1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/InstructionSimplify.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/Assembly/Writer.h" 76 #include "llvm/Target/TargetData.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/ConstantRange.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GetElementPtrTypeIterator.h" 82 #include "llvm/Support/InstIterator.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/ADT/STLExtras.h" 87 #include "llvm/ADT/SmallPtrSet.h" 88 #include <algorithm> 89 using namespace llvm; 90 91 STATISTIC(NumArrayLenItCounts, 92 "Number of trip counts computed with array length"); 93 STATISTIC(NumTripCountsComputed, 94 "Number of loops with predictable loop counts"); 95 STATISTIC(NumTripCountsNotComputed, 96 "Number of loops without predictable loop counts"); 97 STATISTIC(NumBruteForceTripCountsComputed, 98 "Number of loops with trip counts computed by force"); 99 100 static cl::opt<unsigned> 101 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 102 cl::desc("Maximum number of iterations SCEV will " 103 "symbolically execute a constant " 104 "derived loop"), 105 cl::init(100)); 106 107 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 108 "Scalar Evolution Analysis", false, true) 109 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 110 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 111 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 112 "Scalar Evolution Analysis", false, true) 113 char ScalarEvolution::ID = 0; 114 115 //===----------------------------------------------------------------------===// 116 // SCEV class definitions 117 //===----------------------------------------------------------------------===// 118 119 //===----------------------------------------------------------------------===// 120 // Implementation of the SCEV class. 121 // 122 123 void SCEV::dump() const { 124 print(dbgs()); 125 dbgs() << '\n'; 126 } 127 128 void SCEV::print(raw_ostream &OS) const { 129 switch (getSCEVType()) { 130 case scConstant: 131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 132 return; 133 case scTruncate: { 134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 135 const SCEV *Op = Trunc->getOperand(); 136 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 137 << *Trunc->getType() << ")"; 138 return; 139 } 140 case scZeroExtend: { 141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 142 const SCEV *Op = ZExt->getOperand(); 143 OS << "(zext " << *Op->getType() << " " << *Op << " to " 144 << *ZExt->getType() << ")"; 145 return; 146 } 147 case scSignExtend: { 148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 149 const SCEV *Op = SExt->getOperand(); 150 OS << "(sext " << *Op->getType() << " " << *Op << " to " 151 << *SExt->getType() << ")"; 152 return; 153 } 154 case scAddRecExpr: { 155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 156 OS << "{" << *AR->getOperand(0); 157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 158 OS << ",+," << *AR->getOperand(i); 159 OS << "}<"; 160 if (AR->getNoWrapFlags(FlagNUW)) 161 OS << "nuw><"; 162 if (AR->getNoWrapFlags(FlagNSW)) 163 OS << "nsw><"; 164 if (AR->getNoWrapFlags(FlagNW) && 165 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 166 OS << "nw><"; 167 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 168 OS << ">"; 169 return; 170 } 171 case scAddExpr: 172 case scMulExpr: 173 case scUMaxExpr: 174 case scSMaxExpr: { 175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 176 const char *OpStr = 0; 177 switch (NAry->getSCEVType()) { 178 case scAddExpr: OpStr = " + "; break; 179 case scMulExpr: OpStr = " * "; break; 180 case scUMaxExpr: OpStr = " umax "; break; 181 case scSMaxExpr: OpStr = " smax "; break; 182 } 183 OS << "("; 184 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 185 I != E; ++I) { 186 OS << **I; 187 if (llvm::next(I) != E) 188 OS << OpStr; 189 } 190 OS << ")"; 191 return; 192 } 193 case scUDivExpr: { 194 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 195 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 196 return; 197 } 198 case scUnknown: { 199 const SCEVUnknown *U = cast<SCEVUnknown>(this); 200 Type *AllocTy; 201 if (U->isSizeOf(AllocTy)) { 202 OS << "sizeof(" << *AllocTy << ")"; 203 return; 204 } 205 if (U->isAlignOf(AllocTy)) { 206 OS << "alignof(" << *AllocTy << ")"; 207 return; 208 } 209 210 Type *CTy; 211 Constant *FieldNo; 212 if (U->isOffsetOf(CTy, FieldNo)) { 213 OS << "offsetof(" << *CTy << ", "; 214 WriteAsOperand(OS, FieldNo, false); 215 OS << ")"; 216 return; 217 } 218 219 // Otherwise just print it normally. 220 WriteAsOperand(OS, U->getValue(), false); 221 return; 222 } 223 case scCouldNotCompute: 224 OS << "***COULDNOTCOMPUTE***"; 225 return; 226 default: break; 227 } 228 llvm_unreachable("Unknown SCEV kind!"); 229 } 230 231 Type *SCEV::getType() const { 232 switch (getSCEVType()) { 233 case scConstant: 234 return cast<SCEVConstant>(this)->getType(); 235 case scTruncate: 236 case scZeroExtend: 237 case scSignExtend: 238 return cast<SCEVCastExpr>(this)->getType(); 239 case scAddRecExpr: 240 case scMulExpr: 241 case scUMaxExpr: 242 case scSMaxExpr: 243 return cast<SCEVNAryExpr>(this)->getType(); 244 case scAddExpr: 245 return cast<SCEVAddExpr>(this)->getType(); 246 case scUDivExpr: 247 return cast<SCEVUDivExpr>(this)->getType(); 248 case scUnknown: 249 return cast<SCEVUnknown>(this)->getType(); 250 case scCouldNotCompute: 251 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 252 return 0; 253 default: break; 254 } 255 llvm_unreachable("Unknown SCEV kind!"); 256 return 0; 257 } 258 259 bool SCEV::isZero() const { 260 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 261 return SC->getValue()->isZero(); 262 return false; 263 } 264 265 bool SCEV::isOne() const { 266 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 267 return SC->getValue()->isOne(); 268 return false; 269 } 270 271 bool SCEV::isAllOnesValue() const { 272 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 273 return SC->getValue()->isAllOnesValue(); 274 return false; 275 } 276 277 SCEVCouldNotCompute::SCEVCouldNotCompute() : 278 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 279 280 bool SCEVCouldNotCompute::classof(const SCEV *S) { 281 return S->getSCEVType() == scCouldNotCompute; 282 } 283 284 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 285 FoldingSetNodeID ID; 286 ID.AddInteger(scConstant); 287 ID.AddPointer(V); 288 void *IP = 0; 289 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 290 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 291 UniqueSCEVs.InsertNode(S, IP); 292 return S; 293 } 294 295 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 296 return getConstant(ConstantInt::get(getContext(), Val)); 297 } 298 299 const SCEV * 300 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 301 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 302 return getConstant(ConstantInt::get(ITy, V, isSigned)); 303 } 304 305 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 306 unsigned SCEVTy, const SCEV *op, Type *ty) 307 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 308 309 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 310 const SCEV *op, Type *ty) 311 : SCEVCastExpr(ID, scTruncate, op, ty) { 312 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 313 (Ty->isIntegerTy() || Ty->isPointerTy()) && 314 "Cannot truncate non-integer value!"); 315 } 316 317 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 318 const SCEV *op, Type *ty) 319 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 320 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 321 (Ty->isIntegerTy() || Ty->isPointerTy()) && 322 "Cannot zero extend non-integer value!"); 323 } 324 325 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 326 const SCEV *op, Type *ty) 327 : SCEVCastExpr(ID, scSignExtend, op, ty) { 328 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 329 (Ty->isIntegerTy() || Ty->isPointerTy()) && 330 "Cannot sign extend non-integer value!"); 331 } 332 333 void SCEVUnknown::deleted() { 334 // Clear this SCEVUnknown from various maps. 335 SE->forgetMemoizedResults(this); 336 337 // Remove this SCEVUnknown from the uniquing map. 338 SE->UniqueSCEVs.RemoveNode(this); 339 340 // Release the value. 341 setValPtr(0); 342 } 343 344 void SCEVUnknown::allUsesReplacedWith(Value *New) { 345 // Clear this SCEVUnknown from various maps. 346 SE->forgetMemoizedResults(this); 347 348 // Remove this SCEVUnknown from the uniquing map. 349 SE->UniqueSCEVs.RemoveNode(this); 350 351 // Update this SCEVUnknown to point to the new value. This is needed 352 // because there may still be outstanding SCEVs which still point to 353 // this SCEVUnknown. 354 setValPtr(New); 355 } 356 357 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 358 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 359 if (VCE->getOpcode() == Instruction::PtrToInt) 360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 361 if (CE->getOpcode() == Instruction::GetElementPtr && 362 CE->getOperand(0)->isNullValue() && 363 CE->getNumOperands() == 2) 364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 365 if (CI->isOne()) { 366 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 367 ->getElementType(); 368 return true; 369 } 370 371 return false; 372 } 373 374 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 375 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 376 if (VCE->getOpcode() == Instruction::PtrToInt) 377 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 378 if (CE->getOpcode() == Instruction::GetElementPtr && 379 CE->getOperand(0)->isNullValue()) { 380 Type *Ty = 381 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 382 if (StructType *STy = dyn_cast<StructType>(Ty)) 383 if (!STy->isPacked() && 384 CE->getNumOperands() == 3 && 385 CE->getOperand(1)->isNullValue()) { 386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 387 if (CI->isOne() && 388 STy->getNumElements() == 2 && 389 STy->getElementType(0)->isIntegerTy(1)) { 390 AllocTy = STy->getElementType(1); 391 return true; 392 } 393 } 394 } 395 396 return false; 397 } 398 399 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 401 if (VCE->getOpcode() == Instruction::PtrToInt) 402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 403 if (CE->getOpcode() == Instruction::GetElementPtr && 404 CE->getNumOperands() == 3 && 405 CE->getOperand(0)->isNullValue() && 406 CE->getOperand(1)->isNullValue()) { 407 Type *Ty = 408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 409 // Ignore vector types here so that ScalarEvolutionExpander doesn't 410 // emit getelementptrs that index into vectors. 411 if (Ty->isStructTy() || Ty->isArrayTy()) { 412 CTy = Ty; 413 FieldNo = CE->getOperand(2); 414 return true; 415 } 416 } 417 418 return false; 419 } 420 421 //===----------------------------------------------------------------------===// 422 // SCEV Utilities 423 //===----------------------------------------------------------------------===// 424 425 namespace { 426 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 427 /// than the complexity of the RHS. This comparator is used to canonicalize 428 /// expressions. 429 class SCEVComplexityCompare { 430 const LoopInfo *const LI; 431 public: 432 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 433 434 // Return true or false if LHS is less than, or at least RHS, respectively. 435 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 436 return compare(LHS, RHS) < 0; 437 } 438 439 // Return negative, zero, or positive, if LHS is less than, equal to, or 440 // greater than RHS, respectively. A three-way result allows recursive 441 // comparisons to be more efficient. 442 int compare(const SCEV *LHS, const SCEV *RHS) const { 443 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 444 if (LHS == RHS) 445 return 0; 446 447 // Primarily, sort the SCEVs by their getSCEVType(). 448 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 449 if (LType != RType) 450 return (int)LType - (int)RType; 451 452 // Aside from the getSCEVType() ordering, the particular ordering 453 // isn't very important except that it's beneficial to be consistent, 454 // so that (a + b) and (b + a) don't end up as different expressions. 455 switch (LType) { 456 case scUnknown: { 457 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 458 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 459 460 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 461 // not as complete as it could be. 462 const Value *LV = LU->getValue(), *RV = RU->getValue(); 463 464 // Order pointer values after integer values. This helps SCEVExpander 465 // form GEPs. 466 bool LIsPointer = LV->getType()->isPointerTy(), 467 RIsPointer = RV->getType()->isPointerTy(); 468 if (LIsPointer != RIsPointer) 469 return (int)LIsPointer - (int)RIsPointer; 470 471 // Compare getValueID values. 472 unsigned LID = LV->getValueID(), 473 RID = RV->getValueID(); 474 if (LID != RID) 475 return (int)LID - (int)RID; 476 477 // Sort arguments by their position. 478 if (const Argument *LA = dyn_cast<Argument>(LV)) { 479 const Argument *RA = cast<Argument>(RV); 480 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 481 return (int)LArgNo - (int)RArgNo; 482 } 483 484 // For instructions, compare their loop depth, and their operand 485 // count. This is pretty loose. 486 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 487 const Instruction *RInst = cast<Instruction>(RV); 488 489 // Compare loop depths. 490 const BasicBlock *LParent = LInst->getParent(), 491 *RParent = RInst->getParent(); 492 if (LParent != RParent) { 493 unsigned LDepth = LI->getLoopDepth(LParent), 494 RDepth = LI->getLoopDepth(RParent); 495 if (LDepth != RDepth) 496 return (int)LDepth - (int)RDepth; 497 } 498 499 // Compare the number of operands. 500 unsigned LNumOps = LInst->getNumOperands(), 501 RNumOps = RInst->getNumOperands(); 502 return (int)LNumOps - (int)RNumOps; 503 } 504 505 return 0; 506 } 507 508 case scConstant: { 509 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 510 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 511 512 // Compare constant values. 513 const APInt &LA = LC->getValue()->getValue(); 514 const APInt &RA = RC->getValue()->getValue(); 515 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 516 if (LBitWidth != RBitWidth) 517 return (int)LBitWidth - (int)RBitWidth; 518 return LA.ult(RA) ? -1 : 1; 519 } 520 521 case scAddRecExpr: { 522 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 523 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 524 525 // Compare addrec loop depths. 526 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 527 if (LLoop != RLoop) { 528 unsigned LDepth = LLoop->getLoopDepth(), 529 RDepth = RLoop->getLoopDepth(); 530 if (LDepth != RDepth) 531 return (int)LDepth - (int)RDepth; 532 } 533 534 // Addrec complexity grows with operand count. 535 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 536 if (LNumOps != RNumOps) 537 return (int)LNumOps - (int)RNumOps; 538 539 // Lexicographically compare. 540 for (unsigned i = 0; i != LNumOps; ++i) { 541 long X = compare(LA->getOperand(i), RA->getOperand(i)); 542 if (X != 0) 543 return X; 544 } 545 546 return 0; 547 } 548 549 case scAddExpr: 550 case scMulExpr: 551 case scSMaxExpr: 552 case scUMaxExpr: { 553 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 554 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 555 556 // Lexicographically compare n-ary expressions. 557 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 558 for (unsigned i = 0; i != LNumOps; ++i) { 559 if (i >= RNumOps) 560 return 1; 561 long X = compare(LC->getOperand(i), RC->getOperand(i)); 562 if (X != 0) 563 return X; 564 } 565 return (int)LNumOps - (int)RNumOps; 566 } 567 568 case scUDivExpr: { 569 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 570 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 571 572 // Lexicographically compare udiv expressions. 573 long X = compare(LC->getLHS(), RC->getLHS()); 574 if (X != 0) 575 return X; 576 return compare(LC->getRHS(), RC->getRHS()); 577 } 578 579 case scTruncate: 580 case scZeroExtend: 581 case scSignExtend: { 582 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 583 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 584 585 // Compare cast expressions by operand. 586 return compare(LC->getOperand(), RC->getOperand()); 587 } 588 589 default: 590 break; 591 } 592 593 llvm_unreachable("Unknown SCEV kind!"); 594 return 0; 595 } 596 }; 597 } 598 599 /// GroupByComplexity - Given a list of SCEV objects, order them by their 600 /// complexity, and group objects of the same complexity together by value. 601 /// When this routine is finished, we know that any duplicates in the vector are 602 /// consecutive and that complexity is monotonically increasing. 603 /// 604 /// Note that we go take special precautions to ensure that we get deterministic 605 /// results from this routine. In other words, we don't want the results of 606 /// this to depend on where the addresses of various SCEV objects happened to 607 /// land in memory. 608 /// 609 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 610 LoopInfo *LI) { 611 if (Ops.size() < 2) return; // Noop 612 if (Ops.size() == 2) { 613 // This is the common case, which also happens to be trivially simple. 614 // Special case it. 615 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 616 if (SCEVComplexityCompare(LI)(RHS, LHS)) 617 std::swap(LHS, RHS); 618 return; 619 } 620 621 // Do the rough sort by complexity. 622 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 623 624 // Now that we are sorted by complexity, group elements of the same 625 // complexity. Note that this is, at worst, N^2, but the vector is likely to 626 // be extremely short in practice. Note that we take this approach because we 627 // do not want to depend on the addresses of the objects we are grouping. 628 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 629 const SCEV *S = Ops[i]; 630 unsigned Complexity = S->getSCEVType(); 631 632 // If there are any objects of the same complexity and same value as this 633 // one, group them. 634 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 635 if (Ops[j] == S) { // Found a duplicate. 636 // Move it to immediately after i'th element. 637 std::swap(Ops[i+1], Ops[j]); 638 ++i; // no need to rescan it. 639 if (i == e-2) return; // Done! 640 } 641 } 642 } 643 } 644 645 646 647 //===----------------------------------------------------------------------===// 648 // Simple SCEV method implementations 649 //===----------------------------------------------------------------------===// 650 651 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 652 /// Assume, K > 0. 653 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 654 ScalarEvolution &SE, 655 Type* ResultTy) { 656 // Handle the simplest case efficiently. 657 if (K == 1) 658 return SE.getTruncateOrZeroExtend(It, ResultTy); 659 660 // We are using the following formula for BC(It, K): 661 // 662 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 663 // 664 // Suppose, W is the bitwidth of the return value. We must be prepared for 665 // overflow. Hence, we must assure that the result of our computation is 666 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 667 // safe in modular arithmetic. 668 // 669 // However, this code doesn't use exactly that formula; the formula it uses 670 // is something like the following, where T is the number of factors of 2 in 671 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 672 // exponentiation: 673 // 674 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 675 // 676 // This formula is trivially equivalent to the previous formula. However, 677 // this formula can be implemented much more efficiently. The trick is that 678 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 679 // arithmetic. To do exact division in modular arithmetic, all we have 680 // to do is multiply by the inverse. Therefore, this step can be done at 681 // width W. 682 // 683 // The next issue is how to safely do the division by 2^T. The way this 684 // is done is by doing the multiplication step at a width of at least W + T 685 // bits. This way, the bottom W+T bits of the product are accurate. Then, 686 // when we perform the division by 2^T (which is equivalent to a right shift 687 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 688 // truncated out after the division by 2^T. 689 // 690 // In comparison to just directly using the first formula, this technique 691 // is much more efficient; using the first formula requires W * K bits, 692 // but this formula less than W + K bits. Also, the first formula requires 693 // a division step, whereas this formula only requires multiplies and shifts. 694 // 695 // It doesn't matter whether the subtraction step is done in the calculation 696 // width or the input iteration count's width; if the subtraction overflows, 697 // the result must be zero anyway. We prefer here to do it in the width of 698 // the induction variable because it helps a lot for certain cases; CodeGen 699 // isn't smart enough to ignore the overflow, which leads to much less 700 // efficient code if the width of the subtraction is wider than the native 701 // register width. 702 // 703 // (It's possible to not widen at all by pulling out factors of 2 before 704 // the multiplication; for example, K=2 can be calculated as 705 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 706 // extra arithmetic, so it's not an obvious win, and it gets 707 // much more complicated for K > 3.) 708 709 // Protection from insane SCEVs; this bound is conservative, 710 // but it probably doesn't matter. 711 if (K > 1000) 712 return SE.getCouldNotCompute(); 713 714 unsigned W = SE.getTypeSizeInBits(ResultTy); 715 716 // Calculate K! / 2^T and T; we divide out the factors of two before 717 // multiplying for calculating K! / 2^T to avoid overflow. 718 // Other overflow doesn't matter because we only care about the bottom 719 // W bits of the result. 720 APInt OddFactorial(W, 1); 721 unsigned T = 1; 722 for (unsigned i = 3; i <= K; ++i) { 723 APInt Mult(W, i); 724 unsigned TwoFactors = Mult.countTrailingZeros(); 725 T += TwoFactors; 726 Mult = Mult.lshr(TwoFactors); 727 OddFactorial *= Mult; 728 } 729 730 // We need at least W + T bits for the multiplication step 731 unsigned CalculationBits = W + T; 732 733 // Calculate 2^T, at width T+W. 734 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 735 736 // Calculate the multiplicative inverse of K! / 2^T; 737 // this multiplication factor will perform the exact division by 738 // K! / 2^T. 739 APInt Mod = APInt::getSignedMinValue(W+1); 740 APInt MultiplyFactor = OddFactorial.zext(W+1); 741 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 742 MultiplyFactor = MultiplyFactor.trunc(W); 743 744 // Calculate the product, at width T+W 745 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 746 CalculationBits); 747 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 748 for (unsigned i = 1; i != K; ++i) { 749 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 750 Dividend = SE.getMulExpr(Dividend, 751 SE.getTruncateOrZeroExtend(S, CalculationTy)); 752 } 753 754 // Divide by 2^T 755 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 756 757 // Truncate the result, and divide by K! / 2^T. 758 759 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 760 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 761 } 762 763 /// evaluateAtIteration - Return the value of this chain of recurrences at 764 /// the specified iteration number. We can evaluate this recurrence by 765 /// multiplying each element in the chain by the binomial coefficient 766 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 767 /// 768 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 769 /// 770 /// where BC(It, k) stands for binomial coefficient. 771 /// 772 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 773 ScalarEvolution &SE) const { 774 const SCEV *Result = getStart(); 775 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 776 // The computation is correct in the face of overflow provided that the 777 // multiplication is performed _after_ the evaluation of the binomial 778 // coefficient. 779 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 780 if (isa<SCEVCouldNotCompute>(Coeff)) 781 return Coeff; 782 783 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 784 } 785 return Result; 786 } 787 788 //===----------------------------------------------------------------------===// 789 // SCEV Expression folder implementations 790 //===----------------------------------------------------------------------===// 791 792 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 793 Type *Ty) { 794 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 795 "This is not a truncating conversion!"); 796 assert(isSCEVable(Ty) && 797 "This is not a conversion to a SCEVable type!"); 798 Ty = getEffectiveSCEVType(Ty); 799 800 FoldingSetNodeID ID; 801 ID.AddInteger(scTruncate); 802 ID.AddPointer(Op); 803 ID.AddPointer(Ty); 804 void *IP = 0; 805 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 806 807 // Fold if the operand is constant. 808 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 809 return getConstant( 810 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 811 getEffectiveSCEVType(Ty)))); 812 813 // trunc(trunc(x)) --> trunc(x) 814 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 815 return getTruncateExpr(ST->getOperand(), Ty); 816 817 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 818 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 819 return getTruncateOrSignExtend(SS->getOperand(), Ty); 820 821 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 822 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 823 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 824 825 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 826 // eliminate all the truncates. 827 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 828 SmallVector<const SCEV *, 4> Operands; 829 bool hasTrunc = false; 830 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 831 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 832 hasTrunc = isa<SCEVTruncateExpr>(S); 833 Operands.push_back(S); 834 } 835 if (!hasTrunc) 836 return getAddExpr(Operands); 837 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 838 } 839 840 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 841 // eliminate all the truncates. 842 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 843 SmallVector<const SCEV *, 4> Operands; 844 bool hasTrunc = false; 845 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 846 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 847 hasTrunc = isa<SCEVTruncateExpr>(S); 848 Operands.push_back(S); 849 } 850 if (!hasTrunc) 851 return getMulExpr(Operands); 852 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 853 } 854 855 // If the input value is a chrec scev, truncate the chrec's operands. 856 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 857 SmallVector<const SCEV *, 4> Operands; 858 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 859 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 860 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 861 } 862 863 // As a special case, fold trunc(undef) to undef. We don't want to 864 // know too much about SCEVUnknowns, but this special case is handy 865 // and harmless. 866 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 867 if (isa<UndefValue>(U->getValue())) 868 return getSCEV(UndefValue::get(Ty)); 869 870 // The cast wasn't folded; create an explicit cast node. We can reuse 871 // the existing insert position since if we get here, we won't have 872 // made any changes which would invalidate it. 873 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 874 Op, Ty); 875 UniqueSCEVs.InsertNode(S, IP); 876 return S; 877 } 878 879 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 880 Type *Ty) { 881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 882 "This is not an extending conversion!"); 883 assert(isSCEVable(Ty) && 884 "This is not a conversion to a SCEVable type!"); 885 Ty = getEffectiveSCEVType(Ty); 886 887 // Fold if the operand is constant. 888 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 889 return getConstant( 890 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 891 getEffectiveSCEVType(Ty)))); 892 893 // zext(zext(x)) --> zext(x) 894 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 895 return getZeroExtendExpr(SZ->getOperand(), Ty); 896 897 // Before doing any expensive analysis, check to see if we've already 898 // computed a SCEV for this Op and Ty. 899 FoldingSetNodeID ID; 900 ID.AddInteger(scZeroExtend); 901 ID.AddPointer(Op); 902 ID.AddPointer(Ty); 903 void *IP = 0; 904 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 905 906 // zext(trunc(x)) --> zext(x) or x or trunc(x) 907 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 908 // It's possible the bits taken off by the truncate were all zero bits. If 909 // so, we should be able to simplify this further. 910 const SCEV *X = ST->getOperand(); 911 ConstantRange CR = getUnsignedRange(X); 912 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 913 unsigned NewBits = getTypeSizeInBits(Ty); 914 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 915 CR.zextOrTrunc(NewBits))) 916 return getTruncateOrZeroExtend(X, Ty); 917 } 918 919 // If the input value is a chrec scev, and we can prove that the value 920 // did not overflow the old, smaller, value, we can zero extend all of the 921 // operands (often constants). This allows analysis of something like 922 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 924 if (AR->isAffine()) { 925 const SCEV *Start = AR->getStart(); 926 const SCEV *Step = AR->getStepRecurrence(*this); 927 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 928 const Loop *L = AR->getLoop(); 929 930 // If we have special knowledge that this addrec won't overflow, 931 // we don't need to do any further analysis. 932 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 933 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 934 getZeroExtendExpr(Step, Ty), 935 L, AR->getNoWrapFlags()); 936 937 // Check whether the backedge-taken count is SCEVCouldNotCompute. 