1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/EquivalenceClasses.h" 67 #include "llvm/ADT/FoldingSet.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/ScopeExit.h" 72 #include "llvm/ADT/Sequence.h" 73 #include "llvm/ADT/SetVector.h" 74 #include "llvm/ADT/SmallPtrSet.h" 75 #include "llvm/ADT/SmallSet.h" 76 #include "llvm/ADT/SmallVector.h" 77 #include "llvm/ADT/Statistic.h" 78 #include "llvm/ADT/StringRef.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/ConstantFolding.h" 81 #include "llvm/Analysis/InstructionSimplify.h" 82 #include "llvm/Analysis/LoopInfo.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/CallSite.h" 91 #include "llvm/IR/Constant.h" 92 #include "llvm/IR/ConstantRange.h" 93 #include "llvm/IR/Constants.h" 94 #include "llvm/IR/DataLayout.h" 95 #include "llvm/IR/DerivedTypes.h" 96 #include "llvm/IR/Dominators.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/GlobalAlias.h" 99 #include "llvm/IR/GlobalValue.h" 100 #include "llvm/IR/GlobalVariable.h" 101 #include "llvm/IR/InstIterator.h" 102 #include "llvm/IR/InstrTypes.h" 103 #include "llvm/IR/Instruction.h" 104 #include "llvm/IR/Instructions.h" 105 #include "llvm/IR/IntrinsicInst.h" 106 #include "llvm/IR/Intrinsics.h" 107 #include "llvm/IR/LLVMContext.h" 108 #include "llvm/IR/Metadata.h" 109 #include "llvm/IR/Operator.h" 110 #include "llvm/IR/PatternMatch.h" 111 #include "llvm/IR/Type.h" 112 #include "llvm/IR/Use.h" 113 #include "llvm/IR/User.h" 114 #include "llvm/IR/Value.h" 115 #include "llvm/Pass.h" 116 #include "llvm/Support/Casting.h" 117 #include "llvm/Support/CommandLine.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/ErrorHandling.h" 121 #include "llvm/Support/KnownBits.h" 122 #include "llvm/Support/SaveAndRestore.h" 123 #include "llvm/Support/raw_ostream.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <climits> 127 #include <cstddef> 128 #include <cstdint> 129 #include <cstdlib> 130 #include <map> 131 #include <memory> 132 #include <tuple> 133 #include <utility> 134 #include <vector> 135 136 using namespace llvm; 137 138 #define DEBUG_TYPE "scalar-evolution" 139 140 STATISTIC(NumArrayLenItCounts, 141 "Number of trip counts computed with array length"); 142 STATISTIC(NumTripCountsComputed, 143 "Number of loops with predictable loop counts"); 144 STATISTIC(NumTripCountsNotComputed, 145 "Number of loops without predictable loop counts"); 146 STATISTIC(NumBruteForceTripCountsComputed, 147 "Number of loops with trip counts computed by force"); 148 149 static cl::opt<unsigned> 150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 151 cl::desc("Maximum number of iterations SCEV will " 152 "symbolically execute a constant " 153 "derived loop"), 154 cl::init(100)); 155 156 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 157 static cl::opt<bool> VerifySCEV( 158 "verify-scev", cl::Hidden, 159 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 160 static cl::opt<bool> 161 VerifySCEVMap("verify-scev-maps", cl::Hidden, 162 cl::desc("Verify no dangling value in ScalarEvolution's " 163 "ExprValueMap (slow)")); 164 165 static cl::opt<unsigned> MulOpsInlineThreshold( 166 "scev-mulops-inline-threshold", cl::Hidden, 167 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 168 cl::init(32)); 169 170 static cl::opt<unsigned> AddOpsInlineThreshold( 171 "scev-addops-inline-threshold", cl::Hidden, 172 cl::desc("Threshold for inlining addition operands into a SCEV"), 173 cl::init(500)); 174 175 static cl::opt<unsigned> MaxSCEVCompareDepth( 176 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 177 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 181 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 182 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 183 cl::init(2)); 184 185 static cl::opt<unsigned> MaxValueCompareDepth( 186 "scalar-evolution-max-value-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive value complexity comparisons"), 188 cl::init(2)); 189 190 static cl::opt<unsigned> 191 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive arithmetics"), 193 cl::init(32)); 194 195 static cl::opt<unsigned> MaxConstantEvolvingDepth( 196 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 198 199 static cl::opt<unsigned> 200 MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden, 201 cl::desc("Maximum depth of recursive SExt/ZExt"), 202 cl::init(8)); 203 204 static cl::opt<unsigned> 205 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 206 cl::desc("Max coefficients in AddRec during evolving"), 207 cl::init(16)); 208 209 //===----------------------------------------------------------------------===// 210 // SCEV class definitions 211 //===----------------------------------------------------------------------===// 212 213 //===----------------------------------------------------------------------===// 214 // Implementation of the SCEV class. 215 // 216 217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 218 LLVM_DUMP_METHOD void SCEV::dump() const { 219 print(dbgs()); 220 dbgs() << '\n'; 221 } 222 #endif 223 224 void SCEV::print(raw_ostream &OS) const { 225 switch (static_cast<SCEVTypes>(getSCEVType())) { 226 case scConstant: 227 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 228 return; 229 case scTruncate: { 230 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 231 const SCEV *Op = Trunc->getOperand(); 232 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 233 << *Trunc->getType() << ")"; 234 return; 235 } 236 case scZeroExtend: { 237 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 238 const SCEV *Op = ZExt->getOperand(); 239 OS << "(zext " << *Op->getType() << " " << *Op << " to " 240 << *ZExt->getType() << ")"; 241 return; 242 } 243 case scSignExtend: { 244 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 245 const SCEV *Op = SExt->getOperand(); 246 OS << "(sext " << *Op->getType() << " " << *Op << " to " 247 << *SExt->getType() << ")"; 248 return; 249 } 250 case scAddRecExpr: { 251 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 252 OS << "{" << *AR->getOperand(0); 253 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 254 OS << ",+," << *AR->getOperand(i); 255 OS << "}<"; 256 if (AR->hasNoUnsignedWrap()) 257 OS << "nuw><"; 258 if (AR->hasNoSignedWrap()) 259 OS << "nsw><"; 260 if (AR->hasNoSelfWrap() && 261 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 262 OS << "nw><"; 263 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 264 OS << ">"; 265 return; 266 } 267 case scAddExpr: 268 case scMulExpr: 269 case scUMaxExpr: 270 case scSMaxExpr: { 271 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 272 const char *OpStr = nullptr; 273 switch (NAry->getSCEVType()) { 274 case scAddExpr: OpStr = " + "; break; 275 case scMulExpr: OpStr = " * "; break; 276 case scUMaxExpr: OpStr = " umax "; break; 277 case scSMaxExpr: OpStr = " smax "; break; 278 } 279 OS << "("; 280 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 281 I != E; ++I) { 282 OS << **I; 283 if (std::next(I) != E) 284 OS << OpStr; 285 } 286 OS << ")"; 287 switch (NAry->getSCEVType()) { 288 case scAddExpr: 289 case scMulExpr: 290 if (NAry->hasNoUnsignedWrap()) 291 OS << "<nuw>"; 292 if (NAry->hasNoSignedWrap()) 293 OS << "<nsw>"; 294 } 295 return; 296 } 297 case scUDivExpr: { 298 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 299 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 300 return; 301 } 302 case scUnknown: { 303 const SCEVUnknown *U = cast<SCEVUnknown>(this); 304 Type *AllocTy; 305 if (U->isSizeOf(AllocTy)) { 306 OS << "sizeof(" << *AllocTy << ")"; 307 return; 308 } 309 if (U->isAlignOf(AllocTy)) { 310 OS << "alignof(" << *AllocTy << ")"; 311 return; 312 } 313 314 Type *CTy; 315 Constant *FieldNo; 316 if (U->isOffsetOf(CTy, FieldNo)) { 317 OS << "offsetof(" << *CTy << ", "; 318 FieldNo->printAsOperand(OS, false); 319 OS << ")"; 320 return; 321 } 322 323 // Otherwise just print it normally. 324 U->getValue()->printAsOperand(OS, false); 325 return; 326 } 327 case scCouldNotCompute: 328 OS << "***COULDNOTCOMPUTE***"; 329 return; 330 } 331 llvm_unreachable("Unknown SCEV kind!"); 332 } 333 334 Type *SCEV::getType() const { 335 switch (static_cast<SCEVTypes>(getSCEVType())) { 336 case scConstant: 337 return cast<SCEVConstant>(this)->getType(); 338 case scTruncate: 339 case scZeroExtend: 340 case scSignExtend: 341 return cast<SCEVCastExpr>(this)->getType(); 342 case scAddRecExpr: 343 case scMulExpr: 344 case scUMaxExpr: 345 case scSMaxExpr: 346 return cast<SCEVNAryExpr>(this)->getType(); 347 case scAddExpr: 348 return cast<SCEVAddExpr>(this)->getType(); 349 case scUDivExpr: 350 return cast<SCEVUDivExpr>(this)->getType(); 351 case scUnknown: 352 return cast<SCEVUnknown>(this)->getType(); 353 case scCouldNotCompute: 354 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 355 } 356 llvm_unreachable("Unknown SCEV kind!"); 357 } 358 359 bool SCEV::isZero() const { 360 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 361 return SC->getValue()->isZero(); 362 return false; 363 } 364 365 bool SCEV::isOne() const { 366 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 367 return SC->getValue()->isOne(); 368 return false; 369 } 370 371 bool SCEV::isAllOnesValue() const { 372 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 373 return SC->getValue()->isMinusOne(); 374 return false; 375 } 376 377 bool SCEV::isNonConstantNegative() const { 378 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 379 if (!Mul) return false; 380 381 // If there is a constant factor, it will be first. 382 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 383 if (!SC) return false; 384 385 // Return true if the value is negative, this matches things like (-42 * V). 386 return SC->getAPInt().isNegative(); 387 } 388 389 SCEVCouldNotCompute::SCEVCouldNotCompute() : 390 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 391 392 bool SCEVCouldNotCompute::classof(const SCEV *S) { 393 return S->getSCEVType() == scCouldNotCompute; 394 } 395 396 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 397 FoldingSetNodeID ID; 398 ID.AddInteger(scConstant); 399 ID.AddPointer(V); 400 void *IP = nullptr; 401 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 402 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 403 UniqueSCEVs.InsertNode(S, IP); 404 return S; 405 } 406 407 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 408 return getConstant(ConstantInt::get(getContext(), Val)); 409 } 410 411 const SCEV * 412 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 413 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 414 return getConstant(ConstantInt::get(ITy, V, isSigned)); 415 } 416 417 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 418 unsigned SCEVTy, const SCEV *op, Type *ty) 419 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 420 421 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 422 const SCEV *op, Type *ty) 423 : SCEVCastExpr(ID, scTruncate, op, ty) { 424 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 425 (Ty->isIntegerTy() || Ty->isPointerTy()) && 426 "Cannot truncate non-integer value!"); 427 } 428 429 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 430 const SCEV *op, Type *ty) 431 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 432 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 433 (Ty->isIntegerTy() || Ty->isPointerTy()) && 434 "Cannot zero extend non-integer value!"); 435 } 436 437 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 438 const SCEV *op, Type *ty) 439 : SCEVCastExpr(ID, scSignExtend, op, ty) { 440 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 441 (Ty->isIntegerTy() || Ty->isPointerTy()) && 442 "Cannot sign extend non-integer value!"); 443 } 444 445 void SCEVUnknown::deleted() { 446 // Clear this SCEVUnknown from various maps. 447 SE->forgetMemoizedResults(this); 448 449 // Remove this SCEVUnknown from the uniquing map. 450 SE->UniqueSCEVs.RemoveNode(this); 451 452 // Release the value. 453 setValPtr(nullptr); 454 } 455 456 void SCEVUnknown::allUsesReplacedWith(Value *New) { 457 // Remove this SCEVUnknown from the uniquing map. 458 SE->UniqueSCEVs.RemoveNode(this); 459 460 // Update this SCEVUnknown to point to the new value. This is needed 461 // because there may still be outstanding SCEVs which still point to 462 // this SCEVUnknown. 463 setValPtr(New); 464 } 465 466 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 467 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 468 if (VCE->getOpcode() == Instruction::PtrToInt) 469 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 470 if (CE->getOpcode() == Instruction::GetElementPtr && 471 CE->getOperand(0)->isNullValue() && 472 CE->getNumOperands() == 2) 473 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 474 if (CI->isOne()) { 475 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 476 ->getElementType(); 477 return true; 478 } 479 480 return false; 481 } 482 483 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 484 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 485 if (VCE->getOpcode() == Instruction::PtrToInt) 486 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 487 if (CE->getOpcode() == Instruction::GetElementPtr && 488 CE->getOperand(0)->isNullValue()) { 489 Type *Ty = 490 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 491 if (StructType *STy = dyn_cast<StructType>(Ty)) 492 if (!STy->isPacked() && 493 CE->getNumOperands() == 3 && 494 CE->getOperand(1)->isNullValue()) { 495 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 496 if (CI->isOne() && 497 STy->getNumElements() == 2 && 498 STy->getElementType(0)->isIntegerTy(1)) { 499 AllocTy = STy->getElementType(1); 500 return true; 501 } 502 } 503 } 504 505 return false; 506 } 507 508 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 509 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 510 if (VCE->getOpcode() == Instruction::PtrToInt) 511 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 512 if (CE->getOpcode() == Instruction::GetElementPtr && 513 CE->getNumOperands() == 3 && 514 CE->getOperand(0)->isNullValue() && 515 CE->getOperand(1)->isNullValue()) { 516 Type *Ty = 517 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 518 // Ignore vector types here so that ScalarEvolutionExpander doesn't 519 // emit getelementptrs that index into vectors. 520 if (Ty->isStructTy() || Ty->isArrayTy()) { 521 CTy = Ty; 522 FieldNo = CE->getOperand(2); 523 return true; 524 } 525 } 526 527 return false; 528 } 529 530 //===----------------------------------------------------------------------===// 531 // SCEV Utilities 532 //===----------------------------------------------------------------------===// 533 534 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 535 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 536 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 537 /// have been previously deemed to be "equally complex" by this routine. It is 538 /// intended to avoid exponential time complexity in cases like: 539 /// 540 /// %a = f(%x, %y) 541 /// %b = f(%a, %a) 542 /// %c = f(%b, %b) 543 /// 544 /// %d = f(%x, %y) 545 /// %e = f(%d, %d) 546 /// %f = f(%e, %e) 547 /// 548 /// CompareValueComplexity(%f, %c) 549 /// 550 /// Since we do not continue running this routine on expression trees once we 551 /// have seen unequal values, there is no need to track them in the cache. 552 static int 553 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 554 const LoopInfo *const LI, Value *LV, Value *RV, 555 unsigned Depth) { 556 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 557 return 0; 558 559 // Order pointer values after integer values. This helps SCEVExpander form 560 // GEPs. 561 bool LIsPointer = LV->getType()->isPointerTy(), 562 RIsPointer = RV->getType()->isPointerTy(); 563 if (LIsPointer != RIsPointer) 564 return (int)LIsPointer - (int)RIsPointer; 565 566 // Compare getValueID values. 567 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 568 if (LID != RID) 569 return (int)LID - (int)RID; 570 571 // Sort arguments by their position. 572 if (const auto *LA = dyn_cast<Argument>(LV)) { 573 const auto *RA = cast<Argument>(RV); 574 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 575 return (int)LArgNo - (int)RArgNo; 576 } 577 578 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 579 const auto *RGV = cast<GlobalValue>(RV); 580 581 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 582 auto LT = GV->getLinkage(); 583 return !(GlobalValue::isPrivateLinkage(LT) || 584 GlobalValue::isInternalLinkage(LT)); 585 }; 586 587 // Use the names to distinguish the two values, but only if the 588 // names are semantically important. 589 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 590 return LGV->getName().compare(RGV->getName()); 591 } 592 593 // For instructions, compare their loop depth, and their operand count. This 594 // is pretty loose. 595 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 596 const auto *RInst = cast<Instruction>(RV); 597 598 // Compare loop depths. 599 const BasicBlock *LParent = LInst->getParent(), 600 *RParent = RInst->getParent(); 601 if (LParent != RParent) { 602 unsigned LDepth = LI->getLoopDepth(LParent), 603 RDepth = LI->getLoopDepth(RParent); 604 if (LDepth != RDepth) 605 return (int)LDepth - (int)RDepth; 606 } 607 608 // Compare the number of operands. 609 unsigned LNumOps = LInst->getNumOperands(), 610 RNumOps = RInst->getNumOperands(); 611 if (LNumOps != RNumOps) 612 return (int)LNumOps - (int)RNumOps; 613 614 for (unsigned Idx : seq(0u, LNumOps)) { 615 int Result = 616 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 617 RInst->getOperand(Idx), Depth + 1); 618 if (Result != 0) 619 return Result; 620 } 621 } 622 623 EqCacheValue.unionSets(LV, RV); 624 return 0; 625 } 626 627 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 628 // than RHS, respectively. A three-way result allows recursive comparisons to be 629 // more efficient. 630 static int CompareSCEVComplexity( 631 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 632 EquivalenceClasses<const Value *> &EqCacheValue, 633 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 634 DominatorTree &DT, unsigned Depth = 0) { 635 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 636 if (LHS == RHS) 637 return 0; 638 639 // Primarily, sort the SCEVs by their getSCEVType(). 640 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 641 if (LType != RType) 642 return (int)LType - (int)RType; 643 644 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 645 return 0; 646 // Aside from the getSCEVType() ordering, the particular ordering 647 // isn't very important except that it's beneficial to be consistent, 648 // so that (a + b) and (b + a) don't end up as different expressions. 649 switch (static_cast<SCEVTypes>(LType)) { 650 case scUnknown: { 651 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 652 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 653 654 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 655 RU->getValue(), Depth + 1); 656 if (X == 0) 657 EqCacheSCEV.unionSets(LHS, RHS); 658 return X; 659 } 660 661 case scConstant: { 662 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 663 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 664 665 // Compare constant values. 666 const APInt &LA = LC->getAPInt(); 667 const APInt &RA = RC->getAPInt(); 668 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 669 if (LBitWidth != RBitWidth) 670 return (int)LBitWidth - (int)RBitWidth; 671 return LA.ult(RA) ? -1 : 1; 672 } 673 674 case scAddRecExpr: { 675 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 676 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 677 678 // There is always a dominance between two recs that are used by one SCEV, 679 // so we can safely sort recs by loop header dominance. We require such 680 // order in getAddExpr. 681 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 682 if (LLoop != RLoop) { 683 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 684 assert(LHead != RHead && "Two loops share the same header?"); 685 if (DT.dominates(LHead, RHead)) 686 return 1; 687 else 688 assert(DT.dominates(RHead, LHead) && 689 "No dominance between recurrences used by one SCEV?"); 690 return -1; 691 } 692 693 // Addrec complexity grows with operand count. 694 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 695 if (LNumOps != RNumOps) 696 return (int)LNumOps - (int)RNumOps; 697 698 // Compare NoWrap flags. 699 if (LA->getNoWrapFlags() != RA->getNoWrapFlags()) 700 return (int)LA->getNoWrapFlags() - (int)RA->getNoWrapFlags(); 701 702 // Lexicographically compare. 703 for (unsigned i = 0; i != LNumOps; ++i) { 704 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 705 LA->getOperand(i), RA->getOperand(i), DT, 706 Depth + 1); 707 if (X != 0) 708 return X; 709 } 710 EqCacheSCEV.unionSets(LHS, RHS); 711 return 0; 712 } 713 714 case scAddExpr: 715 case scMulExpr: 716 case scSMaxExpr: 717 case scUMaxExpr: { 718 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 719 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 720 721 // Lexicographically compare n-ary expressions. 722 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 723 if (LNumOps != RNumOps) 724 return (int)LNumOps - (int)RNumOps; 725 726 // Compare NoWrap flags. 727 if (LC->getNoWrapFlags() != RC->getNoWrapFlags()) 728 return (int)LC->getNoWrapFlags() - (int)RC->getNoWrapFlags(); 729 730 for (unsigned i = 0; i != LNumOps; ++i) { 731 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 732 LC->getOperand(i), RC->getOperand(i), DT, 733 Depth + 1); 734 if (X != 0) 735 return X; 736 } 737 EqCacheSCEV.unionSets(LHS, RHS); 738 return 0; 739 } 740 741 case scUDivExpr: { 742 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 743 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 744 745 // Lexicographically compare udiv expressions. 746 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 747 RC->getLHS(), DT, Depth + 1); 748 if (X != 0) 749 return X; 750 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 751 RC->getRHS(), DT, Depth + 1); 752 if (X == 0) 753 EqCacheSCEV.unionSets(LHS, RHS); 754 return X; 755 } 756 757 case scTruncate: 758 case scZeroExtend: 759 case scSignExtend: { 760 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 761 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 762 763 // Compare cast expressions by operand. 764 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 765 LC->getOperand(), RC->getOperand(), DT, 766 Depth + 1); 767 if (X == 0) 768 EqCacheSCEV.unionSets(LHS, RHS); 769 return X; 770 } 771 772 case scCouldNotCompute: 773 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 774 } 775 llvm_unreachable("Unknown SCEV kind!"); 776 } 777 778 /// Given a list of SCEV objects, order them by their complexity, and group 779 /// objects of the same complexity together by value. When this routine is 780 /// finished, we know that any duplicates in the vector are consecutive and that 781 /// complexity is monotonically increasing. 782 /// 783 /// Note that we go take special precautions to ensure that we get deterministic 784 /// results from this routine. In other words, we don't want the results of 785 /// this to depend on where the addresses of various SCEV objects happened to 786 /// land in memory. 787 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 788 LoopInfo *LI, DominatorTree &DT) { 789 if (Ops.size() < 2) return; // Noop 790 791 EquivalenceClasses<const SCEV *> EqCacheSCEV; 792 EquivalenceClasses<const Value *> EqCacheValue; 793 if (Ops.size() == 2) { 794 // This is the common case, which also happens to be trivially simple. 795 // Special case it. 796 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 797 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 798 std::swap(LHS, RHS); 799 return; 800 } 801 802 // Do the rough sort by complexity. 803 std::stable_sort(Ops.begin(), Ops.end(), 804 [&](const SCEV *LHS, const SCEV *RHS) { 805 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 806 LHS, RHS, DT) < 0; 807 }); 808 809 // Now that we are sorted by complexity, group elements of the same 810 // complexity. Note that this is, at worst, N^2, but the vector is likely to 811 // be extremely short in practice. Note that we take this approach because we 812 // do not want to depend on the addresses of the objects we are grouping. 813 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 814 const SCEV *S = Ops[i]; 815 unsigned Complexity = S->getSCEVType(); 816 817 // If there are any objects of the same complexity and same value as this 818 // one, group them. 819 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 820 if (Ops[j] == S) { // Found a duplicate. 821 // Move it to immediately after i'th element. 822 std::swap(Ops[i+1], Ops[j]); 823 ++i; // no need to rescan it. 824 if (i == e-2) return; // Done! 825 } 826 } 827 } 828 } 829 830 // Returns the size of the SCEV S. 831 static inline int sizeOfSCEV(const SCEV *S) { 832 struct FindSCEVSize { 833 int Size = 0; 834 835 FindSCEVSize() = default; 836 837 bool follow(const SCEV *S) { 838 ++Size; 839 // Keep looking at all operands of S. 840 return true; 841 } 842 843 bool isDone() const { 844 return false; 845 } 846 }; 847 848 FindSCEVSize F; 849 SCEVTraversal<FindSCEVSize> ST(F); 850 ST.visitAll(S); 851 return F.Size; 852 } 853 854 namespace { 855 856 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 857 public: 858 // Computes the Quotient and Remainder of the division of Numerator by 859 // Denominator. 860 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 861 const SCEV *Denominator, const SCEV **Quotient, 862 const SCEV **Remainder) { 863 assert(Numerator && Denominator && "Uninitialized SCEV"); 864 865 SCEVDivision D(SE, Numerator, Denominator); 866 867 // Check for the trivial case here to avoid having to check for it in the 868 // rest of the code. 869 if (Numerator == Denominator) { 870 *Quotient = D.One; 871 *Remainder = D.Zero; 872 return; 873 } 874 875 if (Numerator->isZero()) { 876 *Quotient = D.Zero; 877 *Remainder = D.Zero; 878 return; 879 } 880 881 // A simple case when N/1. The quotient is N. 882 if (Denominator->isOne()) { 883 *Quotient = Numerator; 884 *Remainder = D.Zero; 885 return; 886 } 887 888 // Split the Denominator when it is a product. 889 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 890 const SCEV *Q, *R; 891 *Quotient = Numerator; 892 for (const SCEV *Op : T->operands()) { 893 divide(SE, *Quotient, Op, &Q, &R); 894 *Quotient = Q; 895 896 // Bail out when the Numerator is not divisible by one of the terms of 897 // the Denominator. 898 if (!R->isZero()) { 899 *Quotient = D.Zero; 900 *Remainder = Numerator; 901 return; 902 } 903 } 904 *Remainder = D.Zero; 905 return; 906 } 907 908 D.visit(Numerator); 909 *Quotient = D.Quotient; 910 *Remainder = D.Remainder; 911 } 912 913 // Except in the trivial case described above, we do not know how to divide 914 // Expr by Denominator for the following functions with empty implementation. 915 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 916 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 917 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 918 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 919 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 920 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 921 void visitUnknown(const SCEVUnknown *Numerator) {} 922 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 923 924 void visitConstant(const SCEVConstant *Numerator) { 925 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 926 APInt NumeratorVal = Numerator->getAPInt(); 927 APInt DenominatorVal = D->getAPInt(); 928 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 929 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 930 931 if (NumeratorBW > DenominatorBW) 932 DenominatorVal = DenominatorVal.sext(NumeratorBW); 933 else if (NumeratorBW < DenominatorBW) 934 NumeratorVal = NumeratorVal.sext(DenominatorBW); 935 936 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 937 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 938 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 939 Quotient = SE.getConstant(QuotientVal); 940 Remainder = SE.getConstant(RemainderVal); 941 return; 942 } 943 } 944 945 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 946 const SCEV *StartQ, *StartR, *StepQ, *StepR; 947 if (!Numerator->isAffine()) 948 return cannotDivide(Numerator); 949 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 950 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 951 // Bail out if the types do not match. 952 Type *Ty = Denominator->getType(); 953 if (Ty != StartQ->getType() || Ty != StartR->getType() || 954 Ty != StepQ->getType() || Ty != StepR->getType()) 955 return cannotDivide(Numerator); 956 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 957 Numerator->getNoWrapFlags()); 958 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 959 Numerator->getNoWrapFlags()); 960 } 961 962 void visitAddExpr(const SCEVAddExpr *Numerator) { 963 SmallVector<const SCEV *, 2> Qs, Rs; 964 Type *Ty = Denominator->getType(); 965 966 for (const SCEV *Op : Numerator->operands()) { 967 const SCEV *Q, *R; 968 divide(SE, Op, Denominator, &Q, &R); 969 970 // Bail out if types do not match. 971 if (Ty != Q->getType() || Ty != R->getType()) 972 return cannotDivide(Numerator); 973 974 Qs.push_back(Q); 975 Rs.push_back(R); 976 } 977 978 if (Qs.size() == 1) { 979 Quotient = Qs[0]; 980 Remainder = Rs[0]; 981 return; 982 } 983 984 Quotient = SE.getAddExpr(Qs); 985 Remainder = SE.getAddExpr(Rs); 986 } 987 988 void visitMulExpr(const SCEVMulExpr *Numerator) { 989 SmallVector<const SCEV *, 2> Qs; 990 Type *Ty = Denominator->getType(); 991 992 bool FoundDenominatorTerm = false; 993 for (const SCEV *Op : Numerator->operands()) { 994 // Bail out if types do not match. 995 if (Ty != Op->getType()) 996 return cannotDivide(Numerator); 997 998 if (FoundDenominatorTerm) { 999 Qs.push_back(Op); 1000 continue; 1001 } 1002 1003 // Check whether Denominator divides one of the product operands. 1004 const SCEV *Q, *R; 1005 divide(SE, Op, Denominator, &Q, &R); 1006 if (!R->isZero()) { 1007 Qs.push_back(Op); 1008 continue; 1009 } 1010 1011 // Bail out if types do not match. 1012 if (Ty != Q->getType()) 1013 return cannotDivide(Numerator); 1014 1015 FoundDenominatorTerm = true; 1016 Qs.push_back(Q); 1017 } 1018 1019 if (FoundDenominatorTerm) { 1020 Remainder = Zero; 1021 if (Qs.size() == 1) 1022 Quotient = Qs[0]; 1023 else 1024 Quotient = SE.getMulExpr(Qs); 1025 return; 1026 } 1027 1028 if (!isa<SCEVUnknown>(Denominator)) 1029 return cannotDivide(Numerator); 1030 1031 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 1032 ValueToValueMap RewriteMap; 1033 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1034 cast<SCEVConstant>(Zero)->getValue(); 1035 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1036 1037 if (Remainder->isZero()) { 1038 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 1039 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1040 cast<SCEVConstant>(One)->getValue(); 1041 Quotient = 1042 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1043 return; 1044 } 1045 1046 // Quotient is (Numerator - Remainder) divided by Denominator. 1047 const SCEV *Q, *R; 1048 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 1049 // This SCEV does not seem to simplify: fail the division here. 1050 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 1051 return cannotDivide(Numerator); 1052 divide(SE, Diff, Denominator, &Q, &R); 1053 if (R != Zero) 1054 return cannotDivide(Numerator); 1055 Quotient = Q; 1056 } 1057 1058 private: 1059 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 1060 const SCEV *Denominator) 1061 : SE(S), Denominator(Denominator) { 1062 Zero = SE.getZero(Denominator->getType()); 1063 One = SE.getOne(Denominator->getType()); 1064 1065 // We generally do not know how to divide Expr by Denominator. We 1066 // initialize the division to a "cannot divide" state to simplify the rest 1067 // of the code. 1068 cannotDivide(Numerator); 1069 } 1070 1071 // Convenience function for giving up on the division. We set the quotient to 1072 // be equal to zero and the remainder to be equal to the numerator. 1073 void cannotDivide(const SCEV *Numerator) { 1074 Quotient = Zero; 1075 Remainder = Numerator; 1076 } 1077 1078 ScalarEvolution &SE; 1079 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1080 }; 1081 1082 } // end anonymous namespace 1083 1084 //===----------------------------------------------------------------------===// 1085 // Simple SCEV method implementations 1086 //===----------------------------------------------------------------------===// 1087 1088 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1089 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1090 ScalarEvolution &SE, 1091 Type *ResultTy) { 1092 // Handle the simplest case efficiently. 1093 if (K == 1) 1094 return SE.getTruncateOrZeroExtend(It, ResultTy); 1095 1096 // We are using the following formula for BC(It, K): 1097 // 1098 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1099 // 1100 // Suppose, W is the bitwidth of the return value. We must be prepared for 1101 // overflow. Hence, we must assure that the result of our computation is 1102 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1103 // safe in modular arithmetic. 1104 // 1105 // However, this code doesn't use exactly that formula; the formula it uses 1106 // is something like the following, where T is the number of factors of 2 in 1107 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1108 // exponentiation: 1109 // 1110 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1111 // 1112 // This formula is trivially equivalent to the previous formula. However, 1113 // this formula can be implemented much more efficiently. The trick is that 1114 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1115 // arithmetic. To do exact division in modular arithmetic, all we have 1116 // to do is multiply by the inverse. Therefore, this step can be done at 1117 // width W. 1118 // 1119 // The next issue is how to safely do the division by 2^T. The way this 1120 // is done is by doing the multiplication step at a width of at least W + T 1121 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1122 // when we perform the division by 2^T (which is equivalent to a right shift 1123 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1124 // truncated out after the division by 2^T. 1125 // 1126 // In comparison to just directly using the first formula, this technique 1127 // is much more efficient; using the first formula requires W * K bits, 1128 // but this formula less than W + K bits. Also, the first formula requires 1129 // a division step, whereas this formula only requires multiplies and shifts. 1130 // 1131 // It doesn't matter whether the subtraction step is done in the calculation 1132 // width or the input iteration count's width; if the subtraction overflows, 1133 // the result must be zero anyway. We prefer here to do it in the width of 1134 // the induction variable because it helps a lot for certain cases; CodeGen 1135 // isn't smart enough to ignore the overflow, which leads to much less 1136 // efficient code if the width of the subtraction is wider than the native 1137 // register width. 1138 // 1139 // (It's possible to not widen at all by pulling out factors of 2 before 1140 // the multiplication; for example, K=2 can be calculated as 1141 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1142 // extra arithmetic, so it's not an obvious win, and it gets 1143 // much more complicated for K > 3.) 1144 1145 // Protection from insane SCEVs; this bound is conservative, 1146 // but it probably doesn't matter. 1147 if (K > 1000) 1148 return SE.getCouldNotCompute(); 1149 1150 unsigned W = SE.getTypeSizeInBits(ResultTy); 1151 1152 // Calculate K! / 2^T and T; we divide out the factors of two before 1153 // multiplying for calculating K! / 2^T to avoid overflow. 1154 // Other overflow doesn't matter because we only care about the bottom 1155 // W bits of the result. 1156 APInt OddFactorial(W, 1); 1157 unsigned T = 1; 1158 for (unsigned i = 3; i <= K; ++i) { 1159 APInt Mult(W, i); 1160 unsigned TwoFactors = Mult.countTrailingZeros(); 1161 T += TwoFactors; 1162 Mult.lshrInPlace(TwoFactors); 1163 OddFactorial *= Mult; 1164 } 1165 1166 // We need at least W + T bits for the multiplication step 1167 unsigned CalculationBits = W + T; 1168 1169 // Calculate 2^T, at width T+W. 1170 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1171 1172 // Calculate the multiplicative inverse of K! / 2^T; 1173 // this multiplication factor will perform the exact division by 1174 // K! / 2^T. 1175 APInt Mod = APInt::getSignedMinValue(W+1); 1176 APInt MultiplyFactor = OddFactorial.zext(W+1); 1177 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1178 MultiplyFactor = MultiplyFactor.trunc(W); 1179 1180 // Calculate the product, at width T+W 1181 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1182 CalculationBits); 1183 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1184 for (unsigned i = 1; i != K; ++i) { 1185 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1186 Dividend = SE.getMulExpr(Dividend, 1187 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1188 } 1189 1190 // Divide by 2^T 1191 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1192 1193 // Truncate the result, and divide by K! / 2^T. 1194 1195 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1196 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1197 } 1198 1199 /// Return the value of this chain of recurrences at the specified iteration 1200 /// number. We can evaluate this recurrence by multiplying each element in the 1201 /// chain by the binomial coefficient corresponding to it. In other words, we 1202 /// can evaluate {A,+,B,+,C,+,D} as: 1203 /// 1204 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1205 /// 1206 /// where BC(It, k) stands for binomial coefficient. 1207 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1208 ScalarEvolution &SE) const { 1209 const SCEV *Result = getStart(); 1210 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1211 // The computation is correct in the face of overflow provided that the 1212 // multiplication is performed _after_ the evaluation of the binomial 1213 // coefficient. 1214 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1215 if (isa<SCEVCouldNotCompute>(Coeff)) 1216 return Coeff; 1217 1218 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1219 } 1220 return Result; 1221 } 1222 1223 //===----------------------------------------------------------------------===// 1224 // SCEV Expression folder implementations 1225 //===----------------------------------------------------------------------===// 1226 1227 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1228 Type *Ty) { 1229 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1230 "This is not a truncating conversion!"); 1231 assert(isSCEVable(Ty) && 1232 "This is not a conversion to a SCEVable type!"); 1233 Ty = getEffectiveSCEVType(Ty); 1234 1235 FoldingSetNodeID ID; 1236 ID.AddInteger(scTruncate); 1237 ID.AddPointer(Op); 1238 ID.AddPointer(Ty); 1239 void *IP = nullptr; 1240 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1241 1242 // Fold if the operand is constant. 1243 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1244 return getConstant( 1245 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1246 1247 // trunc(trunc(x)) --> trunc(x) 1248 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1249 return getTruncateExpr(ST->getOperand(), Ty); 1250 1251 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1252 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1253 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1254 1255 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1256 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1257 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1258 1259 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1260 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1261 // if after transforming we have at most one truncate, not counting truncates 1262 // that replace other casts. 1263 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1264 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1265 SmallVector<const SCEV *, 4> Operands; 1266 unsigned numTruncs = 0; 1267 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1268 ++i) { 1269 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty); 1270 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) 1271 numTruncs++; 1272 Operands.push_back(S); 1273 } 1274 if (numTruncs < 2) { 1275 if (isa<SCEVAddExpr>(Op)) 1276 return getAddExpr(Operands); 1277 else if (isa<SCEVMulExpr>(Op)) 1278 return getMulExpr(Operands); 1279 else 1280 llvm_unreachable("Unexpected SCEV type for Op."); 1281 } 1282 // Although we checked in the beginning that ID is not in the cache, it is 1283 // possible that during recursion and different modification ID was inserted 1284 // into the cache. So if we find it, just return it. 1285 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1286 return S; 1287 } 1288 1289 // If the input value is a chrec scev, truncate the chrec's operands. 1290 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1291 SmallVector<const SCEV *, 4> Operands; 1292 for (const SCEV *Op : AddRec->operands()) 1293 Operands.push_back(getTruncateExpr(Op, Ty)); 1294 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1295 } 1296 1297 // The cast wasn't folded; create an explicit cast node. We can reuse 1298 // the existing insert position since if we get here, we won't have 1299 // made any changes which would invalidate it. 1300 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1301 Op, Ty); 1302 UniqueSCEVs.InsertNode(S, IP); 1303 addToLoopUseLists(S); 1304 return S; 1305 } 1306 1307 // Get the limit of a recurrence such that incrementing by Step cannot cause 1308 // signed overflow as long as the value of the recurrence within the 1309 // loop does not exceed this limit before incrementing. 1310 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1311 ICmpInst::Predicate *Pred, 1312 ScalarEvolution *SE) { 1313 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1314 if (SE->isKnownPositive(Step)) { 1315 *Pred = ICmpInst::ICMP_SLT; 1316 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1317 SE->getSignedRangeMax(Step)); 1318 } 1319 if (SE->isKnownNegative(Step)) { 1320 *Pred = ICmpInst::ICMP_SGT; 1321 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1322 SE->getSignedRangeMin(Step)); 1323 } 1324 return nullptr; 1325 } 1326 1327 // Get the limit of a recurrence such that incrementing by Step cannot cause 1328 // unsigned overflow as long as the value of the recurrence within the loop does 1329 // not exceed this limit before incrementing. 1330 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1331 ICmpInst::Predicate *Pred, 1332 ScalarEvolution *SE) { 1333 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1334 *Pred = ICmpInst::ICMP_ULT; 1335 1336 return SE->getConstant(APInt::getMinValue(BitWidth) - 1337 SE->getUnsignedRangeMax(Step)); 1338 } 1339 1340 namespace { 1341 1342 struct ExtendOpTraitsBase { 1343 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1344 unsigned); 1345 }; 1346 1347 // Used to make code generic over signed and unsigned overflow. 1348 template <typename ExtendOp> struct ExtendOpTraits { 1349 // Members present: 1350 // 1351 // static const SCEV::NoWrapFlags WrapType; 1352 // 1353 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1354 // 1355 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1356 // ICmpInst::Predicate *Pred, 1357 // ScalarEvolution *SE); 1358 }; 1359 1360 template <> 1361 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1362 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1363 1364 static const GetExtendExprTy GetExtendExpr; 1365 1366 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1367 ICmpInst::Predicate *Pred, 1368 ScalarEvolution *SE) { 1369 return getSignedOverflowLimitForStep(Step, Pred, SE); 1370 } 1371 }; 1372 1373 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1374 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1375 1376 template <> 1377 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1378 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1379 1380 static const GetExtendExprTy GetExtendExpr; 1381 1382 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1383 ICmpInst::Predicate *Pred, 1384 ScalarEvolution *SE) { 1385 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1386 } 1387 }; 1388 1389 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1390 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1391 1392 } // end anonymous namespace 1393 1394 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1395 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1396 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1397 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1398 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1399 // expression "Step + sext/zext(PreIncAR)" is congruent with 1400 // "sext/zext(PostIncAR)" 1401 template <typename ExtendOpTy> 1402 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1403 ScalarEvolution *SE, unsigned Depth) { 1404 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1405 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1406 1407 const Loop *L = AR->getLoop(); 1408 const SCEV *Start = AR->getStart(); 1409 const SCEV *Step = AR->getStepRecurrence(*SE); 1410 1411 // Check for a simple looking step prior to loop entry. 1412 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1413 if (!SA) 1414 return nullptr; 1415 1416 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1417 // subtraction is expensive. For this purpose, perform a quick and dirty 1418 // difference, by checking for Step in the operand list. 1419 SmallVector<const SCEV *, 4> DiffOps; 1420 for (const SCEV *Op : SA->operands()) 1421 if (Op != Step) 1422 DiffOps.push_back(Op); 1423 1424 if (DiffOps.size() == SA->getNumOperands()) 1425 return nullptr; 1426 1427 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1428 // `Step`: 1429 1430 // 1. NSW/NUW flags on the step increment. 1431 auto PreStartFlags = SA->getNoWrapFlags() & SCEV::FlagNUW; 1432 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1433 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1434 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1435 1436 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1437 // "S+X does not sign/unsign-overflow". 1438 // 1439 1440 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1441 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1442 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1443 return PreStart; 1444 1445 // 2. Direct overflow check on the step operation's expression. 1446 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1447 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1448 const SCEV *OperandExtendedStart = 1449 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1450 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1451 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1452 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1453 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1454 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1455 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1456 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1457 } 1458 return PreStart; 1459 } 1460 1461 // 3. Loop precondition. 1462 ICmpInst::Predicate Pred; 1463 const SCEV *OverflowLimit = 1464 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1465 1466 if (OverflowLimit && 1467 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1468 return PreStart; 1469 1470 return nullptr; 1471 } 1472 1473 // Get the normalized zero or sign extended expression for this AddRec's Start. 1474 template <typename ExtendOpTy> 1475 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1476 ScalarEvolution *SE, 1477 unsigned Depth) { 1478 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1479 1480 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1481 if (!PreStart) 1482 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1483 1484 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1485 Depth), 1486 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1487 } 1488 1489 // Try to prove away overflow by looking at "nearby" add recurrences. A 1490 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1491 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1492 // 1493 // Formally: 1494 // 1495 // {S,+,X} == {S-T,+,X} + T 1496 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1497 // 1498 // If ({S-T,+,X} + T) does not overflow ... (1) 1499 // 1500 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1501 // 1502 // If {S-T,+,X} does not overflow ... (2) 1503 // 1504 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1505 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1506 // 1507 // If (S-T)+T does not overflow ... (3) 1508 // 1509 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1510 // == {Ext(S),+,Ext(X)} == LHS 1511 // 1512 // Thus, if (1), (2) and (3) are true for some T, then 1513 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1514 // 1515 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1516 // does not overflow" restricted to the 0th iteration. Therefore we only need 1517 // to check for (1) and (2). 1518 // 1519 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1520 // is `Delta` (defined below). 1521 template <typename ExtendOpTy> 1522 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1523 const SCEV *Step, 1524 const Loop *L) { 1525 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1526 1527 // We restrict `Start` to a constant to prevent SCEV from spending too much 1528 // time here. It is correct (but more expensive) to continue with a 1529 // non-constant `Start` and do a general SCEV subtraction to compute 1530 // `PreStart` below. 1531 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1532 if (!StartC) 1533 return false; 1534 1535 APInt StartAI = StartC->getAPInt(); 1536 1537 for (unsigned Delta : {-2, -1, 1, 2}) { 1538 const SCEV *PreStart = getConstant(StartAI - Delta); 1539 1540 FoldingSetNodeID ID; 1541 ID.AddInteger(scAddRecExpr); 1542 ID.AddPointer(PreStart); 1543 ID.AddPointer(Step); 1544 ID.AddPointer(L); 1545 void *IP = nullptr; 1546 const auto *PreAR = 1547 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1548 1549 // Give up if we don't already have the add recurrence we need because 1550 // actually constructing an add recurrence is relatively expensive. 1551 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1552 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1553 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1554 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1555 DeltaS, &Pred, this); 1556 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1557 return true; 1558 } 1559 } 1560 1561 return false; 1562 } 1563 1564 const SCEV * 1565 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1566 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1567 "This is not an extending conversion!"); 1568 assert(isSCEVable(Ty) && 1569 "This is not a conversion to a SCEVable type!"); 1570 Ty = getEffectiveSCEVType(Ty); 1571 1572 // Fold if the operand is constant. 1573 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1574 return getConstant( 1575 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1576 1577 // zext(zext(x)) --> zext(x) 1578 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1579 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1580 1581 // Before doing any expensive analysis, check to see if we've already 1582 // computed a SCEV for this Op and Ty. 1583 FoldingSetNodeID ID; 1584 ID.AddInteger(scZeroExtend); 1585 ID.AddPointer(Op); 1586 ID.AddPointer(Ty); 1587 void *IP = nullptr; 1588 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1589 if (Depth > MaxExtDepth) { 1590 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1591 Op, Ty); 1592 UniqueSCEVs.InsertNode(S, IP); 1593 addToLoopUseLists(S); 1594 return S; 1595 } 1596 1597 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1598 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1599 // It's possible the bits taken off by the truncate were all zero bits. If 1600 // so, we should be able to simplify this further. 1601 const SCEV *X = ST->getOperand(); 1602 ConstantRange CR = getUnsignedRange(X); 1603 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1604 unsigned NewBits = getTypeSizeInBits(Ty); 1605 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1606 CR.zextOrTrunc(NewBits))) 1607 return getTruncateOrZeroExtend(X, Ty); 1608 } 1609 1610 // If the input value is a chrec scev, and we can prove that the value 1611 // did not overflow the old, smaller, value, we can zero extend all of the 1612 // operands (often constants). This allows analysis of something like 1613 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1614 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1615 if (AR->isAffine()) { 1616 const SCEV *Start = AR->getStart(); 1617 const SCEV *Step = AR->getStepRecurrence(*this); 1618 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1619 const Loop *L = AR->getLoop(); 1620 1621 if (!AR->hasNoUnsignedWrap()) { 1622 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1623 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1624 } 1625 1626 // If we have special knowledge that this addrec won't overflow, 1627 // we don't need to do any further analysis. 