1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/InstructionSimplify.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/Assembly/Writer.h" 76 #include "llvm/Target/TargetData.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/ConstantRange.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GetElementPtrTypeIterator.h" 82 #include "llvm/Support/InstIterator.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/ADT/STLExtras.h" 87 #include "llvm/ADT/SmallPtrSet.h" 88 #include <algorithm> 89 using namespace llvm; 90 91 STATISTIC(NumArrayLenItCounts, 92 "Number of trip counts computed with array length"); 93 STATISTIC(NumTripCountsComputed, 94 "Number of loops with predictable loop counts"); 95 STATISTIC(NumTripCountsNotComputed, 96 "Number of loops without predictable loop counts"); 97 STATISTIC(NumBruteForceTripCountsComputed, 98 "Number of loops with trip counts computed by force"); 99 100 static cl::opt<unsigned> 101 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 102 cl::desc("Maximum number of iterations SCEV will " 103 "symbolically execute a constant " 104 "derived loop"), 105 cl::init(100)); 106 107 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 108 "Scalar Evolution Analysis", false, true) 109 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 110 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 111 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 112 "Scalar Evolution Analysis", false, true) 113 char ScalarEvolution::ID = 0; 114 115 //===----------------------------------------------------------------------===// 116 // SCEV class definitions 117 //===----------------------------------------------------------------------===// 118 119 //===----------------------------------------------------------------------===// 120 // Implementation of the SCEV class. 121 // 122 123 void SCEV::dump() const { 124 print(dbgs()); 125 dbgs() << '\n'; 126 } 127 128 void SCEV::print(raw_ostream &OS) const { 129 switch (getSCEVType()) { 130 case scConstant: 131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 132 return; 133 case scTruncate: { 134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 135 const SCEV *Op = Trunc->getOperand(); 136 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 137 << *Trunc->getType() << ")"; 138 return; 139 } 140 case scZeroExtend: { 141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 142 const SCEV *Op = ZExt->getOperand(); 143 OS << "(zext " << *Op->getType() << " " << *Op << " to " 144 << *ZExt->getType() << ")"; 145 return; 146 } 147 case scSignExtend: { 148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 149 const SCEV *Op = SExt->getOperand(); 150 OS << "(sext " << *Op->getType() << " " << *Op << " to " 151 << *SExt->getType() << ")"; 152 return; 153 } 154 case scAddRecExpr: { 155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 156 OS << "{" << *AR->getOperand(0); 157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 158 OS << ",+," << *AR->getOperand(i); 159 OS << "}<"; 160 if (AR->getNoWrapFlags(FlagNUW)) 161 OS << "nuw><"; 162 if (AR->getNoWrapFlags(FlagNSW)) 163 OS << "nsw><"; 164 if (AR->getNoWrapFlags(FlagNW) && 165 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 166 OS << "nw><"; 167 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 168 OS << ">"; 169 return; 170 } 171 case scAddExpr: 172 case scMulExpr: 173 case scUMaxExpr: 174 case scSMaxExpr: { 175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 176 const char *OpStr = 0; 177 switch (NAry->getSCEVType()) { 178 case scAddExpr: OpStr = " + "; break; 179 case scMulExpr: OpStr = " * "; break; 180 case scUMaxExpr: OpStr = " umax "; break; 181 case scSMaxExpr: OpStr = " smax "; break; 182 } 183 OS << "("; 184 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 185 I != E; ++I) { 186 OS << **I; 187 if (llvm::next(I) != E) 188 OS << OpStr; 189 } 190 OS << ")"; 191 return; 192 } 193 case scUDivExpr: { 194 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 195 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 196 return; 197 } 198 case scUnknown: { 199 const SCEVUnknown *U = cast<SCEVUnknown>(this); 200 Type *AllocTy; 201 if (U->isSizeOf(AllocTy)) { 202 OS << "sizeof(" << *AllocTy << ")"; 203 return; 204 } 205 if (U->isAlignOf(AllocTy)) { 206 OS << "alignof(" << *AllocTy << ")"; 207 return; 208 } 209 210 Type *CTy; 211 Constant *FieldNo; 212 if (U->isOffsetOf(CTy, FieldNo)) { 213 OS << "offsetof(" << *CTy << ", "; 214 WriteAsOperand(OS, FieldNo, false); 215 OS << ")"; 216 return; 217 } 218 219 // Otherwise just print it normally. 220 WriteAsOperand(OS, U->getValue(), false); 221 return; 222 } 223 case scCouldNotCompute: 224 OS << "***COULDNOTCOMPUTE***"; 225 return; 226 default: break; 227 } 228 llvm_unreachable("Unknown SCEV kind!"); 229 } 230 231 Type *SCEV::getType() const { 232 switch (getSCEVType()) { 233 case scConstant: 234 return cast<SCEVConstant>(this)->getType(); 235 case scTruncate: 236 case scZeroExtend: 237 case scSignExtend: 238 return cast<SCEVCastExpr>(this)->getType(); 239 case scAddRecExpr: 240 case scMulExpr: 241 case scUMaxExpr: 242 case scSMaxExpr: 243 return cast<SCEVNAryExpr>(this)->getType(); 244 case scAddExpr: 245 return cast<SCEVAddExpr>(this)->getType(); 246 case scUDivExpr: 247 return cast<SCEVUDivExpr>(this)->getType(); 248 case scUnknown: 249 return cast<SCEVUnknown>(this)->getType(); 250 case scCouldNotCompute: 251 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 252 return 0; 253 default: break; 254 } 255 llvm_unreachable("Unknown SCEV kind!"); 256 return 0; 257 } 258 259 bool SCEV::isZero() const { 260 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 261 return SC->getValue()->isZero(); 262 return false; 263 } 264 265 bool SCEV::isOne() const { 266 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 267 return SC->getValue()->isOne(); 268 return false; 269 } 270 271 bool SCEV::isAllOnesValue() const { 272 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 273 return SC->getValue()->isAllOnesValue(); 274 return false; 275 } 276 277 SCEVCouldNotCompute::SCEVCouldNotCompute() : 278 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 279 280 bool SCEVCouldNotCompute::classof(const SCEV *S) { 281 return S->getSCEVType() == scCouldNotCompute; 282 } 283 284 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 285 FoldingSetNodeID ID; 286 ID.AddInteger(scConstant); 287 ID.AddPointer(V); 288 void *IP = 0; 289 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 290 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 291 UniqueSCEVs.InsertNode(S, IP); 292 return S; 293 } 294 295 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 296 return getConstant(ConstantInt::get(getContext(), Val)); 297 } 298 299 const SCEV * 300 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 301 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 302 return getConstant(ConstantInt::get(ITy, V, isSigned)); 303 } 304 305 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 306 unsigned SCEVTy, const SCEV *op, Type *ty) 307 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 308 309 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 310 const SCEV *op, Type *ty) 311 : SCEVCastExpr(ID, scTruncate, op, ty) { 312 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 313 (Ty->isIntegerTy() || Ty->isPointerTy()) && 314 "Cannot truncate non-integer value!"); 315 } 316 317 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 318 const SCEV *op, Type *ty) 319 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 320 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 321 (Ty->isIntegerTy() || Ty->isPointerTy()) && 322 "Cannot zero extend non-integer value!"); 323 } 324 325 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 326 const SCEV *op, Type *ty) 327 : SCEVCastExpr(ID, scSignExtend, op, ty) { 328 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 329 (Ty->isIntegerTy() || Ty->isPointerTy()) && 330 "Cannot sign extend non-integer value!"); 331 } 332 333 void SCEVUnknown::deleted() { 334 // Clear this SCEVUnknown from various maps. 335 SE->forgetMemoizedResults(this); 336 337 // Remove this SCEVUnknown from the uniquing map. 338 SE->UniqueSCEVs.RemoveNode(this); 339 340 // Release the value. 341 setValPtr(0); 342 } 343 344 void SCEVUnknown::allUsesReplacedWith(Value *New) { 345 // Clear this SCEVUnknown from various maps. 346 SE->forgetMemoizedResults(this); 347 348 // Remove this SCEVUnknown from the uniquing map. 349 SE->UniqueSCEVs.RemoveNode(this); 350 351 // Update this SCEVUnknown to point to the new value. This is needed 352 // because there may still be outstanding SCEVs which still point to 353 // this SCEVUnknown. 354 setValPtr(New); 355 } 356 357 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 358 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 359 if (VCE->getOpcode() == Instruction::PtrToInt) 360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 361 if (CE->getOpcode() == Instruction::GetElementPtr && 362 CE->getOperand(0)->isNullValue() && 363 CE->getNumOperands() == 2) 364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 365 if (CI->isOne()) { 366 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 367 ->getElementType(); 368 return true; 369 } 370 371 return false; 372 } 373 374 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 375 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 376 if (VCE->getOpcode() == Instruction::PtrToInt) 377 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 378 if (CE->getOpcode() == Instruction::GetElementPtr && 379 CE->getOperand(0)->isNullValue()) { 380 Type *Ty = 381 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 382 if (StructType *STy = dyn_cast<StructType>(Ty)) 383 if (!STy->isPacked() && 384 CE->getNumOperands() == 3 && 385 CE->getOperand(1)->isNullValue()) { 386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 387 if (CI->isOne() && 388 STy->getNumElements() == 2 && 389 STy->getElementType(0)->isIntegerTy(1)) { 390 AllocTy = STy->getElementType(1); 391 return true; 392 } 393 } 394 } 395 396 return false; 397 } 398 399 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 401 if (VCE->getOpcode() == Instruction::PtrToInt) 402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 403 if (CE->getOpcode() == Instruction::GetElementPtr && 404 CE->getNumOperands() == 3 && 405 CE->getOperand(0)->isNullValue() && 406 CE->getOperand(1)->isNullValue()) { 407 Type *Ty = 408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 409 // Ignore vector types here so that ScalarEvolutionExpander doesn't 410 // emit getelementptrs that index into vectors. 411 if (Ty->isStructTy() || Ty->isArrayTy()) { 412 CTy = Ty; 413 FieldNo = CE->getOperand(2); 414 return true; 415 } 416 } 417 418 return false; 419 } 420 421 //===----------------------------------------------------------------------===// 422 // SCEV Utilities 423 //===----------------------------------------------------------------------===// 424 425 namespace { 426 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 427 /// than the complexity of the RHS. This comparator is used to canonicalize 428 /// expressions. 429 class SCEVComplexityCompare { 430 const LoopInfo *const LI; 431 public: 432 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 433 434 // Return true or false if LHS is less than, or at least RHS, respectively. 435 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 436 return compare(LHS, RHS) < 0; 437 } 438 439 // Return negative, zero, or positive, if LHS is less than, equal to, or 440 // greater than RHS, respectively. A three-way result allows recursive 441 // comparisons to be more efficient. 442 int compare(const SCEV *LHS, const SCEV *RHS) const { 443 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 444 if (LHS == RHS) 445 return 0; 446 447 // Primarily, sort the SCEVs by their getSCEVType(). 448 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 449 if (LType != RType) 450 return (int)LType - (int)RType; 451 452 // Aside from the getSCEVType() ordering, the particular ordering 453 // isn't very important except that it's beneficial to be consistent, 454 // so that (a + b) and (b + a) don't end up as different expressions. 455 switch (LType) { 456 case scUnknown: { 457 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 458 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 459 460 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 461 // not as complete as it could be. 462 const Value *LV = LU->getValue(), *RV = RU->getValue(); 463 464 // Order pointer values after integer values. This helps SCEVExpander 465 // form GEPs. 466 bool LIsPointer = LV->getType()->isPointerTy(), 467 RIsPointer = RV->getType()->isPointerTy(); 468 if (LIsPointer != RIsPointer) 469 return (int)LIsPointer - (int)RIsPointer; 470 471 // Compare getValueID values. 472 unsigned LID = LV->getValueID(), 473 RID = RV->getValueID(); 474 if (LID != RID) 475 return (int)LID - (int)RID; 476 477 // Sort arguments by their position. 478 if (const Argument *LA = dyn_cast<Argument>(LV)) { 479 const Argument *RA = cast<Argument>(RV); 480 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 481 return (int)LArgNo - (int)RArgNo; 482 } 483 484 // For instructions, compare their loop depth, and their operand 485 // count. This is pretty loose. 486 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 487 const Instruction *RInst = cast<Instruction>(RV); 488 489 // Compare loop depths. 490 const BasicBlock *LParent = LInst->getParent(), 491 *RParent = RInst->getParent(); 492 if (LParent != RParent) { 493 unsigned LDepth = LI->getLoopDepth(LParent), 494 RDepth = LI->getLoopDepth(RParent); 495 if (LDepth != RDepth) 496 return (int)LDepth - (int)RDepth; 497 } 498 499 // Compare the number of operands. 500 unsigned LNumOps = LInst->getNumOperands(), 501 RNumOps = RInst->getNumOperands(); 502 return (int)LNumOps - (int)RNumOps; 503 } 504 505 return 0; 506 } 507 508 case scConstant: { 509 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 510 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 511 512 // Compare constant values. 513 const APInt &LA = LC->getValue()->getValue(); 514 const APInt &RA = RC->getValue()->getValue(); 515 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 516 if (LBitWidth != RBitWidth) 517 return (int)LBitWidth - (int)RBitWidth; 518 return LA.ult(RA) ? -1 : 1; 519 } 520 521 case scAddRecExpr: { 522 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 523 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 524 525 // Compare addrec loop depths. 526 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 527 if (LLoop != RLoop) { 528 unsigned LDepth = LLoop->getLoopDepth(), 529 RDepth = RLoop->getLoopDepth(); 530 if (LDepth != RDepth) 531 return (int)LDepth - (int)RDepth; 532 } 533 534 // Addrec complexity grows with operand count. 535 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 536 if (LNumOps != RNumOps) 537 return (int)LNumOps - (int)RNumOps; 538 539 // Lexicographically compare. 540 for (unsigned i = 0; i != LNumOps; ++i) { 541 long X = compare(LA->getOperand(i), RA->getOperand(i)); 542 if (X != 0) 543 return X; 544 } 545 546 return 0; 547 } 548 549 case scAddExpr: 550 case scMulExpr: 551 case scSMaxExpr: 552 case scUMaxExpr: { 553 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 554 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 555 556 // Lexicographically compare n-ary expressions. 557 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 558 for (unsigned i = 0; i != LNumOps; ++i) { 559 if (i >= RNumOps) 560 return 1; 561 long X = compare(LC->getOperand(i), RC->getOperand(i)); 562 if (X != 0) 563 return X; 564 } 565 return (int)LNumOps - (int)RNumOps; 566 } 567 568 case scUDivExpr: { 569 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 570 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 571 572 // Lexicographically compare udiv expressions. 573 long X = compare(LC->getLHS(), RC->getLHS()); 574 if (X != 0) 575 return X; 576 return compare(LC->getRHS(), RC->getRHS()); 577 } 578 579 case scTruncate: 580 case scZeroExtend: 581 case scSignExtend: { 582 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 583 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 584 585 // Compare cast expressions by operand. 586 return compare(LC->getOperand(), RC->getOperand()); 587 } 588 589 default: 590 break; 591 } 592 593 llvm_unreachable("Unknown SCEV kind!"); 594 return 0; 595 } 596 }; 597 } 598 599 /// GroupByComplexity - Given a list of SCEV objects, order them by their 600 /// complexity, and group objects of the same complexity together by value. 601 /// When this routine is finished, we know that any duplicates in the vector are 602 /// consecutive and that complexity is monotonically increasing. 603 /// 604 /// Note that we go take special precautions to ensure that we get deterministic 605 /// results from this routine. In other words, we don't want the results of 606 /// this to depend on where the addresses of various SCEV objects happened to 607 /// land in memory. 608 /// 609 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 610 LoopInfo *LI) { 611 if (Ops.size() < 2) return; // Noop 612 if (Ops.size() == 2) { 613 // This is the common case, which also happens to be trivially simple. 614 // Special case it. 615 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 616 if (SCEVComplexityCompare(LI)(RHS, LHS)) 617 std::swap(LHS, RHS); 618 return; 619 } 620 621 // Do the rough sort by complexity. 622 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 623 624 // Now that we are sorted by complexity, group elements of the same 625 // complexity. Note that this is, at worst, N^2, but the vector is likely to 626 // be extremely short in practice. Note that we take this approach because we 627 // do not want to depend on the addresses of the objects we are grouping. 628 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 629 const SCEV *S = Ops[i]; 630 unsigned Complexity = S->getSCEVType(); 631 632 // If there are any objects of the same complexity and same value as this 633 // one, group them. 634 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 635 if (Ops[j] == S) { // Found a duplicate. 636 // Move it to immediately after i'th element. 637 std::swap(Ops[i+1], Ops[j]); 638 ++i; // no need to rescan it. 639 if (i == e-2) return; // Done! 640 } 641 } 642 } 643 } 644 645 646 647 //===----------------------------------------------------------------------===// 648 // Simple SCEV method implementations 649 //===----------------------------------------------------------------------===// 650 651 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 652 /// Assume, K > 0. 653 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 654 ScalarEvolution &SE, 655 Type *ResultTy) { 656 // Handle the simplest case efficiently. 657 if (K == 1) 658 return SE.getTruncateOrZeroExtend(It, ResultTy); 659 660 // We are using the following formula for BC(It, K): 661 // 662 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 663 // 664 // Suppose, W is the bitwidth of the return value. We must be prepared for 665 // overflow. Hence, we must assure that the result of our computation is 666 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 667 // safe in modular arithmetic. 668 // 669 // However, this code doesn't use exactly that formula; the formula it uses 670 // is something like the following, where T is the number of factors of 2 in 671 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 672 // exponentiation: 673 // 674 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 675 // 676 // This formula is trivially equivalent to the previous formula. However, 677 // this formula can be implemented much more efficiently. The trick is that 678 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 679 // arithmetic. To do exact division in modular arithmetic, all we have 680 // to do is multiply by the inverse. Therefore, this step can be done at 681 // width W. 682 // 683 // The next issue is how to safely do the division by 2^T. The way this 684 // is done is by doing the multiplication step at a width of at least W + T 685 // bits. This way, the bottom W+T bits of the product are accurate. Then, 686 // when we perform the division by 2^T (which is equivalent to a right shift 687 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 688 // truncated out after the division by 2^T. 689 // 690 // In comparison to just directly using the first formula, this technique 691 // is much more efficient; using the first formula requires W * K bits, 692 // but this formula less than W + K bits. Also, the first formula requires 693 // a division step, whereas this formula only requires multiplies and shifts. 694 // 695 // It doesn't matter whether the subtraction step is done in the calculation 696 // width or the input iteration count's width; if the subtraction overflows, 697 // the result must be zero anyway. We prefer here to do it in the width of 698 // the induction variable because it helps a lot for certain cases; CodeGen 699 // isn't smart enough to ignore the overflow, which leads to much less 700 // efficient code if the width of the subtraction is wider than the native 701 // register width. 702 // 703 // (It's possible to not widen at all by pulling out factors of 2 before 704 // the multiplication; for example, K=2 can be calculated as 705 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 706 // extra arithmetic, so it's not an obvious win, and it gets 707 // much more complicated for K > 3.) 708 709 // Protection from insane SCEVs; this bound is conservative, 710 // but it probably doesn't matter. 711 if (K > 1000) 712 return SE.getCouldNotCompute(); 713 714 unsigned W = SE.getTypeSizeInBits(ResultTy); 715 716 // Calculate K! / 2^T and T; we divide out the factors of two before 717 // multiplying for calculating K! / 2^T to avoid overflow. 718 // Other overflow doesn't matter because we only care about the bottom 719 // W bits of the result. 720 APInt OddFactorial(W, 1); 721 unsigned T = 1; 722 for (unsigned i = 3; i <= K; ++i) { 723 APInt Mult(W, i); 724 unsigned TwoFactors = Mult.countTrailingZeros(); 725 T += TwoFactors; 726 Mult = Mult.lshr(TwoFactors); 727 OddFactorial *= Mult; 728 } 729 730 // We need at least W + T bits for the multiplication step 731 unsigned CalculationBits = W + T; 732 733 // Calculate 2^T, at width T+W. 734 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 735 736 // Calculate the multiplicative inverse of K! / 2^T; 737 // this multiplication factor will perform the exact division by 738 // K! / 2^T. 739 APInt Mod = APInt::getSignedMinValue(W+1); 740 APInt MultiplyFactor = OddFactorial.zext(W+1); 741 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 742 MultiplyFactor = MultiplyFactor.trunc(W); 743 744 // Calculate the product, at width T+W 745 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 746 CalculationBits); 747 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 748 for (unsigned i = 1; i != K; ++i) { 749 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 750 Dividend = SE.getMulExpr(Dividend, 751 SE.getTruncateOrZeroExtend(S, CalculationTy)); 752 } 753 754 // Divide by 2^T 755 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 756 757 // Truncate the result, and divide by K! / 2^T. 758 759 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 760 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 761 } 762 763 /// evaluateAtIteration - Return the value of this chain of recurrences at 764 /// the specified iteration number. We can evaluate this recurrence by 765 /// multiplying each element in the chain by the binomial coefficient 766 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 767 /// 768 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 769 /// 770 /// where BC(It, k) stands for binomial coefficient. 771 /// 772 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 773 ScalarEvolution &SE) const { 774 const SCEV *Result = getStart(); 775 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 776 // The computation is correct in the face of overflow provided that the 777 // multiplication is performed _after_ the evaluation of the binomial 778 // coefficient. 779 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 780 if (isa<SCEVCouldNotCompute>(Coeff)) 781 return Coeff; 782 783 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 784 } 785 return Result; 786 } 787 788 //===----------------------------------------------------------------------===// 789 // SCEV Expression folder implementations 790 //===----------------------------------------------------------------------===// 791 792 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 793 Type *Ty) { 794 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 795 "This is not a truncating conversion!"); 796 assert(isSCEVable(Ty) && 797 "This is not a conversion to a SCEVable type!"); 798 Ty = getEffectiveSCEVType(Ty); 799 800 FoldingSetNodeID ID; 801 ID.AddInteger(scTruncate); 802 ID.AddPointer(Op); 803 ID.AddPointer(Ty); 804 void *IP = 0; 805 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 806 807 // Fold if the operand is constant. 808 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 809 return getConstant( 810 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 811 getEffectiveSCEVType(Ty)))); 812 813 // trunc(trunc(x)) --> trunc(x) 814 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 815 return getTruncateExpr(ST->getOperand(), Ty); 816 817 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 818 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 819 return getTruncateOrSignExtend(SS->getOperand(), Ty); 820 821 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 822 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 823 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 824 825 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 826 // eliminate all the truncates. 827 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 828 SmallVector<const SCEV *, 4> Operands; 829 bool hasTrunc = false; 830 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 831 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 832 hasTrunc = isa<SCEVTruncateExpr>(S); 833 Operands.push_back(S); 834 } 835 if (!hasTrunc) 836 return getAddExpr(Operands); 837 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 838 } 839 840 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 841 // eliminate all the truncates. 842 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 843 SmallVector<const SCEV *, 4> Operands; 844 bool hasTrunc = false; 845 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 846 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 847 hasTrunc = isa<SCEVTruncateExpr>(S); 848 Operands.push_back(S); 849 } 850 if (!hasTrunc) 851 return getMulExpr(Operands); 852 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 853 } 854 855 // If the input value is a chrec scev, truncate the chrec's operands. 856 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 857 SmallVector<const SCEV *, 4> Operands; 858 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 859 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 860 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 861 } 862 863 // As a special case, fold trunc(undef) to undef. We don't want to 864 // know too much about SCEVUnknowns, but this special case is handy 865 // and harmless. 866 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 867 if (isa<UndefValue>(U->getValue())) 868 return getSCEV(UndefValue::get(Ty)); 869 870 // The cast wasn't folded; create an explicit cast node. We can reuse 871 // the existing insert position since if we get here, we won't have 872 // made any changes which would invalidate it. 873 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 874 Op, Ty); 875 UniqueSCEVs.InsertNode(S, IP); 876 return S; 877 } 878 879 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 880 Type *Ty) { 881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 882 "This is not an extending conversion!"); 883 assert(isSCEVable(Ty) && 884 "This is not a conversion to a SCEVable type!"); 885 Ty = getEffectiveSCEVType(Ty); 886 887 // Fold if the operand is constant. 888 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 889 return getConstant( 890 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 891 getEffectiveSCEVType(Ty)))); 892 893 // zext(zext(x)) --> zext(x) 894 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 895 return getZeroExtendExpr(SZ->getOperand(), Ty); 896 897 // Before doing any expensive analysis, check to see if we've already 898 // computed a SCEV for this Op and Ty. 899 FoldingSetNodeID ID; 900 ID.AddInteger(scZeroExtend); 901 ID.AddPointer(Op); 902 ID.AddPointer(Ty); 903 void *IP = 0; 904 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 905 906 // zext(trunc(x)) --> zext(x) or x or trunc(x) 907 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 908 // It's possible the bits taken off by the truncate were all zero bits. If 909 // so, we should be able to simplify this further. 910 const SCEV *X = ST->getOperand(); 911 ConstantRange CR = getUnsignedRange(X); 912 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 913 unsigned NewBits = getTypeSizeInBits(Ty); 914 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 915 CR.zextOrTrunc(NewBits))) 916 return getTruncateOrZeroExtend(X, Ty); 917 } 918 919 // If the input value is a chrec scev, and we can prove that the value 920 // did not overflow the old, smaller, value, we can zero extend all of the 921 // operands (often constants). This allows analysis of something like 922 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 924 if (AR->isAffine()) { 925 const SCEV *Start = AR->getStart(); 926 const SCEV *Step = AR->getStepRecurrence(*this); 927 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 928 const Loop *L = AR->getLoop(); 929 930 // If we have special knowledge that this addrec won't overflow, 931 // we don't need to do any further analysis. 932 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 933 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 934 getZeroExtendExpr(Step, Ty), 935 L, AR->getNoWrapFlags()); 936 937 // Check whether the backedge-taken count is SCEVCouldNotCompute. 938 // Note that this serves two purposes: It filters out loops that are 939 // simply not analyzable, and it covers the case where this code is 940 // being called from within backedge-taken count analysis, such that 941 // attempting to ask for the backedge-taken count would likely result 942 // in infinite recursion. In the later case, the analysis code will 943 // cope with a conservative value, and it will take care to purge 944 // that value once it has finished. 