938 // Note that this serves two purposes: It filters out loops that are 939 // simply not analyzable, and it covers the case where this code is 940 // being called from within backedge-taken count analysis, such that 941 // attempting to ask for the backedge-taken count would likely result 942 // in infinite recursion. In the later case, the analysis code will 943 // cope with a conservative value, and it will take care to purge 944 // that value once it has finished. 945 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 946 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 947 // Manually compute the final value for AR, checking for 948 // overflow. 949 950 // Check whether the backedge-taken count can be losslessly casted to 951 // the addrec's type. The count is always unsigned. 952 const SCEV *CastedMaxBECount = 953 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 954 const SCEV *RecastedMaxBECount = 955 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 956 if (MaxBECount == RecastedMaxBECount) { 957 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 958 // Check whether Start+Step*MaxBECount has no unsigned overflow. 959 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 960 const SCEV *Add = getAddExpr(Start, ZMul); 961 const SCEV *OperandExtendedAdd = 962 getAddExpr(getZeroExtendExpr(Start, WideTy), 963 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 964 getZeroExtendExpr(Step, WideTy))); 965 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) { 966 // Cache knowledge of AR NUW, which is propagated to this AddRec. 967 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 968 // Return the expression with the addrec on the outside. 969 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 970 getZeroExtendExpr(Step, Ty), 971 L, AR->getNoWrapFlags()); 972 } 973 // Similar to above, only this time treat the step value as signed. 974 // This covers loops that count down. 975 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 976 Add = getAddExpr(Start, SMul); 977 OperandExtendedAdd = 978 getAddExpr(getZeroExtendExpr(Start, WideTy), 979 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 980 getSignExtendExpr(Step, WideTy))); 981 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) { 982 // Cache knowledge of AR NW, which is propagated to this AddRec. 983 // Negative step causes unsigned wrap, but it still can't self-wrap. 984 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 985 // Return the expression with the addrec on the outside. 986 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 987 getSignExtendExpr(Step, Ty), 988 L, AR->getNoWrapFlags()); 989 } 990 } 991 992 // If the backedge is guarded by a comparison with the pre-inc value 993 // the addrec is safe. Also, if the entry is guarded by a comparison 994 // with the start value and the backedge is guarded by a comparison 995 // with the post-inc value, the addrec is safe. 996 if (isKnownPositive(Step)) { 997 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 998 getUnsignedRange(Step).getUnsignedMax()); 999 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1000 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1001 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1002 AR->getPostIncExpr(*this), N))) { 1003 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1005 // Return the expression with the addrec on the outside. 1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1007 getZeroExtendExpr(Step, Ty), 1008 L, AR->getNoWrapFlags()); 1009 } 1010 } else if (isKnownNegative(Step)) { 1011 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1012 getSignedRange(Step).getSignedMin()); 1013 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1014 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1015 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1016 AR->getPostIncExpr(*this), N))) { 1017 // Cache knowledge of AR NW, which is propagated to this AddRec. 1018 // Negative step causes unsigned wrap, but it still can't self-wrap. 1019 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1020 // Return the expression with the addrec on the outside. 1021 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1022 getSignExtendExpr(Step, Ty), 1023 L, AR->getNoWrapFlags()); 1024 } 1025 } 1026 } 1027 } 1028 1029 // The cast wasn't folded; create an explicit cast node. 1030 // Recompute the insert position, as it may have been invalidated. 1031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1032 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1033 Op, Ty); 1034 UniqueSCEVs.InsertNode(S, IP); 1035 return S; 1036 } 1037 1038 // Get the limit of a recurrence such that incrementing by Step cannot cause 1039 // signed overflow as long as the value of the recurrence within the loop does 1040 // not exceed this limit before incrementing. 1041 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1042 ICmpInst::Predicate *Pred, 1043 ScalarEvolution *SE) { 1044 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1045 if (SE->isKnownPositive(Step)) { 1046 *Pred = ICmpInst::ICMP_SLT; 1047 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1048 SE->getSignedRange(Step).getSignedMax()); 1049 } 1050 if (SE->isKnownNegative(Step)) { 1051 *Pred = ICmpInst::ICMP_SGT; 1052 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1053 SE->getSignedRange(Step).getSignedMin()); 1054 } 1055 return 0; 1056 } 1057 1058 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1059 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1060 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1061 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1062 // result, the expression "Step + sext(PreIncAR)" is congruent with 1063 // "sext(PostIncAR)" 1064 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1065 Type *Ty, 1066 ScalarEvolution *SE) { 1067 const Loop *L = AR->getLoop(); 1068 const SCEV *Start = AR->getStart(); 1069 const SCEV *Step = AR->getStepRecurrence(*SE); 1070 1071 // Check for a simple looking step prior to loop entry. 1072 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1073 if (!SA || SA->getNumOperands() != 2 || SA->getOperand(0) != Step) 1074 return 0; 1075 1076 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1077 // same three conditions that getSignExtendedExpr checks. 1078 1079 // 1. NSW flags on the step increment. 1080 const SCEV *PreStart = SA->getOperand(1); 1081 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1082 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1083 1084 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1085 return PreStart; 1086 1087 // 2. Direct overflow check on the step operation's expression. 1088 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1089 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1090 const SCEV *OperandExtendedStart = 1091 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1092 SE->getSignExtendExpr(Step, WideTy)); 1093 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1094 // Cache knowledge of PreAR NSW. 1095 if (PreAR) 1096 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1097 // FIXME: this optimization needs a unit test 1098 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1099 return PreStart; 1100 } 1101 1102 // 3. Loop precondition. 1103 ICmpInst::Predicate Pred; 1104 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1105 1106 if (OverflowLimit && 1107 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1108 return PreStart; 1109 } 1110 return 0; 1111 } 1112 1113 // Get the normalized sign-extended expression for this AddRec's Start. 1114 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1115 Type *Ty, 1116 ScalarEvolution *SE) { 1117 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1118 if (!PreStart) 1119 return SE->getSignExtendExpr(AR->getStart(), Ty); 1120 1121 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1122 SE->getSignExtendExpr(PreStart, Ty)); 1123 } 1124 1125 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1126 Type *Ty) { 1127 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1128 "This is not an extending conversion!"); 1129 assert(isSCEVable(Ty) && 1130 "This is not a conversion to a SCEVable type!"); 1131 Ty = getEffectiveSCEVType(Ty); 1132 1133 // Fold if the operand is constant. 1134 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1135 return getConstant( 1136 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1137 getEffectiveSCEVType(Ty)))); 1138 1139 // sext(sext(x)) --> sext(x) 1140 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1141 return getSignExtendExpr(SS->getOperand(), Ty); 1142 1143 // sext(zext(x)) --> zext(x) 1144 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1145 return getZeroExtendExpr(SZ->getOperand(), Ty); 1146 1147 // Before doing any expensive analysis, check to see if we've already 1148 // computed a SCEV for this Op and Ty. 1149 FoldingSetNodeID ID; 1150 ID.AddInteger(scSignExtend); 1151 ID.AddPointer(Op); 1152 ID.AddPointer(Ty); 1153 void *IP = 0; 1154 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1155 1156 // If the input value is provably positive, build a zext instead. 1157 if (isKnownNonNegative(Op)) 1158 return getZeroExtendExpr(Op, Ty); 1159 1160 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1161 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1162 // It's possible the bits taken off by the truncate were all sign bits. If 1163 // so, we should be able to simplify this further. 1164 const SCEV *X = ST->getOperand(); 1165 ConstantRange CR = getSignedRange(X); 1166 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1167 unsigned NewBits = getTypeSizeInBits(Ty); 1168 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1169 CR.sextOrTrunc(NewBits))) 1170 return getTruncateOrSignExtend(X, Ty); 1171 } 1172 1173 // If the input value is a chrec scev, and we can prove that the value 1174 // did not overflow the old, smaller, value, we can sign extend all of the 1175 // operands (often constants). This allows analysis of something like 1176 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1177 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1178 if (AR->isAffine()) { 1179 const SCEV *Start = AR->getStart(); 1180 const SCEV *Step = AR->getStepRecurrence(*this); 1181 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1182 const Loop *L = AR->getLoop(); 1183 1184 // If we have special knowledge that this addrec won't overflow, 1185 // we don't need to do any further analysis. 1186 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1187 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1188 getSignExtendExpr(Step, Ty), 1189 L, SCEV::FlagNSW); 1190 1191 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1192 // Note that this serves two purposes: It filters out loops that are 1193 // simply not analyzable, and it covers the case where this code is 1194 // being called from within backedge-taken count analysis, such that 1195 // attempting to ask for the backedge-taken count would likely result 1196 // in infinite recursion. In the later case, the analysis code will 1197 // cope with a conservative value, and it will take care to purge 1198 // that value once it has finished. 1199 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1200 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1201 // Manually compute the final value for AR, checking for 1202 // overflow. 1203 1204 // Check whether the backedge-taken count can be losslessly casted to 1205 // the addrec's type. The count is always unsigned. 1206 const SCEV *CastedMaxBECount = 1207 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1208 const SCEV *RecastedMaxBECount = 1209 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1210 if (MaxBECount == RecastedMaxBECount) { 1211 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1212 // Check whether Start+Step*MaxBECount has no signed overflow. 1213 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1214 const SCEV *Add = getAddExpr(Start, SMul); 1215 const SCEV *OperandExtendedAdd = 1216 getAddExpr(getSignExtendExpr(Start, WideTy), 1217 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1218 getSignExtendExpr(Step, WideTy))); 1219 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) { 1220 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1221 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1222 // Return the expression with the addrec on the outside. 1223 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1224 getSignExtendExpr(Step, Ty), 1225 L, AR->getNoWrapFlags()); 1226 } 1227 // Similar to above, only this time treat the step value as unsigned. 1228 // This covers loops that count up with an unsigned step. 1229 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1230 Add = getAddExpr(Start, UMul); 1231 OperandExtendedAdd = 1232 getAddExpr(getSignExtendExpr(Start, WideTy), 1233 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1234 getZeroExtendExpr(Step, WideTy))); 1235 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) { 1236 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1237 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1238 // Return the expression with the addrec on the outside. 1239 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1240 getZeroExtendExpr(Step, Ty), 1241 L, AR->getNoWrapFlags()); 1242 } 1243 } 1244 1245 // If the backedge is guarded by a comparison with the pre-inc value 1246 // the addrec is safe. Also, if the entry is guarded by a comparison 1247 // with the start value and the backedge is guarded by a comparison 1248 // with the post-inc value, the addrec is safe. 1249 ICmpInst::Predicate Pred; 1250 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1251 if (OverflowLimit && 1252 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1253 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1254 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1255 OverflowLimit)))) { 1256 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1258 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1259 getSignExtendExpr(Step, Ty), 1260 L, AR->getNoWrapFlags()); 1261 } 1262 } 1263 } 1264 1265 // The cast wasn't folded; create an explicit cast node. 1266 // Recompute the insert position, as it may have been invalidated. 1267 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1268 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1269 Op, Ty); 1270 UniqueSCEVs.InsertNode(S, IP); 1271 return S; 1272 } 1273 1274 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1275 /// unspecified bits out to the given type. 1276 /// 1277 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1278 Type *Ty) { 1279 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1280 "This is not an extending conversion!"); 1281 assert(isSCEVable(Ty) && 1282 "This is not a conversion to a SCEVable type!"); 1283 Ty = getEffectiveSCEVType(Ty); 1284 1285 // Sign-extend negative constants. 1286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1287 if (SC->getValue()->getValue().isNegative()) 1288 return getSignExtendExpr(Op, Ty); 1289 1290 // Peel off a truncate cast. 1291 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1292 const SCEV *NewOp = T->getOperand(); 1293 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1294 return getAnyExtendExpr(NewOp, Ty); 1295 return getTruncateOrNoop(NewOp, Ty); 1296 } 1297 1298 // Next try a zext cast. If the cast is folded, use it. 1299 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1300 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1301 return ZExt; 1302 1303 // Next try a sext cast. If the cast is folded, use it. 1304 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1305 if (!isa<SCEVSignExtendExpr>(SExt)) 1306 return SExt; 1307 1308 // Force the cast to be folded into the operands of an addrec. 1309 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1310 SmallVector<const SCEV *, 4> Ops; 1311 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1312 I != E; ++I) 1313 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1314 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1315 } 1316 1317 // As a special case, fold anyext(undef) to undef. We don't want to 1318 // know too much about SCEVUnknowns, but this special case is handy 1319 // and harmless. 1320 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1321 if (isa<UndefValue>(U->getValue())) 1322 return getSCEV(UndefValue::get(Ty)); 1323 1324 // If the expression is obviously signed, use the sext cast value. 1325 if (isa<SCEVSMaxExpr>(Op)) 1326 return SExt; 1327 1328 // Absent any other information, use the zext cast value. 1329 return ZExt; 1330 } 1331 1332 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1333 /// a list of operands to be added under the given scale, update the given 1334 /// map. This is a helper function for getAddRecExpr. As an example of 1335 /// what it does, given a sequence of operands that would form an add 1336 /// expression like this: 1337 /// 1338 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1339 /// 1340 /// where A and B are constants, update the map with these values: 1341 /// 1342 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1343 /// 1344 /// and add 13 + A*B*29 to AccumulatedConstant. 1345 /// This will allow getAddRecExpr to produce this: 1346 /// 1347 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1348 /// 1349 /// This form often exposes folding opportunities that are hidden in 1350 /// the original operand list. 1351 /// 1352 /// Return true iff it appears that any interesting folding opportunities 1353 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1354 /// the common case where no interesting opportunities are present, and 1355 /// is also used as a check to avoid infinite recursion. 1356 /// 1357 static bool 1358 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1359 SmallVector<const SCEV *, 8> &NewOps, 1360 APInt &AccumulatedConstant, 1361 const SCEV *const *Ops, size_t NumOperands, 1362 const APInt &Scale, 1363 ScalarEvolution &SE) { 1364 bool Interesting = false; 1365 1366 // Iterate over the add operands. They are sorted, with constants first. 1367 unsigned i = 0; 1368 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1369 ++i; 1370 // Pull a buried constant out to the outside. 1371 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1372 Interesting = true; 1373 AccumulatedConstant += Scale * C->getValue()->getValue(); 1374 } 1375 1376 // Next comes everything else. We're especially interested in multiplies 1377 // here, but they're in the middle, so just visit the rest with one loop. 1378 for (; i != NumOperands; ++i) { 1379 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1380 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1381 APInt NewScale = 1382 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1383 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1384 // A multiplication of a constant with another add; recurse. 1385 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1386 Interesting |= 1387 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1388 Add->op_begin(), Add->getNumOperands(), 1389 NewScale, SE); 1390 } else { 1391 // A multiplication of a constant with some other value. Update 1392 // the map. 1393 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1394 const SCEV *Key = SE.getMulExpr(MulOps); 1395 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1396 M.insert(std::make_pair(Key, NewScale)); 1397 if (Pair.second) { 1398 NewOps.push_back(Pair.first->first); 1399 } else { 1400 Pair.first->second += NewScale; 1401 // The map already had an entry for this value, which may indicate 1402 // a folding opportunity. 1403 Interesting = true; 1404 } 1405 } 1406 } else { 1407 // An ordinary operand. Update the map. 1408 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1409 M.insert(std::make_pair(Ops[i], Scale)); 1410 if (Pair.second) { 1411 NewOps.push_back(Pair.first->first); 1412 } else { 1413 Pair.first->second += Scale; 1414 // The map already had an entry for this value, which may indicate 1415 // a folding opportunity. 1416 Interesting = true; 1417 } 1418 } 1419 } 1420 1421 return Interesting; 1422 } 1423 1424 namespace { 1425 struct APIntCompare { 1426 bool operator()(const APInt &LHS, const APInt &RHS) const { 1427 return LHS.ult(RHS); 1428 } 1429 }; 1430 } 1431 1432 /// getAddExpr - Get a canonical add expression, or something simpler if 1433 /// possible. 1434 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1435 SCEV::NoWrapFlags Flags) { 1436 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1437 "only nuw or nsw allowed"); 1438 assert(!Ops.empty() && "Cannot get empty add!"); 1439 if (Ops.size() == 1) return Ops[0]; 1440 #ifndef NDEBUG 1441 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1442 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1443 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1444 "SCEVAddExpr operand types don't match!"); 1445 #endif 1446 1447 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1448 // And vice-versa. 1449 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1450 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1451 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1452 bool All = true; 1453 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1454 E = Ops.end(); I != E; ++I) 1455 if (!isKnownNonNegative(*I)) { 1456 All = false; 1457 break; 1458 } 1459 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1460 } 1461 1462 // Sort by complexity, this groups all similar expression types together. 1463 GroupByComplexity(Ops, LI); 1464 1465 // If there are any constants, fold them together. 1466 unsigned Idx = 0; 1467 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1468 ++Idx; 1469 assert(Idx < Ops.size()); 1470 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1471 // We found two constants, fold them together! 1472 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1473 RHSC->getValue()->getValue()); 1474 if (Ops.size() == 2) return Ops[0]; 1475 Ops.erase(Ops.begin()+1); // Erase the folded element 1476 LHSC = cast<SCEVConstant>(Ops[0]); 1477 } 1478 1479 // If we are left with a constant zero being added, strip it off. 1480 if (LHSC->getValue()->isZero()) { 1481 Ops.erase(Ops.begin()); 1482 --Idx; 1483 } 1484 1485 if (Ops.size() == 1) return Ops[0]; 1486 } 1487 1488 // Okay, check to see if the same value occurs in the operand list more than 1489 // once. If so, merge them together into an multiply expression. Since we 1490 // sorted the list, these values are required to be adjacent. 1491 Type *Ty = Ops[0]->getType(); 1492 bool FoundMatch = false; 1493 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1494 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1495 // Scan ahead to count how many equal operands there are. 1496 unsigned Count = 2; 1497 while (i+Count != e && Ops[i+Count] == Ops[i]) 1498 ++Count; 1499 // Merge the values into a multiply. 1500 const SCEV *Scale = getConstant(Ty, Count); 1501 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1502 if (Ops.size() == Count) 1503 return Mul; 1504 Ops[i] = Mul; 1505 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1506 --i; e -= Count - 1; 1507 FoundMatch = true; 1508 } 1509 if (FoundMatch) 1510 return getAddExpr(Ops, Flags); 1511 1512 // Check for truncates. If all the operands are truncated from the same 1513 // type, see if factoring out the truncate would permit the result to be 1514 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1515 // if the contents of the resulting outer trunc fold to something simple. 1516 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1517 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1518 Type *DstType = Trunc->getType(); 1519 Type *SrcType = Trunc->getOperand()->getType(); 1520 SmallVector<const SCEV *, 8> LargeOps; 1521 bool Ok = true; 1522 // Check all the operands to see if they can be represented in the 1523 // source type of the truncate. 1524 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1525 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1526 if (T->getOperand()->getType() != SrcType) { 1527 Ok = false; 1528 break; 1529 } 1530 LargeOps.push_back(T->getOperand()); 1531 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1532 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1533 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1534 SmallVector<const SCEV *, 8> LargeMulOps; 1535 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1536 if (const SCEVTruncateExpr *T = 1537 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1538 if (T->getOperand()->getType() != SrcType) { 1539 Ok = false; 1540 break; 1541 } 1542 LargeMulOps.push_back(T->getOperand()); 1543 } else if (const SCEVConstant *C = 1544 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1545 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1546 } else { 1547 Ok = false; 1548 break; 1549 } 1550 } 1551 if (Ok) 1552 LargeOps.push_back(getMulExpr(LargeMulOps)); 1553 } else { 1554 Ok = false; 1555 break; 1556 } 1557 } 1558 if (Ok) { 1559 // Evaluate the expression in the larger type. 1560 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1561 // If it folds to something simple, use it. Otherwise, don't. 1562 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1563 return getTruncateExpr(Fold, DstType); 1564 } 1565 } 1566 1567 // Skip past any other cast SCEVs. 1568 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1569 ++Idx; 1570 1571 // If there are add operands they would be next. 1572 if (Idx < Ops.size()) { 1573 bool DeletedAdd = false; 1574 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1575 // If we have an add, expand the add operands onto the end of the operands 1576 // list. 1577 Ops.erase(Ops.begin()+Idx); 1578 Ops.append(Add->op_begin(), Add->op_end()); 1579 DeletedAdd = true; 1580 } 1581 1582 // If we deleted at least one add, we added operands to the end of the list, 1583 // and they are not necessarily sorted. Recurse to resort and resimplify 1584 // any operands we just acquired. 1585 if (DeletedAdd) 1586 return getAddExpr(Ops); 1587 } 1588 1589 // Skip over the add expression until we get to a multiply. 1590 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1591 ++Idx; 1592 1593 // Check to see if there are any folding opportunities present with 1594 // operands multiplied by constant values. 1595 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1596 uint64_t BitWidth = getTypeSizeInBits(Ty); 1597 DenseMap<const SCEV *, APInt> M; 1598 SmallVector<const SCEV *, 8> NewOps; 1599 APInt AccumulatedConstant(BitWidth, 0); 1600 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1601 Ops.data(), Ops.size(), 1602 APInt(BitWidth, 1), *this)) { 1603 // Some interesting folding opportunity is present, so its worthwhile to 1604 // re-generate the operands list. Group the operands by constant scale, 1605 // to avoid multiplying by the same constant scale multiple times. 1606 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1607 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1608 E = NewOps.end(); I != E; ++I) 1609 MulOpLists[M.find(*I)->second].push_back(*I); 1610 // Re-generate the operands list. 1611 Ops.clear(); 1612 if (AccumulatedConstant != 0) 1613 Ops.push_back(getConstant(AccumulatedConstant)); 1614 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1615 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1616 if (I->first != 0) 1617 Ops.push_back(getMulExpr(getConstant(I->first), 1618 getAddExpr(I->second))); 1619 if (Ops.empty()) 1620 return getConstant(Ty, 0); 1621 if (Ops.size() == 1) 1622 return Ops[0]; 1623 return getAddExpr(Ops); 1624 } 1625 } 1626 1627 // If we are adding something to a multiply expression, make sure the 1628 // something is not already an operand of the multiply. If so, merge it into 1629 // the multiply. 1630 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1631 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1632 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1633 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1634 if (isa<SCEVConstant>(MulOpSCEV)) 1635 continue; 1636 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1637 if (MulOpSCEV == Ops[AddOp]) { 1638 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1639 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1640 if (Mul->getNumOperands() != 2) { 1641 // If the multiply has more than two operands, we must get the 1642 // Y*Z term. 1643 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1644 Mul->op_begin()+MulOp); 1645 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1646 InnerMul = getMulExpr(MulOps); 1647 } 1648 const SCEV *One = getConstant(Ty, 1); 1649 const SCEV *AddOne = getAddExpr(One, InnerMul); 1650 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1651 if (Ops.size() == 2) return OuterMul; 1652 if (AddOp < Idx) { 1653 Ops.erase(Ops.begin()+AddOp); 1654 Ops.erase(Ops.begin()+Idx-1); 1655 } else { 1656 Ops.erase(Ops.begin()+Idx); 1657 Ops.erase(Ops.begin()+AddOp-1); 1658 } 1659 Ops.push_back(OuterMul); 1660 return getAddExpr(Ops); 1661 } 1662 1663 // Check this multiply against other multiplies being added together. 1664 for (unsigned OtherMulIdx = Idx+1; 1665 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1666 ++OtherMulIdx) { 1667 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1668 // If MulOp occurs in OtherMul, we can fold the two multiplies 1669 // together. 1670 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1671 OMulOp != e; ++OMulOp) 1672 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1673 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1674 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1675 if (Mul->getNumOperands() != 2) { 1676 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1677 Mul->op_begin()+MulOp); 1678 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1679 InnerMul1 = getMulExpr(MulOps); 1680 } 1681 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1682 if (OtherMul->getNumOperands() != 2) { 1683 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1684 OtherMul->op_begin()+OMulOp); 1685 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1686 InnerMul2 = getMulExpr(MulOps); 1687 } 1688 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1689 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1690 if (Ops.size() == 2) return OuterMul; 1691 Ops.erase(Ops.begin()+Idx); 1692 Ops.erase(Ops.begin()+OtherMulIdx-1); 1693 Ops.push_back(OuterMul); 1694 return getAddExpr(Ops); 1695 } 1696 } 1697 } 1698 } 1699 1700 // If there are any add recurrences in the operands list, see if any other 1701 // added values are loop invariant. If so, we can fold them into the 1702 // recurrence. 