1628 if (AR->hasNoUnsignedWrap()) 1629 return getAddRecExpr( 1630 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1631 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1632 1633 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1634 // Note that this serves two purposes: It filters out loops that are 1635 // simply not analyzable, and it covers the case where this code is 1636 // being called from within backedge-taken count analysis, such that 1637 // attempting to ask for the backedge-taken count would likely result 1638 // in infinite recursion. In the later case, the analysis code will 1639 // cope with a conservative value, and it will take care to purge 1640 // that value once it has finished. 1641 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1642 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1643 // Manually compute the final value for AR, checking for 1644 // overflow. 1645 1646 // Check whether the backedge-taken count can be losslessly casted to 1647 // the addrec's type. The count is always unsigned. 1648 const SCEV *CastedMaxBECount = 1649 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1650 const SCEV *RecastedMaxBECount = 1651 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1652 if (MaxBECount == RecastedMaxBECount) { 1653 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1654 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1655 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1656 SCEV::FlagAnyWrap, Depth + 1); 1657 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1658 SCEV::FlagAnyWrap, 1659 Depth + 1), 1660 WideTy, Depth + 1); 1661 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1662 const SCEV *WideMaxBECount = 1663 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1664 const SCEV *OperandExtendedAdd = 1665 getAddExpr(WideStart, 1666 getMulExpr(WideMaxBECount, 1667 getZeroExtendExpr(Step, WideTy, Depth + 1), 1668 SCEV::FlagAnyWrap, Depth + 1), 1669 SCEV::FlagAnyWrap, Depth + 1); 1670 if (ZAdd == OperandExtendedAdd) { 1671 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1672 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1673 // Return the expression with the addrec on the outside. 1674 return getAddRecExpr( 1675 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1676 Depth + 1), 1677 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1678 AR->getNoWrapFlags()); 1679 } 1680 // Similar to above, only this time treat the step value as signed. 1681 // This covers loops that count down. 1682 OperandExtendedAdd = 1683 getAddExpr(WideStart, 1684 getMulExpr(WideMaxBECount, 1685 getSignExtendExpr(Step, WideTy, Depth + 1), 1686 SCEV::FlagAnyWrap, Depth + 1), 1687 SCEV::FlagAnyWrap, Depth + 1); 1688 if (ZAdd == OperandExtendedAdd) { 1689 // Cache knowledge of AR NW, which is propagated to this AddRec. 1690 // Negative step causes unsigned wrap, but it still can't self-wrap. 1691 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1692 // Return the expression with the addrec on the outside. 1693 return getAddRecExpr( 1694 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1695 Depth + 1), 1696 getSignExtendExpr(Step, Ty, Depth + 1), L, 1697 AR->getNoWrapFlags()); 1698 } 1699 } 1700 } 1701 1702 // Normally, in the cases we can prove no-overflow via a 1703 // backedge guarding condition, we can also compute a backedge 1704 // taken count for the loop. The exceptions are assumptions and 1705 // guards present in the loop -- SCEV is not great at exploiting 1706 // these to compute max backedge taken counts, but can still use 1707 // these to prove lack of overflow. Use this fact to avoid 1708 // doing extra work that may not pay off. 1709 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1710 !AC.assumptions().empty()) { 1711 // If the backedge is guarded by a comparison with the pre-inc 1712 // value the addrec is safe. Also, if the entry is guarded by 1713 // a comparison with the start value and the backedge is 1714 // guarded by a comparison with the post-inc value, the addrec 1715 // is safe. 1716 if (isKnownPositive(Step)) { 1717 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1718 getUnsignedRangeMax(Step)); 1719 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1720 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1721 // Cache knowledge of AR NUW, which is propagated to this 1722 // AddRec. 1723 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1724 // Return the expression with the addrec on the outside. 1725 return getAddRecExpr( 1726 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1727 Depth + 1), 1728 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1729 AR->getNoWrapFlags()); 1730 } 1731 } else if (isKnownNegative(Step)) { 1732 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1733 getSignedRangeMin(Step)); 1734 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1735 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1736 // Cache knowledge of AR NW, which is propagated to this 1737 // AddRec. Negative step causes unsigned wrap, but it 1738 // still can't self-wrap. 1739 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1740 // Return the expression with the addrec on the outside. 1741 return getAddRecExpr( 1742 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1743 Depth + 1), 1744 getSignExtendExpr(Step, Ty, Depth + 1), L, 1745 AR->getNoWrapFlags()); 1746 } 1747 } 1748 } 1749 1750 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1751 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1752 return getAddRecExpr( 1753 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1754 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1755 } 1756 } 1757 1758 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1759 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1760 if (SA->hasNoUnsignedWrap()) { 1761 // If the addition does not unsign overflow then we can, by definition, 1762 // commute the zero extension with the addition operation. 1763 SmallVector<const SCEV *, 4> Ops; 1764 for (const auto *Op : SA->operands()) 1765 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1766 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1767 } 1768 } 1769 1770 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1771 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1772 if (SM->hasNoUnsignedWrap()) { 1773 // If the multiply does not unsign overflow then we can, by definition, 1774 // commute the zero extension with the multiply operation. 1775 SmallVector<const SCEV *, 4> Ops; 1776 for (const auto *Op : SM->operands()) 1777 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1778 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1779 } 1780 1781 // zext(2^K * (trunc X to iN)) to iM -> 1782 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1783 // 1784 // Proof: 1785 // 1786 // zext(2^K * (trunc X to iN)) to iM 1787 // = zext((trunc X to iN) << K) to iM 1788 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1789 // (because shl removes the top K bits) 1790 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1791 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1792 // 1793 if (SM->getNumOperands() == 2) 1794 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1795 if (MulLHS->getAPInt().isPowerOf2()) 1796 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1797 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1798 MulLHS->getAPInt().logBase2(); 1799 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1800 return getMulExpr( 1801 getZeroExtendExpr(MulLHS, Ty), 1802 getZeroExtendExpr( 1803 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1804 SCEV::FlagNUW, Depth + 1); 1805 } 1806 } 1807 1808 // The cast wasn't folded; create an explicit cast node. 1809 // Recompute the insert position, as it may have been invalidated. 1810 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1811 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1812 Op, Ty); 1813 UniqueSCEVs.InsertNode(S, IP); 1814 addToLoopUseLists(S); 1815 return S; 1816 } 1817 1818 const SCEV * 1819 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1820 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1821 "This is not an extending conversion!"); 1822 assert(isSCEVable(Ty) && 1823 "This is not a conversion to a SCEVable type!"); 1824 Ty = getEffectiveSCEVType(Ty); 1825 1826 // Fold if the operand is constant. 1827 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1828 return getConstant( 1829 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1830 1831 // sext(sext(x)) --> sext(x) 1832 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1833 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1834 1835 // sext(zext(x)) --> zext(x) 1836 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1837 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1838 1839 // Before doing any expensive analysis, check to see if we've already 1840 // computed a SCEV for this Op and Ty. 1841 FoldingSetNodeID ID; 1842 ID.AddInteger(scSignExtend); 1843 ID.AddPointer(Op); 1844 ID.AddPointer(Ty); 1845 void *IP = nullptr; 1846 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1847 // Limit recursion depth. 1848 if (Depth > MaxExtDepth) { 1849 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1850 Op, Ty); 1851 UniqueSCEVs.InsertNode(S, IP); 1852 addToLoopUseLists(S); 1853 return S; 1854 } 1855 1856 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1857 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1858 // It's possible the bits taken off by the truncate were all sign bits. If 1859 // so, we should be able to simplify this further. 1860 const SCEV *X = ST->getOperand(); 1861 ConstantRange CR = getSignedRange(X); 1862 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1863 unsigned NewBits = getTypeSizeInBits(Ty); 1864 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1865 CR.sextOrTrunc(NewBits))) 1866 return getTruncateOrSignExtend(X, Ty); 1867 } 1868 1869 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1870 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1871 if (SA->getNumOperands() == 2) { 1872 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1873 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1874 if (SMul && SC1) { 1875 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1876 const APInt &C1 = SC1->getAPInt(); 1877 const APInt &C2 = SC2->getAPInt(); 1878 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1879 C2.ugt(C1) && C2.isPowerOf2()) 1880 return getAddExpr(getSignExtendExpr(SC1, Ty, Depth + 1), 1881 getSignExtendExpr(SMul, Ty, Depth + 1), 1882 SCEV::FlagAnyWrap, Depth + 1); 1883 } 1884 } 1885 } 1886 1887 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1888 if (SA->hasNoSignedWrap()) { 1889 // If the addition does not sign overflow then we can, by definition, 1890 // commute the sign extension with the addition operation. 1891 SmallVector<const SCEV *, 4> Ops; 1892 for (const auto *Op : SA->operands()) 1893 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1894 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1895 } 1896 } 1897 // If the input value is a chrec scev, and we can prove that the value 1898 // did not overflow the old, smaller, value, we can sign extend all of the 1899 // operands (often constants). This allows analysis of something like 1900 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1901 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1902 if (AR->isAffine()) { 1903 const SCEV *Start = AR->getStart(); 1904 const SCEV *Step = AR->getStepRecurrence(*this); 1905 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1906 const Loop *L = AR->getLoop(); 1907 1908 if (!AR->hasNoSignedWrap()) { 1909 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1910 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1911 } 1912 1913 // If we have special knowledge that this addrec won't overflow, 1914 // we don't need to do any further analysis. 1915 if (AR->hasNoSignedWrap()) 1916 return getAddRecExpr( 1917 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1918 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1919 1920 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1921 // Note that this serves two purposes: It filters out loops that are 1922 // simply not analyzable, and it covers the case where this code is 1923 // being called from within backedge-taken count analysis, such that 1924 // attempting to ask for the backedge-taken count would likely result 1925 // in infinite recursion. In the later case, the analysis code will 1926 // cope with a conservative value, and it will take care to purge 1927 // that value once it has finished. 1928 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1929 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1930 // Manually compute the final value for AR, checking for 1931 // overflow. 1932 1933 // Check whether the backedge-taken count can be losslessly casted to 1934 // the addrec's type. The count is always unsigned. 1935 const SCEV *CastedMaxBECount = 1936 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1937 const SCEV *RecastedMaxBECount = 1938 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1939 if (MaxBECount == RecastedMaxBECount) { 1940 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1941 // Check whether Start+Step*MaxBECount has no signed overflow. 1942 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1943 SCEV::FlagAnyWrap, Depth + 1); 1944 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1945 SCEV::FlagAnyWrap, 1946 Depth + 1), 1947 WideTy, Depth + 1); 1948 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1949 const SCEV *WideMaxBECount = 1950 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1951 const SCEV *OperandExtendedAdd = 1952 getAddExpr(WideStart, 1953 getMulExpr(WideMaxBECount, 1954 getSignExtendExpr(Step, WideTy, Depth + 1), 1955 SCEV::FlagAnyWrap, Depth + 1), 1956 SCEV::FlagAnyWrap, Depth + 1); 1957 if (SAdd == OperandExtendedAdd) { 1958 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1959 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1960 // Return the expression with the addrec on the outside. 1961 return getAddRecExpr( 1962 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1963 Depth + 1), 1964 getSignExtendExpr(Step, Ty, Depth + 1), L, 1965 AR->getNoWrapFlags()); 1966 } 1967 // Similar to above, only this time treat the step value as unsigned. 1968 // This covers loops that count up with an unsigned step. 1969 OperandExtendedAdd = 1970 getAddExpr(WideStart, 1971 getMulExpr(WideMaxBECount, 1972 getZeroExtendExpr(Step, WideTy, Depth + 1), 1973 SCEV::FlagAnyWrap, Depth + 1), 1974 SCEV::FlagAnyWrap, Depth + 1); 1975 if (SAdd == OperandExtendedAdd) { 1976 // If AR wraps around then 1977 // 1978 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1979 // => SAdd != OperandExtendedAdd 1980 // 1981 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1982 // (SAdd == OperandExtendedAdd => AR is NW) 1983 1984 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1985 1986 // Return the expression with the addrec on the outside. 1987 return getAddRecExpr( 1988 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1989 Depth + 1), 1990 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1991 AR->getNoWrapFlags()); 1992 } 1993 } 1994 } 1995 1996 // Normally, in the cases we can prove no-overflow via a 1997 // backedge guarding condition, we can also compute a backedge 1998 // taken count for the loop. The exceptions are assumptions and 1999 // guards present in the loop -- SCEV is not great at exploiting 2000 // these to compute max backedge taken counts, but can still use 2001 // these to prove lack of overflow. Use this fact to avoid 2002 // doing extra work that may not pay off. 2003 2004 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 2005 !AC.assumptions().empty()) { 2006 // If the backedge is guarded by a comparison with the pre-inc 2007 // value the addrec is safe. Also, if the entry is guarded by 2008 // a comparison with the start value and the backedge is 2009 // guarded by a comparison with the post-inc value, the addrec 2010 // is safe. 2011 ICmpInst::Predicate Pred; 2012 const SCEV *OverflowLimit = 2013 getSignedOverflowLimitForStep(Step, &Pred, this); 2014 if (OverflowLimit && 2015 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 2016 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 2017 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 2018 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2019 return getAddRecExpr( 2020 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2021 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2022 } 2023 } 2024 2025 // If Start and Step are constants, check if we can apply this 2026 // transformation: 2027 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 2028 auto *SC1 = dyn_cast<SCEVConstant>(Start); 2029 auto *SC2 = dyn_cast<SCEVConstant>(Step); 2030 if (SC1 && SC2) { 2031 const APInt &C1 = SC1->getAPInt(); 2032 const APInt &C2 = SC2->getAPInt(); 2033 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 2034 C2.isPowerOf2()) { 2035 Start = getSignExtendExpr(Start, Ty, Depth + 1); 2036 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 2037 AR->getNoWrapFlags()); 2038 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty, Depth + 1), 2039 SCEV::FlagAnyWrap, Depth + 1); 2040 } 2041 } 2042 2043 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2044 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2045 return getAddRecExpr( 2046 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2047 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2048 } 2049 } 2050 2051 // If the input value is provably positive and we could not simplify 2052 // away the sext build a zext instead. 2053 if (isKnownNonNegative(Op)) 2054 return getZeroExtendExpr(Op, Ty, Depth + 1); 2055 2056 // The cast wasn't folded; create an explicit cast node. 2057 // Recompute the insert position, as it may have been invalidated. 2058 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2059 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2060 Op, Ty); 2061 UniqueSCEVs.InsertNode(S, IP); 2062 addToLoopUseLists(S); 2063 return S; 2064 } 2065 2066 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2067 /// unspecified bits out to the given type. 2068 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2069 Type *Ty) { 2070 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2071 "This is not an extending conversion!"); 2072 assert(isSCEVable(Ty) && 2073 "This is not a conversion to a SCEVable type!"); 2074 Ty = getEffectiveSCEVType(Ty); 2075 2076 // Sign-extend negative constants. 2077 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2078 if (SC->getAPInt().isNegative()) 2079 return getSignExtendExpr(Op, Ty); 2080 2081 // Peel off a truncate cast. 2082 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2083 const SCEV *NewOp = T->getOperand(); 2084 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2085 return getAnyExtendExpr(NewOp, Ty); 2086 return getTruncateOrNoop(NewOp, Ty); 2087 } 2088 2089 // Next try a zext cast. If the cast is folded, use it. 2090 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2091 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2092 return ZExt; 2093 2094 // Next try a sext cast. If the cast is folded, use it. 2095 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2096 if (!isa<SCEVSignExtendExpr>(SExt)) 2097 return SExt; 2098 2099 // Force the cast to be folded into the operands of an addrec. 2100 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2101 SmallVector<const SCEV *, 4> Ops; 2102 for (const SCEV *Op : AR->operands()) 2103 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2104 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2105 } 2106 2107 // If the expression is obviously signed, use the sext cast value. 2108 if (isa<SCEVSMaxExpr>(Op)) 2109 return SExt; 2110 2111 // Absent any other information, use the zext cast value. 2112 return ZExt; 2113 } 2114 2115 /// Process the given Ops list, which is a list of operands to be added under 2116 /// the given scale, update the given map. This is a helper function for 2117 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2118 /// that would form an add expression like this: 2119 /// 2120 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2121 /// 2122 /// where A and B are constants, update the map with these values: 2123 /// 2124 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2125 /// 2126 /// and add 13 + A*B*29 to AccumulatedConstant. 2127 /// This will allow getAddRecExpr to produce this: 2128 /// 2129 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2130 /// 2131 /// This form often exposes folding opportunities that are hidden in 2132 /// the original operand list. 2133 /// 2134 /// Return true iff it appears that any interesting folding opportunities 2135 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2136 /// the common case where no interesting opportunities are present, and 2137 /// is also used as a check to avoid infinite recursion. 2138 static bool 2139 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2140 SmallVectorImpl<const SCEV *> &NewOps, 2141 APInt &AccumulatedConstant, 2142 const SCEV *const *Ops, size_t NumOperands, 2143 const APInt &Scale, 2144 ScalarEvolution &SE) { 2145 bool Interesting = false; 2146 2147 // Iterate over the add operands. They are sorted, with constants first. 2148 unsigned i = 0; 2149 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2150 ++i; 2151 // Pull a buried constant out to the outside. 2152 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2153 Interesting = true; 2154 AccumulatedConstant += Scale * C->getAPInt(); 2155 } 2156 2157 // Next comes everything else. We're especially interested in multiplies 2158 // here, but they're in the middle, so just visit the rest with one loop. 2159 for (; i != NumOperands; ++i) { 2160 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2161 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2162 APInt NewScale = 2163 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2164 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2165 // A multiplication of a constant with another add; recurse. 2166 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2167 Interesting |= 2168 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2169 Add->op_begin(), Add->getNumOperands(), 2170 NewScale, SE); 2171 } else { 2172 // A multiplication of a constant with some other value. Update 2173 // the map. 2174 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2175 const SCEV *Key = SE.getMulExpr(MulOps); 2176 auto Pair = M.insert({Key, NewScale}); 2177 if (Pair.second) { 2178 NewOps.push_back(Pair.first->first); 2179 } else { 2180 Pair.first->second += NewScale; 2181 // The map already had an entry for this value, which may indicate 2182 // a folding opportunity. 2183 Interesting = true; 2184 } 2185 } 2186 } else { 2187 // An ordinary operand. Update the map. 2188 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2189 M.insert({Ops[i], Scale}); 2190 if (Pair.second) { 2191 NewOps.push_back(Pair.first->first); 2192 } else { 2193 Pair.first->second += Scale; 2194 // The map already had an entry for this value, which may indicate 2195 // a folding opportunity. 2196 Interesting = true; 2197 } 2198 } 2199 } 2200 2201 return Interesting; 2202 } 2203 2204 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2205 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2206 // can't-overflow flags for the operation if possible. 2207 static SCEV::NoWrapFlags 2208 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2209 const SmallVectorImpl<const SCEV *> &Ops, 2210 SCEV::NoWrapFlags Flags) { 2211 using namespace std::placeholders; 2212 2213 using OBO = OverflowingBinaryOperator; 2214 2215 bool CanAnalyze = 2216 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2217 (void)CanAnalyze; 2218 assert(CanAnalyze && "don't call from other places!"); 2219 2220 SCEV::NoWrapFlags SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2221 SCEV::NoWrapFlags SignOrUnsignWrap = Flags & SignOrUnsignMask; 2222 2223 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2224 auto IsKnownNonNegative = [&](const SCEV *S) { 2225 return SE->isKnownNonNegative(S); 2226 }; 2227 2228 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2229 Flags |= SignOrUnsignMask; 2230 2231 SignOrUnsignWrap = Flags & SignOrUnsignMask; 2232 2233 if (SignOrUnsignWrap != SignOrUnsignMask && 2234 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2235 isa<SCEVConstant>(Ops[0])) { 2236 2237 auto Opcode = [&] { 2238 switch (Type) { 2239 case scAddExpr: 2240 return Instruction::Add; 2241 case scMulExpr: 2242 return Instruction::Mul; 2243 default: 2244 llvm_unreachable("Unexpected SCEV op."); 2245 } 2246 }(); 2247 2248 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2249 2250 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2251 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2252 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2253 Opcode, C, OBO::NoSignedWrap); 2254 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2255 Flags |= SCEV::FlagNSW; 2256 } 2257 2258 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2259 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2260 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2261 Instruction::Add, C, OBO::NoUnsignedWrap); 2262 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2263 Flags |= SCEV::FlagNUW; 2264 } 2265 } 2266 2267 return Flags; 2268 } 2269 2270 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2271 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2272 } 2273 2274 /// Get a canonical add expression, or something simpler if possible. 2275 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2276 SCEV::NoWrapFlags Flags, 2277 unsigned Depth) { 2278 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2279 "only nuw or nsw allowed"); 2280 assert(!Ops.empty() && "Cannot get empty add!"); 2281 if (Ops.size() == 1) return Ops[0]; 2282 #ifndef NDEBUG 2283 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2284 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2285 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2286 "SCEVAddExpr operand types don't match!"); 2287 #endif 2288 2289 // Sort by complexity, this groups all similar expression types together. 2290 GroupByComplexity(Ops, &LI, DT); 2291 2292 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2293 2294 // If there are any constants, fold them together. 2295 unsigned Idx = 0; 2296 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2297 ++Idx; 2298 assert(Idx < Ops.size()); 2299 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2300 // We found two constants, fold them together! 2301 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2302 if (Ops.size() == 2) return Ops[0]; 2303 Ops.erase(Ops.begin()+1); // Erase the folded element 2304 LHSC = cast<SCEVConstant>(Ops[0]); 2305 } 2306 2307 // If we are left with a constant zero being added, strip it off. 2308 if (LHSC->getValue()->isZero()) { 2309 Ops.erase(Ops.begin()); 2310 --Idx; 2311 } 2312 2313 if (Ops.size() == 1) return Ops[0]; 2314 } 2315 2316 // Limit recursion calls depth. 2317 if (Depth > MaxArithDepth) 2318 return getOrCreateAddExpr(Ops, Flags); 2319 2320 // Okay, check to see if the same value occurs in the operand list more than 2321 // once. If so, merge them together into an multiply expression. Since we 2322 // sorted the list, these values are required to be adjacent. 2323 Type *Ty = Ops[0]->getType(); 2324 bool FoundMatch = false; 2325 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2326 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2327 // Scan ahead to count how many equal operands there are. 2328 unsigned Count = 2; 2329 while (i+Count != e && Ops[i+Count] == Ops[i]) 2330 ++Count; 2331 // Merge the values into a multiply. 2332 const SCEV *Scale = getConstant(Ty, Count); 2333 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2334 if (Ops.size() == Count) 2335 return Mul; 2336 Ops[i] = Mul; 2337 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2338 --i; e -= Count - 1; 2339 FoundMatch = true; 2340 } 2341 if (FoundMatch) 2342 return getAddExpr(Ops, Flags, Depth + 1); 2343 2344 // Check for truncates. If all the operands are truncated from the same 2345 // type, see if factoring out the truncate would permit the result to be 2346 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2347 // if the contents of the resulting outer trunc fold to something simple. 2348 auto FindTruncSrcType = [&]() -> Type * { 2349 // We're ultimately looking to fold an addrec of truncs and muls of only 2350 // constants and truncs, so if we find any other types of SCEV 2351 // as operands of the addrec then we bail and return nullptr here. 2352 // Otherwise, we return the type of the operand of a trunc that we find. 2353 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2354 return T->getOperand()->getType(); 2355 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2356 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2357 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2358 return T->getOperand()->getType(); 2359 } 2360 return nullptr; 2361 }; 2362 if (auto *SrcType = FindTruncSrcType()) { 2363 SmallVector<const SCEV *, 8> LargeOps; 2364 bool Ok = true; 2365 // Check all the operands to see if they can be represented in the 2366 // source type of the truncate. 2367 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2368 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2369 if (T->getOperand()->getType() != SrcType) { 2370 Ok = false; 2371 break; 2372 } 2373 LargeOps.push_back(T->getOperand()); 2374 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2375 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2376 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2377 SmallVector<const SCEV *, 8> LargeMulOps; 2378 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2379 if (const SCEVTruncateExpr *T = 2380 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2381 if (T->getOperand()->getType() != SrcType) { 2382 Ok = false; 2383 break; 2384 } 2385 LargeMulOps.push_back(T->getOperand()); 2386 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2387 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2388 } else { 2389 Ok = false; 2390 break; 2391 } 2392 } 2393 if (Ok) 2394 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2395 } else { 2396 Ok = false; 2397 break; 2398 } 2399 } 2400 if (Ok) { 2401 // Evaluate the expression in the larger type. 2402 const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1); 2403 // If it folds to something simple, use it. Otherwise, don't. 2404 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2405 return getTruncateExpr(Fold, Ty); 2406 } 2407 } 2408 2409 // Skip past any other cast SCEVs. 2410 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2411 ++Idx; 2412 2413 // If there are add operands they would be next. 2414 if (Idx < Ops.size()) { 2415 bool DeletedAdd = false; 2416 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2417 if (Ops.size() > AddOpsInlineThreshold || 2418 Add->getNumOperands() > AddOpsInlineThreshold) 2419 break; 2420 // If we have an add, expand the add operands onto the end of the operands 2421 // list. 2422 Ops.erase(Ops.begin()+Idx); 2423 Ops.append(Add->op_begin(), Add->op_end()); 2424 DeletedAdd = true; 2425 } 2426 2427 // If we deleted at least one add, we added operands to the end of the list, 2428 // and they are not necessarily sorted. Recurse to resort and resimplify 2429 // any operands we just acquired. 2430 if (DeletedAdd) 2431 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2432 } 2433 2434 // Skip over the add expression until we get to a multiply. 2435 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2436 ++Idx; 2437 2438 // Check to see if there are any folding opportunities present with 2439 // operands multiplied by constant values. 2440 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2441 uint64_t BitWidth = getTypeSizeInBits(Ty); 2442 DenseMap<const SCEV *, APInt> M; 2443 SmallVector<const SCEV *, 8> NewOps; 2444 APInt AccumulatedConstant(BitWidth, 0); 2445 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2446 Ops.data(), Ops.size(), 2447 APInt(BitWidth, 1), *this)) { 2448 struct APIntCompare { 2449 bool operator()(const APInt &LHS, const APInt &RHS) const { 2450 return LHS.ult(RHS); 2451 } 2452 }; 2453 2454 // Some interesting folding opportunity is present, so its worthwhile to 2455 // re-generate the operands list. Group the operands by constant scale, 2456 // to avoid multiplying by the same constant scale multiple times. 2457 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2458 for (const SCEV *NewOp : NewOps) 2459 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2460 // Re-generate the operands list. 2461 Ops.clear(); 2462 if (AccumulatedConstant != 0) 2463 Ops.push_back(getConstant(AccumulatedConstant)); 2464 for (auto &MulOp : MulOpLists) 2465 if (MulOp.first != 0) 2466 Ops.push_back(getMulExpr( 2467 getConstant(MulOp.first), 2468 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2469 SCEV::FlagAnyWrap, Depth + 1)); 2470 if (Ops.empty()) 2471 return getZero(Ty); 2472 if (Ops.size() == 1) 2473 return Ops[0]; 2474 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2475 } 2476 } 2477 2478 // If we are adding something to a multiply expression, make sure the 2479 // something is not already an operand of the multiply. If so, merge it into 2480 // the multiply. 2481 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2482 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2483 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2484 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2485 if (isa<SCEVConstant>(MulOpSCEV)) 2486 continue; 2487 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2488 if (MulOpSCEV == Ops[AddOp]) { 2489 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2490 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2491 if (Mul->getNumOperands() != 2) { 2492 // If the multiply has more than two operands, we must get the 2493 // Y*Z term. 2494 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2495 Mul->op_begin()+MulOp); 2496 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2497 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2498 } 2499 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2500 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2501 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2502 SCEV::FlagAnyWrap, Depth + 1); 2503 if (Ops.size() == 2) return OuterMul; 2504 if (AddOp < Idx) { 2505 Ops.erase(Ops.begin()+AddOp); 2506 Ops.erase(Ops.begin()+Idx-1); 2507 } else { 2508 Ops.erase(Ops.begin()+Idx); 2509 Ops.erase(Ops.begin()+AddOp-1); 2510 } 2511 Ops.push_back(OuterMul); 2512 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2513 } 2514 2515 // Check this multiply against other multiplies being added together. 2516 for (unsigned OtherMulIdx = Idx+1; 2517 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2518 ++OtherMulIdx) { 2519 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2520 // If MulOp occurs in OtherMul, we can fold the two multiplies 2521 // together. 2522 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2523 OMulOp != e; ++OMulOp) 2524 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2525 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2526 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2527 if (Mul->getNumOperands() != 2) { 2528 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2529 Mul->op_begin()+MulOp); 2530 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2531 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2532 } 2533 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2534 if (OtherMul->getNumOperands() != 2) { 2535 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2536 OtherMul->op_begin()+OMulOp); 2537 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2538 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2539 } 2540 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2541 const SCEV *InnerMulSum = 2542 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2543 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2544 SCEV::FlagAnyWrap, Depth + 1); 2545 if (Ops.size() == 2) return OuterMul; 2546 Ops.erase(Ops.begin()+Idx); 2547 Ops.erase(Ops.begin()+OtherMulIdx-1); 2548 Ops.push_back(OuterMul); 2549 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2550 } 2551 } 2552 } 2553 } 2554 2555 // If there are any add recurrences in the operands list, see if any other 2556 // added values are loop invariant. If so, we can fold them into the 2557 // recurrence. 2558 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2559 ++Idx; 2560 2561 // Scan over all recurrences, trying to fold loop invariants into them. 2562 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2563 // Scan all of the other operands to this add and add them to the vector if 2564 // they are loop invariant w.r.t. the recurrence. 2565 SmallVector<const SCEV *, 8> LIOps; 2566 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2567 const Loop *AddRecLoop = AddRec->getLoop(); 2568 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2569 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2570 LIOps.push_back(Ops[i]); 2571 Ops.erase(Ops.begin()+i); 2572 --i; --e; 2573 } 2574 2575 // If we found some loop invariants, fold them into the recurrence. 2576 if (!LIOps.empty()) { 2577 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2578 LIOps.push_back(AddRec->getStart()); 2579 2580 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2581 AddRec->op_end()); 2582 // This follows from the fact that the no-wrap flags on the outer add 2583 // expression are applicable on the 0th iteration, when the add recurrence 2584 // will be equal to its start value. 2585 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2586 2587 // Build the new addrec. Propagate the NUW and NSW flags if both the 2588 // outer add and the inner addrec are guaranteed to have no overflow. 2589 // Always propagate NW. 2590 Flags = AddRec->getNoWrapFlags(Flags | SCEV::FlagNW); 2591 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2592 2593 // If all of the other operands were loop invariant, we are done. 2594 if (Ops.size() == 1) return NewRec; 2595 2596 // Otherwise, add the folded AddRec by the non-invariant parts. 2597 for (unsigned i = 0;; ++i) 2598 if (Ops[i] == AddRec) { 2599 Ops[i] = NewRec; 2600 break; 2601 } 2602 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2603 } 2604 2605 // Okay, if there weren't any loop invariants to be folded, check to see if 2606 // there are multiple AddRec's with the same loop induction variable being 2607 // added together. If so, we can fold them. 2608 for (unsigned OtherIdx = Idx+1; 2609 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2610 ++OtherIdx) { 2611 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2612 // so that the 1st found AddRecExpr is dominated by all others. 2613 assert(DT.dominates( 2614 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2615 AddRec->getLoop()->getHeader()) && 2616 "AddRecExprs are not sorted in reverse dominance order?"); 2617 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2618 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2619 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2620 AddRec->op_end()); 2621 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2622 ++OtherIdx) { 2623 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2624 if (OtherAddRec->getLoop() == AddRecLoop) { 2625 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2626 i != e; ++i) { 2627 if (i >= AddRecOps.size()) { 2628 AddRecOps.append(OtherAddRec->op_begin()+i, 2629 OtherAddRec->op_end()); 2630 break; 2631 } 2632 SmallVector<const SCEV *, 2> TwoOps = { 2633 AddRecOps[i], OtherAddRec->getOperand(i)}; 2634 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2635 } 2636 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2637 } 2638 } 2639 // Step size has changed, so we cannot guarantee no self-wraparound. 2640 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2641 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2642 } 2643 } 2644 2645 // Otherwise couldn't fold anything into this recurrence. Move onto the 2646 // next one. 2647 } 2648 2649 // Okay, it looks like we really DO need an add expr. Check to see if we 2650 // already have one, otherwise create a new one. 2651 return getOrCreateAddExpr(Ops, Flags); 2652 } 2653 2654 const SCEV * 2655 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2656 SCEV::NoWrapFlags Flags) { 2657 FoldingSetNodeID ID; 2658 ID.AddInteger(scAddExpr); 2659 for (const SCEV *Op : Ops) 2660 ID.AddPointer(Op); 2661 void *IP = nullptr; 2662 SCEVAddExpr *S = 2663 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2664 if (!S) { 2665 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2666 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2667 S = new (SCEVAllocator) 2668 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2669 UniqueSCEVs.InsertNode(S, IP); 2670 addToLoopUseLists(S); 2671 } 2672 S->setNoWrapFlags(Flags); 2673 return S; 2674 } 2675 2676 const SCEV * 2677 ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2678 SCEV::NoWrapFlags Flags) { 2679 FoldingSetNodeID ID; 2680 ID.AddInteger(scMulExpr); 2681 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2682 ID.AddPointer(Ops[i]); 2683 void *IP = nullptr; 2684 SCEVMulExpr *S = 2685 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2686 if (!S) { 2687 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2688 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2689 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2690 O, Ops.size()); 2691 UniqueSCEVs.InsertNode(S, IP); 2692 addToLoopUseLists(S); 2693 } 2694 S->setNoWrapFlags(Flags); 2695 return S; 2696 } 2697 2698 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2699 uint64_t k = i*j; 2700 if (j > 1 && k / j != i) Overflow = true; 2701 return k; 2702 } 2703 2704 /// Compute the result of "n choose k", the binomial coefficient. If an 2705 /// intermediate computation overflows, Overflow will be set and the return will 2706 /// be garbage. Overflow is not cleared on absence of overflow. 2707 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2708 // We use the multiplicative formula: 2709 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2710 // At each iteration, we take the n-th term of the numeral and divide by the 2711 // (k-n)th term of the denominator. This division will always produce an 2712 // integral result, and helps reduce the chance of overflow in the 2713 // intermediate computations. However, we can still overflow even when the 2714 // final result would fit. 2715 2716 if (n == 0 || n == k) return 1; 2717 if (k > n) return 0; 2718 2719 if (k > n/2) 2720 k = n-k; 2721 2722 uint64_t r = 1; 2723 for (uint64_t i = 1; i <= k; ++i) { 2724 r = umul_ov(r, n-(i-1), Overflow); 2725 r /= i; 2726 } 2727 return r; 2728 } 2729 2730 /// Determine if any of the operands in this SCEV are a constant or if 2731 /// any of the add or multiply expressions in this SCEV contain a constant. 2732 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2733 struct FindConstantInAddMulChain { 2734 bool FoundConstant = false; 2735 2736 bool follow(const SCEV *S) { 2737 FoundConstant |= isa<SCEVConstant>(S); 2738 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2739 } 2740 2741 bool isDone() const { 2742 return FoundConstant; 2743 } 2744 }; 2745 2746 FindConstantInAddMulChain F; 2747 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2748 ST.visitAll(StartExpr); 2749 return F.FoundConstant; 2750 } 2751 2752 /// Get a canonical multiply expression, or something simpler if possible. 2753 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2754 SCEV::NoWrapFlags Flags, 2755 unsigned Depth) { 2756 assert(Flags == (Flags & (SCEV::FlagNUW | SCEV::FlagNSW)) && 2757 "only nuw or nsw allowed"); 2758 assert(!Ops.empty() && "Cannot get empty mul!"); 2759 if (Ops.size() == 1) return Ops[0]; 2760 #ifndef NDEBUG 2761 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2762 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2763 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2764 "SCEVMulExpr operand types don't match!"); 2765 #endif 2766 2767 // Sort by complexity, this groups all similar expression types together. 2768 GroupByComplexity(Ops, &LI, DT); 2769 2770 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2771 2772 // Limit recursion calls depth. 2773 if (Depth > MaxArithDepth) 2774 return getOrCreateMulExpr(Ops, Flags); 2775 2776 // If there are any constants, fold them together. 2777 unsigned Idx = 0; 2778 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2779 2780 if (Ops.size() == 2) 2781 // C1*(C2+V) -> C1*C2 + C1*V 2782 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2783 // If any of Add's ops are Adds or Muls with a constant, apply this 2784 // transformation as well. 2785 // 2786 // TODO: There are some cases where this transformation is not 2787 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2788 // this transformation should be narrowed down. 2789 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2790 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2791 SCEV::FlagAnyWrap, Depth + 1), 2792 getMulExpr(LHSC, Add->getOperand(1), 2793 SCEV::FlagAnyWrap, Depth + 1), 2794 SCEV::FlagAnyWrap, Depth + 1); 2795 2796 ++Idx; 2797 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2798 // We found two constants, fold them together! 2799 ConstantInt *Fold = 2800 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2801 Ops[0] = getConstant(Fold); 2802 Ops.erase(Ops.begin()+1); // Erase the folded element 2803 if (Ops.size() == 1) return Ops[0]; 2804 LHSC = cast<SCEVConstant>(Ops[0]); 2805 } 2806 2807 // If we are left with a constant one being multiplied, strip it off. 2808 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2809 Ops.erase(Ops.begin()); 2810 --Idx; 2811 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2812 // If we have a multiply of zero, it will always be zero. 2813 return Ops[0]; 2814 } else if (Ops[0]->isAllOnesValue()) { 2815 // If we have a mul by -1 of an add, try distributing the -1 among the 2816 // add operands. 2817 if (Ops.size() == 2) { 2818 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2819 SmallVector<const SCEV *, 4> NewOps; 2820 bool AnyFolded = false; 2821 for (const SCEV *AddOp : Add->operands()) { 2822 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2823 Depth + 1); 2824 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2825 NewOps.push_back(Mul); 2826 } 2827 if (AnyFolded) 2828 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2829 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2830 // Negation preserves a recurrence's no self-wrap property. 2831 SmallVector<const SCEV *, 4> Operands; 2832 for (const SCEV *AddRecOp : AddRec->operands()) 2833 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2834 Depth + 1)); 2835 2836 return getAddRecExpr(Operands, AddRec->getLoop(), 2837 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2838 } 2839 } 2840 } 2841 2842 if (Ops.size() == 1) 2843 return Ops[0]; 2844 } 2845 2846 // Skip over the add expression until we get to a multiply. 2847 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2848 ++Idx; 2849 2850 // If there are mul operands inline them all into this expression. 2851 if (Idx < Ops.size()) { 2852 bool DeletedMul = false; 2853 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2854 if (Ops.size() > MulOpsInlineThreshold) 2855 break; 2856 // If we have an mul, expand the mul operands onto the end of the 2857 // operands list. 2858 Ops.erase(Ops.begin()+Idx); 2859 Ops.append(Mul->op_begin(), Mul->op_end()); 2860 DeletedMul = true; 2861 } 2862 2863 // If we deleted at least one mul, we added operands to the end of the 2864 // list, and they are not necessarily sorted. Recurse to resort and 2865 // resimplify any operands we just acquired. 2866 if (DeletedMul) 2867 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2868 } 2869 2870 // If there are any add recurrences in the operands list, see if any other 2871 // added values are loop invariant. If so, we can fold them into the 2872 // recurrence. 2873 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2874 ++Idx; 2875 2876 // Scan over all recurrences, trying to fold loop invariants into them. 2877 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2878 // Scan all of the other operands to this mul and add them to the vector 2879 // if they are loop invariant w.r.t. the recurrence. 2880 SmallVector<const SCEV *, 8> LIOps; 2881 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2882 const Loop *AddRecLoop = AddRec->getLoop(); 2883 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2884 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2885 LIOps.push_back(Ops[i]); 2886 Ops.erase(Ops.begin()+i); 2887 --i; --e; 2888 } 2889 2890 // If we found some loop invariants, fold them into the recurrence. 2891 if (!LIOps.empty()) { 2892 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2893 SmallVector<const SCEV *, 4> NewOps; 2894 NewOps.reserve(AddRec->getNumOperands()); 2895 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2896 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2897 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2898 SCEV::FlagAnyWrap, Depth + 1)); 2899 2900 // Build the new addrec. Propagate the NUW and NSW flags if both the 2901 // outer mul and the inner addrec are guaranteed to have no overflow. 2902 // 2903 // No self-wrap cannot be guaranteed after changing the step size, but 2904 // will be inferred if either NUW or NSW is true. 2905 Flags = AddRec->getNoWrapFlags(Flags & ~SCEV::FlagNW); 2906 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2907 2908 // If all of the other operands were loop invariant, we are done. 2909 if (Ops.size() == 1) return NewRec; 2910 2911 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2912 for (unsigned i = 0;; ++i) 2913 if (Ops[i] == AddRec) { 2914 Ops[i] = NewRec; 2915 break; 2916 } 2917 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2918 } 2919 2920 // Okay, if there weren't any loop invariants to be folded, check to see 2921 // if there are multiple AddRec's with the same loop induction variable 2922 // being multiplied together. If so, we can fold them. 2923 2924 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2925 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2926 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2927 // ]]],+,...up to x=2n}. 2928 // Note that the arguments to choose() are always integers with values 2929 // known at compile time, never SCEV objects. 2930 // 2931 // The implementation avoids pointless extra computations when the two 2932 // addrec's are of different length (mathematically, it's equivalent to 2933 // an infinite stream of zeros on the right). 2934 bool OpsModified = false; 2935 for (unsigned OtherIdx = Idx+1; 2936 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2937 ++OtherIdx) { 2938 const SCEVAddRecExpr *OtherAddRec = 2939 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2940 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2941 continue; 2942 2943 // Limit max number of arguments to avoid creation of unreasonably big 2944 // SCEVAddRecs with very complex operands. 2945 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 2946 MaxAddRecSize) 2947 continue; 2948 2949 bool Overflow = false; 2950 Type *Ty = AddRec->getType(); 2951 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2952 SmallVector<const SCEV*, 7> AddRecOps; 2953 for (int x = 0, xe = AddRec->getNumOperands() + 2954 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2955 const SCEV *Term = getZero(Ty); 2956 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2957 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2958 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2959 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2960 z < ze && !Overflow; ++z) { 2961 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2962 uint64_t Coeff; 2963 if (LargerThan64Bits) 2964 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2965 else 2966 Coeff = Coeff1*Coeff2; 2967 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2968 const SCEV *Term1 = AddRec->getOperand(y-z); 2969 const SCEV *Term2 = OtherAddRec->getOperand(z); 2970 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1, Term2, 2971 SCEV::FlagAnyWrap, Depth + 1), 2972 SCEV::FlagAnyWrap, Depth + 1); 2973 } 2974 } 2975 AddRecOps.push_back(Term); 2976 } 2977 if (!Overflow) { 2978 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2979 SCEV::FlagAnyWrap); 2980 if (Ops.size() == 2) return NewAddRec; 2981 Ops[Idx] = NewAddRec; 2982 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2983 OpsModified = true; 2984 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2985 if (!AddRec) 2986 break; 2987 } 2988 } 2989 if (OpsModified) 2990 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2991 2992 // Otherwise couldn't fold anything into this recurrence. Move onto the 2993 // next one. 2994 } 2995 2996 // Okay, it looks like we really DO need an mul expr. Check to see if we 2997 // already have one, otherwise create a new one. 2998 return getOrCreateMulExpr(Ops, Flags); 2999 } 3000 3001 /// Represents an unsigned remainder expression based on unsigned division. 