945 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 946 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 947 // Manually compute the final value for AR, checking for 948 // overflow. 949 950 // Check whether the backedge-taken count can be losslessly casted to 951 // the addrec's type. The count is always unsigned. 952 const SCEV *CastedMaxBECount = 953 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 954 const SCEV *RecastedMaxBECount = 955 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 956 if (MaxBECount == RecastedMaxBECount) { 957 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 958 // Check whether Start+Step*MaxBECount has no unsigned overflow. 959 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 960 const SCEV *Add = getAddExpr(Start, ZMul); 961 const SCEV *OperandExtendedAdd = 962 getAddExpr(getZeroExtendExpr(Start, WideTy), 963 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 964 getZeroExtendExpr(Step, WideTy))); 965 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) { 966 // Cache knowledge of AR NUW, which is propagated to this AddRec. 967 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 968 // Return the expression with the addrec on the outside. 969 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 970 getZeroExtendExpr(Step, Ty), 971 L, AR->getNoWrapFlags()); 972 } 973 // Similar to above, only this time treat the step value as signed. 974 // This covers loops that count down. 975 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 976 Add = getAddExpr(Start, SMul); 977 OperandExtendedAdd = 978 getAddExpr(getZeroExtendExpr(Start, WideTy), 979 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 980 getSignExtendExpr(Step, WideTy))); 981 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) { 982 // Cache knowledge of AR NW, which is propagated to this AddRec. 983 // Negative step causes unsigned wrap, but it still can't self-wrap. 984 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 985 // Return the expression with the addrec on the outside. 986 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 987 getSignExtendExpr(Step, Ty), 988 L, AR->getNoWrapFlags()); 989 } 990 } 991 992 // If the backedge is guarded by a comparison with the pre-inc value 993 // the addrec is safe. Also, if the entry is guarded by a comparison 994 // with the start value and the backedge is guarded by a comparison 995 // with the post-inc value, the addrec is safe. 996 if (isKnownPositive(Step)) { 997 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 998 getUnsignedRange(Step).getUnsignedMax()); 999 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1000 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1001 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1002 AR->getPostIncExpr(*this), N))) { 1003 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1005 // Return the expression with the addrec on the outside. 1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1007 getZeroExtendExpr(Step, Ty), 1008 L, AR->getNoWrapFlags()); 1009 } 1010 } else if (isKnownNegative(Step)) { 1011 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1012 getSignedRange(Step).getSignedMin()); 1013 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1014 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1015 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1016 AR->getPostIncExpr(*this), N))) { 1017 // Cache knowledge of AR NW, which is propagated to this AddRec. 1018 // Negative step causes unsigned wrap, but it still can't self-wrap. 1019 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1020 // Return the expression with the addrec on the outside. 1021 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1022 getSignExtendExpr(Step, Ty), 1023 L, AR->getNoWrapFlags()); 1024 } 1025 } 1026 } 1027 } 1028 1029 // The cast wasn't folded; create an explicit cast node. 1030 // Recompute the insert position, as it may have been invalidated. 1031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1032 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1033 Op, Ty); 1034 UniqueSCEVs.InsertNode(S, IP); 1035 return S; 1036 } 1037 1038 // Get the limit of a recurrence such that incrementing by Step cannot cause 1039 // signed overflow as long as the value of the recurrence within the loop does 1040 // not exceed this limit before incrementing. 1041 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1042 ICmpInst::Predicate *Pred, 1043 ScalarEvolution *SE) { 1044 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1045 if (SE->isKnownPositive(Step)) { 1046 *Pred = ICmpInst::ICMP_SLT; 1047 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1048 SE->getSignedRange(Step).getSignedMax()); 1049 } 1050 if (SE->isKnownNegative(Step)) { 1051 *Pred = ICmpInst::ICMP_SGT; 1052 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1053 SE->getSignedRange(Step).getSignedMin()); 1054 } 1055 return 0; 1056 } 1057 1058 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1059 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1060 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1061 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1062 // result, the expression "Step + sext(PreIncAR)" is congruent with 1063 // "sext(PostIncAR)" 1064 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1065 Type *Ty, 1066 ScalarEvolution *SE) { 1067 const Loop *L = AR->getLoop(); 1068 const SCEV *Start = AR->getStart(); 1069 const SCEV *Step = AR->getStepRecurrence(*SE); 1070 1071 // Check for a simple looking step prior to loop entry. 1072 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1073 if (!SA || SA->getNumOperands() != 2 || SA->getOperand(0) != Step) 1074 return 0; 1075 1076 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1077 // same three conditions that getSignExtendedExpr checks. 1078 1079 // 1. NSW flags on the step increment. 1080 const SCEV *PreStart = SA->getOperand(1); 1081 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1082 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1083 1084 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1085 return PreStart; 1086 1087 // 2. Direct overflow check on the step operation's expression. 1088 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1089 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1090 const SCEV *OperandExtendedStart = 1091 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1092 SE->getSignExtendExpr(Step, WideTy)); 1093 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1094 // Cache knowledge of PreAR NSW. 1095 if (PreAR) 1096 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1097 // FIXME: this optimization needs a unit test 1098 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1099 return PreStart; 1100 } 1101 1102 // 3. Loop precondition. 1103 ICmpInst::Predicate Pred; 1104 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1105 1106 if (OverflowLimit && 1107 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1108 return PreStart; 1109 } 1110 return 0; 1111 } 1112 1113 // Get the normalized sign-extended expression for this AddRec's Start. 1114 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1115 Type *Ty, 1116 ScalarEvolution *SE) { 1117 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1118 if (!PreStart) 1119 return SE->getSignExtendExpr(AR->getStart(), Ty); 1120 1121 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1122 SE->getSignExtendExpr(PreStart, Ty)); 1123 } 1124 1125 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1126 Type *Ty) { 1127 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1128 "This is not an extending conversion!"); 1129 assert(isSCEVable(Ty) && 1130 "This is not a conversion to a SCEVable type!"); 1131 Ty = getEffectiveSCEVType(Ty); 1132 1133 // Fold if the operand is constant. 1134 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1135 return getConstant( 1136 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1137 getEffectiveSCEVType(Ty)))); 1138 1139 // sext(sext(x)) --> sext(x) 1140 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1141 return getSignExtendExpr(SS->getOperand(), Ty); 1142 1143 // sext(zext(x)) --> zext(x) 1144 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1145 return getZeroExtendExpr(SZ->getOperand(), Ty); 1146 1147 // Before doing any expensive analysis, check to see if we've already 1148 // computed a SCEV for this Op and Ty. 1149 FoldingSetNodeID ID; 1150 ID.AddInteger(scSignExtend); 1151 ID.AddPointer(Op); 1152 ID.AddPointer(Ty); 1153 void *IP = 0; 1154 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1155 1156 // If the input value is provably positive, build a zext instead. 1157 if (isKnownNonNegative(Op)) 1158 return getZeroExtendExpr(Op, Ty); 1159 1160 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1161 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1162 // It's possible the bits taken off by the truncate were all sign bits. If 1163 // so, we should be able to simplify this further. 1164 const SCEV *X = ST->getOperand(); 1165 ConstantRange CR = getSignedRange(X); 1166 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1167 unsigned NewBits = getTypeSizeInBits(Ty); 1168 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1169 CR.sextOrTrunc(NewBits))) 1170 return getTruncateOrSignExtend(X, Ty); 1171 } 1172 1173 // If the input value is a chrec scev, and we can prove that the value 1174 // did not overflow the old, smaller, value, we can sign extend all of the 1175 // operands (often constants). This allows analysis of something like 1176 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1177 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1178 if (AR->isAffine()) { 1179 const SCEV *Start = AR->getStart(); 1180 const SCEV *Step = AR->getStepRecurrence(*this); 1181 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1182 const Loop *L = AR->getLoop(); 1183 1184 // If we have special knowledge that this addrec won't overflow, 1185 // we don't need to do any further analysis. 1186 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1187 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1188 getSignExtendExpr(Step, Ty), 1189 L, SCEV::FlagNSW); 1190 1191 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1192 // Note that this serves two purposes: It filters out loops that are 1193 // simply not analyzable, and it covers the case where this code is 1194 // being called from within backedge-taken count analysis, such that 1195 // attempting to ask for the backedge-taken count would likely result 1196 // in infinite recursion. In the later case, the analysis code will 1197 // cope with a conservative value, and it will take care to purge 1198 // that value once it has finished. 1199 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1200 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1201 // Manually compute the final value for AR, checking for 1202 // overflow. 1203 1204 // Check whether the backedge-taken count can be losslessly casted to 1205 // the addrec's type. The count is always unsigned. 1206 const SCEV *CastedMaxBECount = 1207 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1208 const SCEV *RecastedMaxBECount = 1209 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1210 if (MaxBECount == RecastedMaxBECount) { 1211 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1212 // Check whether Start+Step*MaxBECount has no signed overflow. 1213 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1214 const SCEV *Add = getAddExpr(Start, SMul); 1215 const SCEV *OperandExtendedAdd = 1216 getAddExpr(getSignExtendExpr(Start, WideTy), 1217 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1218 getSignExtendExpr(Step, WideTy))); 1219 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) { 1220 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1221 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1222 // Return the expression with the addrec on the outside. 1223 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1224 getSignExtendExpr(Step, Ty), 1225 L, AR->getNoWrapFlags()); 1226 } 1227 // Similar to above, only this time treat the step value as unsigned. 1228 // This covers loops that count up with an unsigned step. 1229 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1230 Add = getAddExpr(Start, UMul); 1231 OperandExtendedAdd = 1232 getAddExpr(getSignExtendExpr(Start, WideTy), 1233 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1234 getZeroExtendExpr(Step, WideTy))); 1235 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) { 1236 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1237 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1238 // Return the expression with the addrec on the outside. 1239 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1240 getZeroExtendExpr(Step, Ty), 1241 L, AR->getNoWrapFlags()); 1242 } 1243 } 1244 1245 // If the backedge is guarded by a comparison with the pre-inc value 1246 // the addrec is safe. Also, if the entry is guarded by a comparison 1247 // with the start value and the backedge is guarded by a comparison 1248 // with the post-inc value, the addrec is safe. 1249 ICmpInst::Predicate Pred; 1250 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1251 if (OverflowLimit && 1252 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1253 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1254 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1255 OverflowLimit)))) { 1256 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1258 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1259 getSignExtendExpr(Step, Ty), 1260 L, AR->getNoWrapFlags()); 1261 } 1262 } 1263 } 1264 1265 // The cast wasn't folded; create an explicit cast node. 1266 // Recompute the insert position, as it may have been invalidated. 1267 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1268 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1269 Op, Ty); 1270 UniqueSCEVs.InsertNode(S, IP); 1271 return S; 1272 } 1273 1274 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1275 /// unspecified bits out to the given type. 1276 /// 1277 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1278 Type *Ty) { 1279 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1280 "This is not an extending conversion!"); 1281 assert(isSCEVable(Ty) && 1282 "This is not a conversion to a SCEVable type!"); 1283 Ty = getEffectiveSCEVType(Ty); 1284 1285 // Sign-extend negative constants. 1286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1287 if (SC->getValue()->getValue().isNegative()) 1288 return getSignExtendExpr(Op, Ty); 1289 1290 // Peel off a truncate cast. 1291 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1292 const SCEV *NewOp = T->getOperand(); 1293 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1294 return getAnyExtendExpr(NewOp, Ty); 1295 return getTruncateOrNoop(NewOp, Ty); 1296 } 1297 1298 // Next try a zext cast. If the cast is folded, use it. 1299 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1300 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1301 return ZExt; 1302 1303 // Next try a sext cast. If the cast is folded, use it. 1304 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1305 if (!isa<SCEVSignExtendExpr>(SExt)) 1306 return SExt; 1307 1308 // Force the cast to be folded into the operands of an addrec. 1309 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1310 SmallVector<const SCEV *, 4> Ops; 1311 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1312 I != E; ++I) 1313 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1314 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1315 } 1316 1317 // As a special case, fold anyext(undef) to undef. We don't want to 1318 // know too much about SCEVUnknowns, but this special case is handy 1319 // and harmless. 1320 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1321 if (isa<UndefValue>(U->getValue())) 1322 return getSCEV(UndefValue::get(Ty)); 1323 1324 // If the expression is obviously signed, use the sext cast value. 1325 if (isa<SCEVSMaxExpr>(Op)) 1326 return SExt; 1327 1328 // Absent any other information, use the zext cast value. 1329 return ZExt; 1330 } 1331 1332 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1333 /// a list of operands to be added under the given scale, update the given 1334 /// map. This is a helper function for getAddRecExpr. As an example of 1335 /// what it does, given a sequence of operands that would form an add 1336 /// expression like this: 1337 /// 1338 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1339 /// 1340 /// where A and B are constants, update the map with these values: 1341 /// 1342 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1343 /// 1344 /// and add 13 + A*B*29 to AccumulatedConstant. 1345 /// This will allow getAddRecExpr to produce this: 1346 /// 1347 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1348 /// 1349 /// This form often exposes folding opportunities that are hidden in 1350 /// the original operand list. 1351 /// 1352 /// Return true iff it appears that any interesting folding opportunities 1353 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1354 /// the common case where no interesting opportunities are present, and 1355 /// is also used as a check to avoid infinite recursion. 1356 /// 1357 static bool 1358 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1359 SmallVector<const SCEV *, 8> &NewOps, 1360 APInt &AccumulatedConstant, 1361 const SCEV *const *Ops, size_t NumOperands, 1362 const APInt &Scale, 1363 ScalarEvolution &SE) { 1364 bool Interesting = false; 1365 1366 // Iterate over the add operands. They are sorted, with constants first. 1367 unsigned i = 0; 1368 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1369 ++i; 1370 // Pull a buried constant out to the outside. 1371 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1372 Interesting = true; 1373 AccumulatedConstant += Scale * C->getValue()->getValue(); 1374 } 1375 1376 // Next comes everything else. We're especially interested in multiplies 1377 // here, but they're in the middle, so just visit the rest with one loop. 1378 for (; i != NumOperands; ++i) { 1379 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1380 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1381 APInt NewScale = 1382 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1383 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1384 // A multiplication of a constant with another add; recurse. 1385 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1386 Interesting |= 1387 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1388 Add->op_begin(), Add->getNumOperands(), 1389 NewScale, SE); 1390 } else { 1391 // A multiplication of a constant with some other value. Update 1392 // the map. 1393 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1394 const SCEV *Key = SE.getMulExpr(MulOps); 1395 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1396 M.insert(std::make_pair(Key, NewScale)); 1397 if (Pair.second) { 1398 NewOps.push_back(Pair.first->first); 1399 } else { 1400 Pair.first->second += NewScale; 1401 // The map already had an entry for this value, which may indicate 1402 // a folding opportunity. 1403 Interesting = true; 1404 } 1405 } 1406 } else { 1407 // An ordinary operand. Update the map. 1408 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1409 M.insert(std::make_pair(Ops[i], Scale)); 1410 if (Pair.second) { 1411 NewOps.push_back(Pair.first->first); 1412 } else { 1413 Pair.first->second += Scale; 1414 // The map already had an entry for this value, which may indicate 1415 // a folding opportunity. 1416 Interesting = true; 1417 } 1418 } 1419 } 1420 1421 return Interesting; 1422 } 1423 1424 namespace { 1425 struct APIntCompare { 1426 bool operator()(const APInt &LHS, const APInt &RHS) const { 1427 return LHS.ult(RHS); 1428 } 1429 }; 1430 } 1431 1432 /// getAddExpr - Get a canonical add expression, or something simpler if 1433 /// possible. 1434 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1435 SCEV::NoWrapFlags Flags) { 1436 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1437 "only nuw or nsw allowed"); 1438 assert(!Ops.empty() && "Cannot get empty add!"); 1439 if (Ops.size() == 1) return Ops[0]; 1440 #ifndef NDEBUG 1441 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1442 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1443 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1444 "SCEVAddExpr operand types don't match!"); 1445 #endif 1446 1447 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1448 // And vice-versa. 1449 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1450 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1451 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1452 bool All = true; 1453 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1454 E = Ops.end(); I != E; ++I) 1455 if (!isKnownNonNegative(*I)) { 1456 All = false; 1457 break; 1458 } 1459 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1460 } 1461 1462 // Sort by complexity, this groups all similar expression types together. 1463 GroupByComplexity(Ops, LI); 1464 1465 // If there are any constants, fold them together. 1466 unsigned Idx = 0; 1467 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1468 ++Idx; 1469 assert(Idx < Ops.size()); 1470 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1471 // We found two constants, fold them together! 1472 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1473 RHSC->getValue()->getValue()); 1474 if (Ops.size() == 2) return Ops[0]; 1475 Ops.erase(Ops.begin()+1); // Erase the folded element 1476 LHSC = cast<SCEVConstant>(Ops[0]); 1477 } 1478 1479 // If we are left with a constant zero being added, strip it off. 1480 if (LHSC->getValue()->isZero()) { 1481 Ops.erase(Ops.begin()); 1482 --Idx; 1483 } 1484 1485 if (Ops.size() == 1) return Ops[0]; 1486 } 1487 1488 // Okay, check to see if the same value occurs in the operand list more than 1489 // once. If so, merge them together into an multiply expression. Since we 1490 // sorted the list, these values are required to be adjacent. 1491 Type *Ty = Ops[0]->getType(); 1492 bool FoundMatch = false; 1493 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1494 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1495 // Scan ahead to count how many equal operands there are. 1496 unsigned Count = 2; 1497 while (i+Count != e && Ops[i+Count] == Ops[i]) 1498 ++Count; 1499 // Merge the values into a multiply. 1500 const SCEV *Scale = getConstant(Ty, Count); 1501 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1502 if (Ops.size() == Count) 1503 return Mul; 1504 Ops[i] = Mul; 1505 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1506 --i; e -= Count - 1; 1507 FoundMatch = true; 1508 } 1509 if (FoundMatch) 1510 return getAddExpr(Ops, Flags); 1511 1512 // Check for truncates. If all the operands are truncated from the same 1513 // type, see if factoring out the truncate would permit the result to be 1514 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1515 // if the contents of the resulting outer trunc fold to something simple. 1516 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1517 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1518 Type *DstType = Trunc->getType(); 1519 Type *SrcType = Trunc->getOperand()->getType(); 1520 SmallVector<const SCEV *, 8> LargeOps; 1521 bool Ok = true; 1522 // Check all the operands to see if they can be represented in the 1523 // source type of the truncate. 1524 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1525 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1526 if (T->getOperand()->getType() != SrcType) { 1527 Ok = false; 1528 break; 1529 } 1530 LargeOps.push_back(T->getOperand()); 1531 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1532 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1533 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1534 SmallVector<const SCEV *, 8> LargeMulOps; 1535 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1536 if (const SCEVTruncateExpr *T = 1537 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1538 if (T->getOperand()->getType() != SrcType) { 1539 Ok = false; 1540 break; 1541 } 1542 LargeMulOps.push_back(T->getOperand()); 1543 } else if (const SCEVConstant *C = 1544 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1545 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1546 } else { 1547 Ok = false; 1548 break; 1549 } 1550 } 1551 if (Ok) 1552 LargeOps.push_back(getMulExpr(LargeMulOps)); 1553 } else { 1554 Ok = false; 1555 break; 1556 } 1557 } 1558 if (Ok) { 1559 // Evaluate the expression in the larger type. 1560 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1561 // If it folds to something simple, use it. Otherwise, don't. 1562 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1563 return getTruncateExpr(Fold, DstType); 1564 } 1565 } 1566 1567 // Skip past any other cast SCEVs. 1568 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1569 ++Idx; 1570 1571 // If there are add operands they would be next. 1572 if (Idx < Ops.size()) { 1573 bool DeletedAdd = false; 1574 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1575 // If we have an add, expand the add operands onto the end of the operands 1576 // list. 1577 Ops.erase(Ops.begin()+Idx); 1578 Ops.append(Add->op_begin(), Add->op_end()); 1579 DeletedAdd = true; 1580 } 1581 1582 // If we deleted at least one add, we added operands to the end of the list, 1583 // and they are not necessarily sorted. Recurse to resort and resimplify 1584 // any operands we just acquired. 1585 if (DeletedAdd) 1586 return getAddExpr(Ops); 1587 } 1588 1589 // Skip over the add expression until we get to a multiply. 1590 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1591 ++Idx; 1592 1593 // Check to see if there are any folding opportunities present with 1594 // operands multiplied by constant values. 1595 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1596 uint64_t BitWidth = getTypeSizeInBits(Ty); 1597 DenseMap<const SCEV *, APInt> M; 1598 SmallVector<const SCEV *, 8> NewOps; 1599 APInt AccumulatedConstant(BitWidth, 0); 1600 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1601 Ops.data(), Ops.size(), 1602 APInt(BitWidth, 1), *this)) { 1603 // Some interesting folding opportunity is present, so its worthwhile to 1604 // re-generate the operands list. Group the operands by constant scale, 1605 // to avoid multiplying by the same constant scale multiple times. 1606 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1607 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1608 E = NewOps.end(); I != E; ++I) 1609 MulOpLists[M.find(*I)->second].push_back(*I); 1610 // Re-generate the operands list. 1611 Ops.clear(); 1612 if (AccumulatedConstant != 0) 1613 Ops.push_back(getConstant(AccumulatedConstant)); 1614 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1615 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1616 if (I->first != 0) 1617 Ops.push_back(getMulExpr(getConstant(I->first), 1618 getAddExpr(I->second))); 1619 if (Ops.empty()) 1620 return getConstant(Ty, 0); 1621 if (Ops.size() == 1) 1622 return Ops[0]; 1623 return getAddExpr(Ops); 1624 } 1625 } 1626 1627 // If we are adding something to a multiply expression, make sure the 1628 // something is not already an operand of the multiply. If so, merge it into 1629 // the multiply. 1630 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1631 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1632 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1633 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1634 if (isa<SCEVConstant>(MulOpSCEV)) 1635 continue; 1636 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1637 if (MulOpSCEV == Ops[AddOp]) { 1638 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1639 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1640 if (Mul->getNumOperands() != 2) { 1641 // If the multiply has more than two operands, we must get the 1642 // Y*Z term. 1643 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1644 Mul->op_begin()+MulOp); 1645 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1646 InnerMul = getMulExpr(MulOps); 1647 } 1648 const SCEV *One = getConstant(Ty, 1); 1649 const SCEV *AddOne = getAddExpr(One, InnerMul); 1650 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1651 if (Ops.size() == 2) return OuterMul; 1652 if (AddOp < Idx) { 1653 Ops.erase(Ops.begin()+AddOp); 1654 Ops.erase(Ops.begin()+Idx-1); 1655 } else { 1656 Ops.erase(Ops.begin()+Idx); 1657 Ops.erase(Ops.begin()+AddOp-1); 1658 } 1659 Ops.push_back(OuterMul); 1660 return getAddExpr(Ops); 1661 } 1662 1663 // Check this multiply against other multiplies being added together. 1664 for (unsigned OtherMulIdx = Idx+1; 1665 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1666 ++OtherMulIdx) { 1667 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1668 // If MulOp occurs in OtherMul, we can fold the two multiplies 1669 // together. 1670 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1671 OMulOp != e; ++OMulOp) 1672 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1673 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1674 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1675 if (Mul->getNumOperands() != 2) { 1676 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1677 Mul->op_begin()+MulOp); 1678 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1679 InnerMul1 = getMulExpr(MulOps); 1680 } 1681 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1682 if (OtherMul->getNumOperands() != 2) { 1683 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1684 OtherMul->op_begin()+OMulOp); 1685 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1686 InnerMul2 = getMulExpr(MulOps); 1687 } 1688 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1689 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1690 if (Ops.size() == 2) return OuterMul; 1691 Ops.erase(Ops.begin()+Idx); 1692 Ops.erase(Ops.begin()+OtherMulIdx-1); 1693 Ops.push_back(OuterMul); 1694 return getAddExpr(Ops); 1695 } 1696 } 1697 } 1698 } 1699 1700 // If there are any add recurrences in the operands list, see if any other 1701 // added values are loop invariant. If so, we can fold them into the 1702 // recurrence. 1703 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1704 ++Idx; 1705 1706 // Scan over all recurrences, trying to fold loop invariants into them. 1707 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1708 // Scan all of the other operands to this add and add them to the vector if 1709 // they are loop invariant w.r.t. the recurrence. 1710 SmallVector<const SCEV *, 8> LIOps; 1711 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1712 const Loop *AddRecLoop = AddRec->getLoop(); 1713 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1714 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1715 LIOps.push_back(Ops[i]); 1716 Ops.erase(Ops.begin()+i); 1717 --i; --e; 1718 } 1719 1720 // If we found some loop invariants, fold them into the recurrence. 