1703 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1704 ++Idx; 1705 1706 // Scan over all recurrences, trying to fold loop invariants into them. 1707 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1708 // Scan all of the other operands to this add and add them to the vector if 1709 // they are loop invariant w.r.t. the recurrence. 1710 SmallVector<const SCEV *, 8> LIOps; 1711 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1712 const Loop *AddRecLoop = AddRec->getLoop(); 1713 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1714 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1715 LIOps.push_back(Ops[i]); 1716 Ops.erase(Ops.begin()+i); 1717 --i; --e; 1718 } 1719 1720 // If we found some loop invariants, fold them into the recurrence. 1721 if (!LIOps.empty()) { 1722 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1723 LIOps.push_back(AddRec->getStart()); 1724 1725 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1726 AddRec->op_end()); 1727 AddRecOps[0] = getAddExpr(LIOps); 1728 1729 // Build the new addrec. Propagate the NUW and NSW flags if both the 1730 // outer add and the inner addrec are guaranteed to have no overflow. 1731 // Always propagate NW. 1732 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1733 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1734 1735 // If all of the other operands were loop invariant, we are done. 1736 if (Ops.size() == 1) return NewRec; 1737 1738 // Otherwise, add the folded AddRec by the non-liv parts. 1739 for (unsigned i = 0;; ++i) 1740 if (Ops[i] == AddRec) { 1741 Ops[i] = NewRec; 1742 break; 1743 } 1744 return getAddExpr(Ops); 1745 } 1746 1747 // Okay, if there weren't any loop invariants to be folded, check to see if 1748 // there are multiple AddRec's with the same loop induction variable being 1749 // added together. If so, we can fold them. 1750 for (unsigned OtherIdx = Idx+1; 1751 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1752 ++OtherIdx) 1753 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1754 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1755 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1756 AddRec->op_end()); 1757 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1758 ++OtherIdx) 1759 if (const SCEVAddRecExpr *OtherAddRec = 1760 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1761 if (OtherAddRec->getLoop() == AddRecLoop) { 1762 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1763 i != e; ++i) { 1764 if (i >= AddRecOps.size()) { 1765 AddRecOps.append(OtherAddRec->op_begin()+i, 1766 OtherAddRec->op_end()); 1767 break; 1768 } 1769 AddRecOps[i] = getAddExpr(AddRecOps[i], 1770 OtherAddRec->getOperand(i)); 1771 } 1772 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1773 } 1774 // Step size has changed, so we cannot guarantee no self-wraparound. 1775 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1776 return getAddExpr(Ops); 1777 } 1778 1779 // Otherwise couldn't fold anything into this recurrence. Move onto the 1780 // next one. 1781 } 1782 1783 // Okay, it looks like we really DO need an add expr. Check to see if we 1784 // already have one, otherwise create a new one. 1785 FoldingSetNodeID ID; 1786 ID.AddInteger(scAddExpr); 1787 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1788 ID.AddPointer(Ops[i]); 1789 void *IP = 0; 1790 SCEVAddExpr *S = 1791 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1792 if (!S) { 1793 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1794 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1795 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1796 O, Ops.size()); 1797 UniqueSCEVs.InsertNode(S, IP); 1798 } 1799 S->setNoWrapFlags(Flags); 1800 return S; 1801 } 1802 1803 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1804 /// possible. 1805 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1806 SCEV::NoWrapFlags Flags) { 1807 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1808 "only nuw or nsw allowed"); 1809 assert(!Ops.empty() && "Cannot get empty mul!"); 1810 if (Ops.size() == 1) return Ops[0]; 1811 #ifndef NDEBUG 1812 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1813 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1814 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1815 "SCEVMulExpr operand types don't match!"); 1816 #endif 1817 1818 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1819 // And vice-versa. 1820 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1821 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1822 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1823 bool All = true; 1824 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1825 E = Ops.end(); I != E; ++I) 1826 if (!isKnownNonNegative(*I)) { 1827 All = false; 1828 break; 1829 } 1830 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1831 } 1832 1833 // Sort by complexity, this groups all similar expression types together. 1834 GroupByComplexity(Ops, LI); 1835 1836 // If there are any constants, fold them together. 1837 unsigned Idx = 0; 1838 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1839 1840 // C1*(C2+V) -> C1*C2 + C1*V 1841 if (Ops.size() == 2) 1842 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1843 if (Add->getNumOperands() == 2 && 1844 isa<SCEVConstant>(Add->getOperand(0))) 1845 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1846 getMulExpr(LHSC, Add->getOperand(1))); 1847 1848 ++Idx; 1849 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1850 // We found two constants, fold them together! 1851 ConstantInt *Fold = ConstantInt::get(getContext(), 1852 LHSC->getValue()->getValue() * 1853 RHSC->getValue()->getValue()); 1854 Ops[0] = getConstant(Fold); 1855 Ops.erase(Ops.begin()+1); // Erase the folded element 1856 if (Ops.size() == 1) return Ops[0]; 1857 LHSC = cast<SCEVConstant>(Ops[0]); 1858 } 1859 1860 // If we are left with a constant one being multiplied, strip it off. 1861 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1862 Ops.erase(Ops.begin()); 1863 --Idx; 1864 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1865 // If we have a multiply of zero, it will always be zero. 1866 return Ops[0]; 1867 } else if (Ops[0]->isAllOnesValue()) { 1868 // If we have a mul by -1 of an add, try distributing the -1 among the 1869 // add operands. 1870 if (Ops.size() == 2) { 1871 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1872 SmallVector<const SCEV *, 4> NewOps; 1873 bool AnyFolded = false; 1874 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1875 E = Add->op_end(); I != E; ++I) { 1876 const SCEV *Mul = getMulExpr(Ops[0], *I); 1877 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1878 NewOps.push_back(Mul); 1879 } 1880 if (AnyFolded) 1881 return getAddExpr(NewOps); 1882 } 1883 else if (const SCEVAddRecExpr * 1884 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1885 // Negation preserves a recurrence's no self-wrap property. 1886 SmallVector<const SCEV *, 4> Operands; 1887 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1888 E = AddRec->op_end(); I != E; ++I) { 1889 Operands.push_back(getMulExpr(Ops[0], *I)); 1890 } 1891 return getAddRecExpr(Operands, AddRec->getLoop(), 1892 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1893 } 1894 } 1895 } 1896 1897 if (Ops.size() == 1) 1898 return Ops[0]; 1899 } 1900 1901 // Skip over the add expression until we get to a multiply. 1902 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1903 ++Idx; 1904 1905 // If there are mul operands inline them all into this expression. 1906 if (Idx < Ops.size()) { 1907 bool DeletedMul = false; 1908 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1909 // If we have an mul, expand the mul operands onto the end of the operands 1910 // list. 1911 Ops.erase(Ops.begin()+Idx); 1912 Ops.append(Mul->op_begin(), Mul->op_end()); 1913 DeletedMul = true; 1914 } 1915 1916 // If we deleted at least one mul, we added operands to the end of the list, 1917 // and they are not necessarily sorted. Recurse to resort and resimplify 1918 // any operands we just acquired. 1919 if (DeletedMul) 1920 return getMulExpr(Ops); 1921 } 1922 1923 // If there are any add recurrences in the operands list, see if any other 1924 // added values are loop invariant. If so, we can fold them into the 1925 // recurrence. 1926 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1927 ++Idx; 1928 1929 // Scan over all recurrences, trying to fold loop invariants into them. 1930 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1931 // Scan all of the other operands to this mul and add them to the vector if 1932 // they are loop invariant w.r.t. the recurrence. 1933 SmallVector<const SCEV *, 8> LIOps; 1934 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1935 const Loop *AddRecLoop = AddRec->getLoop(); 1936 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1937 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1938 LIOps.push_back(Ops[i]); 1939 Ops.erase(Ops.begin()+i); 1940 --i; --e; 1941 } 1942 1943 // If we found some loop invariants, fold them into the recurrence. 1944 if (!LIOps.empty()) { 1945 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1946 SmallVector<const SCEV *, 4> NewOps; 1947 NewOps.reserve(AddRec->getNumOperands()); 1948 const SCEV *Scale = getMulExpr(LIOps); 1949 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1950 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1951 1952 // Build the new addrec. Propagate the NUW and NSW flags if both the 1953 // outer mul and the inner addrec are guaranteed to have no overflow. 1954 // 1955 // No self-wrap cannot be guaranteed after changing the step size, but 1956 // will be inferred if either NUW or NSW is true. 1957 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 1958 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 1959 1960 // If all of the other operands were loop invariant, we are done. 1961 if (Ops.size() == 1) return NewRec; 1962 1963 // Otherwise, multiply the folded AddRec by the non-liv parts. 1964 for (unsigned i = 0;; ++i) 1965 if (Ops[i] == AddRec) { 1966 Ops[i] = NewRec; 1967 break; 1968 } 1969 return getMulExpr(Ops); 1970 } 1971 1972 // Okay, if there weren't any loop invariants to be folded, check to see if 1973 // there are multiple AddRec's with the same loop induction variable being 1974 // multiplied together. If so, we can fold them. 1975 for (unsigned OtherIdx = Idx+1; 1976 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1977 ++OtherIdx) 1978 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1979 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> --> 1980 // {A*C,+,F*D + G*B + B*D}<L> 1981 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1982 ++OtherIdx) 1983 if (const SCEVAddRecExpr *OtherAddRec = 1984 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1985 if (OtherAddRec->getLoop() == AddRecLoop) { 1986 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1987 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart()); 1988 const SCEV *B = F->getStepRecurrence(*this); 1989 const SCEV *D = G->getStepRecurrence(*this); 1990 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1991 getMulExpr(G, B), 1992 getMulExpr(B, D)); 1993 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1994 F->getLoop(), 1995 SCEV::FlagAnyWrap); 1996 if (Ops.size() == 2) return NewAddRec; 1997 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec); 1998 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1999 } 2000 return getMulExpr(Ops); 2001 } 2002 2003 // Otherwise couldn't fold anything into this recurrence. Move onto the 2004 // next one. 2005 } 2006 2007 // Okay, it looks like we really DO need an mul expr. Check to see if we 2008 // already have one, otherwise create a new one. 2009 FoldingSetNodeID ID; 2010 ID.AddInteger(scMulExpr); 2011 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2012 ID.AddPointer(Ops[i]); 2013 void *IP = 0; 2014 SCEVMulExpr *S = 2015 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2016 if (!S) { 2017 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2018 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2019 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2020 O, Ops.size()); 2021 UniqueSCEVs.InsertNode(S, IP); 2022 } 2023 S->setNoWrapFlags(Flags); 2024 return S; 2025 } 2026 2027 /// getUDivExpr - Get a canonical unsigned division expression, or something 2028 /// simpler if possible. 2029 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2030 const SCEV *RHS) { 2031 assert(getEffectiveSCEVType(LHS->getType()) == 2032 getEffectiveSCEVType(RHS->getType()) && 2033 "SCEVUDivExpr operand types don't match!"); 2034 2035 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2036 if (RHSC->getValue()->equalsInt(1)) 2037 return LHS; // X udiv 1 --> x 2038 // If the denominator is zero, the result of the udiv is undefined. Don't 2039 // try to analyze it, because the resolution chosen here may differ from 2040 // the resolution chosen in other parts of the compiler. 2041 if (!RHSC->getValue()->isZero()) { 2042 // Determine if the division can be folded into the operands of 2043 // its operands. 2044 // TODO: Generalize this to non-constants by using known-bits information. 2045 Type *Ty = LHS->getType(); 2046 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2047 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2048 // For non-power-of-two values, effectively round the value up to the 2049 // nearest power of two. 2050 if (!RHSC->getValue()->getValue().isPowerOf2()) 2051 ++MaxShiftAmt; 2052 IntegerType *ExtTy = 2053 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2054 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2055 if (const SCEVConstant *Step = 2056 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2057 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2058 const APInt &StepInt = Step->getValue()->getValue(); 2059 const APInt &DivInt = RHSC->getValue()->getValue(); 2060 if (!StepInt.urem(DivInt) && 2061 getZeroExtendExpr(AR, ExtTy) == 2062 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2063 getZeroExtendExpr(Step, ExtTy), 2064 AR->getLoop(), SCEV::FlagAnyWrap)) { 2065 SmallVector<const SCEV *, 4> Operands; 2066 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2067 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2068 return getAddRecExpr(Operands, AR->getLoop(), 2069 SCEV::FlagNW); 2070 } 2071 /// Get a canonical UDivExpr for a recurrence. 2072 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2073 // We can currently only fold X%N if X is constant. 2074 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2075 if (StartC && !DivInt.urem(StepInt) && 2076 getZeroExtendExpr(AR, ExtTy) == 2077 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2078 getZeroExtendExpr(Step, ExtTy), 2079 AR->getLoop(), SCEV::FlagAnyWrap)) { 2080 const APInt &StartInt = StartC->getValue()->getValue(); 2081 const APInt &StartRem = StartInt.urem(StepInt); 2082 if (StartRem != 0) 2083 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2084 AR->getLoop(), SCEV::FlagNW); 2085 } 2086 } 2087 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2088 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2089 SmallVector<const SCEV *, 4> Operands; 2090 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2091 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2092 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2093 // Find an operand that's safely divisible. 2094 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2095 const SCEV *Op = M->getOperand(i); 2096 const SCEV *Div = getUDivExpr(Op, RHSC); 2097 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2098 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2099 M->op_end()); 2100 Operands[i] = Div; 2101 return getMulExpr(Operands); 2102 } 2103 } 2104 } 2105 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2106 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2107 SmallVector<const SCEV *, 4> Operands; 2108 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2109 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2110 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2111 Operands.clear(); 2112 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2113 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2114 if (isa<SCEVUDivExpr>(Op) || 2115 getMulExpr(Op, RHS) != A->getOperand(i)) 2116 break; 2117 Operands.push_back(Op); 2118 } 2119 if (Operands.size() == A->getNumOperands()) 2120 return getAddExpr(Operands); 2121 } 2122 } 2123 2124 // Fold if both operands are constant. 2125 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2126 Constant *LHSCV = LHSC->getValue(); 2127 Constant *RHSCV = RHSC->getValue(); 2128 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2129 RHSCV))); 2130 } 2131 } 2132 } 2133 2134 FoldingSetNodeID ID; 2135 ID.AddInteger(scUDivExpr); 2136 ID.AddPointer(LHS); 2137 ID.AddPointer(RHS); 2138 void *IP = 0; 2139 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2140 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2141 LHS, RHS); 2142 UniqueSCEVs.InsertNode(S, IP); 2143 return S; 2144 } 2145 2146 2147 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2148 /// Simplify the expression as much as possible. 2149 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2150 const Loop *L, 2151 SCEV::NoWrapFlags Flags) { 2152 SmallVector<const SCEV *, 4> Operands; 2153 Operands.push_back(Start); 2154 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2155 if (StepChrec->getLoop() == L) { 2156 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2157 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2158 } 2159 2160 Operands.push_back(Step); 2161 return getAddRecExpr(Operands, L, Flags); 2162 } 2163 2164 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2165 /// Simplify the expression as much as possible. 2166 const SCEV * 2167 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2168 const Loop *L, SCEV::NoWrapFlags Flags) { 2169 if (Operands.size() == 1) return Operands[0]; 2170 #ifndef NDEBUG 2171 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2172 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2173 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2174 "SCEVAddRecExpr operand types don't match!"); 2175 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2176 assert(isLoopInvariant(Operands[i], L) && 2177 "SCEVAddRecExpr operand is not loop-invariant!"); 2178 #endif 2179 2180 if (Operands.back()->isZero()) { 2181 Operands.pop_back(); 2182 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2183 } 2184 2185 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2186 // use that information to infer NUW and NSW flags. However, computing a 2187 // BE count requires calling getAddRecExpr, so we may not yet have a 2188 // meaningful BE count at this point (and if we don't, we'd be stuck 2189 // with a SCEVCouldNotCompute as the cached BE count). 2190 2191 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2192 // And vice-versa. 2193 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2194 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2195 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2196 bool All = true; 2197 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2198 E = Operands.end(); I != E; ++I) 2199 if (!isKnownNonNegative(*I)) { 2200 All = false; 2201 break; 2202 } 2203 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2204 } 2205 2206 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2207 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2208 const Loop *NestedLoop = NestedAR->getLoop(); 2209 if (L->contains(NestedLoop) ? 2210 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2211 (!NestedLoop->contains(L) && 2212 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2213 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2214 NestedAR->op_end()); 2215 Operands[0] = NestedAR->getStart(); 2216 // AddRecs require their operands be loop-invariant with respect to their 2217 // loops. Don't perform this transformation if it would break this 2218 // requirement. 2219 bool AllInvariant = true; 2220 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2221 if (!isLoopInvariant(Operands[i], L)) { 2222 AllInvariant = false; 2223 break; 2224 } 2225 if (AllInvariant) { 2226 // Create a recurrence for the outer loop with the same step size. 2227 // 2228 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2229 // inner recurrence has the same property. 2230 SCEV::NoWrapFlags OuterFlags = 2231 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2232 2233 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2234 AllInvariant = true; 2235 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2236 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2237 AllInvariant = false; 2238 break; 2239 } 2240 if (AllInvariant) { 2241 // Ok, both add recurrences are valid after the transformation. 2242 // 2243 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2244 // the outer recurrence has the same property. 2245 SCEV::NoWrapFlags InnerFlags = 2246 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2247 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2248 } 2249 } 2250 // Reset Operands to its original state. 2251 Operands[0] = NestedAR; 2252 } 2253 } 2254 2255 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2256 // already have one, otherwise create a new one. 2257 FoldingSetNodeID ID; 2258 ID.AddInteger(scAddRecExpr); 2259 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2260 ID.AddPointer(Operands[i]); 2261 ID.AddPointer(L); 2262 void *IP = 0; 2263 SCEVAddRecExpr *S = 2264 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2265 if (!S) { 2266 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2267 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2268 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2269 O, Operands.size(), L); 2270 UniqueSCEVs.InsertNode(S, IP); 2271 } 2272 S->setNoWrapFlags(Flags); 2273 return S; 2274 } 2275 2276 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2277 const SCEV *RHS) { 2278 SmallVector<const SCEV *, 2> Ops; 2279 Ops.push_back(LHS); 2280 Ops.push_back(RHS); 2281 return getSMaxExpr(Ops); 2282 } 2283 2284 const SCEV * 2285 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2286 assert(!Ops.empty() && "Cannot get empty smax!"); 2287 if (Ops.size() == 1) return Ops[0]; 2288 #ifndef NDEBUG 2289 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2290 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2291 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2292 "SCEVSMaxExpr operand types don't match!"); 2293 #endif 2294 2295 // Sort by complexity, this groups all similar expression types together. 2296 GroupByComplexity(Ops, LI); 2297 2298 // If there are any constants, fold them together. 2299 unsigned Idx = 0; 2300 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2301 ++Idx; 2302 assert(Idx < Ops.size()); 2303 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2304 // We found two constants, fold them together! 2305 ConstantInt *Fold = ConstantInt::get(getContext(), 2306 APIntOps::smax(LHSC->getValue()->getValue(), 2307 RHSC->getValue()->getValue())); 2308 Ops[0] = getConstant(Fold); 2309 Ops.erase(Ops.begin()+1); // Erase the folded element 2310 if (Ops.size() == 1) return Ops[0]; 2311 LHSC = cast<SCEVConstant>(Ops[0]); 2312 } 2313 2314 // If we are left with a constant minimum-int, strip it off. 2315 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2316 Ops.erase(Ops.begin()); 2317 --Idx; 2318 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2319 // If we have an smax with a constant maximum-int, it will always be 2320 // maximum-int. 2321 return Ops[0]; 2322 } 2323 2324 if (Ops.size() == 1) return Ops[0]; 2325 } 2326 2327 // Find the first SMax 2328 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2329 ++Idx; 2330 2331 // Check to see if one of the operands is an SMax. If so, expand its operands 2332 // onto our operand list, and recurse to simplify. 2333 if (Idx < Ops.size()) { 2334 bool DeletedSMax = false; 2335 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2336 Ops.erase(Ops.begin()+Idx); 2337 Ops.append(SMax->op_begin(), SMax->op_end()); 2338 DeletedSMax = true; 2339 } 2340 2341 if (DeletedSMax) 2342 return getSMaxExpr(Ops); 2343 } 2344 2345 // Okay, check to see if the same value occurs in the operand list twice. If 2346 // so, delete one. Since we sorted the list, these values are required to 2347 // be adjacent. 2348 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2349 // X smax Y smax Y --> X smax Y 2350 // X smax Y --> X, if X is always greater than Y 2351 if (Ops[i] == Ops[i+1] || 2352 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2353 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2354 --i; --e; 2355 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2356 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2357 --i; --e; 2358 } 2359 2360 if (Ops.size() == 1) return Ops[0]; 2361 2362 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2363 2364 // Okay, it looks like we really DO need an smax expr. Check to see if we 2365 // already have one, otherwise create a new one. 2366 FoldingSetNodeID ID; 2367 ID.AddInteger(scSMaxExpr); 2368 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2369 ID.AddPointer(Ops[i]); 2370 void *IP = 0; 2371 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2372 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2373 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2374 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2375 O, Ops.size()); 2376 UniqueSCEVs.InsertNode(S, IP); 2377 return S; 2378 } 2379 2380 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2381 const SCEV *RHS) { 2382 SmallVector<const SCEV *, 2> Ops; 2383 Ops.push_back(LHS); 2384 Ops.push_back(RHS); 2385 return getUMaxExpr(Ops); 2386 } 2387 2388 const SCEV * 2389 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2390 assert(!Ops.empty() && "Cannot get empty umax!"); 2391 if (Ops.size() == 1) return Ops[0]; 2392 #ifndef NDEBUG 2393 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2394 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2395 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2396 "SCEVUMaxExpr operand types don't match!"); 2397 #endif 2398 2399 // Sort by complexity, this groups all similar expression types together. 2400 GroupByComplexity(Ops, LI); 2401 2402 // If there are any constants, fold them together. 2403 unsigned Idx = 0; 2404 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2405 ++Idx; 2406 assert(Idx < Ops.size()); 2407 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2408 // We found two constants, fold them together! 2409 ConstantInt *Fold = ConstantInt::get(getContext(), 2410 APIntOps::umax(LHSC->getValue()->getValue(), 2411 RHSC->getValue()->getValue())); 2412 Ops[0] = getConstant(Fold); 2413 Ops.erase(Ops.begin()+1); // Erase the folded element 2414 if (Ops.size() == 1) return Ops[0]; 2415 LHSC = cast<SCEVConstant>(Ops[0]); 2416 } 2417 2418 // If we are left with a constant minimum-int, strip it off. 2419 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2420 Ops.erase(Ops.begin()); 2421 --Idx; 2422 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2423 // If we have an umax with a constant maximum-int, it will always be 2424 // maximum-int. 2425 return Ops[0]; 2426 } 2427 2428 if (Ops.size() == 1) return Ops[0]; 2429 } 2430 2431 // Find the first UMax 2432 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2433 ++Idx; 2434 2435 // Check to see if one of the operands is a UMax. If so, expand its operands 2436 // onto our operand list, and recurse to simplify. 2437 if (Idx < Ops.size()) { 2438 bool DeletedUMax = false; 2439 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2440 Ops.erase(Ops.begin()+Idx); 2441 Ops.append(UMax->op_begin(), UMax->op_end()); 2442 DeletedUMax = true; 2443 } 2444 2445 if (DeletedUMax) 2446 return getUMaxExpr(Ops); 2447 } 2448 2449 // Okay, check to see if the same value occurs in the operand list twice. If 2450 // so, delete one. Since we sorted the list, these values are required to 2451 // be adjacent. 2452 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2453 // X umax Y umax Y --> X umax Y 2454 // X umax Y --> X, if X is always greater than Y 2455 if (Ops[i] == Ops[i+1] || 2456 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2457 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2458 --i; --e; 2459 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2460 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2461 --i; --e; 2462 } 2463 2464 if (Ops.size() == 1) return Ops[0]; 2465 2466 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2467 2468 // Okay, it looks like we really DO need a umax expr. Check to see if we 2469 // already have one, otherwise create a new one. 2470 FoldingSetNodeID ID; 2471 ID.AddInteger(scUMaxExpr); 2472 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2473 ID.AddPointer(Ops[i]); 2474 void *IP = 0; 2475 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2476 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2477 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2478 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2479 O, Ops.size()); 2480 UniqueSCEVs.InsertNode(S, IP); 2481 return S; 2482 } 2483 2484 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2485 const SCEV *RHS) { 2486 // ~smax(~x, ~y) == smin(x, y). 2487 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2488 } 2489 2490 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2491 const SCEV *RHS) { 2492 // ~umax(~x, ~y) == umin(x, y) 2493 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2494 } 2495 2496 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) { 2497 // If we have TargetData, we can bypass creating a target-independent 2498 // constant expression and then folding it back into a ConstantInt. 2499 // This is just a compile-time optimization. 