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6222 if (!CI) 6223 break; 6224 6225 Type *OuterTy = BO->LHS->getType(); 6226 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6227 // If the shift count is not less than the bitwidth, the result of 6228 // the shift is undefined. Don't try to analyze it, because the 6229 // resolution chosen here may differ from the resolution chosen in 6230 // other parts of the compiler. 6231 if (CI->getValue().uge(BitWidth)) 6232 break; 6233 6234 if (CI->isZero()) 6235 return getSCEV(BO->LHS); // shift by zero --> noop 6236 6237 uint64_t AShrAmt = CI->getZExtValue(); 6238 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6239 6240 Operator *L = dyn_cast<Operator>(BO->LHS); 6241 if (L && L->getOpcode() == Instruction::Shl) { 6242 // X = Shl A, n 6243 // Y = AShr X, m 6244 // Both n and m are constant. 6245 6246 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6247 if (L->getOperand(1) == BO->RHS) 6248 // For a two-shift sext-inreg, i.e. n = m, 6249 // use sext(trunc(x)) as the SCEV expression. 6250 return getSignExtendExpr( 6251 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6252 6253 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6254 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6255 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6256 if (ShlAmt > AShrAmt) { 6257 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6258 // expression. We already checked that ShlAmt < BitWidth, so 6259 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6260 // ShlAmt - AShrAmt < Amt. 6261 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6262 ShlAmt - AShrAmt); 6263 return getSignExtendExpr( 6264 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6265 getConstant(Mul)), OuterTy); 6266 } 6267 } 6268 } 6269 break; 6270 } 6271 } 6272 } 6273 6274 switch (U->getOpcode()) { 6275 case Instruction::Trunc: 6276 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6277 6278 case Instruction::ZExt: 6279 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6280 6281 case Instruction::SExt: 6282 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6283 // The NSW flag of a subtract does not always survive the conversion to 6284 // A + (-1)*B. By pushing sign extension onto its operands we are much 6285 // more likely to preserve NSW and allow later AddRec optimisations. 6286 // 6287 // NOTE: This is effectively duplicating this logic from getSignExtend: 6288 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6289 // but by that point the NSW information has potentially been lost. 6290 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6291 Type *Ty = U->getType(); 6292 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6293 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6294 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6295 } 6296 } 6297 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6298 6299 case Instruction::BitCast: 6300 // BitCasts are no-op casts so we just eliminate the cast. 6301 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6302 return getSCEV(U->getOperand(0)); 6303 break; 6304 6305 case Instruction::SDiv: 6306 // If both operands are non-negative, this is just an udiv. 6307 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6308 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6309 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6310 break; 6311 6312 case Instruction::SRem: 6313 // If both operands are non-negative, this is just an urem. 6314 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6315 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6316 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6317 break; 6318 6319 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6320 // lead to pointer expressions which cannot safely be expanded to GEPs, 6321 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6322 // simplifying integer expressions. 6323 6324 case Instruction::GetElementPtr: 6325 return createNodeForGEP(cast<GEPOperator>(U)); 6326 6327 case Instruction::PHI: 6328 return createNodeForPHI(cast<PHINode>(U)); 6329 6330 case Instruction::Select: 6331 // U can also be a select constant expr, which let fall through. Since 6332 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6333 // constant expressions cannot have instructions as operands, we'd have 6334 // returned getUnknown for a select constant expressions anyway. 6335 if (isa<Instruction>(U)) 6336 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6337 U->getOperand(1), U->getOperand(2)); 6338 break; 6339 6340 case Instruction::Call: 6341 case Instruction::Invoke: 6342 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 6343 return getSCEV(RV); 6344 6345 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 6346 switch (II->getIntrinsicID()) { 6347 case Intrinsic::umax: 6348 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 6349 getSCEV(II->getArgOperand(1))); 6350 case Intrinsic::umin: 6351 return getUMinExpr(getSCEV(II->getArgOperand(0)), 6352 getSCEV(II->getArgOperand(1))); 6353 case Intrinsic::smax: 6354 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 6355 getSCEV(II->getArgOperand(1))); 6356 case Intrinsic::smin: 6357 return getSMinExpr(getSCEV(II->getArgOperand(0)), 6358 getSCEV(II->getArgOperand(1))); 6359 default: 6360 break; 6361 } 6362 } 6363 break; 6364 } 6365 6366 return getUnknown(V); 6367 } 6368 6369 //===----------------------------------------------------------------------===// 6370 // Iteration Count Computation Code 6371 // 6372 6373 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6374 if (!ExitCount) 6375 return 0; 6376 6377 ConstantInt *ExitConst = ExitCount->getValue(); 6378 6379 // Guard against huge trip counts. 6380 if (ExitConst->getValue().getActiveBits() > 32) 6381 return 0; 6382 6383 // In case of integer overflow, this returns 0, which is correct. 6384 return ((unsigned)ExitConst->getZExtValue()) + 1; 6385 } 6386 6387 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6388 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6389 return getSmallConstantTripCount(L, ExitingBB); 6390 6391 // No trip count information for multiple exits. 6392 return 0; 6393 } 6394 6395 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6396 BasicBlock *ExitingBlock) { 6397 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6398 assert(L->isLoopExiting(ExitingBlock) && 6399 "Exiting block must actually branch out of the loop!"); 6400 const SCEVConstant *ExitCount = 6401 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6402 return getConstantTripCount(ExitCount); 6403 } 6404 6405 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6406 const auto *MaxExitCount = 6407 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6408 return getConstantTripCount(MaxExitCount); 6409 } 6410 6411 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6412 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6413 return getSmallConstantTripMultiple(L, ExitingBB); 6414 6415 // No trip multiple information for multiple exits. 6416 return 0; 6417 } 6418 6419 /// Returns the largest constant divisor of the trip count of this loop as a 6420 /// normal unsigned value, if possible. This means that the actual trip count is 6421 /// always a multiple of the returned value (don't forget the trip count could 6422 /// very well be zero as well!). 6423 /// 6424 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6425 /// multiple of a constant (which is also the case if the trip count is simply 6426 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6427 /// if the trip count is very large (>= 2^32). 6428 /// 6429 /// As explained in the comments for getSmallConstantTripCount, this assumes 6430 /// that control exits the loop via ExitingBlock. 6431 unsigned 6432 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6433 BasicBlock *ExitingBlock) { 6434 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6435 assert(L->isLoopExiting(ExitingBlock) && 6436 "Exiting block must actually branch out of the loop!"); 6437 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6438 if (ExitCount == getCouldNotCompute()) 6439 return 1; 6440 6441 // Get the trip count from the BE count by adding 1. 6442 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6443 6444 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6445 if (!TC) 6446 // Attempt to factor more general cases. Returns the greatest power of 6447 // two divisor. If overflow happens, the trip count expression is still 6448 // divisible by the greatest power of 2 divisor returned. 6449 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6450 6451 ConstantInt *Result = TC->getValue(); 6452 6453 // Guard against huge trip counts (this requires checking 6454 // for zero to handle the case where the trip count == -1 and the 6455 // addition wraps). 6456 if (!Result || Result->getValue().getActiveBits() > 32 || 6457 Result->getValue().getActiveBits() == 0) 6458 return 1; 6459 6460 return (unsigned)Result->getZExtValue(); 6461 } 6462 6463 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6464 BasicBlock *ExitingBlock, 6465 ExitCountKind Kind) { 6466 switch (Kind) { 6467 case Exact: 6468 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6469 case ConstantMaximum: 6470 return getBackedgeTakenInfo(L).getMax(ExitingBlock, this); 6471 }; 6472 llvm_unreachable("Invalid ExitCountKind!"); 6473 } 6474 6475 const SCEV * 6476 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6477 SCEVUnionPredicate &Preds) { 6478 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6479 } 6480 6481 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 6482 ExitCountKind Kind) { 6483 switch (Kind) { 6484 case Exact: 6485 return getBackedgeTakenInfo(L).getExact(L, this); 6486 case ConstantMaximum: 6487 return getBackedgeTakenInfo(L).getMax(this); 6488 }; 6489 llvm_unreachable("Invalid ExitCountKind!"); 6490 } 6491 6492 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6493 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6494 } 6495 6496 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6497 static void 6498 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6499 BasicBlock *Header = L->getHeader(); 6500 6501 // Push all Loop-header PHIs onto the Worklist stack. 6502 for (PHINode &PN : Header->phis()) 6503 Worklist.push_back(&PN); 6504 } 6505 6506 const ScalarEvolution::BackedgeTakenInfo & 6507 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6508 auto &BTI = getBackedgeTakenInfo(L); 6509 if (BTI.hasFullInfo()) 6510 return BTI; 6511 6512 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6513 6514 if (!Pair.second) 6515 return Pair.first->second; 6516 6517 BackedgeTakenInfo Result = 6518 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6519 6520 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6521 } 6522 6523 const ScalarEvolution::BackedgeTakenInfo & 6524 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6525 // Initially insert an invalid entry for this loop. If the insertion 6526 // succeeds, proceed to actually compute a backedge-taken count and 6527 // update the value. The temporary CouldNotCompute value tells SCEV 6528 // code elsewhere that it shouldn't attempt to request a new 6529 // backedge-taken count, which could result in infinite recursion. 6530 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6531 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6532 if (!Pair.second) 6533 return Pair.first->second; 6534 6535 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6536 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6537 // must be cleared in this scope. 6538 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6539 6540 // In product build, there are no usage of statistic. 6541 (void)NumTripCountsComputed; 6542 (void)NumTripCountsNotComputed; 6543 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6544 const SCEV *BEExact = Result.getExact(L, this); 6545 if (BEExact != getCouldNotCompute()) { 6546 assert(isLoopInvariant(BEExact, L) && 6547 isLoopInvariant(Result.getMax(this), L) && 6548 "Computed backedge-taken count isn't loop invariant for loop!"); 6549 ++NumTripCountsComputed; 6550 } 6551 else if (Result.getMax(this) == getCouldNotCompute() && 6552 isa<PHINode>(L->getHeader()->begin())) { 6553 // Only count loops that have phi nodes as not being computable. 6554 ++NumTripCountsNotComputed; 6555 } 6556 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6557 6558 // Now that we know more about the trip count for this loop, forget any 6559 // existing SCEV values for PHI nodes in this loop since they are only 6560 // conservative estimates made without the benefit of trip count 6561 // information. This is similar to the code in forgetLoop, except that 6562 // it handles SCEVUnknown PHI nodes specially. 6563 if (Result.hasAnyInfo()) { 6564 SmallVector<Instruction *, 16> Worklist; 6565 PushLoopPHIs(L, Worklist); 6566 6567 SmallPtrSet<Instruction *, 8> Discovered; 6568 while (!Worklist.empty()) { 6569 Instruction *I = Worklist.pop_back_val(); 6570 6571 ValueExprMapType::iterator It = 6572 ValueExprMap.find_as(static_cast<Value *>(I)); 6573 if (It != ValueExprMap.end()) { 6574 const SCEV *Old = It->second; 6575 6576 // SCEVUnknown for a PHI either means that it has an unrecognized 6577 // structure, or it's a PHI that's in the progress of being computed 6578 // by createNodeForPHI. In the former case, additional loop trip 6579 // count information isn't going to change anything. In the later 6580 // case, createNodeForPHI will perform the necessary updates on its 6581 // own when it gets to that point. 6582 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6583 eraseValueFromMap(It->first); 6584 forgetMemoizedResults(Old); 6585 } 6586 if (PHINode *PN = dyn_cast<PHINode>(I)) 6587 ConstantEvolutionLoopExitValue.erase(PN); 6588 } 6589 6590 // Since we don't need to invalidate anything for correctness and we're 6591 // only invalidating to make SCEV's results more precise, we get to stop 6592 // early to avoid invalidating too much. This is especially important in 6593 // cases like: 6594 // 6595 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6596 // loop0: 6597 // %pn0 = phi 6598 // ... 6599 // loop1: 6600 // %pn1 = phi 6601 // ... 6602 // 6603 // where both loop0 and loop1's backedge taken count uses the SCEV 6604 // expression for %v. If we don't have the early stop below then in cases 6605 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6606 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6607 // count for loop1, effectively nullifying SCEV's trip count cache. 6608 for (auto *U : I->users()) 6609 if (auto *I = dyn_cast<Instruction>(U)) { 6610 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6611 if (LoopForUser && L->contains(LoopForUser) && 6612 Discovered.insert(I).second) 6613 Worklist.push_back(I); 6614 } 6615 } 6616 } 6617 6618 // Re-lookup the insert position, since the call to 6619 // computeBackedgeTakenCount above could result in a 6620 // recusive call to getBackedgeTakenInfo (on a different 6621 // loop), which would invalidate the iterator computed 6622 // earlier. 6623 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6624 } 6625 6626 void ScalarEvolution::forgetAllLoops() { 6627 // This method is intended to forget all info about loops. It should 6628 // invalidate caches as if the following happened: 6629 // - The trip counts of all loops have changed arbitrarily 6630 // - Every llvm::Value has been updated in place to produce a different 6631 // result. 6632 BackedgeTakenCounts.clear(); 6633 PredicatedBackedgeTakenCounts.clear(); 6634 LoopPropertiesCache.clear(); 6635 ConstantEvolutionLoopExitValue.clear(); 6636 ValueExprMap.clear(); 6637 ValuesAtScopes.clear(); 6638 LoopDispositions.clear(); 6639 BlockDispositions.clear(); 6640 UnsignedRanges.clear(); 6641 SignedRanges.clear(); 6642 ExprValueMap.clear(); 6643 HasRecMap.clear(); 6644 MinTrailingZerosCache.clear(); 6645 PredicatedSCEVRewrites.clear(); 6646 } 6647 6648 void ScalarEvolution::forgetLoop(const Loop *L) { 6649 // Drop any stored trip count value. 6650 auto RemoveLoopFromBackedgeMap = 6651 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6652 auto BTCPos = Map.find(L); 6653 if (BTCPos != Map.end()) { 6654 BTCPos->second.clear(); 6655 Map.erase(BTCPos); 6656 } 6657 }; 6658 6659 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6660 SmallVector<Instruction *, 32> Worklist; 6661 SmallPtrSet<Instruction *, 16> Visited; 6662 6663 // Iterate over all the loops and sub-loops to drop SCEV information. 6664 while (!LoopWorklist.empty()) { 6665 auto *CurrL = LoopWorklist.pop_back_val(); 6666 6667 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6668 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6669 6670 // Drop information about predicated SCEV rewrites for this loop. 6671 for (auto I = PredicatedSCEVRewrites.begin(); 6672 I != PredicatedSCEVRewrites.end();) { 6673 std::pair<const SCEV *, const Loop *> Entry = I->first; 6674 if (Entry.second == CurrL) 6675 PredicatedSCEVRewrites.erase(I++); 6676 else 6677 ++I; 6678 } 6679 6680 auto LoopUsersItr = LoopUsers.find(CurrL); 6681 if (LoopUsersItr != LoopUsers.end()) { 6682 for (auto *S : LoopUsersItr->second) 6683 forgetMemoizedResults(S); 6684 LoopUsers.erase(LoopUsersItr); 6685 } 6686 6687 // Drop information about expressions based on loop-header PHIs. 6688 PushLoopPHIs(CurrL, Worklist); 6689 6690 while (!Worklist.empty()) { 6691 Instruction *I = Worklist.pop_back_val(); 6692 if (!Visited.insert(I).second) 6693 continue; 6694 6695 ValueExprMapType::iterator It = 6696 ValueExprMap.find_as(static_cast<Value *>(I)); 6697 if (It != ValueExprMap.end()) { 6698 eraseValueFromMap(It->first); 6699 forgetMemoizedResults(It->second); 6700 if (PHINode *PN = dyn_cast<PHINode>(I)) 6701 ConstantEvolutionLoopExitValue.erase(PN); 6702 } 6703 6704 PushDefUseChildren(I, Worklist); 6705 } 6706 6707 LoopPropertiesCache.erase(CurrL); 6708 // Forget all contained loops too, to avoid dangling entries in the 6709 // ValuesAtScopes map. 6710 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6711 } 6712 } 6713 6714 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6715 while (Loop *Parent = L->getParentLoop()) 6716 L = Parent; 6717 forgetLoop(L); 6718 } 6719 6720 void ScalarEvolution::forgetValue(Value *V) { 6721 Instruction *I = dyn_cast<Instruction>(V); 6722 if (!I) return; 6723 6724 // Drop information about expressions based on loop-header PHIs. 6725 SmallVector<Instruction *, 16> Worklist; 6726 Worklist.push_back(I); 6727 6728 SmallPtrSet<Instruction *, 8> Visited; 6729 while (!Worklist.empty()) { 6730 I = Worklist.pop_back_val(); 6731 if (!Visited.insert(I).second) 6732 continue; 6733 6734 ValueExprMapType::iterator It = 6735 ValueExprMap.find_as(static_cast<Value *>(I)); 6736 if (It != ValueExprMap.end()) { 6737 eraseValueFromMap(It->first); 6738 forgetMemoizedResults(It->second); 6739 if (PHINode *PN = dyn_cast<PHINode>(I)) 6740 ConstantEvolutionLoopExitValue.erase(PN); 6741 } 6742 6743 PushDefUseChildren(I, Worklist); 6744 } 6745 } 6746 6747 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 6748 LoopDispositions.clear(); 6749 } 6750 6751 /// Get the exact loop backedge taken count considering all loop exits. A 6752 /// computable result can only be returned for loops with all exiting blocks 6753 /// dominating the latch. howFarToZero assumes that the limit of each loop test 6754 /// is never skipped. This is a valid assumption as long as the loop exits via 6755 /// that test. For precise results, it is the caller's responsibility to specify 6756 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 6757 const SCEV * 6758 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 6759 SCEVUnionPredicate *Preds) const { 6760 // If any exits were not computable, the loop is not computable. 6761 if (!isComplete() || ExitNotTaken.empty()) 6762 return SE->getCouldNotCompute(); 6763 6764 const BasicBlock *Latch = L->getLoopLatch(); 6765 // All exiting blocks we have collected must dominate the only backedge. 6766 if (!Latch) 6767 return SE->getCouldNotCompute(); 6768 6769 // All exiting blocks we have gathered dominate loop's latch, so exact trip 6770 // count is simply a minimum out of all these calculated exit counts. 6771 SmallVector<const SCEV *, 2> Ops; 6772 for (auto &ENT : ExitNotTaken) { 6773 const SCEV *BECount = ENT.ExactNotTaken; 6774 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 6775 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 6776 "We should only have known counts for exiting blocks that dominate " 6777 "latch!"); 6778 6779 Ops.push_back(BECount); 6780 6781 if (Preds && !ENT.hasAlwaysTruePredicate()) 6782 Preds->add(ENT.Predicate.get()); 6783 6784 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6785 "Predicate should be always true!"); 6786 } 6787 6788 return SE->getUMinFromMismatchedTypes(Ops); 6789 } 6790 6791 /// Get the exact not taken count for this loop exit. 6792 const SCEV * 6793 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 6794 ScalarEvolution *SE) const { 6795 for (auto &ENT : ExitNotTaken) 6796 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6797 return ENT.ExactNotTaken; 6798 6799 return SE->getCouldNotCompute(); 6800 } 6801 6802 const SCEV * 6803 ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock, 6804 ScalarEvolution *SE) const { 6805 for (auto &ENT : ExitNotTaken) 6806 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6807 return ENT.MaxNotTaken; 6808 6809 return SE->getCouldNotCompute(); 6810 } 6811 6812 /// getMax - Get the max backedge taken count for the loop. 6813 const SCEV * 6814 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6815 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6816 return !ENT.hasAlwaysTruePredicate(); 6817 }; 6818 6819 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6820 return SE->getCouldNotCompute(); 6821 6822 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6823 "No point in having a non-constant max backedge taken count!"); 6824 return getMax(); 6825 } 6826 6827 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6828 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6829 return !ENT.hasAlwaysTruePredicate(); 6830 }; 6831 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6832 } 6833 6834 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6835 ScalarEvolution *SE) const { 6836 if (getMax() && getMax() != SE->getCouldNotCompute() && 6837 SE->hasOperand(getMax(), S)) 6838 return true; 6839 6840 for (auto &ENT : ExitNotTaken) 6841 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6842 SE->hasOperand(ENT.ExactNotTaken, S)) 6843 return true; 6844 6845 return false; 6846 } 6847 6848 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6849 : ExactNotTaken(E), MaxNotTaken(E) { 6850 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6851 isa<SCEVConstant>(MaxNotTaken)) && 6852 "No point in having a non-constant max backedge taken count!"); 6853 } 6854 6855 ScalarEvolution::ExitLimit::ExitLimit( 6856 const SCEV *E, const SCEV *M, bool MaxOrZero, 6857 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6858 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6859 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6860 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6861 "Exact is not allowed to be less precise than Max"); 6862 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6863 isa<SCEVConstant>(MaxNotTaken)) && 6864 "No point in having a non-constant max backedge taken count!"); 6865 for (auto *PredSet : PredSetList) 6866 for (auto *P : *PredSet) 6867 addPredicate(P); 6868 } 6869 6870 ScalarEvolution::ExitLimit::ExitLimit( 6871 const SCEV *E, const SCEV *M, bool MaxOrZero, 6872 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6873 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6874 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6875 isa<SCEVConstant>(MaxNotTaken)) && 6876 "No point in having a non-constant max backedge taken count!"); 6877 } 6878 6879 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6880 bool MaxOrZero) 6881 : ExitLimit(E, M, MaxOrZero, None) { 6882 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6883 isa<SCEVConstant>(MaxNotTaken)) && 6884 "No point in having a non-constant max backedge taken count!"); 6885 } 6886 6887 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6888 /// computable exit into a persistent ExitNotTakenInfo array. 6889 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6890 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6891 ExitCounts, 6892 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6893 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6894 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6895 6896 ExitNotTaken.reserve(ExitCounts.size()); 6897 std::transform( 6898 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6899 [&](const EdgeExitInfo &EEI) { 6900 BasicBlock *ExitBB = EEI.first; 6901 const ExitLimit &EL = EEI.second; 6902 if (EL.Predicates.empty()) 6903 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 6904 nullptr); 6905 6906 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 6907 for (auto *Pred : EL.Predicates) 6908 Predicate->add(Pred); 6909 6910 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 6911 std::move(Predicate)); 6912 }); 6913 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 6914 "No point in having a non-constant max backedge taken count!"); 6915 } 6916 6917 /// Invalidate this result and free the ExitNotTakenInfo array. 6918 void ScalarEvolution::BackedgeTakenInfo::clear() { 6919 ExitNotTaken.clear(); 6920 } 6921 6922 /// Compute the number of times the backedge of the specified loop will execute. 6923 ScalarEvolution::BackedgeTakenInfo 6924 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 6925 bool AllowPredicates) { 6926 SmallVector<BasicBlock *, 8> ExitingBlocks; 6927 L->getExitingBlocks(ExitingBlocks); 6928 6929 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6930 6931 SmallVector<EdgeExitInfo, 4> ExitCounts; 6932 bool CouldComputeBECount = true; 6933 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 6934 const SCEV *MustExitMaxBECount = nullptr; 6935 const SCEV *MayExitMaxBECount = nullptr; 6936 bool MustExitMaxOrZero = false; 6937 6938 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 6939 // and compute maxBECount. 6940 // Do a union of all the predicates here. 6941 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 6942 BasicBlock *ExitBB = ExitingBlocks[i]; 6943 6944 // We canonicalize untaken exits to br (constant), ignore them so that 6945 // proving an exit untaken doesn't negatively impact our ability to reason 6946 // about the loop as whole. 6947 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 6948 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 6949 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 6950 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 6951 continue; 6952 } 6953 6954 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 6955 6956 assert((AllowPredicates || EL.Predicates.empty()) && 6957 "Predicated exit limit when predicates are not allowed!"); 6958 6959 // 1. For each exit that can be computed, add an entry to ExitCounts. 6960 // CouldComputeBECount is true only if all exits can be computed. 6961 if (EL.ExactNotTaken == getCouldNotCompute()) 6962 // We couldn't compute an exact value for this exit, so 6963 // we won't be able to compute an exact value for the loop. 6964 CouldComputeBECount = false; 6965 else 6966 ExitCounts.emplace_back(ExitBB, EL); 6967 6968 // 2. Derive the loop's MaxBECount from each exit's max number of 6969 // non-exiting iterations. Partition the loop exits into two kinds: 6970 // LoopMustExits and LoopMayExits. 6971 // 6972 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 6973 // is a LoopMayExit. If any computable LoopMustExit is found, then 6974 // MaxBECount is the minimum EL.MaxNotTaken of computable 6975 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 6976 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 6977 // computable EL.MaxNotTaken. 6978 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 6979 DT.dominates(ExitBB, Latch)) { 6980 if (!MustExitMaxBECount) { 6981 MustExitMaxBECount = EL.MaxNotTaken; 6982 MustExitMaxOrZero = EL.MaxOrZero; 6983 } else { 6984 MustExitMaxBECount = 6985 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 6986 } 6987 } else if (MayExitMaxBECount != getCouldNotCompute()) { 6988 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 6989 MayExitMaxBECount = EL.MaxNotTaken; 6990 else { 6991 MayExitMaxBECount = 6992 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 6993 } 6994 } 6995 } 6996 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 6997 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 6998 // The loop backedge will be taken the maximum or zero times if there's 6999 // a single exit that must be taken the maximum or zero times. 