1721 if (!LIOps.empty()) { 1722 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1723 LIOps.push_back(AddRec->getStart()); 1724 1725 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1726 AddRec->op_end()); 1727 AddRecOps[0] = getAddExpr(LIOps); 1728 1729 // Build the new addrec. Propagate the NUW and NSW flags if both the 1730 // outer add and the inner addrec are guaranteed to have no overflow. 1731 // Always propagate NW. 1732 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1733 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1734 1735 // If all of the other operands were loop invariant, we are done. 1736 if (Ops.size() == 1) return NewRec; 1737 1738 // Otherwise, add the folded AddRec by the non-invariant parts. 1739 for (unsigned i = 0;; ++i) 1740 if (Ops[i] == AddRec) { 1741 Ops[i] = NewRec; 1742 break; 1743 } 1744 return getAddExpr(Ops); 1745 } 1746 1747 // Okay, if there weren't any loop invariants to be folded, check to see if 1748 // there are multiple AddRec's with the same loop induction variable being 1749 // added together. If so, we can fold them. 1750 for (unsigned OtherIdx = Idx+1; 1751 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1752 ++OtherIdx) 1753 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1754 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1755 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1756 AddRec->op_end()); 1757 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1758 ++OtherIdx) 1759 if (const SCEVAddRecExpr *OtherAddRec = 1760 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1761 if (OtherAddRec->getLoop() == AddRecLoop) { 1762 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1763 i != e; ++i) { 1764 if (i >= AddRecOps.size()) { 1765 AddRecOps.append(OtherAddRec->op_begin()+i, 1766 OtherAddRec->op_end()); 1767 break; 1768 } 1769 AddRecOps[i] = getAddExpr(AddRecOps[i], 1770 OtherAddRec->getOperand(i)); 1771 } 1772 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1773 } 1774 // Step size has changed, so we cannot guarantee no self-wraparound. 1775 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1776 return getAddExpr(Ops); 1777 } 1778 1779 // Otherwise couldn't fold anything into this recurrence. Move onto the 1780 // next one. 1781 } 1782 1783 // Okay, it looks like we really DO need an add expr. Check to see if we 1784 // already have one, otherwise create a new one. 1785 FoldingSetNodeID ID; 1786 ID.AddInteger(scAddExpr); 1787 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1788 ID.AddPointer(Ops[i]); 1789 void *IP = 0; 1790 SCEVAddExpr *S = 1791 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1792 if (!S) { 1793 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1794 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1795 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1796 O, Ops.size()); 1797 UniqueSCEVs.InsertNode(S, IP); 1798 } 1799 S->setNoWrapFlags(Flags); 1800 return S; 1801 } 1802 1803 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1804 /// possible. 1805 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1806 SCEV::NoWrapFlags Flags) { 1807 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1808 "only nuw or nsw allowed"); 1809 assert(!Ops.empty() && "Cannot get empty mul!"); 1810 if (Ops.size() == 1) return Ops[0]; 1811 #ifndef NDEBUG 1812 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1813 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1814 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1815 "SCEVMulExpr operand types don't match!"); 1816 #endif 1817 1818 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1819 // And vice-versa. 1820 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1821 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1822 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1823 bool All = true; 1824 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1825 E = Ops.end(); I != E; ++I) 1826 if (!isKnownNonNegative(*I)) { 1827 All = false; 1828 break; 1829 } 1830 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1831 } 1832 1833 // Sort by complexity, this groups all similar expression types together. 1834 GroupByComplexity(Ops, LI); 1835 1836 // If there are any constants, fold them together. 1837 unsigned Idx = 0; 1838 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1839 1840 // C1*(C2+V) -> C1*C2 + C1*V 1841 if (Ops.size() == 2) 1842 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1843 if (Add->getNumOperands() == 2 && 1844 isa<SCEVConstant>(Add->getOperand(0))) 1845 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1846 getMulExpr(LHSC, Add->getOperand(1))); 1847 1848 ++Idx; 1849 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1850 // We found two constants, fold them together! 1851 ConstantInt *Fold = ConstantInt::get(getContext(), 1852 LHSC->getValue()->getValue() * 1853 RHSC->getValue()->getValue()); 1854 Ops[0] = getConstant(Fold); 1855 Ops.erase(Ops.begin()+1); // Erase the folded element 1856 if (Ops.size() == 1) return Ops[0]; 1857 LHSC = cast<SCEVConstant>(Ops[0]); 1858 } 1859 1860 // If we are left with a constant one being multiplied, strip it off. 1861 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1862 Ops.erase(Ops.begin()); 1863 --Idx; 1864 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1865 // If we have a multiply of zero, it will always be zero. 1866 return Ops[0]; 1867 } else if (Ops[0]->isAllOnesValue()) { 1868 // If we have a mul by -1 of an add, try distributing the -1 among the 1869 // add operands. 1870 if (Ops.size() == 2) { 1871 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1872 SmallVector<const SCEV *, 4> NewOps; 1873 bool AnyFolded = false; 1874 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1875 E = Add->op_end(); I != E; ++I) { 1876 const SCEV *Mul = getMulExpr(Ops[0], *I); 1877 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1878 NewOps.push_back(Mul); 1879 } 1880 if (AnyFolded) 1881 return getAddExpr(NewOps); 1882 } 1883 else if (const SCEVAddRecExpr * 1884 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1885 // Negation preserves a recurrence's no self-wrap property. 1886 SmallVector<const SCEV *, 4> Operands; 1887 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1888 E = AddRec->op_end(); I != E; ++I) { 1889 Operands.push_back(getMulExpr(Ops[0], *I)); 1890 } 1891 return getAddRecExpr(Operands, AddRec->getLoop(), 1892 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1893 } 1894 } 1895 } 1896 1897 if (Ops.size() == 1) 1898 return Ops[0]; 1899 } 1900 1901 // Skip over the add expression until we get to a multiply. 1902 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1903 ++Idx; 1904 1905 // If there are mul operands inline them all into this expression. 1906 if (Idx < Ops.size()) { 1907 bool DeletedMul = false; 1908 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1909 // If we have an mul, expand the mul operands onto the end of the operands 1910 // list. 1911 Ops.erase(Ops.begin()+Idx); 1912 Ops.append(Mul->op_begin(), Mul->op_end()); 1913 DeletedMul = true; 1914 } 1915 1916 // If we deleted at least one mul, we added operands to the end of the list, 1917 // and they are not necessarily sorted. Recurse to resort and resimplify 1918 // any operands we just acquired. 1919 if (DeletedMul) 1920 return getMulExpr(Ops); 1921 } 1922 1923 // If there are any add recurrences in the operands list, see if any other 1924 // added values are loop invariant. If so, we can fold them into the 1925 // recurrence. 1926 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1927 ++Idx; 1928 1929 // Scan over all recurrences, trying to fold loop invariants into them. 1930 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1931 // Scan all of the other operands to this mul and add them to the vector if 1932 // they are loop invariant w.r.t. the recurrence. 1933 SmallVector<const SCEV *, 8> LIOps; 1934 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1935 const Loop *AddRecLoop = AddRec->getLoop(); 1936 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1937 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1938 LIOps.push_back(Ops[i]); 1939 Ops.erase(Ops.begin()+i); 1940 --i; --e; 1941 } 1942 1943 // If we found some loop invariants, fold them into the recurrence. 1944 if (!LIOps.empty()) { 1945 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1946 SmallVector<const SCEV *, 4> NewOps; 1947 NewOps.reserve(AddRec->getNumOperands()); 1948 const SCEV *Scale = getMulExpr(LIOps); 1949 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1950 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1951 1952 // Build the new addrec. Propagate the NUW and NSW flags if both the 1953 // outer mul and the inner addrec are guaranteed to have no overflow. 1954 // 1955 // No self-wrap cannot be guaranteed after changing the step size, but 1956 // will be inferred if either NUW or NSW is true. 1957 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 1958 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 1959 1960 // If all of the other operands were loop invariant, we are done. 1961 if (Ops.size() == 1) return NewRec; 1962 1963 // Otherwise, multiply the folded AddRec by the non-invariant parts. 1964 for (unsigned i = 0;; ++i) 1965 if (Ops[i] == AddRec) { 1966 Ops[i] = NewRec; 1967 break; 1968 } 1969 return getMulExpr(Ops); 1970 } 1971 1972 // Okay, if there weren't any loop invariants to be folded, check to see if 1973 // there are multiple AddRec's with the same loop induction variable being 1974 // multiplied together. If so, we can fold them. 1975 for (unsigned OtherIdx = Idx+1; 1976 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1977 ++OtherIdx) 1978 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1979 // {A,+,B}<L> * {C,+,D}<L> --> {A*C,+,A*D + B*C + B*D,+,2*B*D}<L> 1980 // 1981 // {A,+,B} * {C,+,D} = A+It*B * C+It*D = A*C + (A*D + B*C)*It + B*D*It^2 1982 // Given an equation of the form x + y*It + z*It^2 (above), we want to 1983 // express it in terms of {X,+,Y,+,Z}. 1984 // {X,+,Y,+,Z} = X + Y*It + Z*(It^2 - It)/2. 1985 // Rearranging, X = x, Y = x+y, Z = 2z. 1986 // 1987 // x = A*C, y = (A*D + B*C), z = B*D. 1988 // Therefore X = A*C, Y = (A*D + B*C) - B*D and Z = 2*B*D. 1989 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1990 ++OtherIdx) 1991 if (const SCEVAddRecExpr *OtherAddRec = 1992 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1993 if (OtherAddRec->getLoop() == AddRecLoop) { 1994 const SCEV *A = AddRec->getStart(); 1995 const SCEV *B = AddRec->getStepRecurrence(*this); 1996 const SCEV *C = OtherAddRec->getStart(); 1997 const SCEV *D = OtherAddRec->getStepRecurrence(*this); 1998 const SCEV *NewStart = getMulExpr(A, C); 1999 const SCEV *BD = getMulExpr(B, D); 2000 const SCEV *NewStep = getAddExpr(getMulExpr(A, D), 2001 getMulExpr(B, C), 2002 getNegativeSCEV(BD)); 2003 const SCEV *NewSecondOrderStep = 2004 getMulExpr(BD, getConstant(BD->getType(), 2)); 2005 2006 SmallVector<const SCEV *, 3> AddRecOps; 2007 AddRecOps.push_back(NewStart); 2008 AddRecOps.push_back(NewStep); 2009 AddRecOps.push_back(NewSecondOrderStep); 2010 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, 2011 AddRec->getLoop(), 2012 SCEV::FlagAnyWrap); 2013 if (Ops.size() == 2) return NewAddRec; 2014 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec); 2015 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2016 } 2017 return getMulExpr(Ops); 2018 } 2019 2020 // Otherwise couldn't fold anything into this recurrence. Move onto the 2021 // next one. 2022 } 2023 2024 // Okay, it looks like we really DO need an mul expr. Check to see if we 2025 // already have one, otherwise create a new one. 2026 FoldingSetNodeID ID; 2027 ID.AddInteger(scMulExpr); 2028 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2029 ID.AddPointer(Ops[i]); 2030 void *IP = 0; 2031 SCEVMulExpr *S = 2032 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2033 if (!S) { 2034 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2035 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2036 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2037 O, Ops.size()); 2038 UniqueSCEVs.InsertNode(S, IP); 2039 } 2040 S->setNoWrapFlags(Flags); 2041 return S; 2042 } 2043 2044 /// getUDivExpr - Get a canonical unsigned division expression, or something 2045 /// simpler if possible. 2046 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2047 const SCEV *RHS) { 2048 assert(getEffectiveSCEVType(LHS->getType()) == 2049 getEffectiveSCEVType(RHS->getType()) && 2050 "SCEVUDivExpr operand types don't match!"); 2051 2052 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2053 if (RHSC->getValue()->equalsInt(1)) 2054 return LHS; // X udiv 1 --> x 2055 // If the denominator is zero, the result of the udiv is undefined. Don't 2056 // try to analyze it, because the resolution chosen here may differ from 2057 // the resolution chosen in other parts of the compiler. 2058 if (!RHSC->getValue()->isZero()) { 2059 // Determine if the division can be folded into the operands of 2060 // its operands. 2061 // TODO: Generalize this to non-constants by using known-bits information. 2062 Type *Ty = LHS->getType(); 2063 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2064 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2065 // For non-power-of-two values, effectively round the value up to the 2066 // nearest power of two. 2067 if (!RHSC->getValue()->getValue().isPowerOf2()) 2068 ++MaxShiftAmt; 2069 IntegerType *ExtTy = 2070 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2071 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2072 if (const SCEVConstant *Step = 2073 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2074 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2075 const APInt &StepInt = Step->getValue()->getValue(); 2076 const APInt &DivInt = RHSC->getValue()->getValue(); 2077 if (!StepInt.urem(DivInt) && 2078 getZeroExtendExpr(AR, ExtTy) == 2079 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2080 getZeroExtendExpr(Step, ExtTy), 2081 AR->getLoop(), SCEV::FlagAnyWrap)) { 2082 SmallVector<const SCEV *, 4> Operands; 2083 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2084 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2085 return getAddRecExpr(Operands, AR->getLoop(), 2086 SCEV::FlagNW); 2087 } 2088 /// Get a canonical UDivExpr for a recurrence. 2089 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2090 // We can currently only fold X%N if X is constant. 2091 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2092 if (StartC && !DivInt.urem(StepInt) && 2093 getZeroExtendExpr(AR, ExtTy) == 2094 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2095 getZeroExtendExpr(Step, ExtTy), 2096 AR->getLoop(), SCEV::FlagAnyWrap)) { 2097 const APInt &StartInt = StartC->getValue()->getValue(); 2098 const APInt &StartRem = StartInt.urem(StepInt); 2099 if (StartRem != 0) 2100 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2101 AR->getLoop(), SCEV::FlagNW); 2102 } 2103 } 2104 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2105 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2106 SmallVector<const SCEV *, 4> Operands; 2107 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2108 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2109 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2110 // Find an operand that's safely divisible. 2111 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2112 const SCEV *Op = M->getOperand(i); 2113 const SCEV *Div = getUDivExpr(Op, RHSC); 2114 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2115 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2116 M->op_end()); 2117 Operands[i] = Div; 2118 return getMulExpr(Operands); 2119 } 2120 } 2121 } 2122 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2123 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2124 SmallVector<const SCEV *, 4> Operands; 2125 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2126 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2127 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2128 Operands.clear(); 2129 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2130 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2131 if (isa<SCEVUDivExpr>(Op) || 2132 getMulExpr(Op, RHS) != A->getOperand(i)) 2133 break; 2134 Operands.push_back(Op); 2135 } 2136 if (Operands.size() == A->getNumOperands()) 2137 return getAddExpr(Operands); 2138 } 2139 } 2140 2141 // Fold if both operands are constant. 2142 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2143 Constant *LHSCV = LHSC->getValue(); 2144 Constant *RHSCV = RHSC->getValue(); 2145 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2146 RHSCV))); 2147 } 2148 } 2149 } 2150 2151 FoldingSetNodeID ID; 2152 ID.AddInteger(scUDivExpr); 2153 ID.AddPointer(LHS); 2154 ID.AddPointer(RHS); 2155 void *IP = 0; 2156 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2157 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2158 LHS, RHS); 2159 UniqueSCEVs.InsertNode(S, IP); 2160 return S; 2161 } 2162 2163 2164 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2165 /// Simplify the expression as much as possible. 2166 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2167 const Loop *L, 2168 SCEV::NoWrapFlags Flags) { 2169 SmallVector<const SCEV *, 4> Operands; 2170 Operands.push_back(Start); 2171 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2172 if (StepChrec->getLoop() == L) { 2173 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2174 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2175 } 2176 2177 Operands.push_back(Step); 2178 return getAddRecExpr(Operands, L, Flags); 2179 } 2180 2181 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2182 /// Simplify the expression as much as possible. 2183 const SCEV * 2184 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2185 const Loop *L, SCEV::NoWrapFlags Flags) { 2186 if (Operands.size() == 1) return Operands[0]; 2187 #ifndef NDEBUG 2188 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2189 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2190 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2191 "SCEVAddRecExpr operand types don't match!"); 2192 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2193 assert(isLoopInvariant(Operands[i], L) && 2194 "SCEVAddRecExpr operand is not loop-invariant!"); 2195 #endif 2196 2197 if (Operands.back()->isZero()) { 2198 Operands.pop_back(); 2199 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2200 } 2201 2202 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2203 // use that information to infer NUW and NSW flags. However, computing a 2204 // BE count requires calling getAddRecExpr, so we may not yet have a 2205 // meaningful BE count at this point (and if we don't, we'd be stuck 2206 // with a SCEVCouldNotCompute as the cached BE count). 2207 2208 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2209 // And vice-versa. 2210 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2211 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2212 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2213 bool All = true; 2214 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2215 E = Operands.end(); I != E; ++I) 2216 if (!isKnownNonNegative(*I)) { 2217 All = false; 2218 break; 2219 } 2220 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2221 } 2222 2223 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2224 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2225 const Loop *NestedLoop = NestedAR->getLoop(); 2226 if (L->contains(NestedLoop) ? 2227 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2228 (!NestedLoop->contains(L) && 2229 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2230 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2231 NestedAR->op_end()); 2232 Operands[0] = NestedAR->getStart(); 2233 // AddRecs require their operands be loop-invariant with respect to their 2234 // loops. Don't perform this transformation if it would break this 2235 // requirement. 2236 bool AllInvariant = true; 2237 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2238 if (!isLoopInvariant(Operands[i], L)) { 2239 AllInvariant = false; 2240 break; 2241 } 2242 if (AllInvariant) { 2243 // Create a recurrence for the outer loop with the same step size. 2244 // 2245 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2246 // inner recurrence has the same property. 2247 SCEV::NoWrapFlags OuterFlags = 2248 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2249 2250 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2251 AllInvariant = true; 2252 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2253 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2254 AllInvariant = false; 2255 break; 2256 } 2257 if (AllInvariant) { 2258 // Ok, both add recurrences are valid after the transformation. 2259 // 2260 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2261 // the outer recurrence has the same property. 2262 SCEV::NoWrapFlags InnerFlags = 2263 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2264 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2265 } 2266 } 2267 // Reset Operands to its original state. 2268 Operands[0] = NestedAR; 2269 } 2270 } 2271 2272 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2273 // already have one, otherwise create a new one. 2274 FoldingSetNodeID ID; 2275 ID.AddInteger(scAddRecExpr); 2276 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2277 ID.AddPointer(Operands[i]); 2278 ID.AddPointer(L); 2279 void *IP = 0; 2280 SCEVAddRecExpr *S = 2281 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2282 if (!S) { 2283 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2284 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2285 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2286 O, Operands.size(), L); 2287 UniqueSCEVs.InsertNode(S, IP); 2288 } 2289 S->setNoWrapFlags(Flags); 2290 return S; 2291 } 2292 2293 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2294 const SCEV *RHS) { 2295 SmallVector<const SCEV *, 2> Ops; 2296 Ops.push_back(LHS); 2297 Ops.push_back(RHS); 2298 return getSMaxExpr(Ops); 2299 } 2300 2301 const SCEV * 2302 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2303 assert(!Ops.empty() && "Cannot get empty smax!"); 2304 if (Ops.size() == 1) return Ops[0]; 2305 #ifndef NDEBUG 2306 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2307 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2308 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2309 "SCEVSMaxExpr operand types don't match!"); 2310 #endif 2311 2312 // Sort by complexity, this groups all similar expression types together. 2313 GroupByComplexity(Ops, LI); 2314 2315 // If there are any constants, fold them together. 2316 unsigned Idx = 0; 2317 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2318 ++Idx; 2319 assert(Idx < Ops.size()); 2320 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2321 // We found two constants, fold them together! 2322 ConstantInt *Fold = ConstantInt::get(getContext(), 2323 APIntOps::smax(LHSC->getValue()->getValue(), 2324 RHSC->getValue()->getValue())); 2325 Ops[0] = getConstant(Fold); 2326 Ops.erase(Ops.begin()+1); // Erase the folded element 2327 if (Ops.size() == 1) return Ops[0]; 2328 LHSC = cast<SCEVConstant>(Ops[0]); 2329 } 2330 2331 // If we are left with a constant minimum-int, strip it off. 2332 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2333 Ops.erase(Ops.begin()); 2334 --Idx; 2335 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2336 // If we have an smax with a constant maximum-int, it will always be 2337 // maximum-int. 2338 return Ops[0]; 2339 } 2340 2341 if (Ops.size() == 1) return Ops[0]; 2342 } 2343 2344 // Find the first SMax 2345 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2346 ++Idx; 2347 2348 // Check to see if one of the operands is an SMax. If so, expand its operands 2349 // onto our operand list, and recurse to simplify. 2350 if (Idx < Ops.size()) { 2351 bool DeletedSMax = false; 2352 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2353 Ops.erase(Ops.begin()+Idx); 2354 Ops.append(SMax->op_begin(), SMax->op_end()); 2355 DeletedSMax = true; 2356 } 2357 2358 if (DeletedSMax) 2359 return getSMaxExpr(Ops); 2360 } 2361 2362 // Okay, check to see if the same value occurs in the operand list twice. If 2363 // so, delete one. Since we sorted the list, these values are required to 2364 // be adjacent. 2365 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2366 // X smax Y smax Y --> X smax Y 2367 // X smax Y --> X, if X is always greater than Y 2368 if (Ops[i] == Ops[i+1] || 2369 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2370 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2371 --i; --e; 2372 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2373 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2374 --i; --e; 2375 } 2376 2377 if (Ops.size() == 1) return Ops[0]; 2378 2379 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2380 2381 // Okay, it looks like we really DO need an smax expr. Check to see if we 2382 // already have one, otherwise create a new one. 2383 FoldingSetNodeID ID; 2384 ID.AddInteger(scSMaxExpr); 2385 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2386 ID.AddPointer(Ops[i]); 2387 void *IP = 0; 2388 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2389 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2390 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2391 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2392 O, Ops.size()); 2393 UniqueSCEVs.InsertNode(S, IP); 2394 return S; 2395 } 2396 2397 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2398 const SCEV *RHS) { 2399 SmallVector<const SCEV *, 2> Ops; 2400 Ops.push_back(LHS); 2401 Ops.push_back(RHS); 2402 return getUMaxExpr(Ops); 2403 } 2404 2405 const SCEV * 2406 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2407 assert(!Ops.empty() && "Cannot get empty umax!"); 2408 if (Ops.size() == 1) return Ops[0]; 2409 #ifndef NDEBUG 2410 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2411 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2412 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2413 "SCEVUMaxExpr operand types don't match!"); 2414 #endif 2415 2416 // Sort by complexity, this groups all similar expression types together. 2417 GroupByComplexity(Ops, LI); 2418 2419 // If there are any constants, fold them together. 2420 unsigned Idx = 0; 2421 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2422 ++Idx; 2423 assert(Idx < Ops.size()); 2424 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2425 // We found two constants, fold them together! 2426 ConstantInt *Fold = ConstantInt::get(getContext(), 2427 APIntOps::umax(LHSC->getValue()->getValue(), 2428 RHSC->getValue()->getValue())); 2429 Ops[0] = getConstant(Fold); 2430 Ops.erase(Ops.begin()+1); // Erase the folded element 2431 if (Ops.size() == 1) return Ops[0]; 2432 LHSC = cast<SCEVConstant>(Ops[0]); 2433 } 2434 2435 // If we are left with a constant minimum-int, strip it off. 2436 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2437 Ops.erase(Ops.begin()); 2438 --Idx; 2439 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2440 // If we have an umax with a constant maximum-int, it will always be 2441 // maximum-int. 2442 return Ops[0]; 2443 } 2444 2445 if (Ops.size() == 1) return Ops[0]; 2446 } 2447 2448 // Find the first UMax 2449 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2450 ++Idx; 2451 2452 // Check to see if one of the operands is a UMax. If so, expand its operands 2453 // onto our operand list, and recurse to simplify. 2454 if (Idx < Ops.size()) { 2455 bool DeletedUMax = false; 2456 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2457 Ops.erase(Ops.begin()+Idx); 2458 Ops.append(UMax->op_begin(), UMax->op_end()); 2459 DeletedUMax = true; 2460 } 2461 2462 if (DeletedUMax) 2463 return getUMaxExpr(Ops); 2464 } 2465 2466 // Okay, check to see if the same value occurs in the operand list twice. If 2467 // so, delete one. Since we sorted the list, these values are required to 2468 // be adjacent. 2469 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2470 // X umax Y umax Y --> X umax Y 2471 // X umax Y --> X, if X is always greater than Y 2472 if (Ops[i] == Ops[i+1] || 2473 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2474 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2475 --i; --e; 2476 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2477 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2478 --i; --e; 2479 } 2480 2481 if (Ops.size() == 1) return Ops[0]; 2482 2483 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2484 2485 // Okay, it looks like we really DO need a umax expr. Check to see if we 2486 // already have one, otherwise create a new one. 2487 FoldingSetNodeID ID; 2488 ID.AddInteger(scUMaxExpr); 2489 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2490 ID.AddPointer(Ops[i]); 2491 void *IP = 0; 2492 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2493 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2494 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2495 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2496 O, Ops.size()); 2497 UniqueSCEVs.InsertNode(S, IP); 2498 return S; 2499 } 2500 2501 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2502 const SCEV *RHS) { 2503 // ~smax(~x, ~y) == smin(x, y). 2504 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2505 } 2506 2507 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2508 const SCEV *RHS) { 2509 // ~umax(~x, ~y) == umin(x, y) 2510 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2511 } 2512 2513 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) { 2514 // If we have TargetData, we can bypass creating a target-independent 2515 // constant expression and then folding it back into a ConstantInt. 2516 // This is just a compile-time optimization. 2517 if (TD) 2518 return getConstant(TD->getIntPtrType(getContext()), 2519 TD->getTypeAllocSize(AllocTy)); 2520 2521 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2522 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2523 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2524 C = Folded; 2525 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2526 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2527 } 2528 2529 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) { 2530 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2531 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2532 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2533 C = Folded; 2534 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2535 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2536 } 2537 2538 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy, 2539 unsigned FieldNo) { 2540 // If we have TargetData, we can bypass creating a target-independent 2541 // constant expression and then folding it back into a ConstantInt. 