3002 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3003 const SCEV *RHS) { 3004 assert(getEffectiveSCEVType(LHS->getType()) == 3005 getEffectiveSCEVType(RHS->getType()) && 3006 "SCEVURemExpr operand types don't match!"); 3007 3008 // Short-circuit easy cases 3009 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3010 // If constant is one, the result is trivial 3011 if (RHSC->getValue()->isOne()) 3012 return getZero(LHS->getType()); // X urem 1 --> 0 3013 3014 // If constant is a power of two, fold into a zext(trunc(LHS)). 3015 if (RHSC->getAPInt().isPowerOf2()) { 3016 Type *FullTy = LHS->getType(); 3017 Type *TruncTy = 3018 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3019 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3020 } 3021 } 3022 3023 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3024 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3025 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3026 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3027 } 3028 3029 /// Get a canonical unsigned division expression, or something simpler if 3030 /// possible. 3031 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3032 const SCEV *RHS) { 3033 assert(getEffectiveSCEVType(LHS->getType()) == 3034 getEffectiveSCEVType(RHS->getType()) && 3035 "SCEVUDivExpr operand types don't match!"); 3036 3037 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3038 if (RHSC->getValue()->isOne()) 3039 return LHS; // X udiv 1 --> x 3040 // If the denominator is zero, the result of the udiv is undefined. Don't 3041 // try to analyze it, because the resolution chosen here may differ from 3042 // the resolution chosen in other parts of the compiler. 3043 if (!RHSC->getValue()->isZero()) { 3044 // Determine if the division can be folded into the operands of 3045 // its operands. 3046 // TODO: Generalize this to non-constants by using known-bits information. 3047 Type *Ty = LHS->getType(); 3048 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3049 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3050 // For non-power-of-two values, effectively round the value up to the 3051 // nearest power of two. 3052 if (!RHSC->getAPInt().isPowerOf2()) 3053 ++MaxShiftAmt; 3054 IntegerType *ExtTy = 3055 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3056 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3057 if (const SCEVConstant *Step = 3058 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3059 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3060 const APInt &StepInt = Step->getAPInt(); 3061 const APInt &DivInt = RHSC->getAPInt(); 3062 if (!StepInt.urem(DivInt) && 3063 getZeroExtendExpr(AR, ExtTy) == 3064 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3065 getZeroExtendExpr(Step, ExtTy), 3066 AR->getLoop(), SCEV::FlagAnyWrap)) { 3067 SmallVector<const SCEV *, 4> Operands; 3068 for (const SCEV *Op : AR->operands()) 3069 Operands.push_back(getUDivExpr(Op, RHS)); 3070 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3071 } 3072 /// Get a canonical UDivExpr for a recurrence. 3073 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3074 // We can currently only fold X%N if X is constant. 3075 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3076 if (StartC && !DivInt.urem(StepInt) && 3077 getZeroExtendExpr(AR, ExtTy) == 3078 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3079 getZeroExtendExpr(Step, ExtTy), 3080 AR->getLoop(), SCEV::FlagAnyWrap)) { 3081 const APInt &StartInt = StartC->getAPInt(); 3082 const APInt &StartRem = StartInt.urem(StepInt); 3083 if (StartRem != 0) 3084 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 3085 AR->getLoop(), SCEV::FlagNW); 3086 } 3087 } 3088 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3089 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3090 SmallVector<const SCEV *, 4> Operands; 3091 for (const SCEV *Op : M->operands()) 3092 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3093 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3094 // Find an operand that's safely divisible. 3095 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3096 const SCEV *Op = M->getOperand(i); 3097 const SCEV *Div = getUDivExpr(Op, RHSC); 3098 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3099 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3100 M->op_end()); 3101 Operands[i] = Div; 3102 return getMulExpr(Operands); 3103 } 3104 } 3105 } 3106 3107 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3108 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3109 if (auto *DivisorConstant = 3110 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3111 bool Overflow = false; 3112 APInt NewRHS = 3113 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3114 if (Overflow) { 3115 return getConstant(RHSC->getType(), 0, false); 3116 } 3117 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3118 } 3119 } 3120 3121 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3122 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3123 SmallVector<const SCEV *, 4> Operands; 3124 for (const SCEV *Op : A->operands()) 3125 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3126 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3127 Operands.clear(); 3128 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3129 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3130 if (isa<SCEVUDivExpr>(Op) || 3131 getMulExpr(Op, RHS) != A->getOperand(i)) 3132 break; 3133 Operands.push_back(Op); 3134 } 3135 if (Operands.size() == A->getNumOperands()) 3136 return getAddExpr(Operands); 3137 } 3138 } 3139 3140 // Fold if both operands are constant. 3141 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3142 Constant *LHSCV = LHSC->getValue(); 3143 Constant *RHSCV = RHSC->getValue(); 3144 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3145 RHSCV))); 3146 } 3147 } 3148 } 3149 3150 FoldingSetNodeID ID; 3151 ID.AddInteger(scUDivExpr); 3152 ID.AddPointer(LHS); 3153 ID.AddPointer(RHS); 3154 void *IP = nullptr; 3155 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3156 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3157 LHS, RHS); 3158 UniqueSCEVs.InsertNode(S, IP); 3159 addToLoopUseLists(S); 3160 return S; 3161 } 3162 3163 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3164 APInt A = C1->getAPInt().abs(); 3165 APInt B = C2->getAPInt().abs(); 3166 uint32_t ABW = A.getBitWidth(); 3167 uint32_t BBW = B.getBitWidth(); 3168 3169 if (ABW > BBW) 3170 B = B.zext(ABW); 3171 else if (ABW < BBW) 3172 A = A.zext(BBW); 3173 3174 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3175 } 3176 3177 /// Get a canonical unsigned division expression, or something simpler if 3178 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3179 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3180 /// it's not exact because the udiv may be clearing bits. 3181 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3182 const SCEV *RHS) { 3183 // TODO: we could try to find factors in all sorts of things, but for now we 3184 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3185 // end of this file for inspiration. 3186 3187 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3188 if (!Mul || !Mul->hasNoUnsignedWrap()) 3189 return getUDivExpr(LHS, RHS); 3190 3191 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3192 // If the mulexpr multiplies by a constant, then that constant must be the 3193 // first element of the mulexpr. 3194 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3195 if (LHSCst == RHSCst) { 3196 SmallVector<const SCEV *, 2> Operands; 3197 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3198 return getMulExpr(Operands); 3199 } 3200 3201 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3202 // that there's a factor provided by one of the other terms. We need to 3203 // check. 3204 APInt Factor = gcd(LHSCst, RHSCst); 3205 if (!Factor.isIntN(1)) { 3206 LHSCst = 3207 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3208 RHSCst = 3209 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3210 SmallVector<const SCEV *, 2> Operands; 3211 Operands.push_back(LHSCst); 3212 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3213 LHS = getMulExpr(Operands); 3214 RHS = RHSCst; 3215 Mul = dyn_cast<SCEVMulExpr>(LHS); 3216 if (!Mul) 3217 return getUDivExactExpr(LHS, RHS); 3218 } 3219 } 3220 } 3221 3222 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3223 if (Mul->getOperand(i) == RHS) { 3224 SmallVector<const SCEV *, 2> Operands; 3225 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3226 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3227 return getMulExpr(Operands); 3228 } 3229 } 3230 3231 return getUDivExpr(LHS, RHS); 3232 } 3233 3234 /// Get an add recurrence expression for the specified loop. Simplify the 3235 /// expression as much as possible. 3236 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3237 const Loop *L, 3238 SCEV::NoWrapFlags Flags) { 3239 SmallVector<const SCEV *, 4> Operands; 3240 Operands.push_back(Start); 3241 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3242 if (StepChrec->getLoop() == L) { 3243 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3244 return getAddRecExpr(Operands, L, Flags & SCEV::FlagNW); 3245 } 3246 3247 Operands.push_back(Step); 3248 return getAddRecExpr(Operands, L, Flags); 3249 } 3250 3251 /// Get an add recurrence expression for the specified loop. Simplify the 3252 /// expression as much as possible. 3253 const SCEV * 3254 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3255 const Loop *L, SCEV::NoWrapFlags Flags) { 3256 if (Operands.size() == 1) return Operands[0]; 3257 #ifndef NDEBUG 3258 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3259 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3260 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3261 "SCEVAddRecExpr operand types don't match!"); 3262 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3263 assert(isLoopInvariant(Operands[i], L) && 3264 "SCEVAddRecExpr operand is not loop-invariant!"); 3265 #endif 3266 3267 if (Operands.back()->isZero()) { 3268 Operands.pop_back(); 3269 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3270 } 3271 3272 // It's tempting to want to call getMaxBackedgeTakenCount count here and 3273 // use that information to infer NUW and NSW flags. However, computing a 3274 // BE count requires calling getAddRecExpr, so we may not yet have a 3275 // meaningful BE count at this point (and if we don't, we'd be stuck 3276 // with a SCEVCouldNotCompute as the cached BE count). 3277 3278 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3279 3280 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3281 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3282 const Loop *NestedLoop = NestedAR->getLoop(); 3283 if (L->contains(NestedLoop) 3284 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3285 : (!NestedLoop->contains(L) && 3286 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3287 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3288 NestedAR->op_end()); 3289 Operands[0] = NestedAR->getStart(); 3290 // AddRecs require their operands be loop-invariant with respect to their 3291 // loops. Don't perform this transformation if it would break this 3292 // requirement. 3293 bool AllInvariant = all_of( 3294 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3295 3296 if (AllInvariant) { 3297 // Create a recurrence for the outer loop with the same step size. 3298 // 3299 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3300 // inner recurrence has the same property. 3301 SCEV::NoWrapFlags OuterFlags = 3302 Flags & (SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3303 3304 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3305 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3306 return isLoopInvariant(Op, NestedLoop); 3307 }); 3308 3309 if (AllInvariant) { 3310 // Ok, both add recurrences are valid after the transformation. 3311 // 3312 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3313 // the outer recurrence has the same property. 3314 SCEV::NoWrapFlags InnerFlags = 3315 NestedAR->getNoWrapFlags() & (SCEV::FlagNW | Flags); 3316 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3317 } 3318 } 3319 // Reset Operands to its original state. 3320 Operands[0] = NestedAR; 3321 } 3322 } 3323 3324 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3325 // already have one, otherwise create a new one. 3326 FoldingSetNodeID ID; 3327 ID.AddInteger(scAddRecExpr); 3328 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3329 ID.AddPointer(Operands[i]); 3330 ID.AddPointer(L); 3331 void *IP = nullptr; 3332 SCEVAddRecExpr *S = 3333 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3334 if (!S) { 3335 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 3336 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 3337 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 3338 O, Operands.size(), L); 3339 UniqueSCEVs.InsertNode(S, IP); 3340 addToLoopUseLists(S); 3341 } 3342 S->setNoWrapFlags(Flags); 3343 return S; 3344 } 3345 3346 const SCEV * 3347 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3348 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3349 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3350 // getSCEV(Base)->getType() has the same address space as Base->getType() 3351 // because SCEV::getType() preserves the address space. 3352 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3353 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3354 // instruction to its SCEV, because the Instruction may be guarded by control 3355 // flow and the no-overflow bits may not be valid for the expression in any 3356 // context. This can be fixed similarly to how these flags are handled for 3357 // adds. 3358 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3359 : SCEV::FlagAnyWrap; 3360 3361 const SCEV *TotalOffset = getZero(IntPtrTy); 3362 // The array size is unimportant. The first thing we do on CurTy is getting 3363 // its element type. 3364 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3365 for (const SCEV *IndexExpr : IndexExprs) { 3366 // Compute the (potentially symbolic) offset in bytes for this index. 3367 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3368 // For a struct, add the member offset. 3369 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3370 unsigned FieldNo = Index->getZExtValue(); 3371 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3372 3373 // Add the field offset to the running total offset. 3374 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3375 3376 // Update CurTy to the type of the field at Index. 3377 CurTy = STy->getTypeAtIndex(Index); 3378 } else { 3379 // Update CurTy to its element type. 3380 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3381 // For an array, add the element offset, explicitly scaled. 3382 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3383 // Getelementptr indices are signed. 3384 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3385 3386 // Multiply the index by the element size to compute the element offset. 3387 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3388 3389 // Add the element offset to the running total offset. 3390 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3391 } 3392 } 3393 3394 // Add the total offset from all the GEP indices to the base. 3395 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3396 } 3397 3398 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3399 const SCEV *RHS) { 3400 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3401 return getSMaxExpr(Ops); 3402 } 3403 3404 const SCEV * 3405 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3406 assert(!Ops.empty() && "Cannot get empty smax!"); 3407 if (Ops.size() == 1) return Ops[0]; 3408 #ifndef NDEBUG 3409 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3410 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3411 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3412 "SCEVSMaxExpr operand types don't match!"); 3413 #endif 3414 3415 // Sort by complexity, this groups all similar expression types together. 3416 GroupByComplexity(Ops, &LI, DT); 3417 3418 // If there are any constants, fold them together. 3419 unsigned Idx = 0; 3420 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3421 ++Idx; 3422 assert(Idx < Ops.size()); 3423 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3424 // We found two constants, fold them together! 3425 ConstantInt *Fold = ConstantInt::get( 3426 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3427 Ops[0] = getConstant(Fold); 3428 Ops.erase(Ops.begin()+1); // Erase the folded element 3429 if (Ops.size() == 1) return Ops[0]; 3430 LHSC = cast<SCEVConstant>(Ops[0]); 3431 } 3432 3433 // If we are left with a constant minimum-int, strip it off. 3434 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3435 Ops.erase(Ops.begin()); 3436 --Idx; 3437 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3438 // If we have an smax with a constant maximum-int, it will always be 3439 // maximum-int. 3440 return Ops[0]; 3441 } 3442 3443 if (Ops.size() == 1) return Ops[0]; 3444 } 3445 3446 // Find the first SMax 3447 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3448 ++Idx; 3449 3450 // Check to see if one of the operands is an SMax. If so, expand its operands 3451 // onto our operand list, and recurse to simplify. 3452 if (Idx < Ops.size()) { 3453 bool DeletedSMax = false; 3454 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3455 Ops.erase(Ops.begin()+Idx); 3456 Ops.append(SMax->op_begin(), SMax->op_end()); 3457 DeletedSMax = true; 3458 } 3459 3460 if (DeletedSMax) 3461 return getSMaxExpr(Ops); 3462 } 3463 3464 // Okay, check to see if the same value occurs in the operand list twice. If 3465 // so, delete one. Since we sorted the list, these values are required to 3466 // be adjacent. 3467 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3468 // X smax Y smax Y --> X smax Y 3469 // X smax Y --> X, if X is always greater than Y 3470 if (Ops[i] == Ops[i+1] || 3471 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3472 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3473 --i; --e; 3474 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3475 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3476 --i; --e; 3477 } 3478 3479 if (Ops.size() == 1) return Ops[0]; 3480 3481 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3482 3483 // Okay, it looks like we really DO need an smax expr. Check to see if we 3484 // already have one, otherwise create a new one. 3485 FoldingSetNodeID ID; 3486 ID.AddInteger(scSMaxExpr); 3487 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3488 ID.AddPointer(Ops[i]); 3489 void *IP = nullptr; 3490 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3491 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3492 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3493 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3494 O, Ops.size()); 3495 UniqueSCEVs.InsertNode(S, IP); 3496 addToLoopUseLists(S); 3497 return S; 3498 } 3499 3500 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3501 const SCEV *RHS) { 3502 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3503 return getUMaxExpr(Ops); 3504 } 3505 3506 const SCEV * 3507 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3508 assert(!Ops.empty() && "Cannot get empty umax!"); 3509 if (Ops.size() == 1) return Ops[0]; 3510 #ifndef NDEBUG 3511 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3512 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3513 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3514 "SCEVUMaxExpr operand types don't match!"); 3515 #endif 3516 3517 // Sort by complexity, this groups all similar expression types together. 3518 GroupByComplexity(Ops, &LI, DT); 3519 3520 // If there are any constants, fold them together. 3521 unsigned Idx = 0; 3522 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3523 ++Idx; 3524 assert(Idx < Ops.size()); 3525 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3526 // We found two constants, fold them together! 3527 ConstantInt *Fold = ConstantInt::get( 3528 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3529 Ops[0] = getConstant(Fold); 3530 Ops.erase(Ops.begin()+1); // Erase the folded element 3531 if (Ops.size() == 1) return Ops[0]; 3532 LHSC = cast<SCEVConstant>(Ops[0]); 3533 } 3534 3535 // If we are left with a constant minimum-int, strip it off. 3536 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3537 Ops.erase(Ops.begin()); 3538 --Idx; 3539 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3540 // If we have an umax with a constant maximum-int, it will always be 3541 // maximum-int. 3542 return Ops[0]; 3543 } 3544 3545 if (Ops.size() == 1) return Ops[0]; 3546 } 3547 3548 // Find the first UMax 3549 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3550 ++Idx; 3551 3552 // Check to see if one of the operands is a UMax. If so, expand its operands 3553 // onto our operand list, and recurse to simplify. 3554 if (Idx < Ops.size()) { 3555 bool DeletedUMax = false; 3556 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3557 Ops.erase(Ops.begin()+Idx); 3558 Ops.append(UMax->op_begin(), UMax->op_end()); 3559 DeletedUMax = true; 3560 } 3561 3562 if (DeletedUMax) 3563 return getUMaxExpr(Ops); 3564 } 3565 3566 // Okay, check to see if the same value occurs in the operand list twice. If 3567 // so, delete one. Since we sorted the list, these values are required to 3568 // be adjacent. 3569 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3570 // X umax Y umax Y --> X umax Y 3571 // X umax Y --> X, if X is always greater than Y 3572 if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning( 3573 ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) { 3574 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3575 --i; --e; 3576 } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i], 3577 Ops[i + 1])) { 3578 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3579 --i; --e; 3580 } 3581 3582 if (Ops.size() == 1) return Ops[0]; 3583 3584 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3585 3586 // Okay, it looks like we really DO need a umax expr. Check to see if we 3587 // already have one, otherwise create a new one. 3588 FoldingSetNodeID ID; 3589 ID.AddInteger(scUMaxExpr); 3590 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3591 ID.AddPointer(Ops[i]); 3592 void *IP = nullptr; 3593 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3594 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3595 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3596 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3597 O, Ops.size()); 3598 UniqueSCEVs.InsertNode(S, IP); 3599 addToLoopUseLists(S); 3600 return S; 3601 } 3602 3603 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3604 const SCEV *RHS) { 3605 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3606 return getSMinExpr(Ops); 3607 } 3608 3609 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3610 // ~smax(~x, ~y, ~z) == smin(x, y, z). 3611 SmallVector<const SCEV *, 2> NotOps; 3612 for (auto *S : Ops) 3613 NotOps.push_back(getNotSCEV(S)); 3614 return getNotSCEV(getSMaxExpr(NotOps)); 3615 } 3616 3617 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3618 const SCEV *RHS) { 3619 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3620 return getUMinExpr(Ops); 3621 } 3622 3623 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3624 assert(!Ops.empty() && "At least one operand must be!"); 3625 // Trivial case. 3626 if (Ops.size() == 1) 3627 return Ops[0]; 3628 3629 // ~umax(~x, ~y, ~z) == umin(x, y, z). 3630 SmallVector<const SCEV *, 2> NotOps; 3631 for (auto *S : Ops) 3632 NotOps.push_back(getNotSCEV(S)); 3633 return getNotSCEV(getUMaxExpr(NotOps)); 3634 } 3635 3636 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3637 // We can bypass creating a target-independent 3638 // constant expression and then folding it back into a ConstantInt. 3639 // This is just a compile-time optimization. 3640 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3641 } 3642 3643 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3644 StructType *STy, 3645 unsigned FieldNo) { 3646 // We can bypass creating a target-independent 3647 // constant expression and then folding it back into a ConstantInt. 3648 // This is just a compile-time optimization. 3649 return getConstant( 3650 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3651 } 3652 3653 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3654 // Don't attempt to do anything other than create a SCEVUnknown object 3655 // here. createSCEV only calls getUnknown after checking for all other 3656 // interesting possibilities, and any other code that calls getUnknown 3657 // is doing so in order to hide a value from SCEV canonicalization. 3658 3659 FoldingSetNodeID ID; 3660 ID.AddInteger(scUnknown); 3661 ID.AddPointer(V); 3662 void *IP = nullptr; 3663 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3664 assert(cast<SCEVUnknown>(S)->getValue() == V && 3665 "Stale SCEVUnknown in uniquing map!"); 3666 return S; 3667 } 3668 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3669 FirstUnknown); 3670 FirstUnknown = cast<SCEVUnknown>(S); 3671 UniqueSCEVs.InsertNode(S, IP); 3672 return S; 3673 } 3674 3675 //===----------------------------------------------------------------------===// 3676 // Basic SCEV Analysis and PHI Idiom Recognition Code 3677 // 3678 3679 /// Test if values of the given type are analyzable within the SCEV 3680 /// framework. This primarily includes integer types, and it can optionally 3681 /// include pointer types if the ScalarEvolution class has access to 3682 /// target-specific information. 3683 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3684 // Integers and pointers are always SCEVable. 3685 return Ty->isIntegerTy() || Ty->isPointerTy(); 3686 } 3687 3688 /// Return the size in bits of the specified type, for which isSCEVable must 3689 /// return true. 3690 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3691 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3692 if (Ty->isPointerTy()) 3693 return getDataLayout().getIndexTypeSizeInBits(Ty); 3694 return getDataLayout().getTypeSizeInBits(Ty); 3695 } 3696 3697 /// Return a type with the same bitwidth as the given type and which represents 3698 /// how SCEV will treat the given type, for which isSCEVable must return 3699 /// true. For pointer types, this is the pointer-sized integer type. 3700 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3701 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3702 3703 if (Ty->isIntegerTy()) 3704 return Ty; 3705 3706 // The only other support type is pointer. 3707 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3708 return getDataLayout().getIntPtrType(Ty); 3709 } 3710 3711 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3712 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3713 } 3714 3715 const SCEV *ScalarEvolution::getCouldNotCompute() { 3716 return CouldNotCompute.get(); 3717 } 3718 3719 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3720 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3721 auto *SU = dyn_cast<SCEVUnknown>(S); 3722 return SU && SU->getValue() == nullptr; 3723 }); 3724 3725 return !ContainsNulls; 3726 } 3727 3728 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3729 HasRecMapType::iterator I = HasRecMap.find(S); 3730 if (I != HasRecMap.end()) 3731 return I->second; 3732 3733 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3734 HasRecMap.insert({S, FoundAddRec}); 3735 return FoundAddRec; 3736 } 3737 3738 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3739 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3740 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3741 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3742 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3743 if (!Add) 3744 return {S, nullptr}; 3745 3746 if (Add->getNumOperands() != 2) 3747 return {S, nullptr}; 3748 3749 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3750 if (!ConstOp) 3751 return {S, nullptr}; 3752 3753 return {Add->getOperand(1), ConstOp->getValue()}; 3754 } 3755 3756 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3757 /// by the value and offset from any ValueOffsetPair in the set. 3758 SetVector<ScalarEvolution::ValueOffsetPair> * 3759 ScalarEvolution::getSCEVValues(const SCEV *S) { 3760 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3761 if (SI == ExprValueMap.end()) 3762 return nullptr; 3763 #ifndef NDEBUG 3764 if (VerifySCEVMap) { 3765 // Check there is no dangling Value in the set returned. 3766 for (const auto &VE : SI->second) 3767 assert(ValueExprMap.count(VE.first)); 3768 } 3769 #endif 3770 return &SI->second; 3771 } 3772 3773 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3774 /// cannot be used separately. eraseValueFromMap should be used to remove 3775 /// V from ValueExprMap and ExprValueMap at the same time. 3776 void ScalarEvolution::eraseValueFromMap(Value *V) { 3777 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3778 if (I != ValueExprMap.end()) { 3779 const SCEV *S = I->second; 3780 // Remove {V, 0} from the set of ExprValueMap[S] 3781 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3782 SV->remove({V, nullptr}); 3783 3784 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3785 const SCEV *Stripped; 3786 ConstantInt *Offset; 3787 std::tie(Stripped, Offset) = splitAddExpr(S); 3788 if (Offset != nullptr) { 3789 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3790 SV->remove({V, Offset}); 3791 } 3792 ValueExprMap.erase(V); 3793 } 3794 } 3795 3796 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3797 /// TODO: In reality it is better to check the poison recursevely 3798 /// but this is better than nothing. 3799 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3800 if (auto *I = dyn_cast<Instruction>(V)) { 3801 if (isa<OverflowingBinaryOperator>(I)) { 3802 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3803 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3804 return true; 3805 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3806 return true; 3807 } 3808 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3809 return true; 3810 } 3811 return false; 3812 } 3813 3814 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3815 /// create a new one. 3816 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3817 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3818 3819 const SCEV *S = getExistingSCEV(V); 3820 if (S == nullptr) { 3821 S = createSCEV(V); 3822 // During PHI resolution, it is possible to create two SCEVs for the same 3823 // V, so it is needed to double check whether V->S is inserted into 3824 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3825 std::pair<ValueExprMapType::iterator, bool> Pair = 3826 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3827 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3828 ExprValueMap[S].insert({V, nullptr}); 3829 3830 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3831 // ExprValueMap. 3832 const SCEV *Stripped = S; 3833 ConstantInt *Offset = nullptr; 3834 std::tie(Stripped, Offset) = splitAddExpr(S); 3835 // If stripped is SCEVUnknown, don't bother to save 3836 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3837 // increase the complexity of the expansion code. 3838 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3839 // because it may generate add/sub instead of GEP in SCEV expansion. 3840 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3841 !isa<GetElementPtrInst>(V)) 3842 ExprValueMap[Stripped].insert({V, Offset}); 3843 } 3844 } 3845 return S; 3846 } 3847 3848 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3849 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3850 3851 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3852 if (I != ValueExprMap.end()) { 3853 const SCEV *S = I->second; 3854 if (checkValidity(S)) 3855 return S; 3856 eraseValueFromMap(V); 3857 forgetMemoizedResults(S); 3858 } 3859 return nullptr; 3860 } 3861 3862 /// Return a SCEV corresponding to -V = -1*V 3863 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3864 SCEV::NoWrapFlags Flags) { 3865 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3866 return getConstant( 3867 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3868 3869 Type *Ty = V->getType(); 3870 Ty = getEffectiveSCEVType(Ty); 3871 return getMulExpr( 3872 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3873 } 3874 3875 /// Return a SCEV corresponding to ~V = -1-V 3876 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3877 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3878 return getConstant( 3879 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3880 3881 Type *Ty = V->getType(); 3882 Ty = getEffectiveSCEVType(Ty); 3883 const SCEV *AllOnes = 3884 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3885 return getMinusSCEV(AllOnes, V); 3886 } 3887 3888 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3889 SCEV::NoWrapFlags Flags, 3890 unsigned Depth) { 3891 // Fast path: X - X --> 0. 3892 if (LHS == RHS) 3893 return getZero(LHS->getType()); 3894 3895 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3896 // makes it so that we cannot make much use of NUW. 3897 auto AddFlags = SCEV::FlagAnyWrap; 3898 const bool RHSIsNotMinSigned = 3899 !getSignedRangeMin(RHS).isMinSignedValue(); 3900 if ((Flags & SCEV::FlagNSW) == SCEV::FlagNSW) { 3901 // Let M be the minimum representable signed value. Then (-1)*RHS 3902 // signed-wraps if and only if RHS is M. That can happen even for 3903 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3904 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3905 // (-1)*RHS, we need to prove that RHS != M. 3906 // 3907 // If LHS is non-negative and we know that LHS - RHS does not 3908 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3909 // either by proving that RHS > M or that LHS >= 0. 3910 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3911 AddFlags = SCEV::FlagNSW; 3912 } 3913 } 3914 3915 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3916 // RHS is NSW and LHS >= 0. 3917 // 3918 // The difficulty here is that the NSW flag may have been proven 3919 // relative to a loop that is to be found in a recurrence in LHS and 3920 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3921 // larger scope than intended. 3922 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3923 3924 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 3925 } 3926 3927 const SCEV * 3928 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3929 Type *SrcTy = V->getType(); 3930 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3931 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3932 "Cannot truncate or zero extend with non-integer arguments!"); 3933 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3934 return V; // No conversion 3935 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3936 return getTruncateExpr(V, Ty); 3937 return getZeroExtendExpr(V, Ty); 3938 } 3939 3940 const SCEV * 3941 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3942 Type *Ty) { 3943 Type *SrcTy = V->getType(); 3944 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3945 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3946 "Cannot truncate or zero extend with non-integer arguments!"); 3947 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3948 return V; // No conversion 3949 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3950 return getTruncateExpr(V, Ty); 3951 return getSignExtendExpr(V, Ty); 3952 } 3953 3954 const SCEV * 3955 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3956 Type *SrcTy = V->getType(); 3957 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3958 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3959 "Cannot noop or zero extend with non-integer arguments!"); 3960 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3961 "getNoopOrZeroExtend cannot truncate!"); 3962 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3963 return V; // No conversion 3964 return getZeroExtendExpr(V, Ty); 3965 } 3966 3967 const SCEV * 3968 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3969 Type *SrcTy = V->getType(); 3970 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3971 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3972 "Cannot noop or sign extend with non-integer arguments!"); 3973 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3974 "getNoopOrSignExtend cannot truncate!"); 3975 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3976 return V; // No conversion 3977 return getSignExtendExpr(V, Ty); 3978 } 3979 3980 const SCEV * 3981 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3982 Type *SrcTy = V->getType(); 3983 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3984 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3985 "Cannot noop or any extend with non-integer arguments!"); 3986 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3987 "getNoopOrAnyExtend cannot truncate!"); 3988 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3989 return V; // No conversion 3990 return getAnyExtendExpr(V, Ty); 3991 } 3992 3993 const SCEV * 3994 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3995 Type *SrcTy = V->getType(); 3996 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3997 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3998 "Cannot truncate or noop with non-integer arguments!"); 3999 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4000 "getTruncateOrNoop cannot extend!"); 4001 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4002 return V; // No conversion 4003 return getTruncateExpr(V, Ty); 4004 } 4005 4006 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4007 const SCEV *RHS) { 4008 const SCEV *PromotedLHS = LHS; 4009 const SCEV *PromotedRHS = RHS; 4010 4011 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4012 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4013 else 4014 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4015 4016 return getUMaxExpr(PromotedLHS, PromotedRHS); 4017 } 4018 4019 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4020 const SCEV *RHS) { 4021 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4022 return getUMinFromMismatchedTypes(Ops); 4023 } 4024 4025 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4026 SmallVectorImpl<const SCEV *> &Ops) { 4027 assert(!Ops.empty() && "At least one operand must be!"); 4028 // Trivial case. 4029 if (Ops.size() == 1) 4030 return Ops[0]; 4031 4032 // Find the max type first. 4033 Type *MaxType = nullptr; 4034 for (auto *S : Ops) 4035 if (MaxType) 4036 MaxType = getWiderType(MaxType, S->getType()); 4037 else 4038 MaxType = S->getType(); 4039 4040 // Extend all ops to max type. 4041 SmallVector<const SCEV *, 2> PromotedOps; 4042 for (auto *S : Ops) 4043 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4044 4045 // Generate umin. 4046 return getUMinExpr(PromotedOps); 4047 } 4048 4049 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4050 // A pointer operand may evaluate to a nonpointer expression, such as null. 4051 if (!V->getType()->isPointerTy()) 4052 return V; 4053 4054 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 4055 return getPointerBase(Cast->getOperand()); 4056 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4057 const SCEV *PtrOp = nullptr; 4058 for (const SCEV *NAryOp : NAry->operands()) { 4059 if (NAryOp->getType()->isPointerTy()) { 4060 // Cannot find the base of an expression with multiple pointer operands. 4061 if (PtrOp) 4062 return V; 4063 PtrOp = NAryOp; 4064 } 4065 } 4066 if (!PtrOp) 4067 return V; 4068 return getPointerBase(PtrOp); 4069 } 4070 return V; 4071 } 4072 4073 /// Push users of the given Instruction onto the given Worklist. 4074 static void 4075 PushDefUseChildren(Instruction *I, 4076 SmallVectorImpl<Instruction *> &Worklist) { 4077 // Push the def-use children onto the Worklist stack. 4078 for (User *U : I->users()) 4079 Worklist.push_back(cast<Instruction>(U)); 4080 } 4081 4082 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4083 SmallVector<Instruction *, 16> Worklist; 4084 PushDefUseChildren(PN, Worklist); 4085 4086 SmallPtrSet<Instruction *, 8> Visited; 4087 Visited.insert(PN); 4088 while (!Worklist.empty()) { 4089 Instruction *I = Worklist.pop_back_val(); 4090 if (!Visited.insert(I).second) 4091 continue; 4092 4093 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4094 if (It != ValueExprMap.end()) { 4095 const SCEV *Old = It->second; 4096 4097 // Short-circuit the def-use traversal if the symbolic name 4098 // ceases to appear in expressions. 4099 if (Old != SymName && !hasOperand(Old, SymName)) 4100 continue; 4101 4102 // SCEVUnknown for a PHI either means that it has an unrecognized 4103 // structure, it's a PHI that's in the progress of being computed 4104 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4105 // additional loop trip count information isn't going to change anything. 4106 // In the second case, createNodeForPHI will perform the necessary 4107 // updates on its own when it gets to that point. In the third, we do 4108 // want to forget the SCEVUnknown. 4109 if (!isa<PHINode>(I) || 4110 !isa<SCEVUnknown>(Old) || 4111 (I != PN && Old == SymName)) { 4112 eraseValueFromMap(It->first); 4113 forgetMemoizedResults(Old); 4114 } 4115 } 4116 4117 PushDefUseChildren(I, Worklist); 4118 } 4119 } 4120 4121 namespace { 4122 4123 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4124 /// expression in case its Loop is L. If it is not L then 4125 /// if IgnoreOtherLoops is true then use AddRec itself 4126 /// otherwise rewrite cannot be done. 4127 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4128 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4129 public: 4130 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4131 bool IgnoreOtherLoops = true) { 4132 SCEVInitRewriter Rewriter(L, SE); 4133 const SCEV *Result = Rewriter.visit(S); 4134 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4135 return SE.getCouldNotCompute(); 4136 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4137 ? SE.getCouldNotCompute() 4138 : Result; 4139 } 4140 4141 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4142 if (!SE.isLoopInvariant(Expr, L)) 4143 SeenLoopVariantSCEVUnknown = true; 4144 return Expr; 4145 } 4146 4147 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4148 // Only re-write AddRecExprs for this loop. 4149 if (Expr->getLoop() == L) 4150 return Expr->getStart(); 4151 SeenOtherLoops = true; 4152 return Expr; 4153 } 4154 4155 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4156 4157 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4158 4159 private: 4160 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4161 : SCEVRewriteVisitor(SE), L(L) {} 4162 4163 const Loop *L; 4164 bool SeenLoopVariantSCEVUnknown = false; 4165 bool SeenOtherLoops = false; 4166 }; 4167 4168 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4169 /// increment expression in case its Loop is L. If it is not L then 4170 /// use AddRec itself. 4171 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4172 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4173 public: 4174 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4175 SCEVPostIncRewriter Rewriter(L, SE); 4176 const SCEV *Result = Rewriter.visit(S); 4177 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4178 ? SE.getCouldNotCompute() 4179 : Result; 4180 } 4181 4182 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4183 if (!SE.isLoopInvariant(Expr, L)) 4184 SeenLoopVariantSCEVUnknown = true; 4185 return Expr; 4186 } 4187 4188 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4189 // Only re-write AddRecExprs for this loop. 4190 if (Expr->getLoop() == L) 4191 return Expr->getPostIncExpr(SE); 4192 SeenOtherLoops = true; 4193 return Expr; 4194 } 4195 4196 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4197 4198 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4199 4200 private: 4201 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4202 : SCEVRewriteVisitor(SE), L(L) {} 4203 4204 const Loop *L; 4205 bool SeenLoopVariantSCEVUnknown = false; 4206 bool SeenOtherLoops = false; 4207 }; 4208 4209 /// This class evaluates the compare condition by matching it against the 4210 /// condition of loop latch. If there is a match we assume a true value 4211 /// for the condition while building SCEV nodes. 4212 class SCEVBackedgeConditionFolder 4213 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4214 public: 4215 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4216 ScalarEvolution &SE) { 4217 bool IsPosBECond = false; 4218 Value *BECond = nullptr; 4219 if (BasicBlock *Latch = L->getLoopLatch()) { 4220 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4221 if (BI && BI->isConditional()) { 4222 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4223 "Both outgoing branches should not target same header!"); 4224 BECond = BI->getCondition(); 4225 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4226 } else { 4227 return S; 4228 } 4229 } 4230 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4231 return Rewriter.visit(S); 4232 } 4233 4234 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4235 const SCEV *Result = Expr; 4236 bool InvariantF = SE.isLoopInvariant(Expr, L); 4237 4238 if (!InvariantF) { 4239 Instruction *I = cast<Instruction>(Expr->getValue()); 4240 switch (I->getOpcode()) { 4241 case Instruction::Select: { 4242 SelectInst *SI = cast<SelectInst>(I); 4243 Optional<const SCEV *> Res = 4244 compareWithBackedgeCondition(SI->getCondition()); 4245 if (Res.hasValue()) { 4246 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4247 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4248 } 4249 break; 4250 } 4251 default: { 4252 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4253 if (Res.hasValue()) 4254 Result = Res.getValue(); 4255 break; 4256 } 4257 } 4258 } 4259 return Result; 4260 } 4261 4262 private: 4263 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4264 bool IsPosBECond, ScalarEvolution &SE) 4265 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4266 IsPositiveBECond(IsPosBECond) {} 4267 4268 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4269 4270 const Loop *L; 4271 /// Loop back condition. 4272 Value *BackedgeCond = nullptr; 4273 /// Set to true if loop back is on positive branch condition. 4274 bool IsPositiveBECond; 4275 }; 4276 4277 Optional<const SCEV *> 4278 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4279 4280 // If value matches the backedge condition for loop latch, 4281 // then return a constant evolution node based on loopback 4282 // branch taken. 4283 if (BackedgeCond == IC) 4284 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4285 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4286 return None; 4287 } 4288 4289 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4290 public: 4291 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4292 ScalarEvolution &SE) { 4293 SCEVShiftRewriter Rewriter(L, SE); 4294 const SCEV *Result = Rewriter.visit(S); 4295 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4296 } 4297 4298 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4299 // Only allow AddRecExprs for this loop. 4300 if (!SE.isLoopInvariant(Expr, L)) 4301 Valid = false; 4302 return Expr; 4303 } 4304 4305 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4306 if (Expr->getLoop() == L && Expr->isAffine()) 4307 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4308 Valid = false; 4309 return Expr; 4310 } 4311 4312 bool isValid() { return Valid; } 4313 4314 private: 4315 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4316 : SCEVRewriteVisitor(SE), L(L) {} 4317 4318 const Loop *L; 4319 bool Valid = true; 4320 }; 4321 4322 } // end anonymous namespace 4323 4324 SCEV::NoWrapFlags 4325 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4326 if (!AR->isAffine()) 4327 return SCEV::FlagAnyWrap; 4328 4329 using OBO = OverflowingBinaryOperator; 4330 4331 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4332 4333 if (!AR->hasNoSignedWrap()) { 4334 ConstantRange AddRecRange = getSignedRange(AR); 4335 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4336 4337 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4338 Instruction::Add, IncRange, OBO::NoSignedWrap); 4339 if (NSWRegion.contains(AddRecRange)) 4340 Result |= SCEV::FlagNSW; 4341 } 4342 4343 if (!AR->hasNoUnsignedWrap()) { 4344 ConstantRange AddRecRange = getUnsignedRange(AR); 4345 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4346 4347 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4348 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4349 if (NUWRegion.contains(AddRecRange)) 4350 Result |= SCEV::FlagNUW; 4351 } 4352 4353 return Result; 4354 } 4355 4356 namespace { 4357 4358 /// Represents an abstract binary operation. This may exist as a 4359 /// normal instruction or constant expression, or may have been 4360 /// derived from an expression tree. 4361 struct BinaryOp { 4362 unsigned Opcode; 4363 Value *LHS; 4364 Value *RHS; 4365 bool IsNSW = false; 4366 bool IsNUW = false; 4367 4368 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4369 /// constant expression. 4370 Operator *Op = nullptr; 4371 4372 explicit BinaryOp(Operator *Op) 4373 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4374 Op(Op) { 4375 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4376 IsNSW = OBO->hasNoSignedWrap(); 4377 IsNUW = OBO->hasNoUnsignedWrap(); 4378 } 4379 } 4380 4381 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4382 bool IsNUW = false) 4383 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4384 }; 4385 4386 } // end anonymous namespace 4387 4388 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4389 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4390 auto *Op = dyn_cast<Operator>(V); 4391 if (!Op) 4392 return None; 4393 4394 // Implementation detail: all the cleverness here should happen without 4395 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4396 // SCEV expressions when possible, and we should not break that. 4397 4398 switch (Op->getOpcode()) { 4399 case Instruction::Add: 4400 case Instruction::Sub: 4401 case Instruction::Mul: 4402 case Instruction::UDiv: 4403 case Instruction::URem: 4404 case Instruction::And: 4405 case Instruction::Or: 4406 case Instruction::AShr: 4407 case Instruction::Shl: 4408 return BinaryOp(Op); 4409 4410 case Instruction::Xor: 4411 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4412 // If the RHS of the xor is a signmask, then this is just an add. 4413 // Instcombine turns add of signmask into xor as a strength reduction step. 4414 if (RHSC->getValue().isSignMask()) 4415 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4416 return BinaryOp(Op); 4417 4418 case Instruction::LShr: 4419 // Turn logical shift right of a constant into a unsigned divide. 4420 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4421 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4422 4423 // If the shift count is not less than the bitwidth, the result of 4424 // the shift is undefined. Don't try to analyze it, because the 4425 // resolution chosen here may differ from the resolution chosen in 4426 // other parts of the compiler. 4427 if (SA->getValue().ult(BitWidth)) { 4428 Constant *X = 4429 ConstantInt::get(SA->getContext(), 4430 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4431 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4432 } 4433 } 4434 return BinaryOp(Op); 4435 4436 case Instruction::ExtractValue: { 4437 auto *EVI = cast<ExtractValueInst>(Op); 4438 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4439 break; 4440 4441 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 4442 if (!CI) 4443 break; 4444 4445 if (auto *F = CI->getCalledFunction()) 4446 switch (F->getIntrinsicID()) { 4447 case Intrinsic::sadd_with_overflow: 4448 case Intrinsic::uadd_with_overflow: 4449 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4450 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4451 CI->getArgOperand(1)); 4452 4453 // Now that we know that all uses of the arithmetic-result component of 4454 // CI are guarded by the overflow check, we can go ahead and pretend 4455 // that the arithmetic is non-overflowing. 4456 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 4457 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4458 CI->getArgOperand(1), /* IsNSW = */ true, 4459 /* IsNUW = */ false); 4460 else 4461 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4462 CI->getArgOperand(1), /* IsNSW = */ false, 4463 /* IsNUW*/ true); 4464 case Intrinsic::ssub_with_overflow: 4465 case Intrinsic::usub_with_overflow: 4466 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4467 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4468 CI->getArgOperand(1)); 4469 4470 // The same reasoning as sadd/uadd above. 4471 if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow) 4472 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4473 CI->getArgOperand(1), /* IsNSW = */ true, 4474 /* IsNUW = */ false); 4475 else 4476 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4477 CI->getArgOperand(1), /* IsNSW = */ false, 4478 /* IsNUW = */ true); 4479 case Intrinsic::smul_with_overflow: 4480 case Intrinsic::umul_with_overflow: 4481 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 4482 CI->getArgOperand(1)); 4483 default: 4484 break; 4485 } 4486 break; 4487 } 4488 4489 default: 4490 break; 4491 } 4492 4493 return None; 4494 } 4495 4496 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4497 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4498 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4499 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4500 /// follows one of the following patterns: 4501 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4502 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4503 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4504 /// we return the type of the truncation operation, and indicate whether the 4505 /// truncated type should be treated as signed/unsigned by setting 4506 /// \p Signed to true/false, respectively. 