7000 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7001 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7002 MaxBECount, MaxOrZero); 7003 } 7004 7005 ScalarEvolution::ExitLimit 7006 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7007 bool AllowPredicates) { 7008 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7009 // If our exiting block does not dominate the latch, then its connection with 7010 // loop's exit limit may be far from trivial. 7011 const BasicBlock *Latch = L->getLoopLatch(); 7012 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7013 return getCouldNotCompute(); 7014 7015 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7016 Instruction *Term = ExitingBlock->getTerminator(); 7017 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7018 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7019 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7020 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7021 "It should have one successor in loop and one exit block!"); 7022 // Proceed to the next level to examine the exit condition expression. 7023 return computeExitLimitFromCond( 7024 L, BI->getCondition(), ExitIfTrue, 7025 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7026 } 7027 7028 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7029 // For switch, make sure that there is a single exit from the loop. 7030 BasicBlock *Exit = nullptr; 7031 for (auto *SBB : successors(ExitingBlock)) 7032 if (!L->contains(SBB)) { 7033 if (Exit) // Multiple exit successors. 7034 return getCouldNotCompute(); 7035 Exit = SBB; 7036 } 7037 assert(Exit && "Exiting block must have at least one exit"); 7038 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7039 /*ControlsExit=*/IsOnlyExit); 7040 } 7041 7042 return getCouldNotCompute(); 7043 } 7044 7045 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7046 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7047 bool ControlsExit, bool AllowPredicates) { 7048 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7049 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7050 ControlsExit, AllowPredicates); 7051 } 7052 7053 Optional<ScalarEvolution::ExitLimit> 7054 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7055 bool ExitIfTrue, bool ControlsExit, 7056 bool AllowPredicates) { 7057 (void)this->L; 7058 (void)this->ExitIfTrue; 7059 (void)this->AllowPredicates; 7060 7061 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7062 this->AllowPredicates == AllowPredicates && 7063 "Variance in assumed invariant key components!"); 7064 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7065 if (Itr == TripCountMap.end()) 7066 return None; 7067 return Itr->second; 7068 } 7069 7070 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7071 bool ExitIfTrue, 7072 bool ControlsExit, 7073 bool AllowPredicates, 7074 const ExitLimit &EL) { 7075 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7076 this->AllowPredicates == AllowPredicates && 7077 "Variance in assumed invariant key components!"); 7078 7079 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7080 assert(InsertResult.second && "Expected successful insertion!"); 7081 (void)InsertResult; 7082 (void)ExitIfTrue; 7083 } 7084 7085 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7086 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7087 bool ControlsExit, bool AllowPredicates) { 7088 7089 if (auto MaybeEL = 7090 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7091 return *MaybeEL; 7092 7093 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7094 ControlsExit, AllowPredicates); 7095 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7096 return EL; 7097 } 7098 7099 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7100 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7101 bool ControlsExit, bool AllowPredicates) { 7102 // Check if the controlling expression for this loop is an And or Or. 7103 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7104 if (BO->getOpcode() == Instruction::And) { 7105 // Recurse on the operands of the and. 7106 bool EitherMayExit = !ExitIfTrue; 7107 ExitLimit EL0 = computeExitLimitFromCondCached( 7108 Cache, L, BO->getOperand(0), ExitIfTrue, 7109 ControlsExit && !EitherMayExit, AllowPredicates); 7110 ExitLimit EL1 = computeExitLimitFromCondCached( 7111 Cache, L, BO->getOperand(1), ExitIfTrue, 7112 ControlsExit && !EitherMayExit, AllowPredicates); 7113 // Be robust against unsimplified IR for the form "and i1 X, true" 7114 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7115 return CI->isOne() ? EL0 : EL1; 7116 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7117 return CI->isOne() ? EL1 : EL0; 7118 const SCEV *BECount = getCouldNotCompute(); 7119 const SCEV *MaxBECount = getCouldNotCompute(); 7120 if (EitherMayExit) { 7121 // Both conditions must be true for the loop to continue executing. 7122 // Choose the less conservative count. 7123 if (EL0.ExactNotTaken == getCouldNotCompute() || 7124 EL1.ExactNotTaken == getCouldNotCompute()) 7125 BECount = getCouldNotCompute(); 7126 else 7127 BECount = 7128 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7129 if (EL0.MaxNotTaken == getCouldNotCompute()) 7130 MaxBECount = EL1.MaxNotTaken; 7131 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7132 MaxBECount = EL0.MaxNotTaken; 7133 else 7134 MaxBECount = 7135 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7136 } else { 7137 // Both conditions must be true at the same time for the loop to exit. 7138 // For now, be conservative. 7139 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7140 MaxBECount = EL0.MaxNotTaken; 7141 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7142 BECount = EL0.ExactNotTaken; 7143 } 7144 7145 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7146 // to be more aggressive when computing BECount than when computing 7147 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7148 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7149 // to not. 7150 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7151 !isa<SCEVCouldNotCompute>(BECount)) 7152 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7153 7154 return ExitLimit(BECount, MaxBECount, false, 7155 {&EL0.Predicates, &EL1.Predicates}); 7156 } 7157 if (BO->getOpcode() == Instruction::Or) { 7158 // Recurse on the operands of the or. 7159 bool EitherMayExit = ExitIfTrue; 7160 ExitLimit EL0 = computeExitLimitFromCondCached( 7161 Cache, L, BO->getOperand(0), ExitIfTrue, 7162 ControlsExit && !EitherMayExit, AllowPredicates); 7163 ExitLimit EL1 = computeExitLimitFromCondCached( 7164 Cache, L, BO->getOperand(1), ExitIfTrue, 7165 ControlsExit && !EitherMayExit, AllowPredicates); 7166 // Be robust against unsimplified IR for the form "or i1 X, true" 7167 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7168 return CI->isZero() ? EL0 : EL1; 7169 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7170 return CI->isZero() ? EL1 : EL0; 7171 const SCEV *BECount = getCouldNotCompute(); 7172 const SCEV *MaxBECount = getCouldNotCompute(); 7173 if (EitherMayExit) { 7174 // Both conditions must be false for the loop to continue executing. 7175 // Choose the less conservative count. 7176 if (EL0.ExactNotTaken == getCouldNotCompute() || 7177 EL1.ExactNotTaken == getCouldNotCompute()) 7178 BECount = getCouldNotCompute(); 7179 else 7180 BECount = 7181 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7182 if (EL0.MaxNotTaken == getCouldNotCompute()) 7183 MaxBECount = EL1.MaxNotTaken; 7184 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7185 MaxBECount = EL0.MaxNotTaken; 7186 else 7187 MaxBECount = 7188 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7189 } else { 7190 // Both conditions must be false at the same time for the loop to exit. 7191 // For now, be conservative. 7192 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7193 MaxBECount = EL0.MaxNotTaken; 7194 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7195 BECount = EL0.ExactNotTaken; 7196 } 7197 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7198 // to be more aggressive when computing BECount than when computing 7199 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7200 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7201 // to not. 7202 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7203 !isa<SCEVCouldNotCompute>(BECount)) 7204 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7205 7206 return ExitLimit(BECount, MaxBECount, false, 7207 {&EL0.Predicates, &EL1.Predicates}); 7208 } 7209 } 7210 7211 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7212 // Proceed to the next level to examine the icmp. 7213 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7214 ExitLimit EL = 7215 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7216 if (EL.hasFullInfo() || !AllowPredicates) 7217 return EL; 7218 7219 // Try again, but use SCEV predicates this time. 7220 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7221 /*AllowPredicates=*/true); 7222 } 7223 7224 // Check for a constant condition. These are normally stripped out by 7225 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7226 // preserve the CFG and is temporarily leaving constant conditions 7227 // in place. 7228 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7229 if (ExitIfTrue == !CI->getZExtValue()) 7230 // The backedge is always taken. 7231 return getCouldNotCompute(); 7232 else 7233 // The backedge is never taken. 7234 return getZero(CI->getType()); 7235 } 7236 7237 // If it's not an integer or pointer comparison then compute it the hard way. 7238 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7239 } 7240 7241 ScalarEvolution::ExitLimit 7242 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7243 ICmpInst *ExitCond, 7244 bool ExitIfTrue, 7245 bool ControlsExit, 7246 bool AllowPredicates) { 7247 // If the condition was exit on true, convert the condition to exit on false 7248 ICmpInst::Predicate Pred; 7249 if (!ExitIfTrue) 7250 Pred = ExitCond->getPredicate(); 7251 else 7252 Pred = ExitCond->getInversePredicate(); 7253 const ICmpInst::Predicate OriginalPred = Pred; 7254 7255 // Handle common loops like: for (X = "string"; *X; ++X) 7256 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7257 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7258 ExitLimit ItCnt = 7259 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7260 if (ItCnt.hasAnyInfo()) 7261 return ItCnt; 7262 } 7263 7264 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7265 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7266 7267 // Try to evaluate any dependencies out of the loop. 7268 LHS = getSCEVAtScope(LHS, L); 7269 RHS = getSCEVAtScope(RHS, L); 7270 7271 // At this point, we would like to compute how many iterations of the 7272 // loop the predicate will return true for these inputs. 7273 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7274 // If there is a loop-invariant, force it into the RHS. 7275 std::swap(LHS, RHS); 7276 Pred = ICmpInst::getSwappedPredicate(Pred); 7277 } 7278 7279 // Simplify the operands before analyzing them. 7280 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7281 7282 // If we have a comparison of a chrec against a constant, try to use value 7283 // ranges to answer this query. 7284 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7285 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7286 if (AddRec->getLoop() == L) { 7287 // Form the constant range. 7288 ConstantRange CompRange = 7289 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7290 7291 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7292 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7293 } 7294 7295 switch (Pred) { 7296 case ICmpInst::ICMP_NE: { // while (X != Y) 7297 // Convert to: while (X-Y != 0) 7298 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7299 AllowPredicates); 7300 if (EL.hasAnyInfo()) return EL; 7301 break; 7302 } 7303 case ICmpInst::ICMP_EQ: { // while (X == Y) 7304 // Convert to: while (X-Y == 0) 7305 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7306 if (EL.hasAnyInfo()) return EL; 7307 break; 7308 } 7309 case ICmpInst::ICMP_SLT: 7310 case ICmpInst::ICMP_ULT: { // while (X < Y) 7311 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7312 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7313 AllowPredicates); 7314 if (EL.hasAnyInfo()) return EL; 7315 break; 7316 } 7317 case ICmpInst::ICMP_SGT: 7318 case ICmpInst::ICMP_UGT: { // while (X > Y) 7319 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7320 ExitLimit EL = 7321 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7322 AllowPredicates); 7323 if (EL.hasAnyInfo()) return EL; 7324 break; 7325 } 7326 default: 7327 break; 7328 } 7329 7330 auto *ExhaustiveCount = 7331 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7332 7333 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7334 return ExhaustiveCount; 7335 7336 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7337 ExitCond->getOperand(1), L, OriginalPred); 7338 } 7339 7340 ScalarEvolution::ExitLimit 7341 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7342 SwitchInst *Switch, 7343 BasicBlock *ExitingBlock, 7344 bool ControlsExit) { 7345 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7346 7347 // Give up if the exit is the default dest of a switch. 7348 if (Switch->getDefaultDest() == ExitingBlock) 7349 return getCouldNotCompute(); 7350 7351 assert(L->contains(Switch->getDefaultDest()) && 7352 "Default case must not exit the loop!"); 7353 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7354 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7355 7356 // while (X != Y) --> while (X-Y != 0) 7357 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7358 if (EL.hasAnyInfo()) 7359 return EL; 7360 7361 return getCouldNotCompute(); 7362 } 7363 7364 static ConstantInt * 7365 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7366 ScalarEvolution &SE) { 7367 const SCEV *InVal = SE.getConstant(C); 7368 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7369 assert(isa<SCEVConstant>(Val) && 7370 "Evaluation of SCEV at constant didn't fold correctly?"); 7371 return cast<SCEVConstant>(Val)->getValue(); 7372 } 7373 7374 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7375 /// compute the backedge execution count. 7376 ScalarEvolution::ExitLimit 7377 ScalarEvolution::computeLoadConstantCompareExitLimit( 7378 LoadInst *LI, 7379 Constant *RHS, 7380 const Loop *L, 7381 ICmpInst::Predicate predicate) { 7382 if (LI->isVolatile()) return getCouldNotCompute(); 7383 7384 // Check to see if the loaded pointer is a getelementptr of a global. 7385 // TODO: Use SCEV instead of manually grubbing with GEPs. 7386 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7387 if (!GEP) return getCouldNotCompute(); 7388 7389 // Make sure that it is really a constant global we are gepping, with an 7390 // initializer, and make sure the first IDX is really 0. 7391 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7392 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7393 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7394 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7395 return getCouldNotCompute(); 7396 7397 // Okay, we allow one non-constant index into the GEP instruction. 7398 Value *VarIdx = nullptr; 7399 std::vector<Constant*> Indexes; 7400 unsigned VarIdxNum = 0; 7401 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7402 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7403 Indexes.push_back(CI); 7404 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7405 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7406 VarIdx = GEP->getOperand(i); 7407 VarIdxNum = i-2; 7408 Indexes.push_back(nullptr); 7409 } 7410 7411 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7412 if (!VarIdx) 7413 return getCouldNotCompute(); 7414 7415 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7416 // Check to see if X is a loop variant variable value now. 7417 const SCEV *Idx = getSCEV(VarIdx); 7418 Idx = getSCEVAtScope(Idx, L); 7419 7420 // We can only recognize very limited forms of loop index expressions, in 7421 // particular, only affine AddRec's like {C1,+,C2}. 7422 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7423 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7424 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7425 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7426 return getCouldNotCompute(); 7427 7428 unsigned MaxSteps = MaxBruteForceIterations; 7429 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7430 ConstantInt *ItCst = ConstantInt::get( 7431 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7432 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7433 7434 // Form the GEP offset. 7435 Indexes[VarIdxNum] = Val; 7436 7437 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7438 Indexes); 7439 if (!Result) break; // Cannot compute! 7440 7441 // Evaluate the condition for this iteration. 7442 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7443 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7444 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7445 ++NumArrayLenItCounts; 7446 return getConstant(ItCst); // Found terminating iteration! 7447 } 7448 } 7449 return getCouldNotCompute(); 7450 } 7451 7452 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7453 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7454 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7455 if (!RHS) 7456 return getCouldNotCompute(); 7457 7458 const BasicBlock *Latch = L->getLoopLatch(); 7459 if (!Latch) 7460 return getCouldNotCompute(); 7461 7462 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7463 if (!Predecessor) 7464 return getCouldNotCompute(); 7465 7466 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7467 // Return LHS in OutLHS and shift_opt in OutOpCode. 7468 auto MatchPositiveShift = 7469 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7470 7471 using namespace PatternMatch; 7472 7473 ConstantInt *ShiftAmt; 7474 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7475 OutOpCode = Instruction::LShr; 7476 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7477 OutOpCode = Instruction::AShr; 7478 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7479 OutOpCode = Instruction::Shl; 7480 else 7481 return false; 7482 7483 return ShiftAmt->getValue().isStrictlyPositive(); 7484 }; 7485 7486 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7487 // 7488 // loop: 7489 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7490 // %iv.shifted = lshr i32 %iv, <positive constant> 7491 // 7492 // Return true on a successful match. Return the corresponding PHI node (%iv 7493 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7494 auto MatchShiftRecurrence = 7495 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7496 Optional<Instruction::BinaryOps> PostShiftOpCode; 7497 7498 { 7499 Instruction::BinaryOps OpC; 7500 Value *V; 7501 7502 // If we encounter a shift instruction, "peel off" the shift operation, 7503 // and remember that we did so. Later when we inspect %iv's backedge 7504 // value, we will make sure that the backedge value uses the same 7505 // operation. 7506 // 7507 // Note: the peeled shift operation does not have to be the same 7508 // instruction as the one feeding into the PHI's backedge value. We only 7509 // really care about it being the same *kind* of shift instruction -- 7510 // that's all that is required for our later inferences to hold. 7511 if (MatchPositiveShift(LHS, V, OpC)) { 7512 PostShiftOpCode = OpC; 7513 LHS = V; 7514 } 7515 } 7516 7517 PNOut = dyn_cast<PHINode>(LHS); 7518 if (!PNOut || PNOut->getParent() != L->getHeader()) 7519 return false; 7520 7521 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7522 Value *OpLHS; 7523 7524 return 7525 // The backedge value for the PHI node must be a shift by a positive 7526 // amount 7527 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7528 7529 // of the PHI node itself 7530 OpLHS == PNOut && 7531 7532 // and the kind of shift should be match the kind of shift we peeled 7533 // off, if any. 7534 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7535 }; 7536 7537 PHINode *PN; 7538 Instruction::BinaryOps OpCode; 7539 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7540 return getCouldNotCompute(); 7541 7542 const DataLayout &DL = getDataLayout(); 7543 7544 // The key rationale for this optimization is that for some kinds of shift 7545 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7546 // within a finite number of iterations. If the condition guarding the 7547 // backedge (in the sense that the backedge is taken if the condition is true) 7548 // is false for the value the shift recurrence stabilizes to, then we know 7549 // that the backedge is taken only a finite number of times. 7550 7551 ConstantInt *StableValue = nullptr; 7552 switch (OpCode) { 7553 default: 7554 llvm_unreachable("Impossible case!"); 7555 7556 case Instruction::AShr: { 7557 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7558 // bitwidth(K) iterations. 7559 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7560 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7561 Predecessor->getTerminator(), &DT); 7562 auto *Ty = cast<IntegerType>(RHS->getType()); 7563 if (Known.isNonNegative()) 7564 StableValue = ConstantInt::get(Ty, 0); 7565 else if (Known.isNegative()) 7566 StableValue = ConstantInt::get(Ty, -1, true); 7567 else 7568 return getCouldNotCompute(); 7569 7570 break; 7571 } 7572 case Instruction::LShr: 7573 case Instruction::Shl: 7574 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7575 // stabilize to 0 in at most bitwidth(K) iterations. 7576 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7577 break; 7578 } 7579 7580 auto *Result = 7581 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7582 assert(Result->getType()->isIntegerTy(1) && 7583 "Otherwise cannot be an operand to a branch instruction"); 7584 7585 if (Result->isZeroValue()) { 7586 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7587 const SCEV *UpperBound = 7588 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7589 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7590 } 7591 7592 return getCouldNotCompute(); 7593 } 7594 7595 /// Return true if we can constant fold an instruction of the specified type, 7596 /// assuming that all operands were constants. 7597 static bool CanConstantFold(const Instruction *I) { 7598 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7599 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7600 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 7601 return true; 7602 7603 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7604 if (const Function *F = CI->getCalledFunction()) 7605 return canConstantFoldCallTo(CI, F); 7606 return false; 7607 } 7608 7609 /// Determine whether this instruction can constant evolve within this loop 7610 /// assuming its operands can all constant evolve. 7611 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7612 // An instruction outside of the loop can't be derived from a loop PHI. 7613 if (!L->contains(I)) return false; 7614 7615 if (isa<PHINode>(I)) { 7616 // We don't currently keep track of the control flow needed to evaluate 7617 // PHIs, so we cannot handle PHIs inside of loops. 7618 return L->getHeader() == I->getParent(); 7619 } 7620 7621 // If we won't be able to constant fold this expression even if the operands 7622 // are constants, bail early. 7623 return CanConstantFold(I); 7624 } 7625 7626 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7627 /// recursing through each instruction operand until reaching a loop header phi. 7628 static PHINode * 7629 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7630 DenseMap<Instruction *, PHINode *> &PHIMap, 7631 unsigned Depth) { 7632 if (Depth > MaxConstantEvolvingDepth) 7633 return nullptr; 7634 7635 // Otherwise, we can evaluate this instruction if all of its operands are 7636 // constant or derived from a PHI node themselves. 7637 PHINode *PHI = nullptr; 7638 for (Value *Op : UseInst->operands()) { 7639 if (isa<Constant>(Op)) continue; 7640 7641 Instruction *OpInst = dyn_cast<Instruction>(Op); 7642 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7643 7644 PHINode *P = dyn_cast<PHINode>(OpInst); 7645 if (!P) 7646 // If this operand is already visited, reuse the prior result. 7647 // We may have P != PHI if this is the deepest point at which the 7648 // inconsistent paths meet. 7649 P = PHIMap.lookup(OpInst); 7650 if (!P) { 7651 // Recurse and memoize the results, whether a phi is found or not. 7652 // This recursive call invalidates pointers into PHIMap. 7653 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7654 PHIMap[OpInst] = P; 7655 } 7656 if (!P) 7657 return nullptr; // Not evolving from PHI 7658 if (PHI && PHI != P) 7659 return nullptr; // Evolving from multiple different PHIs. 7660 PHI = P; 7661 } 7662 // This is a expression evolving from a constant PHI! 7663 return PHI; 7664 } 7665 7666 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7667 /// in the loop that V is derived from. We allow arbitrary operations along the 7668 /// way, but the operands of an operation must either be constants or a value 7669 /// derived from a constant PHI. If this expression does not fit with these 7670 /// constraints, return null. 7671 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7672 Instruction *I = dyn_cast<Instruction>(V); 7673 if (!I || !canConstantEvolve(I, L)) return nullptr; 7674 7675 if (PHINode *PN = dyn_cast<PHINode>(I)) 7676 return PN; 7677 7678 // Record non-constant instructions contained by the loop. 7679 DenseMap<Instruction *, PHINode *> PHIMap; 7680 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7681 } 7682 7683 /// EvaluateExpression - Given an expression that passes the 7684 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7685 /// in the loop has the value PHIVal. If we can't fold this expression for some 7686 /// reason, return null. 7687 static Constant *EvaluateExpression(Value *V, const Loop *L, 7688 DenseMap<Instruction *, Constant *> &Vals, 7689 const DataLayout &DL, 7690 const TargetLibraryInfo *TLI) { 7691 // Convenient constant check, but redundant for recursive calls. 7692 if (Constant *C = dyn_cast<Constant>(V)) return C; 7693 Instruction *I = dyn_cast<Instruction>(V); 7694 if (!I) return nullptr; 7695 7696 if (Constant *C = Vals.lookup(I)) return C; 7697 7698 // An instruction inside the loop depends on a value outside the loop that we 7699 // weren't given a mapping for, or a value such as a call inside the loop. 7700 if (!canConstantEvolve(I, L)) return nullptr; 7701 7702 // An unmapped PHI can be due to a branch or another loop inside this loop, 7703 // or due to this not being the initial iteration through a loop where we 7704 // couldn't compute the evolution of this particular PHI last time. 7705 if (isa<PHINode>(I)) return nullptr; 7706 7707 std::vector<Constant*> Operands(I->getNumOperands()); 7708 7709 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7710 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7711 if (!Operand) { 7712 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7713 if (!Operands[i]) return nullptr; 7714 continue; 7715 } 7716 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7717 Vals[Operand] = C; 7718 if (!C) return nullptr; 7719 Operands[i] = C; 7720 } 7721 7722 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7723 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7724 Operands[1], DL, TLI); 7725 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7726 if (!LI->isVolatile()) 7727 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7728 } 7729 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7730 } 7731 7732 7733 // If every incoming value to PN except the one for BB is a specific Constant, 7734 // return that, else return nullptr. 7735 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7736 Constant *IncomingVal = nullptr; 7737 7738 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7739 if (PN->getIncomingBlock(i) == BB) 7740 continue; 7741 7742 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7743 if (!CurrentVal) 7744 return nullptr; 7745 7746 if (IncomingVal != CurrentVal) { 7747 if (IncomingVal) 7748 return nullptr; 7749 IncomingVal = CurrentVal; 7750 } 7751 } 7752 7753 return IncomingVal; 7754 } 7755 7756 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7757 /// in the header of its containing loop, we know the loop executes a 7758 /// constant number of times, and the PHI node is just a recurrence 7759 /// involving constants, fold it. 7760 Constant * 7761 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7762 const APInt &BEs, 7763 const Loop *L) { 7764 auto I = ConstantEvolutionLoopExitValue.find(PN); 7765 if (I != ConstantEvolutionLoopExitValue.end()) 7766 return I->second; 7767 7768 if (BEs.ugt(MaxBruteForceIterations)) 7769 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7770 7771 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7772 7773 DenseMap<Instruction *, Constant *> CurrentIterVals; 7774 BasicBlock *Header = L->getHeader(); 7775 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7776 7777 BasicBlock *Latch = L->getLoopLatch(); 7778 if (!Latch) 7779 return nullptr; 7780 7781 for (PHINode &PHI : Header->phis()) { 7782 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7783 CurrentIterVals[&PHI] = StartCST; 7784 } 7785 if (!CurrentIterVals.count(PN)) 7786 return RetVal = nullptr; 7787 7788 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7789 7790 // Execute the loop symbolically to determine the exit value. 