2542 // This is just a compile-time optimization. 2543 if (TD) 2544 return getConstant(TD->getIntPtrType(getContext()), 2545 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2546 2547 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2548 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2549 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2550 C = Folded; 2551 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2552 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2553 } 2554 2555 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy, 2556 Constant *FieldNo) { 2557 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2558 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2559 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2560 C = Folded; 2561 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2562 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2563 } 2564 2565 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2566 // Don't attempt to do anything other than create a SCEVUnknown object 2567 // here. createSCEV only calls getUnknown after checking for all other 2568 // interesting possibilities, and any other code that calls getUnknown 2569 // is doing so in order to hide a value from SCEV canonicalization. 2570 2571 FoldingSetNodeID ID; 2572 ID.AddInteger(scUnknown); 2573 ID.AddPointer(V); 2574 void *IP = 0; 2575 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2576 assert(cast<SCEVUnknown>(S)->getValue() == V && 2577 "Stale SCEVUnknown in uniquing map!"); 2578 return S; 2579 } 2580 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2581 FirstUnknown); 2582 FirstUnknown = cast<SCEVUnknown>(S); 2583 UniqueSCEVs.InsertNode(S, IP); 2584 return S; 2585 } 2586 2587 //===----------------------------------------------------------------------===// 2588 // Basic SCEV Analysis and PHI Idiom Recognition Code 2589 // 2590 2591 /// isSCEVable - Test if values of the given type are analyzable within 2592 /// the SCEV framework. This primarily includes integer types, and it 2593 /// can optionally include pointer types if the ScalarEvolution class 2594 /// has access to target-specific information. 2595 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2596 // Integers and pointers are always SCEVable. 2597 return Ty->isIntegerTy() || Ty->isPointerTy(); 2598 } 2599 2600 /// getTypeSizeInBits - Return the size in bits of the specified type, 2601 /// for which isSCEVable must return true. 2602 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2603 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2604 2605 // If we have a TargetData, use it! 2606 if (TD) 2607 return TD->getTypeSizeInBits(Ty); 2608 2609 // Integer types have fixed sizes. 2610 if (Ty->isIntegerTy()) 2611 return Ty->getPrimitiveSizeInBits(); 2612 2613 // The only other support type is pointer. Without TargetData, conservatively 2614 // assume pointers are 64-bit. 2615 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2616 return 64; 2617 } 2618 2619 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2620 /// the given type and which represents how SCEV will treat the given 2621 /// type, for which isSCEVable must return true. For pointer types, 2622 /// this is the pointer-sized integer type. 2623 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2624 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2625 2626 if (Ty->isIntegerTy()) 2627 return Ty; 2628 2629 // The only other support type is pointer. 2630 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2631 if (TD) return TD->getIntPtrType(getContext()); 2632 2633 // Without TargetData, conservatively assume pointers are 64-bit. 2634 return Type::getInt64Ty(getContext()); 2635 } 2636 2637 const SCEV *ScalarEvolution::getCouldNotCompute() { 2638 return &CouldNotCompute; 2639 } 2640 2641 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2642 /// expression and create a new one. 2643 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2644 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2645 2646 ValueExprMapType::const_iterator I = ValueExprMap.find(V); 2647 if (I != ValueExprMap.end()) return I->second; 2648 const SCEV *S = createSCEV(V); 2649 2650 // The process of creating a SCEV for V may have caused other SCEVs 2651 // to have been created, so it's necessary to insert the new entry 2652 // from scratch, rather than trying to remember the insert position 2653 // above. 2654 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2655 return S; 2656 } 2657 2658 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2659 /// 2660 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2661 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2662 return getConstant( 2663 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2664 2665 Type *Ty = V->getType(); 2666 Ty = getEffectiveSCEVType(Ty); 2667 return getMulExpr(V, 2668 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2669 } 2670 2671 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2672 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2673 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2674 return getConstant( 2675 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2676 2677 Type *Ty = V->getType(); 2678 Ty = getEffectiveSCEVType(Ty); 2679 const SCEV *AllOnes = 2680 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2681 return getMinusSCEV(AllOnes, V); 2682 } 2683 2684 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2685 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2686 SCEV::NoWrapFlags Flags) { 2687 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2688 2689 // Fast path: X - X --> 0. 2690 if (LHS == RHS) 2691 return getConstant(LHS->getType(), 0); 2692 2693 // X - Y --> X + -Y 2694 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2695 } 2696 2697 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2698 /// input value to the specified type. If the type must be extended, it is zero 2699 /// extended. 2700 const SCEV * 2701 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2702 Type *SrcTy = V->getType(); 2703 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2704 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2705 "Cannot truncate or zero extend with non-integer arguments!"); 2706 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2707 return V; // No conversion 2708 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2709 return getTruncateExpr(V, Ty); 2710 return getZeroExtendExpr(V, Ty); 2711 } 2712 2713 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2714 /// input value to the specified type. If the type must be extended, it is sign 2715 /// extended. 2716 const SCEV * 2717 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2718 Type *Ty) { 2719 Type *SrcTy = V->getType(); 2720 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2721 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2722 "Cannot truncate or zero extend with non-integer arguments!"); 2723 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2724 return V; // No conversion 2725 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2726 return getTruncateExpr(V, Ty); 2727 return getSignExtendExpr(V, Ty); 2728 } 2729 2730 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2731 /// input value to the specified type. If the type must be extended, it is zero 2732 /// extended. The conversion must not be narrowing. 2733 const SCEV * 2734 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2735 Type *SrcTy = V->getType(); 2736 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2737 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2738 "Cannot noop or zero extend with non-integer arguments!"); 2739 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2740 "getNoopOrZeroExtend cannot truncate!"); 2741 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2742 return V; // No conversion 2743 return getZeroExtendExpr(V, Ty); 2744 } 2745 2746 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2747 /// input value to the specified type. If the type must be extended, it is sign 2748 /// extended. The conversion must not be narrowing. 2749 const SCEV * 2750 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2751 Type *SrcTy = V->getType(); 2752 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2753 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2754 "Cannot noop or sign extend with non-integer arguments!"); 2755 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2756 "getNoopOrSignExtend cannot truncate!"); 2757 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2758 return V; // No conversion 2759 return getSignExtendExpr(V, Ty); 2760 } 2761 2762 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2763 /// the input value to the specified type. If the type must be extended, 2764 /// it is extended with unspecified bits. The conversion must not be 2765 /// narrowing. 2766 const SCEV * 2767 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2768 Type *SrcTy = V->getType(); 2769 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2770 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2771 "Cannot noop or any extend with non-integer arguments!"); 2772 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2773 "getNoopOrAnyExtend cannot truncate!"); 2774 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2775 return V; // No conversion 2776 return getAnyExtendExpr(V, Ty); 2777 } 2778 2779 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2780 /// input value to the specified type. The conversion must not be widening. 2781 const SCEV * 2782 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2783 Type *SrcTy = V->getType(); 2784 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2785 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2786 "Cannot truncate or noop with non-integer arguments!"); 2787 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2788 "getTruncateOrNoop cannot extend!"); 2789 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2790 return V; // No conversion 2791 return getTruncateExpr(V, Ty); 2792 } 2793 2794 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2795 /// the types using zero-extension, and then perform a umax operation 2796 /// with them. 2797 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2798 const SCEV *RHS) { 2799 const SCEV *PromotedLHS = LHS; 2800 const SCEV *PromotedRHS = RHS; 2801 2802 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2803 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2804 else 2805 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2806 2807 return getUMaxExpr(PromotedLHS, PromotedRHS); 2808 } 2809 2810 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2811 /// the types using zero-extension, and then perform a umin operation 2812 /// with them. 2813 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2814 const SCEV *RHS) { 2815 const SCEV *PromotedLHS = LHS; 2816 const SCEV *PromotedRHS = RHS; 2817 2818 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2819 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2820 else 2821 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2822 2823 return getUMinExpr(PromotedLHS, PromotedRHS); 2824 } 2825 2826 /// getPointerBase - Transitively follow the chain of pointer-type operands 2827 /// until reaching a SCEV that does not have a single pointer operand. This 2828 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 2829 /// but corner cases do exist. 2830 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 2831 // A pointer operand may evaluate to a nonpointer expression, such as null. 2832 if (!V->getType()->isPointerTy()) 2833 return V; 2834 2835 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 2836 return getPointerBase(Cast->getOperand()); 2837 } 2838 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 2839 const SCEV *PtrOp = 0; 2840 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 2841 I != E; ++I) { 2842 if ((*I)->getType()->isPointerTy()) { 2843 // Cannot find the base of an expression with multiple pointer operands. 2844 if (PtrOp) 2845 return V; 2846 PtrOp = *I; 2847 } 2848 } 2849 if (!PtrOp) 2850 return V; 2851 return getPointerBase(PtrOp); 2852 } 2853 return V; 2854 } 2855 2856 /// PushDefUseChildren - Push users of the given Instruction 2857 /// onto the given Worklist. 2858 static void 2859 PushDefUseChildren(Instruction *I, 2860 SmallVectorImpl<Instruction *> &Worklist) { 2861 // Push the def-use children onto the Worklist stack. 2862 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2863 UI != UE; ++UI) 2864 Worklist.push_back(cast<Instruction>(*UI)); 2865 } 2866 2867 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2868 /// instructions that depend on the given instruction and removes them from 2869 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2870 /// resolution. 2871 void 2872 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2873 SmallVector<Instruction *, 16> Worklist; 2874 PushDefUseChildren(PN, Worklist); 2875 2876 SmallPtrSet<Instruction *, 8> Visited; 2877 Visited.insert(PN); 2878 while (!Worklist.empty()) { 2879 Instruction *I = Worklist.pop_back_val(); 2880 if (!Visited.insert(I)) continue; 2881 2882 ValueExprMapType::iterator It = 2883 ValueExprMap.find(static_cast<Value *>(I)); 2884 if (It != ValueExprMap.end()) { 2885 const SCEV *Old = It->second; 2886 2887 // Short-circuit the def-use traversal if the symbolic name 2888 // ceases to appear in expressions. 2889 if (Old != SymName && !hasOperand(Old, SymName)) 2890 continue; 2891 2892 // SCEVUnknown for a PHI either means that it has an unrecognized 2893 // structure, it's a PHI that's in the progress of being computed 2894 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2895 // additional loop trip count information isn't going to change anything. 2896 // In the second case, createNodeForPHI will perform the necessary 2897 // updates on its own when it gets to that point. In the third, we do 2898 // want to forget the SCEVUnknown. 2899 if (!isa<PHINode>(I) || 2900 !isa<SCEVUnknown>(Old) || 2901 (I != PN && Old == SymName)) { 2902 forgetMemoizedResults(Old); 2903 ValueExprMap.erase(It); 2904 } 2905 } 2906 2907 PushDefUseChildren(I, Worklist); 2908 } 2909 } 2910 2911 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2912 /// a loop header, making it a potential recurrence, or it doesn't. 2913 /// 2914 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2915 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2916 if (L->getHeader() == PN->getParent()) { 2917 // The loop may have multiple entrances or multiple exits; we can analyze 2918 // this phi as an addrec if it has a unique entry value and a unique 2919 // backedge value. 2920 Value *BEValueV = 0, *StartValueV = 0; 2921 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2922 Value *V = PN->getIncomingValue(i); 2923 if (L->contains(PN->getIncomingBlock(i))) { 2924 if (!BEValueV) { 2925 BEValueV = V; 2926 } else if (BEValueV != V) { 2927 BEValueV = 0; 2928 break; 2929 } 2930 } else if (!StartValueV) { 2931 StartValueV = V; 2932 } else if (StartValueV != V) { 2933 StartValueV = 0; 2934 break; 2935 } 2936 } 2937 if (BEValueV && StartValueV) { 2938 // While we are analyzing this PHI node, handle its value symbolically. 2939 const SCEV *SymbolicName = getUnknown(PN); 2940 assert(ValueExprMap.find(PN) == ValueExprMap.end() && 2941 "PHI node already processed?"); 2942 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2943 2944 // Using this symbolic name for the PHI, analyze the value coming around 2945 // the back-edge. 2946 const SCEV *BEValue = getSCEV(BEValueV); 2947 2948 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2949 // has a special value for the first iteration of the loop. 2950 2951 // If the value coming around the backedge is an add with the symbolic 2952 // value we just inserted, then we found a simple induction variable! 2953 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2954 // If there is a single occurrence of the symbolic value, replace it 2955 // with a recurrence. 2956 unsigned FoundIndex = Add->getNumOperands(); 2957 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2958 if (Add->getOperand(i) == SymbolicName) 2959 if (FoundIndex == e) { 2960 FoundIndex = i; 2961 break; 2962 } 2963 2964 if (FoundIndex != Add->getNumOperands()) { 2965 // Create an add with everything but the specified operand. 2966 SmallVector<const SCEV *, 8> Ops; 2967 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2968 if (i != FoundIndex) 2969 Ops.push_back(Add->getOperand(i)); 2970 const SCEV *Accum = getAddExpr(Ops); 2971 2972 // This is not a valid addrec if the step amount is varying each 2973 // loop iteration, but is not itself an addrec in this loop. 2974 if (isLoopInvariant(Accum, L) || 2975 (isa<SCEVAddRecExpr>(Accum) && 2976 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2977 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 2978 2979 // If the increment doesn't overflow, then neither the addrec nor 2980 // the post-increment will overflow. 2981 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2982 if (OBO->hasNoUnsignedWrap()) 2983 Flags = setFlags(Flags, SCEV::FlagNUW); 2984 if (OBO->hasNoSignedWrap()) 2985 Flags = setFlags(Flags, SCEV::FlagNSW); 2986 } else if (const GEPOperator *GEP = 2987 dyn_cast<GEPOperator>(BEValueV)) { 2988 // If the increment is an inbounds GEP, then we know the address 2989 // space cannot be wrapped around. We cannot make any guarantee 2990 // about signed or unsigned overflow because pointers are 2991 // unsigned but we may have a negative index from the base 2992 // pointer. 2993 if (GEP->isInBounds()) 2994 Flags = setFlags(Flags, SCEV::FlagNW); 2995 } 2996 2997 const SCEV *StartVal = getSCEV(StartValueV); 2998 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 2999 3000 // Since the no-wrap flags are on the increment, they apply to the 3001 // post-incremented value as well. 3002 if (isLoopInvariant(Accum, L)) 3003 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3004 Accum, L, Flags); 3005 3006 // Okay, for the entire analysis of this edge we assumed the PHI 3007 // to be symbolic. We now need to go back and purge all of the 3008 // entries for the scalars that use the symbolic expression. 3009 ForgetSymbolicName(PN, SymbolicName); 3010 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3011 return PHISCEV; 3012 } 3013 } 3014 } else if (const SCEVAddRecExpr *AddRec = 3015 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3016 // Otherwise, this could be a loop like this: 3017 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3018 // In this case, j = {1,+,1} and BEValue is j. 3019 // Because the other in-value of i (0) fits the evolution of BEValue 3020 // i really is an addrec evolution. 3021 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3022 const SCEV *StartVal = getSCEV(StartValueV); 3023 3024 // If StartVal = j.start - j.stride, we can use StartVal as the 3025 // initial step of the addrec evolution. 3026 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3027 AddRec->getOperand(1))) { 3028 // FIXME: For constant StartVal, we should be able to infer 3029 // no-wrap flags. 3030 const SCEV *PHISCEV = 3031 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3032 SCEV::FlagAnyWrap); 3033 3034 // Okay, for the entire analysis of this edge we assumed the PHI 3035 // to be symbolic. We now need to go back and purge all of the 3036 // entries for the scalars that use the symbolic expression. 3037 ForgetSymbolicName(PN, SymbolicName); 3038 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3039 return PHISCEV; 3040 } 3041 } 3042 } 3043 } 3044 } 3045 3046 // If the PHI has a single incoming value, follow that value, unless the 3047 // PHI's incoming blocks are in a different loop, in which case doing so 3048 // risks breaking LCSSA form. Instcombine would normally zap these, but 3049 // it doesn't have DominatorTree information, so it may miss cases. 3050 if (Value *V = SimplifyInstruction(PN, TD, DT)) 3051 if (LI->replacementPreservesLCSSAForm(PN, V)) 3052 return getSCEV(V); 3053 3054 // If it's not a loop phi, we can't handle it yet. 3055 return getUnknown(PN); 3056 } 3057 3058 /// createNodeForGEP - Expand GEP instructions into add and multiply 3059 /// operations. This allows them to be analyzed by regular SCEV code. 3060 /// 3061 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3062 3063 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3064 // Add expression, because the Instruction may be guarded by control flow 3065 // and the no-overflow bits may not be valid for the expression in any 3066 // context. 3067 bool isInBounds = GEP->isInBounds(); 3068 3069 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3070 Value *Base = GEP->getOperand(0); 3071 // Don't attempt to analyze GEPs over unsized objects. 3072 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 3073 return getUnknown(GEP); 3074 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3075 gep_type_iterator GTI = gep_type_begin(GEP); 3076 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 3077 E = GEP->op_end(); 3078 I != E; ++I) { 3079 Value *Index = *I; 3080 // Compute the (potentially symbolic) offset in bytes for this index. 3081 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3082 // For a struct, add the member offset. 3083 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3084 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 3085 3086 // Add the field offset to the running total offset. 3087 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3088 } else { 3089 // For an array, add the element offset, explicitly scaled. 3090 const SCEV *ElementSize = getSizeOfExpr(*GTI); 3091 const SCEV *IndexS = getSCEV(Index); 3092 // Getelementptr indices are signed. 3093 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3094 3095 // Multiply the index by the element size to compute the element offset. 3096 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, 3097 isInBounds ? SCEV::FlagNSW : 3098 SCEV::FlagAnyWrap); 3099 3100 // Add the element offset to the running total offset. 3101 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3102 } 3103 } 3104 3105 // Get the SCEV for the GEP base. 3106 const SCEV *BaseS = getSCEV(Base); 3107 3108 // Add the total offset from all the GEP indices to the base. 3109 return getAddExpr(BaseS, TotalOffset, 3110 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap); 3111 } 3112 3113 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3114 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3115 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3116 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3117 uint32_t 3118 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3119 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3120 return C->getValue()->getValue().countTrailingZeros(); 3121 3122 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3123 return std::min(GetMinTrailingZeros(T->getOperand()), 3124 (uint32_t)getTypeSizeInBits(T->getType())); 3125 3126 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3127 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3128 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3129 getTypeSizeInBits(E->getType()) : OpRes; 3130 } 3131 3132 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3133 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3134 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3135 getTypeSizeInBits(E->getType()) : OpRes; 3136 } 3137 3138 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3139 // The result is the min of all operands results. 3140 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3141 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3142 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3143 return MinOpRes; 3144 } 3145 3146 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3147 // The result is the sum of all operands results. 3148 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3149 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3150 for (unsigned i = 1, e = M->getNumOperands(); 3151 SumOpRes != BitWidth && i != e; ++i) 3152 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3153 BitWidth); 3154 return SumOpRes; 3155 } 3156 3157 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3158 // The result is the min of all operands results. 3159 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3160 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3161 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3162 return MinOpRes; 3163 } 3164 3165 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3166 // The result is the min of all operands results. 3167 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3168 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3169 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3170 return MinOpRes; 3171 } 3172 3173 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3174 // The result is the min of all operands results. 3175 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3176 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3177 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3178 return MinOpRes; 3179 } 3180 3181 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3182 // For a SCEVUnknown, ask ValueTracking. 3183 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3184 APInt Mask = APInt::getAllOnesValue(BitWidth); 3185 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3186 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 3187 return Zeros.countTrailingOnes(); 3188 } 3189 3190 // SCEVUDivExpr 3191 return 0; 3192 } 3193 3194 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3195 /// 3196 ConstantRange 3197 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3198 // See if we've computed this range already. 3199 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3200 if (I != UnsignedRanges.end()) 3201 return I->second; 3202 3203 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3204 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3205 3206 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3207 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3208 3209 // If the value has known zeros, the maximum unsigned value will have those 3210 // known zeros as well. 3211 uint32_t TZ = GetMinTrailingZeros(S); 3212 if (TZ != 0) 3213 ConservativeResult = 3214 ConstantRange(APInt::getMinValue(BitWidth), 3215 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3216 3217 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3218 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3219 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3220 X = X.add(getUnsignedRange(Add->getOperand(i))); 3221 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3222 } 3223 3224 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3225 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3226 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3227 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3228 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3229 } 3230 3231 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3232 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3233 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3234 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3235 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3236 } 3237 3238 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3239 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3240 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3241 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3242 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3243 } 3244 3245 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3246 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3247 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3248 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3249 } 3250 3251 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3252 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3253 return setUnsignedRange(ZExt, 3254 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3255 } 3256 3257 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3258 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3259 return setUnsignedRange(SExt, 3260 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3261 } 3262 3263 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3264 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3265 return setUnsignedRange(Trunc, 3266 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3267 } 3268 3269 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3270 // If there's no unsigned wrap, the value will never be less than its 3271 // initial value. 3272 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3273 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3274 if (!C->getValue()->isZero()) 3275 ConservativeResult = 3276 ConservativeResult.intersectWith( 3277 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3278 3279 // TODO: non-affine addrec 3280 if (AddRec->isAffine()) { 3281 Type *Ty = AddRec->getType(); 3282 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3283 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3284 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3285 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3286 3287 const SCEV *Start = AddRec->getStart(); 3288 const SCEV *Step = AddRec->getStepRecurrence(*this); 3289 3290 ConstantRange StartRange = getUnsignedRange(Start); 3291 ConstantRange StepRange = getSignedRange(Step); 3292 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3293 ConstantRange EndRange = 3294 StartRange.add(MaxBECountRange.multiply(StepRange)); 3295 3296 // Check for overflow. This must be done with ConstantRange arithmetic 3297 // because we could be called from within the ScalarEvolution overflow 3298 // checking code. 3299 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3300 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3301 ConstantRange ExtMaxBECountRange = 3302 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3303 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3304 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3305 ExtEndRange) 3306 return setUnsignedRange(AddRec, ConservativeResult); 3307 3308 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3309 EndRange.getUnsignedMin()); 3310 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3311 EndRange.getUnsignedMax()); 3312 if (Min.isMinValue() && Max.isMaxValue()) 3313 return setUnsignedRange(AddRec, ConservativeResult); 3314 return setUnsignedRange(AddRec, 3315 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3316 } 3317 } 3318 3319 return setUnsignedRange(AddRec, ConservativeResult); 3320 } 3321 3322 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3323 // For a SCEVUnknown, ask ValueTracking. 