2500 if (TD) 2501 return getConstant(TD->getIntPtrType(getContext()), 2502 TD->getTypeAllocSize(AllocTy)); 2503 2504 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2505 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2506 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2507 C = Folded; 2508 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2509 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2510 } 2511 2512 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) { 2513 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2514 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2515 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2516 C = Folded; 2517 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2518 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2519 } 2520 2521 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy, 2522 unsigned FieldNo) { 2523 // If we have TargetData, we can bypass creating a target-independent 2524 // constant expression and then folding it back into a ConstantInt. 2525 // This is just a compile-time optimization. 2526 if (TD) 2527 return getConstant(TD->getIntPtrType(getContext()), 2528 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2529 2530 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2531 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2532 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2533 C = Folded; 2534 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2535 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2536 } 2537 2538 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy, 2539 Constant *FieldNo) { 2540 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2541 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2542 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2543 C = Folded; 2544 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2545 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2546 } 2547 2548 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2549 // Don't attempt to do anything other than create a SCEVUnknown object 2550 // here. createSCEV only calls getUnknown after checking for all other 2551 // interesting possibilities, and any other code that calls getUnknown 2552 // is doing so in order to hide a value from SCEV canonicalization. 2553 2554 FoldingSetNodeID ID; 2555 ID.AddInteger(scUnknown); 2556 ID.AddPointer(V); 2557 void *IP = 0; 2558 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2559 assert(cast<SCEVUnknown>(S)->getValue() == V && 2560 "Stale SCEVUnknown in uniquing map!"); 2561 return S; 2562 } 2563 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2564 FirstUnknown); 2565 FirstUnknown = cast<SCEVUnknown>(S); 2566 UniqueSCEVs.InsertNode(S, IP); 2567 return S; 2568 } 2569 2570 //===----------------------------------------------------------------------===// 2571 // Basic SCEV Analysis and PHI Idiom Recognition Code 2572 // 2573 2574 /// isSCEVable - Test if values of the given type are analyzable within 2575 /// the SCEV framework. This primarily includes integer types, and it 2576 /// can optionally include pointer types if the ScalarEvolution class 2577 /// has access to target-specific information. 2578 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2579 // Integers and pointers are always SCEVable. 2580 return Ty->isIntegerTy() || Ty->isPointerTy(); 2581 } 2582 2583 /// getTypeSizeInBits - Return the size in bits of the specified type, 2584 /// for which isSCEVable must return true. 2585 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2586 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2587 2588 // If we have a TargetData, use it! 2589 if (TD) 2590 return TD->getTypeSizeInBits(Ty); 2591 2592 // Integer types have fixed sizes. 2593 if (Ty->isIntegerTy()) 2594 return Ty->getPrimitiveSizeInBits(); 2595 2596 // The only other support type is pointer. Without TargetData, conservatively 2597 // assume pointers are 64-bit. 2598 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2599 return 64; 2600 } 2601 2602 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2603 /// the given type and which represents how SCEV will treat the given 2604 /// type, for which isSCEVable must return true. For pointer types, 2605 /// this is the pointer-sized integer type. 2606 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2607 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2608 2609 if (Ty->isIntegerTy()) 2610 return Ty; 2611 2612 // The only other support type is pointer. 2613 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2614 if (TD) return TD->getIntPtrType(getContext()); 2615 2616 // Without TargetData, conservatively assume pointers are 64-bit. 2617 return Type::getInt64Ty(getContext()); 2618 } 2619 2620 const SCEV *ScalarEvolution::getCouldNotCompute() { 2621 return &CouldNotCompute; 2622 } 2623 2624 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2625 /// expression and create a new one. 2626 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2627 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2628 2629 ValueExprMapType::const_iterator I = ValueExprMap.find(V); 2630 if (I != ValueExprMap.end()) return I->second; 2631 const SCEV *S = createSCEV(V); 2632 2633 // The process of creating a SCEV for V may have caused other SCEVs 2634 // to have been created, so it's necessary to insert the new entry 2635 // from scratch, rather than trying to remember the insert position 2636 // above. 2637 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2638 return S; 2639 } 2640 2641 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2642 /// 2643 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2644 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2645 return getConstant( 2646 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2647 2648 Type *Ty = V->getType(); 2649 Ty = getEffectiveSCEVType(Ty); 2650 return getMulExpr(V, 2651 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2652 } 2653 2654 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2655 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2656 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2657 return getConstant( 2658 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2659 2660 Type *Ty = V->getType(); 2661 Ty = getEffectiveSCEVType(Ty); 2662 const SCEV *AllOnes = 2663 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2664 return getMinusSCEV(AllOnes, V); 2665 } 2666 2667 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2668 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2669 SCEV::NoWrapFlags Flags) { 2670 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2671 2672 // Fast path: X - X --> 0. 2673 if (LHS == RHS) 2674 return getConstant(LHS->getType(), 0); 2675 2676 // X - Y --> X + -Y 2677 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2678 } 2679 2680 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2681 /// input value to the specified type. If the type must be extended, it is zero 2682 /// extended. 2683 const SCEV * 2684 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2685 Type *SrcTy = V->getType(); 2686 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2687 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2688 "Cannot truncate or zero extend with non-integer arguments!"); 2689 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2690 return V; // No conversion 2691 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2692 return getTruncateExpr(V, Ty); 2693 return getZeroExtendExpr(V, Ty); 2694 } 2695 2696 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2697 /// input value to the specified type. If the type must be extended, it is sign 2698 /// extended. 2699 const SCEV * 2700 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2701 Type *Ty) { 2702 Type *SrcTy = V->getType(); 2703 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2704 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2705 "Cannot truncate or zero extend with non-integer arguments!"); 2706 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2707 return V; // No conversion 2708 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2709 return getTruncateExpr(V, Ty); 2710 return getSignExtendExpr(V, Ty); 2711 } 2712 2713 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2714 /// input value to the specified type. If the type must be extended, it is zero 2715 /// extended. The conversion must not be narrowing. 2716 const SCEV * 2717 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2718 Type *SrcTy = V->getType(); 2719 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2720 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2721 "Cannot noop or zero extend with non-integer arguments!"); 2722 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2723 "getNoopOrZeroExtend cannot truncate!"); 2724 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2725 return V; // No conversion 2726 return getZeroExtendExpr(V, Ty); 2727 } 2728 2729 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2730 /// input value to the specified type. If the type must be extended, it is sign 2731 /// extended. The conversion must not be narrowing. 2732 const SCEV * 2733 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2734 Type *SrcTy = V->getType(); 2735 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2736 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2737 "Cannot noop or sign extend with non-integer arguments!"); 2738 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2739 "getNoopOrSignExtend cannot truncate!"); 2740 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2741 return V; // No conversion 2742 return getSignExtendExpr(V, Ty); 2743 } 2744 2745 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2746 /// the input value to the specified type. If the type must be extended, 2747 /// it is extended with unspecified bits. The conversion must not be 2748 /// narrowing. 2749 const SCEV * 2750 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2751 Type *SrcTy = V->getType(); 2752 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2753 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2754 "Cannot noop or any extend with non-integer arguments!"); 2755 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2756 "getNoopOrAnyExtend cannot truncate!"); 2757 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2758 return V; // No conversion 2759 return getAnyExtendExpr(V, Ty); 2760 } 2761 2762 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2763 /// input value to the specified type. The conversion must not be widening. 2764 const SCEV * 2765 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2766 Type *SrcTy = V->getType(); 2767 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2768 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2769 "Cannot truncate or noop with non-integer arguments!"); 2770 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2771 "getTruncateOrNoop cannot extend!"); 2772 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2773 return V; // No conversion 2774 return getTruncateExpr(V, Ty); 2775 } 2776 2777 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2778 /// the types using zero-extension, and then perform a umax operation 2779 /// with them. 2780 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2781 const SCEV *RHS) { 2782 const SCEV *PromotedLHS = LHS; 2783 const SCEV *PromotedRHS = RHS; 2784 2785 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2786 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2787 else 2788 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2789 2790 return getUMaxExpr(PromotedLHS, PromotedRHS); 2791 } 2792 2793 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2794 /// the types using zero-extension, and then perform a umin operation 2795 /// with them. 2796 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2797 const SCEV *RHS) { 2798 const SCEV *PromotedLHS = LHS; 2799 const SCEV *PromotedRHS = RHS; 2800 2801 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2802 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2803 else 2804 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2805 2806 return getUMinExpr(PromotedLHS, PromotedRHS); 2807 } 2808 2809 /// getPointerBase - Transitively follow the chain of pointer-type operands 2810 /// until reaching a SCEV that does not have a single pointer operand. This 2811 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 2812 /// but corner cases do exist. 2813 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 2814 // A pointer operand may evaluate to a nonpointer expression, such as null. 2815 if (!V->getType()->isPointerTy()) 2816 return V; 2817 2818 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 2819 return getPointerBase(Cast->getOperand()); 2820 } 2821 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 2822 const SCEV *PtrOp = 0; 2823 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 2824 I != E; ++I) { 2825 if ((*I)->getType()->isPointerTy()) { 2826 // Cannot find the base of an expression with multiple pointer operands. 2827 if (PtrOp) 2828 return V; 2829 PtrOp = *I; 2830 } 2831 } 2832 if (!PtrOp) 2833 return V; 2834 return getPointerBase(PtrOp); 2835 } 2836 return V; 2837 } 2838 2839 /// PushDefUseChildren - Push users of the given Instruction 2840 /// onto the given Worklist. 2841 static void 2842 PushDefUseChildren(Instruction *I, 2843 SmallVectorImpl<Instruction *> &Worklist) { 2844 // Push the def-use children onto the Worklist stack. 2845 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2846 UI != UE; ++UI) 2847 Worklist.push_back(cast<Instruction>(*UI)); 2848 } 2849 2850 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2851 /// instructions that depend on the given instruction and removes them from 2852 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2853 /// resolution. 2854 void 2855 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2856 SmallVector<Instruction *, 16> Worklist; 2857 PushDefUseChildren(PN, Worklist); 2858 2859 SmallPtrSet<Instruction *, 8> Visited; 2860 Visited.insert(PN); 2861 while (!Worklist.empty()) { 2862 Instruction *I = Worklist.pop_back_val(); 2863 if (!Visited.insert(I)) continue; 2864 2865 ValueExprMapType::iterator It = 2866 ValueExprMap.find(static_cast<Value *>(I)); 2867 if (It != ValueExprMap.end()) { 2868 const SCEV *Old = It->second; 2869 2870 // Short-circuit the def-use traversal if the symbolic name 2871 // ceases to appear in expressions. 2872 if (Old != SymName && !hasOperand(Old, SymName)) 2873 continue; 2874 2875 // SCEVUnknown for a PHI either means that it has an unrecognized 2876 // structure, it's a PHI that's in the progress of being computed 2877 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2878 // additional loop trip count information isn't going to change anything. 2879 // In the second case, createNodeForPHI will perform the necessary 2880 // updates on its own when it gets to that point. In the third, we do 2881 // want to forget the SCEVUnknown. 2882 if (!isa<PHINode>(I) || 2883 !isa<SCEVUnknown>(Old) || 2884 (I != PN && Old == SymName)) { 2885 forgetMemoizedResults(Old); 2886 ValueExprMap.erase(It); 2887 } 2888 } 2889 2890 PushDefUseChildren(I, Worklist); 2891 } 2892 } 2893 2894 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2895 /// a loop header, making it a potential recurrence, or it doesn't. 2896 /// 2897 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2898 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2899 if (L->getHeader() == PN->getParent()) { 2900 // The loop may have multiple entrances or multiple exits; we can analyze 2901 // this phi as an addrec if it has a unique entry value and a unique 2902 // backedge value. 2903 Value *BEValueV = 0, *StartValueV = 0; 2904 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2905 Value *V = PN->getIncomingValue(i); 2906 if (L->contains(PN->getIncomingBlock(i))) { 2907 if (!BEValueV) { 2908 BEValueV = V; 2909 } else if (BEValueV != V) { 2910 BEValueV = 0; 2911 break; 2912 } 2913 } else if (!StartValueV) { 2914 StartValueV = V; 2915 } else if (StartValueV != V) { 2916 StartValueV = 0; 2917 break; 2918 } 2919 } 2920 if (BEValueV && StartValueV) { 2921 // While we are analyzing this PHI node, handle its value symbolically. 2922 const SCEV *SymbolicName = getUnknown(PN); 2923 assert(ValueExprMap.find(PN) == ValueExprMap.end() && 2924 "PHI node already processed?"); 2925 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2926 2927 // Using this symbolic name for the PHI, analyze the value coming around 2928 // the back-edge. 2929 const SCEV *BEValue = getSCEV(BEValueV); 2930 2931 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2932 // has a special value for the first iteration of the loop. 2933 2934 // If the value coming around the backedge is an add with the symbolic 2935 // value we just inserted, then we found a simple induction variable! 2936 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2937 // If there is a single occurrence of the symbolic value, replace it 2938 // with a recurrence. 2939 unsigned FoundIndex = Add->getNumOperands(); 2940 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2941 if (Add->getOperand(i) == SymbolicName) 2942 if (FoundIndex == e) { 2943 FoundIndex = i; 2944 break; 2945 } 2946 2947 if (FoundIndex != Add->getNumOperands()) { 2948 // Create an add with everything but the specified operand. 2949 SmallVector<const SCEV *, 8> Ops; 2950 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2951 if (i != FoundIndex) 2952 Ops.push_back(Add->getOperand(i)); 2953 const SCEV *Accum = getAddExpr(Ops); 2954 2955 // This is not a valid addrec if the step amount is varying each 2956 // loop iteration, but is not itself an addrec in this loop. 2957 if (isLoopInvariant(Accum, L) || 2958 (isa<SCEVAddRecExpr>(Accum) && 2959 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2960 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 2961 2962 // If the increment doesn't overflow, then neither the addrec nor 2963 // the post-increment will overflow. 2964 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2965 if (OBO->hasNoUnsignedWrap()) 2966 Flags = setFlags(Flags, SCEV::FlagNUW); 2967 if (OBO->hasNoSignedWrap()) 2968 Flags = setFlags(Flags, SCEV::FlagNSW); 2969 } else if (const GEPOperator *GEP = 2970 dyn_cast<GEPOperator>(BEValueV)) { 2971 // If the increment is an inbounds GEP, then we know the address 2972 // space cannot be wrapped around. We cannot make any guarantee 2973 // about signed or unsigned overflow because pointers are 2974 // unsigned but we may have a negative index from the base 2975 // pointer. 2976 if (GEP->isInBounds()) 2977 Flags = setFlags(Flags, SCEV::FlagNW); 2978 } 2979 2980 const SCEV *StartVal = getSCEV(StartValueV); 2981 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 2982 2983 // Since the no-wrap flags are on the increment, they apply to the 2984 // post-incremented value as well. 2985 if (isLoopInvariant(Accum, L)) 2986 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2987 Accum, L, Flags); 2988 2989 // Okay, for the entire analysis of this edge we assumed the PHI 2990 // to be symbolic. We now need to go back and purge all of the 2991 // entries for the scalars that use the symbolic expression. 2992 ForgetSymbolicName(PN, SymbolicName); 2993 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 2994 return PHISCEV; 2995 } 2996 } 2997 } else if (const SCEVAddRecExpr *AddRec = 2998 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2999 // Otherwise, this could be a loop like this: 3000 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3001 // In this case, j = {1,+,1} and BEValue is j. 3002 // Because the other in-value of i (0) fits the evolution of BEValue 3003 // i really is an addrec evolution. 3004 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3005 const SCEV *StartVal = getSCEV(StartValueV); 3006 3007 // If StartVal = j.start - j.stride, we can use StartVal as the 3008 // initial step of the addrec evolution. 3009 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3010 AddRec->getOperand(1))) { 3011 // FIXME: For constant StartVal, we should be able to infer 3012 // no-wrap flags. 3013 const SCEV *PHISCEV = 3014 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3015 SCEV::FlagAnyWrap); 3016 3017 // Okay, for the entire analysis of this edge we assumed the PHI 3018 // to be symbolic. We now need to go back and purge all of the 3019 // entries for the scalars that use the symbolic expression. 3020 ForgetSymbolicName(PN, SymbolicName); 3021 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3022 return PHISCEV; 3023 } 3024 } 3025 } 3026 } 3027 } 3028 3029 // If the PHI has a single incoming value, follow that value, unless the 3030 // PHI's incoming blocks are in a different loop, in which case doing so 3031 // risks breaking LCSSA form. Instcombine would normally zap these, but 3032 // it doesn't have DominatorTree information, so it may miss cases. 3033 if (Value *V = SimplifyInstruction(PN, TD, DT)) 3034 if (LI->replacementPreservesLCSSAForm(PN, V)) 3035 return getSCEV(V); 3036 3037 // If it's not a loop phi, we can't handle it yet. 3038 return getUnknown(PN); 3039 } 3040 3041 /// createNodeForGEP - Expand GEP instructions into add and multiply 3042 /// operations. This allows them to be analyzed by regular SCEV code. 3043 /// 3044 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3045 3046 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3047 // Add expression, because the Instruction may be guarded by control flow 3048 // and the no-overflow bits may not be valid for the expression in any 3049 // context. 3050 bool isInBounds = GEP->isInBounds(); 3051 3052 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3053 Value *Base = GEP->getOperand(0); 3054 // Don't attempt to analyze GEPs over unsized objects. 3055 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 3056 return getUnknown(GEP); 3057 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3058 gep_type_iterator GTI = gep_type_begin(GEP); 3059 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 3060 E = GEP->op_end(); 3061 I != E; ++I) { 3062 Value *Index = *I; 3063 // Compute the (potentially symbolic) offset in bytes for this index. 3064 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3065 // For a struct, add the member offset. 3066 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3067 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 3068 3069 // Add the field offset to the running total offset. 3070 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3071 } else { 3072 // For an array, add the element offset, explicitly scaled. 3073 const SCEV *ElementSize = getSizeOfExpr(*GTI); 3074 const SCEV *IndexS = getSCEV(Index); 3075 // Getelementptr indices are signed. 3076 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3077 3078 // Multiply the index by the element size to compute the element offset. 3079 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, 3080 isInBounds ? SCEV::FlagNSW : 3081 SCEV::FlagAnyWrap); 3082 3083 // Add the element offset to the running total offset. 3084 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3085 } 3086 } 3087 3088 // Get the SCEV for the GEP base. 3089 const SCEV *BaseS = getSCEV(Base); 3090 3091 // Add the total offset from all the GEP indices to the base. 3092 return getAddExpr(BaseS, TotalOffset, 3093 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap); 3094 } 3095 3096 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3097 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3098 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3099 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3100 uint32_t 3101 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3102 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3103 return C->getValue()->getValue().countTrailingZeros(); 3104 3105 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3106 return std::min(GetMinTrailingZeros(T->getOperand()), 3107 (uint32_t)getTypeSizeInBits(T->getType())); 3108 3109 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3110 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3111 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3112 getTypeSizeInBits(E->getType()) : OpRes; 3113 } 3114 3115 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3116 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3117 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3118 getTypeSizeInBits(E->getType()) : OpRes; 3119 } 3120 3121 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3122 // The result is the min of all operands results. 3123 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3124 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3125 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3126 return MinOpRes; 3127 } 3128 3129 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3130 // The result is the sum of all operands results. 3131 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3132 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3133 for (unsigned i = 1, e = M->getNumOperands(); 3134 SumOpRes != BitWidth && i != e; ++i) 3135 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3136 BitWidth); 3137 return SumOpRes; 3138 } 3139 3140 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3141 // The result is the min of all operands results. 3142 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3143 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3144 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3145 return MinOpRes; 3146 } 3147 3148 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3149 // The result is the min of all operands results. 3150 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3151 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3152 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3153 return MinOpRes; 3154 } 3155 3156 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3157 // The result is the min of all operands results. 3158 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3159 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3160 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3161 return MinOpRes; 3162 } 3163 3164 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3165 // For a SCEVUnknown, ask ValueTracking. 3166 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3167 APInt Mask = APInt::getAllOnesValue(BitWidth); 3168 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3169 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 3170 return Zeros.countTrailingOnes(); 3171 } 3172 3173 // SCEVUDivExpr 3174 return 0; 3175 } 3176 3177 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3178 /// 3179 ConstantRange 3180 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3181 // See if we've computed this range already. 3182 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3183 if (I != UnsignedRanges.end()) 3184 return I->second; 3185 3186 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3187 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3188 3189 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3190 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3191 3192 // If the value has known zeros, the maximum unsigned value will have those 3193 // known zeros as well. 3194 uint32_t TZ = GetMinTrailingZeros(S); 3195 if (TZ != 0) 3196 ConservativeResult = 3197 ConstantRange(APInt::getMinValue(BitWidth), 3198 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3199 3200 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3201 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3202 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3203 X = X.add(getUnsignedRange(Add->getOperand(i))); 3204 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3205 } 3206 3207 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3208 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3209 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3210 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3211 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3212 } 3213 3214 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3215 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3216 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3217 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3218 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3219 } 3220 3221 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3222 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3223 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3224 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3225 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3226 } 3227 3228 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3229 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3230 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3231 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3232 } 3233 3234 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3235 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3236 return setUnsignedRange(ZExt, 3237 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3238 } 3239 3240 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3241 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3242 return setUnsignedRange(SExt, 3243 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3244 } 3245 3246 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3247 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3248 return setUnsignedRange(Trunc, 3249 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3250 } 3251 3252 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3253 // If there's no unsigned wrap, the value will never be less than its 3254 // initial value. 