7791 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7792 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7793 7794 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7795 unsigned IterationNum = 0; 7796 const DataLayout &DL = getDataLayout(); 7797 for (; ; ++IterationNum) { 7798 if (IterationNum == NumIterations) 7799 return RetVal = CurrentIterVals[PN]; // Got exit value! 7800 7801 // Compute the value of the PHIs for the next iteration. 7802 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7803 DenseMap<Instruction *, Constant *> NextIterVals; 7804 Constant *NextPHI = 7805 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7806 if (!NextPHI) 7807 return nullptr; // Couldn't evaluate! 7808 NextIterVals[PN] = NextPHI; 7809 7810 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7811 7812 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7813 // cease to be able to evaluate one of them or if they stop evolving, 7814 // because that doesn't necessarily prevent us from computing PN. 7815 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7816 for (const auto &I : CurrentIterVals) { 7817 PHINode *PHI = dyn_cast<PHINode>(I.first); 7818 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7819 PHIsToCompute.emplace_back(PHI, I.second); 7820 } 7821 // We use two distinct loops because EvaluateExpression may invalidate any 7822 // iterators into CurrentIterVals. 7823 for (const auto &I : PHIsToCompute) { 7824 PHINode *PHI = I.first; 7825 Constant *&NextPHI = NextIterVals[PHI]; 7826 if (!NextPHI) { // Not already computed. 7827 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7828 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7829 } 7830 if (NextPHI != I.second) 7831 StoppedEvolving = false; 7832 } 7833 7834 // If all entries in CurrentIterVals == NextIterVals then we can stop 7835 // iterating, the loop can't continue to change. 7836 if (StoppedEvolving) 7837 return RetVal = CurrentIterVals[PN]; 7838 7839 CurrentIterVals.swap(NextIterVals); 7840 } 7841 } 7842 7843 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7844 Value *Cond, 7845 bool ExitWhen) { 7846 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7847 if (!PN) return getCouldNotCompute(); 7848 7849 // If the loop is canonicalized, the PHI will have exactly two entries. 7850 // That's the only form we support here. 7851 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7852 7853 DenseMap<Instruction *, Constant *> CurrentIterVals; 7854 BasicBlock *Header = L->getHeader(); 7855 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7856 7857 BasicBlock *Latch = L->getLoopLatch(); 7858 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7859 7860 for (PHINode &PHI : Header->phis()) { 7861 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7862 CurrentIterVals[&PHI] = StartCST; 7863 } 7864 if (!CurrentIterVals.count(PN)) 7865 return getCouldNotCompute(); 7866 7867 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7868 // the loop symbolically to determine when the condition gets a value of 7869 // "ExitWhen". 7870 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7871 const DataLayout &DL = getDataLayout(); 7872 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7873 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7874 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7875 7876 // Couldn't symbolically evaluate. 7877 if (!CondVal) return getCouldNotCompute(); 7878 7879 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7880 ++NumBruteForceTripCountsComputed; 7881 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7882 } 7883 7884 // Update all the PHI nodes for the next iteration. 7885 DenseMap<Instruction *, Constant *> NextIterVals; 7886 7887 // Create a list of which PHIs we need to compute. We want to do this before 7888 // calling EvaluateExpression on them because that may invalidate iterators 7889 // into CurrentIterVals. 7890 SmallVector<PHINode *, 8> PHIsToCompute; 7891 for (const auto &I : CurrentIterVals) { 7892 PHINode *PHI = dyn_cast<PHINode>(I.first); 7893 if (!PHI || PHI->getParent() != Header) continue; 7894 PHIsToCompute.push_back(PHI); 7895 } 7896 for (PHINode *PHI : PHIsToCompute) { 7897 Constant *&NextPHI = NextIterVals[PHI]; 7898 if (NextPHI) continue; // Already computed! 7899 7900 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7901 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7902 } 7903 CurrentIterVals.swap(NextIterVals); 7904 } 7905 7906 // Too many iterations were needed to evaluate. 7907 return getCouldNotCompute(); 7908 } 7909 7910 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7911 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7912 ValuesAtScopes[V]; 7913 // Check to see if we've folded this expression at this loop before. 7914 for (auto &LS : Values) 7915 if (LS.first == L) 7916 return LS.second ? LS.second : V; 7917 7918 Values.emplace_back(L, nullptr); 7919 7920 // Otherwise compute it. 7921 const SCEV *C = computeSCEVAtScope(V, L); 7922 for (auto &LS : reverse(ValuesAtScopes[V])) 7923 if (LS.first == L) { 7924 LS.second = C; 7925 break; 7926 } 7927 return C; 7928 } 7929 7930 /// This builds up a Constant using the ConstantExpr interface. That way, we 7931 /// will return Constants for objects which aren't represented by a 7932 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 7933 /// Returns NULL if the SCEV isn't representable as a Constant. 7934 static Constant *BuildConstantFromSCEV(const SCEV *V) { 7935 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 7936 case scCouldNotCompute: 7937 case scAddRecExpr: 7938 break; 7939 case scConstant: 7940 return cast<SCEVConstant>(V)->getValue(); 7941 case scUnknown: 7942 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 7943 case scSignExtend: { 7944 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 7945 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 7946 return ConstantExpr::getSExt(CastOp, SS->getType()); 7947 break; 7948 } 7949 case scZeroExtend: { 7950 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 7951 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 7952 return ConstantExpr::getZExt(CastOp, SZ->getType()); 7953 break; 7954 } 7955 case scTruncate: { 7956 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 7957 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 7958 return ConstantExpr::getTrunc(CastOp, ST->getType()); 7959 break; 7960 } 7961 case scAddExpr: { 7962 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 7963 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 7964 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7965 unsigned AS = PTy->getAddressSpace(); 7966 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7967 C = ConstantExpr::getBitCast(C, DestPtrTy); 7968 } 7969 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 7970 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 7971 if (!C2) return nullptr; 7972 7973 // First pointer! 7974 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 7975 unsigned AS = C2->getType()->getPointerAddressSpace(); 7976 std::swap(C, C2); 7977 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7978 // The offsets have been converted to bytes. We can add bytes to an 7979 // i8* by GEP with the byte count in the first index. 7980 C = ConstantExpr::getBitCast(C, DestPtrTy); 7981 } 7982 7983 // Don't bother trying to sum two pointers. We probably can't 7984 // statically compute a load that results from it anyway. 7985 if (C2->getType()->isPointerTy()) 7986 return nullptr; 7987 7988 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7989 if (PTy->getElementType()->isStructTy()) 7990 C2 = ConstantExpr::getIntegerCast( 7991 C2, Type::getInt32Ty(C->getContext()), true); 7992 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 7993 } else 7994 C = ConstantExpr::getAdd(C, C2); 7995 } 7996 return C; 7997 } 7998 break; 7999 } 8000 case scMulExpr: { 8001 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8002 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8003 // Don't bother with pointers at all. 8004 if (C->getType()->isPointerTy()) return nullptr; 8005 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8006 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8007 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 8008 C = ConstantExpr::getMul(C, C2); 8009 } 8010 return C; 8011 } 8012 break; 8013 } 8014 case scUDivExpr: { 8015 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8016 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8017 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8018 if (LHS->getType() == RHS->getType()) 8019 return ConstantExpr::getUDiv(LHS, RHS); 8020 break; 8021 } 8022 case scSMaxExpr: 8023 case scUMaxExpr: 8024 case scSMinExpr: 8025 case scUMinExpr: 8026 break; // TODO: smax, umax, smin, umax. 8027 } 8028 return nullptr; 8029 } 8030 8031 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8032 if (isa<SCEVConstant>(V)) return V; 8033 8034 // If this instruction is evolved from a constant-evolving PHI, compute the 8035 // exit value from the loop without using SCEVs. 8036 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8037 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8038 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8039 const Loop *LI = this->LI[I->getParent()]; 8040 // Looking for loop exit value. 8041 if (LI && LI->getParentLoop() == L && 8042 PN->getParent() == LI->getHeader()) { 8043 // Okay, there is no closed form solution for the PHI node. Check 8044 // to see if the loop that contains it has a known backedge-taken 8045 // count. If so, we may be able to force computation of the exit 8046 // value. 8047 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 8048 // This trivial case can show up in some degenerate cases where 8049 // the incoming IR has not yet been fully simplified. 8050 if (BackedgeTakenCount->isZero()) { 8051 Value *InitValue = nullptr; 8052 bool MultipleInitValues = false; 8053 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8054 if (!LI->contains(PN->getIncomingBlock(i))) { 8055 if (!InitValue) 8056 InitValue = PN->getIncomingValue(i); 8057 else if (InitValue != PN->getIncomingValue(i)) { 8058 MultipleInitValues = true; 8059 break; 8060 } 8061 } 8062 } 8063 if (!MultipleInitValues && InitValue) 8064 return getSCEV(InitValue); 8065 } 8066 // Do we have a loop invariant value flowing around the backedge 8067 // for a loop which must execute the backedge? 8068 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8069 isKnownPositive(BackedgeTakenCount) && 8070 PN->getNumIncomingValues() == 2) { 8071 8072 unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8073 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8074 if (LI->isLoopInvariant(BackedgeVal)) 8075 return getSCEV(BackedgeVal); 8076 } 8077 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8078 // Okay, we know how many times the containing loop executes. If 8079 // this is a constant evolving PHI node, get the final value at 8080 // the specified iteration number. 8081 Constant *RV = 8082 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 8083 if (RV) return getSCEV(RV); 8084 } 8085 } 8086 8087 // If there is a single-input Phi, evaluate it at our scope. If we can 8088 // prove that this replacement does not break LCSSA form, use new value. 8089 if (PN->getNumOperands() == 1) { 8090 const SCEV *Input = getSCEV(PN->getOperand(0)); 8091 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8092 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8093 // for the simplest case just support constants. 8094 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8095 } 8096 } 8097 8098 // Okay, this is an expression that we cannot symbolically evaluate 8099 // into a SCEV. Check to see if it's possible to symbolically evaluate 8100 // the arguments into constants, and if so, try to constant propagate the 8101 // result. This is particularly useful for computing loop exit values. 8102 if (CanConstantFold(I)) { 8103 SmallVector<Constant *, 4> Operands; 8104 bool MadeImprovement = false; 8105 for (Value *Op : I->operands()) { 8106 if (Constant *C = dyn_cast<Constant>(Op)) { 8107 Operands.push_back(C); 8108 continue; 8109 } 8110 8111 // If any of the operands is non-constant and if they are 8112 // non-integer and non-pointer, don't even try to analyze them 8113 // with scev techniques. 8114 if (!isSCEVable(Op->getType())) 8115 return V; 8116 8117 const SCEV *OrigV = getSCEV(Op); 8118 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8119 MadeImprovement |= OrigV != OpV; 8120 8121 Constant *C = BuildConstantFromSCEV(OpV); 8122 if (!C) return V; 8123 if (C->getType() != Op->getType()) 8124 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8125 Op->getType(), 8126 false), 8127 C, Op->getType()); 8128 Operands.push_back(C); 8129 } 8130 8131 // Check to see if getSCEVAtScope actually made an improvement. 8132 if (MadeImprovement) { 8133 Constant *C = nullptr; 8134 const DataLayout &DL = getDataLayout(); 8135 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8136 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8137 Operands[1], DL, &TLI); 8138 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 8139 if (!LI->isVolatile()) 8140 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8141 } else 8142 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8143 if (!C) return V; 8144 return getSCEV(C); 8145 } 8146 } 8147 } 8148 8149 // This is some other type of SCEVUnknown, just return it. 8150 return V; 8151 } 8152 8153 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8154 // Avoid performing the look-up in the common case where the specified 8155 // expression has no loop-variant portions. 8156 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8157 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8158 if (OpAtScope != Comm->getOperand(i)) { 8159 // Okay, at least one of these operands is loop variant but might be 8160 // foldable. Build a new instance of the folded commutative expression. 8161 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8162 Comm->op_begin()+i); 8163 NewOps.push_back(OpAtScope); 8164 8165 for (++i; i != e; ++i) { 8166 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8167 NewOps.push_back(OpAtScope); 8168 } 8169 if (isa<SCEVAddExpr>(Comm)) 8170 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8171 if (isa<SCEVMulExpr>(Comm)) 8172 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8173 if (isa<SCEVMinMaxExpr>(Comm)) 8174 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8175 llvm_unreachable("Unknown commutative SCEV type!"); 8176 } 8177 } 8178 // If we got here, all operands are loop invariant. 8179 return Comm; 8180 } 8181 8182 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8183 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8184 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8185 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8186 return Div; // must be loop invariant 8187 return getUDivExpr(LHS, RHS); 8188 } 8189 8190 // If this is a loop recurrence for a loop that does not contain L, then we 8191 // are dealing with the final value computed by the loop. 8192 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8193 // First, attempt to evaluate each operand. 8194 // Avoid performing the look-up in the common case where the specified 8195 // expression has no loop-variant portions. 8196 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8197 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8198 if (OpAtScope == AddRec->getOperand(i)) 8199 continue; 8200 8201 // Okay, at least one of these operands is loop variant but might be 8202 // foldable. Build a new instance of the folded commutative expression. 8203 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8204 AddRec->op_begin()+i); 8205 NewOps.push_back(OpAtScope); 8206 for (++i; i != e; ++i) 8207 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8208 8209 const SCEV *FoldedRec = 8210 getAddRecExpr(NewOps, AddRec->getLoop(), 8211 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8212 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8213 // The addrec may be folded to a nonrecurrence, for example, if the 8214 // induction variable is multiplied by zero after constant folding. Go 8215 // ahead and return the folded value. 8216 if (!AddRec) 8217 return FoldedRec; 8218 break; 8219 } 8220 8221 // If the scope is outside the addrec's loop, evaluate it by using the 8222 // loop exit value of the addrec. 8223 if (!AddRec->getLoop()->contains(L)) { 8224 // To evaluate this recurrence, we need to know how many times the AddRec 8225 // loop iterates. Compute this now. 8226 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8227 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8228 8229 // Then, evaluate the AddRec. 8230 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8231 } 8232 8233 return AddRec; 8234 } 8235 8236 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8237 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8238 if (Op == Cast->getOperand()) 8239 return Cast; // must be loop invariant 8240 return getZeroExtendExpr(Op, Cast->getType()); 8241 } 8242 8243 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8244 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8245 if (Op == Cast->getOperand()) 8246 return Cast; // must be loop invariant 8247 return getSignExtendExpr(Op, Cast->getType()); 8248 } 8249 8250 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8251 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8252 if (Op == Cast->getOperand()) 8253 return Cast; // must be loop invariant 8254 return getTruncateExpr(Op, Cast->getType()); 8255 } 8256 8257 llvm_unreachable("Unknown SCEV type!"); 8258 } 8259 8260 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8261 return getSCEVAtScope(getSCEV(V), L); 8262 } 8263 8264 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8265 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8266 return stripInjectiveFunctions(ZExt->getOperand()); 8267 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8268 return stripInjectiveFunctions(SExt->getOperand()); 8269 return S; 8270 } 8271 8272 /// Finds the minimum unsigned root of the following equation: 8273 /// 8274 /// A * X = B (mod N) 8275 /// 8276 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8277 /// A and B isn't important. 8278 /// 8279 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8280 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8281 ScalarEvolution &SE) { 8282 uint32_t BW = A.getBitWidth(); 8283 assert(BW == SE.getTypeSizeInBits(B->getType())); 8284 assert(A != 0 && "A must be non-zero."); 8285 8286 // 1. D = gcd(A, N) 8287 // 8288 // The gcd of A and N may have only one prime factor: 2. The number of 8289 // trailing zeros in A is its multiplicity 8290 uint32_t Mult2 = A.countTrailingZeros(); 8291 // D = 2^Mult2 8292 8293 // 2. Check if B is divisible by D. 8294 // 8295 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8296 // is not less than multiplicity of this prime factor for D. 8297 if (SE.GetMinTrailingZeros(B) < Mult2) 8298 return SE.getCouldNotCompute(); 8299 8300 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8301 // modulo (N / D). 8302 // 8303 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8304 // (N / D) in general. The inverse itself always fits into BW bits, though, 8305 // so we immediately truncate it. 8306 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8307 APInt Mod(BW + 1, 0); 8308 Mod.setBit(BW - Mult2); // Mod = N / D 8309 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8310 8311 // 4. Compute the minimum unsigned root of the equation: 8312 // I * (B / D) mod (N / D) 8313 // To simplify the computation, we factor out the divide by D: 8314 // (I * B mod N) / D 8315 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8316 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8317 } 8318 8319 /// For a given quadratic addrec, generate coefficients of the corresponding 8320 /// quadratic equation, multiplied by a common value to ensure that they are 8321 /// integers. 8322 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8323 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8324 /// were multiplied by, and BitWidth is the bit width of the original addrec 8325 /// coefficients. 8326 /// This function returns None if the addrec coefficients are not compile- 8327 /// time constants. 8328 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8329 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8330 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8331 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8332 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8333 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8334 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8335 << *AddRec << '\n'); 8336 8337 // We currently can only solve this if the coefficients are constants. 8338 if (!LC || !MC || !NC) { 8339 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8340 return None; 8341 } 8342 8343 APInt L = LC->getAPInt(); 8344 APInt M = MC->getAPInt(); 8345 APInt N = NC->getAPInt(); 8346 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8347 8348 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8349 unsigned NewWidth = BitWidth + 1; 8350 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8351 << BitWidth << '\n'); 8352 // The sign-extension (as opposed to a zero-extension) here matches the 8353 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8354 N = N.sext(NewWidth); 8355 M = M.sext(NewWidth); 8356 L = L.sext(NewWidth); 8357 8358 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8359 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8360 // L+M, L+2M+N, L+3M+3N, ... 8361 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8362 // 8363 // The equation Acc = 0 is then 8364 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8365 // In a quadratic form it becomes: 8366 // N n^2 + (2M-N) n + 2L = 0. 8367 8368 APInt A = N; 8369 APInt B = 2 * M - A; 8370 APInt C = 2 * L; 8371 APInt T = APInt(NewWidth, 2); 8372 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8373 << "x + " << C << ", coeff bw: " << NewWidth 8374 << ", multiplied by " << T << '\n'); 8375 return std::make_tuple(A, B, C, T, BitWidth); 8376 } 8377 8378 /// Helper function to compare optional APInts: 8379 /// (a) if X and Y both exist, return min(X, Y), 8380 /// (b) if neither X nor Y exist, return None, 8381 /// (c) if exactly one of X and Y exists, return that value. 8382 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8383 if (X.hasValue() && Y.hasValue()) { 8384 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8385 APInt XW = X->sextOrSelf(W); 8386 APInt YW = Y->sextOrSelf(W); 8387 return XW.slt(YW) ? *X : *Y; 8388 } 8389 if (!X.hasValue() && !Y.hasValue()) 8390 return None; 8391 return X.hasValue() ? *X : *Y; 8392 } 8393 8394 /// Helper function to truncate an optional APInt to a given BitWidth. 8395 /// When solving addrec-related equations, it is preferable to return a value 8396 /// that has the same bit width as the original addrec's coefficients. If the 8397 /// solution fits in the original bit width, truncate it (except for i1). 8398 /// Returning a value of a different bit width may inhibit some optimizations. 8399 /// 8400 /// In general, a solution to a quadratic equation generated from an addrec 8401 /// may require BW+1 bits, where BW is the bit width of the addrec's 8402 /// coefficients. The reason is that the coefficients of the quadratic 8403 /// equation are BW+1 bits wide (to avoid truncation when converting from 8404 /// the addrec to the equation). 8405 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8406 if (!X.hasValue()) 8407 return None; 8408 unsigned W = X->getBitWidth(); 8409 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8410 return X->trunc(BitWidth); 8411 return X; 8412 } 8413 8414 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8415 /// iterations. The values L, M, N are assumed to be signed, and they 8416 /// should all have the same bit widths. 8417 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8418 /// where BW is the bit width of the addrec's coefficients. 8419 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8420 /// returned as such, otherwise the bit width of the returned value may 8421 /// be greater than BW. 8422 /// 8423 /// This function returns None if 8424 /// (a) the addrec coefficients are not constant, or 8425 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8426 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8427 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8428 static Optional<APInt> 8429 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8430 APInt A, B, C, M; 8431 unsigned BitWidth; 8432 auto T = GetQuadraticEquation(AddRec); 8433 if (!T.hasValue()) 8434 return None; 8435 8436 std::tie(A, B, C, M, BitWidth) = *T; 8437 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8438 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8439 if (!X.hasValue()) 8440 return None; 8441 8442 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8443 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8444 if (!V->isZero()) 8445 return None; 8446 8447 return TruncIfPossible(X, BitWidth); 8448 } 8449 8450 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8451 /// iterations. The values M, N are assumed to be signed, and they 8452 /// should all have the same bit widths. 8453 /// Find the least n such that c(n) does not belong to the given range, 8454 /// while c(n-1) does. 8455 /// 8456 /// This function returns None if 8457 /// (a) the addrec coefficients are not constant, or 8458 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8459 /// bounds of the range. 8460 static Optional<APInt> 8461 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8462 const ConstantRange &Range, ScalarEvolution &SE) { 8463 assert(AddRec->getOperand(0)->isZero() && 8464 "Starting value of addrec should be 0"); 8465 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8466 << Range << ", addrec " << *AddRec << '\n'); 8467 // This case is handled in getNumIterationsInRange. Here we can assume that 8468 // we start in the range. 8469 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8470 "Addrec's initial value should be in range"); 8471 8472 APInt A, B, C, M; 8473 unsigned BitWidth; 8474 auto T = GetQuadraticEquation(AddRec); 8475 if (!T.hasValue()) 8476 return None; 8477 8478 // Be careful about the return value: there can be two reasons for not 8479 // returning an actual number. First, if no solutions to the equations 8480 // were found, and second, if the solutions don't leave the given range. 8481 // The first case means that the actual solution is "unknown", the second 8482 // means that it's known, but not valid. If the solution is unknown, we 8483 // cannot make any conclusions. 8484 // Return a pair: the optional solution and a flag indicating if the 8485 // solution was found. 8486 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8487 // Solve for signed overflow and unsigned overflow, pick the lower 8488 // solution. 8489 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8490 << Bound << " (before multiplying by " << M << ")\n"); 8491 Bound *= M; // The quadratic equation multiplier. 8492 8493 Optional<APInt> SO = None; 8494 if (BitWidth > 1) { 8495 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8496 "signed overflow\n"); 8497 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8498 } 8499 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8500 "unsigned overflow\n"); 8501 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8502 BitWidth+1); 8503 8504 auto LeavesRange = [&] (const APInt &X) { 8505 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8506 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8507 if (Range.contains(V0->getValue())) 8508 return false; 8509 // X should be at least 1, so X-1 is non-negative. 