3324 APInt Mask = APInt::getAllOnesValue(BitWidth); 3325 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3326 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3327 if (Ones == ~Zeros + 1) 3328 return setUnsignedRange(U, ConservativeResult); 3329 return setUnsignedRange(U, 3330 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3331 } 3332 3333 return setUnsignedRange(S, ConservativeResult); 3334 } 3335 3336 /// getSignedRange - Determine the signed range for a particular SCEV. 3337 /// 3338 ConstantRange 3339 ScalarEvolution::getSignedRange(const SCEV *S) { 3340 // See if we've computed this range already. 3341 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3342 if (I != SignedRanges.end()) 3343 return I->second; 3344 3345 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3346 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3347 3348 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3349 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3350 3351 // If the value has known zeros, the maximum signed value will have those 3352 // known zeros as well. 3353 uint32_t TZ = GetMinTrailingZeros(S); 3354 if (TZ != 0) 3355 ConservativeResult = 3356 ConstantRange(APInt::getSignedMinValue(BitWidth), 3357 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3358 3359 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3360 ConstantRange X = getSignedRange(Add->getOperand(0)); 3361 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3362 X = X.add(getSignedRange(Add->getOperand(i))); 3363 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3364 } 3365 3366 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3367 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3368 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3369 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3370 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3371 } 3372 3373 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3374 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3375 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3376 X = X.smax(getSignedRange(SMax->getOperand(i))); 3377 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3378 } 3379 3380 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3381 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3382 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3383 X = X.umax(getSignedRange(UMax->getOperand(i))); 3384 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3385 } 3386 3387 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3388 ConstantRange X = getSignedRange(UDiv->getLHS()); 3389 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3390 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3391 } 3392 3393 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3394 ConstantRange X = getSignedRange(ZExt->getOperand()); 3395 return setSignedRange(ZExt, 3396 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3397 } 3398 3399 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3400 ConstantRange X = getSignedRange(SExt->getOperand()); 3401 return setSignedRange(SExt, 3402 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3403 } 3404 3405 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3406 ConstantRange X = getSignedRange(Trunc->getOperand()); 3407 return setSignedRange(Trunc, 3408 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3409 } 3410 3411 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3412 // If there's no signed wrap, and all the operands have the same sign or 3413 // zero, the value won't ever change sign. 3414 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3415 bool AllNonNeg = true; 3416 bool AllNonPos = true; 3417 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3418 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3419 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3420 } 3421 if (AllNonNeg) 3422 ConservativeResult = ConservativeResult.intersectWith( 3423 ConstantRange(APInt(BitWidth, 0), 3424 APInt::getSignedMinValue(BitWidth))); 3425 else if (AllNonPos) 3426 ConservativeResult = ConservativeResult.intersectWith( 3427 ConstantRange(APInt::getSignedMinValue(BitWidth), 3428 APInt(BitWidth, 1))); 3429 } 3430 3431 // TODO: non-affine addrec 3432 if (AddRec->isAffine()) { 3433 Type *Ty = AddRec->getType(); 3434 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3435 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3436 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3437 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3438 3439 const SCEV *Start = AddRec->getStart(); 3440 const SCEV *Step = AddRec->getStepRecurrence(*this); 3441 3442 ConstantRange StartRange = getSignedRange(Start); 3443 ConstantRange StepRange = getSignedRange(Step); 3444 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3445 ConstantRange EndRange = 3446 StartRange.add(MaxBECountRange.multiply(StepRange)); 3447 3448 // Check for overflow. This must be done with ConstantRange arithmetic 3449 // because we could be called from within the ScalarEvolution overflow 3450 // checking code. 3451 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3452 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3453 ConstantRange ExtMaxBECountRange = 3454 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3455 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3456 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3457 ExtEndRange) 3458 return setSignedRange(AddRec, ConservativeResult); 3459 3460 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3461 EndRange.getSignedMin()); 3462 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3463 EndRange.getSignedMax()); 3464 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3465 return setSignedRange(AddRec, ConservativeResult); 3466 return setSignedRange(AddRec, 3467 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3468 } 3469 } 3470 3471 return setSignedRange(AddRec, ConservativeResult); 3472 } 3473 3474 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3475 // For a SCEVUnknown, ask ValueTracking. 3476 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3477 return setSignedRange(U, ConservativeResult); 3478 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3479 if (NS == 1) 3480 return setSignedRange(U, ConservativeResult); 3481 return setSignedRange(U, ConservativeResult.intersectWith( 3482 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3483 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3484 } 3485 3486 return setSignedRange(S, ConservativeResult); 3487 } 3488 3489 /// createSCEV - We know that there is no SCEV for the specified value. 3490 /// Analyze the expression. 3491 /// 3492 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3493 if (!isSCEVable(V->getType())) 3494 return getUnknown(V); 3495 3496 unsigned Opcode = Instruction::UserOp1; 3497 if (Instruction *I = dyn_cast<Instruction>(V)) { 3498 Opcode = I->getOpcode(); 3499 3500 // Don't attempt to analyze instructions in blocks that aren't 3501 // reachable. Such instructions don't matter, and they aren't required 3502 // to obey basic rules for definitions dominating uses which this 3503 // analysis depends on. 3504 if (!DT->isReachableFromEntry(I->getParent())) 3505 return getUnknown(V); 3506 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3507 Opcode = CE->getOpcode(); 3508 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3509 return getConstant(CI); 3510 else if (isa<ConstantPointerNull>(V)) 3511 return getConstant(V->getType(), 0); 3512 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3513 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3514 else 3515 return getUnknown(V); 3516 3517 Operator *U = cast<Operator>(V); 3518 switch (Opcode) { 3519 case Instruction::Add: { 3520 // The simple thing to do would be to just call getSCEV on both operands 3521 // and call getAddExpr with the result. However if we're looking at a 3522 // bunch of things all added together, this can be quite inefficient, 3523 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3524 // Instead, gather up all the operands and make a single getAddExpr call. 3525 // LLVM IR canonical form means we need only traverse the left operands. 3526 SmallVector<const SCEV *, 4> AddOps; 3527 AddOps.push_back(getSCEV(U->getOperand(1))); 3528 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3529 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3530 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3531 break; 3532 U = cast<Operator>(Op); 3533 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3534 if (Opcode == Instruction::Sub) 3535 AddOps.push_back(getNegativeSCEV(Op1)); 3536 else 3537 AddOps.push_back(Op1); 3538 } 3539 AddOps.push_back(getSCEV(U->getOperand(0))); 3540 return getAddExpr(AddOps); 3541 } 3542 case Instruction::Mul: { 3543 // See the Add code above. 3544 SmallVector<const SCEV *, 4> MulOps; 3545 MulOps.push_back(getSCEV(U->getOperand(1))); 3546 for (Value *Op = U->getOperand(0); 3547 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3548 Op = U->getOperand(0)) { 3549 U = cast<Operator>(Op); 3550 MulOps.push_back(getSCEV(U->getOperand(1))); 3551 } 3552 MulOps.push_back(getSCEV(U->getOperand(0))); 3553 return getMulExpr(MulOps); 3554 } 3555 case Instruction::UDiv: 3556 return getUDivExpr(getSCEV(U->getOperand(0)), 3557 getSCEV(U->getOperand(1))); 3558 case Instruction::Sub: 3559 return getMinusSCEV(getSCEV(U->getOperand(0)), 3560 getSCEV(U->getOperand(1))); 3561 case Instruction::And: 3562 // For an expression like x&255 that merely masks off the high bits, 3563 // use zext(trunc(x)) as the SCEV expression. 3564 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3565 if (CI->isNullValue()) 3566 return getSCEV(U->getOperand(1)); 3567 if (CI->isAllOnesValue()) 3568 return getSCEV(U->getOperand(0)); 3569 const APInt &A = CI->getValue(); 3570 3571 // Instcombine's ShrinkDemandedConstant may strip bits out of 3572 // constants, obscuring what would otherwise be a low-bits mask. 3573 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3574 // knew about to reconstruct a low-bits mask value. 3575 unsigned LZ = A.countLeadingZeros(); 3576 unsigned BitWidth = A.getBitWidth(); 3577 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3578 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3579 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3580 3581 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3582 3583 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3584 return 3585 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3586 IntegerType::get(getContext(), BitWidth - LZ)), 3587 U->getType()); 3588 } 3589 break; 3590 3591 case Instruction::Or: 3592 // If the RHS of the Or is a constant, we may have something like: 3593 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3594 // optimizations will transparently handle this case. 3595 // 3596 // In order for this transformation to be safe, the LHS must be of the 3597 // form X*(2^n) and the Or constant must be less than 2^n. 3598 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3599 const SCEV *LHS = getSCEV(U->getOperand(0)); 3600 const APInt &CIVal = CI->getValue(); 3601 if (GetMinTrailingZeros(LHS) >= 3602 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3603 // Build a plain add SCEV. 3604 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3605 // If the LHS of the add was an addrec and it has no-wrap flags, 3606 // transfer the no-wrap flags, since an or won't introduce a wrap. 3607 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3608 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3609 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3610 OldAR->getNoWrapFlags()); 3611 } 3612 return S; 3613 } 3614 } 3615 break; 3616 case Instruction::Xor: 3617 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3618 // If the RHS of the xor is a signbit, then this is just an add. 3619 // Instcombine turns add of signbit into xor as a strength reduction step. 3620 if (CI->getValue().isSignBit()) 3621 return getAddExpr(getSCEV(U->getOperand(0)), 3622 getSCEV(U->getOperand(1))); 3623 3624 // If the RHS of xor is -1, then this is a not operation. 3625 if (CI->isAllOnesValue()) 3626 return getNotSCEV(getSCEV(U->getOperand(0))); 3627 3628 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3629 // This is a variant of the check for xor with -1, and it handles 3630 // the case where instcombine has trimmed non-demanded bits out 3631 // of an xor with -1. 3632 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3633 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3634 if (BO->getOpcode() == Instruction::And && 3635 LCI->getValue() == CI->getValue()) 3636 if (const SCEVZeroExtendExpr *Z = 3637 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3638 Type *UTy = U->getType(); 3639 const SCEV *Z0 = Z->getOperand(); 3640 Type *Z0Ty = Z0->getType(); 3641 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3642 3643 // If C is a low-bits mask, the zero extend is serving to 3644 // mask off the high bits. Complement the operand and 3645 // re-apply the zext. 3646 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3647 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3648 3649 // If C is a single bit, it may be in the sign-bit position 3650 // before the zero-extend. In this case, represent the xor 3651 // using an add, which is equivalent, and re-apply the zext. 3652 APInt Trunc = CI->getValue().trunc(Z0TySize); 3653 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3654 Trunc.isSignBit()) 3655 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3656 UTy); 3657 } 3658 } 3659 break; 3660 3661 case Instruction::Shl: 3662 // Turn shift left of a constant amount into a multiply. 3663 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3664 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3665 3666 // If the shift count is not less than the bitwidth, the result of 3667 // the shift is undefined. Don't try to analyze it, because the 3668 // resolution chosen here may differ from the resolution chosen in 3669 // other parts of the compiler. 3670 if (SA->getValue().uge(BitWidth)) 3671 break; 3672 3673 Constant *X = ConstantInt::get(getContext(), 3674 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3675 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3676 } 3677 break; 3678 3679 case Instruction::LShr: 3680 // Turn logical shift right of a constant into a unsigned divide. 3681 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3682 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3683 3684 // If the shift count is not less than the bitwidth, the result of 3685 // the shift is undefined. Don't try to analyze it, because the 3686 // resolution chosen here may differ from the resolution chosen in 3687 // other parts of the compiler. 3688 if (SA->getValue().uge(BitWidth)) 3689 break; 3690 3691 Constant *X = ConstantInt::get(getContext(), 3692 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3693 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3694 } 3695 break; 3696 3697 case Instruction::AShr: 3698 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3699 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3700 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3701 if (L->getOpcode() == Instruction::Shl && 3702 L->getOperand(1) == U->getOperand(1)) { 3703 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3704 3705 // If the shift count is not less than the bitwidth, the result of 3706 // the shift is undefined. Don't try to analyze it, because the 3707 // resolution chosen here may differ from the resolution chosen in 3708 // other parts of the compiler. 3709 if (CI->getValue().uge(BitWidth)) 3710 break; 3711 3712 uint64_t Amt = BitWidth - CI->getZExtValue(); 3713 if (Amt == BitWidth) 3714 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3715 return 3716 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3717 IntegerType::get(getContext(), 3718 Amt)), 3719 U->getType()); 3720 } 3721 break; 3722 3723 case Instruction::Trunc: 3724 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3725 3726 case Instruction::ZExt: 3727 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3728 3729 case Instruction::SExt: 3730 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3731 3732 case Instruction::BitCast: 3733 // BitCasts are no-op casts so we just eliminate the cast. 3734 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3735 return getSCEV(U->getOperand(0)); 3736 break; 3737 3738 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3739 // lead to pointer expressions which cannot safely be expanded to GEPs, 3740 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3741 // simplifying integer expressions. 3742 3743 case Instruction::GetElementPtr: 3744 return createNodeForGEP(cast<GEPOperator>(U)); 3745 3746 case Instruction::PHI: 3747 return createNodeForPHI(cast<PHINode>(U)); 3748 3749 case Instruction::Select: 3750 // This could be a smax or umax that was lowered earlier. 3751 // Try to recover it. 3752 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3753 Value *LHS = ICI->getOperand(0); 3754 Value *RHS = ICI->getOperand(1); 3755 switch (ICI->getPredicate()) { 3756 case ICmpInst::ICMP_SLT: 3757 case ICmpInst::ICMP_SLE: 3758 std::swap(LHS, RHS); 3759 // fall through 3760 case ICmpInst::ICMP_SGT: 3761 case ICmpInst::ICMP_SGE: 3762 // a >s b ? a+x : b+x -> smax(a, b)+x 3763 // a >s b ? b+x : a+x -> smin(a, b)+x 3764 if (LHS->getType() == U->getType()) { 3765 const SCEV *LS = getSCEV(LHS); 3766 const SCEV *RS = getSCEV(RHS); 3767 const SCEV *LA = getSCEV(U->getOperand(1)); 3768 const SCEV *RA = getSCEV(U->getOperand(2)); 3769 const SCEV *LDiff = getMinusSCEV(LA, LS); 3770 const SCEV *RDiff = getMinusSCEV(RA, RS); 3771 if (LDiff == RDiff) 3772 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3773 LDiff = getMinusSCEV(LA, RS); 3774 RDiff = getMinusSCEV(RA, LS); 3775 if (LDiff == RDiff) 3776 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3777 } 3778 break; 3779 case ICmpInst::ICMP_ULT: 3780 case ICmpInst::ICMP_ULE: 3781 std::swap(LHS, RHS); 3782 // fall through 3783 case ICmpInst::ICMP_UGT: 3784 case ICmpInst::ICMP_UGE: 3785 // a >u b ? a+x : b+x -> umax(a, b)+x 3786 // a >u b ? b+x : a+x -> umin(a, b)+x 3787 if (LHS->getType() == U->getType()) { 3788 const SCEV *LS = getSCEV(LHS); 3789 const SCEV *RS = getSCEV(RHS); 3790 const SCEV *LA = getSCEV(U->getOperand(1)); 3791 const SCEV *RA = getSCEV(U->getOperand(2)); 3792 const SCEV *LDiff = getMinusSCEV(LA, LS); 3793 const SCEV *RDiff = getMinusSCEV(RA, RS); 3794 if (LDiff == RDiff) 3795 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3796 LDiff = getMinusSCEV(LA, RS); 3797 RDiff = getMinusSCEV(RA, LS); 3798 if (LDiff == RDiff) 3799 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3800 } 3801 break; 3802 case ICmpInst::ICMP_NE: 3803 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3804 if (LHS->getType() == U->getType() && 3805 isa<ConstantInt>(RHS) && 3806 cast<ConstantInt>(RHS)->isZero()) { 3807 const SCEV *One = getConstant(LHS->getType(), 1); 3808 const SCEV *LS = getSCEV(LHS); 3809 const SCEV *LA = getSCEV(U->getOperand(1)); 3810 const SCEV *RA = getSCEV(U->getOperand(2)); 3811 const SCEV *LDiff = getMinusSCEV(LA, LS); 3812 const SCEV *RDiff = getMinusSCEV(RA, One); 3813 if (LDiff == RDiff) 3814 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3815 } 3816 break; 3817 case ICmpInst::ICMP_EQ: 3818 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3819 if (LHS->getType() == U->getType() && 3820 isa<ConstantInt>(RHS) && 3821 cast<ConstantInt>(RHS)->isZero()) { 3822 const SCEV *One = getConstant(LHS->getType(), 1); 3823 const SCEV *LS = getSCEV(LHS); 3824 const SCEV *LA = getSCEV(U->getOperand(1)); 3825 const SCEV *RA = getSCEV(U->getOperand(2)); 3826 const SCEV *LDiff = getMinusSCEV(LA, One); 3827 const SCEV *RDiff = getMinusSCEV(RA, LS); 3828 if (LDiff == RDiff) 3829 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3830 } 3831 break; 3832 default: 3833 break; 3834 } 3835 } 3836 3837 default: // We cannot analyze this expression. 3838 break; 3839 } 3840 3841 return getUnknown(V); 3842 } 3843 3844 3845 3846 //===----------------------------------------------------------------------===// 3847 // Iteration Count Computation Code 3848 // 3849 3850 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 3851 /// normal unsigned value, if possible. Returns 0 if the trip count is unknown 3852 /// or not constant. Will also return 0 if the maximum trip count is very large 3853 /// (>= 2^32) 3854 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 3855 BasicBlock *ExitBlock) { 3856 const SCEVConstant *ExitCount = 3857 dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock)); 3858 if (!ExitCount) 3859 return 0; 3860 3861 ConstantInt *ExitConst = ExitCount->getValue(); 3862 3863 // Guard against huge trip counts. 3864 if (ExitConst->getValue().getActiveBits() > 32) 3865 return 0; 3866 3867 // In case of integer overflow, this returns 0, which is correct. 3868 return ((unsigned)ExitConst->getZExtValue()) + 1; 3869 } 3870 3871 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 3872 /// trip count of this loop as a normal unsigned value, if possible. This 3873 /// means that the actual trip count is always a multiple of the returned 3874 /// value (don't forget the trip count could very well be zero as well!). 3875 /// 3876 /// Returns 1 if the trip count is unknown or not guaranteed to be the 3877 /// multiple of a constant (which is also the case if the trip count is simply 3878 /// constant, use getSmallConstantTripCount for that case), Will also return 1 3879 /// if the trip count is very large (>= 2^32). 3880 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 3881 BasicBlock *ExitBlock) { 3882 const SCEV *ExitCount = getExitCount(L, ExitBlock); 3883 if (ExitCount == getCouldNotCompute()) 3884 return 1; 3885 3886 // Get the trip count from the BE count by adding 1. 3887 const SCEV *TCMul = getAddExpr(ExitCount, 3888 getConstant(ExitCount->getType(), 1)); 3889 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 3890 // to factor simple cases. 3891 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 3892 TCMul = Mul->getOperand(0); 3893 3894 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 3895 if (!MulC) 3896 return 1; 3897 3898 ConstantInt *Result = MulC->getValue(); 3899 3900 // Guard against huge trip counts. 3901 if (!Result || Result->getValue().getActiveBits() > 32) 3902 return 1; 3903 3904 return (unsigned)Result->getZExtValue(); 3905 } 3906 3907 // getExitCount - Get the expression for the number of loop iterations for which 3908 // this loop is guaranteed not to exit via ExitintBlock. Otherwise return 3909 // SCEVCouldNotCompute. 3910 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 3911 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 3912 } 3913 3914 /// getBackedgeTakenCount - If the specified loop has a predictable 3915 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3916 /// object. The backedge-taken count is the number of times the loop header 3917 /// will be branched to from within the loop. This is one less than the 3918 /// trip count of the loop, since it doesn't count the first iteration, 3919 /// when the header is branched to from outside the loop. 3920 /// 3921 /// Note that it is not valid to call this method on a loop without a 3922 /// loop-invariant backedge-taken count (see 3923 /// hasLoopInvariantBackedgeTakenCount). 3924 /// 3925 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3926 return getBackedgeTakenInfo(L).getExact(this); 3927 } 3928 3929 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3930 /// return the least SCEV value that is known never to be less than the 3931 /// actual backedge taken count. 3932 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3933 return getBackedgeTakenInfo(L).getMax(this); 3934 } 3935 3936 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3937 /// onto the given Worklist. 3938 static void 3939 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3940 BasicBlock *Header = L->getHeader(); 3941 3942 // Push all Loop-header PHIs onto the Worklist stack. 3943 for (BasicBlock::iterator I = Header->begin(); 3944 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3945 Worklist.push_back(PN); 3946 } 3947 3948 const ScalarEvolution::BackedgeTakenInfo & 3949 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3950 // Initially insert an invalid entry for this loop. If the insertion 3951 // succeeds, proceed to actually compute a backedge-taken count and 3952 // update the value. The temporary CouldNotCompute value tells SCEV 3953 // code elsewhere that it shouldn't attempt to request a new 3954 // backedge-taken count, which could result in infinite recursion. 3955 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3956 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 3957 if (!Pair.second) 3958 return Pair.first->second; 3959 3960 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 3961 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 3962 // must be cleared in this scope. 3963 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 3964 3965 if (Result.getExact(this) != getCouldNotCompute()) { 3966 assert(isLoopInvariant(Result.getExact(this), L) && 3967 isLoopInvariant(Result.getMax(this), L) && 3968 "Computed backedge-taken count isn't loop invariant for loop!"); 3969 ++NumTripCountsComputed; 3970 } 3971 else if (Result.getMax(this) == getCouldNotCompute() && 3972 isa<PHINode>(L->getHeader()->begin())) { 3973 // Only count loops that have phi nodes as not being computable. 3974 ++NumTripCountsNotComputed; 3975 } 3976 3977 // Now that we know more about the trip count for this loop, forget any 3978 // existing SCEV values for PHI nodes in this loop since they are only 3979 // conservative estimates made without the benefit of trip count 3980 // information. This is similar to the code in forgetLoop, except that 3981 // it handles SCEVUnknown PHI nodes specially. 3982 if (Result.hasAnyInfo()) { 3983 SmallVector<Instruction *, 16> Worklist; 3984 PushLoopPHIs(L, Worklist); 3985 3986 SmallPtrSet<Instruction *, 8> Visited; 3987 while (!Worklist.empty()) { 3988 Instruction *I = Worklist.pop_back_val(); 3989 if (!Visited.insert(I)) continue; 3990 3991 ValueExprMapType::iterator It = 3992 ValueExprMap.find(static_cast<Value *>(I)); 3993 if (It != ValueExprMap.end()) { 3994 const SCEV *Old = It->second; 3995 3996 // SCEVUnknown for a PHI either means that it has an unrecognized 3997 // structure, or it's a PHI that's in the progress of being computed 3998 // by createNodeForPHI. In the former case, additional loop trip 3999 // count information isn't going to change anything. In the later 4000 // case, createNodeForPHI will perform the necessary updates on its 4001 // own when it gets to that point. 4002 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4003 forgetMemoizedResults(Old); 4004 ValueExprMap.erase(It); 4005 } 4006 if (PHINode *PN = dyn_cast<PHINode>(I)) 4007 ConstantEvolutionLoopExitValue.erase(PN); 4008 } 4009 4010 PushDefUseChildren(I, Worklist); 4011 } 4012 } 4013 4014 // Re-lookup the insert position, since the call to 4015 // ComputeBackedgeTakenCount above could result in a 4016 // recusive call to getBackedgeTakenInfo (on a different 4017 // loop), which would invalidate the iterator computed 4018 // earlier. 4019 return BackedgeTakenCounts.find(L)->second = Result; 4020 } 4021 4022 /// forgetLoop - This method should be called by the client when it has 4023 /// changed a loop in a way that may effect ScalarEvolution's ability to 4024 /// compute a trip count, or if the loop is deleted. 4025 void ScalarEvolution::forgetLoop(const Loop *L) { 4026 // Drop any stored trip count value. 4027 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4028 BackedgeTakenCounts.find(L); 4029 if (BTCPos != BackedgeTakenCounts.end()) { 4030 BTCPos->second.clear(); 4031 BackedgeTakenCounts.erase(BTCPos); 4032 } 4033 4034 // Drop information about expressions based on loop-header PHIs. 4035 SmallVector<Instruction *, 16> Worklist; 4036 PushLoopPHIs(L, Worklist); 4037 4038 SmallPtrSet<Instruction *, 8> Visited; 4039 while (!Worklist.empty()) { 4040 Instruction *I = Worklist.pop_back_val(); 4041 if (!Visited.insert(I)) continue; 4042 4043 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 4044 if (It != ValueExprMap.end()) { 4045 forgetMemoizedResults(It->second); 4046 ValueExprMap.erase(It); 4047 if (PHINode *PN = dyn_cast<PHINode>(I)) 4048 ConstantEvolutionLoopExitValue.erase(PN); 4049 } 4050 4051 PushDefUseChildren(I, Worklist); 4052 } 4053 4054 // Forget all contained loops too, to avoid dangling entries in the 4055 // ValuesAtScopes map. 4056 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4057 forgetLoop(*I); 4058 } 4059 4060 /// forgetValue - This method should be called by the client when it has 4061 /// changed a value in a way that may effect its value, or which may 4062 /// disconnect it from a def-use chain linking it to a loop. 4063 void ScalarEvolution::forgetValue(Value *V) { 4064 Instruction *I = dyn_cast<Instruction>(V); 4065 if (!I) return; 4066 4067 // Drop information about expressions based on loop-header PHIs. 4068 SmallVector<Instruction *, 16> Worklist; 4069 Worklist.push_back(I); 4070 4071 SmallPtrSet<Instruction *, 8> Visited; 4072 while (!Worklist.empty()) { 4073 I = Worklist.pop_back_val(); 4074 if (!Visited.insert(I)) continue; 4075 4076 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 4077 if (It != ValueExprMap.end()) { 4078 forgetMemoizedResults(It->second); 4079 ValueExprMap.erase(It); 4080 if (PHINode *PN = dyn_cast<PHINode>(I)) 4081 ConstantEvolutionLoopExitValue.erase(PN); 4082 } 4083 4084 PushDefUseChildren(I, Worklist); 4085 } 4086 } 4087 4088 /// getExact - Get the exact loop backedge taken count considering all loop 4089 /// exits. If all exits are computable, this is the minimum computed count. 4090 const SCEV * 4091 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4092 // If any exits were not computable, the loop is not computable. 