3255 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3256 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3257 if (!C->getValue()->isZero()) 3258 ConservativeResult = 3259 ConservativeResult.intersectWith( 3260 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3261 3262 // TODO: non-affine addrec 3263 if (AddRec->isAffine()) { 3264 Type *Ty = AddRec->getType(); 3265 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3266 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3267 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3268 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3269 3270 const SCEV *Start = AddRec->getStart(); 3271 const SCEV *Step = AddRec->getStepRecurrence(*this); 3272 3273 ConstantRange StartRange = getUnsignedRange(Start); 3274 ConstantRange StepRange = getSignedRange(Step); 3275 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3276 ConstantRange EndRange = 3277 StartRange.add(MaxBECountRange.multiply(StepRange)); 3278 3279 // Check for overflow. This must be done with ConstantRange arithmetic 3280 // because we could be called from within the ScalarEvolution overflow 3281 // checking code. 3282 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3283 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3284 ConstantRange ExtMaxBECountRange = 3285 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3286 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3287 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3288 ExtEndRange) 3289 return setUnsignedRange(AddRec, ConservativeResult); 3290 3291 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3292 EndRange.getUnsignedMin()); 3293 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3294 EndRange.getUnsignedMax()); 3295 if (Min.isMinValue() && Max.isMaxValue()) 3296 return setUnsignedRange(AddRec, ConservativeResult); 3297 return setUnsignedRange(AddRec, 3298 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3299 } 3300 } 3301 3302 return setUnsignedRange(AddRec, ConservativeResult); 3303 } 3304 3305 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3306 // For a SCEVUnknown, ask ValueTracking. 3307 APInt Mask = APInt::getAllOnesValue(BitWidth); 3308 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3309 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3310 if (Ones == ~Zeros + 1) 3311 return setUnsignedRange(U, ConservativeResult); 3312 return setUnsignedRange(U, 3313 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3314 } 3315 3316 return setUnsignedRange(S, ConservativeResult); 3317 } 3318 3319 /// getSignedRange - Determine the signed range for a particular SCEV. 3320 /// 3321 ConstantRange 3322 ScalarEvolution::getSignedRange(const SCEV *S) { 3323 // See if we've computed this range already. 3324 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3325 if (I != SignedRanges.end()) 3326 return I->second; 3327 3328 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3329 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3330 3331 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3332 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3333 3334 // If the value has known zeros, the maximum signed value will have those 3335 // known zeros as well. 3336 uint32_t TZ = GetMinTrailingZeros(S); 3337 if (TZ != 0) 3338 ConservativeResult = 3339 ConstantRange(APInt::getSignedMinValue(BitWidth), 3340 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3341 3342 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3343 ConstantRange X = getSignedRange(Add->getOperand(0)); 3344 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3345 X = X.add(getSignedRange(Add->getOperand(i))); 3346 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3347 } 3348 3349 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3350 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3351 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3352 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3353 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3354 } 3355 3356 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3357 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3358 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3359 X = X.smax(getSignedRange(SMax->getOperand(i))); 3360 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3361 } 3362 3363 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3364 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3365 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3366 X = X.umax(getSignedRange(UMax->getOperand(i))); 3367 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3368 } 3369 3370 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3371 ConstantRange X = getSignedRange(UDiv->getLHS()); 3372 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3373 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3374 } 3375 3376 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3377 ConstantRange X = getSignedRange(ZExt->getOperand()); 3378 return setSignedRange(ZExt, 3379 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3380 } 3381 3382 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3383 ConstantRange X = getSignedRange(SExt->getOperand()); 3384 return setSignedRange(SExt, 3385 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3386 } 3387 3388 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3389 ConstantRange X = getSignedRange(Trunc->getOperand()); 3390 return setSignedRange(Trunc, 3391 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3392 } 3393 3394 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3395 // If there's no signed wrap, and all the operands have the same sign or 3396 // zero, the value won't ever change sign. 3397 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3398 bool AllNonNeg = true; 3399 bool AllNonPos = true; 3400 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3401 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3402 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3403 } 3404 if (AllNonNeg) 3405 ConservativeResult = ConservativeResult.intersectWith( 3406 ConstantRange(APInt(BitWidth, 0), 3407 APInt::getSignedMinValue(BitWidth))); 3408 else if (AllNonPos) 3409 ConservativeResult = ConservativeResult.intersectWith( 3410 ConstantRange(APInt::getSignedMinValue(BitWidth), 3411 APInt(BitWidth, 1))); 3412 } 3413 3414 // TODO: non-affine addrec 3415 if (AddRec->isAffine()) { 3416 Type *Ty = AddRec->getType(); 3417 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3418 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3419 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3420 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3421 3422 const SCEV *Start = AddRec->getStart(); 3423 const SCEV *Step = AddRec->getStepRecurrence(*this); 3424 3425 ConstantRange StartRange = getSignedRange(Start); 3426 ConstantRange StepRange = getSignedRange(Step); 3427 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3428 ConstantRange EndRange = 3429 StartRange.add(MaxBECountRange.multiply(StepRange)); 3430 3431 // Check for overflow. This must be done with ConstantRange arithmetic 3432 // because we could be called from within the ScalarEvolution overflow 3433 // checking code. 3434 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3435 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3436 ConstantRange ExtMaxBECountRange = 3437 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3438 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3439 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3440 ExtEndRange) 3441 return setSignedRange(AddRec, ConservativeResult); 3442 3443 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3444 EndRange.getSignedMin()); 3445 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3446 EndRange.getSignedMax()); 3447 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3448 return setSignedRange(AddRec, ConservativeResult); 3449 return setSignedRange(AddRec, 3450 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3451 } 3452 } 3453 3454 return setSignedRange(AddRec, ConservativeResult); 3455 } 3456 3457 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3458 // For a SCEVUnknown, ask ValueTracking. 3459 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3460 return setSignedRange(U, ConservativeResult); 3461 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3462 if (NS == 1) 3463 return setSignedRange(U, ConservativeResult); 3464 return setSignedRange(U, ConservativeResult.intersectWith( 3465 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3466 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3467 } 3468 3469 return setSignedRange(S, ConservativeResult); 3470 } 3471 3472 /// createSCEV - We know that there is no SCEV for the specified value. 3473 /// Analyze the expression. 3474 /// 3475 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3476 if (!isSCEVable(V->getType())) 3477 return getUnknown(V); 3478 3479 unsigned Opcode = Instruction::UserOp1; 3480 if (Instruction *I = dyn_cast<Instruction>(V)) { 3481 Opcode = I->getOpcode(); 3482 3483 // Don't attempt to analyze instructions in blocks that aren't 3484 // reachable. Such instructions don't matter, and they aren't required 3485 // to obey basic rules for definitions dominating uses which this 3486 // analysis depends on. 3487 if (!DT->isReachableFromEntry(I->getParent())) 3488 return getUnknown(V); 3489 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3490 Opcode = CE->getOpcode(); 3491 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3492 return getConstant(CI); 3493 else if (isa<ConstantPointerNull>(V)) 3494 return getConstant(V->getType(), 0); 3495 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3496 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3497 else 3498 return getUnknown(V); 3499 3500 Operator *U = cast<Operator>(V); 3501 switch (Opcode) { 3502 case Instruction::Add: { 3503 // The simple thing to do would be to just call getSCEV on both operands 3504 // and call getAddExpr with the result. However if we're looking at a 3505 // bunch of things all added together, this can be quite inefficient, 3506 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3507 // Instead, gather up all the operands and make a single getAddExpr call. 3508 // LLVM IR canonical form means we need only traverse the left operands. 3509 SmallVector<const SCEV *, 4> AddOps; 3510 AddOps.push_back(getSCEV(U->getOperand(1))); 3511 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3512 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3513 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3514 break; 3515 U = cast<Operator>(Op); 3516 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3517 if (Opcode == Instruction::Sub) 3518 AddOps.push_back(getNegativeSCEV(Op1)); 3519 else 3520 AddOps.push_back(Op1); 3521 } 3522 AddOps.push_back(getSCEV(U->getOperand(0))); 3523 return getAddExpr(AddOps); 3524 } 3525 case Instruction::Mul: { 3526 // See the Add code above. 3527 SmallVector<const SCEV *, 4> MulOps; 3528 MulOps.push_back(getSCEV(U->getOperand(1))); 3529 for (Value *Op = U->getOperand(0); 3530 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3531 Op = U->getOperand(0)) { 3532 U = cast<Operator>(Op); 3533 MulOps.push_back(getSCEV(U->getOperand(1))); 3534 } 3535 MulOps.push_back(getSCEV(U->getOperand(0))); 3536 return getMulExpr(MulOps); 3537 } 3538 case Instruction::UDiv: 3539 return getUDivExpr(getSCEV(U->getOperand(0)), 3540 getSCEV(U->getOperand(1))); 3541 case Instruction::Sub: 3542 return getMinusSCEV(getSCEV(U->getOperand(0)), 3543 getSCEV(U->getOperand(1))); 3544 case Instruction::And: 3545 // For an expression like x&255 that merely masks off the high bits, 3546 // use zext(trunc(x)) as the SCEV expression. 3547 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3548 if (CI->isNullValue()) 3549 return getSCEV(U->getOperand(1)); 3550 if (CI->isAllOnesValue()) 3551 return getSCEV(U->getOperand(0)); 3552 const APInt &A = CI->getValue(); 3553 3554 // Instcombine's ShrinkDemandedConstant may strip bits out of 3555 // constants, obscuring what would otherwise be a low-bits mask. 3556 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3557 // knew about to reconstruct a low-bits mask value. 3558 unsigned LZ = A.countLeadingZeros(); 3559 unsigned BitWidth = A.getBitWidth(); 3560 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3561 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3562 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3563 3564 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3565 3566 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3567 return 3568 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3569 IntegerType::get(getContext(), BitWidth - LZ)), 3570 U->getType()); 3571 } 3572 break; 3573 3574 case Instruction::Or: 3575 // If the RHS of the Or is a constant, we may have something like: 3576 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3577 // optimizations will transparently handle this case. 3578 // 3579 // In order for this transformation to be safe, the LHS must be of the 3580 // form X*(2^n) and the Or constant must be less than 2^n. 3581 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3582 const SCEV *LHS = getSCEV(U->getOperand(0)); 3583 const APInt &CIVal = CI->getValue(); 3584 if (GetMinTrailingZeros(LHS) >= 3585 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3586 // Build a plain add SCEV. 3587 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3588 // If the LHS of the add was an addrec and it has no-wrap flags, 3589 // transfer the no-wrap flags, since an or won't introduce a wrap. 3590 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3591 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3592 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3593 OldAR->getNoWrapFlags()); 3594 } 3595 return S; 3596 } 3597 } 3598 break; 3599 case Instruction::Xor: 3600 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3601 // If the RHS of the xor is a signbit, then this is just an add. 3602 // Instcombine turns add of signbit into xor as a strength reduction step. 3603 if (CI->getValue().isSignBit()) 3604 return getAddExpr(getSCEV(U->getOperand(0)), 3605 getSCEV(U->getOperand(1))); 3606 3607 // If the RHS of xor is -1, then this is a not operation. 3608 if (CI->isAllOnesValue()) 3609 return getNotSCEV(getSCEV(U->getOperand(0))); 3610 3611 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3612 // This is a variant of the check for xor with -1, and it handles 3613 // the case where instcombine has trimmed non-demanded bits out 3614 // of an xor with -1. 3615 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3616 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3617 if (BO->getOpcode() == Instruction::And && 3618 LCI->getValue() == CI->getValue()) 3619 if (const SCEVZeroExtendExpr *Z = 3620 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3621 Type *UTy = U->getType(); 3622 const SCEV *Z0 = Z->getOperand(); 3623 Type *Z0Ty = Z0->getType(); 3624 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3625 3626 // If C is a low-bits mask, the zero extend is serving to 3627 // mask off the high bits. Complement the operand and 3628 // re-apply the zext. 3629 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3630 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3631 3632 // If C is a single bit, it may be in the sign-bit position 3633 // before the zero-extend. In this case, represent the xor 3634 // using an add, which is equivalent, and re-apply the zext. 3635 APInt Trunc = CI->getValue().trunc(Z0TySize); 3636 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3637 Trunc.isSignBit()) 3638 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3639 UTy); 3640 } 3641 } 3642 break; 3643 3644 case Instruction::Shl: 3645 // Turn shift left of a constant amount into a multiply. 3646 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3647 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3648 3649 // If the shift count is not less than the bitwidth, the result of 3650 // the shift is undefined. Don't try to analyze it, because the 3651 // resolution chosen here may differ from the resolution chosen in 3652 // other parts of the compiler. 3653 if (SA->getValue().uge(BitWidth)) 3654 break; 3655 3656 Constant *X = ConstantInt::get(getContext(), 3657 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3658 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3659 } 3660 break; 3661 3662 case Instruction::LShr: 3663 // Turn logical shift right of a constant into a unsigned divide. 3664 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3665 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3666 3667 // If the shift count is not less than the bitwidth, the result of 3668 // the shift is undefined. Don't try to analyze it, because the 3669 // resolution chosen here may differ from the resolution chosen in 3670 // other parts of the compiler. 3671 if (SA->getValue().uge(BitWidth)) 3672 break; 3673 3674 Constant *X = ConstantInt::get(getContext(), 3675 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3676 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3677 } 3678 break; 3679 3680 case Instruction::AShr: 3681 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3682 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3683 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3684 if (L->getOpcode() == Instruction::Shl && 3685 L->getOperand(1) == U->getOperand(1)) { 3686 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3687 3688 // If the shift count is not less than the bitwidth, the result of 3689 // the shift is undefined. Don't try to analyze it, because the 3690 // resolution chosen here may differ from the resolution chosen in 3691 // other parts of the compiler. 3692 if (CI->getValue().uge(BitWidth)) 3693 break; 3694 3695 uint64_t Amt = BitWidth - CI->getZExtValue(); 3696 if (Amt == BitWidth) 3697 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3698 return 3699 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3700 IntegerType::get(getContext(), 3701 Amt)), 3702 U->getType()); 3703 } 3704 break; 3705 3706 case Instruction::Trunc: 3707 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3708 3709 case Instruction::ZExt: 3710 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3711 3712 case Instruction::SExt: 3713 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3714 3715 case Instruction::BitCast: 3716 // BitCasts are no-op casts so we just eliminate the cast. 3717 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3718 return getSCEV(U->getOperand(0)); 3719 break; 3720 3721 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3722 // lead to pointer expressions which cannot safely be expanded to GEPs, 3723 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3724 // simplifying integer expressions. 3725 3726 case Instruction::GetElementPtr: 3727 return createNodeForGEP(cast<GEPOperator>(U)); 3728 3729 case Instruction::PHI: 3730 return createNodeForPHI(cast<PHINode>(U)); 3731 3732 case Instruction::Select: 3733 // This could be a smax or umax that was lowered earlier. 3734 // Try to recover it. 3735 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3736 Value *LHS = ICI->getOperand(0); 3737 Value *RHS = ICI->getOperand(1); 3738 switch (ICI->getPredicate()) { 3739 case ICmpInst::ICMP_SLT: 3740 case ICmpInst::ICMP_SLE: 3741 std::swap(LHS, RHS); 3742 // fall through 3743 case ICmpInst::ICMP_SGT: 3744 case ICmpInst::ICMP_SGE: 3745 // a >s b ? a+x : b+x -> smax(a, b)+x 3746 // a >s b ? b+x : a+x -> smin(a, b)+x 3747 if (LHS->getType() == U->getType()) { 3748 const SCEV *LS = getSCEV(LHS); 3749 const SCEV *RS = getSCEV(RHS); 3750 const SCEV *LA = getSCEV(U->getOperand(1)); 3751 const SCEV *RA = getSCEV(U->getOperand(2)); 3752 const SCEV *LDiff = getMinusSCEV(LA, LS); 3753 const SCEV *RDiff = getMinusSCEV(RA, RS); 3754 if (LDiff == RDiff) 3755 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3756 LDiff = getMinusSCEV(LA, RS); 3757 RDiff = getMinusSCEV(RA, LS); 3758 if (LDiff == RDiff) 3759 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3760 } 3761 break; 3762 case ICmpInst::ICMP_ULT: 3763 case ICmpInst::ICMP_ULE: 3764 std::swap(LHS, RHS); 3765 // fall through 3766 case ICmpInst::ICMP_UGT: 3767 case ICmpInst::ICMP_UGE: 3768 // a >u b ? a+x : b+x -> umax(a, b)+x 3769 // a >u b ? b+x : a+x -> umin(a, b)+x 3770 if (LHS->getType() == U->getType()) { 3771 const SCEV *LS = getSCEV(LHS); 3772 const SCEV *RS = getSCEV(RHS); 3773 const SCEV *LA = getSCEV(U->getOperand(1)); 3774 const SCEV *RA = getSCEV(U->getOperand(2)); 3775 const SCEV *LDiff = getMinusSCEV(LA, LS); 3776 const SCEV *RDiff = getMinusSCEV(RA, RS); 3777 if (LDiff == RDiff) 3778 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3779 LDiff = getMinusSCEV(LA, RS); 3780 RDiff = getMinusSCEV(RA, LS); 3781 if (LDiff == RDiff) 3782 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3783 } 3784 break; 3785 case ICmpInst::ICMP_NE: 3786 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3787 if (LHS->getType() == U->getType() && 3788 isa<ConstantInt>(RHS) && 3789 cast<ConstantInt>(RHS)->isZero()) { 3790 const SCEV *One = getConstant(LHS->getType(), 1); 3791 const SCEV *LS = getSCEV(LHS); 3792 const SCEV *LA = getSCEV(U->getOperand(1)); 3793 const SCEV *RA = getSCEV(U->getOperand(2)); 3794 const SCEV *LDiff = getMinusSCEV(LA, LS); 3795 const SCEV *RDiff = getMinusSCEV(RA, One); 3796 if (LDiff == RDiff) 3797 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3798 } 3799 break; 3800 case ICmpInst::ICMP_EQ: 3801 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3802 if (LHS->getType() == U->getType() && 3803 isa<ConstantInt>(RHS) && 3804 cast<ConstantInt>(RHS)->isZero()) { 3805 const SCEV *One = getConstant(LHS->getType(), 1); 3806 const SCEV *LS = getSCEV(LHS); 3807 const SCEV *LA = getSCEV(U->getOperand(1)); 3808 const SCEV *RA = getSCEV(U->getOperand(2)); 3809 const SCEV *LDiff = getMinusSCEV(LA, One); 3810 const SCEV *RDiff = getMinusSCEV(RA, LS); 3811 if (LDiff == RDiff) 3812 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3813 } 3814 break; 3815 default: 3816 break; 3817 } 3818 } 3819 3820 default: // We cannot analyze this expression. 3821 break; 3822 } 3823 3824 return getUnknown(V); 3825 } 3826 3827 3828 3829 //===----------------------------------------------------------------------===// 3830 // Iteration Count Computation Code 3831 // 3832 3833 // getExitCount - Get the expression for the number of loop iterations for which 3834 // this loop is guaranteed not to exit via ExitintBlock. Otherwise return 3835 // SCEVCouldNotCompute. 3836 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 3837 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 3838 } 3839 3840 /// getBackedgeTakenCount - If the specified loop has a predictable 3841 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3842 /// object. The backedge-taken count is the number of times the loop header 3843 /// will be branched to from within the loop. This is one less than the 3844 /// trip count of the loop, since it doesn't count the first iteration, 3845 /// when the header is branched to from outside the loop. 3846 /// 3847 /// Note that it is not valid to call this method on a loop without a 3848 /// loop-invariant backedge-taken count (see 3849 /// hasLoopInvariantBackedgeTakenCount). 3850 /// 3851 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3852 return getBackedgeTakenInfo(L).getExact(this); 3853 } 3854 3855 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3856 /// return the least SCEV value that is known never to be less than the 3857 /// actual backedge taken count. 3858 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3859 return getBackedgeTakenInfo(L).getMax(this); 3860 } 3861 3862 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3863 /// onto the given Worklist. 3864 static void 3865 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3866 BasicBlock *Header = L->getHeader(); 3867 3868 // Push all Loop-header PHIs onto the Worklist stack. 3869 for (BasicBlock::iterator I = Header->begin(); 3870 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3871 Worklist.push_back(PN); 3872 } 3873 3874 const ScalarEvolution::BackedgeTakenInfo & 3875 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3876 // Initially insert an invalid entry for this loop. If the insertion 3877 // succeeds, proceed to actually compute a backedge-taken count and 3878 // update the value. The temporary CouldNotCompute value tells SCEV 3879 // code elsewhere that it shouldn't attempt to request a new 3880 // backedge-taken count, which could result in infinite recursion. 3881 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3882 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 3883 if (!Pair.second) 3884 return Pair.first->second; 3885 3886 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 3887 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 3888 // must be cleared in this scope. 3889 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 3890 3891 if (Result.getExact(this) != getCouldNotCompute()) { 3892 assert(isLoopInvariant(Result.getExact(this), L) && 3893 isLoopInvariant(Result.getMax(this), L) && 3894 "Computed backedge-taken count isn't loop invariant for loop!"); 3895 ++NumTripCountsComputed; 3896 } 3897 else if (Result.getMax(this) == getCouldNotCompute() && 3898 isa<PHINode>(L->getHeader()->begin())) { 3899 // Only count loops that have phi nodes as not being computable. 3900 ++NumTripCountsNotComputed; 3901 } 3902 3903 // Now that we know more about the trip count for this loop, forget any 3904 // existing SCEV values for PHI nodes in this loop since they are only 3905 // conservative estimates made without the benefit of trip count 3906 // information. This is similar to the code in forgetLoop, except that 3907 // it handles SCEVUnknown PHI nodes specially. 3908 if (Result.hasAnyInfo()) { 3909 SmallVector<Instruction *, 16> Worklist; 3910 PushLoopPHIs(L, Worklist); 3911 3912 SmallPtrSet<Instruction *, 8> Visited; 3913 while (!Worklist.empty()) { 3914 Instruction *I = Worklist.pop_back_val(); 3915 if (!Visited.insert(I)) continue; 3916 3917 ValueExprMapType::iterator It = 3918 ValueExprMap.find(static_cast<Value *>(I)); 3919 if (It != ValueExprMap.end()) { 3920 const SCEV *Old = It->second; 3921 3922 // SCEVUnknown for a PHI either means that it has an unrecognized 3923 // structure, or it's a PHI that's in the progress of being computed 3924 // by createNodeForPHI. In the former case, additional loop trip 3925 // count information isn't going to change anything. In the later 3926 // case, createNodeForPHI will perform the necessary updates on its 3927 // own when it gets to that point. 3928 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 3929 forgetMemoizedResults(Old); 3930 ValueExprMap.erase(It); 3931 } 3932 if (PHINode *PN = dyn_cast<PHINode>(I)) 3933 ConstantEvolutionLoopExitValue.erase(PN); 3934 } 3935 3936 PushDefUseChildren(I, Worklist); 3937 } 3938 } 3939 3940 // Re-lookup the insert position, since the call to 3941 // ComputeBackedgeTakenCount above could result in a 3942 // recusive call to getBackedgeTakenInfo (on a different 3943 // loop), which would invalidate the iterator computed 3944 // earlier. 3945 return BackedgeTakenCounts.find(L)->second = Result; 3946 } 3947 3948 /// forgetLoop - This method should be called by the client when it has 3949 /// changed a loop in a way that may effect ScalarEvolution's ability to 3950 /// compute a trip count, or if the loop is deleted. 3951 void ScalarEvolution::forgetLoop(const Loop *L) { 3952 // Drop any stored trip count value. 3953 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 3954 BackedgeTakenCounts.find(L); 3955 if (BTCPos != BackedgeTakenCounts.end()) { 3956 BTCPos->second.clear(); 3957 BackedgeTakenCounts.erase(BTCPos); 3958 } 3959 3960 // Drop information about expressions based on loop-header PHIs. 3961 SmallVector<Instruction *, 16> Worklist; 3962 PushLoopPHIs(L, Worklist); 3963 3964 SmallPtrSet<Instruction *, 8> Visited; 3965 while (!Worklist.empty()) { 3966 Instruction *I = Worklist.pop_back_val(); 3967 if (!Visited.insert(I)) continue; 3968 3969 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 3970 if (It != ValueExprMap.end()) { 3971 forgetMemoizedResults(It->second); 3972 ValueExprMap.erase(It); 3973 if (PHINode *PN = dyn_cast<PHINode>(I)) 3974 ConstantEvolutionLoopExitValue.erase(PN); 3975 } 3976 3977 PushDefUseChildren(I, Worklist); 3978 } 3979 3980 // Forget all contained loops too, to avoid dangling entries in the 3981 // ValuesAtScopes map. 3982 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3983 forgetLoop(*I); 3984 } 3985 3986 /// forgetValue - This method should be called by the client when it has 3987 /// changed a value in a way that may effect its value, or which may 3988 /// disconnect it from a def-use chain linking it to a loop. 3989 void ScalarEvolution::forgetValue(Value *V) { 3990 Instruction *I = dyn_cast<Instruction>(V); 3991 if (!I) return; 3992 3993 // Drop information about expressions based on loop-header PHIs. 3994 SmallVector<Instruction *, 16> Worklist; 3995 Worklist.push_back(I); 3996 3997 SmallPtrSet<Instruction *, 8> Visited; 3998 while (!Worklist.empty()) { 3999 I = Worklist.pop_back_val(); 4000 if (!Visited.insert(I)) continue; 4001 4002 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I)); 4003 if (It != ValueExprMap.end()) { 4004 forgetMemoizedResults(It->second); 4005 ValueExprMap.erase(It); 4006 if (PHINode *PN = dyn_cast<PHINode>(I)) 4007 ConstantEvolutionLoopExitValue.erase(PN); 4008 } 4009 4010 PushDefUseChildren(I, Worklist); 4011 } 4012 } 4013 4014 /// getExact - Get the exact loop backedge taken count considering all loop 4015 /// exits. If all exits are computable, this is the minimum computed count. 4016 const SCEV * 4017 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4018 // If any exits were not computable, the loop is not computable. 4019 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4020 4021 // We need at least one computable exit. 4022 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4023 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4024 4025 const SCEV *BECount = 0; 4026 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4027 ENT != 0; ENT = ENT->getNextExit()) { 4028 4029 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4030 4031 if (!BECount) 4032 BECount = ENT->ExactNotTaken; 4033 else 4034 BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken); 4035 } 4036 return BECount; 4037 } 4038 4039 /// getExact - Get the exact not taken count for this loop exit. 4040 const SCEV * 4041 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4042 ScalarEvolution *SE) const { 4043 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4044 ENT != 0; ENT = ENT->getNextExit()) { 4045 4046 if (ENT->ExitingBlock == ExitingBlock) 4047 return ENT->ExactNotTaken; 4048 } 4049 return SE->getCouldNotCompute(); 4050 } 4051 4052 /// getMax - Get the max backedge taken count for the loop. 4053 const SCEV * 4054 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4055 return Max ? Max : SE->getCouldNotCompute(); 4056 } 4057 4058 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4059 /// computable exit into a persistent ExitNotTakenInfo array. 