8510 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8511 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8512 if (Range.contains(V1->getValue())) 8513 return true; 8514 return false; 8515 }; 8516 8517 // If SolveQuadraticEquationWrap returns None, it means that there can 8518 // be a solution, but the function failed to find it. We cannot treat it 8519 // as "no solution". 8520 if (!SO.hasValue() || !UO.hasValue()) 8521 return { None, false }; 8522 8523 // Check the smaller value first to see if it leaves the range. 8524 // At this point, both SO and UO must have values. 8525 Optional<APInt> Min = MinOptional(SO, UO); 8526 if (LeavesRange(*Min)) 8527 return { Min, true }; 8528 Optional<APInt> Max = Min == SO ? UO : SO; 8529 if (LeavesRange(*Max)) 8530 return { Max, true }; 8531 8532 // Solutions were found, but were eliminated, hence the "true". 8533 return { None, true }; 8534 }; 8535 8536 std::tie(A, B, C, M, BitWidth) = *T; 8537 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8538 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8539 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8540 auto SL = SolveForBoundary(Lower); 8541 auto SU = SolveForBoundary(Upper); 8542 // If any of the solutions was unknown, no meaninigful conclusions can 8543 // be made. 8544 if (!SL.second || !SU.second) 8545 return None; 8546 8547 // Claim: The correct solution is not some value between Min and Max. 8548 // 8549 // Justification: Assuming that Min and Max are different values, one of 8550 // them is when the first signed overflow happens, the other is when the 8551 // first unsigned overflow happens. Crossing the range boundary is only 8552 // possible via an overflow (treating 0 as a special case of it, modeling 8553 // an overflow as crossing k*2^W for some k). 8554 // 8555 // The interesting case here is when Min was eliminated as an invalid 8556 // solution, but Max was not. The argument is that if there was another 8557 // overflow between Min and Max, it would also have been eliminated if 8558 // it was considered. 8559 // 8560 // For a given boundary, it is possible to have two overflows of the same 8561 // type (signed/unsigned) without having the other type in between: this 8562 // can happen when the vertex of the parabola is between the iterations 8563 // corresponding to the overflows. This is only possible when the two 8564 // overflows cross k*2^W for the same k. In such case, if the second one 8565 // left the range (and was the first one to do so), the first overflow 8566 // would have to enter the range, which would mean that either we had left 8567 // the range before or that we started outside of it. Both of these cases 8568 // are contradictions. 8569 // 8570 // Claim: In the case where SolveForBoundary returns None, the correct 8571 // solution is not some value between the Max for this boundary and the 8572 // Min of the other boundary. 8573 // 8574 // Justification: Assume that we had such Max_A and Min_B corresponding 8575 // to range boundaries A and B and such that Max_A < Min_B. If there was 8576 // a solution between Max_A and Min_B, it would have to be caused by an 8577 // overflow corresponding to either A or B. It cannot correspond to B, 8578 // since Min_B is the first occurrence of such an overflow. If it 8579 // corresponded to A, it would have to be either a signed or an unsigned 8580 // overflow that is larger than both eliminated overflows for A. But 8581 // between the eliminated overflows and this overflow, the values would 8582 // cover the entire value space, thus crossing the other boundary, which 8583 // is a contradiction. 8584 8585 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 8586 } 8587 8588 ScalarEvolution::ExitLimit 8589 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8590 bool AllowPredicates) { 8591 8592 // This is only used for loops with a "x != y" exit test. The exit condition 8593 // is now expressed as a single expression, V = x-y. So the exit test is 8594 // effectively V != 0. We know and take advantage of the fact that this 8595 // expression only being used in a comparison by zero context. 8596 8597 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8598 // If the value is a constant 8599 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8600 // If the value is already zero, the branch will execute zero times. 8601 if (C->getValue()->isZero()) return C; 8602 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8603 } 8604 8605 const SCEVAddRecExpr *AddRec = 8606 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 8607 8608 if (!AddRec && AllowPredicates) 8609 // Try to make this an AddRec using runtime tests, in the first X 8610 // iterations of this loop, where X is the SCEV expression found by the 8611 // algorithm below. 8612 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8613 8614 if (!AddRec || AddRec->getLoop() != L) 8615 return getCouldNotCompute(); 8616 8617 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8618 // the quadratic equation to solve it. 8619 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8620 // We can only use this value if the chrec ends up with an exact zero 8621 // value at this index. When solving for "X*X != 5", for example, we 8622 // should not accept a root of 2. 8623 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 8624 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 8625 return ExitLimit(R, R, false, Predicates); 8626 } 8627 return getCouldNotCompute(); 8628 } 8629 8630 // Otherwise we can only handle this if it is affine. 8631 if (!AddRec->isAffine()) 8632 return getCouldNotCompute(); 8633 8634 // If this is an affine expression, the execution count of this branch is 8635 // the minimum unsigned root of the following equation: 8636 // 8637 // Start + Step*N = 0 (mod 2^BW) 8638 // 8639 // equivalent to: 8640 // 8641 // Step*N = -Start (mod 2^BW) 8642 // 8643 // where BW is the common bit width of Start and Step. 8644 8645 // Get the initial value for the loop. 8646 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8647 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8648 8649 // For now we handle only constant steps. 8650 // 8651 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8652 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8653 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8654 // We have not yet seen any such cases. 8655 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8656 if (!StepC || StepC->getValue()->isZero()) 8657 return getCouldNotCompute(); 8658 8659 // For positive steps (counting up until unsigned overflow): 8660 // N = -Start/Step (as unsigned) 8661 // For negative steps (counting down to zero): 8662 // N = Start/-Step 8663 // First compute the unsigned distance from zero in the direction of Step. 8664 bool CountDown = StepC->getAPInt().isNegative(); 8665 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8666 8667 // Handle unitary steps, which cannot wraparound. 8668 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8669 // N = Distance (as unsigned) 8670 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8671 APInt MaxBECount = getUnsignedRangeMax(Distance); 8672 8673 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8674 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8675 // case, and see if we can improve the bound. 8676 // 8677 // Explicitly handling this here is necessary because getUnsignedRange 8678 // isn't context-sensitive; it doesn't know that we only care about the 8679 // range inside the loop. 8680 const SCEV *Zero = getZero(Distance->getType()); 8681 const SCEV *One = getOne(Distance->getType()); 8682 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8683 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8684 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8685 // as "unsigned_max(Distance + 1) - 1". 8686 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8687 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8688 } 8689 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8690 } 8691 8692 // If the condition controls loop exit (the loop exits only if the expression 8693 // is true) and the addition is no-wrap we can use unsigned divide to 8694 // compute the backedge count. In this case, the step may not divide the 8695 // distance, but we don't care because if the condition is "missed" the loop 8696 // will have undefined behavior due to wrapping. 8697 if (ControlsExit && AddRec->hasNoSelfWrap() && 8698 loopHasNoAbnormalExits(AddRec->getLoop())) { 8699 const SCEV *Exact = 8700 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8701 const SCEV *Max = 8702 Exact == getCouldNotCompute() 8703 ? Exact 8704 : getConstant(getUnsignedRangeMax(Exact)); 8705 return ExitLimit(Exact, Max, false, Predicates); 8706 } 8707 8708 // Solve the general equation. 8709 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8710 getNegativeSCEV(Start), *this); 8711 const SCEV *M = E == getCouldNotCompute() 8712 ? E 8713 : getConstant(getUnsignedRangeMax(E)); 8714 return ExitLimit(E, M, false, Predicates); 8715 } 8716 8717 ScalarEvolution::ExitLimit 8718 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8719 // Loops that look like: while (X == 0) are very strange indeed. We don't 8720 // handle them yet except for the trivial case. This could be expanded in the 8721 // future as needed. 8722 8723 // If the value is a constant, check to see if it is known to be non-zero 8724 // already. If so, the backedge will execute zero times. 8725 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8726 if (!C->getValue()->isZero()) 8727 return getZero(C->getType()); 8728 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8729 } 8730 8731 // We could implement others, but I really doubt anyone writes loops like 8732 // this, and if they did, they would already be constant folded. 8733 return getCouldNotCompute(); 8734 } 8735 8736 std::pair<BasicBlock *, BasicBlock *> 8737 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 8738 // If the block has a unique predecessor, then there is no path from the 8739 // predecessor to the block that does not go through the direct edge 8740 // from the predecessor to the block. 8741 if (BasicBlock *Pred = BB->getSinglePredecessor()) 8742 return {Pred, BB}; 8743 8744 // A loop's header is defined to be a block that dominates the loop. 8745 // If the header has a unique predecessor outside the loop, it must be 8746 // a block that has exactly one successor that can reach the loop. 8747 if (Loop *L = LI.getLoopFor(BB)) 8748 return {L->getLoopPredecessor(), L->getHeader()}; 8749 8750 return {nullptr, nullptr}; 8751 } 8752 8753 /// SCEV structural equivalence is usually sufficient for testing whether two 8754 /// expressions are equal, however for the purposes of looking for a condition 8755 /// guarding a loop, it can be useful to be a little more general, since a 8756 /// front-end may have replicated the controlling expression. 8757 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8758 // Quick check to see if they are the same SCEV. 8759 if (A == B) return true; 8760 8761 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8762 // Not all instructions that are "identical" compute the same value. For 8763 // instance, two distinct alloca instructions allocating the same type are 8764 // identical and do not read memory; but compute distinct values. 8765 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8766 }; 8767 8768 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8769 // two different instructions with the same value. Check for this case. 8770 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8771 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8772 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8773 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8774 if (ComputesEqualValues(AI, BI)) 8775 return true; 8776 8777 // Otherwise assume they may have a different value. 8778 return false; 8779 } 8780 8781 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8782 const SCEV *&LHS, const SCEV *&RHS, 8783 unsigned Depth) { 8784 bool Changed = false; 8785 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 8786 // '0 != 0'. 8787 auto TrivialCase = [&](bool TriviallyTrue) { 8788 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8789 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 8790 return true; 8791 }; 8792 // If we hit the max recursion limit bail out. 8793 if (Depth >= 3) 8794 return false; 8795 8796 // Canonicalize a constant to the right side. 8797 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8798 // Check for both operands constant. 8799 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8800 if (ConstantExpr::getICmp(Pred, 8801 LHSC->getValue(), 8802 RHSC->getValue())->isNullValue()) 8803 return TrivialCase(false); 8804 else 8805 return TrivialCase(true); 8806 } 8807 // Otherwise swap the operands to put the constant on the right. 8808 std::swap(LHS, RHS); 8809 Pred = ICmpInst::getSwappedPredicate(Pred); 8810 Changed = true; 8811 } 8812 8813 // If we're comparing an addrec with a value which is loop-invariant in the 8814 // addrec's loop, put the addrec on the left. Also make a dominance check, 8815 // as both operands could be addrecs loop-invariant in each other's loop. 8816 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8817 const Loop *L = AR->getLoop(); 8818 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8819 std::swap(LHS, RHS); 8820 Pred = ICmpInst::getSwappedPredicate(Pred); 8821 Changed = true; 8822 } 8823 } 8824 8825 // If there's a constant operand, canonicalize comparisons with boundary 8826 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8827 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8828 const APInt &RA = RC->getAPInt(); 8829 8830 bool SimplifiedByConstantRange = false; 8831 8832 if (!ICmpInst::isEquality(Pred)) { 8833 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8834 if (ExactCR.isFullSet()) 8835 return TrivialCase(true); 8836 else if (ExactCR.isEmptySet()) 8837 return TrivialCase(false); 8838 8839 APInt NewRHS; 8840 CmpInst::Predicate NewPred; 8841 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8842 ICmpInst::isEquality(NewPred)) { 8843 // We were able to convert an inequality to an equality. 8844 Pred = NewPred; 8845 RHS = getConstant(NewRHS); 8846 Changed = SimplifiedByConstantRange = true; 8847 } 8848 } 8849 8850 if (!SimplifiedByConstantRange) { 8851 switch (Pred) { 8852 default: 8853 break; 8854 case ICmpInst::ICMP_EQ: 8855 case ICmpInst::ICMP_NE: 8856 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8857 if (!RA) 8858 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8859 if (const SCEVMulExpr *ME = 8860 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8861 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8862 ME->getOperand(0)->isAllOnesValue()) { 8863 RHS = AE->getOperand(1); 8864 LHS = ME->getOperand(1); 8865 Changed = true; 8866 } 8867 break; 8868 8869 8870 // The "Should have been caught earlier!" messages refer to the fact 8871 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8872 // should have fired on the corresponding cases, and canonicalized the 8873 // check to trivial case. 8874 8875 case ICmpInst::ICMP_UGE: 8876 assert(!RA.isMinValue() && "Should have been caught earlier!"); 8877 Pred = ICmpInst::ICMP_UGT; 8878 RHS = getConstant(RA - 1); 8879 Changed = true; 8880 break; 8881 case ICmpInst::ICMP_ULE: 8882 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 8883 Pred = ICmpInst::ICMP_ULT; 8884 RHS = getConstant(RA + 1); 8885 Changed = true; 8886 break; 8887 case ICmpInst::ICMP_SGE: 8888 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 8889 Pred = ICmpInst::ICMP_SGT; 8890 RHS = getConstant(RA - 1); 8891 Changed = true; 8892 break; 8893 case ICmpInst::ICMP_SLE: 8894 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 8895 Pred = ICmpInst::ICMP_SLT; 8896 RHS = getConstant(RA + 1); 8897 Changed = true; 8898 break; 8899 } 8900 } 8901 } 8902 8903 // Check for obvious equality. 8904 if (HasSameValue(LHS, RHS)) { 8905 if (ICmpInst::isTrueWhenEqual(Pred)) 8906 return TrivialCase(true); 8907 if (ICmpInst::isFalseWhenEqual(Pred)) 8908 return TrivialCase(false); 8909 } 8910 8911 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 8912 // adding or subtracting 1 from one of the operands. 8913 switch (Pred) { 8914 case ICmpInst::ICMP_SLE: 8915 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 8916 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8917 SCEV::FlagNSW); 8918 Pred = ICmpInst::ICMP_SLT; 8919 Changed = true; 8920 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 8921 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 8922 SCEV::FlagNSW); 8923 Pred = ICmpInst::ICMP_SLT; 8924 Changed = true; 8925 } 8926 break; 8927 case ICmpInst::ICMP_SGE: 8928 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 8929 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 8930 SCEV::FlagNSW); 8931 Pred = ICmpInst::ICMP_SGT; 8932 Changed = true; 8933 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 8934 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8935 SCEV::FlagNSW); 8936 Pred = ICmpInst::ICMP_SGT; 8937 Changed = true; 8938 } 8939 break; 8940 case ICmpInst::ICMP_ULE: 8941 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 8942 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8943 SCEV::FlagNUW); 8944 Pred = ICmpInst::ICMP_ULT; 8945 Changed = true; 8946 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 8947 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 8948 Pred = ICmpInst::ICMP_ULT; 8949 Changed = true; 8950 } 8951 break; 8952 case ICmpInst::ICMP_UGE: 8953 if (!getUnsignedRangeMin(RHS).isMinValue()) { 8954 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 8955 Pred = ICmpInst::ICMP_UGT; 8956 Changed = true; 8957 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 8958 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8959 SCEV::FlagNUW); 8960 Pred = ICmpInst::ICMP_UGT; 8961 Changed = true; 8962 } 8963 break; 8964 default: 8965 break; 8966 } 8967 8968 // TODO: More simplifications are possible here. 8969 8970 // Recursively simplify until we either hit a recursion limit or nothing 8971 // changes. 8972 if (Changed) 8973 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 8974 8975 return Changed; 8976 } 8977 8978 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 8979 return getSignedRangeMax(S).isNegative(); 8980 } 8981 8982 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 8983 return getSignedRangeMin(S).isStrictlyPositive(); 8984 } 8985 8986 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 8987 return !getSignedRangeMin(S).isNegative(); 8988 } 8989 8990 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 8991 return !getSignedRangeMax(S).isStrictlyPositive(); 8992 } 8993 8994 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 8995 return isKnownNegative(S) || isKnownPositive(S); 8996 } 8997 8998 std::pair<const SCEV *, const SCEV *> 8999 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9000 // Compute SCEV on entry of loop L. 9001 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9002 if (Start == getCouldNotCompute()) 9003 return { Start, Start }; 9004 // Compute post increment SCEV for loop L. 9005 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9006 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9007 return { Start, PostInc }; 9008 } 9009 9010 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9011 const SCEV *LHS, const SCEV *RHS) { 9012 // First collect all loops. 9013 SmallPtrSet<const Loop *, 8> LoopsUsed; 9014 getUsedLoops(LHS, LoopsUsed); 9015 getUsedLoops(RHS, LoopsUsed); 9016 9017 if (LoopsUsed.empty()) 9018 return false; 9019 9020 // Domination relationship must be a linear order on collected loops. 9021 #ifndef NDEBUG 9022 for (auto *L1 : LoopsUsed) 9023 for (auto *L2 : LoopsUsed) 9024 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9025 DT.dominates(L2->getHeader(), L1->getHeader())) && 9026 "Domination relationship is not a linear order"); 9027 #endif 9028 9029 const Loop *MDL = 9030 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9031 [&](const Loop *L1, const Loop *L2) { 9032 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9033 }); 9034 9035 // Get init and post increment value for LHS. 9036 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9037 // if LHS contains unknown non-invariant SCEV then bail out. 9038 if (SplitLHS.first == getCouldNotCompute()) 9039 return false; 9040 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9041 // Get init and post increment value for RHS. 9042 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9043 // if RHS contains unknown non-invariant SCEV then bail out. 9044 if (SplitRHS.first == getCouldNotCompute()) 9045 return false; 9046 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9047 // It is possible that init SCEV contains an invariant load but it does 9048 // not dominate MDL and is not available at MDL loop entry, so we should 9049 // check it here. 9050 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9051 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9052 return false; 9053 9054 // It seems backedge guard check is faster than entry one so in some cases 9055 // it can speed up whole estimation by short circuit 9056 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9057 SplitRHS.second) && 9058 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9059 } 9060 9061 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9062 const SCEV *LHS, const SCEV *RHS) { 9063 // Canonicalize the inputs first. 9064 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9065 9066 if (isKnownViaInduction(Pred, LHS, RHS)) 9067 return true; 9068 9069 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9070 return true; 9071 9072 // Otherwise see what can be done with some simple reasoning. 9073 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9074 } 9075 9076 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9077 const SCEVAddRecExpr *LHS, 9078 const SCEV *RHS) { 9079 const Loop *L = LHS->getLoop(); 9080 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9081 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9082 } 9083 9084 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 9085 ICmpInst::Predicate Pred, 9086 bool &Increasing) { 9087 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 9088 9089 #ifndef NDEBUG 9090 // Verify an invariant: inverting the predicate should turn a monotonically 9091 // increasing change to a monotonically decreasing one, and vice versa. 9092 bool IncreasingSwapped; 9093 bool ResultSwapped = isMonotonicPredicateImpl( 9094 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 9095 9096 assert(Result == ResultSwapped && "should be able to analyze both!"); 9097 if (ResultSwapped) 9098 assert(Increasing == !IncreasingSwapped && 9099 "monotonicity should flip as we flip the predicate"); 9100 #endif 9101 9102 return Result; 9103 } 9104 9105 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 9106 ICmpInst::Predicate Pred, 9107 bool &Increasing) { 9108 9109 // A zero step value for LHS means the induction variable is essentially a 9110 // loop invariant value. We don't really depend on the predicate actually 9111 // flipping from false to true (for increasing predicates, and the other way 9112 // around for decreasing predicates), all we care about is that *if* the 9113 // predicate changes then it only changes from false to true. 9114 // 9115 // A zero step value in itself is not very useful, but there may be places 9116 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9117 // as general as possible. 9118 9119 switch (Pred) { 9120 default: 9121 return false; // Conservative answer 9122 9123 case ICmpInst::ICMP_UGT: 9124 case ICmpInst::ICMP_UGE: 9125 case ICmpInst::ICMP_ULT: 9126 case ICmpInst::ICMP_ULE: 9127 if (!LHS->hasNoUnsignedWrap()) 9128 return false; 9129 9130 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 9131 return true; 9132 9133 case ICmpInst::ICMP_SGT: 9134 case ICmpInst::ICMP_SGE: 9135 case ICmpInst::ICMP_SLT: 9136 case ICmpInst::ICMP_SLE: { 9137 if (!LHS->hasNoSignedWrap()) 9138 return false; 9139 9140 const SCEV *Step = LHS->getStepRecurrence(*this); 9141 9142 if (isKnownNonNegative(Step)) { 9143 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 9144 return true; 9145 } 9146 9147 if (isKnownNonPositive(Step)) { 9148 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 9149 return true; 9150 } 9151 9152 return false; 9153 } 9154 9155 } 9156 9157 llvm_unreachable("switch has default clause!"); 9158 } 9159 9160 bool ScalarEvolution::isLoopInvariantPredicate( 9161 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9162 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9163 const SCEV *&InvariantRHS) { 9164 9165 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9166 if (!isLoopInvariant(RHS, L)) { 9167 if (!isLoopInvariant(LHS, L)) 9168 return false; 9169 9170 std::swap(LHS, RHS); 9171 Pred = ICmpInst::getSwappedPredicate(Pred); 9172 } 9173 9174 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9175 if (!ArLHS || ArLHS->getLoop() != L) 9176 return false; 9177 9178 bool Increasing; 9179 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 9180 return false; 9181 9182 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9183 // true as the loop iterates, and the backedge is control dependent on 9184 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9185 // 9186 // * if the predicate was false in the first iteration then the predicate 9187 // is never evaluated again, since the loop exits without taking the 9188 // backedge. 9189 // * if the predicate was true in the first iteration then it will 9190 // continue to be true for all future iterations since it is 9191 // monotonically increasing. 9192 // 9193 // For both the above possibilities, we can replace the loop varying 9194 // predicate with its value on the first iteration of the loop (which is 9195 // loop invariant). 9196 // 9197 // A similar reasoning applies for a monotonically decreasing predicate, by 9198 // replacing true with false and false with true in the above two bullets. 9199 9200 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9201 9202 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9203 return false; 9204 9205 InvariantPred = Pred; 9206 InvariantLHS = ArLHS->getStart(); 9207 InvariantRHS = RHS; 9208 return true; 9209 } 9210 9211 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9212 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9213 if (HasSameValue(LHS, RHS)) 9214 return ICmpInst::isTrueWhenEqual(Pred); 9215 9216 // This code is split out from isKnownPredicate because it is called from 9217 // within isLoopEntryGuardedByCond. 9218 9219 auto CheckRanges = 9220 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9221 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9222 .contains(RangeLHS); 9223 }; 9224 9225 // The check at the top of the function catches the case where the values are 9226 // known to be equal. 9227 if (Pred == CmpInst::ICMP_EQ) 9228 return false; 9229 9230 if (Pred == CmpInst::ICMP_NE) 9231 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9232 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9233 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9234 9235 if (CmpInst::isSigned(Pred)) 9236 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9237 9238 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9239 } 9240 9241 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9242 const SCEV *LHS, 9243 const SCEV *RHS) { 9244 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9245 // Return Y via OutY. 9246 auto MatchBinaryAddToConst = 9247 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9248 SCEV::NoWrapFlags ExpectedFlags) { 9249 const SCEV *NonConstOp, *ConstOp; 9250 SCEV::NoWrapFlags FlagsPresent; 9251 9252 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9253 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9254 return false; 9255 9256 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9257 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9258 }; 9259 9260 APInt C; 9261 9262 switch (Pred) { 9263 default: 9264 break; 9265 9266 case ICmpInst::ICMP_SGE: 9267 std::swap(LHS, RHS); 9268 LLVM_FALLTHROUGH; 9269 case ICmpInst::ICMP_SLE: 9270 // X s<= (X + C)<nsw> if C >= 0 9271 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9272 return true; 9273 9274 // (X + C)<nsw> s<= X if C <= 0 9275 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9276 !C.isStrictlyPositive()) 9277 return true; 9278 break; 9279 9280 case ICmpInst::ICMP_SGT: 9281 std::swap(LHS, RHS); 9282 LLVM_FALLTHROUGH; 9283 case ICmpInst::ICMP_SLT: 9284 // X s< (X + C)<nsw> if C > 0 9285 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9286 C.isStrictlyPositive()) 9287 return true; 9288 9289 // (X + C)<nsw> s< X if C < 0 9290 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9291 return true; 9292 break; 9293 } 9294 9295 return false; 9296 } 9297 9298 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9299 const SCEV *LHS, 9300 const SCEV *RHS) { 9301 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9302 return false; 9303 9304 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9305 // the stack can result in exponential time complexity. 