4093 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4094 4095 // We need at least one computable exit. 4096 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4097 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4098 4099 const SCEV *BECount = 0; 4100 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4101 ENT != 0; ENT = ENT->getNextExit()) { 4102 4103 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4104 4105 if (!BECount) 4106 BECount = ENT->ExactNotTaken; 4107 else 4108 BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken); 4109 } 4110 assert(BECount && "Invalid not taken count for loop exit"); 4111 return BECount; 4112 } 4113 4114 /// getExact - Get the exact not taken count for this loop exit. 4115 const SCEV * 4116 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4117 ScalarEvolution *SE) const { 4118 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4119 ENT != 0; ENT = ENT->getNextExit()) { 4120 4121 if (ENT->ExitingBlock == ExitingBlock) 4122 return ENT->ExactNotTaken; 4123 } 4124 return SE->getCouldNotCompute(); 4125 } 4126 4127 /// getMax - Get the max backedge taken count for the loop. 4128 const SCEV * 4129 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4130 return Max ? Max : SE->getCouldNotCompute(); 4131 } 4132 4133 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4134 /// computable exit into a persistent ExitNotTakenInfo array. 4135 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4136 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4137 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4138 4139 if (!Complete) 4140 ExitNotTaken.setIncomplete(); 4141 4142 unsigned NumExits = ExitCounts.size(); 4143 if (NumExits == 0) return; 4144 4145 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4146 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4147 if (NumExits == 1) return; 4148 4149 // Handle the rare case of multiple computable exits. 4150 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4151 4152 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4153 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4154 PrevENT->setNextExit(ENT); 4155 ENT->ExitingBlock = ExitCounts[i].first; 4156 ENT->ExactNotTaken = ExitCounts[i].second; 4157 } 4158 } 4159 4160 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4161 void ScalarEvolution::BackedgeTakenInfo::clear() { 4162 ExitNotTaken.ExitingBlock = 0; 4163 ExitNotTaken.ExactNotTaken = 0; 4164 delete[] ExitNotTaken.getNextExit(); 4165 } 4166 4167 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4168 /// of the specified loop will execute. 4169 ScalarEvolution::BackedgeTakenInfo 4170 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4171 SmallVector<BasicBlock *, 8> ExitingBlocks; 4172 L->getExitingBlocks(ExitingBlocks); 4173 4174 // Examine all exits and pick the most conservative values. 4175 const SCEV *MaxBECount = getCouldNotCompute(); 4176 bool CouldComputeBECount = true; 4177 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4178 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4179 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4180 if (EL.Exact == getCouldNotCompute()) 4181 // We couldn't compute an exact value for this exit, so 4182 // we won't be able to compute an exact value for the loop. 4183 CouldComputeBECount = false; 4184 else 4185 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4186 4187 if (MaxBECount == getCouldNotCompute()) 4188 MaxBECount = EL.Max; 4189 else if (EL.Max != getCouldNotCompute()) 4190 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max); 4191 } 4192 4193 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4194 } 4195 4196 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4197 /// loop will execute if it exits via the specified block. 4198 ScalarEvolution::ExitLimit 4199 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4200 4201 // Okay, we've chosen an exiting block. See what condition causes us to 4202 // exit at this block. 4203 // 4204 // FIXME: we should be able to handle switch instructions (with a single exit) 4205 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 4206 if (ExitBr == 0) return getCouldNotCompute(); 4207 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 4208 4209 // At this point, we know we have a conditional branch that determines whether 4210 // the loop is exited. However, we don't know if the branch is executed each 4211 // time through the loop. If not, then the execution count of the branch will 4212 // not be equal to the trip count of the loop. 4213 // 4214 // Currently we check for this by checking to see if the Exit branch goes to 4215 // the loop header. If so, we know it will always execute the same number of 4216 // times as the loop. We also handle the case where the exit block *is* the 4217 // loop header. This is common for un-rotated loops. 4218 // 4219 // If both of those tests fail, walk up the unique predecessor chain to the 4220 // header, stopping if there is an edge that doesn't exit the loop. If the 4221 // header is reached, the execution count of the branch will be equal to the 4222 // trip count of the loop. 4223 // 4224 // More extensive analysis could be done to handle more cases here. 4225 // 4226 if (ExitBr->getSuccessor(0) != L->getHeader() && 4227 ExitBr->getSuccessor(1) != L->getHeader() && 4228 ExitBr->getParent() != L->getHeader()) { 4229 // The simple checks failed, try climbing the unique predecessor chain 4230 // up to the header. 4231 bool Ok = false; 4232 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 4233 BasicBlock *Pred = BB->getUniquePredecessor(); 4234 if (!Pred) 4235 return getCouldNotCompute(); 4236 TerminatorInst *PredTerm = Pred->getTerminator(); 4237 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4238 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4239 if (PredSucc == BB) 4240 continue; 4241 // If the predecessor has a successor that isn't BB and isn't 4242 // outside the loop, assume the worst. 4243 if (L->contains(PredSucc)) 4244 return getCouldNotCompute(); 4245 } 4246 if (Pred == L->getHeader()) { 4247 Ok = true; 4248 break; 4249 } 4250 BB = Pred; 4251 } 4252 if (!Ok) 4253 return getCouldNotCompute(); 4254 } 4255 4256 // Proceed to the next level to examine the exit condition expression. 4257 return ComputeExitLimitFromCond(L, ExitBr->getCondition(), 4258 ExitBr->getSuccessor(0), 4259 ExitBr->getSuccessor(1)); 4260 } 4261 4262 /// ComputeExitLimitFromCond - Compute the number of times the 4263 /// backedge of the specified loop will execute if its exit condition 4264 /// were a conditional branch of ExitCond, TBB, and FBB. 4265 ScalarEvolution::ExitLimit 4266 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4267 Value *ExitCond, 4268 BasicBlock *TBB, 4269 BasicBlock *FBB) { 4270 // Check if the controlling expression for this loop is an And or Or. 4271 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4272 if (BO->getOpcode() == Instruction::And) { 4273 // Recurse on the operands of the and. 4274 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4275 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4276 const SCEV *BECount = getCouldNotCompute(); 4277 const SCEV *MaxBECount = getCouldNotCompute(); 4278 if (L->contains(TBB)) { 4279 // Both conditions must be true for the loop to continue executing. 4280 // Choose the less conservative count. 4281 if (EL0.Exact == getCouldNotCompute() || 4282 EL1.Exact == getCouldNotCompute()) 4283 BECount = getCouldNotCompute(); 4284 else 4285 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4286 if (EL0.Max == getCouldNotCompute()) 4287 MaxBECount = EL1.Max; 4288 else if (EL1.Max == getCouldNotCompute()) 4289 MaxBECount = EL0.Max; 4290 else 4291 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4292 } else { 4293 // Both conditions must be true at the same time for the loop to exit. 4294 // For now, be conservative. 4295 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4296 if (EL0.Max == EL1.Max) 4297 MaxBECount = EL0.Max; 4298 if (EL0.Exact == EL1.Exact) 4299 BECount = EL0.Exact; 4300 } 4301 4302 return ExitLimit(BECount, MaxBECount); 4303 } 4304 if (BO->getOpcode() == Instruction::Or) { 4305 // Recurse on the operands of the or. 4306 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4307 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4308 const SCEV *BECount = getCouldNotCompute(); 4309 const SCEV *MaxBECount = getCouldNotCompute(); 4310 if (L->contains(FBB)) { 4311 // Both conditions must be false for the loop to continue executing. 4312 // Choose the less conservative count. 4313 if (EL0.Exact == getCouldNotCompute() || 4314 EL1.Exact == getCouldNotCompute()) 4315 BECount = getCouldNotCompute(); 4316 else 4317 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4318 if (EL0.Max == getCouldNotCompute()) 4319 MaxBECount = EL1.Max; 4320 else if (EL1.Max == getCouldNotCompute()) 4321 MaxBECount = EL0.Max; 4322 else 4323 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4324 } else { 4325 // Both conditions must be false at the same time for the loop to exit. 4326 // For now, be conservative. 4327 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4328 if (EL0.Max == EL1.Max) 4329 MaxBECount = EL0.Max; 4330 if (EL0.Exact == EL1.Exact) 4331 BECount = EL0.Exact; 4332 } 4333 4334 return ExitLimit(BECount, MaxBECount); 4335 } 4336 } 4337 4338 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4339 // Proceed to the next level to examine the icmp. 4340 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4341 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB); 4342 4343 // Check for a constant condition. These are normally stripped out by 4344 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4345 // preserve the CFG and is temporarily leaving constant conditions 4346 // in place. 4347 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4348 if (L->contains(FBB) == !CI->getZExtValue()) 4349 // The backedge is always taken. 4350 return getCouldNotCompute(); 4351 else 4352 // The backedge is never taken. 4353 return getConstant(CI->getType(), 0); 4354 } 4355 4356 // If it's not an integer or pointer comparison then compute it the hard way. 4357 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4358 } 4359 4360 /// ComputeExitLimitFromICmp - Compute the number of times the 4361 /// backedge of the specified loop will execute if its exit condition 4362 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4363 ScalarEvolution::ExitLimit 4364 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4365 ICmpInst *ExitCond, 4366 BasicBlock *TBB, 4367 BasicBlock *FBB) { 4368 4369 // If the condition was exit on true, convert the condition to exit on false 4370 ICmpInst::Predicate Cond; 4371 if (!L->contains(FBB)) 4372 Cond = ExitCond->getPredicate(); 4373 else 4374 Cond = ExitCond->getInversePredicate(); 4375 4376 // Handle common loops like: for (X = "string"; *X; ++X) 4377 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4378 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4379 ExitLimit ItCnt = 4380 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4381 if (ItCnt.hasAnyInfo()) 4382 return ItCnt; 4383 } 4384 4385 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4386 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4387 4388 // Try to evaluate any dependencies out of the loop. 4389 LHS = getSCEVAtScope(LHS, L); 4390 RHS = getSCEVAtScope(RHS, L); 4391 4392 // At this point, we would like to compute how many iterations of the 4393 // loop the predicate will return true for these inputs. 4394 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4395 // If there is a loop-invariant, force it into the RHS. 4396 std::swap(LHS, RHS); 4397 Cond = ICmpInst::getSwappedPredicate(Cond); 4398 } 4399 4400 // Simplify the operands before analyzing them. 4401 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4402 4403 // If we have a comparison of a chrec against a constant, try to use value 4404 // ranges to answer this query. 4405 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4406 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4407 if (AddRec->getLoop() == L) { 4408 // Form the constant range. 4409 ConstantRange CompRange( 4410 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4411 4412 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4413 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4414 } 4415 4416 switch (Cond) { 4417 case ICmpInst::ICMP_NE: { // while (X != Y) 4418 // Convert to: while (X-Y != 0) 4419 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L); 4420 if (EL.hasAnyInfo()) return EL; 4421 break; 4422 } 4423 case ICmpInst::ICMP_EQ: { // while (X == Y) 4424 // Convert to: while (X-Y == 0) 4425 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4426 if (EL.hasAnyInfo()) return EL; 4427 break; 4428 } 4429 case ICmpInst::ICMP_SLT: { 4430 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true); 4431 if (EL.hasAnyInfo()) return EL; 4432 break; 4433 } 4434 case ICmpInst::ICMP_SGT: { 4435 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4436 getNotSCEV(RHS), L, true); 4437 if (EL.hasAnyInfo()) return EL; 4438 break; 4439 } 4440 case ICmpInst::ICMP_ULT: { 4441 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false); 4442 if (EL.hasAnyInfo()) return EL; 4443 break; 4444 } 4445 case ICmpInst::ICMP_UGT: { 4446 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4447 getNotSCEV(RHS), L, false); 4448 if (EL.hasAnyInfo()) return EL; 4449 break; 4450 } 4451 default: 4452 #if 0 4453 dbgs() << "ComputeBackedgeTakenCount "; 4454 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4455 dbgs() << "[unsigned] "; 4456 dbgs() << *LHS << " " 4457 << Instruction::getOpcodeName(Instruction::ICmp) 4458 << " " << *RHS << "\n"; 4459 #endif 4460 break; 4461 } 4462 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4463 } 4464 4465 static ConstantInt * 4466 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4467 ScalarEvolution &SE) { 4468 const SCEV *InVal = SE.getConstant(C); 4469 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4470 assert(isa<SCEVConstant>(Val) && 4471 "Evaluation of SCEV at constant didn't fold correctly?"); 4472 return cast<SCEVConstant>(Val)->getValue(); 4473 } 4474 4475 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4476 /// and a GEP expression (missing the pointer index) indexing into it, return 4477 /// the addressed element of the initializer or null if the index expression is 4478 /// invalid. 4479 static Constant * 4480 GetAddressedElementFromGlobal(GlobalVariable *GV, 4481 const std::vector<ConstantInt*> &Indices) { 4482 Constant *Init = GV->getInitializer(); 4483 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4484 uint64_t Idx = Indices[i]->getZExtValue(); 4485 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4486 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4487 Init = cast<Constant>(CS->getOperand(Idx)); 4488 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4489 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4490 Init = cast<Constant>(CA->getOperand(Idx)); 4491 } else if (isa<ConstantAggregateZero>(Init)) { 4492 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 4493 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4494 Init = Constant::getNullValue(STy->getElementType(Idx)); 4495 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4496 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4497 Init = Constant::getNullValue(ATy->getElementType()); 4498 } else { 4499 llvm_unreachable("Unknown constant aggregate type!"); 4500 } 4501 return 0; 4502 } else { 4503 return 0; // Unknown initializer type 4504 } 4505 } 4506 return Init; 4507 } 4508 4509 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4510 /// 'icmp op load X, cst', try to see if we can compute the backedge 4511 /// execution count. 4512 ScalarEvolution::ExitLimit 4513 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4514 LoadInst *LI, 4515 Constant *RHS, 4516 const Loop *L, 4517 ICmpInst::Predicate predicate) { 4518 4519 if (LI->isVolatile()) return getCouldNotCompute(); 4520 4521 // Check to see if the loaded pointer is a getelementptr of a global. 4522 // TODO: Use SCEV instead of manually grubbing with GEPs. 4523 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4524 if (!GEP) return getCouldNotCompute(); 4525 4526 // Make sure that it is really a constant global we are gepping, with an 4527 // initializer, and make sure the first IDX is really 0. 4528 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4529 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4530 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4531 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4532 return getCouldNotCompute(); 4533 4534 // Okay, we allow one non-constant index into the GEP instruction. 4535 Value *VarIdx = 0; 4536 std::vector<ConstantInt*> Indexes; 4537 unsigned VarIdxNum = 0; 4538 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4539 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4540 Indexes.push_back(CI); 4541 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4542 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4543 VarIdx = GEP->getOperand(i); 4544 VarIdxNum = i-2; 4545 Indexes.push_back(0); 4546 } 4547 4548 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4549 // Check to see if X is a loop variant variable value now. 4550 const SCEV *Idx = getSCEV(VarIdx); 4551 Idx = getSCEVAtScope(Idx, L); 4552 4553 // We can only recognize very limited forms of loop index expressions, in 4554 // particular, only affine AddRec's like {C1,+,C2}. 4555 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4556 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4557 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4558 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4559 return getCouldNotCompute(); 4560 4561 unsigned MaxSteps = MaxBruteForceIterations; 4562 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4563 ConstantInt *ItCst = ConstantInt::get( 4564 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4565 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4566 4567 // Form the GEP offset. 4568 Indexes[VarIdxNum] = Val; 4569 4570 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4571 if (Result == 0) break; // Cannot compute! 4572 4573 // Evaluate the condition for this iteration. 4574 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4575 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4576 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4577 #if 0 4578 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4579 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4580 << "***\n"; 4581 #endif 4582 ++NumArrayLenItCounts; 4583 return getConstant(ItCst); // Found terminating iteration! 4584 } 4585 } 4586 return getCouldNotCompute(); 4587 } 4588 4589 4590 /// CanConstantFold - Return true if we can constant fold an instruction of the 4591 /// specified type, assuming that all operands were constants. 4592 static bool CanConstantFold(const Instruction *I) { 4593 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4594 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4595 return true; 4596 4597 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4598 if (const Function *F = CI->getCalledFunction()) 4599 return canConstantFoldCallTo(F); 4600 return false; 4601 } 4602 4603 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4604 /// in the loop that V is derived from. We allow arbitrary operations along the 4605 /// way, but the operands of an operation must either be constants or a value 4606 /// derived from a constant PHI. If this expression does not fit with these 4607 /// constraints, return null. 4608 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4609 // If this is not an instruction, or if this is an instruction outside of the 4610 // loop, it can't be derived from a loop PHI. 4611 Instruction *I = dyn_cast<Instruction>(V); 4612 if (I == 0 || !L->contains(I)) return 0; 4613 4614 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4615 if (L->getHeader() == I->getParent()) 4616 return PN; 4617 else 4618 // We don't currently keep track of the control flow needed to evaluate 4619 // PHIs, so we cannot handle PHIs inside of loops. 4620 return 0; 4621 } 4622 4623 // If we won't be able to constant fold this expression even if the operands 4624 // are constants, return early. 4625 if (!CanConstantFold(I)) return 0; 4626 4627 // Otherwise, we can evaluate this instruction if all of its operands are 4628 // constant or derived from a PHI node themselves. 4629 PHINode *PHI = 0; 4630 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4631 if (!isa<Constant>(I->getOperand(Op))) { 4632 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4633 if (P == 0) return 0; // Not evolving from PHI 4634 if (PHI == 0) 4635 PHI = P; 4636 else if (PHI != P) 4637 return 0; // Evolving from multiple different PHIs. 4638 } 4639 4640 // This is a expression evolving from a constant PHI! 4641 return PHI; 4642 } 4643 4644 /// EvaluateExpression - Given an expression that passes the 4645 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4646 /// in the loop has the value PHIVal. If we can't fold this expression for some 4647 /// reason, return null. 4648 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4649 const TargetData *TD) { 4650 if (isa<PHINode>(V)) return PHIVal; 4651 if (Constant *C = dyn_cast<Constant>(V)) return C; 4652 Instruction *I = cast<Instruction>(V); 4653 4654 std::vector<Constant*> Operands(I->getNumOperands()); 4655 4656 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4657 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4658 if (Operands[i] == 0) return 0; 4659 } 4660 4661 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4662 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4663 Operands[1], TD); 4664 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD); 4665 } 4666 4667 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4668 /// in the header of its containing loop, we know the loop executes a 4669 /// constant number of times, and the PHI node is just a recurrence 4670 /// involving constants, fold it. 4671 Constant * 4672 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4673 const APInt &BEs, 4674 const Loop *L) { 4675 DenseMap<PHINode*, Constant*>::const_iterator I = 4676 ConstantEvolutionLoopExitValue.find(PN); 4677 if (I != ConstantEvolutionLoopExitValue.end()) 4678 return I->second; 4679 4680 if (BEs.ugt(MaxBruteForceIterations)) 4681 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4682 4683 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4684 4685 // Since the loop is canonicalized, the PHI node must have two entries. One 4686 // entry must be a constant (coming in from outside of the loop), and the 4687 // second must be derived from the same PHI. 4688 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4689 Constant *StartCST = 4690 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4691 if (StartCST == 0) 4692 return RetVal = 0; // Must be a constant. 4693 4694 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4695 if (getConstantEvolvingPHI(BEValue, L) != PN && 4696 !isa<Constant>(BEValue)) 4697 return RetVal = 0; // Not derived from same PHI. 4698 4699 // Execute the loop symbolically to determine the exit value. 4700 if (BEs.getActiveBits() >= 32) 4701 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4702 4703 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4704 unsigned IterationNum = 0; 4705 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4706 if (IterationNum == NumIterations) 4707 return RetVal = PHIVal; // Got exit value! 4708 4709 // Compute the value of the PHI node for the next iteration. 4710 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4711 if (NextPHI == PHIVal) 4712 return RetVal = NextPHI; // Stopped evolving! 4713 if (NextPHI == 0) 4714 return 0; // Couldn't evaluate! 4715 PHIVal = NextPHI; 4716 } 4717 } 4718 4719 /// ComputeExitCountExhaustively - If the loop is known to execute a 4720 /// constant number of times (the condition evolves only from constants), 4721 /// try to evaluate a few iterations of the loop until we get the exit 4722 /// condition gets a value of ExitWhen (true or false). If we cannot 4723 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4724 const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 4725 Value *Cond, 4726 bool ExitWhen) { 4727 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4728 if (PN == 0) return getCouldNotCompute(); 4729 4730 // If the loop is canonicalized, the PHI will have exactly two entries. 4731 // That's the only form we support here. 4732 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4733 4734 // One entry must be a constant (coming in from outside of the loop), and the 4735 // second must be derived from the same PHI. 4736 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4737 Constant *StartCST = 4738 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4739 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4740 4741 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4742 if (getConstantEvolvingPHI(BEValue, L) != PN && 4743 !isa<Constant>(BEValue)) 4744 return getCouldNotCompute(); // Not derived from same PHI. 4745 4746 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4747 // the loop symbolically to determine when the condition gets a value of 4748 // "ExitWhen". 4749 unsigned IterationNum = 0; 4750 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4751 for (Constant *PHIVal = StartCST; 4752 IterationNum != MaxIterations; ++IterationNum) { 4753 ConstantInt *CondVal = 4754 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4755 4756 // Couldn't symbolically evaluate. 4757 if (!CondVal) return getCouldNotCompute(); 4758 4759 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4760 ++NumBruteForceTripCountsComputed; 4761 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4762 } 4763 4764 // Compute the value of the PHI node for the next iteration. 4765 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4766 if (NextPHI == 0 || NextPHI == PHIVal) 4767 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4768 PHIVal = NextPHI; 4769 } 4770 4771 // Too many iterations were needed to evaluate. 4772 return getCouldNotCompute(); 4773 } 4774 4775 /// getSCEVAtScope - Return a SCEV expression for the specified value 4776 /// at the specified scope in the program. The L value specifies a loop 4777 /// nest to evaluate the expression at, where null is the top-level or a 4778 /// specified loop is immediately inside of the loop. 4779 /// 4780 /// This method can be used to compute the exit value for a variable defined 4781 /// in a loop by querying what the value will hold in the parent loop. 4782 /// 4783 /// In the case that a relevant loop exit value cannot be computed, the 4784 /// original value V is returned. 4785 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4786 // Check to see if we've folded this expression at this loop before. 4787 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4788 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4789 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4790 if (!Pair.second) 4791 return Pair.first->second ? Pair.first->second : V; 4792 4793 // Otherwise compute it. 4794 const SCEV *C = computeSCEVAtScope(V, L); 4795 ValuesAtScopes[V][L] = C; 4796 return C; 4797 } 4798 4799 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4800 if (isa<SCEVConstant>(V)) return V; 4801 4802 // If this instruction is evolved from a constant-evolving PHI, compute the 4803 // exit value from the loop without using SCEVs. 4804 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4805 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4806 const Loop *LI = (*this->LI)[I->getParent()]; 4807 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4808 if (PHINode *PN = dyn_cast<PHINode>(I)) 4809 if (PN->getParent() == LI->getHeader()) { 4810 // Okay, there is no closed form solution for the PHI node. Check 4811 // to see if the loop that contains it has a known backedge-taken 4812 // count. If so, we may be able to force computation of the exit 4813 // value. 4814 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4815 if (const SCEVConstant *BTCC = 4816 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4817 // Okay, we know how many times the containing loop executes. If 4818 // this is a constant evolving PHI node, get the final value at 4819 // the specified iteration number. 4820 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4821 BTCC->getValue()->getValue(), 4822 LI); 4823 if (RV) return getSCEV(RV); 4824 } 4825 } 4826 4827 // Okay, this is an expression that we cannot symbolically evaluate 4828 // into a SCEV. Check to see if it's possible to symbolically evaluate 4829 // the arguments into constants, and if so, try to constant propagate the 4830 // result. This is particularly useful for computing loop exit values. 4831 if (CanConstantFold(I)) { 4832 SmallVector<Constant *, 4> Operands; 4833 bool MadeImprovement = false; 4834 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4835 Value *Op = I->getOperand(i); 4836 if (Constant *C = dyn_cast<Constant>(Op)) { 4837 Operands.push_back(C); 4838 continue; 4839 } 4840 4841 // If any of the operands is non-constant and if they are 4842 // non-integer and non-pointer, don't even try to analyze them 4843 // with scev techniques. 4844 if (!isSCEVable(Op->getType())) 4845 return V; 4846 4847 const SCEV *OrigV = getSCEV(Op); 4848 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4849 MadeImprovement |= OrigV != OpV; 4850 4851 Constant *C = 0; 4852 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4853 C = SC->getValue(); 4854 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4855 C = dyn_cast<Constant>(SU->getValue()); 4856 if (!C) return V; 4857 if (C->getType() != Op->getType()) 4858 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4859 Op->getType(), 4860 false), 4861 C, Op->getType()); 4862 Operands.push_back(C); 4863 } 4864 4865 // Check to see if getSCEVAtScope actually made an improvement. 4866 if (MadeImprovement) { 4867 Constant *C = 0; 4868 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4869 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4870 Operands[0], Operands[1], TD); 4871 else 4872 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4873 Operands, TD); 4874 if (!C) return V; 4875 return getSCEV(C); 4876 } 4877 } 4878 } 4879 4880 // This is some other type of SCEVUnknown, just return it. 4881 return V; 4882 } 4883 4884 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4885 // Avoid performing the look-up in the common case where the specified 4886 // expression has no loop-variant portions. 4887 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4888 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4889 if (OpAtScope != Comm->getOperand(i)) { 4890 // Okay, at least one of these operands is loop variant but might be 4891 // foldable. Build a new instance of the folded commutative expression. 