4060 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4061 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4062 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4063 4064 if (!Complete) 4065 ExitNotTaken.setIncomplete(); 4066 4067 unsigned NumExits = ExitCounts.size(); 4068 if (NumExits == 0) return; 4069 4070 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4071 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4072 if (NumExits == 1) return; 4073 4074 // Handle the rare case of multiple computable exits. 4075 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4076 4077 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4078 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4079 PrevENT->setNextExit(ENT); 4080 ENT->ExitingBlock = ExitCounts[i].first; 4081 ENT->ExactNotTaken = ExitCounts[i].second; 4082 } 4083 } 4084 4085 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4086 void ScalarEvolution::BackedgeTakenInfo::clear() { 4087 ExitNotTaken.ExitingBlock = 0; 4088 ExitNotTaken.ExactNotTaken = 0; 4089 delete[] ExitNotTaken.getNextExit(); 4090 } 4091 4092 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4093 /// of the specified loop will execute. 4094 ScalarEvolution::BackedgeTakenInfo 4095 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4096 SmallVector<BasicBlock *, 8> ExitingBlocks; 4097 L->getExitingBlocks(ExitingBlocks); 4098 4099 // Examine all exits and pick the most conservative values. 4100 const SCEV *MaxBECount = getCouldNotCompute(); 4101 bool CouldComputeBECount = true; 4102 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4103 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4104 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4105 if (EL.Exact == getCouldNotCompute()) 4106 // We couldn't compute an exact value for this exit, so 4107 // we won't be able to compute an exact value for the loop. 4108 CouldComputeBECount = false; 4109 else 4110 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4111 4112 if (MaxBECount == getCouldNotCompute()) 4113 MaxBECount = EL.Max; 4114 else if (EL.Max != getCouldNotCompute()) 4115 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max); 4116 } 4117 4118 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4119 } 4120 4121 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4122 /// loop will execute if it exits via the specified block. 4123 ScalarEvolution::ExitLimit 4124 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4125 4126 // Okay, we've chosen an exiting block. See what condition causes us to 4127 // exit at this block. 4128 // 4129 // FIXME: we should be able to handle switch instructions (with a single exit) 4130 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 4131 if (ExitBr == 0) return getCouldNotCompute(); 4132 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 4133 4134 // At this point, we know we have a conditional branch that determines whether 4135 // the loop is exited. However, we don't know if the branch is executed each 4136 // time through the loop. If not, then the execution count of the branch will 4137 // not be equal to the trip count of the loop. 4138 // 4139 // Currently we check for this by checking to see if the Exit branch goes to 4140 // the loop header. If so, we know it will always execute the same number of 4141 // times as the loop. We also handle the case where the exit block *is* the 4142 // loop header. This is common for un-rotated loops. 4143 // 4144 // If both of those tests fail, walk up the unique predecessor chain to the 4145 // header, stopping if there is an edge that doesn't exit the loop. If the 4146 // header is reached, the execution count of the branch will be equal to the 4147 // trip count of the loop. 4148 // 4149 // More extensive analysis could be done to handle more cases here. 4150 // 4151 if (ExitBr->getSuccessor(0) != L->getHeader() && 4152 ExitBr->getSuccessor(1) != L->getHeader() && 4153 ExitBr->getParent() != L->getHeader()) { 4154 // The simple checks failed, try climbing the unique predecessor chain 4155 // up to the header. 4156 bool Ok = false; 4157 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 4158 BasicBlock *Pred = BB->getUniquePredecessor(); 4159 if (!Pred) 4160 return getCouldNotCompute(); 4161 TerminatorInst *PredTerm = Pred->getTerminator(); 4162 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4163 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4164 if (PredSucc == BB) 4165 continue; 4166 // If the predecessor has a successor that isn't BB and isn't 4167 // outside the loop, assume the worst. 4168 if (L->contains(PredSucc)) 4169 return getCouldNotCompute(); 4170 } 4171 if (Pred == L->getHeader()) { 4172 Ok = true; 4173 break; 4174 } 4175 BB = Pred; 4176 } 4177 if (!Ok) 4178 return getCouldNotCompute(); 4179 } 4180 4181 // Proceed to the next level to examine the exit condition expression. 4182 return ComputeExitLimitFromCond(L, ExitBr->getCondition(), 4183 ExitBr->getSuccessor(0), 4184 ExitBr->getSuccessor(1)); 4185 } 4186 4187 /// ComputeExitLimitFromCond - Compute the number of times the 4188 /// backedge of the specified loop will execute if its exit condition 4189 /// were a conditional branch of ExitCond, TBB, and FBB. 4190 ScalarEvolution::ExitLimit 4191 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4192 Value *ExitCond, 4193 BasicBlock *TBB, 4194 BasicBlock *FBB) { 4195 // Check if the controlling expression for this loop is an And or Or. 4196 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4197 if (BO->getOpcode() == Instruction::And) { 4198 // Recurse on the operands of the and. 4199 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4200 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4201 const SCEV *BECount = getCouldNotCompute(); 4202 const SCEV *MaxBECount = getCouldNotCompute(); 4203 if (L->contains(TBB)) { 4204 // Both conditions must be true for the loop to continue executing. 4205 // Choose the less conservative count. 4206 if (EL0.Exact == getCouldNotCompute() || 4207 EL1.Exact == getCouldNotCompute()) 4208 BECount = getCouldNotCompute(); 4209 else 4210 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4211 if (EL0.Max == getCouldNotCompute()) 4212 MaxBECount = EL1.Max; 4213 else if (EL1.Max == getCouldNotCompute()) 4214 MaxBECount = EL0.Max; 4215 else 4216 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4217 } else { 4218 // Both conditions must be true at the same time for the loop to exit. 4219 // For now, be conservative. 4220 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4221 if (EL0.Max == EL1.Max) 4222 MaxBECount = EL0.Max; 4223 if (EL0.Exact == EL1.Exact) 4224 BECount = EL0.Exact; 4225 } 4226 4227 return ExitLimit(BECount, MaxBECount); 4228 } 4229 if (BO->getOpcode() == Instruction::Or) { 4230 // Recurse on the operands of the or. 4231 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4232 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4233 const SCEV *BECount = getCouldNotCompute(); 4234 const SCEV *MaxBECount = getCouldNotCompute(); 4235 if (L->contains(FBB)) { 4236 // Both conditions must be false for the loop to continue executing. 4237 // Choose the less conservative count. 4238 if (EL0.Exact == getCouldNotCompute() || 4239 EL1.Exact == getCouldNotCompute()) 4240 BECount = getCouldNotCompute(); 4241 else 4242 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4243 if (EL0.Max == getCouldNotCompute()) 4244 MaxBECount = EL1.Max; 4245 else if (EL1.Max == getCouldNotCompute()) 4246 MaxBECount = EL0.Max; 4247 else 4248 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4249 } else { 4250 // Both conditions must be false at the same time for the loop to exit. 4251 // For now, be conservative. 4252 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4253 if (EL0.Max == EL1.Max) 4254 MaxBECount = EL0.Max; 4255 if (EL0.Exact == EL1.Exact) 4256 BECount = EL0.Exact; 4257 } 4258 4259 return ExitLimit(BECount, MaxBECount); 4260 } 4261 } 4262 4263 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4264 // Proceed to the next level to examine the icmp. 4265 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4266 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB); 4267 4268 // Check for a constant condition. These are normally stripped out by 4269 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4270 // preserve the CFG and is temporarily leaving constant conditions 4271 // in place. 4272 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4273 if (L->contains(FBB) == !CI->getZExtValue()) 4274 // The backedge is always taken. 4275 return getCouldNotCompute(); 4276 else 4277 // The backedge is never taken. 4278 return getConstant(CI->getType(), 0); 4279 } 4280 4281 // If it's not an integer or pointer comparison then compute it the hard way. 4282 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4283 } 4284 4285 /// ComputeExitLimitFromICmp - Compute the number of times the 4286 /// backedge of the specified loop will execute if its exit condition 4287 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4288 ScalarEvolution::ExitLimit 4289 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4290 ICmpInst *ExitCond, 4291 BasicBlock *TBB, 4292 BasicBlock *FBB) { 4293 4294 // If the condition was exit on true, convert the condition to exit on false 4295 ICmpInst::Predicate Cond; 4296 if (!L->contains(FBB)) 4297 Cond = ExitCond->getPredicate(); 4298 else 4299 Cond = ExitCond->getInversePredicate(); 4300 4301 // Handle common loops like: for (X = "string"; *X; ++X) 4302 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4303 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4304 ExitLimit ItCnt = 4305 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4306 if (ItCnt.hasAnyInfo()) 4307 return ItCnt; 4308 } 4309 4310 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4311 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4312 4313 // Try to evaluate any dependencies out of the loop. 4314 LHS = getSCEVAtScope(LHS, L); 4315 RHS = getSCEVAtScope(RHS, L); 4316 4317 // At this point, we would like to compute how many iterations of the 4318 // loop the predicate will return true for these inputs. 4319 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4320 // If there is a loop-invariant, force it into the RHS. 4321 std::swap(LHS, RHS); 4322 Cond = ICmpInst::getSwappedPredicate(Cond); 4323 } 4324 4325 // Simplify the operands before analyzing them. 4326 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4327 4328 // If we have a comparison of a chrec against a constant, try to use value 4329 // ranges to answer this query. 4330 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4331 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4332 if (AddRec->getLoop() == L) { 4333 // Form the constant range. 4334 ConstantRange CompRange( 4335 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4336 4337 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4338 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4339 } 4340 4341 switch (Cond) { 4342 case ICmpInst::ICMP_NE: { // while (X != Y) 4343 // Convert to: while (X-Y != 0) 4344 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L); 4345 if (EL.hasAnyInfo()) return EL; 4346 break; 4347 } 4348 case ICmpInst::ICMP_EQ: { // while (X == Y) 4349 // Convert to: while (X-Y == 0) 4350 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4351 if (EL.hasAnyInfo()) return EL; 4352 break; 4353 } 4354 case ICmpInst::ICMP_SLT: { 4355 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true); 4356 if (EL.hasAnyInfo()) return EL; 4357 break; 4358 } 4359 case ICmpInst::ICMP_SGT: { 4360 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4361 getNotSCEV(RHS), L, true); 4362 if (EL.hasAnyInfo()) return EL; 4363 break; 4364 } 4365 case ICmpInst::ICMP_ULT: { 4366 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false); 4367 if (EL.hasAnyInfo()) return EL; 4368 break; 4369 } 4370 case ICmpInst::ICMP_UGT: { 4371 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4372 getNotSCEV(RHS), L, false); 4373 if (EL.hasAnyInfo()) return EL; 4374 break; 4375 } 4376 default: 4377 #if 0 4378 dbgs() << "ComputeBackedgeTakenCount "; 4379 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4380 dbgs() << "[unsigned] "; 4381 dbgs() << *LHS << " " 4382 << Instruction::getOpcodeName(Instruction::ICmp) 4383 << " " << *RHS << "\n"; 4384 #endif 4385 break; 4386 } 4387 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4388 } 4389 4390 static ConstantInt * 4391 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4392 ScalarEvolution &SE) { 4393 const SCEV *InVal = SE.getConstant(C); 4394 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4395 assert(isa<SCEVConstant>(Val) && 4396 "Evaluation of SCEV at constant didn't fold correctly?"); 4397 return cast<SCEVConstant>(Val)->getValue(); 4398 } 4399 4400 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4401 /// and a GEP expression (missing the pointer index) indexing into it, return 4402 /// the addressed element of the initializer or null if the index expression is 4403 /// invalid. 4404 static Constant * 4405 GetAddressedElementFromGlobal(GlobalVariable *GV, 4406 const std::vector<ConstantInt*> &Indices) { 4407 Constant *Init = GV->getInitializer(); 4408 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4409 uint64_t Idx = Indices[i]->getZExtValue(); 4410 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4411 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4412 Init = cast<Constant>(CS->getOperand(Idx)); 4413 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4414 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4415 Init = cast<Constant>(CA->getOperand(Idx)); 4416 } else if (isa<ConstantAggregateZero>(Init)) { 4417 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 4418 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4419 Init = Constant::getNullValue(STy->getElementType(Idx)); 4420 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4421 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4422 Init = Constant::getNullValue(ATy->getElementType()); 4423 } else { 4424 llvm_unreachable("Unknown constant aggregate type!"); 4425 } 4426 return 0; 4427 } else { 4428 return 0; // Unknown initializer type 4429 } 4430 } 4431 return Init; 4432 } 4433 4434 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4435 /// 'icmp op load X, cst', try to see if we can compute the backedge 4436 /// execution count. 4437 ScalarEvolution::ExitLimit 4438 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4439 LoadInst *LI, 4440 Constant *RHS, 4441 const Loop *L, 4442 ICmpInst::Predicate predicate) { 4443 4444 if (LI->isVolatile()) return getCouldNotCompute(); 4445 4446 // Check to see if the loaded pointer is a getelementptr of a global. 4447 // TODO: Use SCEV instead of manually grubbing with GEPs. 4448 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4449 if (!GEP) return getCouldNotCompute(); 4450 4451 // Make sure that it is really a constant global we are gepping, with an 4452 // initializer, and make sure the first IDX is really 0. 4453 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4454 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4455 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4456 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4457 return getCouldNotCompute(); 4458 4459 // Okay, we allow one non-constant index into the GEP instruction. 4460 Value *VarIdx = 0; 4461 std::vector<ConstantInt*> Indexes; 4462 unsigned VarIdxNum = 0; 4463 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4464 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4465 Indexes.push_back(CI); 4466 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4467 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4468 VarIdx = GEP->getOperand(i); 4469 VarIdxNum = i-2; 4470 Indexes.push_back(0); 4471 } 4472 4473 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4474 // Check to see if X is a loop variant variable value now. 4475 const SCEV *Idx = getSCEV(VarIdx); 4476 Idx = getSCEVAtScope(Idx, L); 4477 4478 // We can only recognize very limited forms of loop index expressions, in 4479 // particular, only affine AddRec's like {C1,+,C2}. 4480 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4481 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4482 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4483 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4484 return getCouldNotCompute(); 4485 4486 unsigned MaxSteps = MaxBruteForceIterations; 4487 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4488 ConstantInt *ItCst = ConstantInt::get( 4489 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4490 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4491 4492 // Form the GEP offset. 4493 Indexes[VarIdxNum] = Val; 4494 4495 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4496 if (Result == 0) break; // Cannot compute! 4497 4498 // Evaluate the condition for this iteration. 4499 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4500 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4501 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4502 #if 0 4503 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4504 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4505 << "***\n"; 4506 #endif 4507 ++NumArrayLenItCounts; 4508 return getConstant(ItCst); // Found terminating iteration! 4509 } 4510 } 4511 return getCouldNotCompute(); 4512 } 4513 4514 4515 /// CanConstantFold - Return true if we can constant fold an instruction of the 4516 /// specified type, assuming that all operands were constants. 4517 static bool CanConstantFold(const Instruction *I) { 4518 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4519 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4520 return true; 4521 4522 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4523 if (const Function *F = CI->getCalledFunction()) 4524 return canConstantFoldCallTo(F); 4525 return false; 4526 } 4527 4528 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4529 /// in the loop that V is derived from. We allow arbitrary operations along the 4530 /// way, but the operands of an operation must either be constants or a value 4531 /// derived from a constant PHI. If this expression does not fit with these 4532 /// constraints, return null. 4533 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4534 // If this is not an instruction, or if this is an instruction outside of the 4535 // loop, it can't be derived from a loop PHI. 4536 Instruction *I = dyn_cast<Instruction>(V); 4537 if (I == 0 || !L->contains(I)) return 0; 4538 4539 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4540 if (L->getHeader() == I->getParent()) 4541 return PN; 4542 else 4543 // We don't currently keep track of the control flow needed to evaluate 4544 // PHIs, so we cannot handle PHIs inside of loops. 4545 return 0; 4546 } 4547 4548 // If we won't be able to constant fold this expression even if the operands 4549 // are constants, return early. 4550 if (!CanConstantFold(I)) return 0; 4551 4552 // Otherwise, we can evaluate this instruction if all of its operands are 4553 // constant or derived from a PHI node themselves. 4554 PHINode *PHI = 0; 4555 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4556 if (!isa<Constant>(I->getOperand(Op))) { 4557 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4558 if (P == 0) return 0; // Not evolving from PHI 4559 if (PHI == 0) 4560 PHI = P; 4561 else if (PHI != P) 4562 return 0; // Evolving from multiple different PHIs. 4563 } 4564 4565 // This is a expression evolving from a constant PHI! 4566 return PHI; 4567 } 4568 4569 /// EvaluateExpression - Given an expression that passes the 4570 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4571 /// in the loop has the value PHIVal. If we can't fold this expression for some 4572 /// reason, return null. 4573 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4574 const TargetData *TD) { 4575 if (isa<PHINode>(V)) return PHIVal; 4576 if (Constant *C = dyn_cast<Constant>(V)) return C; 4577 Instruction *I = cast<Instruction>(V); 4578 4579 std::vector<Constant*> Operands(I->getNumOperands()); 4580 4581 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4582 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4583 if (Operands[i] == 0) return 0; 4584 } 4585 4586 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4587 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4588 Operands[1], TD); 4589 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD); 4590 } 4591 4592 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4593 /// in the header of its containing loop, we know the loop executes a 4594 /// constant number of times, and the PHI node is just a recurrence 4595 /// involving constants, fold it. 4596 Constant * 4597 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4598 const APInt &BEs, 4599 const Loop *L) { 4600 DenseMap<PHINode*, Constant*>::const_iterator I = 4601 ConstantEvolutionLoopExitValue.find(PN); 4602 if (I != ConstantEvolutionLoopExitValue.end()) 4603 return I->second; 4604 4605 if (BEs.ugt(MaxBruteForceIterations)) 4606 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4607 4608 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4609 4610 // Since the loop is canonicalized, the PHI node must have two entries. One 4611 // entry must be a constant (coming in from outside of the loop), and the 4612 // second must be derived from the same PHI. 4613 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4614 Constant *StartCST = 4615 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4616 if (StartCST == 0) 4617 return RetVal = 0; // Must be a constant. 4618 4619 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4620 if (getConstantEvolvingPHI(BEValue, L) != PN && 4621 !isa<Constant>(BEValue)) 4622 return RetVal = 0; // Not derived from same PHI. 4623 4624 // Execute the loop symbolically to determine the exit value. 4625 if (BEs.getActiveBits() >= 32) 4626 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4627 4628 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4629 unsigned IterationNum = 0; 4630 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4631 if (IterationNum == NumIterations) 4632 return RetVal = PHIVal; // Got exit value! 4633 4634 // Compute the value of the PHI node for the next iteration. 4635 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4636 if (NextPHI == PHIVal) 4637 return RetVal = NextPHI; // Stopped evolving! 4638 if (NextPHI == 0) 4639 return 0; // Couldn't evaluate! 4640 PHIVal = NextPHI; 4641 } 4642 } 4643 4644 /// ComputeExitCountExhaustively - If the loop is known to execute a 4645 /// constant number of times (the condition evolves only from constants), 4646 /// try to evaluate a few iterations of the loop until we get the exit 4647 /// condition gets a value of ExitWhen (true or false). If we cannot 4648 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4649 const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 4650 Value *Cond, 4651 bool ExitWhen) { 4652 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4653 if (PN == 0) return getCouldNotCompute(); 4654 4655 // If the loop is canonicalized, the PHI will have exactly two entries. 4656 // That's the only form we support here. 4657 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4658 4659 // One entry must be a constant (coming in from outside of the loop), and the 4660 // second must be derived from the same PHI. 4661 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4662 Constant *StartCST = 4663 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4664 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4665 4666 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4667 if (getConstantEvolvingPHI(BEValue, L) != PN && 4668 !isa<Constant>(BEValue)) 4669 return getCouldNotCompute(); // Not derived from same PHI. 4670 4671 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4672 // the loop symbolically to determine when the condition gets a value of 4673 // "ExitWhen". 4674 unsigned IterationNum = 0; 4675 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4676 for (Constant *PHIVal = StartCST; 4677 IterationNum != MaxIterations; ++IterationNum) { 4678 ConstantInt *CondVal = 4679 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4680 4681 // Couldn't symbolically evaluate. 4682 if (!CondVal) return getCouldNotCompute(); 4683 4684 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4685 ++NumBruteForceTripCountsComputed; 4686 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4687 } 4688 4689 // Compute the value of the PHI node for the next iteration. 4690 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4691 if (NextPHI == 0 || NextPHI == PHIVal) 4692 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4693 PHIVal = NextPHI; 4694 } 4695 4696 // Too many iterations were needed to evaluate. 4697 return getCouldNotCompute(); 4698 } 4699 4700 /// getSCEVAtScope - Return a SCEV expression for the specified value 4701 /// at the specified scope in the program. The L value specifies a loop 4702 /// nest to evaluate the expression at, where null is the top-level or a 4703 /// specified loop is immediately inside of the loop. 4704 /// 4705 /// This method can be used to compute the exit value for a variable defined 4706 /// in a loop by querying what the value will hold in the parent loop. 4707 /// 4708 /// In the case that a relevant loop exit value cannot be computed, the 4709 /// original value V is returned. 4710 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4711 // Check to see if we've folded this expression at this loop before. 4712 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4713 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4714 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4715 if (!Pair.second) 4716 return Pair.first->second ? Pair.first->second : V; 4717 4718 // Otherwise compute it. 4719 const SCEV *C = computeSCEVAtScope(V, L); 4720 ValuesAtScopes[V][L] = C; 4721 return C; 4722 } 4723 4724 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4725 if (isa<SCEVConstant>(V)) return V; 4726 4727 // If this instruction is evolved from a constant-evolving PHI, compute the 4728 // exit value from the loop without using SCEVs. 4729 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4730 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4731 const Loop *LI = (*this->LI)[I->getParent()]; 4732 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4733 if (PHINode *PN = dyn_cast<PHINode>(I)) 4734 if (PN->getParent() == LI->getHeader()) { 4735 // Okay, there is no closed form solution for the PHI node. Check 4736 // to see if the loop that contains it has a known backedge-taken 4737 // count. If so, we may be able to force computation of the exit 4738 // value. 4739 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4740 if (const SCEVConstant *BTCC = 4741 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4742 // Okay, we know how many times the containing loop executes. If 4743 // this is a constant evolving PHI node, get the final value at 4744 // the specified iteration number. 4745 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4746 BTCC->getValue()->getValue(), 4747 LI); 4748 if (RV) return getSCEV(RV); 4749 } 4750 } 4751 4752 // Okay, this is an expression that we cannot symbolically evaluate 4753 // into a SCEV. Check to see if it's possible to symbolically evaluate 4754 // the arguments into constants, and if so, try to constant propagate the 4755 // result. This is particularly useful for computing loop exit values. 4756 if (CanConstantFold(I)) { 4757 SmallVector<Constant *, 4> Operands; 4758 bool MadeImprovement = false; 4759 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4760 Value *Op = I->getOperand(i); 4761 if (Constant *C = dyn_cast<Constant>(Op)) { 4762 Operands.push_back(C); 4763 continue; 4764 } 4765 4766 // If any of the operands is non-constant and if they are 4767 // non-integer and non-pointer, don't even try to analyze them 4768 // with scev techniques. 4769 if (!isSCEVable(Op->getType())) 4770 return V; 4771 4772 const SCEV *OrigV = getSCEV(Op); 4773 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4774 MadeImprovement |= OrigV != OpV; 4775 4776 Constant *C = 0; 4777 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4778 C = SC->getValue(); 4779 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4780 C = dyn_cast<Constant>(SU->getValue()); 4781 if (!C) return V; 4782 if (C->getType() != Op->getType()) 4783 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4784 Op->getType(), 4785 false), 4786 C, Op->getType()); 4787 Operands.push_back(C); 4788 } 4789 4790 // Check to see if getSCEVAtScope actually made an improvement. 4791 if (MadeImprovement) { 4792 Constant *C = 0; 4793 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4794 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4795 Operands[0], Operands[1], TD); 4796 else 4797 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4798 Operands, TD); 4799 if (!C) return V; 4800 return getSCEV(C); 4801 } 4802 } 4803 } 4804 4805 // This is some other type of SCEVUnknown, just return it. 4806 return V; 4807 } 4808 4809 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4810 // Avoid performing the look-up in the common case where the specified 4811 // expression has no loop-variant portions. 4812 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4813 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4814 if (OpAtScope != Comm->getOperand(i)) { 4815 // Okay, at least one of these operands is loop variant but might be 4816 // foldable. Build a new instance of the folded commutative expression. 4817 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4818 Comm->op_begin()+i); 4819 NewOps.push_back(OpAtScope); 4820 4821 for (++i; i != e; ++i) { 4822 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4823 NewOps.push_back(OpAtScope); 4824 } 4825 if (isa<SCEVAddExpr>(Comm)) 4826 return getAddExpr(NewOps); 4827 if (isa<SCEVMulExpr>(Comm)) 4828 return getMulExpr(NewOps); 4829 if (isa<SCEVSMaxExpr>(Comm)) 4830 return getSMaxExpr(NewOps); 4831 if (isa<SCEVUMaxExpr>(Comm)) 4832 return getUMaxExpr(NewOps); 4833 llvm_unreachable("Unknown commutative SCEV type!"); 4834 } 4835 } 4836 // If we got here, all operands are loop invariant. 