9306 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9307 9308 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9309 // 9310 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9311 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9312 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9313 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9314 // use isKnownPredicate later if needed. 9315 return isKnownNonNegative(RHS) && 9316 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9317 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9318 } 9319 9320 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 9321 ICmpInst::Predicate Pred, 9322 const SCEV *LHS, const SCEV *RHS) { 9323 // No need to even try if we know the module has no guards. 9324 if (!HasGuards) 9325 return false; 9326 9327 return any_of(*BB, [&](Instruction &I) { 9328 using namespace llvm::PatternMatch; 9329 9330 Value *Condition; 9331 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9332 m_Value(Condition))) && 9333 isImpliedCond(Pred, LHS, RHS, Condition, false); 9334 }); 9335 } 9336 9337 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9338 /// protected by a conditional between LHS and RHS. This is used to 9339 /// to eliminate casts. 9340 bool 9341 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9342 ICmpInst::Predicate Pred, 9343 const SCEV *LHS, const SCEV *RHS) { 9344 // Interpret a null as meaning no loop, where there is obviously no guard 9345 // (interprocedural conditions notwithstanding). 9346 if (!L) return true; 9347 9348 if (VerifyIR) 9349 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9350 "This cannot be done on broken IR!"); 9351 9352 9353 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9354 return true; 9355 9356 BasicBlock *Latch = L->getLoopLatch(); 9357 if (!Latch) 9358 return false; 9359 9360 BranchInst *LoopContinuePredicate = 9361 dyn_cast<BranchInst>(Latch->getTerminator()); 9362 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9363 isImpliedCond(Pred, LHS, RHS, 9364 LoopContinuePredicate->getCondition(), 9365 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9366 return true; 9367 9368 // We don't want more than one activation of the following loops on the stack 9369 // -- that can lead to O(n!) time complexity. 9370 if (WalkingBEDominatingConds) 9371 return false; 9372 9373 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9374 9375 // See if we can exploit a trip count to prove the predicate. 9376 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9377 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9378 if (LatchBECount != getCouldNotCompute()) { 9379 // We know that Latch branches back to the loop header exactly 9380 // LatchBECount times. This means the backdege condition at Latch is 9381 // equivalent to "{0,+,1} u< LatchBECount". 9382 Type *Ty = LatchBECount->getType(); 9383 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9384 const SCEV *LoopCounter = 9385 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9386 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9387 LatchBECount)) 9388 return true; 9389 } 9390 9391 // Check conditions due to any @llvm.assume intrinsics. 9392 for (auto &AssumeVH : AC.assumptions()) { 9393 if (!AssumeVH) 9394 continue; 9395 auto *CI = cast<CallInst>(AssumeVH); 9396 if (!DT.dominates(CI, Latch->getTerminator())) 9397 continue; 9398 9399 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9400 return true; 9401 } 9402 9403 // If the loop is not reachable from the entry block, we risk running into an 9404 // infinite loop as we walk up into the dom tree. These loops do not matter 9405 // anyway, so we just return a conservative answer when we see them. 9406 if (!DT.isReachableFromEntry(L->getHeader())) 9407 return false; 9408 9409 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9410 return true; 9411 9412 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9413 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9414 assert(DTN && "should reach the loop header before reaching the root!"); 9415 9416 BasicBlock *BB = DTN->getBlock(); 9417 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9418 return true; 9419 9420 BasicBlock *PBB = BB->getSinglePredecessor(); 9421 if (!PBB) 9422 continue; 9423 9424 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9425 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9426 continue; 9427 9428 Value *Condition = ContinuePredicate->getCondition(); 9429 9430 // If we have an edge `E` within the loop body that dominates the only 9431 // latch, the condition guarding `E` also guards the backedge. This 9432 // reasoning works only for loops with a single latch. 9433 9434 BasicBlockEdge DominatingEdge(PBB, BB); 9435 if (DominatingEdge.isSingleEdge()) { 9436 // We're constructively (and conservatively) enumerating edges within the 9437 // loop body that dominate the latch. The dominator tree better agree 9438 // with us on this: 9439 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9440 9441 if (isImpliedCond(Pred, LHS, RHS, Condition, 9442 BB != ContinuePredicate->getSuccessor(0))) 9443 return true; 9444 } 9445 } 9446 9447 return false; 9448 } 9449 9450 bool 9451 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9452 ICmpInst::Predicate Pred, 9453 const SCEV *LHS, const SCEV *RHS) { 9454 // Interpret a null as meaning no loop, where there is obviously no guard 9455 // (interprocedural conditions notwithstanding). 9456 if (!L) return false; 9457 9458 if (VerifyIR) 9459 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9460 "This cannot be done on broken IR!"); 9461 9462 // Both LHS and RHS must be available at loop entry. 9463 assert(isAvailableAtLoopEntry(LHS, L) && 9464 "LHS is not available at Loop Entry"); 9465 assert(isAvailableAtLoopEntry(RHS, L) && 9466 "RHS is not available at Loop Entry"); 9467 9468 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9469 return true; 9470 9471 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9472 // the facts (a >= b && a != b) separately. A typical situation is when the 9473 // non-strict comparison is known from ranges and non-equality is known from 9474 // dominating predicates. If we are proving strict comparison, we always try 9475 // to prove non-equality and non-strict comparison separately. 9476 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9477 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9478 bool ProvedNonStrictComparison = false; 9479 bool ProvedNonEquality = false; 9480 9481 if (ProvingStrictComparison) { 9482 ProvedNonStrictComparison = 9483 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9484 ProvedNonEquality = 9485 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9486 if (ProvedNonStrictComparison && ProvedNonEquality) 9487 return true; 9488 } 9489 9490 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9491 auto ProveViaGuard = [&](BasicBlock *Block) { 9492 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9493 return true; 9494 if (ProvingStrictComparison) { 9495 if (!ProvedNonStrictComparison) 9496 ProvedNonStrictComparison = 9497 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9498 if (!ProvedNonEquality) 9499 ProvedNonEquality = 9500 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9501 if (ProvedNonStrictComparison && ProvedNonEquality) 9502 return true; 9503 } 9504 return false; 9505 }; 9506 9507 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9508 auto ProveViaCond = [&](Value *Condition, bool Inverse) { 9509 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) 9510 return true; 9511 if (ProvingStrictComparison) { 9512 if (!ProvedNonStrictComparison) 9513 ProvedNonStrictComparison = 9514 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); 9515 if (!ProvedNonEquality) 9516 ProvedNonEquality = 9517 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); 9518 if (ProvedNonStrictComparison && ProvedNonEquality) 9519 return true; 9520 } 9521 return false; 9522 }; 9523 9524 // Starting at the loop predecessor, climb up the predecessor chain, as long 9525 // as there are predecessors that can be found that have unique successors 9526 // leading to the original header. 9527 for (std::pair<BasicBlock *, BasicBlock *> 9528 Pair(L->getLoopPredecessor(), L->getHeader()); 9529 Pair.first; 9530 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9531 9532 if (ProveViaGuard(Pair.first)) 9533 return true; 9534 9535 BranchInst *LoopEntryPredicate = 9536 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9537 if (!LoopEntryPredicate || 9538 LoopEntryPredicate->isUnconditional()) 9539 continue; 9540 9541 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9542 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9543 return true; 9544 } 9545 9546 // Check conditions due to any @llvm.assume intrinsics. 9547 for (auto &AssumeVH : AC.assumptions()) { 9548 if (!AssumeVH) 9549 continue; 9550 auto *CI = cast<CallInst>(AssumeVH); 9551 if (!DT.dominates(CI, L->getHeader())) 9552 continue; 9553 9554 if (ProveViaCond(CI->getArgOperand(0), false)) 9555 return true; 9556 } 9557 9558 return false; 9559 } 9560 9561 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 9562 const SCEV *LHS, const SCEV *RHS, 9563 Value *FoundCondValue, 9564 bool Inverse) { 9565 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9566 return false; 9567 9568 auto ClearOnExit = 9569 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9570 9571 // Recursively handle And and Or conditions. 9572 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9573 if (BO->getOpcode() == Instruction::And) { 9574 if (!Inverse) 9575 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9576 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9577 } else if (BO->getOpcode() == Instruction::Or) { 9578 if (Inverse) 9579 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9580 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9581 } 9582 } 9583 9584 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9585 if (!ICI) return false; 9586 9587 // Now that we found a conditional branch that dominates the loop or controls 9588 // the loop latch. Check to see if it is the comparison we are looking for. 9589 ICmpInst::Predicate FoundPred; 9590 if (Inverse) 9591 FoundPred = ICI->getInversePredicate(); 9592 else 9593 FoundPred = ICI->getPredicate(); 9594 9595 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9596 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9597 9598 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 9599 } 9600 9601 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9602 const SCEV *RHS, 9603 ICmpInst::Predicate FoundPred, 9604 const SCEV *FoundLHS, 9605 const SCEV *FoundRHS) { 9606 // Balance the types. 9607 if (getTypeSizeInBits(LHS->getType()) < 9608 getTypeSizeInBits(FoundLHS->getType())) { 9609 if (CmpInst::isSigned(Pred)) { 9610 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9611 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9612 } else { 9613 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9614 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9615 } 9616 } else if (getTypeSizeInBits(LHS->getType()) > 9617 getTypeSizeInBits(FoundLHS->getType())) { 9618 if (CmpInst::isSigned(FoundPred)) { 9619 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9620 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9621 } else { 9622 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9623 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9624 } 9625 } 9626 9627 // Canonicalize the query to match the way instcombine will have 9628 // canonicalized the comparison. 9629 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9630 if (LHS == RHS) 9631 return CmpInst::isTrueWhenEqual(Pred); 9632 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9633 if (FoundLHS == FoundRHS) 9634 return CmpInst::isFalseWhenEqual(FoundPred); 9635 9636 // Check to see if we can make the LHS or RHS match. 9637 if (LHS == FoundRHS || RHS == FoundLHS) { 9638 if (isa<SCEVConstant>(RHS)) { 9639 std::swap(FoundLHS, FoundRHS); 9640 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9641 } else { 9642 std::swap(LHS, RHS); 9643 Pred = ICmpInst::getSwappedPredicate(Pred); 9644 } 9645 } 9646 9647 // Check whether the found predicate is the same as the desired predicate. 9648 if (FoundPred == Pred) 9649 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9650 9651 // Check whether swapping the found predicate makes it the same as the 9652 // desired predicate. 9653 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9654 if (isa<SCEVConstant>(RHS)) 9655 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 9656 else 9657 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 9658 RHS, LHS, FoundLHS, FoundRHS); 9659 } 9660 9661 // Unsigned comparison is the same as signed comparison when both the operands 9662 // are non-negative. 9663 if (CmpInst::isUnsigned(FoundPred) && 9664 CmpInst::getSignedPredicate(FoundPred) == Pred && 9665 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9666 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9667 9668 // Check if we can make progress by sharpening ranges. 9669 if (FoundPred == ICmpInst::ICMP_NE && 9670 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9671 9672 const SCEVConstant *C = nullptr; 9673 const SCEV *V = nullptr; 9674 9675 if (isa<SCEVConstant>(FoundLHS)) { 9676 C = cast<SCEVConstant>(FoundLHS); 9677 V = FoundRHS; 9678 } else { 9679 C = cast<SCEVConstant>(FoundRHS); 9680 V = FoundLHS; 9681 } 9682 9683 // The guarding predicate tells us that C != V. If the known range 9684 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9685 // range we consider has to correspond to same signedness as the 9686 // predicate we're interested in folding. 9687 9688 APInt Min = ICmpInst::isSigned(Pred) ? 9689 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9690 9691 if (Min == C->getAPInt()) { 9692 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9693 // This is true even if (Min + 1) wraps around -- in case of 9694 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9695 9696 APInt SharperMin = Min + 1; 9697 9698 switch (Pred) { 9699 case ICmpInst::ICMP_SGE: 9700 case ICmpInst::ICMP_UGE: 9701 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9702 // RHS, we're done. 9703 if (isImpliedCondOperands(Pred, LHS, RHS, V, 9704 getConstant(SharperMin))) 9705 return true; 9706 LLVM_FALLTHROUGH; 9707 9708 case ICmpInst::ICMP_SGT: 9709 case ICmpInst::ICMP_UGT: 9710 // We know from the range information that (V `Pred` Min || 9711 // V == Min). We know from the guarding condition that !(V 9712 // == Min). This gives us 9713 // 9714 // V `Pred` Min || V == Min && !(V == Min) 9715 // => V `Pred` Min 9716 // 9717 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9718 9719 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 9720 return true; 9721 LLVM_FALLTHROUGH; 9722 9723 default: 9724 // No change 9725 break; 9726 } 9727 } 9728 } 9729 9730 // Check whether the actual condition is beyond sufficient. 9731 if (FoundPred == ICmpInst::ICMP_EQ) 9732 if (ICmpInst::isTrueWhenEqual(Pred)) 9733 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9734 return true; 9735 if (Pred == ICmpInst::ICMP_NE) 9736 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9737 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 9738 return true; 9739 9740 // Otherwise assume the worst. 9741 return false; 9742 } 9743 9744 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9745 const SCEV *&L, const SCEV *&R, 9746 SCEV::NoWrapFlags &Flags) { 9747 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9748 if (!AE || AE->getNumOperands() != 2) 9749 return false; 9750 9751 L = AE->getOperand(0); 9752 R = AE->getOperand(1); 9753 Flags = AE->getNoWrapFlags(); 9754 return true; 9755 } 9756 9757 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9758 const SCEV *Less) { 9759 // We avoid subtracting expressions here because this function is usually 9760 // fairly deep in the call stack (i.e. is called many times). 9761 9762 // X - X = 0. 9763 if (More == Less) 9764 return APInt(getTypeSizeInBits(More->getType()), 0); 9765 9766 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9767 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9768 const auto *MAR = cast<SCEVAddRecExpr>(More); 9769 9770 if (LAR->getLoop() != MAR->getLoop()) 9771 return None; 9772 9773 // We look at affine expressions only; not for correctness but to keep 9774 // getStepRecurrence cheap. 9775 if (!LAR->isAffine() || !MAR->isAffine()) 9776 return None; 9777 9778 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9779 return None; 9780 9781 Less = LAR->getStart(); 9782 More = MAR->getStart(); 9783 9784 // fall through 9785 } 9786 9787 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9788 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9789 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9790 return M - L; 9791 } 9792 9793 SCEV::NoWrapFlags Flags; 9794 const SCEV *LLess = nullptr, *RLess = nullptr; 9795 const SCEV *LMore = nullptr, *RMore = nullptr; 9796 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 9797 // Compare (X + C1) vs X. 9798 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 9799 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 9800 if (RLess == More) 9801 return -(C1->getAPInt()); 9802 9803 // Compare X vs (X + C2). 9804 if (splitBinaryAdd(More, LMore, RMore, Flags)) 9805 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 9806 if (RMore == Less) 9807 return C2->getAPInt(); 9808 9809 // Compare (X + C1) vs (X + C2). 9810 if (C1 && C2 && RLess == RMore) 9811 return C2->getAPInt() - C1->getAPInt(); 9812 9813 return None; 9814 } 9815 9816 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 9817 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9818 const SCEV *FoundLHS, const SCEV *FoundRHS) { 9819 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 9820 return false; 9821 9822 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9823 if (!AddRecLHS) 9824 return false; 9825 9826 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 9827 if (!AddRecFoundLHS) 9828 return false; 9829 9830 // We'd like to let SCEV reason about control dependencies, so we constrain 9831 // both the inequalities to be about add recurrences on the same loop. This 9832 // way we can use isLoopEntryGuardedByCond later. 9833 9834 const Loop *L = AddRecFoundLHS->getLoop(); 9835 if (L != AddRecLHS->getLoop()) 9836 return false; 9837 9838 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 9839 // 9840 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 9841 // ... (2) 9842 // 9843 // Informal proof for (2), assuming (1) [*]: 9844 // 9845 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 9846 // 9847 // Then 9848 // 9849 // FoundLHS s< FoundRHS s< INT_MIN - C 9850 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 9851 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 9852 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 9853 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 9854 // <=> FoundLHS + C s< FoundRHS + C 9855 // 9856 // [*]: (1) can be proved by ruling out overflow. 9857 // 9858 // [**]: This can be proved by analyzing all the four possibilities: 9859 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 9860 // (A s>= 0, B s>= 0). 9861 // 9862 // Note: 9863 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 9864 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 9865 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 9866 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 9867 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 9868 // C)". 9869 9870 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 9871 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 9872 if (!LDiff || !RDiff || *LDiff != *RDiff) 9873 return false; 9874 9875 if (LDiff->isMinValue()) 9876 return true; 9877 9878 APInt FoundRHSLimit; 9879 9880 if (Pred == CmpInst::ICMP_ULT) { 9881 FoundRHSLimit = -(*RDiff); 9882 } else { 9883 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 9884 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 9885 } 9886 9887 // Try to prove (1) or (2), as needed. 9888 return isAvailableAtLoopEntry(FoundRHS, L) && 9889 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 9890 getConstant(FoundRHSLimit)); 9891 } 9892 9893 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 9894 const SCEV *LHS, const SCEV *RHS, 9895 const SCEV *FoundLHS, 9896 const SCEV *FoundRHS, unsigned Depth) { 9897 const PHINode *LPhi = nullptr, *RPhi = nullptr; 9898 9899 auto ClearOnExit = make_scope_exit([&]() { 9900 if (LPhi) { 9901 bool Erased = PendingMerges.erase(LPhi); 9902 assert(Erased && "Failed to erase LPhi!"); 9903 (void)Erased; 9904 } 9905 if (RPhi) { 9906 bool Erased = PendingMerges.erase(RPhi); 9907 assert(Erased && "Failed to erase RPhi!"); 9908 (void)Erased; 9909 } 9910 }); 9911 9912 // Find respective Phis and check that they are not being pending. 9913 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 9914 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 9915 if (!PendingMerges.insert(Phi).second) 9916 return false; 9917 LPhi = Phi; 9918 } 9919 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 9920 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 9921 // If we detect a loop of Phi nodes being processed by this method, for 9922 // example: 9923 // 9924 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 9925 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 9926 // 9927 // we don't want to deal with a case that complex, so return conservative 9928 // answer false. 9929 if (!PendingMerges.insert(Phi).second) 9930 return false; 9931 RPhi = Phi; 9932 } 9933 9934 // If none of LHS, RHS is a Phi, nothing to do here. 9935 if (!LPhi && !RPhi) 9936 return false; 9937 9938 // If there is a SCEVUnknown Phi we are interested in, make it left. 9939 if (!LPhi) { 9940 std::swap(LHS, RHS); 9941 std::swap(FoundLHS, FoundRHS); 9942 std::swap(LPhi, RPhi); 9943 Pred = ICmpInst::getSwappedPredicate(Pred); 9944 } 9945 9946 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 9947 const BasicBlock *LBB = LPhi->getParent(); 9948 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 9949 9950 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 9951 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 9952 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 9953 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 9954 }; 9955 9956 if (RPhi && RPhi->getParent() == LBB) { 9957 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 9958 // If we compare two Phis from the same block, and for each entry block 9959 // the predicate is true for incoming values from this block, then the 9960 // predicate is also true for the Phis. 9961 for (const BasicBlock *IncBB : predecessors(LBB)) { 9962 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9963 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 9964 if (!ProvedEasily(L, R)) 9965 return false; 9966 } 9967 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 9968 // Case two: RHS is also a Phi from the same basic block, and it is an 9969 // AddRec. It means that there is a loop which has both AddRec and Unknown 9970 // PHIs, for it we can compare incoming values of AddRec from above the loop 9971 // and latch with their respective incoming values of LPhi. 9972 // TODO: Generalize to handle loops with many inputs in a header. 9973 if (LPhi->getNumIncomingValues() != 2) return false; 9974 9975 auto *RLoop = RAR->getLoop(); 9976 auto *Predecessor = RLoop->getLoopPredecessor(); 9977 assert(Predecessor && "Loop with AddRec with no predecessor?"); 9978 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 9979 if (!ProvedEasily(L1, RAR->getStart())) 9980 return false; 9981 auto *Latch = RLoop->getLoopLatch(); 9982 assert(Latch && "Loop with AddRec with no latch?"); 9983 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 9984 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 9985 return false; 9986 } else { 9987 // In all other cases go over inputs of LHS and compare each of them to RHS, 9988 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 9989 // At this point RHS is either a non-Phi, or it is a Phi from some block 9990 // different from LBB. 9991 for (const BasicBlock *IncBB : predecessors(LBB)) { 9992 // Check that RHS is available in this block. 9993 if (!dominates(RHS, IncBB)) 9994 return false; 9995 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9996 if (!ProvedEasily(L, RHS)) 9997 return false; 9998 } 9999 } 10000 return true; 10001 } 10002 10003 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10004 const SCEV *LHS, const SCEV *RHS, 10005 const SCEV *FoundLHS, 10006 const SCEV *FoundRHS) { 10007 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10008 return true; 10009 10010 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10011 return true; 10012 10013 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10014 FoundLHS, FoundRHS) || 10015 // ~x < ~y --> x > y 10016 isImpliedCondOperandsHelper(Pred, LHS, RHS, 10017 getNotSCEV(FoundRHS), 10018 getNotSCEV(FoundLHS)); 10019 } 10020 10021 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10022 template <typename MinMaxExprType> 10023 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10024 const SCEV *Candidate) { 10025 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10026 if (!MinMaxExpr) 10027 return false; 10028 10029 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end(); 10030 } 10031 10032 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10033 ICmpInst::Predicate Pred, 10034 const SCEV *LHS, const SCEV *RHS) { 10035 // If both sides are affine addrecs for the same loop, with equal 10036 // steps, and we know the recurrences don't wrap, then we only 10037 // need to check the predicate on the starting values. 10038 10039 if (!ICmpInst::isRelational(Pred)) 10040 return false; 10041 10042 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10043 if (!LAR) 10044 return false; 10045 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10046 if (!RAR) 10047 return false; 10048 if (LAR->getLoop() != RAR->getLoop()) 10049 return false; 10050 if (!LAR->isAffine() || !RAR->isAffine()) 10051 return false; 10052 10053 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10054 return false; 10055 10056 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10057 SCEV::FlagNSW : SCEV::FlagNUW; 10058 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10059 return false; 10060 10061 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10062 } 10063 10064 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10065 /// expression? 10066 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10067 ICmpInst::Predicate Pred, 10068 const SCEV *LHS, const SCEV *RHS) { 10069 switch (Pred) { 10070 default: 10071 return false; 10072 10073 case ICmpInst::ICMP_SGE: 10074 std::swap(LHS, RHS); 10075 LLVM_FALLTHROUGH; 10076 case ICmpInst::ICMP_SLE: 10077 return 10078 // min(A, ...) <= A 10079 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10080 // A <= max(A, ...) 10081 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10082 10083 case ICmpInst::ICMP_UGE: 10084 std::swap(LHS, RHS); 10085 LLVM_FALLTHROUGH; 10086 case ICmpInst::ICMP_ULE: 10087 return 10088 // min(A, ...) <= A 10089 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10090 // A <= max(A, ...) 10091 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10092 } 10093 10094 llvm_unreachable("covered switch fell through?!"); 10095 } 10096 10097 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10098 const SCEV *LHS, const SCEV *RHS, 10099 const SCEV *FoundLHS, 10100 const SCEV *FoundRHS, 10101 unsigned Depth) { 10102 assert(getTypeSizeInBits(LHS->getType()) == 10103 getTypeSizeInBits(RHS->getType()) && 10104 "LHS and RHS have different sizes?"); 10105 assert(getTypeSizeInBits(FoundLHS->getType()) == 10106 getTypeSizeInBits(FoundRHS->getType()) && 10107 "FoundLHS and FoundRHS have different sizes?"); 10108 // We want to avoid hurting the compile time with analysis of too big trees. 10109 if (Depth > MaxSCEVOperationsImplicationDepth) 10110 return false; 10111 // We only want to work with ICMP_SGT comparison so far. 10112 // TODO: Extend to ICMP_UGT? 10113 if (Pred == ICmpInst::ICMP_SLT) { 10114 Pred = ICmpInst::ICMP_SGT; 10115 std::swap(LHS, RHS); 10116 std::swap(FoundLHS, FoundRHS); 10117 } 10118 if (Pred != ICmpInst::ICMP_SGT) 10119 return false; 10120 10121 auto GetOpFromSExt = [&](const SCEV *S) { 10122 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10123 return Ext->getOperand(); 10124 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10125 // the constant in some cases. 