4507 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4508 bool &Signed, ScalarEvolution &SE) { 4509 // The case where Op == SymbolicPHI (that is, with no type conversions on 4510 // the way) is handled by the regular add recurrence creating logic and 4511 // would have already been triggered in createAddRecForPHI. Reaching it here 4512 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4513 // because one of the other operands of the SCEVAddExpr updating this PHI is 4514 // not invariant). 4515 // 4516 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4517 // this case predicates that allow us to prove that Op == SymbolicPHI will 4518 // be added. 4519 if (Op == SymbolicPHI) 4520 return nullptr; 4521 4522 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4523 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4524 if (SourceBits != NewBits) 4525 return nullptr; 4526 4527 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4528 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4529 if (!SExt && !ZExt) 4530 return nullptr; 4531 const SCEVTruncateExpr *Trunc = 4532 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4533 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4534 if (!Trunc) 4535 return nullptr; 4536 const SCEV *X = Trunc->getOperand(); 4537 if (X != SymbolicPHI) 4538 return nullptr; 4539 Signed = SExt != nullptr; 4540 return Trunc->getType(); 4541 } 4542 4543 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4544 if (!PN->getType()->isIntegerTy()) 4545 return nullptr; 4546 const Loop *L = LI.getLoopFor(PN->getParent()); 4547 if (!L || L->getHeader() != PN->getParent()) 4548 return nullptr; 4549 return L; 4550 } 4551 4552 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4553 // computation that updates the phi follows the following pattern: 4554 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4555 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4556 // If so, try to see if it can be rewritten as an AddRecExpr under some 4557 // Predicates. If successful, return them as a pair. Also cache the results 4558 // of the analysis. 4559 // 4560 // Example usage scenario: 4561 // Say the Rewriter is called for the following SCEV: 4562 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4563 // where: 4564 // %X = phi i64 (%Start, %BEValue) 4565 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4566 // and call this function with %SymbolicPHI = %X. 4567 // 4568 // The analysis will find that the value coming around the backedge has 4569 // the following SCEV: 4570 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4571 // Upon concluding that this matches the desired pattern, the function 4572 // will return the pair {NewAddRec, SmallPredsVec} where: 4573 // NewAddRec = {%Start,+,%Step} 4574 // SmallPredsVec = {P1, P2, P3} as follows: 4575 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4576 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4577 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4578 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4579 // under the predicates {P1,P2,P3}. 4580 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4581 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4582 // 4583 // TODO's: 4584 // 4585 // 1) Extend the Induction descriptor to also support inductions that involve 4586 // casts: When needed (namely, when we are called in the context of the 4587 // vectorizer induction analysis), a Set of cast instructions will be 4588 // populated by this method, and provided back to isInductionPHI. This is 4589 // needed to allow the vectorizer to properly record them to be ignored by 4590 // the cost model and to avoid vectorizing them (otherwise these casts, 4591 // which are redundant under the runtime overflow checks, will be 4592 // vectorized, which can be costly). 4593 // 4594 // 2) Support additional induction/PHISCEV patterns: We also want to support 4595 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4596 // after the induction update operation (the induction increment): 4597 // 4598 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4599 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4600 // 4601 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4602 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4603 // 4604 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4605 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4606 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4607 SmallVector<const SCEVPredicate *, 3> Predicates; 4608 4609 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4610 // return an AddRec expression under some predicate. 4611 4612 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4613 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4614 assert(L && "Expecting an integer loop header phi"); 4615 4616 // The loop may have multiple entrances or multiple exits; we can analyze 4617 // this phi as an addrec if it has a unique entry value and a unique 4618 // backedge value. 4619 Value *BEValueV = nullptr, *StartValueV = nullptr; 4620 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4621 Value *V = PN->getIncomingValue(i); 4622 if (L->contains(PN->getIncomingBlock(i))) { 4623 if (!BEValueV) { 4624 BEValueV = V; 4625 } else if (BEValueV != V) { 4626 BEValueV = nullptr; 4627 break; 4628 } 4629 } else if (!StartValueV) { 4630 StartValueV = V; 4631 } else if (StartValueV != V) { 4632 StartValueV = nullptr; 4633 break; 4634 } 4635 } 4636 if (!BEValueV || !StartValueV) 4637 return None; 4638 4639 const SCEV *BEValue = getSCEV(BEValueV); 4640 4641 // If the value coming around the backedge is an add with the symbolic 4642 // value we just inserted, possibly with casts that we can ignore under 4643 // an appropriate runtime guard, then we found a simple induction variable! 4644 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4645 if (!Add) 4646 return None; 4647 4648 // If there is a single occurrence of the symbolic value, possibly 4649 // casted, replace it with a recurrence. 4650 unsigned FoundIndex = Add->getNumOperands(); 4651 Type *TruncTy = nullptr; 4652 bool Signed; 4653 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4654 if ((TruncTy = 4655 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4656 if (FoundIndex == e) { 4657 FoundIndex = i; 4658 break; 4659 } 4660 4661 if (FoundIndex == Add->getNumOperands()) 4662 return None; 4663 4664 // Create an add with everything but the specified operand. 4665 SmallVector<const SCEV *, 8> Ops; 4666 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4667 if (i != FoundIndex) 4668 Ops.push_back(Add->getOperand(i)); 4669 const SCEV *Accum = getAddExpr(Ops); 4670 4671 // The runtime checks will not be valid if the step amount is 4672 // varying inside the loop. 4673 if (!isLoopInvariant(Accum, L)) 4674 return None; 4675 4676 // *** Part2: Create the predicates 4677 4678 // Analysis was successful: we have a phi-with-cast pattern for which we 4679 // can return an AddRec expression under the following predicates: 4680 // 4681 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4682 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4683 // P2: An Equal predicate that guarantees that 4684 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4685 // P3: An Equal predicate that guarantees that 4686 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4687 // 4688 // As we next prove, the above predicates guarantee that: 4689 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4690 // 4691 // 4692 // More formally, we want to prove that: 4693 // Expr(i+1) = Start + (i+1) * Accum 4694 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4695 // 4696 // Given that: 4697 // 1) Expr(0) = Start 4698 // 2) Expr(1) = Start + Accum 4699 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4700 // 3) Induction hypothesis (step i): 4701 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4702 // 4703 // Proof: 4704 // Expr(i+1) = 4705 // = Start + (i+1)*Accum 4706 // = (Start + i*Accum) + Accum 4707 // = Expr(i) + Accum 4708 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4709 // :: from step i 4710 // 4711 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4712 // 4713 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4714 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4715 // + Accum :: from P3 4716 // 4717 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4718 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4719 // 4720 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4721 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4722 // 4723 // By induction, the same applies to all iterations 1<=i<n: 4724 // 4725 4726 // Create a truncated addrec for which we will add a no overflow check (P1). 4727 const SCEV *StartVal = getSCEV(StartValueV); 4728 const SCEV *PHISCEV = 4729 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4730 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4731 4732 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4733 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4734 // will be constant. 4735 // 4736 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4737 // add P1. 4738 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4739 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4740 Signed ? SCEVWrapPredicate::IncrementNSSW 4741 : SCEVWrapPredicate::IncrementNUSW; 4742 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4743 Predicates.push_back(AddRecPred); 4744 } 4745 4746 // Create the Equal Predicates P2,P3: 4747 4748 // It is possible that the predicates P2 and/or P3 are computable at 4749 // compile time due to StartVal and/or Accum being constants. 4750 // If either one is, then we can check that now and escape if either P2 4751 // or P3 is false. 4752 4753 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4754 // for each of StartVal and Accum 4755 auto getExtendedExpr = [&](const SCEV *Expr, 4756 bool CreateSignExtend) -> const SCEV * { 4757 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4758 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4759 const SCEV *ExtendedExpr = 4760 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4761 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4762 return ExtendedExpr; 4763 }; 4764 4765 // Given: 4766 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4767 // = getExtendedExpr(Expr) 4768 // Determine whether the predicate P: Expr == ExtendedExpr 4769 // is known to be false at compile time 4770 auto PredIsKnownFalse = [&](const SCEV *Expr, 4771 const SCEV *ExtendedExpr) -> bool { 4772 return Expr != ExtendedExpr && 4773 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4774 }; 4775 4776 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4777 if (PredIsKnownFalse(StartVal, StartExtended)) { 4778 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4779 return None; 4780 } 4781 4782 // The Step is always Signed (because the overflow checks are either 4783 // NSSW or NUSW) 4784 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4785 if (PredIsKnownFalse(Accum, AccumExtended)) { 4786 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4787 return None; 4788 } 4789 4790 auto AppendPredicate = [&](const SCEV *Expr, 4791 const SCEV *ExtendedExpr) -> void { 4792 if (Expr != ExtendedExpr && 4793 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4794 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4795 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4796 Predicates.push_back(Pred); 4797 } 4798 }; 4799 4800 AppendPredicate(StartVal, StartExtended); 4801 AppendPredicate(Accum, AccumExtended); 4802 4803 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4804 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4805 // into NewAR if it will also add the runtime overflow checks specified in 4806 // Predicates. 4807 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4808 4809 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4810 std::make_pair(NewAR, Predicates); 4811 // Remember the result of the analysis for this SCEV at this locayyytion. 4812 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4813 return PredRewrite; 4814 } 4815 4816 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4817 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4818 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4819 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4820 if (!L) 4821 return None; 4822 4823 // Check to see if we already analyzed this PHI. 4824 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4825 if (I != PredicatedSCEVRewrites.end()) { 4826 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4827 I->second; 4828 // Analysis was done before and failed to create an AddRec: 4829 if (Rewrite.first == SymbolicPHI) 4830 return None; 4831 // Analysis was done before and succeeded to create an AddRec under 4832 // a predicate: 4833 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4834 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4835 return Rewrite; 4836 } 4837 4838 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4839 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4840 4841 // Record in the cache that the analysis failed 4842 if (!Rewrite) { 4843 SmallVector<const SCEVPredicate *, 3> Predicates; 4844 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4845 return None; 4846 } 4847 4848 return Rewrite; 4849 } 4850 4851 // FIXME: This utility is currently required because the Rewriter currently 4852 // does not rewrite this expression: 4853 // {0, +, (sext ix (trunc iy to ix) to iy)} 4854 // into {0, +, %step}, 4855 // even when the following Equal predicate exists: 4856 // "%step == (sext ix (trunc iy to ix) to iy)". 4857 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4858 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4859 if (AR1 == AR2) 4860 return true; 4861 4862 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4863 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4864 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4865 return false; 4866 return true; 4867 }; 4868 4869 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4870 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4871 return false; 4872 return true; 4873 } 4874 4875 /// A helper function for createAddRecFromPHI to handle simple cases. 4876 /// 4877 /// This function tries to find an AddRec expression for the simplest (yet most 4878 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4879 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4880 /// technique for finding the AddRec expression. 4881 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4882 Value *BEValueV, 4883 Value *StartValueV) { 4884 const Loop *L = LI.getLoopFor(PN->getParent()); 4885 assert(L && L->getHeader() == PN->getParent()); 4886 assert(BEValueV && StartValueV); 4887 4888 auto BO = MatchBinaryOp(BEValueV, DT); 4889 if (!BO) 4890 return nullptr; 4891 4892 if (BO->Opcode != Instruction::Add) 4893 return nullptr; 4894 4895 const SCEV *Accum = nullptr; 4896 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4897 Accum = getSCEV(BO->RHS); 4898 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4899 Accum = getSCEV(BO->LHS); 4900 4901 if (!Accum) 4902 return nullptr; 4903 4904 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4905 if (BO->IsNUW) 4906 Flags |= SCEV::FlagNUW; 4907 if (BO->IsNSW) 4908 Flags |= SCEV::FlagNSW; 4909 4910 const SCEV *StartVal = getSCEV(StartValueV); 4911 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4912 4913 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4914 4915 // We can add Flags to the post-inc expression only if we 4916 // know that it is *undefined behavior* for BEValueV to 4917 // overflow. 4918 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4919 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4920 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4921 4922 return PHISCEV; 4923 } 4924 4925 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4926 const Loop *L = LI.getLoopFor(PN->getParent()); 4927 if (!L || L->getHeader() != PN->getParent()) 4928 return nullptr; 4929 4930 // The loop may have multiple entrances or multiple exits; we can analyze 4931 // this phi as an addrec if it has a unique entry value and a unique 4932 // backedge value. 4933 Value *BEValueV = nullptr, *StartValueV = nullptr; 4934 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4935 Value *V = PN->getIncomingValue(i); 4936 if (L->contains(PN->getIncomingBlock(i))) { 4937 if (!BEValueV) { 4938 BEValueV = V; 4939 } else if (BEValueV != V) { 4940 BEValueV = nullptr; 4941 break; 4942 } 4943 } else if (!StartValueV) { 4944 StartValueV = V; 4945 } else if (StartValueV != V) { 4946 StartValueV = nullptr; 4947 break; 4948 } 4949 } 4950 if (!BEValueV || !StartValueV) 4951 return nullptr; 4952 4953 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4954 "PHI node already processed?"); 4955 4956 // First, try to find AddRec expression without creating a fictituos symbolic 4957 // value for PN. 4958 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4959 return S; 4960 4961 // Handle PHI node value symbolically. 4962 const SCEV *SymbolicName = getUnknown(PN); 4963 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4964 4965 // Using this symbolic name for the PHI, analyze the value coming around 4966 // the back-edge. 4967 const SCEV *BEValue = getSCEV(BEValueV); 4968 4969 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4970 // has a special value for the first iteration of the loop. 4971 4972 // If the value coming around the backedge is an add with the symbolic 4973 // value we just inserted, then we found a simple induction variable! 4974 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4975 // If there is a single occurrence of the symbolic value, replace it 4976 // with a recurrence. 4977 unsigned FoundIndex = Add->getNumOperands(); 4978 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4979 if (Add->getOperand(i) == SymbolicName) 4980 if (FoundIndex == e) { 4981 FoundIndex = i; 4982 break; 4983 } 4984 4985 if (FoundIndex != Add->getNumOperands()) { 4986 // Create an add with everything but the specified operand. 4987 SmallVector<const SCEV *, 8> Ops; 4988 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4989 if (i != FoundIndex) 4990 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 4991 L, *this)); 4992 const SCEV *Accum = getAddExpr(Ops); 4993 4994 // This is not a valid addrec if the step amount is varying each 4995 // loop iteration, but is not itself an addrec in this loop. 4996 if (isLoopInvariant(Accum, L) || 4997 (isa<SCEVAddRecExpr>(Accum) && 4998 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4999 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5000 5001 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5002 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5003 if (BO->IsNUW) 5004 Flags |= SCEV::FlagNUW; 5005 if (BO->IsNSW) 5006 Flags |= SCEV::FlagNSW; 5007 } 5008 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5009 // If the increment is an inbounds GEP, then we know the address 5010 // space cannot be wrapped around. We cannot make any guarantee 5011 // about signed or unsigned overflow because pointers are 5012 // unsigned but we may have a negative index from the base 5013 // pointer. We can guarantee that no unsigned wrap occurs if the 5014 // indices form a positive value. 5015 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5016 Flags |= SCEV::FlagNW; 5017 5018 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5019 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5020 Flags |= SCEV::FlagNUW; 5021 } 5022 5023 // We cannot transfer nuw and nsw flags from subtraction 5024 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5025 // for instance. 5026 } 5027 5028 const SCEV *StartVal = getSCEV(StartValueV); 5029 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5030 5031 // Okay, for the entire analysis of this edge we assumed the PHI 5032 // to be symbolic. We now need to go back and purge all of the 5033 // entries for the scalars that use the symbolic expression. 5034 forgetSymbolicName(PN, SymbolicName); 5035 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5036 5037 // We can add Flags to the post-inc expression only if we 5038 // know that it is *undefined behavior* for BEValueV to 5039 // overflow. 5040 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5041 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5042 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5043 5044 return PHISCEV; 5045 } 5046 } 5047 } else { 5048 // Otherwise, this could be a loop like this: 5049 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5050 // In this case, j = {1,+,1} and BEValue is j. 5051 // Because the other in-value of i (0) fits the evolution of BEValue 5052 // i really is an addrec evolution. 5053 // 5054 // We can generalize this saying that i is the shifted value of BEValue 5055 // by one iteration: 5056 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5057 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5058 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5059 if (Shifted != getCouldNotCompute() && 5060 Start != getCouldNotCompute()) { 5061 const SCEV *StartVal = getSCEV(StartValueV); 5062 if (Start == StartVal) { 5063 // Okay, for the entire analysis of this edge we assumed the PHI 5064 // to be symbolic. We now need to go back and purge all of the 5065 // entries for the scalars that use the symbolic expression. 5066 forgetSymbolicName(PN, SymbolicName); 5067 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5068 return Shifted; 5069 } 5070 } 5071 } 5072 5073 // Remove the temporary PHI node SCEV that has been inserted while intending 5074 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5075 // as it will prevent later (possibly simpler) SCEV expressions to be added 5076 // to the ValueExprMap. 5077 eraseValueFromMap(PN); 5078 5079 return nullptr; 5080 } 5081 5082 // Checks if the SCEV S is available at BB. S is considered available at BB 5083 // if S can be materialized at BB without introducing a fault. 5084 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5085 BasicBlock *BB) { 5086 struct CheckAvailable { 5087 bool TraversalDone = false; 5088 bool Available = true; 5089 5090 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5091 BasicBlock *BB = nullptr; 5092 DominatorTree &DT; 5093 5094 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5095 : L(L), BB(BB), DT(DT) {} 5096 5097 bool setUnavailable() { 5098 TraversalDone = true; 5099 Available = false; 5100 return false; 5101 } 5102 5103 bool follow(const SCEV *S) { 5104 switch (S->getSCEVType()) { 5105 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 5106 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 5107 // These expressions are available if their operand(s) is/are. 5108 return true; 5109 5110 case scAddRecExpr: { 5111 // We allow add recurrences that are on the loop BB is in, or some 5112 // outer loop. This guarantees availability because the value of the 5113 // add recurrence at BB is simply the "current" value of the induction 5114 // variable. We can relax this in the future; for instance an add 5115 // recurrence on a sibling dominating loop is also available at BB. 5116 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5117 if (L && (ARLoop == L || ARLoop->contains(L))) 5118 return true; 5119 5120 return setUnavailable(); 5121 } 5122 5123 case scUnknown: { 5124 // For SCEVUnknown, we check for simple dominance. 5125 const auto *SU = cast<SCEVUnknown>(S); 5126 Value *V = SU->getValue(); 5127 5128 if (isa<Argument>(V)) 5129 return false; 5130 5131 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5132 return false; 5133 5134 return setUnavailable(); 5135 } 5136 5137 case scUDivExpr: 5138 case scCouldNotCompute: 5139 // We do not try to smart about these at all. 5140 return setUnavailable(); 5141 } 5142 llvm_unreachable("switch should be fully covered!"); 5143 } 5144 5145 bool isDone() { return TraversalDone; } 5146 }; 5147 5148 CheckAvailable CA(L, BB, DT); 5149 SCEVTraversal<CheckAvailable> ST(CA); 5150 5151 ST.visitAll(S); 5152 return CA.Available; 5153 } 5154 5155 // Try to match a control flow sequence that branches out at BI and merges back 5156 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5157 // match. 5158 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5159 Value *&C, Value *&LHS, Value *&RHS) { 5160 C = BI->getCondition(); 5161 5162 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5163 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5164 5165 if (!LeftEdge.isSingleEdge()) 5166 return false; 5167 5168 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5169 5170 Use &LeftUse = Merge->getOperandUse(0); 5171 Use &RightUse = Merge->getOperandUse(1); 5172 5173 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5174 LHS = LeftUse; 5175 RHS = RightUse; 5176 return true; 5177 } 5178 5179 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5180 LHS = RightUse; 5181 RHS = LeftUse; 5182 return true; 5183 } 5184 5185 return false; 5186 } 5187 5188 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5189 auto IsReachable = 5190 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5191 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5192 const Loop *L = LI.getLoopFor(PN->getParent()); 5193 5194 // We don't want to break LCSSA, even in a SCEV expression tree. 5195 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5196 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5197 return nullptr; 5198 5199 // Try to match 5200 // 5201 // br %cond, label %left, label %right 5202 // left: 5203 // br label %merge 5204 // right: 5205 // br label %merge 5206 // merge: 5207 // V = phi [ %x, %left ], [ %y, %right ] 5208 // 5209 // as "select %cond, %x, %y" 5210 5211 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5212 assert(IDom && "At least the entry block should dominate PN"); 5213 5214 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5215 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5216 5217 if (BI && BI->isConditional() && 5218 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5219 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5220 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5221 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5222 } 5223 5224 return nullptr; 5225 } 5226 5227 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5228 if (const SCEV *S = createAddRecFromPHI(PN)) 5229 return S; 5230 5231 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5232 return S; 5233 5234 // If the PHI has a single incoming value, follow that value, unless the 5235 // PHI's incoming blocks are in a different loop, in which case doing so 5236 // risks breaking LCSSA form. Instcombine would normally zap these, but 5237 // it doesn't have DominatorTree information, so it may miss cases. 5238 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5239 if (LI.replacementPreservesLCSSAForm(PN, V)) 5240 return getSCEV(V); 5241 5242 // If it's not a loop phi, we can't handle it yet. 5243 return getUnknown(PN); 5244 } 5245 5246 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5247 Value *Cond, 5248 Value *TrueVal, 5249 Value *FalseVal) { 5250 // Handle "constant" branch or select. This can occur for instance when a 5251 // loop pass transforms an inner loop and moves on to process the outer loop. 5252 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5253 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5254 5255 // Try to match some simple smax or umax patterns. 5256 auto *ICI = dyn_cast<ICmpInst>(Cond); 5257 if (!ICI) 5258 return getUnknown(I); 5259 5260 Value *LHS = ICI->getOperand(0); 5261 Value *RHS = ICI->getOperand(1); 5262 5263 switch (ICI->getPredicate()) { 5264 case ICmpInst::ICMP_SLT: 5265 case ICmpInst::ICMP_SLE: 5266 std::swap(LHS, RHS); 5267 LLVM_FALLTHROUGH; 5268 case ICmpInst::ICMP_SGT: 5269 case ICmpInst::ICMP_SGE: 5270 // a >s b ? a+x : b+x -> smax(a, b)+x 5271 // a >s b ? b+x : a+x -> smin(a, b)+x 5272 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5273 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5274 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5275 const SCEV *LA = getSCEV(TrueVal); 5276 const SCEV *RA = getSCEV(FalseVal); 5277 const SCEV *LDiff = getMinusSCEV(LA, LS); 5278 const SCEV *RDiff = getMinusSCEV(RA, RS); 5279 if (LDiff == RDiff) 5280 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5281 LDiff = getMinusSCEV(LA, RS); 5282 RDiff = getMinusSCEV(RA, LS); 5283 if (LDiff == RDiff) 5284 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5285 } 5286 break; 5287 case ICmpInst::ICMP_ULT: 5288 case ICmpInst::ICMP_ULE: 5289 std::swap(LHS, RHS); 5290 LLVM_FALLTHROUGH; 5291 case ICmpInst::ICMP_UGT: 5292 case ICmpInst::ICMP_UGE: 5293 // a >u b ? a+x : b+x -> umax(a, b)+x 5294 // a >u b ? b+x : a+x -> umin(a, b)+x 5295 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5296 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5297 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5298 const SCEV *LA = getSCEV(TrueVal); 5299 const SCEV *RA = getSCEV(FalseVal); 5300 const SCEV *LDiff = getMinusSCEV(LA, LS); 5301 const SCEV *RDiff = getMinusSCEV(RA, RS); 5302 if (LDiff == RDiff) 5303 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5304 LDiff = getMinusSCEV(LA, RS); 5305 RDiff = getMinusSCEV(RA, LS); 5306 if (LDiff == RDiff) 5307 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5308 } 5309 break; 5310 case ICmpInst::ICMP_NE: 5311 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5312 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5313 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5314 const SCEV *One = getOne(I->getType()); 5315 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5316 const SCEV *LA = getSCEV(TrueVal); 5317 const SCEV *RA = getSCEV(FalseVal); 5318 const SCEV *LDiff = getMinusSCEV(LA, LS); 5319 const SCEV *RDiff = getMinusSCEV(RA, One); 5320 if (LDiff == RDiff) 5321 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5322 } 5323 break; 5324 case ICmpInst::ICMP_EQ: 5325 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5326 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5327 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5328 const SCEV *One = getOne(I->getType()); 5329 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5330 const SCEV *LA = getSCEV(TrueVal); 5331 const SCEV *RA = getSCEV(FalseVal); 5332 const SCEV *LDiff = getMinusSCEV(LA, One); 5333 const SCEV *RDiff = getMinusSCEV(RA, LS); 5334 if (LDiff == RDiff) 5335 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5336 } 5337 break; 5338 default: 5339 break; 5340 } 5341 5342 return getUnknown(I); 5343 } 5344 5345 /// Expand GEP instructions into add and multiply operations. This allows them 5346 /// to be analyzed by regular SCEV code. 5347 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5348 // Don't attempt to analyze GEPs over unsized objects. 5349 if (!GEP->getSourceElementType()->isSized()) 5350 return getUnknown(GEP); 5351 5352 SmallVector<const SCEV *, 4> IndexExprs; 5353 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5354 IndexExprs.push_back(getSCEV(*Index)); 5355 return getGEPExpr(GEP, IndexExprs); 5356 } 5357 5358 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5359 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5360 return C->getAPInt().countTrailingZeros(); 5361 5362 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5363 return std::min(GetMinTrailingZeros(T->getOperand()), 5364 (uint32_t)getTypeSizeInBits(T->getType())); 5365 5366 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5367 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5368 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5369 ? getTypeSizeInBits(E->getType()) 5370 : OpRes; 5371 } 5372 5373 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5374 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5375 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5376 ? getTypeSizeInBits(E->getType()) 5377 : OpRes; 5378 } 5379 5380 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5381 // The result is the min of all operands results. 5382 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5383 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5384 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5385 return MinOpRes; 5386 } 5387 5388 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5389 // The result is the sum of all operands results. 5390 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5391 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5392 for (unsigned i = 1, e = M->getNumOperands(); 5393 SumOpRes != BitWidth && i != e; ++i) 5394 SumOpRes = 5395 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5396 return SumOpRes; 5397 } 5398 5399 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5400 // The result is the min of all operands results. 5401 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5402 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5403 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5404 return MinOpRes; 5405 } 5406 5407 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5408 // The result is the min of all operands results. 5409 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5410 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5411 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5412 return MinOpRes; 5413 } 5414 5415 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5416 // The result is the min of all operands results. 5417 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5418 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5419 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5420 return MinOpRes; 5421 } 5422 5423 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5424 // For a SCEVUnknown, ask ValueTracking. 5425 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5426 return Known.countMinTrailingZeros(); 5427 } 5428 5429 // SCEVUDivExpr 5430 return 0; 5431 } 5432 5433 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5434 auto I = MinTrailingZerosCache.find(S); 5435 if (I != MinTrailingZerosCache.end()) 5436 return I->second; 5437 5438 uint32_t Result = GetMinTrailingZerosImpl(S); 5439 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5440 assert(InsertPair.second && "Should insert a new key"); 5441 return InsertPair.first->second; 5442 } 5443 5444 /// Helper method to assign a range to V from metadata present in the IR. 5445 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5446 if (Instruction *I = dyn_cast<Instruction>(V)) 5447 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5448 return getConstantRangeFromMetadata(*MD); 5449 5450 return None; 5451 } 5452 5453 /// Determine the range for a particular SCEV. If SignHint is 5454 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5455 /// with a "cleaner" unsigned (resp. signed) representation. 5456 const ConstantRange & 5457 ScalarEvolution::getRangeRef(const SCEV *S, 5458 ScalarEvolution::RangeSignHint SignHint) { 5459 DenseMap<const SCEV *, ConstantRange> &Cache = 5460 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5461 : SignedRanges; 5462 5463 // See if we've computed this range already. 5464 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5465 if (I != Cache.end()) 5466 return I->second; 5467 5468 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5469 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5470 5471 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5472 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5473 5474 // If the value has known zeros, the maximum value will have those known zeros 5475 // as well. 5476 uint32_t TZ = GetMinTrailingZeros(S); 5477 if (TZ != 0) { 5478 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5479 ConservativeResult = 5480 ConstantRange(APInt::getMinValue(BitWidth), 5481 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5482 else 5483 ConservativeResult = ConstantRange( 5484 APInt::getSignedMinValue(BitWidth), 5485 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5486 } 5487 5488 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5489 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5490 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5491 X = X.add(getRangeRef(Add->getOperand(i), SignHint)); 5492 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 5493 } 5494 5495 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5496 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5497 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5498 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5499 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 5500 } 5501 5502 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5503 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5504 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5505 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5506 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 5507 } 5508 5509 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5510 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5511 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5512 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5513 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 5514 } 5515 5516 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5517 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5518 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5519 return setRange(UDiv, SignHint, 5520 ConservativeResult.intersectWith(X.udiv(Y))); 5521 } 5522 5523 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5524 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5525 return setRange(ZExt, SignHint, 5526 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 5527 } 5528 5529 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5530 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5531 return setRange(SExt, SignHint, 5532 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 5533 } 5534 5535 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5536 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5537 return setRange(Trunc, SignHint, 5538 ConservativeResult.intersectWith(X.truncate(BitWidth))); 5539 } 5540 5541 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5542 // If there's no unsigned wrap, the value will never be less than its 5543 // initial value. 5544 if (AddRec->hasNoUnsignedWrap()) 5545 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 5546 if (!C->getValue()->isZero()) 5547 ConservativeResult = ConservativeResult.intersectWith( 5548 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 5549 5550 // If there's no signed wrap, and all the operands have the same sign or 5551 // zero, the value won't ever change sign. 5552 if (AddRec->hasNoSignedWrap()) { 5553 bool AllNonNeg = true; 5554 bool AllNonPos = true; 5555 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5556 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 5557 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 5558 } 5559 if (AllNonNeg) 5560 ConservativeResult = ConservativeResult.intersectWith( 5561 ConstantRange(APInt(BitWidth, 0), 5562 APInt::getSignedMinValue(BitWidth))); 5563 else if (AllNonPos) 5564 ConservativeResult = ConservativeResult.intersectWith( 5565 ConstantRange(APInt::getSignedMinValue(BitWidth), 5566 APInt(BitWidth, 1))); 5567 } 5568 5569 // TODO: non-affine addrec 5570 if (AddRec->isAffine()) { 5571 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 5572 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5573 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5574 auto RangeFromAffine = getRangeForAffineAR( 5575 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5576 BitWidth); 5577 if (!RangeFromAffine.isFullSet()) 5578 ConservativeResult = 5579 ConservativeResult.intersectWith(RangeFromAffine); 5580 5581 auto RangeFromFactoring = getRangeViaFactoring( 5582 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5583 BitWidth); 5584 if (!RangeFromFactoring.isFullSet()) 5585 ConservativeResult = 5586 ConservativeResult.intersectWith(RangeFromFactoring); 5587 } 5588 } 5589 5590 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5591 } 5592 5593 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5594 // Check if the IR explicitly contains !range metadata. 5595 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5596 if (MDRange.hasValue()) 5597 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 5598 5599 // Split here to avoid paying the compile-time cost of calling both 5600 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5601 // if needed. 5602 const DataLayout &DL = getDataLayout(); 5603 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5604 // For a SCEVUnknown, ask ValueTracking. 5605 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5606 if (Known.One != ~Known.Zero + 1) 5607 ConservativeResult = 5608 ConservativeResult.intersectWith(ConstantRange(Known.One, 5609 ~Known.Zero + 1)); 5610 } else { 5611 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5612 "generalize as needed!"); 5613 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5614 if (NS > 1) 5615 ConservativeResult = ConservativeResult.intersectWith( 5616 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5617 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 5618 } 5619 5620 // A range of Phi is a subset of union of all ranges of its input. 5621 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5622 // Make sure that we do not run over cycled Phis. 5623 if (PendingPhiRanges.insert(Phi).second) { 5624 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5625 for (auto &Op : Phi->operands()) { 5626 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5627 RangeFromOps = RangeFromOps.unionWith(OpRange); 5628 // No point to continue if we already have a full set. 5629 if (RangeFromOps.isFullSet()) 5630 break; 5631 } 5632 ConservativeResult = ConservativeResult.intersectWith(RangeFromOps); 5633 bool Erased = PendingPhiRanges.erase(Phi); 5634 assert(Erased && "Failed to erase Phi properly?"); 5635 (void) Erased; 5636 } 5637 } 5638 5639 return setRange(U, SignHint, std::move(ConservativeResult)); 5640 } 5641 5642 return setRange(S, SignHint, std::move(ConservativeResult)); 5643 } 5644 5645 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5646 // values that the expression can take. Initially, the expression has a value 5647 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5648 // argument defines if we treat Step as signed or unsigned. 5649 static ConstantRange getRangeForAffineARHelper(APInt Step, 5650 const ConstantRange &StartRange, 5651 const APInt &MaxBECount, 5652 unsigned BitWidth, bool Signed) { 5653 // If either Step or MaxBECount is 0, then the expression won't change, and we 5654 // just need to return the initial range. 5655 if (Step == 0 || MaxBECount == 0) 5656 return StartRange; 5657 5658 // If we don't know anything about the initial value (i.e. StartRange is 5659 // FullRange), then we don't know anything about the final range either. 5660 // Return FullRange. 5661 if (StartRange.isFullSet()) 5662 return ConstantRange(BitWidth, /* isFullSet = */ true); 5663 5664 // If Step is signed and negative, then we use its absolute value, but we also 5665 // note that we're moving in the opposite direction. 5666 bool Descending = Signed && Step.isNegative(); 5667 5668 if (Signed) 5669 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5670 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5671 // This equations hold true due to the well-defined wrap-around behavior of 5672 // APInt. 5673 Step = Step.abs(); 5674 5675 // Check if Offset is more than full span of BitWidth. If it is, the 5676 // expression is guaranteed to overflow. 5677 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5678 return ConstantRange(BitWidth, /* isFullSet = */ true); 5679 5680 // Offset is by how much the expression can change. Checks above guarantee no 5681 // overflow here. 5682 APInt Offset = Step * MaxBECount; 5683 5684 // Minimum value of the final range will match the minimal value of StartRange 5685 // if the expression is increasing and will be decreased by Offset otherwise. 5686 // Maximum value of the final range will match the maximal value of StartRange 5687 // if the expression is decreasing and will be increased by Offset otherwise. 5688 APInt StartLower = StartRange.getLower(); 5689 APInt StartUpper = StartRange.getUpper() - 1; 5690 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5691 : (StartUpper + std::move(Offset)); 5692 5693 // It's possible that the new minimum/maximum value will fall into the initial 5694 // range (due to wrap around). This means that the expression can take any 5695 // value in this bitwidth, and we have to return full range. 5696 if (StartRange.contains(MovedBoundary)) 5697 return ConstantRange(BitWidth, /* isFullSet = */ true); 5698 5699 APInt NewLower = 5700 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5701 APInt NewUpper = 5702 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5703 NewUpper += 1; 5704 5705 // If we end up with full range, return a proper full range. 5706 if (NewLower == NewUpper) 5707 return ConstantRange(BitWidth, /* isFullSet = */ true); 5708 5709 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5710 return ConstantRange(std::move(NewLower), std::move(NewUpper)); 5711 } 5712 5713 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5714 const SCEV *Step, 5715 const SCEV *MaxBECount, 5716 unsigned BitWidth) { 5717 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5718 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5719 "Precondition!"); 5720 5721 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5722 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5723 5724 // First, consider step signed. 5725 ConstantRange StartSRange = getSignedRange(Start); 5726 ConstantRange StepSRange = getSignedRange(Step); 5727 5728 // If Step can be both positive and negative, we need to find ranges for the 5729 // maximum absolute step values in both directions and union them. 5730 ConstantRange SR = 5731 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5732 MaxBECountValue, BitWidth, /* Signed = */ true); 5733 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5734 StartSRange, MaxBECountValue, 5735 BitWidth, /* Signed = */ true)); 5736 5737 // Next, consider step unsigned. 5738 ConstantRange UR = getRangeForAffineARHelper( 5739 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5740 MaxBECountValue, BitWidth, /* Signed = */ false); 5741 5742 // Finally, intersect signed and unsigned ranges. 5743 return SR.intersectWith(UR); 5744 } 5745 5746 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5747 const SCEV *Step, 5748 const SCEV *MaxBECount, 5749 unsigned BitWidth) { 5750 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5751 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5752 5753 struct SelectPattern { 5754 Value *Condition = nullptr; 5755 APInt TrueValue; 5756 APInt FalseValue; 5757 5758 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5759 const SCEV *S) { 5760 Optional<unsigned> CastOp; 5761 APInt Offset(BitWidth, 0); 5762 5763 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5764 "Should be!"); 5765 5766 // Peel off a constant offset: 5767 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5768 // In the future we could consider being smarter here and handle 5769 // {Start+Step,+,Step} too. 5770 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5771 return; 5772 5773 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5774 S = SA->getOperand(1); 5775 } 5776 5777 // Peel off a cast operation 5778 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5779 CastOp = SCast->getSCEVType(); 5780 S = SCast->getOperand(); 5781 } 5782 5783 using namespace llvm::PatternMatch; 5784 5785 auto *SU = dyn_cast<SCEVUnknown>(S); 5786 const APInt *TrueVal, *FalseVal; 5787 if (!SU || 5788 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5789 m_APInt(FalseVal)))) { 5790 Condition = nullptr; 5791 return; 5792 } 5793 5794 TrueValue = *TrueVal; 5795 FalseValue = *FalseVal; 5796 5797 // Re-apply the cast we peeled off earlier 5798 if (CastOp.hasValue()) 5799 switch (*CastOp) { 5800 default: 5801 llvm_unreachable("Unknown SCEV cast type!"); 5802 5803 case scTruncate: 5804 TrueValue = TrueValue.trunc(BitWidth); 5805 FalseValue = FalseValue.trunc(BitWidth); 5806 break; 5807 case scZeroExtend: 5808 TrueValue = TrueValue.zext(BitWidth); 5809 FalseValue = FalseValue.zext(BitWidth); 5810 break; 5811 case scSignExtend: 5812 TrueValue = TrueValue.sext(BitWidth); 5813 FalseValue = FalseValue.sext(BitWidth); 5814 break; 5815 } 5816 5817 // Re-apply the constant offset we peeled off earlier 5818 TrueValue += Offset; 5819 FalseValue += Offset; 5820 } 5821 5822 bool isRecognized() { return Condition != nullptr; } 5823 }; 5824 5825 SelectPattern StartPattern(*this, BitWidth, Start); 5826 if (!StartPattern.isRecognized()) 5827 return ConstantRange(BitWidth, /* isFullSet = */ true); 5828 5829 SelectPattern StepPattern(*this, BitWidth, Step); 5830 if (!StepPattern.isRecognized()) 5831 return ConstantRange(BitWidth, /* isFullSet = */ true); 5832 5833 if (StartPattern.Condition != StepPattern.Condition) { 5834 // We don't handle this case today; but we could, by considering four 5835 // possibilities below instead of two. I'm not sure if there are cases where 5836 // that will help over what getRange already does, though. 5837 return ConstantRange(BitWidth, /* isFullSet = */ true); 5838 } 5839 5840 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5841 // construct arbitrary general SCEV expressions here. This function is called 5842 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5843 // say) can end up caching a suboptimal value. 5844 5845 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5846 // C2352 and C2512 (otherwise it isn't needed). 5847 5848 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5849 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5850 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5851 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5852 5853 ConstantRange TrueRange = 5854 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5855 ConstantRange FalseRange = 5856 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5857 5858 return TrueRange.unionWith(FalseRange); 5859 } 5860 5861 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5862 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5863 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5864 5865 // Return early if there are no flags to propagate to the SCEV. 5866 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5867 if (BinOp->hasNoUnsignedWrap()) 5868 Flags |= SCEV::FlagNUW; 5869 if (BinOp->hasNoSignedWrap()) 5870 Flags |= SCEV::FlagNSW; 5871 if (Flags == SCEV::FlagAnyWrap) 5872 return SCEV::FlagAnyWrap; 5873 5874 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5875 } 5876 5877 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5878 // Here we check that I is in the header of the innermost loop containing I, 5879 // since we only deal with instructions in the loop header. The actual loop we 5880 // need to check later will come from an add recurrence, but getting that 5881 // requires computing the SCEV of the operands, which can be expensive. This 5882 // check we can do cheaply to rule out some cases early. 5883 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5884 if (InnermostContainingLoop == nullptr || 5885 InnermostContainingLoop->getHeader() != I->getParent()) 5886 return false; 5887 5888 // Only proceed if we can prove that I does not yield poison. 5889 if (!programUndefinedIfFullPoison(I)) 5890 return false; 5891 5892 // At this point we know that if I is executed, then it does not wrap 5893 // according to at least one of NSW or NUW. If I is not executed, then we do 5894 // not know if the calculation that I represents would wrap. Multiple 5895 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5896 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5897 // derived from other instructions that map to the same SCEV. We cannot make 5898 // that guarantee for cases where I is not executed. So we need to find the 5899 // loop that I is considered in relation to and prove that I is executed for 5900 // every iteration of that loop. That implies that the value that I 5901 // calculates does not wrap anywhere in the loop, so then we can apply the 5902 // flags to the SCEV. 5903 // 5904 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5905 // from different loops, so that we know which loop to prove that I is 5906 // executed in. 5907 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5908 // I could be an extractvalue from a call to an overflow intrinsic. 5909 // TODO: We can do better here in some cases. 