4837 return Comm; 4838 } 4839 4840 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4841 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4842 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4843 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4844 return Div; // must be loop invariant 4845 return getUDivExpr(LHS, RHS); 4846 } 4847 4848 // If this is a loop recurrence for a loop that does not contain L, then we 4849 // are dealing with the final value computed by the loop. 4850 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4851 // First, attempt to evaluate each operand. 4852 // Avoid performing the look-up in the common case where the specified 4853 // expression has no loop-variant portions. 4854 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4855 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4856 if (OpAtScope == AddRec->getOperand(i)) 4857 continue; 4858 4859 // Okay, at least one of these operands is loop variant but might be 4860 // foldable. Build a new instance of the folded commutative expression. 4861 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4862 AddRec->op_begin()+i); 4863 NewOps.push_back(OpAtScope); 4864 for (++i; i != e; ++i) 4865 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4866 4867 const SCEV *FoldedRec = 4868 getAddRecExpr(NewOps, AddRec->getLoop(), 4869 AddRec->getNoWrapFlags(SCEV::FlagNW)); 4870 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 4871 // The addrec may be folded to a nonrecurrence, for example, if the 4872 // induction variable is multiplied by zero after constant folding. Go 4873 // ahead and return the folded value. 4874 if (!AddRec) 4875 return FoldedRec; 4876 break; 4877 } 4878 4879 // If the scope is outside the addrec's loop, evaluate it by using the 4880 // loop exit value of the addrec. 4881 if (!AddRec->getLoop()->contains(L)) { 4882 // To evaluate this recurrence, we need to know how many times the AddRec 4883 // loop iterates. Compute this now. 4884 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4885 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4886 4887 // Then, evaluate the AddRec. 4888 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4889 } 4890 4891 return AddRec; 4892 } 4893 4894 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4895 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4896 if (Op == Cast->getOperand()) 4897 return Cast; // must be loop invariant 4898 return getZeroExtendExpr(Op, Cast->getType()); 4899 } 4900 4901 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4902 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4903 if (Op == Cast->getOperand()) 4904 return Cast; // must be loop invariant 4905 return getSignExtendExpr(Op, Cast->getType()); 4906 } 4907 4908 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4909 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4910 if (Op == Cast->getOperand()) 4911 return Cast; // must be loop invariant 4912 return getTruncateExpr(Op, Cast->getType()); 4913 } 4914 4915 llvm_unreachable("Unknown SCEV type!"); 4916 return 0; 4917 } 4918 4919 /// getSCEVAtScope - This is a convenience function which does 4920 /// getSCEVAtScope(getSCEV(V), L). 4921 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4922 return getSCEVAtScope(getSCEV(V), L); 4923 } 4924 4925 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4926 /// following equation: 4927 /// 4928 /// A * X = B (mod N) 4929 /// 4930 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4931 /// A and B isn't important. 4932 /// 4933 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4934 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4935 ScalarEvolution &SE) { 4936 uint32_t BW = A.getBitWidth(); 4937 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4938 assert(A != 0 && "A must be non-zero."); 4939 4940 // 1. D = gcd(A, N) 4941 // 4942 // The gcd of A and N may have only one prime factor: 2. The number of 4943 // trailing zeros in A is its multiplicity 4944 uint32_t Mult2 = A.countTrailingZeros(); 4945 // D = 2^Mult2 4946 4947 // 2. Check if B is divisible by D. 4948 // 4949 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4950 // is not less than multiplicity of this prime factor for D. 4951 if (B.countTrailingZeros() < Mult2) 4952 return SE.getCouldNotCompute(); 4953 4954 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4955 // modulo (N / D). 4956 // 4957 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4958 // bit width during computations. 4959 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4960 APInt Mod(BW + 1, 0); 4961 Mod.setBit(BW - Mult2); // Mod = N / D 4962 APInt I = AD.multiplicativeInverse(Mod); 4963 4964 // 4. Compute the minimum unsigned root of the equation: 4965 // I * (B / D) mod (N / D) 4966 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4967 4968 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4969 // bits. 4970 return SE.getConstant(Result.trunc(BW)); 4971 } 4972 4973 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4974 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4975 /// might be the same) or two SCEVCouldNotCompute objects. 4976 /// 4977 static std::pair<const SCEV *,const SCEV *> 4978 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4979 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4980 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4981 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4982 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4983 4984 // We currently can only solve this if the coefficients are constants. 4985 if (!LC || !MC || !NC) { 4986 const SCEV *CNC = SE.getCouldNotCompute(); 4987 return std::make_pair(CNC, CNC); 4988 } 4989 4990 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4991 const APInt &L = LC->getValue()->getValue(); 4992 const APInt &M = MC->getValue()->getValue(); 4993 const APInt &N = NC->getValue()->getValue(); 4994 APInt Two(BitWidth, 2); 4995 APInt Four(BitWidth, 4); 4996 4997 { 4998 using namespace APIntOps; 4999 const APInt& C = L; 5000 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5001 // The B coefficient is M-N/2 5002 APInt B(M); 5003 B -= sdiv(N,Two); 5004 5005 // The A coefficient is N/2 5006 APInt A(N.sdiv(Two)); 5007 5008 // Compute the B^2-4ac term. 5009 APInt SqrtTerm(B); 5010 SqrtTerm *= B; 5011 SqrtTerm -= Four * (A * C); 5012 5013 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5014 // integer value or else APInt::sqrt() will assert. 5015 APInt SqrtVal(SqrtTerm.sqrt()); 5016 5017 // Compute the two solutions for the quadratic formula. 5018 // The divisions must be performed as signed divisions. 5019 APInt NegB(-B); 5020 APInt TwoA( A << 1 ); 5021 if (TwoA.isMinValue()) { 5022 const SCEV *CNC = SE.getCouldNotCompute(); 5023 return std::make_pair(CNC, CNC); 5024 } 5025 5026 LLVMContext &Context = SE.getContext(); 5027 5028 ConstantInt *Solution1 = 5029 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5030 ConstantInt *Solution2 = 5031 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5032 5033 return std::make_pair(SE.getConstant(Solution1), 5034 SE.getConstant(Solution2)); 5035 } // end APIntOps namespace 5036 } 5037 5038 /// HowFarToZero - Return the number of times a backedge comparing the specified 5039 /// value to zero will execute. If not computable, return CouldNotCompute. 5040 /// 5041 /// This is only used for loops with a "x != y" exit test. The exit condition is 5042 /// now expressed as a single expression, V = x-y. So the exit test is 5043 /// effectively V != 0. We know and take advantage of the fact that this 5044 /// expression only being used in a comparison by zero context. 5045 ScalarEvolution::ExitLimit 5046 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 5047 // If the value is a constant 5048 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5049 // If the value is already zero, the branch will execute zero times. 5050 if (C->getValue()->isZero()) return C; 5051 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5052 } 5053 5054 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5055 if (!AddRec || AddRec->getLoop() != L) 5056 return getCouldNotCompute(); 5057 5058 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5059 // the quadratic equation to solve it. 5060 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5061 std::pair<const SCEV *,const SCEV *> Roots = 5062 SolveQuadraticEquation(AddRec, *this); 5063 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5064 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5065 if (R1 && R2) { 5066 #if 0 5067 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5068 << " sol#2: " << *R2 << "\n"; 5069 #endif 5070 // Pick the smallest positive root value. 5071 if (ConstantInt *CB = 5072 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5073 R1->getValue(), 5074 R2->getValue()))) { 5075 if (CB->getZExtValue() == false) 5076 std::swap(R1, R2); // R1 is the minimum root now. 5077 5078 // We can only use this value if the chrec ends up with an exact zero 5079 // value at this index. When solving for "X*X != 5", for example, we 5080 // should not accept a root of 2. 5081 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5082 if (Val->isZero()) 5083 return R1; // We found a quadratic root! 5084 } 5085 } 5086 return getCouldNotCompute(); 5087 } 5088 5089 // Otherwise we can only handle this if it is affine. 5090 if (!AddRec->isAffine()) 5091 return getCouldNotCompute(); 5092 5093 // If this is an affine expression, the execution count of this branch is 5094 // the minimum unsigned root of the following equation: 5095 // 5096 // Start + Step*N = 0 (mod 2^BW) 5097 // 5098 // equivalent to: 5099 // 5100 // Step*N = -Start (mod 2^BW) 5101 // 5102 // where BW is the common bit width of Start and Step. 5103 5104 // Get the initial value for the loop. 5105 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5106 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5107 5108 // For now we handle only constant steps. 5109 // 5110 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5111 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5112 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5113 // We have not yet seen any such cases. 5114 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5115 if (StepC == 0) 5116 return getCouldNotCompute(); 5117 5118 // For positive steps (counting up until unsigned overflow): 5119 // N = -Start/Step (as unsigned) 5120 // For negative steps (counting down to zero): 5121 // N = Start/-Step 5122 // First compute the unsigned distance from zero in the direction of Step. 5123 bool CountDown = StepC->getValue()->getValue().isNegative(); 5124 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5125 5126 // Handle unitary steps, which cannot wraparound. 5127 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5128 // N = Distance (as unsigned) 5129 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) 5130 return Distance; 5131 5132 // If the recurrence is known not to wraparound, unsigned divide computes the 5133 // back edge count. We know that the value will either become zero (and thus 5134 // the loop terminates), that the loop will terminate through some other exit 5135 // condition first, or that the loop has undefined behavior. This means 5136 // we can't "miss" the exit value, even with nonunit stride. 5137 // 5138 // FIXME: Prove that loops always exhibits *acceptable* undefined 5139 // behavior. Loops must exhibit defined behavior until a wrapped value is 5140 // actually used. So the trip count computed by udiv could be smaller than the 5141 // number of well-defined iterations. 5142 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) 5143 // FIXME: We really want an "isexact" bit for udiv. 5144 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5145 5146 // Then, try to solve the above equation provided that Start is constant. 5147 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5148 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5149 -StartC->getValue()->getValue(), 5150 *this); 5151 return getCouldNotCompute(); 5152 } 5153 5154 /// HowFarToNonZero - Return the number of times a backedge checking the 5155 /// specified value for nonzero will execute. If not computable, return 5156 /// CouldNotCompute 5157 ScalarEvolution::ExitLimit 5158 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5159 // Loops that look like: while (X == 0) are very strange indeed. We don't 5160 // handle them yet except for the trivial case. This could be expanded in the 5161 // future as needed. 5162 5163 // If the value is a constant, check to see if it is known to be non-zero 5164 // already. If so, the backedge will execute zero times. 5165 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5166 if (!C->getValue()->isNullValue()) 5167 return getConstant(C->getType(), 0); 5168 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5169 } 5170 5171 // We could implement others, but I really doubt anyone writes loops like 5172 // this, and if they did, they would already be constant folded. 5173 return getCouldNotCompute(); 5174 } 5175 5176 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5177 /// (which may not be an immediate predecessor) which has exactly one 5178 /// successor from which BB is reachable, or null if no such block is 5179 /// found. 5180 /// 5181 std::pair<BasicBlock *, BasicBlock *> 5182 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5183 // If the block has a unique predecessor, then there is no path from the 5184 // predecessor to the block that does not go through the direct edge 5185 // from the predecessor to the block. 5186 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5187 return std::make_pair(Pred, BB); 5188 5189 // A loop's header is defined to be a block that dominates the loop. 5190 // If the header has a unique predecessor outside the loop, it must be 5191 // a block that has exactly one successor that can reach the loop. 5192 if (Loop *L = LI->getLoopFor(BB)) 5193 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5194 5195 return std::pair<BasicBlock *, BasicBlock *>(); 5196 } 5197 5198 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5199 /// testing whether two expressions are equal, however for the purposes of 5200 /// looking for a condition guarding a loop, it can be useful to be a little 5201 /// more general, since a front-end may have replicated the controlling 5202 /// expression. 5203 /// 5204 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5205 // Quick check to see if they are the same SCEV. 5206 if (A == B) return true; 5207 5208 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5209 // two different instructions with the same value. Check for this case. 5210 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5211 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5212 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5213 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5214 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5215 return true; 5216 5217 // Otherwise assume they may have a different value. 5218 return false; 5219 } 5220 5221 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5222 /// predicate Pred. Return true iff any changes were made. 5223 /// 5224 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5225 const SCEV *&LHS, const SCEV *&RHS) { 5226 bool Changed = false; 5227 5228 // Canonicalize a constant to the right side. 5229 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5230 // Check for both operands constant. 5231 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5232 if (ConstantExpr::getICmp(Pred, 5233 LHSC->getValue(), 5234 RHSC->getValue())->isNullValue()) 5235 goto trivially_false; 5236 else 5237 goto trivially_true; 5238 } 5239 // Otherwise swap the operands to put the constant on the right. 5240 std::swap(LHS, RHS); 5241 Pred = ICmpInst::getSwappedPredicate(Pred); 5242 Changed = true; 5243 } 5244 5245 // If we're comparing an addrec with a value which is loop-invariant in the 5246 // addrec's loop, put the addrec on the left. Also make a dominance check, 5247 // as both operands could be addrecs loop-invariant in each other's loop. 5248 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5249 const Loop *L = AR->getLoop(); 5250 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5251 std::swap(LHS, RHS); 5252 Pred = ICmpInst::getSwappedPredicate(Pred); 5253 Changed = true; 5254 } 5255 } 5256 5257 // If there's a constant operand, canonicalize comparisons with boundary 5258 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5259 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5260 const APInt &RA = RC->getValue()->getValue(); 5261 switch (Pred) { 5262 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5263 case ICmpInst::ICMP_EQ: 5264 case ICmpInst::ICMP_NE: 5265 break; 5266 case ICmpInst::ICMP_UGE: 5267 if ((RA - 1).isMinValue()) { 5268 Pred = ICmpInst::ICMP_NE; 5269 RHS = getConstant(RA - 1); 5270 Changed = true; 5271 break; 5272 } 5273 if (RA.isMaxValue()) { 5274 Pred = ICmpInst::ICMP_EQ; 5275 Changed = true; 5276 break; 5277 } 5278 if (RA.isMinValue()) goto trivially_true; 5279 5280 Pred = ICmpInst::ICMP_UGT; 5281 RHS = getConstant(RA - 1); 5282 Changed = true; 5283 break; 5284 case ICmpInst::ICMP_ULE: 5285 if ((RA + 1).isMaxValue()) { 5286 Pred = ICmpInst::ICMP_NE; 5287 RHS = getConstant(RA + 1); 5288 Changed = true; 5289 break; 5290 } 5291 if (RA.isMinValue()) { 5292 Pred = ICmpInst::ICMP_EQ; 5293 Changed = true; 5294 break; 5295 } 5296 if (RA.isMaxValue()) goto trivially_true; 5297 5298 Pred = ICmpInst::ICMP_ULT; 5299 RHS = getConstant(RA + 1); 5300 Changed = true; 5301 break; 5302 case ICmpInst::ICMP_SGE: 5303 if ((RA - 1).isMinSignedValue()) { 5304 Pred = ICmpInst::ICMP_NE; 5305 RHS = getConstant(RA - 1); 5306 Changed = true; 5307 break; 5308 } 5309 if (RA.isMaxSignedValue()) { 5310 Pred = ICmpInst::ICMP_EQ; 5311 Changed = true; 5312 break; 5313 } 5314 if (RA.isMinSignedValue()) goto trivially_true; 5315 5316 Pred = ICmpInst::ICMP_SGT; 5317 RHS = getConstant(RA - 1); 5318 Changed = true; 5319 break; 5320 case ICmpInst::ICMP_SLE: 5321 if ((RA + 1).isMaxSignedValue()) { 5322 Pred = ICmpInst::ICMP_NE; 5323 RHS = getConstant(RA + 1); 5324 Changed = true; 5325 break; 5326 } 5327 if (RA.isMinSignedValue()) { 5328 Pred = ICmpInst::ICMP_EQ; 5329 Changed = true; 5330 break; 5331 } 5332 if (RA.isMaxSignedValue()) goto trivially_true; 5333 5334 Pred = ICmpInst::ICMP_SLT; 5335 RHS = getConstant(RA + 1); 5336 Changed = true; 5337 break; 5338 case ICmpInst::ICMP_UGT: 5339 if (RA.isMinValue()) { 5340 Pred = ICmpInst::ICMP_NE; 5341 Changed = true; 5342 break; 5343 } 5344 if ((RA + 1).isMaxValue()) { 5345 Pred = ICmpInst::ICMP_EQ; 5346 RHS = getConstant(RA + 1); 5347 Changed = true; 5348 break; 5349 } 5350 if (RA.isMaxValue()) goto trivially_false; 5351 break; 5352 case ICmpInst::ICMP_ULT: 5353 if (RA.isMaxValue()) { 5354 Pred = ICmpInst::ICMP_NE; 5355 Changed = true; 5356 break; 5357 } 5358 if ((RA - 1).isMinValue()) { 5359 Pred = ICmpInst::ICMP_EQ; 5360 RHS = getConstant(RA - 1); 5361 Changed = true; 5362 break; 5363 } 5364 if (RA.isMinValue()) goto trivially_false; 5365 break; 5366 case ICmpInst::ICMP_SGT: 5367 if (RA.isMinSignedValue()) { 5368 Pred = ICmpInst::ICMP_NE; 5369 Changed = true; 5370 break; 5371 } 5372 if ((RA + 1).isMaxSignedValue()) { 5373 Pred = ICmpInst::ICMP_EQ; 5374 RHS = getConstant(RA + 1); 5375 Changed = true; 5376 break; 5377 } 5378 if (RA.isMaxSignedValue()) goto trivially_false; 5379 break; 5380 case ICmpInst::ICMP_SLT: 5381 if (RA.isMaxSignedValue()) { 5382 Pred = ICmpInst::ICMP_NE; 5383 Changed = true; 5384 break; 5385 } 5386 if ((RA - 1).isMinSignedValue()) { 5387 Pred = ICmpInst::ICMP_EQ; 5388 RHS = getConstant(RA - 1); 5389 Changed = true; 5390 break; 5391 } 5392 if (RA.isMinSignedValue()) goto trivially_false; 5393 break; 5394 } 5395 } 5396 5397 // Check for obvious equality. 5398 if (HasSameValue(LHS, RHS)) { 5399 if (ICmpInst::isTrueWhenEqual(Pred)) 5400 goto trivially_true; 5401 if (ICmpInst::isFalseWhenEqual(Pred)) 5402 goto trivially_false; 5403 } 5404 5405 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5406 // adding or subtracting 1 from one of the operands. 5407 switch (Pred) { 5408 case ICmpInst::ICMP_SLE: 5409 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5410 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5411 SCEV::FlagNSW); 5412 Pred = ICmpInst::ICMP_SLT; 5413 Changed = true; 5414 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5415 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5416 SCEV::FlagNSW); 5417 Pred = ICmpInst::ICMP_SLT; 5418 Changed = true; 5419 } 5420 break; 5421 case ICmpInst::ICMP_SGE: 5422 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5423 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5424 SCEV::FlagNSW); 5425 Pred = ICmpInst::ICMP_SGT; 5426 Changed = true; 5427 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5428 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5429 SCEV::FlagNSW); 5430 Pred = ICmpInst::ICMP_SGT; 5431 Changed = true; 5432 } 5433 break; 5434 case ICmpInst::ICMP_ULE: 5435 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5436 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5437 SCEV::FlagNUW); 5438 Pred = ICmpInst::ICMP_ULT; 5439 Changed = true; 5440 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5441 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5442 SCEV::FlagNUW); 5443 Pred = ICmpInst::ICMP_ULT; 5444 Changed = true; 5445 } 5446 break; 5447 case ICmpInst::ICMP_UGE: 5448 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5449 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5450 SCEV::FlagNUW); 5451 Pred = ICmpInst::ICMP_UGT; 5452 Changed = true; 5453 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5454 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5455 SCEV::FlagNUW); 5456 Pred = ICmpInst::ICMP_UGT; 5457 Changed = true; 5458 } 5459 break; 5460 default: 5461 break; 5462 } 5463 5464 // TODO: More simplifications are possible here. 5465 5466 return Changed; 5467 5468 trivially_true: 5469 // Return 0 == 0. 5470 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5471 Pred = ICmpInst::ICMP_EQ; 5472 return true; 5473 5474 trivially_false: 5475 // Return 0 != 0. 5476 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5477 Pred = ICmpInst::ICMP_NE; 5478 return true; 5479 } 5480 5481 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5482 return getSignedRange(S).getSignedMax().isNegative(); 5483 } 5484 5485 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5486 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5487 } 5488 5489 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5490 return !getSignedRange(S).getSignedMin().isNegative(); 5491 } 5492 5493 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5494 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5495 } 5496 5497 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5498 return isKnownNegative(S) || isKnownPositive(S); 5499 } 5500 5501 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5502 const SCEV *LHS, const SCEV *RHS) { 5503 // Canonicalize the inputs first. 5504 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5505 5506 // If LHS or RHS is an addrec, check to see if the condition is true in 5507 // every iteration of the loop. 5508 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5509 if (isLoopEntryGuardedByCond( 5510 AR->getLoop(), Pred, AR->getStart(), RHS) && 5511 isLoopBackedgeGuardedByCond( 5512 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5513 return true; 5514 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5515 if (isLoopEntryGuardedByCond( 5516 AR->getLoop(), Pred, LHS, AR->getStart()) && 5517 isLoopBackedgeGuardedByCond( 5518 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5519 return true; 5520 5521 // Otherwise see what can be done with known constant ranges. 5522 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5523 } 5524 5525 bool 5526 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5527 const SCEV *LHS, const SCEV *RHS) { 5528 if (HasSameValue(LHS, RHS)) 5529 return ICmpInst::isTrueWhenEqual(Pred); 5530 5531 // This code is split out from isKnownPredicate because it is called from 5532 // within isLoopEntryGuardedByCond. 5533 switch (Pred) { 5534 default: 5535 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5536 break; 5537 case ICmpInst::ICMP_SGT: 5538 Pred = ICmpInst::ICMP_SLT; 5539 std::swap(LHS, RHS); 5540 case ICmpInst::ICMP_SLT: { 5541 ConstantRange LHSRange = getSignedRange(LHS); 5542 ConstantRange RHSRange = getSignedRange(RHS); 5543 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5544 return true; 5545 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5546 return false; 5547 break; 5548 } 5549 case ICmpInst::ICMP_SGE: 5550 Pred = ICmpInst::ICMP_SLE; 5551 std::swap(LHS, RHS); 5552 case ICmpInst::ICMP_SLE: { 5553 ConstantRange LHSRange = getSignedRange(LHS); 5554 ConstantRange RHSRange = getSignedRange(RHS); 5555 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5556 return true; 5557 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5558 return false; 5559 break; 5560 } 5561 case ICmpInst::ICMP_UGT: 5562 Pred = ICmpInst::ICMP_ULT; 5563 std::swap(LHS, RHS); 5564 case ICmpInst::ICMP_ULT: { 5565 ConstantRange LHSRange = getUnsignedRange(LHS); 5566 ConstantRange RHSRange = getUnsignedRange(RHS); 5567 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5568 return true; 5569 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5570 return false; 5571 break; 5572 } 5573 case ICmpInst::ICMP_UGE: 5574 Pred = ICmpInst::ICMP_ULE; 5575 std::swap(LHS, RHS); 5576 case ICmpInst::ICMP_ULE: { 5577 ConstantRange LHSRange = getUnsignedRange(LHS); 5578 ConstantRange RHSRange = getUnsignedRange(RHS); 5579 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5580 return true; 5581 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5582 return false; 5583 break; 5584 } 5585 case ICmpInst::ICMP_NE: { 5586 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5587 return true; 5588 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5589 return true; 5590 5591 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5592 if (isKnownNonZero(Diff)) 5593 return true; 5594 break; 5595 } 5596 case ICmpInst::ICMP_EQ: 5597 // The check at the top of the function catches the case where 5598 // the values are known to be equal. 5599 break; 5600 } 5601 return false; 5602 } 5603 5604 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5605 /// protected by a conditional between LHS and RHS. This is used to 5606 /// to eliminate casts. 5607 bool 5608 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5609 ICmpInst::Predicate Pred, 5610 const SCEV *LHS, const SCEV *RHS) { 5611 // Interpret a null as meaning no loop, where there is obviously no guard 5612 // (interprocedural conditions notwithstanding). 5613 if (!L) return true; 5614 5615 BasicBlock *Latch = L->getLoopLatch(); 5616 if (!Latch) 5617 return false; 5618 5619 BranchInst *LoopContinuePredicate = 5620 dyn_cast<BranchInst>(Latch->getTerminator()); 5621 if (!LoopContinuePredicate || 5622 LoopContinuePredicate->isUnconditional()) 5623 return false; 5624 5625 return isImpliedCond(Pred, LHS, RHS, 5626 LoopContinuePredicate->getCondition(), 5627 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5628 } 5629 5630 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5631 /// by a conditional between LHS and RHS. This is used to help avoid max 5632 /// expressions in loop trip counts, and to eliminate casts. 5633 bool 5634 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5635 ICmpInst::Predicate Pred, 5636 const SCEV *LHS, const SCEV *RHS) { 5637 // Interpret a null as meaning no loop, where there is obviously no guard 5638 // (interprocedural conditions notwithstanding). 5639 if (!L) return false; 5640 5641 // Starting at the loop predecessor, climb up the predecessor chain, as long 5642 // as there are predecessors that can be found that have unique successors 5643 // leading to the original header. 5644 for (std::pair<BasicBlock *, BasicBlock *> 5645 Pair(L->getLoopPredecessor(), L->getHeader()); 5646 Pair.first; 5647 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5648 5649 BranchInst *LoopEntryPredicate = 5650 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5651 if (!LoopEntryPredicate || 5652 LoopEntryPredicate->isUnconditional()) 5653 continue; 5654 5655 if (isImpliedCond(Pred, LHS, RHS, 5656 LoopEntryPredicate->getCondition(), 5657 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5658 return true; 5659 } 5660 5661 return false; 5662 } 5663 5664 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5665 /// and RHS is true whenever the given Cond value evaluates to true. 5666 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 5667 const SCEV *LHS, const SCEV *RHS, 5668 Value *FoundCondValue, 5669 bool Inverse) { 5670 // Recursively handle And and Or conditions. 5671 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 5672 if (BO->getOpcode() == Instruction::And) { 5673 if (!Inverse) 5674 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5675 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5676 } else if (BO->getOpcode() == Instruction::Or) { 5677 if (Inverse) 5678 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 5679 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 5680 } 5681 } 5682 5683 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 5684 if (!ICI) return false; 5685 5686 // Bail if the ICmp's operands' types are wider than the needed type 5687 // before attempting to call getSCEV on them. This avoids infinite 5688 // recursion, since the analysis of widening casts can require loop 5689 // exit condition information for overflow checking, which would 5690 // lead back here. 5691 if (getTypeSizeInBits(LHS->getType()) < 5692 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5693 return false; 5694 5695 // Now that we found a conditional branch that dominates the loop, check to 5696 // see if it is the comparison we are looking for. 5697 ICmpInst::Predicate FoundPred; 5698 if (Inverse) 5699 FoundPred = ICI->getInversePredicate(); 5700 else 5701 FoundPred = ICI->getPredicate(); 5702 5703 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5704 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5705 5706 // Balance the types. The case where FoundLHS' type is wider than 5707 // LHS' type is checked for above. 