10126 return S; 10127 }; 10128 10129 // Acquire values from extensions. 10130 auto *OrigLHS = LHS; 10131 auto *OrigFoundLHS = FoundLHS; 10132 LHS = GetOpFromSExt(LHS); 10133 FoundLHS = GetOpFromSExt(FoundLHS); 10134 10135 // Is the SGT predicate can be proved trivially or using the found context. 10136 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10137 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10138 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10139 FoundRHS, Depth + 1); 10140 }; 10141 10142 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10143 // We want to avoid creation of any new non-constant SCEV. Since we are 10144 // going to compare the operands to RHS, we should be certain that we don't 10145 // need any size extensions for this. So let's decline all cases when the 10146 // sizes of types of LHS and RHS do not match. 10147 // TODO: Maybe try to get RHS from sext to catch more cases? 10148 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10149 return false; 10150 10151 // Should not overflow. 10152 if (!LHSAddExpr->hasNoSignedWrap()) 10153 return false; 10154 10155 auto *LL = LHSAddExpr->getOperand(0); 10156 auto *LR = LHSAddExpr->getOperand(1); 10157 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 10158 10159 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10160 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10161 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10162 }; 10163 // Try to prove the following rule: 10164 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10165 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10166 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10167 return true; 10168 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10169 Value *LL, *LR; 10170 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10171 10172 using namespace llvm::PatternMatch; 10173 10174 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10175 // Rules for division. 10176 // We are going to perform some comparisons with Denominator and its 10177 // derivative expressions. In general case, creating a SCEV for it may 10178 // lead to a complex analysis of the entire graph, and in particular it 10179 // can request trip count recalculation for the same loop. This would 10180 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10181 // this, we only want to create SCEVs that are constants in this section. 10182 // So we bail if Denominator is not a constant. 10183 if (!isa<ConstantInt>(LR)) 10184 return false; 10185 10186 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10187 10188 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10189 // then a SCEV for the numerator already exists and matches with FoundLHS. 10190 auto *Numerator = getExistingSCEV(LL); 10191 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10192 return false; 10193 10194 // Make sure that the numerator matches with FoundLHS and the denominator 10195 // is positive. 10196 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10197 return false; 10198 10199 auto *DTy = Denominator->getType(); 10200 auto *FRHSTy = FoundRHS->getType(); 10201 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10202 // One of types is a pointer and another one is not. We cannot extend 10203 // them properly to a wider type, so let us just reject this case. 10204 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10205 // to avoid this check. 10206 return false; 10207 10208 // Given that: 10209 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10210 auto *WTy = getWiderType(DTy, FRHSTy); 10211 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10212 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10213 10214 // Try to prove the following rule: 10215 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10216 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10217 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10218 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10219 if (isKnownNonPositive(RHS) && 10220 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10221 return true; 10222 10223 // Try to prove the following rule: 10224 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10225 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10226 // If we divide it by Denominator > 2, then: 10227 // 1. If FoundLHS is negative, then the result is 0. 10228 // 2. If FoundLHS is non-negative, then the result is non-negative. 10229 // Anyways, the result is non-negative. 10230 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 10231 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10232 if (isKnownNegative(RHS) && 10233 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10234 return true; 10235 } 10236 } 10237 10238 // If our expression contained SCEVUnknown Phis, and we split it down and now 10239 // need to prove something for them, try to prove the predicate for every 10240 // possible incoming values of those Phis. 10241 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10242 return true; 10243 10244 return false; 10245 } 10246 10247 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 10248 const SCEV *LHS, const SCEV *RHS) { 10249 // zext x u<= sext x, sext x s<= zext x 10250 switch (Pred) { 10251 case ICmpInst::ICMP_SGE: 10252 std::swap(LHS, RHS); 10253 LLVM_FALLTHROUGH; 10254 case ICmpInst::ICMP_SLE: { 10255 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 10256 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 10257 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 10258 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10259 return true; 10260 break; 10261 } 10262 case ICmpInst::ICMP_UGE: 10263 std::swap(LHS, RHS); 10264 LLVM_FALLTHROUGH; 10265 case ICmpInst::ICMP_ULE: { 10266 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 10267 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 10268 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 10269 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10270 return true; 10271 break; 10272 } 10273 default: 10274 break; 10275 }; 10276 return false; 10277 } 10278 10279 bool 10280 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10281 const SCEV *LHS, const SCEV *RHS) { 10282 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 10283 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10284 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10285 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10286 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10287 } 10288 10289 bool 10290 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10291 const SCEV *LHS, const SCEV *RHS, 10292 const SCEV *FoundLHS, 10293 const SCEV *FoundRHS) { 10294 switch (Pred) { 10295 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10296 case ICmpInst::ICMP_EQ: 10297 case ICmpInst::ICMP_NE: 10298 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10299 return true; 10300 break; 10301 case ICmpInst::ICMP_SLT: 10302 case ICmpInst::ICMP_SLE: 10303 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10304 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10305 return true; 10306 break; 10307 case ICmpInst::ICMP_SGT: 10308 case ICmpInst::ICMP_SGE: 10309 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10310 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10311 return true; 10312 break; 10313 case ICmpInst::ICMP_ULT: 10314 case ICmpInst::ICMP_ULE: 10315 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10316 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10317 return true; 10318 break; 10319 case ICmpInst::ICMP_UGT: 10320 case ICmpInst::ICMP_UGE: 10321 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10322 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10323 return true; 10324 break; 10325 } 10326 10327 // Maybe it can be proved via operations? 10328 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10329 return true; 10330 10331 return false; 10332 } 10333 10334 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10335 const SCEV *LHS, 10336 const SCEV *RHS, 10337 const SCEV *FoundLHS, 10338 const SCEV *FoundRHS) { 10339 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10340 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10341 // reduce the compile time impact of this optimization. 10342 return false; 10343 10344 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10345 if (!Addend) 10346 return false; 10347 10348 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10349 10350 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10351 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10352 ConstantRange FoundLHSRange = 10353 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10354 10355 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10356 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10357 10358 // We can also compute the range of values for `LHS` that satisfy the 10359 // consequent, "`LHS` `Pred` `RHS`": 10360 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10361 ConstantRange SatisfyingLHSRange = 10362 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10363 10364 // The antecedent implies the consequent if every value of `LHS` that 10365 // satisfies the antecedent also satisfies the consequent. 10366 return SatisfyingLHSRange.contains(LHSRange); 10367 } 10368 10369 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10370 bool IsSigned, bool NoWrap) { 10371 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10372 10373 if (NoWrap) return false; 10374 10375 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10376 const SCEV *One = getOne(Stride->getType()); 10377 10378 if (IsSigned) { 10379 APInt MaxRHS = getSignedRangeMax(RHS); 10380 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10381 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10382 10383 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10384 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10385 } 10386 10387 APInt MaxRHS = getUnsignedRangeMax(RHS); 10388 APInt MaxValue = APInt::getMaxValue(BitWidth); 10389 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10390 10391 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10392 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10393 } 10394 10395 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10396 bool IsSigned, bool NoWrap) { 10397 if (NoWrap) return false; 10398 10399 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10400 const SCEV *One = getOne(Stride->getType()); 10401 10402 if (IsSigned) { 10403 APInt MinRHS = getSignedRangeMin(RHS); 10404 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10405 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10406 10407 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10408 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10409 } 10410 10411 APInt MinRHS = getUnsignedRangeMin(RHS); 10412 APInt MinValue = APInt::getMinValue(BitWidth); 10413 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10414 10415 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10416 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10417 } 10418 10419 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10420 bool Equality) { 10421 const SCEV *One = getOne(Step->getType()); 10422 Delta = Equality ? getAddExpr(Delta, Step) 10423 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10424 return getUDivExpr(Delta, Step); 10425 } 10426 10427 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10428 const SCEV *Stride, 10429 const SCEV *End, 10430 unsigned BitWidth, 10431 bool IsSigned) { 10432 10433 assert(!isKnownNonPositive(Stride) && 10434 "Stride is expected strictly positive!"); 10435 // Calculate the maximum backedge count based on the range of values 10436 // permitted by Start, End, and Stride. 10437 const SCEV *MaxBECount; 10438 APInt MinStart = 10439 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10440 10441 APInt StrideForMaxBECount = 10442 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10443 10444 // We already know that the stride is positive, so we paper over conservatism 10445 // in our range computation by forcing StrideForMaxBECount to be at least one. 10446 // In theory this is unnecessary, but we expect MaxBECount to be a 10447 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10448 // is nothing to constant fold it to). 10449 APInt One(BitWidth, 1, IsSigned); 10450 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10451 10452 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10453 : APInt::getMaxValue(BitWidth); 10454 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10455 10456 // Although End can be a MAX expression we estimate MaxEnd considering only 10457 // the case End = RHS of the loop termination condition. This is safe because 10458 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10459 // taken count. 10460 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10461 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10462 10463 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10464 getConstant(StrideForMaxBECount) /* Step */, 10465 false /* Equality */); 10466 10467 return MaxBECount; 10468 } 10469 10470 ScalarEvolution::ExitLimit 10471 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10472 const Loop *L, bool IsSigned, 10473 bool ControlsExit, bool AllowPredicates) { 10474 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10475 10476 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10477 bool PredicatedIV = false; 10478 10479 if (!IV && AllowPredicates) { 10480 // Try to make this an AddRec using runtime tests, in the first X 10481 // iterations of this loop, where X is the SCEV expression found by the 10482 // algorithm below. 10483 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10484 PredicatedIV = true; 10485 } 10486 10487 // Avoid weird loops 10488 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10489 return getCouldNotCompute(); 10490 10491 bool NoWrap = ControlsExit && 10492 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10493 10494 const SCEV *Stride = IV->getStepRecurrence(*this); 10495 10496 bool PositiveStride = isKnownPositive(Stride); 10497 10498 // Avoid negative or zero stride values. 10499 if (!PositiveStride) { 10500 // We can compute the correct backedge taken count for loops with unknown 10501 // strides if we can prove that the loop is not an infinite loop with side 10502 // effects. Here's the loop structure we are trying to handle - 10503 // 10504 // i = start 10505 // do { 10506 // A[i] = i; 10507 // i += s; 10508 // } while (i < end); 10509 // 10510 // The backedge taken count for such loops is evaluated as - 10511 // (max(end, start + stride) - start - 1) /u stride 10512 // 10513 // The additional preconditions that we need to check to prove correctness 10514 // of the above formula is as follows - 10515 // 10516 // a) IV is either nuw or nsw depending upon signedness (indicated by the 10517 // NoWrap flag). 10518 // b) loop is single exit with no side effects. 10519 // 10520 // 10521 // Precondition a) implies that if the stride is negative, this is a single 10522 // trip loop. The backedge taken count formula reduces to zero in this case. 10523 // 10524 // Precondition b) implies that the unknown stride cannot be zero otherwise 10525 // we have UB. 10526 // 10527 // The positive stride case is the same as isKnownPositive(Stride) returning 10528 // true (original behavior of the function). 10529 // 10530 // We want to make sure that the stride is truly unknown as there are edge 10531 // cases where ScalarEvolution propagates no wrap flags to the 10532 // post-increment/decrement IV even though the increment/decrement operation 10533 // itself is wrapping. The computed backedge taken count may be wrong in 10534 // such cases. This is prevented by checking that the stride is not known to 10535 // be either positive or non-positive. For example, no wrap flags are 10536 // propagated to the post-increment IV of this loop with a trip count of 2 - 10537 // 10538 // unsigned char i; 10539 // for(i=127; i<128; i+=129) 10540 // A[i] = i; 10541 // 10542 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 10543 !loopHasNoSideEffects(L)) 10544 return getCouldNotCompute(); 10545 } else if (!Stride->isOne() && 10546 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 10547 // Avoid proven overflow cases: this will ensure that the backedge taken 10548 // count will not generate any unsigned overflow. Relaxed no-overflow 10549 // conditions exploit NoWrapFlags, allowing to optimize in presence of 10550 // undefined behaviors like the case of C language. 10551 return getCouldNotCompute(); 10552 10553 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 10554 : ICmpInst::ICMP_ULT; 10555 const SCEV *Start = IV->getStart(); 10556 const SCEV *End = RHS; 10557 // When the RHS is not invariant, we do not know the end bound of the loop and 10558 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 10559 // calculate the MaxBECount, given the start, stride and max value for the end 10560 // bound of the loop (RHS), and the fact that IV does not overflow (which is 10561 // checked above). 10562 if (!isLoopInvariant(RHS, L)) { 10563 const SCEV *MaxBECount = computeMaxBECountForLT( 10564 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10565 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 10566 false /*MaxOrZero*/, Predicates); 10567 } 10568 // If the backedge is taken at least once, then it will be taken 10569 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 10570 // is the LHS value of the less-than comparison the first time it is evaluated 10571 // and End is the RHS. 10572 const SCEV *BECountIfBackedgeTaken = 10573 computeBECount(getMinusSCEV(End, Start), Stride, false); 10574 // If the loop entry is guarded by the result of the backedge test of the 10575 // first loop iteration, then we know the backedge will be taken at least 10576 // once and so the backedge taken count is as above. If not then we use the 10577 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 10578 // as if the backedge is taken at least once max(End,Start) is End and so the 10579 // result is as above, and if not max(End,Start) is Start so we get a backedge 10580 // count of zero. 10581 const SCEV *BECount; 10582 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 10583 BECount = BECountIfBackedgeTaken; 10584 else { 10585 // If we know that RHS >= Start in the context of loop, then we know that 10586 // max(RHS, Start) = RHS at this point. 10587 if (isLoopEntryGuardedByCond( 10588 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start)) 10589 End = RHS; 10590 else 10591 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 10592 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 10593 } 10594 10595 const SCEV *MaxBECount; 10596 bool MaxOrZero = false; 10597 if (isa<SCEVConstant>(BECount)) 10598 MaxBECount = BECount; 10599 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 10600 // If we know exactly how many times the backedge will be taken if it's 10601 // taken at least once, then the backedge count will either be that or 10602 // zero. 10603 MaxBECount = BECountIfBackedgeTaken; 10604 MaxOrZero = true; 10605 } else { 10606 MaxBECount = computeMaxBECountForLT( 10607 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10608 } 10609 10610 if (isa<SCEVCouldNotCompute>(MaxBECount) && 10611 !isa<SCEVCouldNotCompute>(BECount)) 10612 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 10613 10614 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 10615 } 10616 10617 ScalarEvolution::ExitLimit 10618 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 10619 const Loop *L, bool IsSigned, 10620 bool ControlsExit, bool AllowPredicates) { 10621 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10622 // We handle only IV > Invariant 10623 if (!isLoopInvariant(RHS, L)) 10624 return getCouldNotCompute(); 10625 10626 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10627 if (!IV && AllowPredicates) 10628 // Try to make this an AddRec using runtime tests, in the first X 10629 // iterations of this loop, where X is the SCEV expression found by the 10630 // algorithm below. 10631 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10632 10633 // Avoid weird loops 10634 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10635 return getCouldNotCompute(); 10636 10637 bool NoWrap = ControlsExit && 10638 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10639 10640 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 10641 10642 // Avoid negative or zero stride values 10643 if (!isKnownPositive(Stride)) 10644 return getCouldNotCompute(); 10645 10646 // Avoid proven overflow cases: this will ensure that the backedge taken count 10647 // will not generate any unsigned overflow. Relaxed no-overflow conditions 10648 // exploit NoWrapFlags, allowing to optimize in presence of undefined 10649 // behaviors like the case of C language. 10650 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 10651 return getCouldNotCompute(); 10652 10653 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 10654 : ICmpInst::ICMP_UGT; 10655 10656 const SCEV *Start = IV->getStart(); 10657 const SCEV *End = RHS; 10658 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 10659 // If we know that Start >= RHS in the context of loop, then we know that 10660 // min(RHS, Start) = RHS at this point. 10661 if (isLoopEntryGuardedByCond( 10662 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 10663 End = RHS; 10664 else 10665 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 10666 } 10667 10668 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10669 10670 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10671 : getUnsignedRangeMax(Start); 10672 10673 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10674 : getUnsignedRangeMin(Stride); 10675 10676 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10677 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10678 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10679 10680 // Although End can be a MIN expression we estimate MinEnd considering only 10681 // the case End = RHS. This is safe because in the other case (Start - End) 10682 // is zero, leading to a zero maximum backedge taken count. 10683 APInt MinEnd = 10684 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10685 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10686 10687 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 10688 ? BECount 10689 : computeBECount(getConstant(MaxStart - MinEnd), 10690 getConstant(MinStride), false); 10691 10692 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10693 MaxBECount = BECount; 10694 10695 return ExitLimit(BECount, MaxBECount, false, Predicates); 10696 } 10697 10698 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10699 ScalarEvolution &SE) const { 10700 if (Range.isFullSet()) // Infinite loop. 10701 return SE.getCouldNotCompute(); 10702 10703 // If the start is a non-zero constant, shift the range to simplify things. 10704 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10705 if (!SC->getValue()->isZero()) { 10706 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10707 Operands[0] = SE.getZero(SC->getType()); 10708 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10709 getNoWrapFlags(FlagNW)); 10710 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10711 return ShiftedAddRec->getNumIterationsInRange( 10712 Range.subtract(SC->getAPInt()), SE); 10713 // This is strange and shouldn't happen. 10714 return SE.getCouldNotCompute(); 10715 } 10716 10717 // The only time we can solve this is when we have all constant indices. 10718 // Otherwise, we cannot determine the overflow conditions. 10719 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10720 return SE.getCouldNotCompute(); 10721 10722 // Okay at this point we know that all elements of the chrec are constants and 10723 // that the start element is zero. 10724 10725 // First check to see if the range contains zero. If not, the first 10726 // iteration exits. 10727 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10728 if (!Range.contains(APInt(BitWidth, 0))) 10729 return SE.getZero(getType()); 10730 10731 if (isAffine()) { 10732 // If this is an affine expression then we have this situation: 10733 // Solve {0,+,A} in Range === Ax in Range 10734 10735 // We know that zero is in the range. If A is positive then we know that 10736 // the upper value of the range must be the first possible exit value. 10737 // If A is negative then the lower of the range is the last possible loop 10738 // value. Also note that we already checked for a full range. 10739 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10740 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10741 10742 // The exit value should be (End+A)/A. 10743 APInt ExitVal = (End + A).udiv(A); 10744 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10745 10746 // Evaluate at the exit value. If we really did fall out of the valid 10747 // range, then we computed our trip count, otherwise wrap around or other 10748 // things must have happened. 10749 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10750 if (Range.contains(Val->getValue())) 10751 return SE.getCouldNotCompute(); // Something strange happened 10752 10753 // Ensure that the previous value is in the range. This is a sanity check. 10754 assert(Range.contains( 10755 EvaluateConstantChrecAtConstant(this, 10756 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10757 "Linear scev computation is off in a bad way!"); 10758 return SE.getConstant(ExitValue); 10759 } 10760 10761 if (isQuadratic()) { 10762 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 10763 return SE.getConstant(S.getValue()); 10764 } 10765 10766 return SE.getCouldNotCompute(); 10767 } 10768 10769 const SCEVAddRecExpr * 10770 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 10771 assert(getNumOperands() > 1 && "AddRec with zero step?"); 10772 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 10773 // but in this case we cannot guarantee that the value returned will be an 10774 // AddRec because SCEV does not have a fixed point where it stops 10775 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 10776 // may happen if we reach arithmetic depth limit while simplifying. So we 10777 // construct the returned value explicitly. 10778 SmallVector<const SCEV *, 3> Ops; 10779 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 10780 // (this + Step) is {A+B,+,B+C,+...,+,N}. 10781 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 10782 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 10783 // We know that the last operand is not a constant zero (otherwise it would 10784 // have been popped out earlier). This guarantees us that if the result has 10785 // the same last operand, then it will also not be popped out, meaning that 10786 // the returned value will be an AddRec. 10787 const SCEV *Last = getOperand(getNumOperands() - 1); 10788 assert(!Last->isZero() && "Recurrency with zero step?"); 10789 Ops.push_back(Last); 10790 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 10791 SCEV::FlagAnyWrap)); 10792 } 10793 10794 // Return true when S contains at least an undef value. 10795 static inline bool containsUndefs(const SCEV *S) { 10796 return SCEVExprContains(S, [](const SCEV *S) { 10797 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 10798 return isa<UndefValue>(SU->getValue()); 10799 return false; 10800 }); 10801 } 10802 10803 namespace { 10804 10805 // Collect all steps of SCEV expressions. 10806 struct SCEVCollectStrides { 10807 ScalarEvolution &SE; 10808 SmallVectorImpl<const SCEV *> &Strides; 10809 10810 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 10811 : SE(SE), Strides(S) {} 10812 10813 bool follow(const SCEV *S) { 10814 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 10815 Strides.push_back(AR->getStepRecurrence(SE)); 10816 return true; 10817 } 10818 10819 bool isDone() const { return false; } 10820 }; 10821 10822 // Collect all SCEVUnknown and SCEVMulExpr expressions. 10823 struct SCEVCollectTerms { 10824 SmallVectorImpl<const SCEV *> &Terms; 10825 10826 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 10827 10828 bool follow(const SCEV *S) { 10829 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 10830 isa<SCEVSignExtendExpr>(S)) { 10831 if (!containsUndefs(S)) 10832 Terms.push_back(S); 10833 10834 // Stop recursion: once we collected a term, do not walk its operands. 10835 return false; 10836 } 10837 10838 // Keep looking. 10839 return true; 10840 } 10841 10842 bool isDone() const { return false; } 10843 }; 10844 10845 // Check if a SCEV contains an AddRecExpr. 