5910 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5911 return false; 5912 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5913 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5914 bool AllOtherOpsLoopInvariant = true; 5915 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5916 ++OtherOpIndex) { 5917 if (OtherOpIndex != OpIndex) { 5918 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5919 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5920 AllOtherOpsLoopInvariant = false; 5921 break; 5922 } 5923 } 5924 } 5925 if (AllOtherOpsLoopInvariant && 5926 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5927 return true; 5928 } 5929 } 5930 return false; 5931 } 5932 5933 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5934 // If we know that \c I can never be poison period, then that's enough. 5935 if (isSCEVExprNeverPoison(I)) 5936 return true; 5937 5938 // For an add recurrence specifically, we assume that infinite loops without 5939 // side effects are undefined behavior, and then reason as follows: 5940 // 5941 // If the add recurrence is poison in any iteration, it is poison on all 5942 // future iterations (since incrementing poison yields poison). If the result 5943 // of the add recurrence is fed into the loop latch condition and the loop 5944 // does not contain any throws or exiting blocks other than the latch, we now 5945 // have the ability to "choose" whether the backedge is taken or not (by 5946 // choosing a sufficiently evil value for the poison feeding into the branch) 5947 // for every iteration including and after the one in which \p I first became 5948 // poison. There are two possibilities (let's call the iteration in which \p 5949 // I first became poison as K): 5950 // 5951 // 1. In the set of iterations including and after K, the loop body executes 5952 // no side effects. In this case executing the backege an infinte number 5953 // of times will yield undefined behavior. 5954 // 5955 // 2. In the set of iterations including and after K, the loop body executes 5956 // at least one side effect. In this case, that specific instance of side 5957 // effect is control dependent on poison, which also yields undefined 5958 // behavior. 5959 5960 auto *ExitingBB = L->getExitingBlock(); 5961 auto *LatchBB = L->getLoopLatch(); 5962 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5963 return false; 5964 5965 SmallPtrSet<const Instruction *, 16> Pushed; 5966 SmallVector<const Instruction *, 8> PoisonStack; 5967 5968 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5969 // things that are known to be fully poison under that assumption go on the 5970 // PoisonStack. 5971 Pushed.insert(I); 5972 PoisonStack.push_back(I); 5973 5974 bool LatchControlDependentOnPoison = false; 5975 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5976 const Instruction *Poison = PoisonStack.pop_back_val(); 5977 5978 for (auto *PoisonUser : Poison->users()) { 5979 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 5980 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5981 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5982 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5983 assert(BI->isConditional() && "Only possibility!"); 5984 if (BI->getParent() == LatchBB) { 5985 LatchControlDependentOnPoison = true; 5986 break; 5987 } 5988 } 5989 } 5990 } 5991 5992 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5993 } 5994 5995 ScalarEvolution::LoopProperties 5996 ScalarEvolution::getLoopProperties(const Loop *L) { 5997 using LoopProperties = ScalarEvolution::LoopProperties; 5998 5999 auto Itr = LoopPropertiesCache.find(L); 6000 if (Itr == LoopPropertiesCache.end()) { 6001 auto HasSideEffects = [](Instruction *I) { 6002 if (auto *SI = dyn_cast<StoreInst>(I)) 6003 return !SI->isSimple(); 6004 6005 return I->mayHaveSideEffects(); 6006 }; 6007 6008 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6009 /*HasNoSideEffects*/ true}; 6010 6011 for (auto *BB : L->getBlocks()) 6012 for (auto &I : *BB) { 6013 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6014 LP.HasNoAbnormalExits = false; 6015 if (HasSideEffects(&I)) 6016 LP.HasNoSideEffects = false; 6017 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6018 break; // We're already as pessimistic as we can get. 6019 } 6020 6021 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6022 assert(InsertPair.second && "We just checked!"); 6023 Itr = InsertPair.first; 6024 } 6025 6026 return Itr->second; 6027 } 6028 6029 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6030 if (!isSCEVable(V->getType())) 6031 return getUnknown(V); 6032 6033 if (Instruction *I = dyn_cast<Instruction>(V)) { 6034 // Don't attempt to analyze instructions in blocks that aren't 6035 // reachable. Such instructions don't matter, and they aren't required 6036 // to obey basic rules for definitions dominating uses which this 6037 // analysis depends on. 6038 if (!DT.isReachableFromEntry(I->getParent())) 6039 return getUnknown(V); 6040 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6041 return getConstant(CI); 6042 else if (isa<ConstantPointerNull>(V)) 6043 return getZero(V->getType()); 6044 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6045 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6046 else if (!isa<ConstantExpr>(V)) 6047 return getUnknown(V); 6048 6049 Operator *U = cast<Operator>(V); 6050 if (auto BO = MatchBinaryOp(U, DT)) { 6051 switch (BO->Opcode) { 6052 case Instruction::Add: { 6053 // The simple thing to do would be to just call getSCEV on both operands 6054 // and call getAddExpr with the result. However if we're looking at a 6055 // bunch of things all added together, this can be quite inefficient, 6056 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6057 // Instead, gather up all the operands and make a single getAddExpr call. 6058 // LLVM IR canonical form means we need only traverse the left operands. 6059 SmallVector<const SCEV *, 4> AddOps; 6060 do { 6061 if (BO->Op) { 6062 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6063 AddOps.push_back(OpSCEV); 6064 break; 6065 } 6066 6067 // If a NUW or NSW flag can be applied to the SCEV for this 6068 // addition, then compute the SCEV for this addition by itself 6069 // with a separate call to getAddExpr. We need to do that 6070 // instead of pushing the operands of the addition onto AddOps, 6071 // since the flags are only known to apply to this particular 6072 // addition - they may not apply to other additions that can be 6073 // formed with operands from AddOps. 6074 const SCEV *RHS = getSCEV(BO->RHS); 6075 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6076 if (Flags != SCEV::FlagAnyWrap) { 6077 const SCEV *LHS = getSCEV(BO->LHS); 6078 if (BO->Opcode == Instruction::Sub) 6079 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6080 else 6081 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6082 break; 6083 } 6084 } 6085 6086 if (BO->Opcode == Instruction::Sub) 6087 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6088 else 6089 AddOps.push_back(getSCEV(BO->RHS)); 6090 6091 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6092 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6093 NewBO->Opcode != Instruction::Sub)) { 6094 AddOps.push_back(getSCEV(BO->LHS)); 6095 break; 6096 } 6097 BO = NewBO; 6098 } while (true); 6099 6100 return getAddExpr(AddOps); 6101 } 6102 6103 case Instruction::Mul: { 6104 SmallVector<const SCEV *, 4> MulOps; 6105 do { 6106 if (BO->Op) { 6107 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6108 MulOps.push_back(OpSCEV); 6109 break; 6110 } 6111 6112 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6113 if (Flags != SCEV::FlagAnyWrap) { 6114 MulOps.push_back( 6115 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6116 break; 6117 } 6118 } 6119 6120 MulOps.push_back(getSCEV(BO->RHS)); 6121 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6122 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6123 MulOps.push_back(getSCEV(BO->LHS)); 6124 break; 6125 } 6126 BO = NewBO; 6127 } while (true); 6128 6129 return getMulExpr(MulOps); 6130 } 6131 case Instruction::UDiv: 6132 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6133 case Instruction::URem: 6134 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6135 case Instruction::Sub: { 6136 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6137 if (BO->Op) 6138 Flags = getNoWrapFlagsFromUB(BO->Op); 6139 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6140 } 6141 case Instruction::And: 6142 // For an expression like x&255 that merely masks off the high bits, 6143 // use zext(trunc(x)) as the SCEV expression. 6144 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6145 if (CI->isZero()) 6146 return getSCEV(BO->RHS); 6147 if (CI->isMinusOne()) 6148 return getSCEV(BO->LHS); 6149 const APInt &A = CI->getValue(); 6150 6151 // Instcombine's ShrinkDemandedConstant may strip bits out of 6152 // constants, obscuring what would otherwise be a low-bits mask. 6153 // Use computeKnownBits to compute what ShrinkDemandedConstant 6154 // knew about to reconstruct a low-bits mask value. 6155 unsigned LZ = A.countLeadingZeros(); 6156 unsigned TZ = A.countTrailingZeros(); 6157 unsigned BitWidth = A.getBitWidth(); 6158 KnownBits Known(BitWidth); 6159 computeKnownBits(BO->LHS, Known, getDataLayout(), 6160 0, &AC, nullptr, &DT); 6161 6162 APInt EffectiveMask = 6163 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6164 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6165 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6166 const SCEV *LHS = getSCEV(BO->LHS); 6167 const SCEV *ShiftedLHS = nullptr; 6168 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6169 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6170 // For an expression like (x * 8) & 8, simplify the multiply. 6171 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6172 unsigned GCD = std::min(MulZeros, TZ); 6173 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6174 SmallVector<const SCEV*, 4> MulOps; 6175 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6176 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6177 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6178 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6179 } 6180 } 6181 if (!ShiftedLHS) 6182 ShiftedLHS = getUDivExpr(LHS, MulCount); 6183 return getMulExpr( 6184 getZeroExtendExpr( 6185 getTruncateExpr(ShiftedLHS, 6186 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6187 BO->LHS->getType()), 6188 MulCount); 6189 } 6190 } 6191 break; 6192 6193 case Instruction::Or: 6194 // If the RHS of the Or is a constant, we may have something like: 6195 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6196 // optimizations will transparently handle this case. 6197 // 6198 // In order for this transformation to be safe, the LHS must be of the 6199 // form X*(2^n) and the Or constant must be less than 2^n. 6200 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6201 const SCEV *LHS = getSCEV(BO->LHS); 6202 const APInt &CIVal = CI->getValue(); 6203 if (GetMinTrailingZeros(LHS) >= 6204 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6205 // Build a plain add SCEV. 6206 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 6207 // If the LHS of the add was an addrec and it has no-wrap flags, 6208 // transfer the no-wrap flags, since an or won't introduce a wrap. 6209 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 6210 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 6211 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 6212 OldAR->getNoWrapFlags()); 6213 } 6214 return S; 6215 } 6216 } 6217 break; 6218 6219 case Instruction::Xor: 6220 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6221 // If the RHS of xor is -1, then this is a not operation. 6222 if (CI->isMinusOne()) 6223 return getNotSCEV(getSCEV(BO->LHS)); 6224 6225 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6226 // This is a variant of the check for xor with -1, and it handles 6227 // the case where instcombine has trimmed non-demanded bits out 6228 // of an xor with -1. 6229 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6230 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6231 if (LBO->getOpcode() == Instruction::And && 6232 LCI->getValue() == CI->getValue()) 6233 if (const SCEVZeroExtendExpr *Z = 6234 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6235 Type *UTy = BO->LHS->getType(); 6236 const SCEV *Z0 = Z->getOperand(); 6237 Type *Z0Ty = Z0->getType(); 6238 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6239 6240 // If C is a low-bits mask, the zero extend is serving to 6241 // mask off the high bits. Complement the operand and 6242 // re-apply the zext. 6243 if (CI->getValue().isMask(Z0TySize)) 6244 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6245 6246 // If C is a single bit, it may be in the sign-bit position 6247 // before the zero-extend. In this case, represent the xor 6248 // using an add, which is equivalent, and re-apply the zext. 6249 APInt Trunc = CI->getValue().trunc(Z0TySize); 6250 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6251 Trunc.isSignMask()) 6252 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6253 UTy); 6254 } 6255 } 6256 break; 6257 6258 case Instruction::Shl: 6259 // Turn shift left of a constant amount into a multiply. 6260 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6261 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6262 6263 // If the shift count is not less than the bitwidth, the result of 6264 // the shift is undefined. Don't try to analyze it, because the 6265 // resolution chosen here may differ from the resolution chosen in 6266 // other parts of the compiler. 6267 if (SA->getValue().uge(BitWidth)) 6268 break; 6269 6270 // It is currently not resolved how to interpret NSW for left 6271 // shift by BitWidth - 1, so we avoid applying flags in that 6272 // case. Remove this check (or this comment) once the situation 6273 // is resolved. See 6274 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 6275 // and http://reviews.llvm.org/D8890 . 6276 auto Flags = SCEV::FlagAnyWrap; 6277 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 6278 Flags = getNoWrapFlagsFromUB(BO->Op); 6279 6280 Constant *X = ConstantInt::get( 6281 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6282 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6283 } 6284 break; 6285 6286 case Instruction::AShr: { 6287 // AShr X, C, where C is a constant. 6288 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6289 if (!CI) 6290 break; 6291 6292 Type *OuterTy = BO->LHS->getType(); 6293 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6294 // If the shift count is not less than the bitwidth, the result of 6295 // the shift is undefined. Don't try to analyze it, because the 6296 // resolution chosen here may differ from the resolution chosen in 6297 // other parts of the compiler. 6298 if (CI->getValue().uge(BitWidth)) 6299 break; 6300 6301 if (CI->isZero()) 6302 return getSCEV(BO->LHS); // shift by zero --> noop 6303 6304 uint64_t AShrAmt = CI->getZExtValue(); 6305 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6306 6307 Operator *L = dyn_cast<Operator>(BO->LHS); 6308 if (L && L->getOpcode() == Instruction::Shl) { 6309 // X = Shl A, n 6310 // Y = AShr X, m 6311 // Both n and m are constant. 6312 6313 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6314 if (L->getOperand(1) == BO->RHS) 6315 // For a two-shift sext-inreg, i.e. n = m, 6316 // use sext(trunc(x)) as the SCEV expression. 6317 return getSignExtendExpr( 6318 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6319 6320 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6321 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6322 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6323 if (ShlAmt > AShrAmt) { 6324 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6325 // expression. We already checked that ShlAmt < BitWidth, so 6326 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6327 // ShlAmt - AShrAmt < Amt. 6328 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6329 ShlAmt - AShrAmt); 6330 return getSignExtendExpr( 6331 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6332 getConstant(Mul)), OuterTy); 6333 } 6334 } 6335 } 6336 break; 6337 } 6338 } 6339 } 6340 6341 switch (U->getOpcode()) { 6342 case Instruction::Trunc: 6343 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6344 6345 case Instruction::ZExt: 6346 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6347 6348 case Instruction::SExt: 6349 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6350 // The NSW flag of a subtract does not always survive the conversion to 6351 // A + (-1)*B. By pushing sign extension onto its operands we are much 6352 // more likely to preserve NSW and allow later AddRec optimisations. 6353 // 6354 // NOTE: This is effectively duplicating this logic from getSignExtend: 6355 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6356 // but by that point the NSW information has potentially been lost. 6357 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6358 Type *Ty = U->getType(); 6359 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6360 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6361 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6362 } 6363 } 6364 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6365 6366 case Instruction::BitCast: 6367 // BitCasts are no-op casts so we just eliminate the cast. 6368 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6369 return getSCEV(U->getOperand(0)); 6370 break; 6371 6372 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6373 // lead to pointer expressions which cannot safely be expanded to GEPs, 6374 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6375 // simplifying integer expressions. 6376 6377 case Instruction::GetElementPtr: 6378 return createNodeForGEP(cast<GEPOperator>(U)); 6379 6380 case Instruction::PHI: 6381 return createNodeForPHI(cast<PHINode>(U)); 6382 6383 case Instruction::Select: 6384 // U can also be a select constant expr, which let fall through. Since 6385 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6386 // constant expressions cannot have instructions as operands, we'd have 6387 // returned getUnknown for a select constant expressions anyway. 6388 if (isa<Instruction>(U)) 6389 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6390 U->getOperand(1), U->getOperand(2)); 6391 break; 6392 6393 case Instruction::Call: 6394 case Instruction::Invoke: 6395 if (Value *RV = CallSite(U).getReturnedArgOperand()) 6396 return getSCEV(RV); 6397 break; 6398 } 6399 6400 return getUnknown(V); 6401 } 6402 6403 //===----------------------------------------------------------------------===// 6404 // Iteration Count Computation Code 6405 // 6406 6407 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6408 if (!ExitCount) 6409 return 0; 6410 6411 ConstantInt *ExitConst = ExitCount->getValue(); 6412 6413 // Guard against huge trip counts. 6414 if (ExitConst->getValue().getActiveBits() > 32) 6415 return 0; 6416 6417 // In case of integer overflow, this returns 0, which is correct. 6418 return ((unsigned)ExitConst->getZExtValue()) + 1; 6419 } 6420 6421 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6422 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6423 return getSmallConstantTripCount(L, ExitingBB); 6424 6425 // No trip count information for multiple exits. 6426 return 0; 6427 } 6428 6429 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6430 BasicBlock *ExitingBlock) { 6431 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6432 assert(L->isLoopExiting(ExitingBlock) && 6433 "Exiting block must actually branch out of the loop!"); 6434 const SCEVConstant *ExitCount = 6435 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6436 return getConstantTripCount(ExitCount); 6437 } 6438 6439 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6440 const auto *MaxExitCount = 6441 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 6442 return getConstantTripCount(MaxExitCount); 6443 } 6444 6445 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6446 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6447 return getSmallConstantTripMultiple(L, ExitingBB); 6448 6449 // No trip multiple information for multiple exits. 6450 return 0; 6451 } 6452 6453 /// Returns the largest constant divisor of the trip count of this loop as a 6454 /// normal unsigned value, if possible. This means that the actual trip count is 6455 /// always a multiple of the returned value (don't forget the trip count could 6456 /// very well be zero as well!). 6457 /// 6458 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6459 /// multiple of a constant (which is also the case if the trip count is simply 6460 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6461 /// if the trip count is very large (>= 2^32). 6462 /// 6463 /// As explained in the comments for getSmallConstantTripCount, this assumes 6464 /// that control exits the loop via ExitingBlock. 6465 unsigned 6466 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6467 BasicBlock *ExitingBlock) { 6468 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6469 assert(L->isLoopExiting(ExitingBlock) && 6470 "Exiting block must actually branch out of the loop!"); 6471 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6472 if (ExitCount == getCouldNotCompute()) 6473 return 1; 6474 6475 // Get the trip count from the BE count by adding 1. 6476 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6477 6478 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6479 if (!TC) 6480 // Attempt to factor more general cases. Returns the greatest power of 6481 // two divisor. If overflow happens, the trip count expression is still 6482 // divisible by the greatest power of 2 divisor returned. 6483 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6484 6485 ConstantInt *Result = TC->getValue(); 6486 6487 // Guard against huge trip counts (this requires checking 6488 // for zero to handle the case where the trip count == -1 and the 6489 // addition wraps). 6490 if (!Result || Result->getValue().getActiveBits() > 32 || 6491 Result->getValue().getActiveBits() == 0) 6492 return 1; 6493 6494 return (unsigned)Result->getZExtValue(); 6495 } 6496 6497 /// Get the expression for the number of loop iterations for which this loop is 6498 /// guaranteed not to exit via ExitingBlock. Otherwise return 6499 /// SCEVCouldNotCompute. 6500 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6501 BasicBlock *ExitingBlock) { 6502 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6503 } 6504 6505 const SCEV * 6506 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6507 SCEVUnionPredicate &Preds) { 6508 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6509 } 6510 6511 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 6512 return getBackedgeTakenInfo(L).getExact(L, this); 6513 } 6514 6515 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 6516 /// known never to be less than the actual backedge taken count. 6517 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 6518 return getBackedgeTakenInfo(L).getMax(this); 6519 } 6520 6521 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6522 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6523 } 6524 6525 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6526 static void 6527 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6528 BasicBlock *Header = L->getHeader(); 6529 6530 // Push all Loop-header PHIs onto the Worklist stack. 6531 for (PHINode &PN : Header->phis()) 6532 Worklist.push_back(&PN); 6533 } 6534 6535 const ScalarEvolution::BackedgeTakenInfo & 6536 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6537 auto &BTI = getBackedgeTakenInfo(L); 6538 if (BTI.hasFullInfo()) 6539 return BTI; 6540 6541 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6542 6543 if (!Pair.second) 6544 return Pair.first->second; 6545 6546 BackedgeTakenInfo Result = 6547 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6548 6549 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6550 } 6551 6552 const ScalarEvolution::BackedgeTakenInfo & 6553 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6554 // Initially insert an invalid entry for this loop. If the insertion 6555 // succeeds, proceed to actually compute a backedge-taken count and 6556 // update the value. The temporary CouldNotCompute value tells SCEV 6557 // code elsewhere that it shouldn't attempt to request a new 6558 // backedge-taken count, which could result in infinite recursion. 6559 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6560 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6561 if (!Pair.second) 6562 return Pair.first->second; 6563 6564 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6565 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6566 // must be cleared in this scope. 6567 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6568 6569 // In product build, there are no usage of statistic. 6570 (void)NumTripCountsComputed; 6571 (void)NumTripCountsNotComputed; 6572 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6573 const SCEV *BEExact = Result.getExact(L, this); 6574 if (BEExact != getCouldNotCompute()) { 6575 assert(isLoopInvariant(BEExact, L) && 6576 isLoopInvariant(Result.getMax(this), L) && 6577 "Computed backedge-taken count isn't loop invariant for loop!"); 6578 ++NumTripCountsComputed; 6579 } 6580 else if (Result.getMax(this) == getCouldNotCompute() && 6581 isa<PHINode>(L->getHeader()->begin())) { 6582 // Only count loops that have phi nodes as not being computable. 6583 ++NumTripCountsNotComputed; 6584 } 6585 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6586 6587 // Now that we know more about the trip count for this loop, forget any 6588 // existing SCEV values for PHI nodes in this loop since they are only 6589 // conservative estimates made without the benefit of trip count 6590 // information. This is similar to the code in forgetLoop, except that 6591 // it handles SCEVUnknown PHI nodes specially. 6592 if (Result.hasAnyInfo()) { 6593 SmallVector<Instruction *, 16> Worklist; 6594 PushLoopPHIs(L, Worklist); 6595 6596 SmallPtrSet<Instruction *, 8> Discovered; 6597 while (!Worklist.empty()) { 6598 Instruction *I = Worklist.pop_back_val(); 6599 6600 ValueExprMapType::iterator It = 6601 ValueExprMap.find_as(static_cast<Value *>(I)); 6602 if (It != ValueExprMap.end()) { 6603 const SCEV *Old = It->second; 6604 6605 // SCEVUnknown for a PHI either means that it has an unrecognized 6606 // structure, or it's a PHI that's in the progress of being computed 6607 // by createNodeForPHI. In the former case, additional loop trip 6608 // count information isn't going to change anything. In the later 6609 // case, createNodeForPHI will perform the necessary updates on its 6610 // own when it gets to that point. 6611 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6612 eraseValueFromMap(It->first); 6613 forgetMemoizedResults(Old); 6614 } 6615 if (PHINode *PN = dyn_cast<PHINode>(I)) 6616 ConstantEvolutionLoopExitValue.erase(PN); 6617 } 6618 6619 // Since we don't need to invalidate anything for correctness and we're 6620 // only invalidating to make SCEV's results more precise, we get to stop 6621 // early to avoid invalidating too much. This is especially important in 6622 // cases like: 6623 // 6624 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6625 // loop0: 6626 // %pn0 = phi 6627 // ... 6628 // loop1: 6629 // %pn1 = phi 6630 // ... 6631 // 6632 // where both loop0 and loop1's backedge taken count uses the SCEV 6633 // expression for %v. If we don't have the early stop below then in cases 6634 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6635 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6636 // count for loop1, effectively nullifying SCEV's trip count cache. 6637 for (auto *U : I->users()) 6638 if (auto *I = dyn_cast<Instruction>(U)) { 6639 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6640 if (LoopForUser && L->contains(LoopForUser) && 6641 Discovered.insert(I).second) 6642 Worklist.push_back(I); 6643 } 6644 } 6645 } 6646 6647 // Re-lookup the insert position, since the call to 6648 // computeBackedgeTakenCount above could result in a 6649 // recusive call to getBackedgeTakenInfo (on a different 6650 // loop), which would invalidate the iterator computed 6651 // earlier. 6652 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6653 } 6654 6655 void ScalarEvolution::forgetLoop(const Loop *L) { 6656 // Drop any stored trip count value. 6657 auto RemoveLoopFromBackedgeMap = 6658 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6659 auto BTCPos = Map.find(L); 6660 if (BTCPos != Map.end()) { 6661 BTCPos->second.clear(); 6662 Map.erase(BTCPos); 6663 } 6664 }; 6665 6666 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6667 SmallVector<Instruction *, 32> Worklist; 6668 SmallPtrSet<Instruction *, 16> Visited; 6669 6670 // Iterate over all the loops and sub-loops to drop SCEV information. 6671 while (!LoopWorklist.empty()) { 6672 auto *CurrL = LoopWorklist.pop_back_val(); 6673 6674 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6675 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6676 6677 // Drop information about predicated SCEV rewrites for this loop. 6678 for (auto I = PredicatedSCEVRewrites.begin(); 6679 I != PredicatedSCEVRewrites.end();) { 6680 std::pair<const SCEV *, const Loop *> Entry = I->first; 6681 if (Entry.second == CurrL) 6682 PredicatedSCEVRewrites.erase(I++); 6683 else 6684 ++I; 6685 } 6686 6687 auto LoopUsersItr = LoopUsers.find(CurrL); 6688 if (LoopUsersItr != LoopUsers.end()) { 6689 for (auto *S : LoopUsersItr->second) 6690 forgetMemoizedResults(S); 6691 LoopUsers.erase(LoopUsersItr); 6692 } 6693 6694 // Drop information about expressions based on loop-header PHIs. 6695 PushLoopPHIs(CurrL, Worklist); 6696 6697 while (!Worklist.empty()) { 6698 Instruction *I = Worklist.pop_back_val(); 6699 if (!Visited.insert(I).second) 6700 continue; 6701 6702 ValueExprMapType::iterator It = 6703 ValueExprMap.find_as(static_cast<Value *>(I)); 6704 if (It != ValueExprMap.end()) { 6705 eraseValueFromMap(It->first); 6706 forgetMemoizedResults(It->second); 6707 if (PHINode *PN = dyn_cast<PHINode>(I)) 6708 ConstantEvolutionLoopExitValue.erase(PN); 6709 } 6710 6711 PushDefUseChildren(I, Worklist); 6712 } 6713 6714 LoopPropertiesCache.erase(CurrL); 6715 // Forget all contained loops too, to avoid dangling entries in the 6716 // ValuesAtScopes map. 6717 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6718 } 6719 } 6720 6721 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6722 while (Loop *Parent = L->getParentLoop()) 6723 L = Parent; 6724 forgetLoop(L); 6725 } 6726 6727 void ScalarEvolution::forgetValue(Value *V) { 6728 Instruction *I = dyn_cast<Instruction>(V); 6729 if (!I) return; 6730 6731 // Drop information about expressions based on loop-header PHIs. 6732 SmallVector<Instruction *, 16> Worklist; 6733 Worklist.push_back(I); 6734 6735 SmallPtrSet<Instruction *, 8> Visited; 6736 while (!Worklist.empty()) { 6737 I = Worklist.pop_back_val(); 6738 if (!Visited.insert(I).second) 6739 continue; 6740 6741 ValueExprMapType::iterator It = 6742 ValueExprMap.find_as(static_cast<Value *>(I)); 6743 if (It != ValueExprMap.end()) { 6744 eraseValueFromMap(It->first); 6745 forgetMemoizedResults(It->second); 6746 if (PHINode *PN = dyn_cast<PHINode>(I)) 6747 ConstantEvolutionLoopExitValue.erase(PN); 6748 } 6749 6750 PushDefUseChildren(I, Worklist); 6751 } 6752 } 6753 6754 /// Get the exact loop backedge taken count considering all loop exits. A 6755 /// computable result can only be returned for loops with all exiting blocks 6756 /// dominating the latch. howFarToZero assumes that the limit of each loop test 6757 /// is never skipped. This is a valid assumption as long as the loop exits via 6758 /// that test. For precise results, it is the caller's responsibility to specify 6759 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 6760 const SCEV * 6761 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 6762 SCEVUnionPredicate *Preds) const { 6763 // If any exits were not computable, the loop is not computable. 6764 if (!isComplete() || ExitNotTaken.empty()) 6765 return SE->getCouldNotCompute(); 6766 6767 const BasicBlock *Latch = L->getLoopLatch(); 6768 // All exiting blocks we have collected must dominate the only backedge. 6769 if (!Latch) 6770 return SE->getCouldNotCompute(); 6771 6772 // All exiting blocks we have gathered dominate loop's latch, so exact trip 6773 // count is simply a minimum out of all these calculated exit counts. 6774 SmallVector<const SCEV *, 2> Ops; 6775 for (auto &ENT : ExitNotTaken) { 6776 const SCEV *BECount = ENT.ExactNotTaken; 6777 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 6778 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 6779 "We should only have known counts for exiting blocks that dominate " 6780 "latch!"); 6781 6782 Ops.push_back(BECount); 6783 6784 if (Preds && !ENT.hasAlwaysTruePredicate()) 6785 Preds->add(ENT.Predicate.get()); 6786 6787 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6788 "Predicate should be always true!"); 6789 } 6790 6791 return SE->getUMinFromMismatchedTypes(Ops); 6792 } 6793 6794 /// Get the exact not taken count for this loop exit. 6795 const SCEV * 6796 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 6797 ScalarEvolution *SE) const { 6798 for (auto &ENT : ExitNotTaken) 6799 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6800 return ENT.ExactNotTaken; 6801 6802 return SE->getCouldNotCompute(); 6803 } 6804 6805 /// getMax - Get the max backedge taken count for the loop. 6806 const SCEV * 6807 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6808 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6809 return !ENT.hasAlwaysTruePredicate(); 6810 }; 6811 6812 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6813 return SE->getCouldNotCompute(); 6814 6815 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6816 "No point in having a non-constant max backedge taken count!"); 6817 return getMax(); 6818 } 6819 6820 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6821 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6822 return !ENT.hasAlwaysTruePredicate(); 6823 }; 6824 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6825 } 6826 6827 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6828 ScalarEvolution *SE) const { 6829 if (getMax() && getMax() != SE->getCouldNotCompute() && 6830 SE->hasOperand(getMax(), S)) 6831 return true; 6832 6833 for (auto &ENT : ExitNotTaken) 6834 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6835 SE->hasOperand(ENT.ExactNotTaken, S)) 6836 return true; 6837 6838 return false; 6839 } 6840 6841 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6842 : ExactNotTaken(E), MaxNotTaken(E) { 6843 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6844 isa<SCEVConstant>(MaxNotTaken)) && 6845 "No point in having a non-constant max backedge taken count!"); 6846 } 6847 6848 ScalarEvolution::ExitLimit::ExitLimit( 6849 const SCEV *E, const SCEV *M, bool MaxOrZero, 6850 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6851 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6852 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6853 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6854 "Exact is not allowed to be less precise than Max"); 6855 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6856 isa<SCEVConstant>(MaxNotTaken)) && 6857 "No point in having a non-constant max backedge taken count!"); 6858 for (auto *PredSet : PredSetList) 6859 for (auto *P : *PredSet) 6860 addPredicate(P); 6861 } 6862 6863 ScalarEvolution::ExitLimit::ExitLimit( 6864 const SCEV *E, const SCEV *M, bool MaxOrZero, 6865 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6866 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6867 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6868 isa<SCEVConstant>(MaxNotTaken)) && 6869 "No point in having a non-constant max backedge taken count!"); 6870 } 6871 6872 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6873 bool MaxOrZero) 6874 : ExitLimit(E, M, MaxOrZero, None) { 6875 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6876 isa<SCEVConstant>(MaxNotTaken)) && 6877 "No point in having a non-constant max backedge taken count!"); 6878 } 6879 6880 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6881 /// computable exit into a persistent ExitNotTakenInfo array. 6882 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6883 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6884 &&ExitCounts, 6885 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6886 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6887 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6888 6889 ExitNotTaken.reserve(ExitCounts.size()); 6890 std::transform( 6891 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6892 [&](const EdgeExitInfo &EEI) { 6893 BasicBlock *ExitBB = EEI.first; 6894 const ExitLimit &EL = EEI.second; 6895 if (EL.Predicates.empty()) 6896 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 6897 6898 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 6899 for (auto *Pred : EL.Predicates) 6900 Predicate->add(Pred); 6901 6902 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 6903 }); 6904 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 6905 "No point in having a non-constant max backedge taken count!"); 6906 } 6907 6908 /// Invalidate this result and free the ExitNotTakenInfo array. 6909 void ScalarEvolution::BackedgeTakenInfo::clear() { 6910 ExitNotTaken.clear(); 6911 } 6912 6913 /// Compute the number of times the backedge of the specified loop will execute. 6914 ScalarEvolution::BackedgeTakenInfo 6915 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 6916 bool AllowPredicates) { 6917 SmallVector<BasicBlock *, 8> ExitingBlocks; 6918 L->getExitingBlocks(ExitingBlocks); 6919 6920 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6921 6922 SmallVector<EdgeExitInfo, 4> ExitCounts; 6923 bool CouldComputeBECount = true; 6924 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 6925 const SCEV *MustExitMaxBECount = nullptr; 6926 const SCEV *MayExitMaxBECount = nullptr; 6927 bool MustExitMaxOrZero = false; 6928 6929 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 6930 // and compute maxBECount. 6931 // Do a union of all the predicates here. 6932 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 6933 BasicBlock *ExitBB = ExitingBlocks[i]; 6934 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 6935 6936 assert((AllowPredicates || EL.Predicates.empty()) && 6937 "Predicated exit limit when predicates are not allowed!"); 6938 6939 // 1. For each exit that can be computed, add an entry to ExitCounts. 6940 // CouldComputeBECount is true only if all exits can be computed. 6941 if (EL.ExactNotTaken == getCouldNotCompute()) 6942 // We couldn't compute an exact value for this exit, so 6943 // we won't be able to compute an exact value for the loop. 6944 CouldComputeBECount = false; 6945 else 6946 ExitCounts.emplace_back(ExitBB, EL); 6947 6948 // 2. Derive the loop's MaxBECount from each exit's max number of 6949 // non-exiting iterations. Partition the loop exits into two kinds: 6950 // LoopMustExits and LoopMayExits. 6951 // 6952 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 6953 // is a LoopMayExit. If any computable LoopMustExit is found, then 6954 // MaxBECount is the minimum EL.MaxNotTaken of computable 6955 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 6956 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 6957 // computable EL.MaxNotTaken. 6958 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 6959 DT.dominates(ExitBB, Latch)) { 6960 if (!MustExitMaxBECount) { 6961 MustExitMaxBECount = EL.MaxNotTaken; 6962 MustExitMaxOrZero = EL.MaxOrZero; 6963 } else { 6964 MustExitMaxBECount = 6965 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 6966 } 6967 } else if (MayExitMaxBECount != getCouldNotCompute()) { 6968 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 6969 MayExitMaxBECount = EL.MaxNotTaken; 6970 else { 6971 MayExitMaxBECount = 6972 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 6973 } 6974 } 6975 } 6976 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 6977 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 6978 // The loop backedge will be taken the maximum or zero times if there's 6979 // a single exit that must be taken the maximum or zero times. 6980 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 6981 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 6982 MaxBECount, MaxOrZero); 6983 } 6984 6985 ScalarEvolution::ExitLimit 6986 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 6987 bool AllowPredicates) { 6988 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 6989 // If our exiting block does not dominate the latch, then its connection with 6990 // loop's exit limit may be far from trivial. 6991 const BasicBlock *Latch = L->getLoopLatch(); 6992 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 6993 return getCouldNotCompute(); 6994 6995 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 6996 TerminatorInst *Term = ExitingBlock->getTerminator(); 6997 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 6998 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 6999 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7000 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7001 "It should have one successor in loop and one exit block!"); 7002 // Proceed to the next level to examine the exit condition expression. 7003 return computeExitLimitFromCond( 7004 L, BI->getCondition(), ExitIfTrue, 7005 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7006 } 7007 7008 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7009 // For switch, make sure that there is a single exit from the loop. 7010 BasicBlock *Exit = nullptr; 7011 for (auto *SBB : successors(ExitingBlock)) 7012 if (!L->contains(SBB)) { 7013 if (Exit) // Multiple exit successors. 7014 return getCouldNotCompute(); 7015 Exit = SBB; 7016 } 7017 assert(Exit && "Exiting block must have at least one exit"); 7018 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7019 /*ControlsExit=*/IsOnlyExit); 7020 } 7021 7022 return getCouldNotCompute(); 7023 } 7024 7025 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7026 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7027 bool ControlsExit, bool AllowPredicates) { 7028 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7029 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7030 ControlsExit, AllowPredicates); 7031 } 7032 7033 Optional<ScalarEvolution::ExitLimit> 7034 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7035 bool ExitIfTrue, bool ControlsExit, 7036 bool AllowPredicates) { 7037 (void)this->L; 7038 (void)this->ExitIfTrue; 7039 (void)this->AllowPredicates; 7040 7041 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7042 this->AllowPredicates == AllowPredicates && 7043 "Variance in assumed invariant key components!"); 7044 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7045 if (Itr == TripCountMap.end()) 7046 return None; 7047 return Itr->second; 7048 } 7049 7050 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7051 bool ExitIfTrue, 7052 bool ControlsExit, 7053 bool AllowPredicates, 7054 const ExitLimit &EL) { 7055 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7056 this->AllowPredicates == AllowPredicates && 7057 "Variance in assumed invariant key components!"); 7058 7059 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7060 assert(InsertResult.second && "Expected successful insertion!"); 7061 (void)InsertResult; 7062 (void)ExitIfTrue; 7063 } 7064 7065 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7066 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7067 bool ControlsExit, bool AllowPredicates) { 7068 7069 if (auto MaybeEL = 7070 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7071 return *MaybeEL; 7072 7073 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7074 ControlsExit, AllowPredicates); 7075 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7076 return EL; 7077 } 7078 7079 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7080 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7081 bool ControlsExit, bool AllowPredicates) { 7082 // Check if the controlling expression for this loop is an And or Or. 7083 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7084 if (BO->getOpcode() == Instruction::And) { 7085 // Recurse on the operands of the and. 7086 bool EitherMayExit = !ExitIfTrue; 7087 ExitLimit EL0 = computeExitLimitFromCondCached( 7088 Cache, L, BO->getOperand(0), ExitIfTrue, 7089 ControlsExit && !EitherMayExit, AllowPredicates); 7090 ExitLimit EL1 = computeExitLimitFromCondCached( 7091 Cache, L, BO->getOperand(1), ExitIfTrue, 7092 ControlsExit && !EitherMayExit, AllowPredicates); 7093 const SCEV *BECount = getCouldNotCompute(); 7094 const SCEV *MaxBECount = getCouldNotCompute(); 7095 if (EitherMayExit) { 7096 // Both conditions must be true for the loop to continue executing. 7097 // Choose the less conservative count. 7098 if (EL0.ExactNotTaken == getCouldNotCompute() || 7099 EL1.ExactNotTaken == getCouldNotCompute()) 7100 BECount = getCouldNotCompute(); 7101 else 7102 BECount = 7103 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7104 if (EL0.MaxNotTaken == getCouldNotCompute()) 7105 MaxBECount = EL1.MaxNotTaken; 7106 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7107 MaxBECount = EL0.MaxNotTaken; 7108 else 7109 MaxBECount = 7110 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7111 } else { 7112 // Both conditions must be true at the same time for the loop to exit. 7113 // For now, be conservative. 7114 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7115 MaxBECount = EL0.MaxNotTaken; 7116 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7117 BECount = EL0.ExactNotTaken; 7118 } 7119 7120 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7121 // to be more aggressive when computing BECount than when computing 7122 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7123 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7124 // to not. 7125 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7126 !isa<SCEVCouldNotCompute>(BECount)) 7127 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7128 7129 return ExitLimit(BECount, MaxBECount, false, 7130 {&EL0.Predicates, &EL1.Predicates}); 7131 } 7132 if (BO->getOpcode() == Instruction::Or) { 7133 // Recurse on the operands of the or. 7134 bool EitherMayExit = ExitIfTrue; 7135 ExitLimit EL0 = computeExitLimitFromCondCached( 7136 Cache, L, BO->getOperand(0), ExitIfTrue, 7137 ControlsExit && !EitherMayExit, AllowPredicates); 7138 ExitLimit EL1 = computeExitLimitFromCondCached( 7139 Cache, L, BO->getOperand(1), ExitIfTrue, 7140 ControlsExit && !EitherMayExit, AllowPredicates); 7141 const SCEV *BECount = getCouldNotCompute(); 7142 const SCEV *MaxBECount = getCouldNotCompute(); 7143 if (EitherMayExit) { 7144 // Both conditions must be false for the loop to continue executing. 7145 // Choose the less conservative count. 7146 if (EL0.ExactNotTaken == getCouldNotCompute() || 7147 EL1.ExactNotTaken == getCouldNotCompute()) 7148 BECount = getCouldNotCompute(); 7149 else 7150 BECount = 7151 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7152 if (EL0.MaxNotTaken == getCouldNotCompute()) 7153 MaxBECount = EL1.MaxNotTaken; 7154 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7155 MaxBECount = EL0.MaxNotTaken; 7156 else 7157 MaxBECount = 7158 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7159 } else { 7160 // Both conditions must be false at the same time for the loop to exit. 7161 // For now, be conservative. 7162 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7163 MaxBECount = EL0.MaxNotTaken; 7164 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7165 BECount = EL0.ExactNotTaken; 7166 } 7167 7168 return ExitLimit(BECount, MaxBECount, false, 7169 {&EL0.Predicates, &EL1.Predicates}); 7170 } 7171 } 7172 7173 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7174 // Proceed to the next level to examine the icmp. 7175 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7176 ExitLimit EL = 7177 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7178 if (EL.hasFullInfo() || !AllowPredicates) 7179 return EL; 7180 7181 // Try again, but use SCEV predicates this time. 7182 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7183 /*AllowPredicates=*/true); 7184 } 7185 7186 // Check for a constant condition. These are normally stripped out by 7187 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7188 // preserve the CFG and is temporarily leaving constant conditions 7189 // in place. 7190 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7191 if (ExitIfTrue == !CI->getZExtValue()) 7192 // The backedge is always taken. 7193 return getCouldNotCompute(); 7194 else 7195 // The backedge is never taken. 7196 return getZero(CI->getType()); 7197 } 7198 7199 // If it's not an integer or pointer comparison then compute it the hard way. 7200 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7201 } 7202 7203 ScalarEvolution::ExitLimit 7204 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7205 ICmpInst *ExitCond, 7206 bool ExitIfTrue, 7207 bool ControlsExit, 7208 bool AllowPredicates) { 7209 // If the condition was exit on true, convert the condition to exit on false 7210 ICmpInst::Predicate Pred; 7211 if (!ExitIfTrue) 7212 Pred = ExitCond->getPredicate(); 7213 else 7214 Pred = ExitCond->getInversePredicate(); 7215 const ICmpInst::Predicate OriginalPred = Pred; 7216 7217 // Handle common loops like: for (X = "string"; *X; ++X) 7218 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7219 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7220 ExitLimit ItCnt = 7221 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7222 if (ItCnt.hasAnyInfo()) 7223 return ItCnt; 7224 } 7225 7226 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7227 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7228 7229 // Try to evaluate any dependencies out of the loop. 7230 LHS = getSCEVAtScope(LHS, L); 7231 RHS = getSCEVAtScope(RHS, L); 7232 7233 // At this point, we would like to compute how many iterations of the 7234 // loop the predicate will return true for these inputs. 7235 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7236 // If there is a loop-invariant, force it into the RHS. 7237 std::swap(LHS, RHS); 7238 Pred = ICmpInst::getSwappedPredicate(Pred); 7239 } 7240 7241 // Simplify the operands before analyzing them. 7242 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7243 7244 // If we have a comparison of a chrec against a constant, try to use value 7245 // ranges to answer this query. 7246 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7247 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7248 if (AddRec->getLoop() == L) { 7249 // Form the constant range. 7250 ConstantRange CompRange = 7251 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7252 7253 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7254 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7255 } 7256 7257 switch (Pred) { 7258 case ICmpInst::ICMP_NE: { // while (X != Y) 7259 // Convert to: while (X-Y != 0) 7260 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7261 AllowPredicates); 7262 if (EL.hasAnyInfo()) return EL; 7263 break; 7264 } 7265 case ICmpInst::ICMP_EQ: { // while (X == Y) 7266 // Convert to: while (X-Y == 0) 7267 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7268 if (EL.hasAnyInfo()) return EL; 7269 break; 7270 } 7271 case ICmpInst::ICMP_SLT: 7272 case ICmpInst::ICMP_ULT: { // while (X < Y) 7273 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7274 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7275 AllowPredicates); 7276 if (EL.hasAnyInfo()) return EL; 7277 break; 7278 } 7279 case ICmpInst::ICMP_SGT: 7280 case ICmpInst::ICMP_UGT: { // while (X > Y) 7281 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7282 ExitLimit EL = 7283 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7284 AllowPredicates); 7285 if (EL.hasAnyInfo()) return EL; 7286 break; 7287 } 7288 default: 7289 break; 7290 } 7291 7292 auto *ExhaustiveCount = 7293 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7294 7295 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7296 return ExhaustiveCount; 7297 7298 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7299 ExitCond->getOperand(1), L, OriginalPred); 7300 } 7301 7302 ScalarEvolution::ExitLimit 7303 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7304 SwitchInst *Switch, 7305 BasicBlock *ExitingBlock, 7306 bool ControlsExit) { 7307 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7308 7309 // Give up if the exit is the default dest of a switch. 7310 if (Switch->getDefaultDest() == ExitingBlock) 7311 return getCouldNotCompute(); 7312 7313 assert(L->contains(Switch->getDefaultDest()) && 7314 "Default case must not exit the loop!"); 7315 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7316 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7317 7318 // while (X != Y) --> while (X-Y != 0) 7319 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7320 if (EL.hasAnyInfo()) 7321 return EL; 7322 7323 return getCouldNotCompute(); 7324 } 7325 7326 static ConstantInt * 7327 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7328 ScalarEvolution &SE) { 7329 const SCEV *InVal = SE.getConstant(C); 7330 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7331 assert(isa<SCEVConstant>(Val) && 7332 "Evaluation of SCEV at constant didn't fold correctly?"); 7333 return cast<SCEVConstant>(Val)->getValue(); 7334 } 7335 7336 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7337 /// compute the backedge execution count. 