4892 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4893 Comm->op_begin()+i); 4894 NewOps.push_back(OpAtScope); 4895 4896 for (++i; i != e; ++i) { 4897 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4898 NewOps.push_back(OpAtScope); 4899 } 4900 if (isa<SCEVAddExpr>(Comm)) 4901 return getAddExpr(NewOps); 4902 if (isa<SCEVMulExpr>(Comm)) 4903 return getMulExpr(NewOps); 4904 if (isa<SCEVSMaxExpr>(Comm)) 4905 return getSMaxExpr(NewOps); 4906 if (isa<SCEVUMaxExpr>(Comm)) 4907 return getUMaxExpr(NewOps); 4908 llvm_unreachable("Unknown commutative SCEV type!"); 4909 } 4910 } 4911 // If we got here, all operands are loop invariant. 4912 return Comm; 4913 } 4914 4915 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4916 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4917 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4918 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4919 return Div; // must be loop invariant 4920 return getUDivExpr(LHS, RHS); 4921 } 4922 4923 // If this is a loop recurrence for a loop that does not contain L, then we 4924 // are dealing with the final value computed by the loop. 4925 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4926 // First, attempt to evaluate each operand. 4927 // Avoid performing the look-up in the common case where the specified 4928 // expression has no loop-variant portions. 4929 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4930 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4931 if (OpAtScope == AddRec->getOperand(i)) 4932 continue; 4933 4934 // Okay, at least one of these operands is loop variant but might be 4935 // foldable. Build a new instance of the folded commutative expression. 4936 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4937 AddRec->op_begin()+i); 4938 NewOps.push_back(OpAtScope); 4939 for (++i; i != e; ++i) 4940 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4941 4942 const SCEV *FoldedRec = 4943 getAddRecExpr(NewOps, AddRec->getLoop(), 4944 AddRec->getNoWrapFlags(SCEV::FlagNW)); 4945 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 4946 // The addrec may be folded to a nonrecurrence, for example, if the 4947 // induction variable is multiplied by zero after constant folding. Go 4948 // ahead and return the folded value. 4949 if (!AddRec) 4950 return FoldedRec; 4951 break; 4952 } 4953 4954 // If the scope is outside the addrec's loop, evaluate it by using the 4955 // loop exit value of the addrec. 4956 if (!AddRec->getLoop()->contains(L)) { 4957 // To evaluate this recurrence, we need to know how many times the AddRec 4958 // loop iterates. Compute this now. 4959 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4960 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4961 4962 // Then, evaluate the AddRec. 4963 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4964 } 4965 4966 return AddRec; 4967 } 4968 4969 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4970 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4971 if (Op == Cast->getOperand()) 4972 return Cast; // must be loop invariant 4973 return getZeroExtendExpr(Op, Cast->getType()); 4974 } 4975 4976 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4977 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4978 if (Op == Cast->getOperand()) 4979 return Cast; // must be loop invariant 4980 return getSignExtendExpr(Op, Cast->getType()); 4981 } 4982 4983 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4984 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4985 if (Op == Cast->getOperand()) 4986 return Cast; // must be loop invariant 4987 return getTruncateExpr(Op, Cast->getType()); 4988 } 4989 4990 llvm_unreachable("Unknown SCEV type!"); 4991 return 0; 4992 } 4993 4994 /// getSCEVAtScope - This is a convenience function which does 4995 /// getSCEVAtScope(getSCEV(V), L). 4996 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4997 return getSCEVAtScope(getSCEV(V), L); 4998 } 4999 5000 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5001 /// following equation: 5002 /// 5003 /// A * X = B (mod N) 5004 /// 5005 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5006 /// A and B isn't important. 5007 /// 5008 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5009 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5010 ScalarEvolution &SE) { 5011 uint32_t BW = A.getBitWidth(); 5012 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5013 assert(A != 0 && "A must be non-zero."); 5014 5015 // 1. D = gcd(A, N) 5016 // 5017 // The gcd of A and N may have only one prime factor: 2. The number of 5018 // trailing zeros in A is its multiplicity 5019 uint32_t Mult2 = A.countTrailingZeros(); 5020 // D = 2^Mult2 5021 5022 // 2. Check if B is divisible by D. 5023 // 5024 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5025 // is not less than multiplicity of this prime factor for D. 5026 if (B.countTrailingZeros() < Mult2) 5027 return SE.getCouldNotCompute(); 5028 5029 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5030 // modulo (N / D). 5031 // 5032 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5033 // bit width during computations. 5034 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5035 APInt Mod(BW + 1, 0); 5036 Mod.setBit(BW - Mult2); // Mod = N / D 5037 APInt I = AD.multiplicativeInverse(Mod); 5038 5039 // 4. Compute the minimum unsigned root of the equation: 5040 // I * (B / D) mod (N / D) 5041 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5042 5043 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5044 // bits. 5045 return SE.getConstant(Result.trunc(BW)); 5046 } 5047 5048 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5049 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5050 /// might be the same) or two SCEVCouldNotCompute objects. 5051 /// 5052 static std::pair<const SCEV *,const SCEV *> 5053 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5054 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5055 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5056 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5057 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5058 5059 // We currently can only solve this if the coefficients are constants. 5060 if (!LC || !MC || !NC) { 5061 const SCEV *CNC = SE.getCouldNotCompute(); 5062 return std::make_pair(CNC, CNC); 5063 } 5064 5065 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5066 const APInt &L = LC->getValue()->getValue(); 5067 const APInt &M = MC->getValue()->getValue(); 5068 const APInt &N = NC->getValue()->getValue(); 5069 APInt Two(BitWidth, 2); 5070 APInt Four(BitWidth, 4); 5071 5072 { 5073 using namespace APIntOps; 5074 const APInt& C = L; 5075 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5076 // The B coefficient is M-N/2 5077 APInt B(M); 5078 B -= sdiv(N,Two); 5079 5080 // The A coefficient is N/2 5081 APInt A(N.sdiv(Two)); 5082 5083 // Compute the B^2-4ac term. 5084 APInt SqrtTerm(B); 5085 SqrtTerm *= B; 5086 SqrtTerm -= Four * (A * C); 5087 5088 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5089 // integer value or else APInt::sqrt() will assert. 5090 APInt SqrtVal(SqrtTerm.sqrt()); 5091 5092 // Compute the two solutions for the quadratic formula. 5093 // The divisions must be performed as signed divisions. 5094 APInt NegB(-B); 5095 APInt TwoA( A << 1 ); 5096 if (TwoA.isMinValue()) { 5097 const SCEV *CNC = SE.getCouldNotCompute(); 5098 return std::make_pair(CNC, CNC); 5099 } 5100 5101 LLVMContext &Context = SE.getContext(); 5102 5103 ConstantInt *Solution1 = 5104 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5105 ConstantInt *Solution2 = 5106 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5107 5108 return std::make_pair(SE.getConstant(Solution1), 5109 SE.getConstant(Solution2)); 5110 } // end APIntOps namespace 5111 } 5112 5113 /// HowFarToZero - Return the number of times a backedge comparing the specified 5114 /// value to zero will execute. If not computable, return CouldNotCompute. 5115 /// 5116 /// This is only used for loops with a "x != y" exit test. The exit condition is 5117 /// now expressed as a single expression, V = x-y. So the exit test is 5118 /// effectively V != 0. We know and take advantage of the fact that this 5119 /// expression only being used in a comparison by zero context. 5120 ScalarEvolution::ExitLimit 5121 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 5122 // If the value is a constant 5123 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5124 // If the value is already zero, the branch will execute zero times. 5125 if (C->getValue()->isZero()) return C; 5126 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5127 } 5128 5129 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5130 if (!AddRec || AddRec->getLoop() != L) 5131 return getCouldNotCompute(); 5132 5133 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5134 // the quadratic equation to solve it. 5135 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5136 std::pair<const SCEV *,const SCEV *> Roots = 5137 SolveQuadraticEquation(AddRec, *this); 5138 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5139 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5140 if (R1 && R2) { 5141 #if 0 5142 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5143 << " sol#2: " << *R2 << "\n"; 5144 #endif 5145 // Pick the smallest positive root value. 5146 if (ConstantInt *CB = 5147 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5148 R1->getValue(), 5149 R2->getValue()))) { 5150 if (CB->getZExtValue() == false) 5151 std::swap(R1, R2); // R1 is the minimum root now. 5152 5153 // We can only use this value if the chrec ends up with an exact zero 5154 // value at this index. When solving for "X*X != 5", for example, we 5155 // should not accept a root of 2. 5156 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5157 if (Val->isZero()) 5158 return R1; // We found a quadratic root! 5159 } 5160 } 5161 return getCouldNotCompute(); 5162 } 5163 5164 // Otherwise we can only handle this if it is affine. 5165 if (!AddRec->isAffine()) 5166 return getCouldNotCompute(); 5167 5168 // If this is an affine expression, the execution count of this branch is 5169 // the minimum unsigned root of the following equation: 5170 // 5171 // Start + Step*N = 0 (mod 2^BW) 5172 // 5173 // equivalent to: 5174 // 5175 // Step*N = -Start (mod 2^BW) 5176 // 5177 // where BW is the common bit width of Start and Step. 5178 5179 // Get the initial value for the loop. 5180 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5181 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5182 5183 // For now we handle only constant steps. 5184 // 5185 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5186 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5187 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5188 // We have not yet seen any such cases. 5189 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5190 if (StepC == 0) 5191 return getCouldNotCompute(); 5192 5193 // For positive steps (counting up until unsigned overflow): 5194 // N = -Start/Step (as unsigned) 5195 // For negative steps (counting down to zero): 5196 // N = Start/-Step 5197 // First compute the unsigned distance from zero in the direction of Step. 5198 bool CountDown = StepC->getValue()->getValue().isNegative(); 5199 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5200 5201 // Handle unitary steps, which cannot wraparound. 5202 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5203 // N = Distance (as unsigned) 5204 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) 5205 return Distance; 5206 5207 // If the recurrence is known not to wraparound, unsigned divide computes the 5208 // back edge count. We know that the value will either become zero (and thus 5209 // the loop terminates), that the loop will terminate through some other exit 5210 // condition first, or that the loop has undefined behavior. This means 5211 // we can't "miss" the exit value, even with nonunit stride. 5212 // 5213 // FIXME: Prove that loops always exhibits *acceptable* undefined 5214 // behavior. Loops must exhibit defined behavior until a wrapped value is 5215 // actually used. So the trip count computed by udiv could be smaller than the 5216 // number of well-defined iterations. 5217 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) 5218 // FIXME: We really want an "isexact" bit for udiv. 5219 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5220 5221 // Then, try to solve the above equation provided that Start is constant. 5222 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5223 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5224 -StartC->getValue()->getValue(), 5225 *this); 5226 return getCouldNotCompute(); 5227 } 5228 5229 /// HowFarToNonZero - Return the number of times a backedge checking the 5230 /// specified value for nonzero will execute. If not computable, return 5231 /// CouldNotCompute 5232 ScalarEvolution::ExitLimit 5233 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5234 // Loops that look like: while (X == 0) are very strange indeed. We don't 5235 // handle them yet except for the trivial case. This could be expanded in the 5236 // future as needed. 5237 5238 // If the value is a constant, check to see if it is known to be non-zero 5239 // already. If so, the backedge will execute zero times. 5240 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5241 if (!C->getValue()->isNullValue()) 5242 return getConstant(C->getType(), 0); 5243 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5244 } 5245 5246 // We could implement others, but I really doubt anyone writes loops like 5247 // this, and if they did, they would already be constant folded. 5248 return getCouldNotCompute(); 5249 } 5250 5251 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5252 /// (which may not be an immediate predecessor) which has exactly one 5253 /// successor from which BB is reachable, or null if no such block is 5254 /// found. 5255 /// 5256 std::pair<BasicBlock *, BasicBlock *> 5257 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5258 // If the block has a unique predecessor, then there is no path from the 5259 // predecessor to the block that does not go through the direct edge 5260 // from the predecessor to the block. 5261 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5262 return std::make_pair(Pred, BB); 5263 5264 // A loop's header is defined to be a block that dominates the loop. 5265 // If the header has a unique predecessor outside the loop, it must be 5266 // a block that has exactly one successor that can reach the loop. 5267 if (Loop *L = LI->getLoopFor(BB)) 5268 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5269 5270 return std::pair<BasicBlock *, BasicBlock *>(); 5271 } 5272 5273 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5274 /// testing whether two expressions are equal, however for the purposes of 5275 /// looking for a condition guarding a loop, it can be useful to be a little 5276 /// more general, since a front-end may have replicated the controlling 5277 /// expression. 5278 /// 5279 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5280 // Quick check to see if they are the same SCEV. 5281 if (A == B) return true; 5282 5283 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5284 // two different instructions with the same value. Check for this case. 5285 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5286 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5287 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5288 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5289 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5290 return true; 5291 5292 // Otherwise assume they may have a different value. 5293 return false; 5294 } 5295 5296 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5297 /// predicate Pred. Return true iff any changes were made. 5298 /// 5299 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5300 const SCEV *&LHS, const SCEV *&RHS) { 5301 bool Changed = false; 5302 5303 // Canonicalize a constant to the right side. 5304 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5305 // Check for both operands constant. 5306 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5307 if (ConstantExpr::getICmp(Pred, 5308 LHSC->getValue(), 5309 RHSC->getValue())->isNullValue()) 5310 goto trivially_false; 5311 else 5312 goto trivially_true; 5313 } 5314 // Otherwise swap the operands to put the constant on the right. 5315 std::swap(LHS, RHS); 5316 Pred = ICmpInst::getSwappedPredicate(Pred); 5317 Changed = true; 5318 } 5319 5320 // If we're comparing an addrec with a value which is loop-invariant in the 5321 // addrec's loop, put the addrec on the left. Also make a dominance check, 5322 // as both operands could be addrecs loop-invariant in each other's loop. 5323 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5324 const Loop *L = AR->getLoop(); 5325 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5326 std::swap(LHS, RHS); 5327 Pred = ICmpInst::getSwappedPredicate(Pred); 5328 Changed = true; 5329 } 5330 } 5331 5332 // If there's a constant operand, canonicalize comparisons with boundary 5333 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5334 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5335 const APInt &RA = RC->getValue()->getValue(); 5336 switch (Pred) { 5337 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5338 case ICmpInst::ICMP_EQ: 5339 case ICmpInst::ICMP_NE: 5340 break; 5341 case ICmpInst::ICMP_UGE: 5342 if ((RA - 1).isMinValue()) { 5343 Pred = ICmpInst::ICMP_NE; 5344 RHS = getConstant(RA - 1); 5345 Changed = true; 5346 break; 5347 } 5348 if (RA.isMaxValue()) { 5349 Pred = ICmpInst::ICMP_EQ; 5350 Changed = true; 5351 break; 5352 } 5353 if (RA.isMinValue()) goto trivially_true; 5354 5355 Pred = ICmpInst::ICMP_UGT; 5356 RHS = getConstant(RA - 1); 5357 Changed = true; 5358 break; 5359 case ICmpInst::ICMP_ULE: 5360 if ((RA + 1).isMaxValue()) { 5361 Pred = ICmpInst::ICMP_NE; 5362 RHS = getConstant(RA + 1); 5363 Changed = true; 5364 break; 5365 } 5366 if (RA.isMinValue()) { 5367 Pred = ICmpInst::ICMP_EQ; 5368 Changed = true; 5369 break; 5370 } 5371 if (RA.isMaxValue()) goto trivially_true; 5372 5373 Pred = ICmpInst::ICMP_ULT; 5374 RHS = getConstant(RA + 1); 5375 Changed = true; 5376 break; 5377 case ICmpInst::ICMP_SGE: 5378 if ((RA - 1).isMinSignedValue()) { 5379 Pred = ICmpInst::ICMP_NE; 5380 RHS = getConstant(RA - 1); 5381 Changed = true; 5382 break; 5383 } 5384 if (RA.isMaxSignedValue()) { 5385 Pred = ICmpInst::ICMP_EQ; 5386 Changed = true; 5387 break; 5388 } 5389 if (RA.isMinSignedValue()) goto trivially_true; 5390 5391 Pred = ICmpInst::ICMP_SGT; 5392 RHS = getConstant(RA - 1); 5393 Changed = true; 5394 break; 5395 case ICmpInst::ICMP_SLE: 5396 if ((RA + 1).isMaxSignedValue()) { 5397 Pred = ICmpInst::ICMP_NE; 5398 RHS = getConstant(RA + 1); 5399 Changed = true; 5400 break; 5401 } 5402 if (RA.isMinSignedValue()) { 5403 Pred = ICmpInst::ICMP_EQ; 5404 Changed = true; 5405 break; 5406 } 5407 if (RA.isMaxSignedValue()) goto trivially_true; 5408 5409 Pred = ICmpInst::ICMP_SLT; 5410 RHS = getConstant(RA + 1); 5411 Changed = true; 5412 break; 5413 case ICmpInst::ICMP_UGT: 5414 if (RA.isMinValue()) { 5415 Pred = ICmpInst::ICMP_NE; 5416 Changed = true; 5417 break; 5418 } 5419 if ((RA + 1).isMaxValue()) { 5420 Pred = ICmpInst::ICMP_EQ; 5421 RHS = getConstant(RA + 1); 5422 Changed = true; 5423 break; 5424 } 5425 if (RA.isMaxValue()) goto trivially_false; 5426 break; 5427 case ICmpInst::ICMP_ULT: 5428 if (RA.isMaxValue()) { 5429 Pred = ICmpInst::ICMP_NE; 5430 Changed = true; 5431 break; 5432 } 5433 if ((RA - 1).isMinValue()) { 5434 Pred = ICmpInst::ICMP_EQ; 5435 RHS = getConstant(RA - 1); 5436 Changed = true; 5437 break; 5438 } 5439 if (RA.isMinValue()) goto trivially_false; 5440 break; 5441 case ICmpInst::ICMP_SGT: 5442 if (RA.isMinSignedValue()) { 5443 Pred = ICmpInst::ICMP_NE; 5444 Changed = true; 5445 break; 5446 } 5447 if ((RA + 1).isMaxSignedValue()) { 5448 Pred = ICmpInst::ICMP_EQ; 5449 RHS = getConstant(RA + 1); 5450 Changed = true; 5451 break; 5452 } 5453 if (RA.isMaxSignedValue()) goto trivially_false; 5454 break; 5455 case ICmpInst::ICMP_SLT: 5456 if (RA.isMaxSignedValue()) { 5457 Pred = ICmpInst::ICMP_NE; 5458 Changed = true; 5459 break; 5460 } 5461 if ((RA - 1).isMinSignedValue()) { 5462 Pred = ICmpInst::ICMP_EQ; 5463 RHS = getConstant(RA - 1); 5464 Changed = true; 5465 break; 5466 } 5467 if (RA.isMinSignedValue()) goto trivially_false; 5468 break; 5469 } 5470 } 5471 5472 // Check for obvious equality. 5473 if (HasSameValue(LHS, RHS)) { 5474 if (ICmpInst::isTrueWhenEqual(Pred)) 5475 goto trivially_true; 5476 if (ICmpInst::isFalseWhenEqual(Pred)) 5477 goto trivially_false; 5478 } 5479 5480 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5481 // adding or subtracting 1 from one of the operands. 5482 switch (Pred) { 5483 case ICmpInst::ICMP_SLE: 5484 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5485 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5486 SCEV::FlagNSW); 5487 Pred = ICmpInst::ICMP_SLT; 5488 Changed = true; 5489 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5490 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5491 SCEV::FlagNSW); 5492 Pred = ICmpInst::ICMP_SLT; 5493 Changed = true; 5494 } 5495 break; 5496 case ICmpInst::ICMP_SGE: 5497 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5498 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5499 SCEV::FlagNSW); 5500 Pred = ICmpInst::ICMP_SGT; 5501 Changed = true; 5502 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5503 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5504 SCEV::FlagNSW); 5505 Pred = ICmpInst::ICMP_SGT; 5506 Changed = true; 5507 } 5508 break; 5509 case ICmpInst::ICMP_ULE: 5510 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5511 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5512 SCEV::FlagNUW); 5513 Pred = ICmpInst::ICMP_ULT; 5514 Changed = true; 5515 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5516 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5517 SCEV::FlagNUW); 5518 Pred = ICmpInst::ICMP_ULT; 5519 Changed = true; 5520 } 5521 break; 5522 case ICmpInst::ICMP_UGE: 5523 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5524 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5525 SCEV::FlagNUW); 5526 Pred = ICmpInst::ICMP_UGT; 5527 Changed = true; 5528 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5529 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5530 SCEV::FlagNUW); 5531 Pred = ICmpInst::ICMP_UGT; 5532 Changed = true; 5533 } 5534 break; 5535 default: 5536 break; 5537 } 5538 5539 // TODO: More simplifications are possible here. 5540 5541 return Changed; 5542 5543 trivially_true: 5544 // Return 0 == 0. 5545 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5546 Pred = ICmpInst::ICMP_EQ; 5547 return true; 5548 5549 trivially_false: 5550 // Return 0 != 0. 5551 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5552 Pred = ICmpInst::ICMP_NE; 5553 return true; 5554 } 5555 5556 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5557 return getSignedRange(S).getSignedMax().isNegative(); 5558 } 5559 5560 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5561 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5562 } 5563 5564 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5565 return !getSignedRange(S).getSignedMin().isNegative(); 5566 } 5567 5568 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5569 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5570 } 5571 5572 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5573 return isKnownNegative(S) || isKnownPositive(S); 5574 } 5575 5576 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5577 const SCEV *LHS, const SCEV *RHS) { 5578 // Canonicalize the inputs first. 5579 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5580 5581 // If LHS or RHS is an addrec, check to see if the condition is true in 5582 // every iteration of the loop. 5583 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5584 if (isLoopEntryGuardedByCond( 5585 AR->getLoop(), Pred, AR->getStart(), RHS) && 5586 isLoopBackedgeGuardedByCond( 5587 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5588 return true; 5589 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5590 if (isLoopEntryGuardedByCond( 5591 AR->getLoop(), Pred, LHS, AR->getStart()) && 5592 isLoopBackedgeGuardedByCond( 5593 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5594 return true; 5595 5596 // Otherwise see what can be done with known constant ranges. 5597 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5598 } 5599 5600 bool 5601 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5602 const SCEV *LHS, const SCEV *RHS) { 5603 if (HasSameValue(LHS, RHS)) 5604 return ICmpInst::isTrueWhenEqual(Pred); 5605 5606 // This code is split out from isKnownPredicate because it is called from 5607 // within isLoopEntryGuardedByCond. 5608 switch (Pred) { 5609 default: 5610 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5611 break; 5612 case ICmpInst::ICMP_SGT: 5613 Pred = ICmpInst::ICMP_SLT; 5614 std::swap(LHS, RHS); 5615 case ICmpInst::ICMP_SLT: { 5616 ConstantRange LHSRange = getSignedRange(LHS); 5617 ConstantRange RHSRange = getSignedRange(RHS); 5618 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5619 return true; 5620 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5621 return false; 5622 break; 5623 } 5624 case ICmpInst::ICMP_SGE: 5625 Pred = ICmpInst::ICMP_SLE; 5626 std::swap(LHS, RHS); 5627 case ICmpInst::ICMP_SLE: { 5628 ConstantRange LHSRange = getSignedRange(LHS); 5629 ConstantRange RHSRange = getSignedRange(RHS); 5630 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5631 return true; 5632 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5633 return false; 5634 break; 5635 } 5636 case ICmpInst::ICMP_UGT: 5637 Pred = ICmpInst::ICMP_ULT; 5638 std::swap(LHS, RHS); 5639 case ICmpInst::ICMP_ULT: { 5640 ConstantRange LHSRange = getUnsignedRange(LHS); 5641 ConstantRange RHSRange = getUnsignedRange(RHS); 5642 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5643 return true; 5644 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5645 return false; 5646 break; 5647 } 5648 case ICmpInst::ICMP_UGE: 5649 Pred = ICmpInst::ICMP_ULE; 5650 std::swap(LHS, RHS); 5651 case ICmpInst::ICMP_ULE: { 5652 ConstantRange LHSRange = getUnsignedRange(LHS); 5653 ConstantRange RHSRange = getUnsignedRange(RHS); 5654 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5655 return true; 5656 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5657 return false; 5658 break; 5659 } 5660 case ICmpInst::ICMP_NE: { 5661 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5662 return true; 5663 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5664 return true; 5665 5666 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5667 if (isKnownNonZero(Diff)) 5668 return true; 5669 break; 5670 } 5671 case ICmpInst::ICMP_EQ: 5672 // The check at the top of the function catches the case where 5673 // the values are known to be equal. 5674 break; 5675 } 5676 return false; 5677 } 5678 5679 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5680 /// protected by a conditional between LHS and RHS. This is used to 5681 /// to eliminate casts. 5682 bool 5683 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5684 ICmpInst::Predicate Pred, 5685 const SCEV *LHS, const SCEV *RHS) { 5686 // Interpret a null as meaning no loop, where there is obviously no guard 5687 // (interprocedural conditions notwithstanding). 5688 if (!L) return true; 5689 5690 BasicBlock *Latch = L->getLoopLatch(); 5691 if (!Latch) 5692 return false; 5693 5694 BranchInst *LoopContinuePredicate = 5695 dyn_cast<BranchInst>(Latch->getTerminator()); 5696 if (!LoopContinuePredicate || 5697 LoopContinuePredicate->isUnconditional()) 5698 return false; 5699 5700 return isImpliedCond(Pred, LHS, RHS, 5701 LoopContinuePredicate->getCondition(), 5702 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5703 } 5704 5705 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5706 /// by a conditional between LHS and RHS. This is used to help avoid max 5707 /// expressions in loop trip counts, and to eliminate casts. 5708 bool 5709 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5710 ICmpInst::Predicate Pred, 5711 const SCEV *LHS, const SCEV *RHS) { 5712 // Interpret a null as meaning no loop, where there is obviously no guard 5713 // (interprocedural conditions notwithstanding). 5714 if (!L) return false; 5715 5716 // Starting at the loop predecessor, climb up the predecessor chain, as long 5717 // as there are predecessors that can be found that have unique successors 5718 // leading to the original header. 5719 for (std::pair<BasicBlock *, BasicBlock *> 5720 Pair(L->getLoopPredecessor(), L->getHeader()); 5721 Pair.first; 5722 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5723 5724 BranchInst *LoopEntryPredicate = 5725 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5726 if (!LoopEntryPredicate || 5727 LoopEntryPredicate->isUnconditional()) 5728 continue; 5729 5730 if (isImpliedCond(Pred, LHS, RHS, 5731 LoopEntryPredicate->getCondition(), 5732 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5733 return true; 5734 } 5735 5736 return false; 5737 } 5738 5739 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5740 /// and RHS is true whenever the given Cond value evaluates to true. 5741 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 5742 const SCEV *LHS, const SCEV *RHS, 5743 Value *FoundCondValue, 5744 bool Inverse) { 5745 // Recursively handle And and Or conditions. 5746 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 5747 if (BO->getOpcode() == Instruction::And) { 5748 if (!Inverse) 5749 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5750 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5751 } else if (BO->getOpcode() == Instruction::Or) { 5752 if (Inverse) 5753 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5754 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5755 } 5756 } 5757 5758 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 5759 if (!ICI) return false; 5760 5761 // Bail if the ICmp's operands' types are wider than the needed type 5762 // before attempting to call getSCEV on them. This avoids infinite 5763 // recursion, since the analysis of widening casts can require loop 5764 // exit condition information for overflow checking, which would 5765 // lead back here. 5766 if (getTypeSizeInBits(LHS->getType()) < 5767 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5768 return false; 5769 5770 // Now that we found a conditional branch that dominates the loop, check to 5771 // see if it is the comparison we are looking for. 5772 ICmpInst::Predicate FoundPred; 5773 if (Inverse) 5774 FoundPred = ICI->getInversePredicate(); 5775 else 5776 FoundPred = ICI->getPredicate(); 5777 5778 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5779 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5780 5781 // Balance the types. The case where FoundLHS' type is wider than 5782 // LHS' type is checked for above. 