10846 struct SCEVHasAddRec { 10847 bool &ContainsAddRec; 10848 10849 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 10850 ContainsAddRec = false; 10851 } 10852 10853 bool follow(const SCEV *S) { 10854 if (isa<SCEVAddRecExpr>(S)) { 10855 ContainsAddRec = true; 10856 10857 // Stop recursion: once we collected a term, do not walk its operands. 10858 return false; 10859 } 10860 10861 // Keep looking. 10862 return true; 10863 } 10864 10865 bool isDone() const { return false; } 10866 }; 10867 10868 // Find factors that are multiplied with an expression that (possibly as a 10869 // subexpression) contains an AddRecExpr. In the expression: 10870 // 10871 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 10872 // 10873 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 10874 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 10875 // parameters as they form a product with an induction variable. 10876 // 10877 // This collector expects all array size parameters to be in the same MulExpr. 10878 // It might be necessary to later add support for collecting parameters that are 10879 // spread over different nested MulExpr. 10880 struct SCEVCollectAddRecMultiplies { 10881 SmallVectorImpl<const SCEV *> &Terms; 10882 ScalarEvolution &SE; 10883 10884 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 10885 : Terms(T), SE(SE) {} 10886 10887 bool follow(const SCEV *S) { 10888 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 10889 bool HasAddRec = false; 10890 SmallVector<const SCEV *, 0> Operands; 10891 for (auto Op : Mul->operands()) { 10892 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 10893 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 10894 Operands.push_back(Op); 10895 } else if (Unknown) { 10896 HasAddRec = true; 10897 } else { 10898 bool ContainsAddRec = false; 10899 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 10900 visitAll(Op, ContiansAddRec); 10901 HasAddRec |= ContainsAddRec; 10902 } 10903 } 10904 if (Operands.size() == 0) 10905 return true; 10906 10907 if (!HasAddRec) 10908 return false; 10909 10910 Terms.push_back(SE.getMulExpr(Operands)); 10911 // Stop recursion: once we collected a term, do not walk its operands. 10912 return false; 10913 } 10914 10915 // Keep looking. 10916 return true; 10917 } 10918 10919 bool isDone() const { return false; } 10920 }; 10921 10922 } // end anonymous namespace 10923 10924 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 10925 /// two places: 10926 /// 1) The strides of AddRec expressions. 10927 /// 2) Unknowns that are multiplied with AddRec expressions. 10928 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 10929 SmallVectorImpl<const SCEV *> &Terms) { 10930 SmallVector<const SCEV *, 4> Strides; 10931 SCEVCollectStrides StrideCollector(*this, Strides); 10932 visitAll(Expr, StrideCollector); 10933 10934 LLVM_DEBUG({ 10935 dbgs() << "Strides:\n"; 10936 for (const SCEV *S : Strides) 10937 dbgs() << *S << "\n"; 10938 }); 10939 10940 for (const SCEV *S : Strides) { 10941 SCEVCollectTerms TermCollector(Terms); 10942 visitAll(S, TermCollector); 10943 } 10944 10945 LLVM_DEBUG({ 10946 dbgs() << "Terms:\n"; 10947 for (const SCEV *T : Terms) 10948 dbgs() << *T << "\n"; 10949 }); 10950 10951 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 10952 visitAll(Expr, MulCollector); 10953 } 10954 10955 static bool findArrayDimensionsRec(ScalarEvolution &SE, 10956 SmallVectorImpl<const SCEV *> &Terms, 10957 SmallVectorImpl<const SCEV *> &Sizes) { 10958 int Last = Terms.size() - 1; 10959 const SCEV *Step = Terms[Last]; 10960 10961 // End of recursion. 10962 if (Last == 0) { 10963 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 10964 SmallVector<const SCEV *, 2> Qs; 10965 for (const SCEV *Op : M->operands()) 10966 if (!isa<SCEVConstant>(Op)) 10967 Qs.push_back(Op); 10968 10969 Step = SE.getMulExpr(Qs); 10970 } 10971 10972 Sizes.push_back(Step); 10973 return true; 10974 } 10975 10976 for (const SCEV *&Term : Terms) { 10977 // Normalize the terms before the next call to findArrayDimensionsRec. 10978 const SCEV *Q, *R; 10979 SCEVDivision::divide(SE, Term, Step, &Q, &R); 10980 10981 // Bail out when GCD does not evenly divide one of the terms. 10982 if (!R->isZero()) 10983 return false; 10984 10985 Term = Q; 10986 } 10987 10988 // Remove all SCEVConstants. 10989 Terms.erase( 10990 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 10991 Terms.end()); 10992 10993 if (Terms.size() > 0) 10994 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 10995 return false; 10996 10997 Sizes.push_back(Step); 10998 return true; 10999 } 11000 11001 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11002 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11003 for (const SCEV *T : Terms) 11004 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 11005 return true; 11006 11007 return false; 11008 } 11009 11010 // Return the number of product terms in S. 11011 static inline int numberOfTerms(const SCEV *S) { 11012 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11013 return Expr->getNumOperands(); 11014 return 1; 11015 } 11016 11017 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11018 if (isa<SCEVConstant>(T)) 11019 return nullptr; 11020 11021 if (isa<SCEVUnknown>(T)) 11022 return T; 11023 11024 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11025 SmallVector<const SCEV *, 2> Factors; 11026 for (const SCEV *Op : M->operands()) 11027 if (!isa<SCEVConstant>(Op)) 11028 Factors.push_back(Op); 11029 11030 return SE.getMulExpr(Factors); 11031 } 11032 11033 return T; 11034 } 11035 11036 /// Return the size of an element read or written by Inst. 11037 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11038 Type *Ty; 11039 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11040 Ty = Store->getValueOperand()->getType(); 11041 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11042 Ty = Load->getType(); 11043 else 11044 return nullptr; 11045 11046 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11047 return getSizeOfExpr(ETy, Ty); 11048 } 11049 11050 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11051 SmallVectorImpl<const SCEV *> &Sizes, 11052 const SCEV *ElementSize) { 11053 if (Terms.size() < 1 || !ElementSize) 11054 return; 11055 11056 // Early return when Terms do not contain parameters: we do not delinearize 11057 // non parametric SCEVs. 11058 if (!containsParameters(Terms)) 11059 return; 11060 11061 LLVM_DEBUG({ 11062 dbgs() << "Terms:\n"; 11063 for (const SCEV *T : Terms) 11064 dbgs() << *T << "\n"; 11065 }); 11066 11067 // Remove duplicates. 11068 array_pod_sort(Terms.begin(), Terms.end()); 11069 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11070 11071 // Put larger terms first. 11072 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11073 return numberOfTerms(LHS) > numberOfTerms(RHS); 11074 }); 11075 11076 // Try to divide all terms by the element size. If term is not divisible by 11077 // element size, proceed with the original term. 11078 for (const SCEV *&Term : Terms) { 11079 const SCEV *Q, *R; 11080 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11081 if (!Q->isZero()) 11082 Term = Q; 11083 } 11084 11085 SmallVector<const SCEV *, 4> NewTerms; 11086 11087 // Remove constant factors. 11088 for (const SCEV *T : Terms) 11089 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11090 NewTerms.push_back(NewT); 11091 11092 LLVM_DEBUG({ 11093 dbgs() << "Terms after sorting:\n"; 11094 for (const SCEV *T : NewTerms) 11095 dbgs() << *T << "\n"; 11096 }); 11097 11098 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11099 Sizes.clear(); 11100 return; 11101 } 11102 11103 // The last element to be pushed into Sizes is the size of an element. 11104 Sizes.push_back(ElementSize); 11105 11106 LLVM_DEBUG({ 11107 dbgs() << "Sizes:\n"; 11108 for (const SCEV *S : Sizes) 11109 dbgs() << *S << "\n"; 11110 }); 11111 } 11112 11113 void ScalarEvolution::computeAccessFunctions( 11114 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11115 SmallVectorImpl<const SCEV *> &Sizes) { 11116 // Early exit in case this SCEV is not an affine multivariate function. 11117 if (Sizes.empty()) 11118 return; 11119 11120 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11121 if (!AR->isAffine()) 11122 return; 11123 11124 const SCEV *Res = Expr; 11125 int Last = Sizes.size() - 1; 11126 for (int i = Last; i >= 0; i--) { 11127 const SCEV *Q, *R; 11128 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11129 11130 LLVM_DEBUG({ 11131 dbgs() << "Res: " << *Res << "\n"; 11132 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11133 dbgs() << "Res divided by Sizes[i]:\n"; 11134 dbgs() << "Quotient: " << *Q << "\n"; 11135 dbgs() << "Remainder: " << *R << "\n"; 11136 }); 11137 11138 Res = Q; 11139 11140 // Do not record the last subscript corresponding to the size of elements in 11141 // the array. 11142 if (i == Last) { 11143 11144 // Bail out if the remainder is too complex. 11145 if (isa<SCEVAddRecExpr>(R)) { 11146 Subscripts.clear(); 11147 Sizes.clear(); 11148 return; 11149 } 11150 11151 continue; 11152 } 11153 11154 // Record the access function for the current subscript. 11155 Subscripts.push_back(R); 11156 } 11157 11158 // Also push in last position the remainder of the last division: it will be 11159 // the access function of the innermost dimension. 11160 Subscripts.push_back(Res); 11161 11162 std::reverse(Subscripts.begin(), Subscripts.end()); 11163 11164 LLVM_DEBUG({ 11165 dbgs() << "Subscripts:\n"; 11166 for (const SCEV *S : Subscripts) 11167 dbgs() << *S << "\n"; 11168 }); 11169 } 11170 11171 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11172 /// sizes of an array access. Returns the remainder of the delinearization that 11173 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11174 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11175 /// expressions in the stride and base of a SCEV corresponding to the 11176 /// computation of a GCD (greatest common divisor) of base and stride. When 11177 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11178 /// 11179 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11180 /// 11181 /// void foo(long n, long m, long o, double A[n][m][o]) { 11182 /// 11183 /// for (long i = 0; i < n; i++) 11184 /// for (long j = 0; j < m; j++) 11185 /// for (long k = 0; k < o; k++) 11186 /// A[i][j][k] = 1.0; 11187 /// } 11188 /// 11189 /// the delinearization input is the following AddRec SCEV: 11190 /// 11191 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11192 /// 11193 /// From this SCEV, we are able to say that the base offset of the access is %A 11194 /// because it appears as an offset that does not divide any of the strides in 11195 /// the loops: 11196 /// 11197 /// CHECK: Base offset: %A 11198 /// 11199 /// and then SCEV->delinearize determines the size of some of the dimensions of 11200 /// the array as these are the multiples by which the strides are happening: 11201 /// 11202 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11203 /// 11204 /// Note that the outermost dimension remains of UnknownSize because there are 11205 /// no strides that would help identifying the size of the last dimension: when 11206 /// the array has been statically allocated, one could compute the size of that 11207 /// dimension by dividing the overall size of the array by the size of the known 11208 /// dimensions: %m * %o * 8. 11209 /// 11210 /// Finally delinearize provides the access functions for the array reference 11211 /// that does correspond to A[i][j][k] of the above C testcase: 11212 /// 11213 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11214 /// 11215 /// The testcases are checking the output of a function pass: 11216 /// DelinearizationPass that walks through all loads and stores of a function 11217 /// asking for the SCEV of the memory access with respect to all enclosing 11218 /// loops, calling SCEV->delinearize on that and printing the results. 11219 void ScalarEvolution::delinearize(const SCEV *Expr, 11220 SmallVectorImpl<const SCEV *> &Subscripts, 11221 SmallVectorImpl<const SCEV *> &Sizes, 11222 const SCEV *ElementSize) { 11223 // First step: collect parametric terms. 11224 SmallVector<const SCEV *, 4> Terms; 11225 collectParametricTerms(Expr, Terms); 11226 11227 if (Terms.empty()) 11228 return; 11229 11230 // Second step: find subscript sizes. 11231 findArrayDimensions(Terms, Sizes, ElementSize); 11232 11233 if (Sizes.empty()) 11234 return; 11235 11236 // Third step: compute the access functions for each subscript. 11237 computeAccessFunctions(Expr, Subscripts, Sizes); 11238 11239 if (Subscripts.empty()) 11240 return; 11241 11242 LLVM_DEBUG({ 11243 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11244 dbgs() << "ArrayDecl[UnknownSize]"; 11245 for (const SCEV *S : Sizes) 11246 dbgs() << "[" << *S << "]"; 11247 11248 dbgs() << "\nArrayRef"; 11249 for (const SCEV *S : Subscripts) 11250 dbgs() << "[" << *S << "]"; 11251 dbgs() << "\n"; 11252 }); 11253 } 11254 11255 bool ScalarEvolution::getIndexExpressionsFromGEP( 11256 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 11257 SmallVectorImpl<int> &Sizes) { 11258 assert(Subscripts.empty() && Sizes.empty() && 11259 "Expected output lists to be empty on entry to this function."); 11260 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 11261 Type *Ty = GEP->getPointerOperandType(); 11262 bool DroppedFirstDim = false; 11263 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 11264 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 11265 if (i == 1) { 11266 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 11267 Ty = PtrTy->getElementType(); 11268 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 11269 Ty = ArrayTy->getElementType(); 11270 } else { 11271 Subscripts.clear(); 11272 Sizes.clear(); 11273 return false; 11274 } 11275 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 11276 if (Const->getValue()->isZero()) { 11277 DroppedFirstDim = true; 11278 continue; 11279 } 11280 Subscripts.push_back(Expr); 11281 continue; 11282 } 11283 11284 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 11285 if (!ArrayTy) { 11286 Subscripts.clear(); 11287 Sizes.clear(); 11288 return false; 11289 } 11290 11291 Subscripts.push_back(Expr); 11292 if (!(DroppedFirstDim && i == 2)) 11293 Sizes.push_back(ArrayTy->getNumElements()); 11294 11295 Ty = ArrayTy->getElementType(); 11296 } 11297 return !Subscripts.empty(); 11298 } 11299 11300 //===----------------------------------------------------------------------===// 11301 // SCEVCallbackVH Class Implementation 11302 //===----------------------------------------------------------------------===// 11303 11304 void ScalarEvolution::SCEVCallbackVH::deleted() { 11305 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11306 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11307 SE->ConstantEvolutionLoopExitValue.erase(PN); 11308 SE->eraseValueFromMap(getValPtr()); 11309 // this now dangles! 11310 } 11311 11312 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11313 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11314 11315 // Forget all the expressions associated with users of the old value, 11316 // so that future queries will recompute the expressions using the new 11317 // value. 11318 Value *Old = getValPtr(); 11319 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11320 SmallPtrSet<User *, 8> Visited; 11321 while (!Worklist.empty()) { 11322 User *U = Worklist.pop_back_val(); 11323 // Deleting the Old value will cause this to dangle. Postpone 11324 // that until everything else is done. 11325 if (U == Old) 11326 continue; 11327 if (!Visited.insert(U).second) 11328 continue; 11329 if (PHINode *PN = dyn_cast<PHINode>(U)) 11330 SE->ConstantEvolutionLoopExitValue.erase(PN); 11331 SE->eraseValueFromMap(U); 11332 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11333 } 11334 // Delete the Old value. 11335 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11336 SE->ConstantEvolutionLoopExitValue.erase(PN); 11337 SE->eraseValueFromMap(Old); 11338 // this now dangles! 11339 } 11340 11341 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11342 : CallbackVH(V), SE(se) {} 11343 11344 //===----------------------------------------------------------------------===// 11345 // ScalarEvolution Class Implementation 11346 //===----------------------------------------------------------------------===// 11347 11348 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11349 AssumptionCache &AC, DominatorTree &DT, 11350 LoopInfo &LI) 11351 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11352 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11353 LoopDispositions(64), BlockDispositions(64) { 11354 // To use guards for proving predicates, we need to scan every instruction in 11355 // relevant basic blocks, and not just terminators. Doing this is a waste of 11356 // time if the IR does not actually contain any calls to 11357 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11358 // 11359 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11360 // to _add_ guards to the module when there weren't any before, and wants 11361 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11362 // efficient in lieu of being smart in that rather obscure case. 11363 11364 auto *GuardDecl = F.getParent()->getFunction( 11365 Intrinsic::getName(Intrinsic::experimental_guard)); 11366 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11367 } 11368 11369 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11370 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11371 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11372 ValueExprMap(std::move(Arg.ValueExprMap)), 11373 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11374 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11375 PendingMerges(std::move(Arg.PendingMerges)), 11376 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11377 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11378 PredicatedBackedgeTakenCounts( 11379 std::move(Arg.PredicatedBackedgeTakenCounts)), 11380 ConstantEvolutionLoopExitValue( 11381 std::move(Arg.ConstantEvolutionLoopExitValue)), 11382 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11383 LoopDispositions(std::move(Arg.LoopDispositions)), 11384 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11385 BlockDispositions(std::move(Arg.BlockDispositions)), 11386 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11387 SignedRanges(std::move(Arg.SignedRanges)), 11388 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11389 UniquePreds(std::move(Arg.UniquePreds)), 11390 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11391 LoopUsers(std::move(Arg.LoopUsers)), 11392 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11393 FirstUnknown(Arg.FirstUnknown) { 11394 Arg.FirstUnknown = nullptr; 11395 } 11396 11397 ScalarEvolution::~ScalarEvolution() { 11398 // Iterate through all the SCEVUnknown instances and call their 11399 // destructors, so that they release their references to their values. 11400 for (SCEVUnknown *U = FirstUnknown; U;) { 11401 SCEVUnknown *Tmp = U; 11402 U = U->Next; 11403 Tmp->~SCEVUnknown(); 11404 } 11405 FirstUnknown = nullptr; 11406 11407 ExprValueMap.clear(); 11408 ValueExprMap.clear(); 11409 HasRecMap.clear(); 11410 11411 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11412 // that a loop had multiple computable exits. 11413 for (auto &BTCI : BackedgeTakenCounts) 11414 BTCI.second.clear(); 11415 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11416 BTCI.second.clear(); 11417 11418 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11419 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11420 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11421 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11422 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11423 } 11424 11425 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11426 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11427 } 11428 11429 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11430 const Loop *L) { 11431 // Print all inner loops first 11432 for (Loop *I : *L) 11433 PrintLoopInfo(OS, SE, I); 11434 11435 OS << "Loop "; 11436 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11437 OS << ": "; 11438 11439 SmallVector<BasicBlock *, 8> ExitingBlocks; 11440 L->getExitingBlocks(ExitingBlocks); 11441 if (ExitingBlocks.size() != 1) 11442 OS << "<multiple exits> "; 11443 11444 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 11445 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 11446 else 11447 OS << "Unpredictable backedge-taken count.\n"; 11448 11449 if (ExitingBlocks.size() > 1) 11450 for (BasicBlock *ExitingBlock : ExitingBlocks) { 11451 OS << " exit count for " << ExitingBlock->getName() << ": " 11452 << *SE->getExitCount(L, ExitingBlock) << "\n"; 11453 } 11454 11455 OS << "Loop "; 11456 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11457 OS << ": "; 11458 11459 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 11460 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 11461 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11462 OS << ", actual taken count either this or zero."; 11463 } else { 11464 OS << "Unpredictable max backedge-taken count. "; 11465 } 11466 11467 OS << "\n" 11468 "Loop "; 11469 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11470 OS << ": "; 11471 11472 SCEVUnionPredicate Pred; 11473 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11474 if (!isa<SCEVCouldNotCompute>(PBT)) { 11475 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11476 OS << " Predicates:\n"; 11477 Pred.print(OS, 4); 11478 } else { 11479 OS << "Unpredictable predicated backedge-taken count. "; 11480 } 11481 OS << "\n"; 11482 11483 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11484 OS << "Loop "; 11485 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11486 OS << ": "; 11487 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11488 } 11489 } 11490 11491 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 11492 switch (LD) { 11493 case ScalarEvolution::LoopVariant: 11494 return "Variant"; 11495 case ScalarEvolution::LoopInvariant: 11496 return "Invariant"; 11497 case ScalarEvolution::LoopComputable: 11498 return "Computable"; 11499 } 11500 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 11501 } 11502 11503 void ScalarEvolution::print(raw_ostream &OS) const { 11504 // ScalarEvolution's implementation of the print method is to print 11505 // out SCEV values of all instructions that are interesting. Doing 11506 // this potentially causes it to create new SCEV objects though, 11507 // which technically conflicts with the const qualifier. This isn't 11508 // observable from outside the class though, so casting away the 11509 // const isn't dangerous. 11510 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11511 11512 if (ClassifyExpressions) { 11513 OS << "Classifying expressions for: "; 11514 F.printAsOperand(OS, /*PrintType=*/false); 11515 OS << "\n"; 11516 for (Instruction &I : instructions(F)) 11517 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 11518 OS << I << '\n'; 11519 OS << " --> "; 11520 const SCEV *SV = SE.getSCEV(&I); 11521 SV->print(OS); 11522 if (!isa<SCEVCouldNotCompute>(SV)) { 11523 OS << " U: "; 11524 SE.getUnsignedRange(SV).print(OS); 11525 OS << " S: "; 11526 SE.getSignedRange(SV).print(OS); 11527 } 11528 11529 const Loop *L = LI.getLoopFor(I.getParent()); 11530 11531 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 11532 if (AtUse != SV) { 11533 OS << " --> "; 11534 AtUse->print(OS); 11535 if (!isa<SCEVCouldNotCompute>(AtUse)) { 11536 OS << " U: "; 11537 SE.getUnsignedRange(AtUse).print(OS); 11538 OS << " S: "; 11539 SE.getSignedRange(AtUse).print(OS); 11540 } 11541 } 11542 11543 if (L) { 11544 OS << "\t\t" "Exits: "; 11545 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 11546 if (!SE.isLoopInvariant(ExitValue, L)) { 11547 OS << "<<Unknown>>"; 11548 } else { 11549 OS << *ExitValue; 11550 } 11551 11552 bool First = true; 11553 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 11554 if (First) { 11555 OS << "\t\t" "LoopDispositions: { "; 11556 First = false; 11557 } else { 11558 OS << ", "; 11559 } 11560 11561 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11562 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 11563 } 11564 11565 for (auto *InnerL : depth_first(L)) { 11566 if (InnerL == L) 11567 continue; 11568 if (First) { 11569 OS << "\t\t" "LoopDispositions: { "; 11570 First = false; 11571 } else { 11572 OS << ", "; 11573 } 11574 11575 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11576 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 11577 } 11578 11579 OS << " }"; 11580 } 11581 11582 OS << "\n"; 11583 } 11584 } 11585 11586 OS << "Determining loop execution counts for: "; 11587 F.printAsOperand(OS, /*PrintType=*/false); 11588 OS << "\n"; 11589 for (Loop *I : LI) 11590 PrintLoopInfo(OS, &SE, I); 11591 } 11592 11593 ScalarEvolution::LoopDisposition 11594 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 11595 auto &Values = LoopDispositions[S]; 11596 for (auto &V : Values) { 11597 if (V.getPointer() == L) 11598 return V.getInt(); 11599 } 11600 Values.emplace_back(L, LoopVariant); 11601 LoopDisposition D = computeLoopDisposition(S, L); 11602 auto &Values2 = LoopDispositions[S]; 11603 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11604 if (V.getPointer() == L) { 11605 V.setInt(D); 11606 break; 11607 } 11608 } 11609 return D; 11610 } 11611 11612 ScalarEvolution::LoopDisposition 11613 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 11614 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11615 case scConstant: 11616 return LoopInvariant; 11617 case scTruncate: 11618 case scZeroExtend: 11619 case scSignExtend: 11620 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 11621 case scAddRecExpr: { 11622 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11623 11624 // If L is the addrec's loop, it's computable. 11625 if (AR->getLoop() == L) 11626 return LoopComputable; 11627 11628 // Add recurrences are never invariant in the function-body (null loop). 11629 if (!L) 11630 return LoopVariant; 11631 11632 // Everything that is not defined at loop entry is variant. 11633 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 11634 return LoopVariant; 11635 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 11636 " dominate the contained loop's header?"); 11637 11638 // This recurrence is invariant w.r.t. L if AR's loop contains L. 11639 if (AR->getLoop()->contains(L)) 11640 return LoopInvariant; 11641 11642 // This recurrence is variant w.r.t. L if any of its operands 11643 // are variant. 11644 for (auto *Op : AR->operands()) 11645 if (!isLoopInvariant(Op, L)) 11646 return LoopVariant; 11647 11648 // Otherwise it's loop-invariant. 11649 return LoopInvariant; 11650 } 11651 case scAddExpr: 11652 case scMulExpr: 11653 case scUMaxExpr: 11654 case scSMaxExpr: 11655 case scUMinExpr: 11656 case scSMinExpr: { 11657 bool HasVarying = false; 11658 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 11659 LoopDisposition D = getLoopDisposition(Op, L); 11660 if (D == LoopVariant) 11661 return LoopVariant; 11662 if (D == LoopComputable) 11663 HasVarying = true; 11664 } 11665 return HasVarying ? LoopComputable : LoopInvariant; 11666 } 11667 case scUDivExpr: { 11668 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11669 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 11670 if (LD == LoopVariant) 11671 return LoopVariant; 11672 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 11673 if (RD == LoopVariant) 11674 return LoopVariant; 11675 return (LD == LoopInvariant && RD == LoopInvariant) ? 11676 LoopInvariant : LoopComputable; 11677 } 11678 case scUnknown: 11679 // All non-instruction values are loop invariant. All instructions are loop 11680 // invariant if they are not contained in the specified loop. 11681 // Instructions are never considered invariant in the function body 11682 // (null loop) because they are defined within the "loop". 11683 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 11684 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 11685 return LoopInvariant; 11686 case scCouldNotCompute: 11687 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11688 } 11689 llvm_unreachable("Unknown SCEV kind!"); 11690 } 11691 11692 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 11693 return getLoopDisposition(S, L) == LoopInvariant; 11694 } 11695 11696 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 11697 return getLoopDisposition(S, L) == LoopComputable; 11698 } 11699 11700 ScalarEvolution::BlockDisposition 11701 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11702 auto &Values = BlockDispositions[S]; 11703 for (auto &V : Values) { 11704 if (V.getPointer() == BB) 11705 return V.getInt(); 11706 } 11707 Values.emplace_back(BB, DoesNotDominateBlock); 11708 BlockDisposition D = computeBlockDisposition(S, BB); 11709 auto &Values2 = BlockDispositions[S]; 11710 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11711 if (V.getPointer() == BB) { 11712 V.setInt(D); 11713 break; 11714 } 11715 } 11716 return D; 11717 } 11718 11719 ScalarEvolution::BlockDisposition 11720 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11721 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11722 case scConstant: 11723 return ProperlyDominatesBlock; 11724 case scTruncate: 11725 case scZeroExtend: 11726 case scSignExtend: 11727 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11728 case scAddRecExpr: { 11729 // This uses a "dominates" query instead of "properly dominates" query 11730 // to test for proper dominance too, because the instruction which 11731 // produces the addrec's value is a PHI, and a PHI effectively properly 11732 // dominates its entire containing block. 