7338 ScalarEvolution::ExitLimit 7339 ScalarEvolution::computeLoadConstantCompareExitLimit( 7340 LoadInst *LI, 7341 Constant *RHS, 7342 const Loop *L, 7343 ICmpInst::Predicate predicate) { 7344 if (LI->isVolatile()) return getCouldNotCompute(); 7345 7346 // Check to see if the loaded pointer is a getelementptr of a global. 7347 // TODO: Use SCEV instead of manually grubbing with GEPs. 7348 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7349 if (!GEP) return getCouldNotCompute(); 7350 7351 // Make sure that it is really a constant global we are gepping, with an 7352 // initializer, and make sure the first IDX is really 0. 7353 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7354 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7355 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7356 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7357 return getCouldNotCompute(); 7358 7359 // Okay, we allow one non-constant index into the GEP instruction. 7360 Value *VarIdx = nullptr; 7361 std::vector<Constant*> Indexes; 7362 unsigned VarIdxNum = 0; 7363 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7364 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7365 Indexes.push_back(CI); 7366 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7367 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7368 VarIdx = GEP->getOperand(i); 7369 VarIdxNum = i-2; 7370 Indexes.push_back(nullptr); 7371 } 7372 7373 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7374 if (!VarIdx) 7375 return getCouldNotCompute(); 7376 7377 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7378 // Check to see if X is a loop variant variable value now. 7379 const SCEV *Idx = getSCEV(VarIdx); 7380 Idx = getSCEVAtScope(Idx, L); 7381 7382 // We can only recognize very limited forms of loop index expressions, in 7383 // particular, only affine AddRec's like {C1,+,C2}. 7384 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7385 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7386 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7387 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7388 return getCouldNotCompute(); 7389 7390 unsigned MaxSteps = MaxBruteForceIterations; 7391 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7392 ConstantInt *ItCst = ConstantInt::get( 7393 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7394 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7395 7396 // Form the GEP offset. 7397 Indexes[VarIdxNum] = Val; 7398 7399 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7400 Indexes); 7401 if (!Result) break; // Cannot compute! 7402 7403 // Evaluate the condition for this iteration. 7404 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7405 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7406 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7407 ++NumArrayLenItCounts; 7408 return getConstant(ItCst); // Found terminating iteration! 7409 } 7410 } 7411 return getCouldNotCompute(); 7412 } 7413 7414 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7415 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7416 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7417 if (!RHS) 7418 return getCouldNotCompute(); 7419 7420 const BasicBlock *Latch = L->getLoopLatch(); 7421 if (!Latch) 7422 return getCouldNotCompute(); 7423 7424 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7425 if (!Predecessor) 7426 return getCouldNotCompute(); 7427 7428 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7429 // Return LHS in OutLHS and shift_opt in OutOpCode. 7430 auto MatchPositiveShift = 7431 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7432 7433 using namespace PatternMatch; 7434 7435 ConstantInt *ShiftAmt; 7436 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7437 OutOpCode = Instruction::LShr; 7438 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7439 OutOpCode = Instruction::AShr; 7440 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7441 OutOpCode = Instruction::Shl; 7442 else 7443 return false; 7444 7445 return ShiftAmt->getValue().isStrictlyPositive(); 7446 }; 7447 7448 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7449 // 7450 // loop: 7451 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7452 // %iv.shifted = lshr i32 %iv, <positive constant> 7453 // 7454 // Return true on a successful match. Return the corresponding PHI node (%iv 7455 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7456 auto MatchShiftRecurrence = 7457 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7458 Optional<Instruction::BinaryOps> PostShiftOpCode; 7459 7460 { 7461 Instruction::BinaryOps OpC; 7462 Value *V; 7463 7464 // If we encounter a shift instruction, "peel off" the shift operation, 7465 // and remember that we did so. Later when we inspect %iv's backedge 7466 // value, we will make sure that the backedge value uses the same 7467 // operation. 7468 // 7469 // Note: the peeled shift operation does not have to be the same 7470 // instruction as the one feeding into the PHI's backedge value. We only 7471 // really care about it being the same *kind* of shift instruction -- 7472 // that's all that is required for our later inferences to hold. 7473 if (MatchPositiveShift(LHS, V, OpC)) { 7474 PostShiftOpCode = OpC; 7475 LHS = V; 7476 } 7477 } 7478 7479 PNOut = dyn_cast<PHINode>(LHS); 7480 if (!PNOut || PNOut->getParent() != L->getHeader()) 7481 return false; 7482 7483 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7484 Value *OpLHS; 7485 7486 return 7487 // The backedge value for the PHI node must be a shift by a positive 7488 // amount 7489 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7490 7491 // of the PHI node itself 7492 OpLHS == PNOut && 7493 7494 // and the kind of shift should be match the kind of shift we peeled 7495 // off, if any. 7496 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7497 }; 7498 7499 PHINode *PN; 7500 Instruction::BinaryOps OpCode; 7501 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7502 return getCouldNotCompute(); 7503 7504 const DataLayout &DL = getDataLayout(); 7505 7506 // The key rationale for this optimization is that for some kinds of shift 7507 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7508 // within a finite number of iterations. If the condition guarding the 7509 // backedge (in the sense that the backedge is taken if the condition is true) 7510 // is false for the value the shift recurrence stabilizes to, then we know 7511 // that the backedge is taken only a finite number of times. 7512 7513 ConstantInt *StableValue = nullptr; 7514 switch (OpCode) { 7515 default: 7516 llvm_unreachable("Impossible case!"); 7517 7518 case Instruction::AShr: { 7519 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7520 // bitwidth(K) iterations. 7521 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7522 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7523 Predecessor->getTerminator(), &DT); 7524 auto *Ty = cast<IntegerType>(RHS->getType()); 7525 if (Known.isNonNegative()) 7526 StableValue = ConstantInt::get(Ty, 0); 7527 else if (Known.isNegative()) 7528 StableValue = ConstantInt::get(Ty, -1, true); 7529 else 7530 return getCouldNotCompute(); 7531 7532 break; 7533 } 7534 case Instruction::LShr: 7535 case Instruction::Shl: 7536 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7537 // stabilize to 0 in at most bitwidth(K) iterations. 7538 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7539 break; 7540 } 7541 7542 auto *Result = 7543 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7544 assert(Result->getType()->isIntegerTy(1) && 7545 "Otherwise cannot be an operand to a branch instruction"); 7546 7547 if (Result->isZeroValue()) { 7548 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7549 const SCEV *UpperBound = 7550 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7551 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7552 } 7553 7554 return getCouldNotCompute(); 7555 } 7556 7557 /// Return true if we can constant fold an instruction of the specified type, 7558 /// assuming that all operands were constants. 7559 static bool CanConstantFold(const Instruction *I) { 7560 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7561 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7562 isa<LoadInst>(I)) 7563 return true; 7564 7565 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7566 if (const Function *F = CI->getCalledFunction()) 7567 return canConstantFoldCallTo(CI, F); 7568 return false; 7569 } 7570 7571 /// Determine whether this instruction can constant evolve within this loop 7572 /// assuming its operands can all constant evolve. 7573 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7574 // An instruction outside of the loop can't be derived from a loop PHI. 7575 if (!L->contains(I)) return false; 7576 7577 if (isa<PHINode>(I)) { 7578 // We don't currently keep track of the control flow needed to evaluate 7579 // PHIs, so we cannot handle PHIs inside of loops. 7580 return L->getHeader() == I->getParent(); 7581 } 7582 7583 // If we won't be able to constant fold this expression even if the operands 7584 // are constants, bail early. 7585 return CanConstantFold(I); 7586 } 7587 7588 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7589 /// recursing through each instruction operand until reaching a loop header phi. 7590 static PHINode * 7591 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7592 DenseMap<Instruction *, PHINode *> &PHIMap, 7593 unsigned Depth) { 7594 if (Depth > MaxConstantEvolvingDepth) 7595 return nullptr; 7596 7597 // Otherwise, we can evaluate this instruction if all of its operands are 7598 // constant or derived from a PHI node themselves. 7599 PHINode *PHI = nullptr; 7600 for (Value *Op : UseInst->operands()) { 7601 if (isa<Constant>(Op)) continue; 7602 7603 Instruction *OpInst = dyn_cast<Instruction>(Op); 7604 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7605 7606 PHINode *P = dyn_cast<PHINode>(OpInst); 7607 if (!P) 7608 // If this operand is already visited, reuse the prior result. 7609 // We may have P != PHI if this is the deepest point at which the 7610 // inconsistent paths meet. 7611 P = PHIMap.lookup(OpInst); 7612 if (!P) { 7613 // Recurse and memoize the results, whether a phi is found or not. 7614 // This recursive call invalidates pointers into PHIMap. 7615 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7616 PHIMap[OpInst] = P; 7617 } 7618 if (!P) 7619 return nullptr; // Not evolving from PHI 7620 if (PHI && PHI != P) 7621 return nullptr; // Evolving from multiple different PHIs. 7622 PHI = P; 7623 } 7624 // This is a expression evolving from a constant PHI! 7625 return PHI; 7626 } 7627 7628 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7629 /// in the loop that V is derived from. We allow arbitrary operations along the 7630 /// way, but the operands of an operation must either be constants or a value 7631 /// derived from a constant PHI. If this expression does not fit with these 7632 /// constraints, return null. 7633 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7634 Instruction *I = dyn_cast<Instruction>(V); 7635 if (!I || !canConstantEvolve(I, L)) return nullptr; 7636 7637 if (PHINode *PN = dyn_cast<PHINode>(I)) 7638 return PN; 7639 7640 // Record non-constant instructions contained by the loop. 7641 DenseMap<Instruction *, PHINode *> PHIMap; 7642 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7643 } 7644 7645 /// EvaluateExpression - Given an expression that passes the 7646 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7647 /// in the loop has the value PHIVal. If we can't fold this expression for some 7648 /// reason, return null. 7649 static Constant *EvaluateExpression(Value *V, const Loop *L, 7650 DenseMap<Instruction *, Constant *> &Vals, 7651 const DataLayout &DL, 7652 const TargetLibraryInfo *TLI) { 7653 // Convenient constant check, but redundant for recursive calls. 7654 if (Constant *C = dyn_cast<Constant>(V)) return C; 7655 Instruction *I = dyn_cast<Instruction>(V); 7656 if (!I) return nullptr; 7657 7658 if (Constant *C = Vals.lookup(I)) return C; 7659 7660 // An instruction inside the loop depends on a value outside the loop that we 7661 // weren't given a mapping for, or a value such as a call inside the loop. 7662 if (!canConstantEvolve(I, L)) return nullptr; 7663 7664 // An unmapped PHI can be due to a branch or another loop inside this loop, 7665 // or due to this not being the initial iteration through a loop where we 7666 // couldn't compute the evolution of this particular PHI last time. 7667 if (isa<PHINode>(I)) return nullptr; 7668 7669 std::vector<Constant*> Operands(I->getNumOperands()); 7670 7671 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7672 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7673 if (!Operand) { 7674 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7675 if (!Operands[i]) return nullptr; 7676 continue; 7677 } 7678 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7679 Vals[Operand] = C; 7680 if (!C) return nullptr; 7681 Operands[i] = C; 7682 } 7683 7684 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7685 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7686 Operands[1], DL, TLI); 7687 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7688 if (!LI->isVolatile()) 7689 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7690 } 7691 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7692 } 7693 7694 7695 // If every incoming value to PN except the one for BB is a specific Constant, 7696 // return that, else return nullptr. 7697 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7698 Constant *IncomingVal = nullptr; 7699 7700 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7701 if (PN->getIncomingBlock(i) == BB) 7702 continue; 7703 7704 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7705 if (!CurrentVal) 7706 return nullptr; 7707 7708 if (IncomingVal != CurrentVal) { 7709 if (IncomingVal) 7710 return nullptr; 7711 IncomingVal = CurrentVal; 7712 } 7713 } 7714 7715 return IncomingVal; 7716 } 7717 7718 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7719 /// in the header of its containing loop, we know the loop executes a 7720 /// constant number of times, and the PHI node is just a recurrence 7721 /// involving constants, fold it. 7722 Constant * 7723 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7724 const APInt &BEs, 7725 const Loop *L) { 7726 auto I = ConstantEvolutionLoopExitValue.find(PN); 7727 if (I != ConstantEvolutionLoopExitValue.end()) 7728 return I->second; 7729 7730 if (BEs.ugt(MaxBruteForceIterations)) 7731 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7732 7733 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7734 7735 DenseMap<Instruction *, Constant *> CurrentIterVals; 7736 BasicBlock *Header = L->getHeader(); 7737 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7738 7739 BasicBlock *Latch = L->getLoopLatch(); 7740 if (!Latch) 7741 return nullptr; 7742 7743 for (PHINode &PHI : Header->phis()) { 7744 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7745 CurrentIterVals[&PHI] = StartCST; 7746 } 7747 if (!CurrentIterVals.count(PN)) 7748 return RetVal = nullptr; 7749 7750 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7751 7752 // Execute the loop symbolically to determine the exit value. 7753 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7754 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7755 7756 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7757 unsigned IterationNum = 0; 7758 const DataLayout &DL = getDataLayout(); 7759 for (; ; ++IterationNum) { 7760 if (IterationNum == NumIterations) 7761 return RetVal = CurrentIterVals[PN]; // Got exit value! 7762 7763 // Compute the value of the PHIs for the next iteration. 7764 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7765 DenseMap<Instruction *, Constant *> NextIterVals; 7766 Constant *NextPHI = 7767 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7768 if (!NextPHI) 7769 return nullptr; // Couldn't evaluate! 7770 NextIterVals[PN] = NextPHI; 7771 7772 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7773 7774 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7775 // cease to be able to evaluate one of them or if they stop evolving, 7776 // because that doesn't necessarily prevent us from computing PN. 7777 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7778 for (const auto &I : CurrentIterVals) { 7779 PHINode *PHI = dyn_cast<PHINode>(I.first); 7780 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7781 PHIsToCompute.emplace_back(PHI, I.second); 7782 } 7783 // We use two distinct loops because EvaluateExpression may invalidate any 7784 // iterators into CurrentIterVals. 7785 for (const auto &I : PHIsToCompute) { 7786 PHINode *PHI = I.first; 7787 Constant *&NextPHI = NextIterVals[PHI]; 7788 if (!NextPHI) { // Not already computed. 7789 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7790 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7791 } 7792 if (NextPHI != I.second) 7793 StoppedEvolving = false; 7794 } 7795 7796 // If all entries in CurrentIterVals == NextIterVals then we can stop 7797 // iterating, the loop can't continue to change. 7798 if (StoppedEvolving) 7799 return RetVal = CurrentIterVals[PN]; 7800 7801 CurrentIterVals.swap(NextIterVals); 7802 } 7803 } 7804 7805 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7806 Value *Cond, 7807 bool ExitWhen) { 7808 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7809 if (!PN) return getCouldNotCompute(); 7810 7811 // If the loop is canonicalized, the PHI will have exactly two entries. 7812 // That's the only form we support here. 7813 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7814 7815 DenseMap<Instruction *, Constant *> CurrentIterVals; 7816 BasicBlock *Header = L->getHeader(); 7817 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7818 7819 BasicBlock *Latch = L->getLoopLatch(); 7820 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7821 7822 for (PHINode &PHI : Header->phis()) { 7823 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7824 CurrentIterVals[&PHI] = StartCST; 7825 } 7826 if (!CurrentIterVals.count(PN)) 7827 return getCouldNotCompute(); 7828 7829 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7830 // the loop symbolically to determine when the condition gets a value of 7831 // "ExitWhen". 7832 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7833 const DataLayout &DL = getDataLayout(); 7834 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7835 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7836 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7837 7838 // Couldn't symbolically evaluate. 7839 if (!CondVal) return getCouldNotCompute(); 7840 7841 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7842 ++NumBruteForceTripCountsComputed; 7843 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7844 } 7845 7846 // Update all the PHI nodes for the next iteration. 7847 DenseMap<Instruction *, Constant *> NextIterVals; 7848 7849 // Create a list of which PHIs we need to compute. We want to do this before 7850 // calling EvaluateExpression on them because that may invalidate iterators 7851 // into CurrentIterVals. 7852 SmallVector<PHINode *, 8> PHIsToCompute; 7853 for (const auto &I : CurrentIterVals) { 7854 PHINode *PHI = dyn_cast<PHINode>(I.first); 7855 if (!PHI || PHI->getParent() != Header) continue; 7856 PHIsToCompute.push_back(PHI); 7857 } 7858 for (PHINode *PHI : PHIsToCompute) { 7859 Constant *&NextPHI = NextIterVals[PHI]; 7860 if (NextPHI) continue; // Already computed! 7861 7862 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7863 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7864 } 7865 CurrentIterVals.swap(NextIterVals); 7866 } 7867 7868 // Too many iterations were needed to evaluate. 7869 return getCouldNotCompute(); 7870 } 7871 7872 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7873 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7874 ValuesAtScopes[V]; 7875 // Check to see if we've folded this expression at this loop before. 7876 for (auto &LS : Values) 7877 if (LS.first == L) 7878 return LS.second ? LS.second : V; 7879 7880 Values.emplace_back(L, nullptr); 7881 7882 // Otherwise compute it. 7883 const SCEV *C = computeSCEVAtScope(V, L); 7884 for (auto &LS : reverse(ValuesAtScopes[V])) 7885 if (LS.first == L) { 7886 LS.second = C; 7887 break; 7888 } 7889 return C; 7890 } 7891 7892 /// This builds up a Constant using the ConstantExpr interface. That way, we 7893 /// will return Constants for objects which aren't represented by a 7894 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 7895 /// Returns NULL if the SCEV isn't representable as a Constant. 7896 static Constant *BuildConstantFromSCEV(const SCEV *V) { 7897 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 7898 case scCouldNotCompute: 7899 case scAddRecExpr: 7900 break; 7901 case scConstant: 7902 return cast<SCEVConstant>(V)->getValue(); 7903 case scUnknown: 7904 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 7905 case scSignExtend: { 7906 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 7907 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 7908 return ConstantExpr::getSExt(CastOp, SS->getType()); 7909 break; 7910 } 7911 case scZeroExtend: { 7912 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 7913 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 7914 return ConstantExpr::getZExt(CastOp, SZ->getType()); 7915 break; 7916 } 7917 case scTruncate: { 7918 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 7919 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 7920 return ConstantExpr::getTrunc(CastOp, ST->getType()); 7921 break; 7922 } 7923 case scAddExpr: { 7924 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 7925 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 7926 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7927 unsigned AS = PTy->getAddressSpace(); 7928 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7929 C = ConstantExpr::getBitCast(C, DestPtrTy); 7930 } 7931 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 7932 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 7933 if (!C2) return nullptr; 7934 7935 // First pointer! 7936 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 7937 unsigned AS = C2->getType()->getPointerAddressSpace(); 7938 std::swap(C, C2); 7939 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7940 // The offsets have been converted to bytes. We can add bytes to an 7941 // i8* by GEP with the byte count in the first index. 7942 C = ConstantExpr::getBitCast(C, DestPtrTy); 7943 } 7944 7945 // Don't bother trying to sum two pointers. We probably can't 7946 // statically compute a load that results from it anyway. 7947 if (C2->getType()->isPointerTy()) 7948 return nullptr; 7949 7950 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7951 if (PTy->getElementType()->isStructTy()) 7952 C2 = ConstantExpr::getIntegerCast( 7953 C2, Type::getInt32Ty(C->getContext()), true); 7954 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 7955 } else 7956 C = ConstantExpr::getAdd(C, C2); 7957 } 7958 return C; 7959 } 7960 break; 7961 } 7962 case scMulExpr: { 7963 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 7964 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 7965 // Don't bother with pointers at all. 7966 if (C->getType()->isPointerTy()) return nullptr; 7967 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 7968 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 7969 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 7970 C = ConstantExpr::getMul(C, C2); 7971 } 7972 return C; 7973 } 7974 break; 7975 } 7976 case scUDivExpr: { 7977 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 7978 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 7979 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 7980 if (LHS->getType() == RHS->getType()) 7981 return ConstantExpr::getUDiv(LHS, RHS); 7982 break; 7983 } 7984 case scSMaxExpr: 7985 case scUMaxExpr: 7986 break; // TODO: smax, umax. 7987 } 7988 return nullptr; 7989 } 7990 7991 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 7992 if (isa<SCEVConstant>(V)) return V; 7993 7994 // If this instruction is evolved from a constant-evolving PHI, compute the 7995 // exit value from the loop without using SCEVs. 7996 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 7997 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 7998 const Loop *LI = this->LI[I->getParent()]; 7999 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 8000 if (PHINode *PN = dyn_cast<PHINode>(I)) 8001 if (PN->getParent() == LI->getHeader()) { 8002 // Okay, there is no closed form solution for the PHI node. Check 8003 // to see if the loop that contains it has a known backedge-taken 8004 // count. If so, we may be able to force computation of the exit 8005 // value. 8006 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 8007 if (const SCEVConstant *BTCC = 8008 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8009 8010 // This trivial case can show up in some degenerate cases where 8011 // the incoming IR has not yet been fully simplified. 8012 if (BTCC->getValue()->isZero()) { 8013 Value *InitValue = nullptr; 8014 bool MultipleInitValues = false; 8015 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8016 if (!LI->contains(PN->getIncomingBlock(i))) { 8017 if (!InitValue) 8018 InitValue = PN->getIncomingValue(i); 8019 else if (InitValue != PN->getIncomingValue(i)) { 8020 MultipleInitValues = true; 8021 break; 8022 } 8023 } 8024 if (!MultipleInitValues && InitValue) 8025 return getSCEV(InitValue); 8026 } 8027 } 8028 // Okay, we know how many times the containing loop executes. If 8029 // this is a constant evolving PHI node, get the final value at 8030 // the specified iteration number. 8031 Constant *RV = 8032 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 8033 if (RV) return getSCEV(RV); 8034 } 8035 } 8036 8037 // Okay, this is an expression that we cannot symbolically evaluate 8038 // into a SCEV. Check to see if it's possible to symbolically evaluate 8039 // the arguments into constants, and if so, try to constant propagate the 8040 // result. This is particularly useful for computing loop exit values. 8041 if (CanConstantFold(I)) { 8042 SmallVector<Constant *, 4> Operands; 8043 bool MadeImprovement = false; 8044 for (Value *Op : I->operands()) { 8045 if (Constant *C = dyn_cast<Constant>(Op)) { 8046 Operands.push_back(C); 8047 continue; 8048 } 8049 8050 // If any of the operands is non-constant and if they are 8051 // non-integer and non-pointer, don't even try to analyze them 8052 // with scev techniques. 8053 if (!isSCEVable(Op->getType())) 8054 return V; 8055 8056 const SCEV *OrigV = getSCEV(Op); 8057 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8058 MadeImprovement |= OrigV != OpV; 8059 8060 Constant *C = BuildConstantFromSCEV(OpV); 8061 if (!C) return V; 8062 if (C->getType() != Op->getType()) 8063 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8064 Op->getType(), 8065 false), 8066 C, Op->getType()); 8067 Operands.push_back(C); 8068 } 8069 8070 // Check to see if getSCEVAtScope actually made an improvement. 8071 if (MadeImprovement) { 8072 Constant *C = nullptr; 8073 const DataLayout &DL = getDataLayout(); 8074 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8075 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8076 Operands[1], DL, &TLI); 8077 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 8078 if (!LI->isVolatile()) 8079 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8080 } else 8081 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8082 if (!C) return V; 8083 return getSCEV(C); 8084 } 8085 } 8086 } 8087 8088 // This is some other type of SCEVUnknown, just return it. 8089 return V; 8090 } 8091 8092 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8093 // Avoid performing the look-up in the common case where the specified 8094 // expression has no loop-variant portions. 8095 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8096 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8097 if (OpAtScope != Comm->getOperand(i)) { 8098 // Okay, at least one of these operands is loop variant but might be 8099 // foldable. Build a new instance of the folded commutative expression. 8100 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8101 Comm->op_begin()+i); 8102 NewOps.push_back(OpAtScope); 8103 8104 for (++i; i != e; ++i) { 8105 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8106 NewOps.push_back(OpAtScope); 8107 } 8108 if (isa<SCEVAddExpr>(Comm)) 8109 return getAddExpr(NewOps); 8110 if (isa<SCEVMulExpr>(Comm)) 8111 return getMulExpr(NewOps); 8112 if (isa<SCEVSMaxExpr>(Comm)) 8113 return getSMaxExpr(NewOps); 8114 if (isa<SCEVUMaxExpr>(Comm)) 8115 return getUMaxExpr(NewOps); 8116 llvm_unreachable("Unknown commutative SCEV type!"); 8117 } 8118 } 8119 // If we got here, all operands are loop invariant. 8120 return Comm; 8121 } 8122 8123 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8124 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8125 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8126 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8127 return Div; // must be loop invariant 8128 return getUDivExpr(LHS, RHS); 8129 } 8130 8131 // If this is a loop recurrence for a loop that does not contain L, then we 8132 // are dealing with the final value computed by the loop. 8133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8134 // First, attempt to evaluate each operand. 8135 // Avoid performing the look-up in the common case where the specified 8136 // expression has no loop-variant portions. 8137 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8138 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8139 if (OpAtScope == AddRec->getOperand(i)) 8140 continue; 8141 8142 // Okay, at least one of these operands is loop variant but might be 8143 // foldable. Build a new instance of the folded commutative expression. 8144 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8145 AddRec->op_begin()+i); 8146 NewOps.push_back(OpAtScope); 8147 for (++i; i != e; ++i) 8148 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8149 8150 const SCEV *FoldedRec = 8151 getAddRecExpr(NewOps, AddRec->getLoop(), 8152 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8153 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8154 // The addrec may be folded to a nonrecurrence, for example, if the 8155 // induction variable is multiplied by zero after constant folding. Go 8156 // ahead and return the folded value. 8157 if (!AddRec) 8158 return FoldedRec; 8159 break; 8160 } 8161 8162 // If the scope is outside the addrec's loop, evaluate it by using the 8163 // loop exit value of the addrec. 8164 if (!AddRec->getLoop()->contains(L)) { 8165 // To evaluate this recurrence, we need to know how many times the AddRec 8166 // loop iterates. Compute this now. 8167 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8168 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8169 8170 // Then, evaluate the AddRec. 8171 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8172 } 8173 8174 return AddRec; 8175 } 8176 8177 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8178 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8179 if (Op == Cast->getOperand()) 8180 return Cast; // must be loop invariant 8181 return getZeroExtendExpr(Op, Cast->getType()); 8182 } 8183 8184 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8185 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8186 if (Op == Cast->getOperand()) 8187 return Cast; // must be loop invariant 8188 return getSignExtendExpr(Op, Cast->getType()); 8189 } 8190 8191 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8192 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8193 if (Op == Cast->getOperand()) 8194 return Cast; // must be loop invariant 8195 return getTruncateExpr(Op, Cast->getType()); 8196 } 8197 8198 llvm_unreachable("Unknown SCEV type!"); 8199 } 8200 8201 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8202 return getSCEVAtScope(getSCEV(V), L); 8203 } 8204 8205 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8206 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8207 return stripInjectiveFunctions(ZExt->getOperand()); 8208 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8209 return stripInjectiveFunctions(SExt->getOperand()); 8210 return S; 8211 } 8212 8213 /// Finds the minimum unsigned root of the following equation: 8214 /// 8215 /// A * X = B (mod N) 8216 /// 8217 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8218 /// A and B isn't important. 8219 /// 8220 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8221 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8222 ScalarEvolution &SE) { 8223 uint32_t BW = A.getBitWidth(); 8224 assert(BW == SE.getTypeSizeInBits(B->getType())); 8225 assert(A != 0 && "A must be non-zero."); 8226 8227 // 1. D = gcd(A, N) 8228 // 8229 // The gcd of A and N may have only one prime factor: 2. The number of 8230 // trailing zeros in A is its multiplicity 8231 uint32_t Mult2 = A.countTrailingZeros(); 8232 // D = 2^Mult2 8233 8234 // 2. Check if B is divisible by D. 8235 // 8236 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8237 // is not less than multiplicity of this prime factor for D. 8238 if (SE.GetMinTrailingZeros(B) < Mult2) 8239 return SE.getCouldNotCompute(); 8240 8241 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8242 // modulo (N / D). 8243 // 8244 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8245 // (N / D) in general. The inverse itself always fits into BW bits, though, 8246 // so we immediately truncate it. 8247 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8248 APInt Mod(BW + 1, 0); 8249 Mod.setBit(BW - Mult2); // Mod = N / D 8250 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8251 8252 // 4. Compute the minimum unsigned root of the equation: 8253 // I * (B / D) mod (N / D) 8254 // To simplify the computation, we factor out the divide by D: 8255 // (I * B mod N) / D 8256 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8257 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8258 } 8259 8260 /// Find the roots of the quadratic equation for the given quadratic chrec 8261 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 8262 /// two SCEVCouldNotCompute objects. 8263 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 8264 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8265 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8266 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8267 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8268 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8269 8270 // We currently can only solve this if the coefficients are constants. 8271 if (!LC || !MC || !NC) 8272 return None; 8273 8274 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 8275 const APInt &L = LC->getAPInt(); 8276 const APInt &M = MC->getAPInt(); 8277 const APInt &N = NC->getAPInt(); 8278 APInt Two(BitWidth, 2); 8279 8280 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 8281 8282 // The A coefficient is N/2 8283 APInt A = N.sdiv(Two); 8284 8285 // The B coefficient is M-N/2 8286 APInt B = M; 8287 B -= A; // A is the same as N/2. 8288 8289 // The C coefficient is L. 8290 const APInt& C = L; 8291 8292 // Compute the B^2-4ac term. 8293 APInt SqrtTerm = B; 8294 SqrtTerm *= B; 8295 SqrtTerm -= 4 * (A * C); 8296 8297 if (SqrtTerm.isNegative()) { 8298 // The loop is provably infinite. 8299 return None; 8300 } 8301 8302 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 8303 // integer value or else APInt::sqrt() will assert. 8304 APInt SqrtVal = SqrtTerm.sqrt(); 8305 8306 // Compute the two solutions for the quadratic formula. 8307 // The divisions must be performed as signed divisions. 8308 APInt NegB = -std::move(B); 8309 APInt TwoA = std::move(A); 8310 TwoA <<= 1; 8311 if (TwoA.isNullValue()) 8312 return None; 8313 8314 LLVMContext &Context = SE.getContext(); 8315 8316 ConstantInt *Solution1 = 8317 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 8318 ConstantInt *Solution2 = 8319 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 8320 8321 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 8322 cast<SCEVConstant>(SE.getConstant(Solution2))); 8323 } 8324 8325 ScalarEvolution::ExitLimit 8326 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8327 bool AllowPredicates) { 8328 8329 // This is only used for loops with a "x != y" exit test. The exit condition 8330 // is now expressed as a single expression, V = x-y. So the exit test is 8331 // effectively V != 0. We know and take advantage of the fact that this 8332 // expression only being used in a comparison by zero context. 8333 8334 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8335 // If the value is a constant 8336 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8337 // If the value is already zero, the branch will execute zero times. 8338 if (C->getValue()->isZero()) return C; 8339 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8340 } 8341 8342 const SCEVAddRecExpr *AddRec = 8343 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 8344 8345 if (!AddRec && AllowPredicates) 8346 // Try to make this an AddRec using runtime tests, in the first X 8347 // iterations of this loop, where X is the SCEV expression found by the 8348 // algorithm below. 8349 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8350 8351 if (!AddRec || AddRec->getLoop() != L) 8352 return getCouldNotCompute(); 8353 8354 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8355 // the quadratic equation to solve it. 8356 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8357 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 8358 const SCEVConstant *R1 = Roots->first; 8359 const SCEVConstant *R2 = Roots->second; 8360 // Pick the smallest positive root value. 8361 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8362 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8363 if (!CB->getZExtValue()) 8364 std::swap(R1, R2); // R1 is the minimum root now. 8365 8366 // We can only use this value if the chrec ends up with an exact zero 8367 // value at this index. When solving for "X*X != 5", for example, we 8368 // should not accept a root of 2. 8369 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 8370 if (Val->isZero()) 8371 // We found a quadratic root! 8372 return ExitLimit(R1, R1, false, Predicates); 8373 } 8374 } 8375 return getCouldNotCompute(); 8376 } 8377 8378 // Otherwise we can only handle this if it is affine. 8379 if (!AddRec->isAffine()) 8380 return getCouldNotCompute(); 8381 8382 // If this is an affine expression, the execution count of this branch is 8383 // the minimum unsigned root of the following equation: 8384 // 8385 // Start + Step*N = 0 (mod 2^BW) 8386 // 8387 // equivalent to: 8388 // 8389 // Step*N = -Start (mod 2^BW) 8390 // 8391 // where BW is the common bit width of Start and Step. 8392 8393 // Get the initial value for the loop. 8394 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8395 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8396 8397 // For now we handle only constant steps. 8398 // 8399 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8400 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8401 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8402 // We have not yet seen any such cases. 8403 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8404 if (!StepC || StepC->getValue()->isZero()) 8405 return getCouldNotCompute(); 8406 8407 // For positive steps (counting up until unsigned overflow): 8408 // N = -Start/Step (as unsigned) 8409 // For negative steps (counting down to zero): 8410 // N = Start/-Step 8411 // First compute the unsigned distance from zero in the direction of Step. 8412 bool CountDown = StepC->getAPInt().isNegative(); 8413 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8414 8415 // Handle unitary steps, which cannot wraparound. 8416 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8417 // N = Distance (as unsigned) 8418 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8419 APInt MaxBECount = getUnsignedRangeMax(Distance); 8420 8421 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8422 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8423 // case, and see if we can improve the bound. 8424 // 8425 // Explicitly handling this here is necessary because getUnsignedRange 8426 // isn't context-sensitive; it doesn't know that we only care about the 8427 // range inside the loop. 8428 const SCEV *Zero = getZero(Distance->getType()); 8429 const SCEV *One = getOne(Distance->getType()); 8430 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8431 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8432 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8433 // as "unsigned_max(Distance + 1) - 1". 8434 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8435 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8436 } 8437 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8438 } 8439 8440 // If the condition controls loop exit (the loop exits only if the expression 8441 // is true) and the addition is no-wrap we can use unsigned divide to 8442 // compute the backedge count. In this case, the step may not divide the 8443 // distance, but we don't care because if the condition is "missed" the loop 8444 // will have undefined behavior due to wrapping. 8445 if (ControlsExit && AddRec->hasNoSelfWrap() && 8446 loopHasNoAbnormalExits(AddRec->getLoop())) { 8447 const SCEV *Exact = 8448 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8449 const SCEV *Max = 8450 Exact == getCouldNotCompute() 8451 ? Exact 8452 : getConstant(getUnsignedRangeMax(Exact)); 8453 return ExitLimit(Exact, Max, false, Predicates); 8454 } 8455 8456 // Solve the general equation. 8457 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8458 getNegativeSCEV(Start), *this); 8459 const SCEV *M = E == getCouldNotCompute() 8460 ? E 8461 : getConstant(getUnsignedRangeMax(E)); 8462 return ExitLimit(E, M, false, Predicates); 8463 } 8464 8465 ScalarEvolution::ExitLimit 8466 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8467 // Loops that look like: while (X == 0) are very strange indeed. We don't 8468 // handle them yet except for the trivial case. This could be expanded in the 8469 // future as needed. 8470 8471 // If the value is a constant, check to see if it is known to be non-zero 8472 // already. If so, the backedge will execute zero times. 8473 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8474 if (!C->getValue()->isZero()) 8475 return getZero(C->getType()); 8476 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8477 } 8478 8479 // We could implement others, but I really doubt anyone writes loops like 8480 // this, and if they did, they would already be constant folded. 8481 return getCouldNotCompute(); 8482 } 8483 8484 std::pair<BasicBlock *, BasicBlock *> 8485 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 8486 // If the block has a unique predecessor, then there is no path from the 8487 // predecessor to the block that does not go through the direct edge 8488 // from the predecessor to the block. 8489 if (BasicBlock *Pred = BB->getSinglePredecessor()) 8490 return {Pred, BB}; 8491 8492 // A loop's header is defined to be a block that dominates the loop. 8493 // If the header has a unique predecessor outside the loop, it must be 8494 // a block that has exactly one successor that can reach the loop. 8495 if (Loop *L = LI.getLoopFor(BB)) 8496 return {L->getLoopPredecessor(), L->getHeader()}; 8497 8498 return {nullptr, nullptr}; 8499 } 8500 8501 /// SCEV structural equivalence is usually sufficient for testing whether two 8502 /// expressions are equal, however for the purposes of looking for a condition 8503 /// guarding a loop, it can be useful to be a little more general, since a 8504 /// front-end may have replicated the controlling expression. 8505 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8506 // Quick check to see if they are the same SCEV. 8507 if (A == B) return true; 8508 8509 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8510 // Not all instructions that are "identical" compute the same value. For 8511 // instance, two distinct alloca instructions allocating the same type are 8512 // identical and do not read memory; but compute distinct values. 8513 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8514 }; 8515 8516 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8517 // two different instructions with the same value. Check for this case. 8518 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8519 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8520 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8521 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8522 if (ComputesEqualValues(AI, BI)) 8523 return true; 8524 8525 // Otherwise assume they may have a different value. 8526 return false; 8527 } 8528 8529 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8530 const SCEV *&LHS, const SCEV *&RHS, 8531 unsigned Depth) { 8532 bool Changed = false; 8533 8534 // If we hit the max recursion limit bail out. 8535 if (Depth >= 3) 8536 return false; 8537 8538 // Canonicalize a constant to the right side. 8539 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8540 // Check for both operands constant. 8541 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8542 if (ConstantExpr::getICmp(Pred, 8543 LHSC->getValue(), 8544 RHSC->getValue())->isNullValue()) 8545 goto trivially_false; 8546 else 8547 goto trivially_true; 8548 } 8549 // Otherwise swap the operands to put the constant on the right. 8550 std::swap(LHS, RHS); 8551 Pred = ICmpInst::getSwappedPredicate(Pred); 8552 Changed = true; 8553 } 8554 8555 // If we're comparing an addrec with a value which is loop-invariant in the 8556 // addrec's loop, put the addrec on the left. Also make a dominance check, 8557 // as both operands could be addrecs loop-invariant in each other's loop. 8558 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8559 const Loop *L = AR->getLoop(); 8560 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8561 std::swap(LHS, RHS); 8562 Pred = ICmpInst::getSwappedPredicate(Pred); 8563 Changed = true; 8564 } 8565 } 8566 8567 // If there's a constant operand, canonicalize comparisons with boundary 8568 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8569 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8570 const APInt &RA = RC->getAPInt(); 8571 8572 bool SimplifiedByConstantRange = false; 8573 8574 if (!ICmpInst::isEquality(Pred)) { 8575 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8576 if (ExactCR.isFullSet()) 8577 goto trivially_true; 8578 else if (ExactCR.isEmptySet()) 8579 goto trivially_false; 8580 8581 APInt NewRHS; 8582 CmpInst::Predicate NewPred; 8583 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8584 ICmpInst::isEquality(NewPred)) { 8585 // We were able to convert an inequality to an equality. 8586 Pred = NewPred; 8587 RHS = getConstant(NewRHS); 8588 Changed = SimplifiedByConstantRange = true; 8589 } 8590 } 8591 8592 if (!SimplifiedByConstantRange) { 8593 switch (Pred) { 8594 default: 8595 break; 8596 case ICmpInst::ICMP_EQ: 8597 case ICmpInst::ICMP_NE: 8598 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8599 if (!RA) 8600 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8601 if (const SCEVMulExpr *ME = 8602 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8603 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8604 ME->getOperand(0)->isAllOnesValue()) { 8605 RHS = AE->getOperand(1); 8606 LHS = ME->getOperand(1); 8607 Changed = true; 8608 } 8609 break; 8610 8611 8612 // The "Should have been caught earlier!" messages refer to the fact 8613 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8614 // should have fired on the corresponding cases, and canonicalized the 8615 // check to trivially_true or trivially_false. 8616 8617 case ICmpInst::ICMP_UGE: 8618 assert(!RA.isMinValue() && "Should have been caught earlier!"); 8619 Pred = ICmpInst::ICMP_UGT; 8620 RHS = getConstant(RA - 1); 8621 Changed = true; 8622 break; 8623 case ICmpInst::ICMP_ULE: 8624 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 8625 Pred = ICmpInst::ICMP_ULT; 8626 RHS = getConstant(RA + 1); 8627 Changed = true; 8628 break; 8629 case ICmpInst::ICMP_SGE: 8630 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 8631 Pred = ICmpInst::ICMP_SGT; 8632 RHS = getConstant(RA - 1); 8633 Changed = true; 8634 break; 8635 case ICmpInst::ICMP_SLE: 8636 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 8637 Pred = ICmpInst::ICMP_SLT; 8638 RHS = getConstant(RA + 1); 8639 Changed = true; 8640 break; 8641 } 8642 } 8643 } 8644 8645 // Check for obvious equality. 8646 if (HasSameValue(LHS, RHS)) { 8647 if (ICmpInst::isTrueWhenEqual(Pred)) 8648 goto trivially_true; 8649 if (ICmpInst::isFalseWhenEqual(Pred)) 8650 goto trivially_false; 8651 } 8652 8653 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 8654 // adding or subtracting 1 from one of the operands. 8655 switch (Pred) { 8656 case ICmpInst::ICMP_SLE: 8657 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 8658 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8659 SCEV::FlagNSW); 8660 Pred = ICmpInst::ICMP_SLT; 8661 Changed = true; 8662 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 8663 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 8664 SCEV::FlagNSW); 8665 Pred = ICmpInst::ICMP_SLT; 8666 Changed = true; 8667 } 8668 break; 8669 case ICmpInst::ICMP_SGE: 8670 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 8671 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 8672 SCEV::FlagNSW); 8673 Pred = ICmpInst::ICMP_SGT; 8674 Changed = true; 8675 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 8676 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8677 SCEV::FlagNSW); 8678 Pred = ICmpInst::ICMP_SGT; 8679 Changed = true; 8680 } 8681 break; 8682 case ICmpInst::ICMP_ULE: 8683 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 8684 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8685 SCEV::FlagNUW); 8686 Pred = ICmpInst::ICMP_ULT; 8687 Changed = true; 8688 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 8689 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 8690 Pred = ICmpInst::ICMP_ULT; 8691 Changed = true; 8692 } 8693 break; 8694 case ICmpInst::ICMP_UGE: 8695 if (!getUnsignedRangeMin(RHS).isMinValue()) { 8696 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 8697 Pred = ICmpInst::ICMP_UGT; 8698 Changed = true; 8699 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 8700 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8701 SCEV::FlagNUW); 8702 Pred = ICmpInst::ICMP_UGT; 8703 Changed = true; 8704 } 8705 break; 8706 default: 8707 break; 8708 } 8709 8710 // TODO: More simplifications are possible here. 8711 8712 // Recursively simplify until we either hit a recursion limit or nothing 8713 // changes. 8714 if (Changed) 8715 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 8716 8717 return Changed; 8718 8719 trivially_true: 8720 // Return 0 == 0. 8721 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8722 Pred = ICmpInst::ICMP_EQ; 8723 return true; 8724 8725 trivially_false: 8726 // Return 0 != 0. 8727 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8728 Pred = ICmpInst::ICMP_NE; 8729 return true; 8730 } 8731 8732 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 8733 return getSignedRangeMax(S).isNegative(); 8734 } 8735 8736 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 8737 return getSignedRangeMin(S).isStrictlyPositive(); 8738 } 8739 8740 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 8741 return !getSignedRangeMin(S).isNegative(); 8742 } 8743 8744 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 8745 return !getSignedRangeMax(S).isStrictlyPositive(); 8746 } 8747 8748 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 8749 return isKnownNegative(S) || isKnownPositive(S); 8750 } 8751 8752 std::pair<const SCEV *, const SCEV *> 8753 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 8754 // Compute SCEV on entry of loop L. 8755 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 8756 if (Start == getCouldNotCompute()) 8757 return { Start, Start }; 8758 // Compute post increment SCEV for loop L. 8759 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 8760 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 8761 return { Start, PostInc }; 8762 } 8763 8764 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 8765 const SCEV *LHS, const SCEV *RHS) { 8766 // First collect all loops. 8767 SmallPtrSet<const Loop *, 8> LoopsUsed; 8768 getUsedLoops(LHS, LoopsUsed); 8769 getUsedLoops(RHS, LoopsUsed); 8770 8771 if (LoopsUsed.empty()) 8772 return false; 8773 8774 // Domination relationship must be a linear order on collected loops. 