5783 if (getTypeSizeInBits(LHS->getType()) > 5784 getTypeSizeInBits(FoundLHS->getType())) { 5785 if (CmpInst::isSigned(Pred)) { 5786 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5787 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5788 } else { 5789 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5790 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5791 } 5792 } 5793 5794 // Canonicalize the query to match the way instcombine will have 5795 // canonicalized the comparison. 5796 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5797 if (LHS == RHS) 5798 return CmpInst::isTrueWhenEqual(Pred); 5799 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5800 if (FoundLHS == FoundRHS) 5801 return CmpInst::isFalseWhenEqual(Pred); 5802 5803 // Check to see if we can make the LHS or RHS match. 5804 if (LHS == FoundRHS || RHS == FoundLHS) { 5805 if (isa<SCEVConstant>(RHS)) { 5806 std::swap(FoundLHS, FoundRHS); 5807 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5808 } else { 5809 std::swap(LHS, RHS); 5810 Pred = ICmpInst::getSwappedPredicate(Pred); 5811 } 5812 } 5813 5814 // Check whether the found predicate is the same as the desired predicate. 5815 if (FoundPred == Pred) 5816 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5817 5818 // Check whether swapping the found predicate makes it the same as the 5819 // desired predicate. 5820 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5821 if (isa<SCEVConstant>(RHS)) 5822 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5823 else 5824 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5825 RHS, LHS, FoundLHS, FoundRHS); 5826 } 5827 5828 // Check whether the actual condition is beyond sufficient. 5829 if (FoundPred == ICmpInst::ICMP_EQ) 5830 if (ICmpInst::isTrueWhenEqual(Pred)) 5831 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5832 return true; 5833 if (Pred == ICmpInst::ICMP_NE) 5834 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5835 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5836 return true; 5837 5838 // Otherwise assume the worst. 5839 return false; 5840 } 5841 5842 /// isImpliedCondOperands - Test whether the condition described by Pred, 5843 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5844 /// and FoundRHS is true. 5845 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5846 const SCEV *LHS, const SCEV *RHS, 5847 const SCEV *FoundLHS, 5848 const SCEV *FoundRHS) { 5849 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5850 FoundLHS, FoundRHS) || 5851 // ~x < ~y --> x > y 5852 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5853 getNotSCEV(FoundRHS), 5854 getNotSCEV(FoundLHS)); 5855 } 5856 5857 /// isImpliedCondOperandsHelper - Test whether the condition described by 5858 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5859 /// FoundLHS, and FoundRHS is true. 5860 bool 5861 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5862 const SCEV *LHS, const SCEV *RHS, 5863 const SCEV *FoundLHS, 5864 const SCEV *FoundRHS) { 5865 switch (Pred) { 5866 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5867 case ICmpInst::ICMP_EQ: 5868 case ICmpInst::ICMP_NE: 5869 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5870 return true; 5871 break; 5872 case ICmpInst::ICMP_SLT: 5873 case ICmpInst::ICMP_SLE: 5874 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5875 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5876 return true; 5877 break; 5878 case ICmpInst::ICMP_SGT: 5879 case ICmpInst::ICMP_SGE: 5880 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5881 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5882 return true; 5883 break; 5884 case ICmpInst::ICMP_ULT: 5885 case ICmpInst::ICMP_ULE: 5886 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5887 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5888 return true; 5889 break; 5890 case ICmpInst::ICMP_UGT: 5891 case ICmpInst::ICMP_UGE: 5892 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5893 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5894 return true; 5895 break; 5896 } 5897 5898 return false; 5899 } 5900 5901 /// getBECount - Subtract the end and start values and divide by the step, 5902 /// rounding up, to get the number of times the backedge is executed. Return 5903 /// CouldNotCompute if an intermediate computation overflows. 5904 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5905 const SCEV *End, 5906 const SCEV *Step, 5907 bool NoWrap) { 5908 assert(!isKnownNegative(Step) && 5909 "This code doesn't handle negative strides yet!"); 5910 5911 Type *Ty = Start->getType(); 5912 5913 // When Start == End, we have an exact BECount == 0. Short-circuit this case 5914 // here because SCEV may not be able to determine that the unsigned division 5915 // after rounding is zero. 5916 if (Start == End) 5917 return getConstant(Ty, 0); 5918 5919 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5920 const SCEV *Diff = getMinusSCEV(End, Start); 5921 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5922 5923 // Add an adjustment to the difference between End and Start so that 5924 // the division will effectively round up. 5925 const SCEV *Add = getAddExpr(Diff, RoundUp); 5926 5927 if (!NoWrap) { 5928 // Check Add for unsigned overflow. 5929 // TODO: More sophisticated things could be done here. 5930 Type *WideTy = IntegerType::get(getContext(), 5931 getTypeSizeInBits(Ty) + 1); 5932 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5933 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5934 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5935 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5936 return getCouldNotCompute(); 5937 } 5938 5939 return getUDivExpr(Add, Step); 5940 } 5941 5942 /// HowManyLessThans - Return the number of times a backedge containing the 5943 /// specified less-than comparison will execute. If not computable, return 5944 /// CouldNotCompute. 5945 ScalarEvolution::ExitLimit 5946 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5947 const Loop *L, bool isSigned) { 5948 // Only handle: "ADDREC < LoopInvariant". 5949 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 5950 5951 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5952 if (!AddRec || AddRec->getLoop() != L) 5953 return getCouldNotCompute(); 5954 5955 // Check to see if we have a flag which makes analysis easy. 5956 bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) : 5957 AddRec->getNoWrapFlags(SCEV::FlagNUW); 5958 5959 if (AddRec->isAffine()) { 5960 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5961 const SCEV *Step = AddRec->getStepRecurrence(*this); 5962 5963 if (Step->isZero()) 5964 return getCouldNotCompute(); 5965 if (Step->isOne()) { 5966 // With unit stride, the iteration never steps past the limit value. 5967 } else if (isKnownPositive(Step)) { 5968 // Test whether a positive iteration can step past the limit 5969 // value and past the maximum value for its type in a single step. 5970 // Note that it's not sufficient to check NoWrap here, because even 5971 // though the value after a wrap is undefined, it's not undefined 5972 // behavior, so if wrap does occur, the loop could either terminate or 5973 // loop infinitely, but in either case, the loop is guaranteed to 5974 // iterate at least until the iteration where the wrapping occurs. 5975 const SCEV *One = getConstant(Step->getType(), 1); 5976 if (isSigned) { 5977 APInt Max = APInt::getSignedMaxValue(BitWidth); 5978 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5979 .slt(getSignedRange(RHS).getSignedMax())) 5980 return getCouldNotCompute(); 5981 } else { 5982 APInt Max = APInt::getMaxValue(BitWidth); 5983 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5984 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5985 return getCouldNotCompute(); 5986 } 5987 } else 5988 // TODO: Handle negative strides here and below. 5989 return getCouldNotCompute(); 5990 5991 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5992 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5993 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5994 // treat m-n as signed nor unsigned due to overflow possibility. 5995 5996 // First, we get the value of the LHS in the first iteration: n 5997 const SCEV *Start = AddRec->getOperand(0); 5998 5999 // Determine the minimum constant start value. 6000 const SCEV *MinStart = getConstant(isSigned ? 6001 getSignedRange(Start).getSignedMin() : 6002 getUnsignedRange(Start).getUnsignedMin()); 6003 6004 // If we know that the condition is true in order to enter the loop, 6005 // then we know that it will run exactly (m-n)/s times. Otherwise, we 6006 // only know that it will execute (max(m,n)-n)/s times. In both cases, 6007 // the division must round up. 6008 const SCEV *End = RHS; 6009 if (!isLoopEntryGuardedByCond(L, 6010 isSigned ? ICmpInst::ICMP_SLT : 6011 ICmpInst::ICMP_ULT, 6012 getMinusSCEV(Start, Step), RHS)) 6013 End = isSigned ? getSMaxExpr(RHS, Start) 6014 : getUMaxExpr(RHS, Start); 6015 6016 // Determine the maximum constant end value. 6017 const SCEV *MaxEnd = getConstant(isSigned ? 6018 getSignedRange(End).getSignedMax() : 6019 getUnsignedRange(End).getUnsignedMax()); 6020 6021 // If MaxEnd is within a step of the maximum integer value in its type, 6022 // adjust it down to the minimum value which would produce the same effect. 6023 // This allows the subsequent ceiling division of (N+(step-1))/step to 6024 // compute the correct value. 6025 const SCEV *StepMinusOne = getMinusSCEV(Step, 6026 getConstant(Step->getType(), 1)); 6027 MaxEnd = isSigned ? 6028 getSMinExpr(MaxEnd, 6029 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 6030 StepMinusOne)) : 6031 getUMinExpr(MaxEnd, 6032 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 6033 StepMinusOne)); 6034 6035 // Finally, we subtract these two values and divide, rounding up, to get 6036 // the number of times the backedge is executed. 6037 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 6038 6039 // The maximum backedge count is similar, except using the minimum start 6040 // value and the maximum end value. 6041 // If we already have an exact constant BECount, use it instead. 6042 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount 6043 : getBECount(MinStart, MaxEnd, Step, NoWrap); 6044 6045 // If the stride is nonconstant, and NoWrap == true, then 6046 // getBECount(MinStart, MaxEnd) may not compute. This would result in an 6047 // exact BECount and invalid MaxBECount, which should be avoided to catch 6048 // more optimization opportunities. 6049 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6050 MaxBECount = BECount; 6051 6052 return ExitLimit(BECount, MaxBECount); 6053 } 6054 6055 return getCouldNotCompute(); 6056 } 6057 6058 /// getNumIterationsInRange - Return the number of iterations of this loop that 6059 /// produce values in the specified constant range. Another way of looking at 6060 /// this is that it returns the first iteration number where the value is not in 6061 /// the condition, thus computing the exit count. If the iteration count can't 6062 /// be computed, an instance of SCEVCouldNotCompute is returned. 6063 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6064 ScalarEvolution &SE) const { 6065 if (Range.isFullSet()) // Infinite loop. 6066 return SE.getCouldNotCompute(); 6067 6068 // If the start is a non-zero constant, shift the range to simplify things. 6069 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6070 if (!SC->getValue()->isZero()) { 6071 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6072 Operands[0] = SE.getConstant(SC->getType(), 0); 6073 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6074 getNoWrapFlags(FlagNW)); 6075 if (const SCEVAddRecExpr *ShiftedAddRec = 6076 dyn_cast<SCEVAddRecExpr>(Shifted)) 6077 return ShiftedAddRec->getNumIterationsInRange( 6078 Range.subtract(SC->getValue()->getValue()), SE); 6079 // This is strange and shouldn't happen. 6080 return SE.getCouldNotCompute(); 6081 } 6082 6083 // The only time we can solve this is when we have all constant indices. 6084 // Otherwise, we cannot determine the overflow conditions. 6085 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6086 if (!isa<SCEVConstant>(getOperand(i))) 6087 return SE.getCouldNotCompute(); 6088 6089 6090 // Okay at this point we know that all elements of the chrec are constants and 6091 // that the start element is zero. 6092 6093 // First check to see if the range contains zero. If not, the first 6094 // iteration exits. 6095 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6096 if (!Range.contains(APInt(BitWidth, 0))) 6097 return SE.getConstant(getType(), 0); 6098 6099 if (isAffine()) { 6100 // If this is an affine expression then we have this situation: 6101 // Solve {0,+,A} in Range === Ax in Range 6102 6103 // We know that zero is in the range. If A is positive then we know that 6104 // the upper value of the range must be the first possible exit value. 6105 // If A is negative then the lower of the range is the last possible loop 6106 // value. Also note that we already checked for a full range. 6107 APInt One(BitWidth,1); 6108 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6109 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6110 6111 // The exit value should be (End+A)/A. 6112 APInt ExitVal = (End + A).udiv(A); 6113 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6114 6115 // Evaluate at the exit value. If we really did fall out of the valid 6116 // range, then we computed our trip count, otherwise wrap around or other 6117 // things must have happened. 6118 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6119 if (Range.contains(Val->getValue())) 6120 return SE.getCouldNotCompute(); // Something strange happened 6121 6122 // Ensure that the previous value is in the range. This is a sanity check. 6123 assert(Range.contains( 6124 EvaluateConstantChrecAtConstant(this, 6125 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6126 "Linear scev computation is off in a bad way!"); 6127 return SE.getConstant(ExitValue); 6128 } else if (isQuadratic()) { 6129 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6130 // quadratic equation to solve it. To do this, we must frame our problem in 6131 // terms of figuring out when zero is crossed, instead of when 6132 // Range.getUpper() is crossed. 6133 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6134 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6135 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6136 // getNoWrapFlags(FlagNW) 6137 FlagAnyWrap); 6138 6139 // Next, solve the constructed addrec 6140 std::pair<const SCEV *,const SCEV *> Roots = 6141 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6142 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6143 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6144 if (R1) { 6145 // Pick the smallest positive root value. 6146 if (ConstantInt *CB = 6147 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6148 R1->getValue(), R2->getValue()))) { 6149 if (CB->getZExtValue() == false) 6150 std::swap(R1, R2); // R1 is the minimum root now. 6151 6152 // Make sure the root is not off by one. The returned iteration should 6153 // not be in the range, but the previous one should be. When solving 6154 // for "X*X < 5", for example, we should not return a root of 2. 6155 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6156 R1->getValue(), 6157 SE); 6158 if (Range.contains(R1Val->getValue())) { 6159 // The next iteration must be out of the range... 6160 ConstantInt *NextVal = 6161 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6162 6163 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6164 if (!Range.contains(R1Val->getValue())) 6165 return SE.getConstant(NextVal); 6166 return SE.getCouldNotCompute(); // Something strange happened 6167 } 6168 6169 // If R1 was not in the range, then it is a good return value. Make 6170 // sure that R1-1 WAS in the range though, just in case. 6171 ConstantInt *NextVal = 6172 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6173 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6174 if (Range.contains(R1Val->getValue())) 6175 return R1; 6176 return SE.getCouldNotCompute(); // Something strange happened 6177 } 6178 } 6179 } 6180 6181 return SE.getCouldNotCompute(); 6182 } 6183 6184 6185 6186 //===----------------------------------------------------------------------===// 6187 // SCEVCallbackVH Class Implementation 6188 //===----------------------------------------------------------------------===// 6189 6190 void ScalarEvolution::SCEVCallbackVH::deleted() { 6191 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6192 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 6193 SE->ConstantEvolutionLoopExitValue.erase(PN); 6194 SE->ValueExprMap.erase(getValPtr()); 6195 // this now dangles! 6196 } 6197 6198 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 6199 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6200 6201 // Forget all the expressions associated with users of the old value, 6202 // so that future queries will recompute the expressions using the new 6203 // value. 6204 Value *Old = getValPtr(); 6205 SmallVector<User *, 16> Worklist; 6206 SmallPtrSet<User *, 8> Visited; 6207 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 6208 UI != UE; ++UI) 6209 Worklist.push_back(*UI); 6210 while (!Worklist.empty()) { 6211 User *U = Worklist.pop_back_val(); 6212 // Deleting the Old value will cause this to dangle. Postpone 6213 // that until everything else is done. 6214 if (U == Old) 6215 continue; 6216 if (!Visited.insert(U)) 6217 continue; 6218 if (PHINode *PN = dyn_cast<PHINode>(U)) 6219 SE->ConstantEvolutionLoopExitValue.erase(PN); 6220 SE->ValueExprMap.erase(U); 6221 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 6222 UI != UE; ++UI) 6223 Worklist.push_back(*UI); 6224 } 6225 // Delete the Old value. 6226 if (PHINode *PN = dyn_cast<PHINode>(Old)) 6227 SE->ConstantEvolutionLoopExitValue.erase(PN); 6228 SE->ValueExprMap.erase(Old); 6229 // this now dangles! 6230 } 6231 6232 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 6233 : CallbackVH(V), SE(se) {} 6234 6235 //===----------------------------------------------------------------------===// 6236 // ScalarEvolution Class Implementation 6237 //===----------------------------------------------------------------------===// 6238 6239 ScalarEvolution::ScalarEvolution() 6240 : FunctionPass(ID), FirstUnknown(0) { 6241 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 6242 } 6243 6244 bool ScalarEvolution::runOnFunction(Function &F) { 6245 this->F = &F; 6246 LI = &getAnalysis<LoopInfo>(); 6247 TD = getAnalysisIfAvailable<TargetData>(); 6248 DT = &getAnalysis<DominatorTree>(); 6249 return false; 6250 } 6251 6252 void ScalarEvolution::releaseMemory() { 6253 // Iterate through all the SCEVUnknown instances and call their 6254 // destructors, so that they release their references to their values. 6255 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 6256 U->~SCEVUnknown(); 6257 FirstUnknown = 0; 6258 6259 ValueExprMap.clear(); 6260 6261 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 6262 // that a loop had multiple computable exits. 6263 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 6264 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 6265 I != E; ++I) { 6266 I->second.clear(); 6267 } 6268 6269 BackedgeTakenCounts.clear(); 6270 ConstantEvolutionLoopExitValue.clear(); 6271 ValuesAtScopes.clear(); 6272 LoopDispositions.clear(); 6273 BlockDispositions.clear(); 6274 UnsignedRanges.clear(); 6275 SignedRanges.clear(); 6276 UniqueSCEVs.clear(); 6277 SCEVAllocator.Reset(); 6278 } 6279 6280 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 6281 AU.setPreservesAll(); 6282 AU.addRequiredTransitive<LoopInfo>(); 6283 AU.addRequiredTransitive<DominatorTree>(); 6284 } 6285 6286 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 6287 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 6288 } 6289 6290 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 6291 const Loop *L) { 6292 // Print all inner loops first 6293 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 6294 PrintLoopInfo(OS, SE, *I); 6295 6296 OS << "Loop "; 6297 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6298 OS << ": "; 6299 6300 SmallVector<BasicBlock *, 8> ExitBlocks; 6301 L->getExitBlocks(ExitBlocks); 6302 if (ExitBlocks.size() != 1) 6303 OS << "<multiple exits> "; 6304 6305 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 6306 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 6307 } else { 6308 OS << "Unpredictable backedge-taken count. "; 6309 } 6310 6311 OS << "\n" 6312 "Loop "; 6313 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6314 OS << ": "; 6315 6316 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 6317 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 6318 } else { 6319 OS << "Unpredictable max backedge-taken count. "; 6320 } 6321 6322 OS << "\n"; 6323 } 6324 6325 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 6326 // ScalarEvolution's implementation of the print method is to print 6327 // out SCEV values of all instructions that are interesting. Doing 6328 // this potentially causes it to create new SCEV objects though, 6329 // which technically conflicts with the const qualifier. This isn't 6330 // observable from outside the class though, so casting away the 6331 // const isn't dangerous. 6332 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6333 6334 OS << "Classifying expressions for: "; 6335 WriteAsOperand(OS, F, /*PrintType=*/false); 6336 OS << "\n"; 6337 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6338 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6339 OS << *I << '\n'; 6340 OS << " --> "; 6341 const SCEV *SV = SE.getSCEV(&*I); 6342 SV->print(OS); 6343 6344 const Loop *L = LI->getLoopFor((*I).getParent()); 6345 6346 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6347 if (AtUse != SV) { 6348 OS << " --> "; 6349 AtUse->print(OS); 6350 } 6351 6352 if (L) { 6353 OS << "\t\t" "Exits: "; 6354 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6355 if (!SE.isLoopInvariant(ExitValue, L)) { 6356 OS << "<<Unknown>>"; 6357 } else { 6358 OS << *ExitValue; 6359 } 6360 } 6361 6362 OS << "\n"; 6363 } 6364 6365 OS << "Determining loop execution counts for: "; 6366 WriteAsOperand(OS, F, /*PrintType=*/false); 6367 OS << "\n"; 6368 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6369 PrintLoopInfo(OS, &SE, *I); 6370 } 6371 6372 ScalarEvolution::LoopDisposition 6373 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6374 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6375 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6376 Values.insert(std::make_pair(L, LoopVariant)); 6377 if (!Pair.second) 6378 return Pair.first->second; 6379 6380 LoopDisposition D = computeLoopDisposition(S, L); 6381 return LoopDispositions[S][L] = D; 6382 } 6383 6384 ScalarEvolution::LoopDisposition 6385 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6386 switch (S->getSCEVType()) { 6387 case scConstant: 6388 return LoopInvariant; 6389 case scTruncate: 6390 case scZeroExtend: 6391 case scSignExtend: 6392 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6393 case scAddRecExpr: { 6394 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6395 6396 // If L is the addrec's loop, it's computable. 6397 if (AR->getLoop() == L) 6398 return LoopComputable; 6399 6400 // Add recurrences are never invariant in the function-body (null loop). 6401 if (!L) 6402 return LoopVariant; 6403 6404 // This recurrence is variant w.r.t. L if L contains AR's loop. 6405 if (L->contains(AR->getLoop())) 6406 return LoopVariant; 6407 6408 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6409 if (AR->getLoop()->contains(L)) 6410 return LoopInvariant; 6411 6412 // This recurrence is variant w.r.t. L if any of its operands 6413 // are variant. 6414 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6415 I != E; ++I) 6416 if (!isLoopInvariant(*I, L)) 6417 return LoopVariant; 6418 6419 // Otherwise it's loop-invariant. 6420 return LoopInvariant; 6421 } 6422 case scAddExpr: 6423 case scMulExpr: 6424 case scUMaxExpr: 6425 case scSMaxExpr: { 6426 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6427 bool HasVarying = false; 6428 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6429 I != E; ++I) { 6430 LoopDisposition D = getLoopDisposition(*I, L); 6431 if (D == LoopVariant) 6432 return LoopVariant; 6433 if (D == LoopComputable) 6434 HasVarying = true; 6435 } 6436 return HasVarying ? LoopComputable : LoopInvariant; 6437 } 6438 case scUDivExpr: { 6439 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6440 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6441 if (LD == LoopVariant) 6442 return LoopVariant; 6443 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6444 if (RD == LoopVariant) 6445 return LoopVariant; 6446 return (LD == LoopInvariant && RD == LoopInvariant) ? 6447 LoopInvariant : LoopComputable; 6448 } 6449 case scUnknown: 6450 // All non-instruction values are loop invariant. All instructions are loop 6451 // invariant if they are not contained in the specified loop. 6452 // Instructions are never considered invariant in the function body 6453 // (null loop) because they are defined within the "loop". 6454 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6455 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6456 return LoopInvariant; 6457 case scCouldNotCompute: 6458 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6459 return LoopVariant; 6460 default: break; 6461 } 6462 llvm_unreachable("Unknown SCEV kind!"); 6463 return LoopVariant; 6464 } 6465 6466 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6467 return getLoopDisposition(S, L) == LoopInvariant; 6468 } 6469 6470 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6471 return getLoopDisposition(S, L) == LoopComputable; 6472 } 6473 6474 ScalarEvolution::BlockDisposition 6475 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6476 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6477 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6478 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6479 if (!Pair.second) 6480 return Pair.first->second; 6481 6482 BlockDisposition D = computeBlockDisposition(S, BB); 6483 return BlockDispositions[S][BB] = D; 6484 } 6485 6486 ScalarEvolution::BlockDisposition 6487 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6488 switch (S->getSCEVType()) { 6489 case scConstant: 6490 return ProperlyDominatesBlock; 6491 case scTruncate: 6492 case scZeroExtend: 6493 case scSignExtend: 6494 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6495 case scAddRecExpr: { 6496 // This uses a "dominates" query instead of "properly dominates" query 6497 // to test for proper dominance too, because the instruction which 6498 // produces the addrec's value is a PHI, and a PHI effectively properly 6499 // dominates its entire containing block. 6500 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6501 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6502 return DoesNotDominateBlock; 6503 } 6504 // FALL THROUGH into SCEVNAryExpr handling. 6505 case scAddExpr: 6506 case scMulExpr: 6507 case scUMaxExpr: 6508 case scSMaxExpr: { 6509 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6510 bool Proper = true; 6511 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6512 I != E; ++I) { 6513 BlockDisposition D = getBlockDisposition(*I, BB); 6514 if (D == DoesNotDominateBlock) 6515 return DoesNotDominateBlock; 6516 if (D == DominatesBlock) 6517 Proper = false; 6518 } 6519 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6520 } 6521 case scUDivExpr: { 6522 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6523 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6524 BlockDisposition LD = getBlockDisposition(LHS, BB); 6525 if (LD == DoesNotDominateBlock) 6526 return DoesNotDominateBlock; 6527 BlockDisposition RD = getBlockDisposition(RHS, BB); 6528 if (RD == DoesNotDominateBlock) 6529 return DoesNotDominateBlock; 6530 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6531 ProperlyDominatesBlock : DominatesBlock; 6532 } 6533 case scUnknown: 6534 if (Instruction *I = 6535 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6536 if (I->getParent() == BB) 6537 return DominatesBlock; 6538 if (DT->properlyDominates(I->getParent(), BB)) 6539 return ProperlyDominatesBlock; 6540 return DoesNotDominateBlock; 6541 } 6542 return ProperlyDominatesBlock; 6543 case scCouldNotCompute: 6544 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6545 return DoesNotDominateBlock; 6546 default: break; 6547 } 6548 llvm_unreachable("Unknown SCEV kind!"); 6549 return DoesNotDominateBlock; 6550 } 6551 6552 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6553 return getBlockDisposition(S, BB) >= DominatesBlock; 6554 } 6555 6556 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6557 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 6558 } 6559 6560 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 6561 switch (S->getSCEVType()) { 6562 case scConstant: 6563 return false; 6564 case scTruncate: 6565 case scZeroExtend: 6566 case scSignExtend: { 6567 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S); 6568 const SCEV *CastOp = Cast->getOperand(); 6569 return Op == CastOp || hasOperand(CastOp, Op); 6570 } 6571 case scAddRecExpr: 6572 case scAddExpr: 6573 case scMulExpr: 6574 case scUMaxExpr: 6575 case scSMaxExpr: { 6576 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6577 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6578 I != E; ++I) { 6579 const SCEV *NAryOp = *I; 6580 if (NAryOp == Op || hasOperand(NAryOp, Op)) 6581 return true; 6582 } 6583 return false; 6584 } 6585 case scUDivExpr: { 6586 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6587 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6588 return LHS == Op || hasOperand(LHS, Op) || 6589 RHS == Op || hasOperand(RHS, Op); 6590 } 6591 case scUnknown: 6592 return false; 6593 case scCouldNotCompute: 6594 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6595 return false; 6596 default: break; 6597 } 6598 llvm_unreachable("Unknown SCEV kind!"); 6599 return false; 6600 } 6601 6602 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 6603 ValuesAtScopes.erase(S); 6604 LoopDispositions.erase(S); 6605 BlockDispositions.erase(S); 6606 UnsignedRanges.erase(S); 6607 SignedRanges.erase(S); 6608 } 6609