11733 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11734 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11735 return DoesNotDominateBlock; 11736 11737 // Fall through into SCEVNAryExpr handling. 11738 LLVM_FALLTHROUGH; 11739 } 11740 case scAddExpr: 11741 case scMulExpr: 11742 case scUMaxExpr: 11743 case scSMaxExpr: 11744 case scUMinExpr: 11745 case scSMinExpr: { 11746 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11747 bool Proper = true; 11748 for (const SCEV *NAryOp : NAry->operands()) { 11749 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11750 if (D == DoesNotDominateBlock) 11751 return DoesNotDominateBlock; 11752 if (D == DominatesBlock) 11753 Proper = false; 11754 } 11755 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11756 } 11757 case scUDivExpr: { 11758 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11759 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11760 BlockDisposition LD = getBlockDisposition(LHS, BB); 11761 if (LD == DoesNotDominateBlock) 11762 return DoesNotDominateBlock; 11763 BlockDisposition RD = getBlockDisposition(RHS, BB); 11764 if (RD == DoesNotDominateBlock) 11765 return DoesNotDominateBlock; 11766 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 11767 ProperlyDominatesBlock : DominatesBlock; 11768 } 11769 case scUnknown: 11770 if (Instruction *I = 11771 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 11772 if (I->getParent() == BB) 11773 return DominatesBlock; 11774 if (DT.properlyDominates(I->getParent(), BB)) 11775 return ProperlyDominatesBlock; 11776 return DoesNotDominateBlock; 11777 } 11778 return ProperlyDominatesBlock; 11779 case scCouldNotCompute: 11780 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11781 } 11782 llvm_unreachable("Unknown SCEV kind!"); 11783 } 11784 11785 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 11786 return getBlockDisposition(S, BB) >= DominatesBlock; 11787 } 11788 11789 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 11790 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 11791 } 11792 11793 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 11794 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 11795 } 11796 11797 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 11798 auto IsS = [&](const SCEV *X) { return S == X; }; 11799 auto ContainsS = [&](const SCEV *X) { 11800 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 11801 }; 11802 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 11803 } 11804 11805 void 11806 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 11807 ValuesAtScopes.erase(S); 11808 LoopDispositions.erase(S); 11809 BlockDispositions.erase(S); 11810 UnsignedRanges.erase(S); 11811 SignedRanges.erase(S); 11812 ExprValueMap.erase(S); 11813 HasRecMap.erase(S); 11814 MinTrailingZerosCache.erase(S); 11815 11816 for (auto I = PredicatedSCEVRewrites.begin(); 11817 I != PredicatedSCEVRewrites.end();) { 11818 std::pair<const SCEV *, const Loop *> Entry = I->first; 11819 if (Entry.first == S) 11820 PredicatedSCEVRewrites.erase(I++); 11821 else 11822 ++I; 11823 } 11824 11825 auto RemoveSCEVFromBackedgeMap = 11826 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 11827 for (auto I = Map.begin(), E = Map.end(); I != E;) { 11828 BackedgeTakenInfo &BEInfo = I->second; 11829 if (BEInfo.hasOperand(S, this)) { 11830 BEInfo.clear(); 11831 Map.erase(I++); 11832 } else 11833 ++I; 11834 } 11835 }; 11836 11837 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 11838 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 11839 } 11840 11841 void 11842 ScalarEvolution::getUsedLoops(const SCEV *S, 11843 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 11844 struct FindUsedLoops { 11845 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 11846 : LoopsUsed(LoopsUsed) {} 11847 SmallPtrSetImpl<const Loop *> &LoopsUsed; 11848 bool follow(const SCEV *S) { 11849 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 11850 LoopsUsed.insert(AR->getLoop()); 11851 return true; 11852 } 11853 11854 bool isDone() const { return false; } 11855 }; 11856 11857 FindUsedLoops F(LoopsUsed); 11858 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 11859 } 11860 11861 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 11862 SmallPtrSet<const Loop *, 8> LoopsUsed; 11863 getUsedLoops(S, LoopsUsed); 11864 for (auto *L : LoopsUsed) 11865 LoopUsers[L].push_back(S); 11866 } 11867 11868 void ScalarEvolution::verify() const { 11869 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11870 ScalarEvolution SE2(F, TLI, AC, DT, LI); 11871 11872 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 11873 11874 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 11875 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 11876 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 11877 11878 const SCEV *visitConstant(const SCEVConstant *Constant) { 11879 return SE.getConstant(Constant->getAPInt()); 11880 } 11881 11882 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11883 return SE.getUnknown(Expr->getValue()); 11884 } 11885 11886 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 11887 return SE.getCouldNotCompute(); 11888 } 11889 }; 11890 11891 SCEVMapper SCM(SE2); 11892 11893 while (!LoopStack.empty()) { 11894 auto *L = LoopStack.pop_back_val(); 11895 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 11896 11897 auto *CurBECount = SCM.visit( 11898 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 11899 auto *NewBECount = SE2.getBackedgeTakenCount(L); 11900 11901 if (CurBECount == SE2.getCouldNotCompute() || 11902 NewBECount == SE2.getCouldNotCompute()) { 11903 // NB! This situation is legal, but is very suspicious -- whatever pass 11904 // change the loop to make a trip count go from could not compute to 11905 // computable or vice-versa *should have* invalidated SCEV. However, we 11906 // choose not to assert here (for now) since we don't want false 11907 // positives. 11908 continue; 11909 } 11910 11911 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 11912 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 11913 // not propagate undef aggressively). This means we can (and do) fail 11914 // verification in cases where a transform makes the trip count of a loop 11915 // go from "undef" to "undef+1" (say). The transform is fine, since in 11916 // both cases the loop iterates "undef" times, but SCEV thinks we 11917 // increased the trip count of the loop by 1 incorrectly. 11918 continue; 11919 } 11920 11921 if (SE.getTypeSizeInBits(CurBECount->getType()) > 11922 SE.getTypeSizeInBits(NewBECount->getType())) 11923 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 11924 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 11925 SE.getTypeSizeInBits(NewBECount->getType())) 11926 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 11927 11928 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 11929 11930 // Unless VerifySCEVStrict is set, we only compare constant deltas. 11931 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 11932 dbgs() << "Trip Count for " << *L << " Changed!\n"; 11933 dbgs() << "Old: " << *CurBECount << "\n"; 11934 dbgs() << "New: " << *NewBECount << "\n"; 11935 dbgs() << "Delta: " << *Delta << "\n"; 11936 std::abort(); 11937 } 11938 } 11939 } 11940 11941 bool ScalarEvolution::invalidate( 11942 Function &F, const PreservedAnalyses &PA, 11943 FunctionAnalysisManager::Invalidator &Inv) { 11944 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 11945 // of its dependencies is invalidated. 11946 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 11947 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 11948 Inv.invalidate<AssumptionAnalysis>(F, PA) || 11949 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 11950 Inv.invalidate<LoopAnalysis>(F, PA); 11951 } 11952 11953 AnalysisKey ScalarEvolutionAnalysis::Key; 11954 11955 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 11956 FunctionAnalysisManager &AM) { 11957 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 11958 AM.getResult<AssumptionAnalysis>(F), 11959 AM.getResult<DominatorTreeAnalysis>(F), 11960 AM.getResult<LoopAnalysis>(F)); 11961 } 11962 11963 PreservedAnalyses 11964 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 11965 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 11966 return PreservedAnalyses::all(); 11967 } 11968 11969 PreservedAnalyses 11970 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 11971 // For compatibility with opt's -analyze feature under legacy pass manager 11972 // which was not ported to NPM. This keeps tests using 11973 // update_analyze_test_checks.py working. 11974 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 11975 << F.getName() << "':\n"; 11976 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 11977 return PreservedAnalyses::all(); 11978 } 11979 11980 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 11981 "Scalar Evolution Analysis", false, true) 11982 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11983 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 11984 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 11985 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 11986 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 11987 "Scalar Evolution Analysis", false, true) 11988 11989 char ScalarEvolutionWrapperPass::ID = 0; 11990 11991 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 11992 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 11993 } 11994 11995 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 11996 SE.reset(new ScalarEvolution( 11997 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 11998 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 11999 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12000 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12001 return false; 12002 } 12003 12004 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12005 12006 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12007 SE->print(OS); 12008 } 12009 12010 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12011 if (!VerifySCEV) 12012 return; 12013 12014 SE->verify(); 12015 } 12016 12017 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12018 AU.setPreservesAll(); 12019 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12020 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12021 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12022 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12023 } 12024 12025 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12026 const SCEV *RHS) { 12027 FoldingSetNodeID ID; 12028 assert(LHS->getType() == RHS->getType() && 12029 "Type mismatch between LHS and RHS"); 12030 // Unique this node based on the arguments 12031 ID.AddInteger(SCEVPredicate::P_Equal); 12032 ID.AddPointer(LHS); 12033 ID.AddPointer(RHS); 12034 void *IP = nullptr; 12035 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12036 return S; 12037 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12038 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12039 UniquePreds.InsertNode(Eq, IP); 12040 return Eq; 12041 } 12042 12043 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12044 const SCEVAddRecExpr *AR, 12045 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12046 FoldingSetNodeID ID; 12047 // Unique this node based on the arguments 12048 ID.AddInteger(SCEVPredicate::P_Wrap); 12049 ID.AddPointer(AR); 12050 ID.AddInteger(AddedFlags); 12051 void *IP = nullptr; 12052 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12053 return S; 12054 auto *OF = new (SCEVAllocator) 12055 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12056 UniquePreds.InsertNode(OF, IP); 12057 return OF; 12058 } 12059 12060 namespace { 12061 12062 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12063 public: 12064 12065 /// Rewrites \p S in the context of a loop L and the SCEV predication 12066 /// infrastructure. 12067 /// 12068 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12069 /// equivalences present in \p Pred. 12070 /// 12071 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12072 /// \p NewPreds such that the result will be an AddRecExpr. 12073 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12074 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12075 SCEVUnionPredicate *Pred) { 12076 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12077 return Rewriter.visit(S); 12078 } 12079 12080 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12081 if (Pred) { 12082 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12083 for (auto *Pred : ExprPreds) 12084 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12085 if (IPred->getLHS() == Expr) 12086 return IPred->getRHS(); 12087 } 12088 return convertToAddRecWithPreds(Expr); 12089 } 12090 12091 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12092 const SCEV *Operand = visit(Expr->getOperand()); 12093 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12094 if (AR && AR->getLoop() == L && AR->isAffine()) { 12095 // This couldn't be folded because the operand didn't have the nuw 12096 // flag. Add the nusw flag as an assumption that we could make. 12097 const SCEV *Step = AR->getStepRecurrence(SE); 12098 Type *Ty = Expr->getType(); 12099 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12100 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12101 SE.getSignExtendExpr(Step, Ty), L, 12102 AR->getNoWrapFlags()); 12103 } 12104 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12105 } 12106 12107 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12108 const SCEV *Operand = visit(Expr->getOperand()); 12109 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12110 if (AR && AR->getLoop() == L && AR->isAffine()) { 12111 // This couldn't be folded because the operand didn't have the nsw 12112 // flag. Add the nssw flag as an assumption that we could make. 12113 const SCEV *Step = AR->getStepRecurrence(SE); 12114 Type *Ty = Expr->getType(); 12115 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12116 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12117 SE.getSignExtendExpr(Step, Ty), L, 12118 AR->getNoWrapFlags()); 12119 } 12120 return SE.getSignExtendExpr(Operand, Expr->getType()); 12121 } 12122 12123 private: 12124 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12125 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12126 SCEVUnionPredicate *Pred) 12127 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12128 12129 bool addOverflowAssumption(const SCEVPredicate *P) { 12130 if (!NewPreds) { 12131 // Check if we've already made this assumption. 12132 return Pred && Pred->implies(P); 12133 } 12134 NewPreds->insert(P); 12135 return true; 12136 } 12137 12138 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12139 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12140 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12141 return addOverflowAssumption(A); 12142 } 12143 12144 // If \p Expr represents a PHINode, we try to see if it can be represented 12145 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12146 // to add this predicate as a runtime overflow check, we return the AddRec. 12147 // If \p Expr does not meet these conditions (is not a PHI node, or we 12148 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12149 // return \p Expr. 12150 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12151 if (!isa<PHINode>(Expr->getValue())) 12152 return Expr; 12153 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12154 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12155 if (!PredicatedRewrite) 12156 return Expr; 12157 for (auto *P : PredicatedRewrite->second){ 12158 // Wrap predicates from outer loops are not supported. 12159 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12160 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12161 if (L != AR->getLoop()) 12162 return Expr; 12163 } 12164 if (!addOverflowAssumption(P)) 12165 return Expr; 12166 } 12167 return PredicatedRewrite->first; 12168 } 12169 12170 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12171 SCEVUnionPredicate *Pred; 12172 const Loop *L; 12173 }; 12174 12175 } // end anonymous namespace 12176 12177 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12178 SCEVUnionPredicate &Preds) { 12179 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12180 } 12181 12182 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12183 const SCEV *S, const Loop *L, 12184 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12185 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12186 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12187 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12188 12189 if (!AddRec) 12190 return nullptr; 12191 12192 // Since the transformation was successful, we can now transfer the SCEV 12193 // predicates. 12194 for (auto *P : TransformPreds) 12195 Preds.insert(P); 12196 12197 return AddRec; 12198 } 12199 12200 /// SCEV predicates 12201 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12202 SCEVPredicateKind Kind) 12203 : FastID(ID), Kind(Kind) {} 12204 12205 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12206 const SCEV *LHS, const SCEV *RHS) 12207 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12208 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12209 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12210 } 12211 12212 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12213 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12214 12215 if (!Op) 12216 return false; 12217 12218 return Op->LHS == LHS && Op->RHS == RHS; 12219 } 12220 12221 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12222 12223 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12224 12225 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12226 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12227 } 12228 12229 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12230 const SCEVAddRecExpr *AR, 12231 IncrementWrapFlags Flags) 12232 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12233 12234 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12235 12236 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12237 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12238 12239 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12240 } 12241 12242 bool SCEVWrapPredicate::isAlwaysTrue() const { 12243 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12244 IncrementWrapFlags IFlags = Flags; 12245 12246 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12247 IFlags = clearFlags(IFlags, IncrementNSSW); 12248 12249 return IFlags == IncrementAnyWrap; 12250 } 12251 12252 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12253 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12254 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12255 OS << "<nusw>"; 12256 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12257 OS << "<nssw>"; 12258 OS << "\n"; 12259 } 12260 12261 SCEVWrapPredicate::IncrementWrapFlags 12262 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12263 ScalarEvolution &SE) { 12264 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12265 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12266 12267 // We can safely transfer the NSW flag as NSSW. 12268 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12269 ImpliedFlags = IncrementNSSW; 12270 12271 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12272 // If the increment is positive, the SCEV NUW flag will also imply the 12273 // WrapPredicate NUSW flag. 12274 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12275 if (Step->getValue()->getValue().isNonNegative()) 12276 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12277 } 12278 12279 return ImpliedFlags; 12280 } 12281 12282 /// Union predicates don't get cached so create a dummy set ID for it. 12283 SCEVUnionPredicate::SCEVUnionPredicate() 12284 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12285 12286 bool SCEVUnionPredicate::isAlwaysTrue() const { 12287 return all_of(Preds, 12288 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12289 } 12290 12291 ArrayRef<const SCEVPredicate *> 12292 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12293 auto I = SCEVToPreds.find(Expr); 12294 if (I == SCEVToPreds.end()) 12295 return ArrayRef<const SCEVPredicate *>(); 12296 return I->second; 12297 } 12298 12299 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12300 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12301 return all_of(Set->Preds, 12302 [this](const SCEVPredicate *I) { return this->implies(I); }); 12303 12304 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12305 if (ScevPredsIt == SCEVToPreds.end()) 12306 return false; 12307 auto &SCEVPreds = ScevPredsIt->second; 12308 12309 return any_of(SCEVPreds, 12310 [N](const SCEVPredicate *I) { return I->implies(N); }); 12311 } 12312 12313 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12314 12315 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12316 for (auto Pred : Preds) 12317 Pred->print(OS, Depth); 12318 } 12319 12320 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12321 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12322 for (auto Pred : Set->Preds) 12323 add(Pred); 12324 return; 12325 } 12326 12327 if (implies(N)) 12328 return; 12329 12330 const SCEV *Key = N->getExpr(); 12331 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12332 " associated expression!"); 12333 12334 SCEVToPreds[Key].push_back(N); 12335 Preds.push_back(N); 12336 } 12337 12338 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12339 Loop &L) 12340 : SE(SE), L(L) {} 12341 12342 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12343 const SCEV *Expr = SE.getSCEV(V); 12344 RewriteEntry &Entry = RewriteMap[Expr]; 12345 12346 // If we already have an entry and the version matches, return it. 12347 if (Entry.second && Generation == Entry.first) 12348 return Entry.second; 12349 12350 // We found an entry but it's stale. Rewrite the stale entry 12351 // according to the current predicate. 12352 if (Entry.second) 12353 Expr = Entry.second; 12354 12355 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12356 Entry = {Generation, NewSCEV}; 12357 12358 return NewSCEV; 12359 } 12360 12361 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12362 if (!BackedgeCount) { 12363 SCEVUnionPredicate BackedgePred; 12364 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12365 addPredicate(BackedgePred); 12366 } 12367 return BackedgeCount; 12368 } 12369 12370 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12371 if (Preds.implies(&Pred)) 12372 return; 12373 Preds.add(&Pred); 12374 updateGeneration(); 12375 } 12376 12377 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12378 return Preds; 12379 } 12380 12381 void PredicatedScalarEvolution::updateGeneration() { 12382 // If the generation number wrapped recompute everything. 12383 if (++Generation == 0) { 12384 for (auto &II : RewriteMap) { 12385 const SCEV *Rewritten = II.second.second; 12386 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12387 } 12388 } 12389 } 12390 12391 void PredicatedScalarEvolution::setNoOverflow( 12392 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12393 const SCEV *Expr = getSCEV(V); 12394 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12395 12396 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12397 12398 // Clear the statically implied flags. 12399 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12400 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12401 12402 auto II = FlagsMap.insert({V, Flags}); 12403 if (!II.second) 12404 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12405 } 12406 12407 bool PredicatedScalarEvolution::hasNoOverflow( 12408 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12409 const SCEV *Expr = getSCEV(V); 12410 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12411 12412 Flags = SCEVWrapPredicate::clearFlags( 12413 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 12414 12415 auto II = FlagsMap.find(V); 12416 12417 if (II != FlagsMap.end()) 12418 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 12419 12420 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12421 } 12422 12423 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12424 const SCEV *Expr = this->getSCEV(V); 12425 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12426 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12427 12428 if (!New) 12429 return nullptr; 12430 12431 for (auto *P : NewPreds) 12432 Preds.add(P); 12433 12434 updateGeneration(); 12435 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12436 return New; 12437 } 12438 12439 PredicatedScalarEvolution::PredicatedScalarEvolution( 12440 const PredicatedScalarEvolution &Init) 12441 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12442 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12443 for (auto I : Init.FlagsMap) 12444 FlagsMap.insert(I); 12445 } 12446 12447 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12448 // For each block. 12449 for (auto *BB : L.getBlocks()) 12450 for (auto &I : *BB) { 12451 if (!SE.isSCEVable(I.getType())) 12452 continue; 12453 12454 auto *Expr = SE.getSCEV(&I); 12455 auto II = RewriteMap.find(Expr); 12456 12457 if (II == RewriteMap.end()) 12458 continue; 12459 12460 // Don't print things that are not interesting. 12461 if (II->second.second == Expr) 12462 continue; 12463 12464 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12465 OS.indent(Depth + 2) << *Expr << "\n"; 12466 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12467 } 12468 } 12469 12470 // Match the mathematical pattern A - (A / B) * B, where A and B can be 12471 // arbitrary expressions. 12472 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 12473 // 4, A / B becomes X / 8). 12474 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 12475 const SCEV *&RHS) { 12476 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 12477 if (Add == nullptr || Add->getNumOperands() != 2) 12478 return false; 12479 12480 const SCEV *A = Add->getOperand(1); 12481 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 12482 12483 if (Mul == nullptr) 12484 return false; 12485 12486 const auto MatchURemWithDivisor = [&](const SCEV *B) { 12487 // (SomeExpr + (-(SomeExpr / B) * B)). 12488 if (Expr == getURemExpr(A, B)) { 12489 LHS = A; 12490 RHS = B; 12491 return true; 12492 } 12493 return false; 12494 }; 12495 12496 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 12497 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 12498 return MatchURemWithDivisor(Mul->getOperand(1)) || 12499 MatchURemWithDivisor(Mul->getOperand(2)); 12500 12501 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 12502 if (Mul->getNumOperands() == 2) 12503 return MatchURemWithDivisor(Mul->getOperand(1)) || 12504 MatchURemWithDivisor(Mul->getOperand(0)) || 12505 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 12506 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 12507 return false; 12508 } 12509 12510 const SCEV* ScalarEvolution::computeMaxBackedgeTakenCount(const Loop *L) { 12511 SmallVector<BasicBlock*, 16> ExitingBlocks; 12512 L->getExitingBlocks(ExitingBlocks); 12513 12514 // Form an expression for the maximum exit count possible for this loop. We 12515 // merge the max and exact information to approximate a version of 12516 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 12517 SmallVector<const SCEV*, 4> ExitCounts; 12518 for (BasicBlock *ExitingBB : ExitingBlocks) { 12519 const SCEV *ExitCount = getExitCount(L, ExitingBB); 12520 if (isa<SCEVCouldNotCompute>(ExitCount)) 12521 ExitCount = getExitCount(L, ExitingBB, 12522 ScalarEvolution::ConstantMaximum); 12523 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 12524 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 12525 "We should only have known counts for exiting blocks that " 12526 "dominate latch!"); 12527 ExitCounts.push_back(ExitCount); 12528 } 12529 } 12530 if (ExitCounts.empty()) 12531 return getCouldNotCompute(); 12532 return getUMinFromMismatchedTypes(ExitCounts); 12533 } 12534