8775 #ifndef NDEBUG 8776 for (auto *L1 : LoopsUsed) 8777 for (auto *L2 : LoopsUsed) 8778 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 8779 DT.dominates(L2->getHeader(), L1->getHeader())) && 8780 "Domination relationship is not a linear order"); 8781 #endif 8782 8783 const Loop *MDL = 8784 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 8785 [&](const Loop *L1, const Loop *L2) { 8786 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 8787 }); 8788 8789 // Get init and post increment value for LHS. 8790 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 8791 // if LHS contains unknown non-invariant SCEV then bail out. 8792 if (SplitLHS.first == getCouldNotCompute()) 8793 return false; 8794 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 8795 // Get init and post increment value for RHS. 8796 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 8797 // if RHS contains unknown non-invariant SCEV then bail out. 8798 if (SplitRHS.first == getCouldNotCompute()) 8799 return false; 8800 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 8801 // It is possible that init SCEV contains an invariant load but it does 8802 // not dominate MDL and is not available at MDL loop entry, so we should 8803 // check it here. 8804 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 8805 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 8806 return false; 8807 8808 return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) && 8809 isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 8810 SplitRHS.second); 8811 } 8812 8813 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 8814 const SCEV *LHS, const SCEV *RHS) { 8815 // Canonicalize the inputs first. 8816 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8817 8818 if (isKnownViaInduction(Pred, LHS, RHS)) 8819 return true; 8820 8821 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 8822 return true; 8823 8824 // Otherwise see what can be done with some simple reasoning. 8825 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 8826 } 8827 8828 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 8829 const SCEVAddRecExpr *LHS, 8830 const SCEV *RHS) { 8831 const Loop *L = LHS->getLoop(); 8832 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 8833 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 8834 } 8835 8836 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 8837 ICmpInst::Predicate Pred, 8838 bool &Increasing) { 8839 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 8840 8841 #ifndef NDEBUG 8842 // Verify an invariant: inverting the predicate should turn a monotonically 8843 // increasing change to a monotonically decreasing one, and vice versa. 8844 bool IncreasingSwapped; 8845 bool ResultSwapped = isMonotonicPredicateImpl( 8846 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 8847 8848 assert(Result == ResultSwapped && "should be able to analyze both!"); 8849 if (ResultSwapped) 8850 assert(Increasing == !IncreasingSwapped && 8851 "monotonicity should flip as we flip the predicate"); 8852 #endif 8853 8854 return Result; 8855 } 8856 8857 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 8858 ICmpInst::Predicate Pred, 8859 bool &Increasing) { 8860 8861 // A zero step value for LHS means the induction variable is essentially a 8862 // loop invariant value. We don't really depend on the predicate actually 8863 // flipping from false to true (for increasing predicates, and the other way 8864 // around for decreasing predicates), all we care about is that *if* the 8865 // predicate changes then it only changes from false to true. 8866 // 8867 // A zero step value in itself is not very useful, but there may be places 8868 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 8869 // as general as possible. 8870 8871 switch (Pred) { 8872 default: 8873 return false; // Conservative answer 8874 8875 case ICmpInst::ICMP_UGT: 8876 case ICmpInst::ICMP_UGE: 8877 case ICmpInst::ICMP_ULT: 8878 case ICmpInst::ICMP_ULE: 8879 if (!LHS->hasNoUnsignedWrap()) 8880 return false; 8881 8882 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 8883 return true; 8884 8885 case ICmpInst::ICMP_SGT: 8886 case ICmpInst::ICMP_SGE: 8887 case ICmpInst::ICMP_SLT: 8888 case ICmpInst::ICMP_SLE: { 8889 if (!LHS->hasNoSignedWrap()) 8890 return false; 8891 8892 const SCEV *Step = LHS->getStepRecurrence(*this); 8893 8894 if (isKnownNonNegative(Step)) { 8895 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 8896 return true; 8897 } 8898 8899 if (isKnownNonPositive(Step)) { 8900 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 8901 return true; 8902 } 8903 8904 return false; 8905 } 8906 8907 } 8908 8909 llvm_unreachable("switch has default clause!"); 8910 } 8911 8912 bool ScalarEvolution::isLoopInvariantPredicate( 8913 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 8914 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 8915 const SCEV *&InvariantRHS) { 8916 8917 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 8918 if (!isLoopInvariant(RHS, L)) { 8919 if (!isLoopInvariant(LHS, L)) 8920 return false; 8921 8922 std::swap(LHS, RHS); 8923 Pred = ICmpInst::getSwappedPredicate(Pred); 8924 } 8925 8926 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8927 if (!ArLHS || ArLHS->getLoop() != L) 8928 return false; 8929 8930 bool Increasing; 8931 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 8932 return false; 8933 8934 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 8935 // true as the loop iterates, and the backedge is control dependent on 8936 // "ArLHS `Pred` RHS" == true then we can reason as follows: 8937 // 8938 // * if the predicate was false in the first iteration then the predicate 8939 // is never evaluated again, since the loop exits without taking the 8940 // backedge. 8941 // * if the predicate was true in the first iteration then it will 8942 // continue to be true for all future iterations since it is 8943 // monotonically increasing. 8944 // 8945 // For both the above possibilities, we can replace the loop varying 8946 // predicate with its value on the first iteration of the loop (which is 8947 // loop invariant). 8948 // 8949 // A similar reasoning applies for a monotonically decreasing predicate, by 8950 // replacing true with false and false with true in the above two bullets. 8951 8952 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 8953 8954 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 8955 return false; 8956 8957 InvariantPred = Pred; 8958 InvariantLHS = ArLHS->getStart(); 8959 InvariantRHS = RHS; 8960 return true; 8961 } 8962 8963 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 8964 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8965 if (HasSameValue(LHS, RHS)) 8966 return ICmpInst::isTrueWhenEqual(Pred); 8967 8968 // This code is split out from isKnownPredicate because it is called from 8969 // within isLoopEntryGuardedByCond. 8970 8971 auto CheckRanges = 8972 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 8973 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 8974 .contains(RangeLHS); 8975 }; 8976 8977 // The check at the top of the function catches the case where the values are 8978 // known to be equal. 8979 if (Pred == CmpInst::ICMP_EQ) 8980 return false; 8981 8982 if (Pred == CmpInst::ICMP_NE) 8983 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 8984 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 8985 isKnownNonZero(getMinusSCEV(LHS, RHS)); 8986 8987 if (CmpInst::isSigned(Pred)) 8988 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 8989 8990 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 8991 } 8992 8993 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 8994 const SCEV *LHS, 8995 const SCEV *RHS) { 8996 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 8997 // Return Y via OutY. 8998 auto MatchBinaryAddToConst = 8999 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9000 SCEV::NoWrapFlags ExpectedFlags) { 9001 const SCEV *NonConstOp, *ConstOp; 9002 SCEV::NoWrapFlags FlagsPresent; 9003 9004 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9005 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9006 return false; 9007 9008 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9009 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9010 }; 9011 9012 APInt C; 9013 9014 switch (Pred) { 9015 default: 9016 break; 9017 9018 case ICmpInst::ICMP_SGE: 9019 std::swap(LHS, RHS); 9020 LLVM_FALLTHROUGH; 9021 case ICmpInst::ICMP_SLE: 9022 // X s<= (X + C)<nsw> if C >= 0 9023 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9024 return true; 9025 9026 // (X + C)<nsw> s<= X if C <= 0 9027 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9028 !C.isStrictlyPositive()) 9029 return true; 9030 break; 9031 9032 case ICmpInst::ICMP_SGT: 9033 std::swap(LHS, RHS); 9034 LLVM_FALLTHROUGH; 9035 case ICmpInst::ICMP_SLT: 9036 // X s< (X + C)<nsw> if C > 0 9037 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9038 C.isStrictlyPositive()) 9039 return true; 9040 9041 // (X + C)<nsw> s< X if C < 0 9042 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9043 return true; 9044 break; 9045 } 9046 9047 return false; 9048 } 9049 9050 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9051 const SCEV *LHS, 9052 const SCEV *RHS) { 9053 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9054 return false; 9055 9056 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9057 // the stack can result in exponential time complexity. 9058 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9059 9060 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9061 // 9062 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9063 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9064 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9065 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9066 // use isKnownPredicate later if needed. 9067 return isKnownNonNegative(RHS) && 9068 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9069 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9070 } 9071 9072 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 9073 ICmpInst::Predicate Pred, 9074 const SCEV *LHS, const SCEV *RHS) { 9075 // No need to even try if we know the module has no guards. 9076 if (!HasGuards) 9077 return false; 9078 9079 return any_of(*BB, [&](Instruction &I) { 9080 using namespace llvm::PatternMatch; 9081 9082 Value *Condition; 9083 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9084 m_Value(Condition))) && 9085 isImpliedCond(Pred, LHS, RHS, Condition, false); 9086 }); 9087 } 9088 9089 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9090 /// protected by a conditional between LHS and RHS. This is used to 9091 /// to eliminate casts. 9092 bool 9093 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9094 ICmpInst::Predicate Pred, 9095 const SCEV *LHS, const SCEV *RHS) { 9096 // Interpret a null as meaning no loop, where there is obviously no guard 9097 // (interprocedural conditions notwithstanding). 9098 if (!L) return true; 9099 9100 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9101 return true; 9102 9103 BasicBlock *Latch = L->getLoopLatch(); 9104 if (!Latch) 9105 return false; 9106 9107 BranchInst *LoopContinuePredicate = 9108 dyn_cast<BranchInst>(Latch->getTerminator()); 9109 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9110 isImpliedCond(Pred, LHS, RHS, 9111 LoopContinuePredicate->getCondition(), 9112 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9113 return true; 9114 9115 // We don't want more than one activation of the following loops on the stack 9116 // -- that can lead to O(n!) time complexity. 9117 if (WalkingBEDominatingConds) 9118 return false; 9119 9120 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9121 9122 // See if we can exploit a trip count to prove the predicate. 9123 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9124 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9125 if (LatchBECount != getCouldNotCompute()) { 9126 // We know that Latch branches back to the loop header exactly 9127 // LatchBECount times. This means the backdege condition at Latch is 9128 // equivalent to "{0,+,1} u< LatchBECount". 9129 Type *Ty = LatchBECount->getType(); 9130 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9131 const SCEV *LoopCounter = 9132 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9133 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9134 LatchBECount)) 9135 return true; 9136 } 9137 9138 // Check conditions due to any @llvm.assume intrinsics. 9139 for (auto &AssumeVH : AC.assumptions()) { 9140 if (!AssumeVH) 9141 continue; 9142 auto *CI = cast<CallInst>(AssumeVH); 9143 if (!DT.dominates(CI, Latch->getTerminator())) 9144 continue; 9145 9146 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9147 return true; 9148 } 9149 9150 // If the loop is not reachable from the entry block, we risk running into an 9151 // infinite loop as we walk up into the dom tree. These loops do not matter 9152 // anyway, so we just return a conservative answer when we see them. 9153 if (!DT.isReachableFromEntry(L->getHeader())) 9154 return false; 9155 9156 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9157 return true; 9158 9159 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9160 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9161 assert(DTN && "should reach the loop header before reaching the root!"); 9162 9163 BasicBlock *BB = DTN->getBlock(); 9164 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9165 return true; 9166 9167 BasicBlock *PBB = BB->getSinglePredecessor(); 9168 if (!PBB) 9169 continue; 9170 9171 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9172 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9173 continue; 9174 9175 Value *Condition = ContinuePredicate->getCondition(); 9176 9177 // If we have an edge `E` within the loop body that dominates the only 9178 // latch, the condition guarding `E` also guards the backedge. This 9179 // reasoning works only for loops with a single latch. 9180 9181 BasicBlockEdge DominatingEdge(PBB, BB); 9182 if (DominatingEdge.isSingleEdge()) { 9183 // We're constructively (and conservatively) enumerating edges within the 9184 // loop body that dominate the latch. The dominator tree better agree 9185 // with us on this: 9186 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9187 9188 if (isImpliedCond(Pred, LHS, RHS, Condition, 9189 BB != ContinuePredicate->getSuccessor(0))) 9190 return true; 9191 } 9192 } 9193 9194 return false; 9195 } 9196 9197 bool 9198 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9199 ICmpInst::Predicate Pred, 9200 const SCEV *LHS, const SCEV *RHS) { 9201 // Interpret a null as meaning no loop, where there is obviously no guard 9202 // (interprocedural conditions notwithstanding). 9203 if (!L) return false; 9204 9205 // Both LHS and RHS must be available at loop entry. 9206 assert(isAvailableAtLoopEntry(LHS, L) && 9207 "LHS is not available at Loop Entry"); 9208 assert(isAvailableAtLoopEntry(RHS, L) && 9209 "RHS is not available at Loop Entry"); 9210 9211 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9212 return true; 9213 9214 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9215 // the facts (a >= b && a != b) separately. A typical situation is when the 9216 // non-strict comparison is known from ranges and non-equality is known from 9217 // dominating predicates. If we are proving strict comparison, we always try 9218 // to prove non-equality and non-strict comparison separately. 9219 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9220 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9221 bool ProvedNonStrictComparison = false; 9222 bool ProvedNonEquality = false; 9223 9224 if (ProvingStrictComparison) { 9225 ProvedNonStrictComparison = 9226 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9227 ProvedNonEquality = 9228 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9229 if (ProvedNonStrictComparison && ProvedNonEquality) 9230 return true; 9231 } 9232 9233 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9234 auto ProveViaGuard = [&](BasicBlock *Block) { 9235 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9236 return true; 9237 if (ProvingStrictComparison) { 9238 if (!ProvedNonStrictComparison) 9239 ProvedNonStrictComparison = 9240 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9241 if (!ProvedNonEquality) 9242 ProvedNonEquality = 9243 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9244 if (ProvedNonStrictComparison && ProvedNonEquality) 9245 return true; 9246 } 9247 return false; 9248 }; 9249 9250 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9251 auto ProveViaCond = [&](Value *Condition, bool Inverse) { 9252 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) 9253 return true; 9254 if (ProvingStrictComparison) { 9255 if (!ProvedNonStrictComparison) 9256 ProvedNonStrictComparison = 9257 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); 9258 if (!ProvedNonEquality) 9259 ProvedNonEquality = 9260 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); 9261 if (ProvedNonStrictComparison && ProvedNonEquality) 9262 return true; 9263 } 9264 return false; 9265 }; 9266 9267 // Starting at the loop predecessor, climb up the predecessor chain, as long 9268 // as there are predecessors that can be found that have unique successors 9269 // leading to the original header. 9270 for (std::pair<BasicBlock *, BasicBlock *> 9271 Pair(L->getLoopPredecessor(), L->getHeader()); 9272 Pair.first; 9273 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9274 9275 if (ProveViaGuard(Pair.first)) 9276 return true; 9277 9278 BranchInst *LoopEntryPredicate = 9279 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9280 if (!LoopEntryPredicate || 9281 LoopEntryPredicate->isUnconditional()) 9282 continue; 9283 9284 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9285 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9286 return true; 9287 } 9288 9289 // Check conditions due to any @llvm.assume intrinsics. 9290 for (auto &AssumeVH : AC.assumptions()) { 9291 if (!AssumeVH) 9292 continue; 9293 auto *CI = cast<CallInst>(AssumeVH); 9294 if (!DT.dominates(CI, L->getHeader())) 9295 continue; 9296 9297 if (ProveViaCond(CI->getArgOperand(0), false)) 9298 return true; 9299 } 9300 9301 return false; 9302 } 9303 9304 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 9305 const SCEV *LHS, const SCEV *RHS, 9306 Value *FoundCondValue, 9307 bool Inverse) { 9308 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9309 return false; 9310 9311 auto ClearOnExit = 9312 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9313 9314 // Recursively handle And and Or conditions. 9315 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9316 if (BO->getOpcode() == Instruction::And) { 9317 if (!Inverse) 9318 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9319 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9320 } else if (BO->getOpcode() == Instruction::Or) { 9321 if (Inverse) 9322 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9323 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9324 } 9325 } 9326 9327 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9328 if (!ICI) return false; 9329 9330 // Now that we found a conditional branch that dominates the loop or controls 9331 // the loop latch. Check to see if it is the comparison we are looking for. 9332 ICmpInst::Predicate FoundPred; 9333 if (Inverse) 9334 FoundPred = ICI->getInversePredicate(); 9335 else 9336 FoundPred = ICI->getPredicate(); 9337 9338 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9339 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9340 9341 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 9342 } 9343 9344 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9345 const SCEV *RHS, 9346 ICmpInst::Predicate FoundPred, 9347 const SCEV *FoundLHS, 9348 const SCEV *FoundRHS) { 9349 // Balance the types. 9350 if (getTypeSizeInBits(LHS->getType()) < 9351 getTypeSizeInBits(FoundLHS->getType())) { 9352 if (CmpInst::isSigned(Pred)) { 9353 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9354 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9355 } else { 9356 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9357 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9358 } 9359 } else if (getTypeSizeInBits(LHS->getType()) > 9360 getTypeSizeInBits(FoundLHS->getType())) { 9361 if (CmpInst::isSigned(FoundPred)) { 9362 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9363 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9364 } else { 9365 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9366 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9367 } 9368 } 9369 9370 // Canonicalize the query to match the way instcombine will have 9371 // canonicalized the comparison. 9372 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9373 if (LHS == RHS) 9374 return CmpInst::isTrueWhenEqual(Pred); 9375 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9376 if (FoundLHS == FoundRHS) 9377 return CmpInst::isFalseWhenEqual(FoundPred); 9378 9379 // Check to see if we can make the LHS or RHS match. 9380 if (LHS == FoundRHS || RHS == FoundLHS) { 9381 if (isa<SCEVConstant>(RHS)) { 9382 std::swap(FoundLHS, FoundRHS); 9383 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9384 } else { 9385 std::swap(LHS, RHS); 9386 Pred = ICmpInst::getSwappedPredicate(Pred); 9387 } 9388 } 9389 9390 // Check whether the found predicate is the same as the desired predicate. 9391 if (FoundPred == Pred) 9392 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9393 9394 // Check whether swapping the found predicate makes it the same as the 9395 // desired predicate. 9396 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9397 if (isa<SCEVConstant>(RHS)) 9398 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 9399 else 9400 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 9401 RHS, LHS, FoundLHS, FoundRHS); 9402 } 9403 9404 // Unsigned comparison is the same as signed comparison when both the operands 9405 // are non-negative. 9406 if (CmpInst::isUnsigned(FoundPred) && 9407 CmpInst::getSignedPredicate(FoundPred) == Pred && 9408 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9409 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9410 9411 // Check if we can make progress by sharpening ranges. 9412 if (FoundPred == ICmpInst::ICMP_NE && 9413 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9414 9415 const SCEVConstant *C = nullptr; 9416 const SCEV *V = nullptr; 9417 9418 if (isa<SCEVConstant>(FoundLHS)) { 9419 C = cast<SCEVConstant>(FoundLHS); 9420 V = FoundRHS; 9421 } else { 9422 C = cast<SCEVConstant>(FoundRHS); 9423 V = FoundLHS; 9424 } 9425 9426 // The guarding predicate tells us that C != V. If the known range 9427 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9428 // range we consider has to correspond to same signedness as the 9429 // predicate we're interested in folding. 9430 9431 APInt Min = ICmpInst::isSigned(Pred) ? 9432 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9433 9434 if (Min == C->getAPInt()) { 9435 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9436 // This is true even if (Min + 1) wraps around -- in case of 9437 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9438 9439 APInt SharperMin = Min + 1; 9440 9441 switch (Pred) { 9442 case ICmpInst::ICMP_SGE: 9443 case ICmpInst::ICMP_UGE: 9444 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9445 // RHS, we're done. 9446 if (isImpliedCondOperands(Pred, LHS, RHS, V, 9447 getConstant(SharperMin))) 9448 return true; 9449 LLVM_FALLTHROUGH; 9450 9451 case ICmpInst::ICMP_SGT: 9452 case ICmpInst::ICMP_UGT: 9453 // We know from the range information that (V `Pred` Min || 9454 // V == Min). We know from the guarding condition that !(V 9455 // == Min). This gives us 9456 // 9457 // V `Pred` Min || V == Min && !(V == Min) 9458 // => V `Pred` Min 9459 // 9460 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9461 9462 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 9463 return true; 9464 LLVM_FALLTHROUGH; 9465 9466 default: 9467 // No change 9468 break; 9469 } 9470 } 9471 } 9472 9473 // Check whether the actual condition is beyond sufficient. 9474 if (FoundPred == ICmpInst::ICMP_EQ) 9475 if (ICmpInst::isTrueWhenEqual(Pred)) 9476 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9477 return true; 9478 if (Pred == ICmpInst::ICMP_NE) 9479 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9480 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 9481 return true; 9482 9483 // Otherwise assume the worst. 9484 return false; 9485 } 9486 9487 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9488 const SCEV *&L, const SCEV *&R, 9489 SCEV::NoWrapFlags &Flags) { 9490 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9491 if (!AE || AE->getNumOperands() != 2) 9492 return false; 9493 9494 L = AE->getOperand(0); 9495 R = AE->getOperand(1); 9496 Flags = AE->getNoWrapFlags(); 9497 return true; 9498 } 9499 9500 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9501 const SCEV *Less) { 9502 // We avoid subtracting expressions here because this function is usually 9503 // fairly deep in the call stack (i.e. is called many times). 9504 9505 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9506 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9507 const auto *MAR = cast<SCEVAddRecExpr>(More); 9508 9509 if (LAR->getLoop() != MAR->getLoop()) 9510 return None; 9511 9512 // We look at affine expressions only; not for correctness but to keep 9513 // getStepRecurrence cheap. 9514 if (!LAR->isAffine() || !MAR->isAffine()) 9515 return None; 9516 9517 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9518 return None; 9519 9520 Less = LAR->getStart(); 9521 More = MAR->getStart(); 9522 9523 // fall through 9524 } 9525 9526 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9527 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9528 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9529 return M - L; 9530 } 9531 9532 SCEV::NoWrapFlags Flags; 9533 const SCEV *LLess = nullptr, *RLess = nullptr; 9534 const SCEV *LMore = nullptr, *RMore = nullptr; 9535 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 9536 // Compare (X + C1) vs X. 9537 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 9538 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 9539 if (RLess == More) 9540 return -(C1->getAPInt()); 9541 9542 // Compare X vs (X + C2). 9543 if (splitBinaryAdd(More, LMore, RMore, Flags)) 9544 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 9545 if (RMore == Less) 9546 return C2->getAPInt(); 9547 9548 // Compare (X + C1) vs (X + C2). 9549 if (C1 && C2 && RLess == RMore) 9550 return C2->getAPInt() - C1->getAPInt(); 9551 9552 return None; 9553 } 9554 9555 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 9556 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9557 const SCEV *FoundLHS, const SCEV *FoundRHS) { 9558 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 9559 return false; 9560 9561 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9562 if (!AddRecLHS) 9563 return false; 9564 9565 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 9566 if (!AddRecFoundLHS) 9567 return false; 9568 9569 // We'd like to let SCEV reason about control dependencies, so we constrain 9570 // both the inequalities to be about add recurrences on the same loop. This 9571 // way we can use isLoopEntryGuardedByCond later. 9572 9573 const Loop *L = AddRecFoundLHS->getLoop(); 9574 if (L != AddRecLHS->getLoop()) 9575 return false; 9576 9577 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 9578 // 9579 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 9580 // ... (2) 9581 // 9582 // Informal proof for (2), assuming (1) [*]: 9583 // 9584 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 9585 // 9586 // Then 9587 // 9588 // FoundLHS s< FoundRHS s< INT_MIN - C 9589 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 9590 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 9591 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 9592 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 9593 // <=> FoundLHS + C s< FoundRHS + C 9594 // 9595 // [*]: (1) can be proved by ruling out overflow. 9596 // 9597 // [**]: This can be proved by analyzing all the four possibilities: 9598 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 9599 // (A s>= 0, B s>= 0). 9600 // 9601 // Note: 9602 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 9603 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 9604 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 9605 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 9606 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 9607 // C)". 9608 9609 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 9610 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 9611 if (!LDiff || !RDiff || *LDiff != *RDiff) 9612 return false; 9613 9614 if (LDiff->isMinValue()) 9615 return true; 9616 9617 APInt FoundRHSLimit; 9618 9619 if (Pred == CmpInst::ICMP_ULT) { 9620 FoundRHSLimit = -(*RDiff); 9621 } else { 9622 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 9623 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 9624 } 9625 9626 // Try to prove (1) or (2), as needed. 9627 return isAvailableAtLoopEntry(FoundRHS, L) && 9628 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 9629 getConstant(FoundRHSLimit)); 9630 } 9631 9632 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 9633 const SCEV *LHS, const SCEV *RHS, 9634 const SCEV *FoundLHS, 9635 const SCEV *FoundRHS, unsigned Depth) { 9636 const PHINode *LPhi = nullptr, *RPhi = nullptr; 9637 9638 auto ClearOnExit = make_scope_exit([&]() { 9639 if (LPhi) { 9640 bool Erased = PendingMerges.erase(LPhi); 9641 assert(Erased && "Failed to erase LPhi!"); 9642 (void)Erased; 9643 } 9644 if (RPhi) { 9645 bool Erased = PendingMerges.erase(RPhi); 9646 assert(Erased && "Failed to erase RPhi!"); 9647 (void)Erased; 9648 } 9649 }); 9650 9651 // Find respective Phis and check that they are not being pending. 9652 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 9653 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 9654 if (!PendingMerges.insert(Phi).second) 9655 return false; 9656 LPhi = Phi; 9657 } 9658 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 9659 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 9660 // If we detect a loop of Phi nodes being processed by this method, for 9661 // example: 9662 // 9663 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 9664 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 9665 // 9666 // we don't want to deal with a case that complex, so return conservative 9667 // answer false. 9668 if (!PendingMerges.insert(Phi).second) 9669 return false; 9670 RPhi = Phi; 9671 } 9672 9673 // If none of LHS, RHS is a Phi, nothing to do here. 9674 if (!LPhi && !RPhi) 9675 return false; 9676 9677 // If there is a SCEVUnknown Phi we are interested in, make it left. 9678 if (!LPhi) { 9679 std::swap(LHS, RHS); 9680 std::swap(FoundLHS, FoundRHS); 9681 std::swap(LPhi, RPhi); 9682 Pred = ICmpInst::getSwappedPredicate(Pred); 9683 } 9684 9685 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 9686 const BasicBlock *LBB = LPhi->getParent(); 9687 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 9688 9689 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 9690 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 9691 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 9692 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 9693 }; 9694 9695 if (RPhi && RPhi->getParent() == LBB) { 9696 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 9697 // If we compare two Phis from the same block, and for each entry block 9698 // the predicate is true for incoming values from this block, then the 9699 // predicate is also true for the Phis. 9700 for (const BasicBlock *IncBB : predecessors(LBB)) { 9701 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9702 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 9703 if (!ProvedEasily(L, R)) 9704 return false; 9705 } 9706 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 9707 // Case two: RHS is also a Phi from the same basic block, and it is an 9708 // AddRec. It means that there is a loop which has both AddRec and Unknown 9709 // PHIs, for it we can compare incoming values of AddRec from above the loop 9710 // and latch with their respective incoming values of LPhi. 9711 assert(LPhi->getNumIncomingValues() == 2 && 9712 "Phi node standing in loop header does not have exactly 2 inputs?"); 9713 auto *RLoop = RAR->getLoop(); 9714 auto *Predecessor = RLoop->getLoopPredecessor(); 9715 assert(Predecessor && "Loop with AddRec with no predecessor?"); 9716 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 9717 if (!ProvedEasily(L1, RAR->getStart())) 9718 return false; 9719 auto *Latch = RLoop->getLoopLatch(); 9720 assert(Latch && "Loop with AddRec with no latch?"); 9721 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 9722 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 9723 return false; 9724 } else { 9725 // In all other cases go over inputs of LHS and compare each of them to RHS, 9726 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 9727 // At this point RHS is either a non-Phi, or it is a Phi from some block 9728 // different from LBB. 9729 for (const BasicBlock *IncBB : predecessors(LBB)) { 9730 // Check that RHS is available in this block. 9731 if (!dominates(RHS, IncBB)) 9732 return false; 9733 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9734 if (!ProvedEasily(L, RHS)) 9735 return false; 9736 } 9737 } 9738 return true; 9739 } 9740 9741 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 9742 const SCEV *LHS, const SCEV *RHS, 9743 const SCEV *FoundLHS, 9744 const SCEV *FoundRHS) { 9745 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9746 return true; 9747 9748 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9749 return true; 9750 9751 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 9752 FoundLHS, FoundRHS) || 9753 // ~x < ~y --> x > y 9754 isImpliedCondOperandsHelper(Pred, LHS, RHS, 9755 getNotSCEV(FoundRHS), 9756 getNotSCEV(FoundLHS)); 9757 } 9758 9759 /// If Expr computes ~A, return A else return nullptr 9760 static const SCEV *MatchNotExpr(const SCEV *Expr) { 9761 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 9762 if (!Add || Add->getNumOperands() != 2 || 9763 !Add->getOperand(0)->isAllOnesValue()) 9764 return nullptr; 9765 9766 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 9767 if (!AddRHS || AddRHS->getNumOperands() != 2 || 9768 !AddRHS->getOperand(0)->isAllOnesValue()) 9769 return nullptr; 9770 9771 return AddRHS->getOperand(1); 9772 } 9773 9774 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 9775 template<typename MaxExprType> 9776 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 9777 const SCEV *Candidate) { 9778 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 9779 if (!MaxExpr) return false; 9780 9781 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 9782 } 9783 9784 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 9785 template<typename MaxExprType> 9786 static bool IsMinConsistingOf(ScalarEvolution &SE, 9787 const SCEV *MaybeMinExpr, 9788 const SCEV *Candidate) { 9789 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 9790 if (!MaybeMaxExpr) 9791 return false; 9792 9793 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 9794 } 9795 9796 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 9797 ICmpInst::Predicate Pred, 9798 const SCEV *LHS, const SCEV *RHS) { 9799 // If both sides are affine addrecs for the same loop, with equal 9800 // steps, and we know the recurrences don't wrap, then we only 9801 // need to check the predicate on the starting values. 9802 9803 if (!ICmpInst::isRelational(Pred)) 9804 return false; 9805 9806 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 9807 if (!LAR) 9808 return false; 9809 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 9810 if (!RAR) 9811 return false; 9812 if (LAR->getLoop() != RAR->getLoop()) 9813 return false; 9814 if (!LAR->isAffine() || !RAR->isAffine()) 9815 return false; 9816 9817 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 9818 return false; 9819 9820 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 9821 SCEV::FlagNSW : SCEV::FlagNUW; 9822 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 9823 return false; 9824 9825 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 9826 } 9827 9828 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 9829 /// expression? 9830 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 9831 ICmpInst::Predicate Pred, 9832 const SCEV *LHS, const SCEV *RHS) { 9833 switch (Pred) { 9834 default: 9835 return false; 9836 9837 case ICmpInst::ICMP_SGE: 9838 std::swap(LHS, RHS); 9839 LLVM_FALLTHROUGH; 9840 case ICmpInst::ICMP_SLE: 9841 return 9842 // min(A, ...) <= A 9843 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 9844 // A <= max(A, ...) 9845 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 9846 9847 case ICmpInst::ICMP_UGE: 9848 std::swap(LHS, RHS); 9849 LLVM_FALLTHROUGH; 9850 case ICmpInst::ICMP_ULE: 9851 return 9852 // min(A, ...) <= A 9853 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 9854 // A <= max(A, ...) 9855 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 9856 } 9857 9858 llvm_unreachable("covered switch fell through?!"); 9859 } 9860 9861 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 9862 const SCEV *LHS, const SCEV *RHS, 9863 const SCEV *FoundLHS, 9864 const SCEV *FoundRHS, 9865 unsigned Depth) { 9866 assert(getTypeSizeInBits(LHS->getType()) == 9867 getTypeSizeInBits(RHS->getType()) && 9868 "LHS and RHS have different sizes?"); 9869 assert(getTypeSizeInBits(FoundLHS->getType()) == 9870 getTypeSizeInBits(FoundRHS->getType()) && 9871 "FoundLHS and FoundRHS have different sizes?"); 9872 // We want to avoid hurting the compile time with analysis of too big trees. 9873 if (Depth > MaxSCEVOperationsImplicationDepth) 9874 return false; 9875 // We only want to work with ICMP_SGT comparison so far. 9876 // TODO: Extend to ICMP_UGT? 9877 if (Pred == ICmpInst::ICMP_SLT) { 9878 Pred = ICmpInst::ICMP_SGT; 9879 std::swap(LHS, RHS); 9880 std::swap(FoundLHS, FoundRHS); 9881 } 9882 if (Pred != ICmpInst::ICMP_SGT) 9883 return false; 9884 9885 auto GetOpFromSExt = [&](const SCEV *S) { 9886 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 9887 return Ext->getOperand(); 9888 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 9889 // the constant in some cases. 9890 return S; 9891 }; 9892 9893 // Acquire values from extensions. 9894 auto *OrigLHS = LHS; 9895 auto *OrigFoundLHS = FoundLHS; 9896 LHS = GetOpFromSExt(LHS); 9897 FoundLHS = GetOpFromSExt(FoundLHS); 9898 9899 // Is the SGT predicate can be proved trivially or using the found context. 9900 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 9901 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 9902 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 9903 FoundRHS, Depth + 1); 9904 }; 9905 9906 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 9907 // We want to avoid creation of any new non-constant SCEV. Since we are 9908 // going to compare the operands to RHS, we should be certain that we don't 9909 // need any size extensions for this. So let's decline all cases when the 9910 // sizes of types of LHS and RHS do not match. 9911 // TODO: Maybe try to get RHS from sext to catch more cases? 9912 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 9913 return false; 9914 9915 // Should not overflow. 9916 if (!LHSAddExpr->hasNoSignedWrap()) 9917 return false; 9918 9919 auto *LL = LHSAddExpr->getOperand(0); 9920 auto *LR = LHSAddExpr->getOperand(1); 9921 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 9922 9923 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 9924 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 9925 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 9926 }; 9927 // Try to prove the following rule: 9928 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 9929 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 9930 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 9931 return true; 9932 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 9933 Value *LL, *LR; 9934 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 9935 9936 using namespace llvm::PatternMatch; 9937 9938 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 9939 // Rules for division. 9940 // We are going to perform some comparisons with Denominator and its 9941 // derivative expressions. In general case, creating a SCEV for it may 9942 // lead to a complex analysis of the entire graph, and in particular it 9943 // can request trip count recalculation for the same loop. This would 9944 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 9945 // this, we only want to create SCEVs that are constants in this section. 9946 // So we bail if Denominator is not a constant. 9947 if (!isa<ConstantInt>(LR)) 9948 return false; 9949 9950 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 9951 9952 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 9953 // then a SCEV for the numerator already exists and matches with FoundLHS. 9954 auto *Numerator = getExistingSCEV(LL); 9955 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 9956 return false; 9957 9958 // Make sure that the numerator matches with FoundLHS and the denominator 9959 // is positive. 9960 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 9961 return false; 9962 9963 auto *DTy = Denominator->getType(); 9964 auto *FRHSTy = FoundRHS->getType(); 9965 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 9966 // One of types is a pointer and another one is not. We cannot extend 9967 // them properly to a wider type, so let us just reject this case. 9968 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 9969 // to avoid this check. 9970 return false; 9971 9972 // Given that: 9973 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 9974 auto *WTy = getWiderType(DTy, FRHSTy); 9975 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 9976 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 9977 9978 // Try to prove the following rule: 9979 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 9980 // For example, given that FoundLHS > 2. It means that FoundLHS is at 9981 // least 3. If we divide it by Denominator < 4, we will have at least 1. 9982 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 9983 if (isKnownNonPositive(RHS) && 9984 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 9985 return true; 9986 9987 // Try to prove the following rule: 9988 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 9989 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 9990 // If we divide it by Denominator > 2, then: 9991 // 1. If FoundLHS is negative, then the result is 0. 9992 // 2. If FoundLHS is non-negative, then the result is non-negative. 9993 // Anyways, the result is non-negative. 9994 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 9995 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 9996 if (isKnownNegative(RHS) && 9997 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 9998 return true; 9999 } 10000 } 10001 10002 // If our expression contained SCEVUnknown Phis, and we split it down and now 10003 // need to prove something for them, try to prove the predicate for every 10004 // possible incoming values of those Phis. 10005 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10006 return true; 10007 10008 return false; 10009 } 10010 10011 bool 10012 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10013 const SCEV *LHS, const SCEV *RHS) { 10014 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10015 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10016 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10017 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10018 } 10019 10020 bool 10021 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10022 const SCEV *LHS, const SCEV *RHS, 10023 const SCEV *FoundLHS, 10024 const SCEV *FoundRHS) { 10025 switch (Pred) { 10026 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10027 case ICmpInst::ICMP_EQ: 10028 case ICmpInst::ICMP_NE: 10029 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10030 return true; 10031 break; 10032 case ICmpInst::ICMP_SLT: 10033 case ICmpInst::ICMP_SLE: 10034 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10035 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10036 return true; 10037 break; 10038 case ICmpInst::ICMP_SGT: 10039 case ICmpInst::ICMP_SGE: 10040 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10041 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10042 return true; 10043 break; 10044 case ICmpInst::ICMP_ULT: 10045 case ICmpInst::ICMP_ULE: 10046 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10047 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10048 return true; 10049 break; 10050 case ICmpInst::ICMP_UGT: 10051 case ICmpInst::ICMP_UGE: 10052 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10053 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10054 return true; 10055 break; 10056 } 10057 10058 // Maybe it can be proved via operations? 10059 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10060 return true; 10061 10062 return false; 10063 } 10064 10065 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10066 const SCEV *LHS, 10067 const SCEV *RHS, 10068 const SCEV *FoundLHS, 10069 const SCEV *FoundRHS) { 10070 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10071 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10072 // reduce the compile time impact of this optimization. 10073 return false; 10074 10075 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10076 if (!Addend) 10077 return false; 10078 10079 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10080 10081 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10082 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10083 ConstantRange FoundLHSRange = 10084 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10085 10086 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10087 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10088 10089 // We can also compute the range of values for `LHS` that satisfy the 10090 // consequent, "`LHS` `Pred` `RHS`": 10091 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10092 ConstantRange SatisfyingLHSRange = 10093 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10094 10095 // The antecedent implies the consequent if every value of `LHS` that 10096 // satisfies the antecedent also satisfies the consequent. 10097 return SatisfyingLHSRange.contains(LHSRange); 10098 } 10099 10100 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10101 bool IsSigned, bool NoWrap) { 10102 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10103 10104 if (NoWrap) return false; 10105 10106 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10107 const SCEV *One = getOne(Stride->getType()); 10108 10109 if (IsSigned) { 10110 APInt MaxRHS = getSignedRangeMax(RHS); 10111 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10112 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10113 10114 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10115 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10116 } 10117 10118 APInt MaxRHS = getUnsignedRangeMax(RHS); 10119 APInt MaxValue = APInt::getMaxValue(BitWidth); 10120 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10121 10122 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10123 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10124 } 10125 10126 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10127 bool IsSigned, bool NoWrap) { 10128 if (NoWrap) return false; 10129 10130 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10131 const SCEV *One = getOne(Stride->getType()); 10132 10133 if (IsSigned) { 10134 APInt MinRHS = getSignedRangeMin(RHS); 10135 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10136 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10137 10138 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10139 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10140 } 10141 10142 APInt MinRHS = getUnsignedRangeMin(RHS); 10143 APInt MinValue = APInt::getMinValue(BitWidth); 10144 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10145 10146 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10147 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10148 } 10149 10150 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10151 bool Equality) { 10152 const SCEV *One = getOne(Step->getType()); 10153 Delta = Equality ? getAddExpr(Delta, Step) 10154 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10155 return getUDivExpr(Delta, Step); 10156 } 10157 10158 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10159 const SCEV *Stride, 10160 const SCEV *End, 10161 unsigned BitWidth, 10162 bool IsSigned) { 10163 10164 assert(!isKnownNonPositive(Stride) && 10165 "Stride is expected strictly positive!"); 10166 // Calculate the maximum backedge count based on the range of values 10167 // permitted by Start, End, and Stride. 10168 const SCEV *MaxBECount; 10169 APInt MinStart = 10170 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10171 10172 APInt StrideForMaxBECount = 10173 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10174 10175 // We already know that the stride is positive, so we paper over conservatism 10176 // in our range computation by forcing StrideForMaxBECount to be at least one. 10177 // In theory this is unnecessary, but we expect MaxBECount to be a 10178 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10179 // is nothing to constant fold it to). 10180 APInt One(BitWidth, 1, IsSigned); 10181 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10182 10183 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10184 : APInt::getMaxValue(BitWidth); 10185 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10186 10187 // Although End can be a MAX expression we estimate MaxEnd considering only 10188 // the case End = RHS of the loop termination condition. This is safe because 10189 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10190 // taken count. 10191 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10192 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10193 10194 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10195 getConstant(StrideForMaxBECount) /* Step */, 10196 false /* Equality */); 10197 10198 return MaxBECount; 10199 } 10200 10201 ScalarEvolution::ExitLimit 10202 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10203 const Loop *L, bool IsSigned, 10204 bool ControlsExit, bool AllowPredicates) { 10205 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10206 10207 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10208 bool PredicatedIV = false; 10209 10210 if (!IV && AllowPredicates) { 10211 // Try to make this an AddRec using runtime tests, in the first X 10212 // iterations of this loop, where X is the SCEV expression found by the 10213 // algorithm below. 10214 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10215 PredicatedIV = true; 10216 } 10217 10218 // Avoid weird loops 10219 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10220 return getCouldNotCompute(); 10221 10222 bool NoWrap = ControlsExit && 10223 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10224 10225 const SCEV *Stride = IV->getStepRecurrence(*this); 10226 10227 bool PositiveStride = isKnownPositive(Stride); 10228 10229 // Avoid negative or zero stride values. 10230 if (!PositiveStride) { 10231 // We can compute the correct backedge taken count for loops with unknown 10232 // strides if we can prove that the loop is not an infinite loop with side 10233 // effects. Here's the loop structure we are trying to handle - 10234 // 10235 // i = start 10236 // do { 10237 // A[i] = i; 10238 // i += s; 10239 // } while (i < end); 10240 // 10241 // The backedge taken count for such loops is evaluated as - 10242 // (max(end, start + stride) - start - 1) /u stride 10243 // 10244 // The additional preconditions that we need to check to prove correctness 10245 // of the above formula is as follows - 10246 // 10247 // a) IV is either nuw or nsw depending upon signedness (indicated by the 10248 // NoWrap flag). 10249 // b) loop is single exit with no side effects. 10250 // 10251 // 10252 // Precondition a) implies that if the stride is negative, this is a single 10253 // trip loop. The backedge taken count formula reduces to zero in this case. 10254 // 10255 // Precondition b) implies that the unknown stride cannot be zero otherwise 10256 // we have UB. 10257 // 10258 // The positive stride case is the same as isKnownPositive(Stride) returning 10259 // true (original behavior of the function). 10260 // 10261 // We want to make sure that the stride is truly unknown as there are edge 10262 // cases where ScalarEvolution propagates no wrap flags to the 10263 // post-increment/decrement IV even though the increment/decrement operation 10264 // itself is wrapping. The computed backedge taken count may be wrong in 10265 // such cases. This is prevented by checking that the stride is not known to 10266 // be either positive or non-positive. For example, no wrap flags are 10267 // propagated to the post-increment IV of this loop with a trip count of 2 - 10268 // 10269 // unsigned char i; 10270 // for(i=127; i<128; i+=129) 10271 // A[i] = i; 10272 // 10273 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 10274 !loopHasNoSideEffects(L)) 10275 return getCouldNotCompute(); 10276 } else if (!Stride->isOne() && 10277 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 10278 // Avoid proven overflow cases: this will ensure that the backedge taken 10279 // count will not generate any unsigned overflow. Relaxed no-overflow 10280 // conditions exploit NoWrapFlags, allowing to optimize in presence of 10281 // undefined behaviors like the case of C language. 10282 return getCouldNotCompute(); 10283 10284 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 10285 : ICmpInst::ICMP_ULT; 10286 const SCEV *Start = IV->getStart(); 10287 const SCEV *End = RHS; 10288 // When the RHS is not invariant, we do not know the end bound of the loop and 10289 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 10290 // calculate the MaxBECount, given the start, stride and max value for the end 10291 // bound of the loop (RHS), and the fact that IV does not overflow (which is 10292 // checked above). 