5708 if (getTypeSizeInBits(LHS->getType()) > 5709 getTypeSizeInBits(FoundLHS->getType())) { 5710 if (CmpInst::isSigned(Pred)) { 5711 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5712 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5713 } else { 5714 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5715 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5716 } 5717 } 5718 5719 // Canonicalize the query to match the way instcombine will have 5720 // canonicalized the comparison. 5721 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5722 if (LHS == RHS) 5723 return CmpInst::isTrueWhenEqual(Pred); 5724 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5725 if (FoundLHS == FoundRHS) 5726 return CmpInst::isFalseWhenEqual(Pred); 5727 5728 // Check to see if we can make the LHS or RHS match. 5729 if (LHS == FoundRHS || RHS == FoundLHS) { 5730 if (isa<SCEVConstant>(RHS)) { 5731 std::swap(FoundLHS, FoundRHS); 5732 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5733 } else { 5734 std::swap(LHS, RHS); 5735 Pred = ICmpInst::getSwappedPredicate(Pred); 5736 } 5737 } 5738 5739 // Check whether the found predicate is the same as the desired predicate. 5740 if (FoundPred == Pred) 5741 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5742 5743 // Check whether swapping the found predicate makes it the same as the 5744 // desired predicate. 5745 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5746 if (isa<SCEVConstant>(RHS)) 5747 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5748 else 5749 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5750 RHS, LHS, FoundLHS, FoundRHS); 5751 } 5752 5753 // Check whether the actual condition is beyond sufficient. 5754 if (FoundPred == ICmpInst::ICMP_EQ) 5755 if (ICmpInst::isTrueWhenEqual(Pred)) 5756 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5757 return true; 5758 if (Pred == ICmpInst::ICMP_NE) 5759 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5760 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5761 return true; 5762 5763 // Otherwise assume the worst. 5764 return false; 5765 } 5766 5767 /// isImpliedCondOperands - Test whether the condition described by Pred, 5768 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5769 /// and FoundRHS is true. 5770 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5771 const SCEV *LHS, const SCEV *RHS, 5772 const SCEV *FoundLHS, 5773 const SCEV *FoundRHS) { 5774 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5775 FoundLHS, FoundRHS) || 5776 // ~x < ~y --> x > y 5777 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5778 getNotSCEV(FoundRHS), 5779 getNotSCEV(FoundLHS)); 5780 } 5781 5782 /// isImpliedCondOperandsHelper - Test whether the condition described by 5783 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5784 /// FoundLHS, and FoundRHS is true. 5785 bool 5786 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5787 const SCEV *LHS, const SCEV *RHS, 5788 const SCEV *FoundLHS, 5789 const SCEV *FoundRHS) { 5790 switch (Pred) { 5791 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5792 case ICmpInst::ICMP_EQ: 5793 case ICmpInst::ICMP_NE: 5794 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5795 return true; 5796 break; 5797 case ICmpInst::ICMP_SLT: 5798 case ICmpInst::ICMP_SLE: 5799 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5800 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5801 return true; 5802 break; 5803 case ICmpInst::ICMP_SGT: 5804 case ICmpInst::ICMP_SGE: 5805 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5806 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5807 return true; 5808 break; 5809 case ICmpInst::ICMP_ULT: 5810 case ICmpInst::ICMP_ULE: 5811 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5812 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5813 return true; 5814 break; 5815 case ICmpInst::ICMP_UGT: 5816 case ICmpInst::ICMP_UGE: 5817 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5818 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5819 return true; 5820 break; 5821 } 5822 5823 return false; 5824 } 5825 5826 /// getBECount - Subtract the end and start values and divide by the step, 5827 /// rounding up, to get the number of times the backedge is executed. Return 5828 /// CouldNotCompute if an intermediate computation overflows. 5829 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5830 const SCEV *End, 5831 const SCEV *Step, 5832 bool NoWrap) { 5833 assert(!isKnownNegative(Step) && 5834 "This code doesn't handle negative strides yet!"); 5835 5836 Type *Ty = Start->getType(); 5837 5838 // When Start == End, we have an exact BECount == 0. Short-circuit this case 5839 // here because SCEV may not be able to determine that the unsigned division 5840 // after rounding is zero. 5841 if (Start == End) 5842 return getConstant(Ty, 0); 5843 5844 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5845 const SCEV *Diff = getMinusSCEV(End, Start); 5846 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5847 5848 // Add an adjustment to the difference between End and Start so that 5849 // the division will effectively round up. 5850 const SCEV *Add = getAddExpr(Diff, RoundUp); 5851 5852 if (!NoWrap) { 5853 // Check Add for unsigned overflow. 5854 // TODO: More sophisticated things could be done here. 5855 Type *WideTy = IntegerType::get(getContext(), 5856 getTypeSizeInBits(Ty) + 1); 5857 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5858 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5859 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5860 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5861 return getCouldNotCompute(); 5862 } 5863 5864 return getUDivExpr(Add, Step); 5865 } 5866 5867 /// HowManyLessThans - Return the number of times a backedge containing the 5868 /// specified less-than comparison will execute. If not computable, return 5869 /// CouldNotCompute. 5870 ScalarEvolution::ExitLimit 5871 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5872 const Loop *L, bool isSigned) { 5873 // Only handle: "ADDREC < LoopInvariant". 5874 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 5875 5876 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5877 if (!AddRec || AddRec->getLoop() != L) 5878 return getCouldNotCompute(); 5879 5880 // Check to see if we have a flag which makes analysis easy. 5881 bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) : 5882 AddRec->getNoWrapFlags(SCEV::FlagNUW); 5883 5884 if (AddRec->isAffine()) { 5885 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5886 const SCEV *Step = AddRec->getStepRecurrence(*this); 5887 5888 if (Step->isZero()) 5889 return getCouldNotCompute(); 5890 if (Step->isOne()) { 5891 // With unit stride, the iteration never steps past the limit value. 5892 } else if (isKnownPositive(Step)) { 5893 // Test whether a positive iteration can step past the limit 5894 // value and past the maximum value for its type in a single step. 5895 // Note that it's not sufficient to check NoWrap here, because even 5896 // though the value after a wrap is undefined, it's not undefined 5897 // behavior, so if wrap does occur, the loop could either terminate or 5898 // loop infinitely, but in either case, the loop is guaranteed to 5899 // iterate at least until the iteration where the wrapping occurs. 5900 const SCEV *One = getConstant(Step->getType(), 1); 5901 if (isSigned) { 5902 APInt Max = APInt::getSignedMaxValue(BitWidth); 5903 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5904 .slt(getSignedRange(RHS).getSignedMax())) 5905 return getCouldNotCompute(); 5906 } else { 5907 APInt Max = APInt::getMaxValue(BitWidth); 5908 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5909 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5910 return getCouldNotCompute(); 5911 } 5912 } else 5913 // TODO: Handle negative strides here and below. 5914 return getCouldNotCompute(); 5915 5916 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5917 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5918 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5919 // treat m-n as signed nor unsigned due to overflow possibility. 5920 5921 // First, we get the value of the LHS in the first iteration: n 5922 const SCEV *Start = AddRec->getOperand(0); 5923 5924 // Determine the minimum constant start value. 5925 const SCEV *MinStart = getConstant(isSigned ? 5926 getSignedRange(Start).getSignedMin() : 5927 getUnsignedRange(Start).getUnsignedMin()); 5928 5929 // If we know that the condition is true in order to enter the loop, 5930 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5931 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5932 // the division must round up. 5933 const SCEV *End = RHS; 5934 if (!isLoopEntryGuardedByCond(L, 5935 isSigned ? ICmpInst::ICMP_SLT : 5936 ICmpInst::ICMP_ULT, 5937 getMinusSCEV(Start, Step), RHS)) 5938 End = isSigned ? getSMaxExpr(RHS, Start) 5939 : getUMaxExpr(RHS, Start); 5940 5941 // Determine the maximum constant end value. 5942 const SCEV *MaxEnd = getConstant(isSigned ? 5943 getSignedRange(End).getSignedMax() : 5944 getUnsignedRange(End).getUnsignedMax()); 5945 5946 // If MaxEnd is within a step of the maximum integer value in its type, 5947 // adjust it down to the minimum value which would produce the same effect. 5948 // This allows the subsequent ceiling division of (N+(step-1))/step to 5949 // compute the correct value. 5950 const SCEV *StepMinusOne = getMinusSCEV(Step, 5951 getConstant(Step->getType(), 1)); 5952 MaxEnd = isSigned ? 5953 getSMinExpr(MaxEnd, 5954 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5955 StepMinusOne)) : 5956 getUMinExpr(MaxEnd, 5957 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5958 StepMinusOne)); 5959 5960 // Finally, we subtract these two values and divide, rounding up, to get 5961 // the number of times the backedge is executed. 5962 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5963 5964 // The maximum backedge count is similar, except using the minimum start 5965 // value and the maximum end value. 5966 // If we already have an exact constant BECount, use it instead. 5967 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount 5968 : getBECount(MinStart, MaxEnd, Step, NoWrap); 5969 5970 // If the stride is nonconstant, and NoWrap == true, then 5971 // getBECount(MinStart, MaxEnd) may not compute. This would result in an 5972 // exact BECount and invalid MaxBECount, which should be avoided to catch 5973 // more optimization opportunities. 5974 if (isa<SCEVCouldNotCompute>(MaxBECount)) 5975 MaxBECount = BECount; 5976 5977 return ExitLimit(BECount, MaxBECount); 5978 } 5979 5980 return getCouldNotCompute(); 5981 } 5982 5983 /// getNumIterationsInRange - Return the number of iterations of this loop that 5984 /// produce values in the specified constant range. Another way of looking at 5985 /// this is that it returns the first iteration number where the value is not in 5986 /// the condition, thus computing the exit count. If the iteration count can't 5987 /// be computed, an instance of SCEVCouldNotCompute is returned. 5988 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5989 ScalarEvolution &SE) const { 5990 if (Range.isFullSet()) // Infinite loop. 5991 return SE.getCouldNotCompute(); 5992 5993 // If the start is a non-zero constant, shift the range to simplify things. 5994 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5995 if (!SC->getValue()->isZero()) { 5996 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5997 Operands[0] = SE.getConstant(SC->getType(), 0); 5998 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 5999 getNoWrapFlags(FlagNW)); 6000 if (const SCEVAddRecExpr *ShiftedAddRec = 6001 dyn_cast<SCEVAddRecExpr>(Shifted)) 6002 return ShiftedAddRec->getNumIterationsInRange( 6003 Range.subtract(SC->getValue()->getValue()), SE); 6004 // This is strange and shouldn't happen. 6005 return SE.getCouldNotCompute(); 6006 } 6007 6008 // The only time we can solve this is when we have all constant indices. 6009 // Otherwise, we cannot determine the overflow conditions. 6010 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6011 if (!isa<SCEVConstant>(getOperand(i))) 6012 return SE.getCouldNotCompute(); 6013 6014 6015 // Okay at this point we know that all elements of the chrec are constants and 6016 // that the start element is zero. 6017 6018 // First check to see if the range contains zero. If not, the first 6019 // iteration exits. 6020 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6021 if (!Range.contains(APInt(BitWidth, 0))) 6022 return SE.getConstant(getType(), 0); 6023 6024 if (isAffine()) { 6025 // If this is an affine expression then we have this situation: 6026 // Solve {0,+,A} in Range === Ax in Range 6027 6028 // We know that zero is in the range. If A is positive then we know that 6029 // the upper value of the range must be the first possible exit value. 6030 // If A is negative then the lower of the range is the last possible loop 6031 // value. Also note that we already checked for a full range. 6032 APInt One(BitWidth,1); 6033 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6034 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6035 6036 // The exit value should be (End+A)/A. 6037 APInt ExitVal = (End + A).udiv(A); 6038 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6039 6040 // Evaluate at the exit value. If we really did fall out of the valid 6041 // range, then we computed our trip count, otherwise wrap around or other 6042 // things must have happened. 6043 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6044 if (Range.contains(Val->getValue())) 6045 return SE.getCouldNotCompute(); // Something strange happened 6046 6047 // Ensure that the previous value is in the range. This is a sanity check. 6048 assert(Range.contains( 6049 EvaluateConstantChrecAtConstant(this, 6050 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6051 "Linear scev computation is off in a bad way!"); 6052 return SE.getConstant(ExitValue); 6053 } else if (isQuadratic()) { 6054 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6055 // quadratic equation to solve it. To do this, we must frame our problem in 6056 // terms of figuring out when zero is crossed, instead of when 6057 // Range.getUpper() is crossed. 6058 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6059 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6060 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6061 // getNoWrapFlags(FlagNW) 6062 FlagAnyWrap); 6063 6064 // Next, solve the constructed addrec 6065 std::pair<const SCEV *,const SCEV *> Roots = 6066 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6067 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6068 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6069 if (R1) { 6070 // Pick the smallest positive root value. 6071 if (ConstantInt *CB = 6072 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6073 R1->getValue(), R2->getValue()))) { 6074 if (CB->getZExtValue() == false) 6075 std::swap(R1, R2); // R1 is the minimum root now. 6076 6077 // Make sure the root is not off by one. The returned iteration should 6078 // not be in the range, but the previous one should be. When solving 6079 // for "X*X < 5", for example, we should not return a root of 2. 6080 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6081 R1->getValue(), 6082 SE); 6083 if (Range.contains(R1Val->getValue())) { 6084 // The next iteration must be out of the range... 6085 ConstantInt *NextVal = 6086 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6087 6088 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6089 if (!Range.contains(R1Val->getValue())) 6090 return SE.getConstant(NextVal); 6091 return SE.getCouldNotCompute(); // Something strange happened 6092 } 6093 6094 // If R1 was not in the range, then it is a good return value. Make 6095 // sure that R1-1 WAS in the range though, just in case. 6096 ConstantInt *NextVal = 6097 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6098 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6099 if (Range.contains(R1Val->getValue())) 6100 return R1; 6101 return SE.getCouldNotCompute(); // Something strange happened 6102 } 6103 } 6104 } 6105 6106 return SE.getCouldNotCompute(); 6107 } 6108 6109 6110 6111 //===----------------------------------------------------------------------===// 6112 // SCEVCallbackVH Class Implementation 6113 //===----------------------------------------------------------------------===// 6114 6115 void ScalarEvolution::SCEVCallbackVH::deleted() { 6116 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6117 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 6118 SE->ConstantEvolutionLoopExitValue.erase(PN); 6119 SE->ValueExprMap.erase(getValPtr()); 6120 // this now dangles! 6121 } 6122 6123 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 6124 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6125 6126 // Forget all the expressions associated with users of the old value, 6127 // so that future queries will recompute the expressions using the new 6128 // value. 6129 Value *Old = getValPtr(); 6130 SmallVector<User *, 16> Worklist; 6131 SmallPtrSet<User *, 8> Visited; 6132 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 6133 UI != UE; ++UI) 6134 Worklist.push_back(*UI); 6135 while (!Worklist.empty()) { 6136 User *U = Worklist.pop_back_val(); 6137 // Deleting the Old value will cause this to dangle. Postpone 6138 // that until everything else is done. 6139 if (U == Old) 6140 continue; 6141 if (!Visited.insert(U)) 6142 continue; 6143 if (PHINode *PN = dyn_cast<PHINode>(U)) 6144 SE->ConstantEvolutionLoopExitValue.erase(PN); 6145 SE->ValueExprMap.erase(U); 6146 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 6147 UI != UE; ++UI) 6148 Worklist.push_back(*UI); 6149 } 6150 // Delete the Old value. 6151 if (PHINode *PN = dyn_cast<PHINode>(Old)) 6152 SE->ConstantEvolutionLoopExitValue.erase(PN); 6153 SE->ValueExprMap.erase(Old); 6154 // this now dangles! 6155 } 6156 6157 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 6158 : CallbackVH(V), SE(se) {} 6159 6160 //===----------------------------------------------------------------------===// 6161 // ScalarEvolution Class Implementation 6162 //===----------------------------------------------------------------------===// 6163 6164 ScalarEvolution::ScalarEvolution() 6165 : FunctionPass(ID), FirstUnknown(0) { 6166 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 6167 } 6168 6169 bool ScalarEvolution::runOnFunction(Function &F) { 6170 this->F = &F; 6171 LI = &getAnalysis<LoopInfo>(); 6172 TD = getAnalysisIfAvailable<TargetData>(); 6173 DT = &getAnalysis<DominatorTree>(); 6174 return false; 6175 } 6176 6177 void ScalarEvolution::releaseMemory() { 6178 // Iterate through all the SCEVUnknown instances and call their 6179 // destructors, so that they release their references to their values. 6180 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 6181 U->~SCEVUnknown(); 6182 FirstUnknown = 0; 6183 6184 ValueExprMap.clear(); 6185 6186 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 6187 // that a loop had multiple computable exits. 6188 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 6189 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 6190 I != E; ++I) { 6191 I->second.clear(); 6192 } 6193 6194 BackedgeTakenCounts.clear(); 6195 ConstantEvolutionLoopExitValue.clear(); 6196 ValuesAtScopes.clear(); 6197 LoopDispositions.clear(); 6198 BlockDispositions.clear(); 6199 UnsignedRanges.clear(); 6200 SignedRanges.clear(); 6201 UniqueSCEVs.clear(); 6202 SCEVAllocator.Reset(); 6203 } 6204 6205 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 6206 AU.setPreservesAll(); 6207 AU.addRequiredTransitive<LoopInfo>(); 6208 AU.addRequiredTransitive<DominatorTree>(); 6209 } 6210 6211 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 6212 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 6213 } 6214 6215 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 6216 const Loop *L) { 6217 // Print all inner loops first 6218 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 6219 PrintLoopInfo(OS, SE, *I); 6220 6221 OS << "Loop "; 6222 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6223 OS << ": "; 6224 6225 SmallVector<BasicBlock *, 8> ExitBlocks; 6226 L->getExitBlocks(ExitBlocks); 6227 if (ExitBlocks.size() != 1) 6228 OS << "<multiple exits> "; 6229 6230 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 6231 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 6232 } else { 6233 OS << "Unpredictable backedge-taken count. "; 6234 } 6235 6236 OS << "\n" 6237 "Loop "; 6238 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6239 OS << ": "; 6240 6241 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 6242 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 6243 } else { 6244 OS << "Unpredictable max backedge-taken count. "; 6245 } 6246 6247 OS << "\n"; 6248 } 6249 6250 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 6251 // ScalarEvolution's implementation of the print method is to print 6252 // out SCEV values of all instructions that are interesting. Doing 6253 // this potentially causes it to create new SCEV objects though, 6254 // which technically conflicts with the const qualifier. This isn't 6255 // observable from outside the class though, so casting away the 6256 // const isn't dangerous. 6257 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6258 6259 OS << "Classifying expressions for: "; 6260 WriteAsOperand(OS, F, /*PrintType=*/false); 6261 OS << "\n"; 6262 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6263 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6264 OS << *I << '\n'; 6265 OS << " --> "; 6266 const SCEV *SV = SE.getSCEV(&*I); 6267 SV->print(OS); 6268 6269 const Loop *L = LI->getLoopFor((*I).getParent()); 6270 6271 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6272 if (AtUse != SV) { 6273 OS << " --> "; 6274 AtUse->print(OS); 6275 } 6276 6277 if (L) { 6278 OS << "\t\t" "Exits: "; 6279 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6280 if (!SE.isLoopInvariant(ExitValue, L)) { 6281 OS << "<<Unknown>>"; 6282 } else { 6283 OS << *ExitValue; 6284 } 6285 } 6286 6287 OS << "\n"; 6288 } 6289 6290 OS << "Determining loop execution counts for: "; 6291 WriteAsOperand(OS, F, /*PrintType=*/false); 6292 OS << "\n"; 6293 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6294 PrintLoopInfo(OS, &SE, *I); 6295 } 6296 6297 ScalarEvolution::LoopDisposition 6298 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6299 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6300 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6301 Values.insert(std::make_pair(L, LoopVariant)); 6302 if (!Pair.second) 6303 return Pair.first->second; 6304 6305 LoopDisposition D = computeLoopDisposition(S, L); 6306 return LoopDispositions[S][L] = D; 6307 } 6308 6309 ScalarEvolution::LoopDisposition 6310 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6311 switch (S->getSCEVType()) { 6312 case scConstant: 6313 return LoopInvariant; 6314 case scTruncate: 6315 case scZeroExtend: 6316 case scSignExtend: 6317 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6318 case scAddRecExpr: { 6319 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6320 6321 // If L is the addrec's loop, it's computable. 6322 if (AR->getLoop() == L) 6323 return LoopComputable; 6324 6325 // Add recurrences are never invariant in the function-body (null loop). 6326 if (!L) 6327 return LoopVariant; 6328 6329 // This recurrence is variant w.r.t. L if L contains AR's loop. 6330 if (L->contains(AR->getLoop())) 6331 return LoopVariant; 6332 6333 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6334 if (AR->getLoop()->contains(L)) 6335 return LoopInvariant; 6336 6337 // This recurrence is variant w.r.t. L if any of its operands 6338 // are variant. 6339 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6340 I != E; ++I) 6341 if (!isLoopInvariant(*I, L)) 6342 return LoopVariant; 6343 6344 // Otherwise it's loop-invariant. 6345 return LoopInvariant; 6346 } 6347 case scAddExpr: 6348 case scMulExpr: 6349 case scUMaxExpr: 6350 case scSMaxExpr: { 6351 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6352 bool HasVarying = false; 6353 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6354 I != E; ++I) { 6355 LoopDisposition D = getLoopDisposition(*I, L); 6356 if (D == LoopVariant) 6357 return LoopVariant; 6358 if (D == LoopComputable) 6359 HasVarying = true; 6360 } 6361 return HasVarying ? LoopComputable : LoopInvariant; 6362 } 6363 case scUDivExpr: { 6364 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6365 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6366 if (LD == LoopVariant) 6367 return LoopVariant; 6368 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6369 if (RD == LoopVariant) 6370 return LoopVariant; 6371 return (LD == LoopInvariant && RD == LoopInvariant) ? 6372 LoopInvariant : LoopComputable; 6373 } 6374 case scUnknown: 6375 // All non-instruction values are loop invariant. All instructions are loop 6376 // invariant if they are not contained in the specified loop. 6377 // Instructions are never considered invariant in the function body 6378 // (null loop) because they are defined within the "loop". 6379 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6380 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6381 return LoopInvariant; 6382 case scCouldNotCompute: 6383 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6384 return LoopVariant; 6385 default: break; 6386 } 6387 llvm_unreachable("Unknown SCEV kind!"); 6388 return LoopVariant; 6389 } 6390 6391 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6392 return getLoopDisposition(S, L) == LoopInvariant; 6393 } 6394 6395 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6396 return getLoopDisposition(S, L) == LoopComputable; 6397 } 6398 6399 ScalarEvolution::BlockDisposition 6400 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6401 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6402 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6403 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6404 if (!Pair.second) 6405 return Pair.first->second; 6406 6407 BlockDisposition D = computeBlockDisposition(S, BB); 6408 return BlockDispositions[S][BB] = D; 6409 } 6410 6411 ScalarEvolution::BlockDisposition 6412 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6413 switch (S->getSCEVType()) { 6414 case scConstant: 6415 return ProperlyDominatesBlock; 6416 case scTruncate: 6417 case scZeroExtend: 6418 case scSignExtend: 6419 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6420 case scAddRecExpr: { 6421 // This uses a "dominates" query instead of "properly dominates" query 6422 // to test for proper dominance too, because the instruction which 6423 // produces the addrec's value is a PHI, and a PHI effectively properly 6424 // dominates its entire containing block. 6425 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6426 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6427 return DoesNotDominateBlock; 6428 } 6429 // FALL THROUGH into SCEVNAryExpr handling. 6430 case scAddExpr: 6431 case scMulExpr: 6432 case scUMaxExpr: 6433 case scSMaxExpr: { 6434 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6435 bool Proper = true; 6436 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6437 I != E; ++I) { 6438 BlockDisposition D = getBlockDisposition(*I, BB); 6439 if (D == DoesNotDominateBlock) 6440 return DoesNotDominateBlock; 6441 if (D == DominatesBlock) 6442 Proper = false; 6443 } 6444 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6445 } 6446 case scUDivExpr: { 6447 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6448 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6449 BlockDisposition LD = getBlockDisposition(LHS, BB); 6450 if (LD == DoesNotDominateBlock) 6451 return DoesNotDominateBlock; 6452 BlockDisposition RD = getBlockDisposition(RHS, BB); 6453 if (RD == DoesNotDominateBlock) 6454 return DoesNotDominateBlock; 6455 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6456 ProperlyDominatesBlock : DominatesBlock; 6457 } 6458 case scUnknown: 6459 if (Instruction *I = 6460 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6461 if (I->getParent() == BB) 6462 return DominatesBlock; 6463 if (DT->properlyDominates(I->getParent(), BB)) 6464 return ProperlyDominatesBlock; 6465 return DoesNotDominateBlock; 6466 } 6467 return ProperlyDominatesBlock; 6468 case scCouldNotCompute: 6469 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6470 return DoesNotDominateBlock; 6471 default: break; 6472 } 6473 llvm_unreachable("Unknown SCEV kind!"); 6474 return DoesNotDominateBlock; 6475 } 6476 6477 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6478 return getBlockDisposition(S, BB) >= DominatesBlock; 6479 } 6480 6481 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6482 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 6483 } 6484 6485 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 6486 switch (S->getSCEVType()) { 6487 case scConstant: 6488 return false; 6489 case scTruncate: 6490 case scZeroExtend: 6491 case scSignExtend: { 6492 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S); 6493 const SCEV *CastOp = Cast->getOperand(); 6494 return Op == CastOp || hasOperand(CastOp, Op); 6495 } 6496 case scAddRecExpr: 6497 case scAddExpr: 6498 case scMulExpr: 6499 case scUMaxExpr: 6500 case scSMaxExpr: { 6501 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6502 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6503 I != E; ++I) { 6504 const SCEV *NAryOp = *I; 6505 if (NAryOp == Op || hasOperand(NAryOp, Op)) 6506 return true; 6507 } 6508 return false; 6509 } 6510 case scUDivExpr: { 6511 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6512 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6513 return LHS == Op || hasOperand(LHS, Op) || 6514 RHS == Op || hasOperand(RHS, Op); 6515 } 6516 case scUnknown: 6517 return false; 6518 case scCouldNotCompute: 6519 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6520 return false; 6521 default: break; 6522 } 6523 llvm_unreachable("Unknown SCEV kind!"); 6524 return false; 6525 } 6526 6527 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 6528 ValuesAtScopes.erase(S); 6529 LoopDispositions.erase(S); 6530 BlockDispositions.erase(S); 6531 UnsignedRanges.erase(S); 6532 SignedRanges.erase(S); 6533 } 6534