10293 if (!isLoopInvariant(RHS, L)) { 10294 const SCEV *MaxBECount = computeMaxBECountForLT( 10295 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10296 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 10297 false /*MaxOrZero*/, Predicates); 10298 } 10299 // If the backedge is taken at least once, then it will be taken 10300 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 10301 // is the LHS value of the less-than comparison the first time it is evaluated 10302 // and End is the RHS. 10303 const SCEV *BECountIfBackedgeTaken = 10304 computeBECount(getMinusSCEV(End, Start), Stride, false); 10305 // If the loop entry is guarded by the result of the backedge test of the 10306 // first loop iteration, then we know the backedge will be taken at least 10307 // once and so the backedge taken count is as above. If not then we use the 10308 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 10309 // as if the backedge is taken at least once max(End,Start) is End and so the 10310 // result is as above, and if not max(End,Start) is Start so we get a backedge 10311 // count of zero. 10312 const SCEV *BECount; 10313 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 10314 BECount = BECountIfBackedgeTaken; 10315 else { 10316 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 10317 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 10318 } 10319 10320 const SCEV *MaxBECount; 10321 bool MaxOrZero = false; 10322 if (isa<SCEVConstant>(BECount)) 10323 MaxBECount = BECount; 10324 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 10325 // If we know exactly how many times the backedge will be taken if it's 10326 // taken at least once, then the backedge count will either be that or 10327 // zero. 10328 MaxBECount = BECountIfBackedgeTaken; 10329 MaxOrZero = true; 10330 } else { 10331 MaxBECount = computeMaxBECountForLT( 10332 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10333 } 10334 10335 if (isa<SCEVCouldNotCompute>(MaxBECount) && 10336 !isa<SCEVCouldNotCompute>(BECount)) 10337 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 10338 10339 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 10340 } 10341 10342 ScalarEvolution::ExitLimit 10343 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 10344 const Loop *L, bool IsSigned, 10345 bool ControlsExit, bool AllowPredicates) { 10346 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10347 // We handle only IV > Invariant 10348 if (!isLoopInvariant(RHS, L)) 10349 return getCouldNotCompute(); 10350 10351 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10352 if (!IV && AllowPredicates) 10353 // Try to make this an AddRec using runtime tests, in the first X 10354 // iterations of this loop, where X is the SCEV expression found by the 10355 // algorithm below. 10356 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10357 10358 // Avoid weird loops 10359 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10360 return getCouldNotCompute(); 10361 10362 bool NoWrap = ControlsExit && 10363 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10364 10365 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 10366 10367 // Avoid negative or zero stride values 10368 if (!isKnownPositive(Stride)) 10369 return getCouldNotCompute(); 10370 10371 // Avoid proven overflow cases: this will ensure that the backedge taken count 10372 // will not generate any unsigned overflow. Relaxed no-overflow conditions 10373 // exploit NoWrapFlags, allowing to optimize in presence of undefined 10374 // behaviors like the case of C language. 10375 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 10376 return getCouldNotCompute(); 10377 10378 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 10379 : ICmpInst::ICMP_UGT; 10380 10381 const SCEV *Start = IV->getStart(); 10382 const SCEV *End = RHS; 10383 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 10384 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 10385 10386 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10387 10388 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10389 : getUnsignedRangeMax(Start); 10390 10391 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10392 : getUnsignedRangeMin(Stride); 10393 10394 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10395 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10396 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10397 10398 // Although End can be a MIN expression we estimate MinEnd considering only 10399 // the case End = RHS. This is safe because in the other case (Start - End) 10400 // is zero, leading to a zero maximum backedge taken count. 10401 APInt MinEnd = 10402 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10403 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10404 10405 10406 const SCEV *MaxBECount = getCouldNotCompute(); 10407 if (isa<SCEVConstant>(BECount)) 10408 MaxBECount = BECount; 10409 else 10410 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 10411 getConstant(MinStride), false); 10412 10413 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10414 MaxBECount = BECount; 10415 10416 return ExitLimit(BECount, MaxBECount, false, Predicates); 10417 } 10418 10419 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10420 ScalarEvolution &SE) const { 10421 if (Range.isFullSet()) // Infinite loop. 10422 return SE.getCouldNotCompute(); 10423 10424 // If the start is a non-zero constant, shift the range to simplify things. 10425 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10426 if (!SC->getValue()->isZero()) { 10427 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10428 Operands[0] = SE.getZero(SC->getType()); 10429 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10430 getNoWrapFlags(FlagNW)); 10431 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10432 return ShiftedAddRec->getNumIterationsInRange( 10433 Range.subtract(SC->getAPInt()), SE); 10434 // This is strange and shouldn't happen. 10435 return SE.getCouldNotCompute(); 10436 } 10437 10438 // The only time we can solve this is when we have all constant indices. 10439 // Otherwise, we cannot determine the overflow conditions. 10440 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10441 return SE.getCouldNotCompute(); 10442 10443 // Okay at this point we know that all elements of the chrec are constants and 10444 // that the start element is zero. 10445 10446 // First check to see if the range contains zero. If not, the first 10447 // iteration exits. 10448 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10449 if (!Range.contains(APInt(BitWidth, 0))) 10450 return SE.getZero(getType()); 10451 10452 if (isAffine()) { 10453 // If this is an affine expression then we have this situation: 10454 // Solve {0,+,A} in Range === Ax in Range 10455 10456 // We know that zero is in the range. If A is positive then we know that 10457 // the upper value of the range must be the first possible exit value. 10458 // If A is negative then the lower of the range is the last possible loop 10459 // value. Also note that we already checked for a full range. 10460 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10461 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10462 10463 // The exit value should be (End+A)/A. 10464 APInt ExitVal = (End + A).udiv(A); 10465 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10466 10467 // Evaluate at the exit value. If we really did fall out of the valid 10468 // range, then we computed our trip count, otherwise wrap around or other 10469 // things must have happened. 10470 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10471 if (Range.contains(Val->getValue())) 10472 return SE.getCouldNotCompute(); // Something strange happened 10473 10474 // Ensure that the previous value is in the range. This is a sanity check. 10475 assert(Range.contains( 10476 EvaluateConstantChrecAtConstant(this, 10477 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10478 "Linear scev computation is off in a bad way!"); 10479 return SE.getConstant(ExitValue); 10480 } else if (isQuadratic()) { 10481 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 10482 // quadratic equation to solve it. To do this, we must frame our problem in 10483 // terms of figuring out when zero is crossed, instead of when 10484 // Range.getUpper() is crossed. 10485 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 10486 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 10487 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); 10488 10489 // Next, solve the constructed addrec 10490 if (auto Roots = 10491 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 10492 const SCEVConstant *R1 = Roots->first; 10493 const SCEVConstant *R2 = Roots->second; 10494 // Pick the smallest positive root value. 10495 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 10496 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 10497 if (!CB->getZExtValue()) 10498 std::swap(R1, R2); // R1 is the minimum root now. 10499 10500 // Make sure the root is not off by one. The returned iteration should 10501 // not be in the range, but the previous one should be. When solving 10502 // for "X*X < 5", for example, we should not return a root of 2. 10503 ConstantInt *R1Val = 10504 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 10505 if (Range.contains(R1Val->getValue())) { 10506 // The next iteration must be out of the range... 10507 ConstantInt *NextVal = 10508 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 10509 10510 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 10511 if (!Range.contains(R1Val->getValue())) 10512 return SE.getConstant(NextVal); 10513 return SE.getCouldNotCompute(); // Something strange happened 10514 } 10515 10516 // If R1 was not in the range, then it is a good return value. Make 10517 // sure that R1-1 WAS in the range though, just in case. 10518 ConstantInt *NextVal = 10519 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 10520 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 10521 if (Range.contains(R1Val->getValue())) 10522 return R1; 10523 return SE.getCouldNotCompute(); // Something strange happened 10524 } 10525 } 10526 } 10527 10528 return SE.getCouldNotCompute(); 10529 } 10530 10531 const SCEVAddRecExpr * 10532 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 10533 assert(getNumOperands() > 1 && "AddRec with zero step?"); 10534 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 10535 // but in this case we cannot guarantee that the value returned will be an 10536 // AddRec because SCEV does not have a fixed point where it stops 10537 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 10538 // may happen if we reach arithmetic depth limit while simplifying. So we 10539 // construct the returned value explicitly. 10540 SmallVector<const SCEV *, 3> Ops; 10541 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 10542 // (this + Step) is {A+B,+,B+C,+...,+,N}. 10543 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 10544 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 10545 // We know that the last operand is not a constant zero (otherwise it would 10546 // have been popped out earlier). This guarantees us that if the result has 10547 // the same last operand, then it will also not be popped out, meaning that 10548 // the returned value will be an AddRec. 10549 const SCEV *Last = getOperand(getNumOperands() - 1); 10550 assert(!Last->isZero() && "Recurrency with zero step?"); 10551 Ops.push_back(Last); 10552 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 10553 SCEV::FlagAnyWrap)); 10554 } 10555 10556 // Return true when S contains at least an undef value. 10557 static inline bool containsUndefs(const SCEV *S) { 10558 return SCEVExprContains(S, [](const SCEV *S) { 10559 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 10560 return isa<UndefValue>(SU->getValue()); 10561 else if (const auto *SC = dyn_cast<SCEVConstant>(S)) 10562 return isa<UndefValue>(SC->getValue()); 10563 return false; 10564 }); 10565 } 10566 10567 namespace { 10568 10569 // Collect all steps of SCEV expressions. 10570 struct SCEVCollectStrides { 10571 ScalarEvolution &SE; 10572 SmallVectorImpl<const SCEV *> &Strides; 10573 10574 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 10575 : SE(SE), Strides(S) {} 10576 10577 bool follow(const SCEV *S) { 10578 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 10579 Strides.push_back(AR->getStepRecurrence(SE)); 10580 return true; 10581 } 10582 10583 bool isDone() const { return false; } 10584 }; 10585 10586 // Collect all SCEVUnknown and SCEVMulExpr expressions. 10587 struct SCEVCollectTerms { 10588 SmallVectorImpl<const SCEV *> &Terms; 10589 10590 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 10591 10592 bool follow(const SCEV *S) { 10593 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 10594 isa<SCEVSignExtendExpr>(S)) { 10595 if (!containsUndefs(S)) 10596 Terms.push_back(S); 10597 10598 // Stop recursion: once we collected a term, do not walk its operands. 10599 return false; 10600 } 10601 10602 // Keep looking. 10603 return true; 10604 } 10605 10606 bool isDone() const { return false; } 10607 }; 10608 10609 // Check if a SCEV contains an AddRecExpr. 10610 struct SCEVHasAddRec { 10611 bool &ContainsAddRec; 10612 10613 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 10614 ContainsAddRec = false; 10615 } 10616 10617 bool follow(const SCEV *S) { 10618 if (isa<SCEVAddRecExpr>(S)) { 10619 ContainsAddRec = true; 10620 10621 // Stop recursion: once we collected a term, do not walk its operands. 10622 return false; 10623 } 10624 10625 // Keep looking. 10626 return true; 10627 } 10628 10629 bool isDone() const { return false; } 10630 }; 10631 10632 // Find factors that are multiplied with an expression that (possibly as a 10633 // subexpression) contains an AddRecExpr. In the expression: 10634 // 10635 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 10636 // 10637 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 10638 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 10639 // parameters as they form a product with an induction variable. 10640 // 10641 // This collector expects all array size parameters to be in the same MulExpr. 10642 // It might be necessary to later add support for collecting parameters that are 10643 // spread over different nested MulExpr. 10644 struct SCEVCollectAddRecMultiplies { 10645 SmallVectorImpl<const SCEV *> &Terms; 10646 ScalarEvolution &SE; 10647 10648 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 10649 : Terms(T), SE(SE) {} 10650 10651 bool follow(const SCEV *S) { 10652 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 10653 bool HasAddRec = false; 10654 SmallVector<const SCEV *, 0> Operands; 10655 for (auto Op : Mul->operands()) { 10656 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 10657 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 10658 Operands.push_back(Op); 10659 } else if (Unknown) { 10660 HasAddRec = true; 10661 } else { 10662 bool ContainsAddRec; 10663 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 10664 visitAll(Op, ContiansAddRec); 10665 HasAddRec |= ContainsAddRec; 10666 } 10667 } 10668 if (Operands.size() == 0) 10669 return true; 10670 10671 if (!HasAddRec) 10672 return false; 10673 10674 Terms.push_back(SE.getMulExpr(Operands)); 10675 // Stop recursion: once we collected a term, do not walk its operands. 10676 return false; 10677 } 10678 10679 // Keep looking. 10680 return true; 10681 } 10682 10683 bool isDone() const { return false; } 10684 }; 10685 10686 } // end anonymous namespace 10687 10688 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 10689 /// two places: 10690 /// 1) The strides of AddRec expressions. 10691 /// 2) Unknowns that are multiplied with AddRec expressions. 10692 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 10693 SmallVectorImpl<const SCEV *> &Terms) { 10694 SmallVector<const SCEV *, 4> Strides; 10695 SCEVCollectStrides StrideCollector(*this, Strides); 10696 visitAll(Expr, StrideCollector); 10697 10698 LLVM_DEBUG({ 10699 dbgs() << "Strides:\n"; 10700 for (const SCEV *S : Strides) 10701 dbgs() << *S << "\n"; 10702 }); 10703 10704 for (const SCEV *S : Strides) { 10705 SCEVCollectTerms TermCollector(Terms); 10706 visitAll(S, TermCollector); 10707 } 10708 10709 LLVM_DEBUG({ 10710 dbgs() << "Terms:\n"; 10711 for (const SCEV *T : Terms) 10712 dbgs() << *T << "\n"; 10713 }); 10714 10715 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 10716 visitAll(Expr, MulCollector); 10717 } 10718 10719 static bool findArrayDimensionsRec(ScalarEvolution &SE, 10720 SmallVectorImpl<const SCEV *> &Terms, 10721 SmallVectorImpl<const SCEV *> &Sizes) { 10722 int Last = Terms.size() - 1; 10723 const SCEV *Step = Terms[Last]; 10724 10725 // End of recursion. 10726 if (Last == 0) { 10727 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 10728 SmallVector<const SCEV *, 2> Qs; 10729 for (const SCEV *Op : M->operands()) 10730 if (!isa<SCEVConstant>(Op)) 10731 Qs.push_back(Op); 10732 10733 Step = SE.getMulExpr(Qs); 10734 } 10735 10736 Sizes.push_back(Step); 10737 return true; 10738 } 10739 10740 for (const SCEV *&Term : Terms) { 10741 // Normalize the terms before the next call to findArrayDimensionsRec. 10742 const SCEV *Q, *R; 10743 SCEVDivision::divide(SE, Term, Step, &Q, &R); 10744 10745 // Bail out when GCD does not evenly divide one of the terms. 10746 if (!R->isZero()) 10747 return false; 10748 10749 Term = Q; 10750 } 10751 10752 // Remove all SCEVConstants. 10753 Terms.erase( 10754 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 10755 Terms.end()); 10756 10757 if (Terms.size() > 0) 10758 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 10759 return false; 10760 10761 Sizes.push_back(Step); 10762 return true; 10763 } 10764 10765 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 10766 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 10767 for (const SCEV *T : Terms) 10768 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 10769 return true; 10770 return false; 10771 } 10772 10773 // Return the number of product terms in S. 10774 static inline int numberOfTerms(const SCEV *S) { 10775 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 10776 return Expr->getNumOperands(); 10777 return 1; 10778 } 10779 10780 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 10781 if (isa<SCEVConstant>(T)) 10782 return nullptr; 10783 10784 if (isa<SCEVUnknown>(T)) 10785 return T; 10786 10787 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 10788 SmallVector<const SCEV *, 2> Factors; 10789 for (const SCEV *Op : M->operands()) 10790 if (!isa<SCEVConstant>(Op)) 10791 Factors.push_back(Op); 10792 10793 return SE.getMulExpr(Factors); 10794 } 10795 10796 return T; 10797 } 10798 10799 /// Return the size of an element read or written by Inst. 10800 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 10801 Type *Ty; 10802 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 10803 Ty = Store->getValueOperand()->getType(); 10804 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 10805 Ty = Load->getType(); 10806 else 10807 return nullptr; 10808 10809 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 10810 return getSizeOfExpr(ETy, Ty); 10811 } 10812 10813 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 10814 SmallVectorImpl<const SCEV *> &Sizes, 10815 const SCEV *ElementSize) { 10816 if (Terms.size() < 1 || !ElementSize) 10817 return; 10818 10819 // Early return when Terms do not contain parameters: we do not delinearize 10820 // non parametric SCEVs. 10821 if (!containsParameters(Terms)) 10822 return; 10823 10824 LLVM_DEBUG({ 10825 dbgs() << "Terms:\n"; 10826 for (const SCEV *T : Terms) 10827 dbgs() << *T << "\n"; 10828 }); 10829 10830 // Remove duplicates. 10831 array_pod_sort(Terms.begin(), Terms.end()); 10832 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 10833 10834 // Put larger terms first. 10835 llvm::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 10836 return numberOfTerms(LHS) > numberOfTerms(RHS); 10837 }); 10838 10839 // Try to divide all terms by the element size. If term is not divisible by 10840 // element size, proceed with the original term. 10841 for (const SCEV *&Term : Terms) { 10842 const SCEV *Q, *R; 10843 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 10844 if (!Q->isZero()) 10845 Term = Q; 10846 } 10847 10848 SmallVector<const SCEV *, 4> NewTerms; 10849 10850 // Remove constant factors. 10851 for (const SCEV *T : Terms) 10852 if (const SCEV *NewT = removeConstantFactors(*this, T)) 10853 NewTerms.push_back(NewT); 10854 10855 LLVM_DEBUG({ 10856 dbgs() << "Terms after sorting:\n"; 10857 for (const SCEV *T : NewTerms) 10858 dbgs() << *T << "\n"; 10859 }); 10860 10861 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 10862 Sizes.clear(); 10863 return; 10864 } 10865 10866 // The last element to be pushed into Sizes is the size of an element. 10867 Sizes.push_back(ElementSize); 10868 10869 LLVM_DEBUG({ 10870 dbgs() << "Sizes:\n"; 10871 for (const SCEV *S : Sizes) 10872 dbgs() << *S << "\n"; 10873 }); 10874 } 10875 10876 void ScalarEvolution::computeAccessFunctions( 10877 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 10878 SmallVectorImpl<const SCEV *> &Sizes) { 10879 // Early exit in case this SCEV is not an affine multivariate function. 10880 if (Sizes.empty()) 10881 return; 10882 10883 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 10884 if (!AR->isAffine()) 10885 return; 10886 10887 const SCEV *Res = Expr; 10888 int Last = Sizes.size() - 1; 10889 for (int i = Last; i >= 0; i--) { 10890 const SCEV *Q, *R; 10891 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 10892 10893 LLVM_DEBUG({ 10894 dbgs() << "Res: " << *Res << "\n"; 10895 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 10896 dbgs() << "Res divided by Sizes[i]:\n"; 10897 dbgs() << "Quotient: " << *Q << "\n"; 10898 dbgs() << "Remainder: " << *R << "\n"; 10899 }); 10900 10901 Res = Q; 10902 10903 // Do not record the last subscript corresponding to the size of elements in 10904 // the array. 10905 if (i == Last) { 10906 10907 // Bail out if the remainder is too complex. 10908 if (isa<SCEVAddRecExpr>(R)) { 10909 Subscripts.clear(); 10910 Sizes.clear(); 10911 return; 10912 } 10913 10914 continue; 10915 } 10916 10917 // Record the access function for the current subscript. 10918 Subscripts.push_back(R); 10919 } 10920 10921 // Also push in last position the remainder of the last division: it will be 10922 // the access function of the innermost dimension. 10923 Subscripts.push_back(Res); 10924 10925 std::reverse(Subscripts.begin(), Subscripts.end()); 10926 10927 LLVM_DEBUG({ 10928 dbgs() << "Subscripts:\n"; 10929 for (const SCEV *S : Subscripts) 10930 dbgs() << *S << "\n"; 10931 }); 10932 } 10933 10934 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 10935 /// sizes of an array access. Returns the remainder of the delinearization that 10936 /// is the offset start of the array. The SCEV->delinearize algorithm computes 10937 /// the multiples of SCEV coefficients: that is a pattern matching of sub 10938 /// expressions in the stride and base of a SCEV corresponding to the 10939 /// computation of a GCD (greatest common divisor) of base and stride. When 10940 /// SCEV->delinearize fails, it returns the SCEV unchanged. 10941 /// 10942 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 10943 /// 10944 /// void foo(long n, long m, long o, double A[n][m][o]) { 10945 /// 10946 /// for (long i = 0; i < n; i++) 10947 /// for (long j = 0; j < m; j++) 10948 /// for (long k = 0; k < o; k++) 10949 /// A[i][j][k] = 1.0; 10950 /// } 10951 /// 10952 /// the delinearization input is the following AddRec SCEV: 10953 /// 10954 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 10955 /// 10956 /// From this SCEV, we are able to say that the base offset of the access is %A 10957 /// because it appears as an offset that does not divide any of the strides in 10958 /// the loops: 10959 /// 10960 /// CHECK: Base offset: %A 10961 /// 10962 /// and then SCEV->delinearize determines the size of some of the dimensions of 10963 /// the array as these are the multiples by which the strides are happening: 10964 /// 10965 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 10966 /// 10967 /// Note that the outermost dimension remains of UnknownSize because there are 10968 /// no strides that would help identifying the size of the last dimension: when 10969 /// the array has been statically allocated, one could compute the size of that 10970 /// dimension by dividing the overall size of the array by the size of the known 10971 /// dimensions: %m * %o * 8. 10972 /// 10973 /// Finally delinearize provides the access functions for the array reference 10974 /// that does correspond to A[i][j][k] of the above C testcase: 10975 /// 10976 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 10977 /// 10978 /// The testcases are checking the output of a function pass: 10979 /// DelinearizationPass that walks through all loads and stores of a function 10980 /// asking for the SCEV of the memory access with respect to all enclosing 10981 /// loops, calling SCEV->delinearize on that and printing the results. 10982 void ScalarEvolution::delinearize(const SCEV *Expr, 10983 SmallVectorImpl<const SCEV *> &Subscripts, 10984 SmallVectorImpl<const SCEV *> &Sizes, 10985 const SCEV *ElementSize) { 10986 // First step: collect parametric terms. 10987 SmallVector<const SCEV *, 4> Terms; 10988 collectParametricTerms(Expr, Terms); 10989 10990 if (Terms.empty()) 10991 return; 10992 10993 // Second step: find subscript sizes. 10994 findArrayDimensions(Terms, Sizes, ElementSize); 10995 10996 if (Sizes.empty()) 10997 return; 10998 10999 // Third step: compute the access functions for each subscript. 11000 computeAccessFunctions(Expr, Subscripts, Sizes); 11001 11002 if (Subscripts.empty()) 11003 return; 11004 11005 LLVM_DEBUG({ 11006 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11007 dbgs() << "ArrayDecl[UnknownSize]"; 11008 for (const SCEV *S : Sizes) 11009 dbgs() << "[" << *S << "]"; 11010 11011 dbgs() << "\nArrayRef"; 11012 for (const SCEV *S : Subscripts) 11013 dbgs() << "[" << *S << "]"; 11014 dbgs() << "\n"; 11015 }); 11016 } 11017 11018 //===----------------------------------------------------------------------===// 11019 // SCEVCallbackVH Class Implementation 11020 //===----------------------------------------------------------------------===// 11021 11022 void ScalarEvolution::SCEVCallbackVH::deleted() { 11023 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11024 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11025 SE->ConstantEvolutionLoopExitValue.erase(PN); 11026 SE->eraseValueFromMap(getValPtr()); 11027 // this now dangles! 11028 } 11029 11030 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11031 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11032 11033 // Forget all the expressions associated with users of the old value, 11034 // so that future queries will recompute the expressions using the new 11035 // value. 11036 Value *Old = getValPtr(); 11037 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11038 SmallPtrSet<User *, 8> Visited; 11039 while (!Worklist.empty()) { 11040 User *U = Worklist.pop_back_val(); 11041 // Deleting the Old value will cause this to dangle. Postpone 11042 // that until everything else is done. 11043 if (U == Old) 11044 continue; 11045 if (!Visited.insert(U).second) 11046 continue; 11047 if (PHINode *PN = dyn_cast<PHINode>(U)) 11048 SE->ConstantEvolutionLoopExitValue.erase(PN); 11049 SE->eraseValueFromMap(U); 11050 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11051 } 11052 // Delete the Old value. 11053 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11054 SE->ConstantEvolutionLoopExitValue.erase(PN); 11055 SE->eraseValueFromMap(Old); 11056 // this now dangles! 11057 } 11058 11059 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11060 : CallbackVH(V), SE(se) {} 11061 11062 //===----------------------------------------------------------------------===// 11063 // ScalarEvolution Class Implementation 11064 //===----------------------------------------------------------------------===// 11065 11066 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11067 AssumptionCache &AC, DominatorTree &DT, 11068 LoopInfo &LI) 11069 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11070 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11071 LoopDispositions(64), BlockDispositions(64) { 11072 // To use guards for proving predicates, we need to scan every instruction in 11073 // relevant basic blocks, and not just terminators. Doing this is a waste of 11074 // time if the IR does not actually contain any calls to 11075 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11076 // 11077 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11078 // to _add_ guards to the module when there weren't any before, and wants 11079 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11080 // efficient in lieu of being smart in that rather obscure case. 11081 11082 auto *GuardDecl = F.getParent()->getFunction( 11083 Intrinsic::getName(Intrinsic::experimental_guard)); 11084 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11085 } 11086 11087 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11088 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11089 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11090 ValueExprMap(std::move(Arg.ValueExprMap)), 11091 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11092 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11093 PendingMerges(std::move(Arg.PendingMerges)), 11094 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11095 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11096 PredicatedBackedgeTakenCounts( 11097 std::move(Arg.PredicatedBackedgeTakenCounts)), 11098 ConstantEvolutionLoopExitValue( 11099 std::move(Arg.ConstantEvolutionLoopExitValue)), 11100 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11101 LoopDispositions(std::move(Arg.LoopDispositions)), 11102 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11103 BlockDispositions(std::move(Arg.BlockDispositions)), 11104 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11105 SignedRanges(std::move(Arg.SignedRanges)), 11106 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11107 UniquePreds(std::move(Arg.UniquePreds)), 11108 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11109 LoopUsers(std::move(Arg.LoopUsers)), 11110 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11111 FirstUnknown(Arg.FirstUnknown) { 11112 Arg.FirstUnknown = nullptr; 11113 } 11114 11115 ScalarEvolution::~ScalarEvolution() { 11116 // Iterate through all the SCEVUnknown instances and call their 11117 // destructors, so that they release their references to their values. 11118 for (SCEVUnknown *U = FirstUnknown; U;) { 11119 SCEVUnknown *Tmp = U; 11120 U = U->Next; 11121 Tmp->~SCEVUnknown(); 11122 } 11123 FirstUnknown = nullptr; 11124 11125 ExprValueMap.clear(); 11126 ValueExprMap.clear(); 11127 HasRecMap.clear(); 11128 11129 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11130 // that a loop had multiple computable exits. 11131 for (auto &BTCI : BackedgeTakenCounts) 11132 BTCI.second.clear(); 11133 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11134 BTCI.second.clear(); 11135 11136 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11137 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11138 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11139 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11140 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11141 } 11142 11143 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11144 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11145 } 11146 11147 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11148 const Loop *L) { 11149 // Print all inner loops first 11150 for (Loop *I : *L) 11151 PrintLoopInfo(OS, SE, I); 11152 11153 OS << "Loop "; 11154 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11155 OS << ": "; 11156 11157 SmallVector<BasicBlock *, 8> ExitBlocks; 11158 L->getExitBlocks(ExitBlocks); 11159 if (ExitBlocks.size() != 1) 11160 OS << "<multiple exits> "; 11161 11162 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11163 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 11164 } else { 11165 OS << "Unpredictable backedge-taken count. "; 11166 } 11167 11168 OS << "\n" 11169 "Loop "; 11170 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11171 OS << ": "; 11172 11173 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 11174 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 11175 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11176 OS << ", actual taken count either this or zero."; 11177 } else { 11178 OS << "Unpredictable max backedge-taken count. "; 11179 } 11180 11181 OS << "\n" 11182 "Loop "; 11183 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11184 OS << ": "; 11185 11186 SCEVUnionPredicate Pred; 11187 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11188 if (!isa<SCEVCouldNotCompute>(PBT)) { 11189 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11190 OS << " Predicates:\n"; 11191 Pred.print(OS, 4); 11192 } else { 11193 OS << "Unpredictable predicated backedge-taken count. "; 11194 } 11195 OS << "\n"; 11196 11197 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11198 OS << "Loop "; 11199 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11200 OS << ": "; 11201 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11202 } 11203 } 11204 11205 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 11206 switch (LD) { 11207 case ScalarEvolution::LoopVariant: 11208 return "Variant"; 11209 case ScalarEvolution::LoopInvariant: 11210 return "Invariant"; 11211 case ScalarEvolution::LoopComputable: 11212 return "Computable"; 11213 } 11214 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 11215 } 11216 11217 void ScalarEvolution::print(raw_ostream &OS) const { 11218 // ScalarEvolution's implementation of the print method is to print 11219 // out SCEV values of all instructions that are interesting. Doing 11220 // this potentially causes it to create new SCEV objects though, 11221 // which technically conflicts with the const qualifier. This isn't 11222 // observable from outside the class though, so casting away the 11223 // const isn't dangerous. 11224 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11225 11226 OS << "Classifying expressions for: "; 11227 F.printAsOperand(OS, /*PrintType=*/false); 11228 OS << "\n"; 11229 for (Instruction &I : instructions(F)) 11230 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 11231 OS << I << '\n'; 11232 OS << " --> "; 11233 const SCEV *SV = SE.getSCEV(&I); 11234 SV->print(OS); 11235 if (!isa<SCEVCouldNotCompute>(SV)) { 11236 OS << " U: "; 11237 SE.getUnsignedRange(SV).print(OS); 11238 OS << " S: "; 11239 SE.getSignedRange(SV).print(OS); 11240 } 11241 11242 const Loop *L = LI.getLoopFor(I.getParent()); 11243 11244 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 11245 if (AtUse != SV) { 11246 OS << " --> "; 11247 AtUse->print(OS); 11248 if (!isa<SCEVCouldNotCompute>(AtUse)) { 11249 OS << " U: "; 11250 SE.getUnsignedRange(AtUse).print(OS); 11251 OS << " S: "; 11252 SE.getSignedRange(AtUse).print(OS); 11253 } 11254 } 11255 11256 if (L) { 11257 OS << "\t\t" "Exits: "; 11258 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 11259 if (!SE.isLoopInvariant(ExitValue, L)) { 11260 OS << "<<Unknown>>"; 11261 } else { 11262 OS << *ExitValue; 11263 } 11264 11265 bool First = true; 11266 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 11267 if (First) { 11268 OS << "\t\t" "LoopDispositions: { "; 11269 First = false; 11270 } else { 11271 OS << ", "; 11272 } 11273 11274 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11275 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 11276 } 11277 11278 for (auto *InnerL : depth_first(L)) { 11279 if (InnerL == L) 11280 continue; 11281 if (First) { 11282 OS << "\t\t" "LoopDispositions: { "; 11283 First = false; 11284 } else { 11285 OS << ", "; 11286 } 11287 11288 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11289 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 11290 } 11291 11292 OS << " }"; 11293 } 11294 11295 OS << "\n"; 11296 } 11297 11298 OS << "Determining loop execution counts for: "; 11299 F.printAsOperand(OS, /*PrintType=*/false); 11300 OS << "\n"; 11301 for (Loop *I : LI) 11302 PrintLoopInfo(OS, &SE, I); 11303 } 11304 11305 ScalarEvolution::LoopDisposition 11306 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 11307 auto &Values = LoopDispositions[S]; 11308 for (auto &V : Values) { 11309 if (V.getPointer() == L) 11310 return V.getInt(); 11311 } 11312 Values.emplace_back(L, LoopVariant); 11313 LoopDisposition D = computeLoopDisposition(S, L); 11314 auto &Values2 = LoopDispositions[S]; 11315 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11316 if (V.getPointer() == L) { 11317 V.setInt(D); 11318 break; 11319 } 11320 } 11321 return D; 11322 } 11323 11324 ScalarEvolution::LoopDisposition 11325 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 11326 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11327 case scConstant: 11328 return LoopInvariant; 11329 case scTruncate: 11330 case scZeroExtend: 11331 case scSignExtend: 11332 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 11333 case scAddRecExpr: { 11334 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11335 11336 // If L is the addrec's loop, it's computable. 11337 if (AR->getLoop() == L) 11338 return LoopComputable; 11339 11340 // Add recurrences are never invariant in the function-body (null loop). 11341 if (!L) 11342 return LoopVariant; 11343 11344 // Everything that is not defined at loop entry is variant. 11345 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 11346 return LoopVariant; 11347 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 11348 " dominate the contained loop's header?"); 11349 11350 // This recurrence is invariant w.r.t. L if AR's loop contains L. 11351 if (AR->getLoop()->contains(L)) 11352 return LoopInvariant; 11353 11354 // This recurrence is variant w.r.t. L if any of its operands 11355 // are variant. 11356 for (auto *Op : AR->operands()) 11357 if (!isLoopInvariant(Op, L)) 11358 return LoopVariant; 11359 11360 // Otherwise it's loop-invariant. 11361 return LoopInvariant; 11362 } 11363 case scAddExpr: 11364 case scMulExpr: 11365 case scUMaxExpr: 11366 case scSMaxExpr: { 11367 bool HasVarying = false; 11368 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 11369 LoopDisposition D = getLoopDisposition(Op, L); 11370 if (D == LoopVariant) 11371 return LoopVariant; 11372 if (D == LoopComputable) 11373 HasVarying = true; 11374 } 11375 return HasVarying ? LoopComputable : LoopInvariant; 11376 } 11377 case scUDivExpr: { 11378 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11379 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 11380 if (LD == LoopVariant) 11381 return LoopVariant; 11382 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 11383 if (RD == LoopVariant) 11384 return LoopVariant; 11385 return (LD == LoopInvariant && RD == LoopInvariant) ? 11386 LoopInvariant : LoopComputable; 11387 } 11388 case scUnknown: 11389 // All non-instruction values are loop invariant. All instructions are loop 11390 // invariant if they are not contained in the specified loop. 11391 // Instructions are never considered invariant in the function body 11392 // (null loop) because they are defined within the "loop". 11393 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 11394 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 11395 return LoopInvariant; 11396 case scCouldNotCompute: 11397 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11398 } 11399 llvm_unreachable("Unknown SCEV kind!"); 11400 } 11401 11402 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 11403 return getLoopDisposition(S, L) == LoopInvariant; 11404 } 11405 11406 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 11407 return getLoopDisposition(S, L) == LoopComputable; 11408 } 11409 11410 ScalarEvolution::BlockDisposition 11411 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11412 auto &Values = BlockDispositions[S]; 11413 for (auto &V : Values) { 11414 if (V.getPointer() == BB) 11415 return V.getInt(); 11416 } 11417 Values.emplace_back(BB, DoesNotDominateBlock); 11418 BlockDisposition D = computeBlockDisposition(S, BB); 11419 auto &Values2 = BlockDispositions[S]; 11420 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11421 if (V.getPointer() == BB) { 11422 V.setInt(D); 11423 break; 11424 } 11425 } 11426 return D; 11427 } 11428 11429 ScalarEvolution::BlockDisposition 11430 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11431 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11432 case scConstant: 11433 return ProperlyDominatesBlock; 11434 case scTruncate: 11435 case scZeroExtend: 11436 case scSignExtend: 11437 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11438 case scAddRecExpr: { 11439 // This uses a "dominates" query instead of "properly dominates" query 11440 // to test for proper dominance too, because the instruction which 11441 // produces the addrec's value is a PHI, and a PHI effectively properly 11442 // dominates its entire containing block. 11443 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11444 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11445 return DoesNotDominateBlock; 11446 11447 // Fall through into SCEVNAryExpr handling. 11448 LLVM_FALLTHROUGH; 11449 } 11450 case scAddExpr: 11451 case scMulExpr: 11452 case scUMaxExpr: 11453 case scSMaxExpr: { 11454 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11455 bool Proper = true; 11456 for (const SCEV *NAryOp : NAry->operands()) { 11457 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11458 if (D == DoesNotDominateBlock) 11459 return DoesNotDominateBlock; 11460 if (D == DominatesBlock) 11461 Proper = false; 11462 } 11463 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11464 } 11465 case scUDivExpr: { 11466 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11467 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11468 BlockDisposition LD = getBlockDisposition(LHS, BB); 11469 if (LD == DoesNotDominateBlock) 11470 return DoesNotDominateBlock; 11471 BlockDisposition RD = getBlockDisposition(RHS, BB); 11472 if (RD == DoesNotDominateBlock) 11473 return DoesNotDominateBlock; 11474 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 11475 ProperlyDominatesBlock : DominatesBlock; 11476 } 11477 case scUnknown: 11478 if (Instruction *I = 11479 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 11480 if (I->getParent() == BB) 11481 return DominatesBlock; 11482 if (DT.properlyDominates(I->getParent(), BB)) 11483 return ProperlyDominatesBlock; 11484 return DoesNotDominateBlock; 11485 } 11486 return ProperlyDominatesBlock; 11487 case scCouldNotCompute: 11488 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11489 } 11490 llvm_unreachable("Unknown SCEV kind!"); 11491 } 11492 11493 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 11494 return getBlockDisposition(S, BB) >= DominatesBlock; 11495 } 11496 11497 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 11498 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 11499 } 11500 11501 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 11502 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 11503 } 11504 11505 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 11506 auto IsS = [&](const SCEV *X) { return S == X; }; 11507 auto ContainsS = [&](const SCEV *X) { 11508 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 11509 }; 11510 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 11511 } 11512 11513 void 11514 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 11515 ValuesAtScopes.erase(S); 11516 LoopDispositions.erase(S); 11517 BlockDispositions.erase(S); 11518 UnsignedRanges.erase(S); 11519 SignedRanges.erase(S); 11520 ExprValueMap.erase(S); 11521 HasRecMap.erase(S); 11522 MinTrailingZerosCache.erase(S); 11523 11524 for (auto I = PredicatedSCEVRewrites.begin(); 11525 I != PredicatedSCEVRewrites.end();) { 11526 std::pair<const SCEV *, const Loop *> Entry = I->first; 11527 if (Entry.first == S) 11528 PredicatedSCEVRewrites.erase(I++); 11529 else 11530 ++I; 11531 } 11532 11533 auto RemoveSCEVFromBackedgeMap = 11534 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 11535 for (auto I = Map.begin(), E = Map.end(); I != E;) { 11536 BackedgeTakenInfo &BEInfo = I->second; 11537 if (BEInfo.hasOperand(S, this)) { 11538 BEInfo.clear(); 11539 Map.erase(I++); 11540 } else 11541 ++I; 11542 } 11543 }; 11544 11545 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 11546 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 11547 } 11548 11549 void 11550 ScalarEvolution::getUsedLoops(const SCEV *S, 11551 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 11552 struct FindUsedLoops { 11553 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 11554 : LoopsUsed(LoopsUsed) {} 11555 SmallPtrSetImpl<const Loop *> &LoopsUsed; 11556 bool follow(const SCEV *S) { 11557 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 11558 LoopsUsed.insert(AR->getLoop()); 11559 return true; 11560 } 11561 11562 bool isDone() const { return false; } 11563 }; 11564 11565 FindUsedLoops F(LoopsUsed); 11566 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 11567 } 11568 11569 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 11570 SmallPtrSet<const Loop *, 8> LoopsUsed; 11571 getUsedLoops(S, LoopsUsed); 11572 for (auto *L : LoopsUsed) 11573 LoopUsers[L].push_back(S); 11574 } 11575 11576 void ScalarEvolution::verify() const { 11577 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11578 ScalarEvolution SE2(F, TLI, AC, DT, LI); 11579 11580 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 11581 11582 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 11583 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 11584 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 11585 11586 const SCEV *visitConstant(const SCEVConstant *Constant) { 11587 return SE.getConstant(Constant->getAPInt()); 11588 } 11589 11590 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11591 return SE.getUnknown(Expr->getValue()); 11592 } 11593 11594 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 11595 return SE.getCouldNotCompute(); 11596 } 11597 }; 11598 11599 SCEVMapper SCM(SE2); 11600 11601 while (!LoopStack.empty()) { 11602 auto *L = LoopStack.pop_back_val(); 11603 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 11604 11605 auto *CurBECount = SCM.visit( 11606 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 11607 auto *NewBECount = SE2.getBackedgeTakenCount(L); 11608 11609 if (CurBECount == SE2.getCouldNotCompute() || 11610 NewBECount == SE2.getCouldNotCompute()) { 11611 // NB! This situation is legal, but is very suspicious -- whatever pass 11612 // change the loop to make a trip count go from could not compute to 11613 // computable or vice-versa *should have* invalidated SCEV. However, we 11614 // choose not to assert here (for now) since we don't want false 11615 // positives. 11616 continue; 11617 } 11618 11619 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 11620 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 11621 // not propagate undef aggressively). This means we can (and do) fail 11622 // verification in cases where a transform makes the trip count of a loop 11623 // go from "undef" to "undef+1" (say). The transform is fine, since in 11624 // both cases the loop iterates "undef" times, but SCEV thinks we 11625 // increased the trip count of the loop by 1 incorrectly. 11626 continue; 11627 } 11628 11629 if (SE.getTypeSizeInBits(CurBECount->getType()) > 11630 SE.getTypeSizeInBits(NewBECount->getType())) 11631 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 11632 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 11633 SE.getTypeSizeInBits(NewBECount->getType())) 11634 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 11635 11636 auto *ConstantDelta = 11637 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount)); 11638 11639 if (ConstantDelta && ConstantDelta->getAPInt() != 0) { 11640 dbgs() << "Trip Count Changed!\n"; 11641 dbgs() << "Old: " << *CurBECount << "\n"; 11642 dbgs() << "New: " << *NewBECount << "\n"; 11643 dbgs() << "Delta: " << *ConstantDelta << "\n"; 11644 std::abort(); 11645 } 11646 } 11647 } 11648 11649 bool ScalarEvolution::invalidate( 11650 Function &F, const PreservedAnalyses &PA, 11651 FunctionAnalysisManager::Invalidator &Inv) { 11652 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 11653 // of its dependencies is invalidated. 11654 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 11655 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 11656 Inv.invalidate<AssumptionAnalysis>(F, PA) || 11657 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 11658 Inv.invalidate<LoopAnalysis>(F, PA); 11659 } 11660 11661 AnalysisKey ScalarEvolutionAnalysis::Key; 11662 11663 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 11664 FunctionAnalysisManager &AM) { 11665 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 11666 AM.getResult<AssumptionAnalysis>(F), 11667 AM.getResult<DominatorTreeAnalysis>(F), 11668 AM.getResult<LoopAnalysis>(F)); 11669 } 11670 11671 PreservedAnalyses 11672 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 11673 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 11674 return PreservedAnalyses::all(); 11675 } 11676 11677 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 11678 "Scalar Evolution Analysis", false, true) 11679 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11680 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 11681 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 11682 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 11683 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 11684 "Scalar Evolution Analysis", false, true) 11685 11686 char ScalarEvolutionWrapperPass::ID = 0; 11687 11688 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 11689 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 11690 } 11691 11692 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 11693 SE.reset(new ScalarEvolution( 11694 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 11695 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 11696 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 11697 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 11698 return false; 11699 } 11700 11701 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 11702 11703 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 11704 SE->print(OS); 11705 } 11706 11707 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 11708 if (!VerifySCEV) 11709 return; 11710 11711 SE->verify(); 11712 } 11713 11714 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 11715 AU.setPreservesAll(); 11716 AU.addRequiredTransitive<AssumptionCacheTracker>(); 11717 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 11718 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 11719 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 11720 } 11721 11722 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 11723 const SCEV *RHS) { 11724 FoldingSetNodeID ID; 11725 assert(LHS->getType() == RHS->getType() && 11726 "Type mismatch between LHS and RHS"); 11727 // Unique this node based on the arguments 11728 ID.AddInteger(SCEVPredicate::P_Equal); 11729 ID.AddPointer(LHS); 11730 ID.AddPointer(RHS); 11731 void *IP = nullptr; 11732 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11733 return S; 11734 SCEVEqualPredicate *Eq = new (SCEVAllocator) 11735 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 11736 UniquePreds.InsertNode(Eq, IP); 11737 return Eq; 11738 } 11739 11740 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 11741 const SCEVAddRecExpr *AR, 11742 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 11743 FoldingSetNodeID ID; 11744 // Unique this node based on the arguments 11745 ID.AddInteger(SCEVPredicate::P_Wrap); 11746 ID.AddPointer(AR); 11747 ID.AddInteger(AddedFlags); 11748 void *IP = nullptr; 11749 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11750 return S; 11751 auto *OF = new (SCEVAllocator) 11752 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 11753 UniquePreds.InsertNode(OF, IP); 11754 return OF; 11755 } 11756 11757 namespace { 11758 11759 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 11760 public: 11761 11762 /// Rewrites \p S in the context of a loop L and the SCEV predication 11763 /// infrastructure. 11764 /// 11765 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 11766 /// equivalences present in \p Pred. 11767 /// 11768 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 11769 /// \p NewPreds such that the result will be an AddRecExpr. 11770 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 11771 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 11772 SCEVUnionPredicate *Pred) { 11773 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 11774 return Rewriter.visit(S); 11775 } 11776 11777 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11778 if (Pred) { 11779 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 11780 for (auto *Pred : ExprPreds) 11781 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 11782 if (IPred->getLHS() == Expr) 11783 return IPred->getRHS(); 11784 } 11785 return convertToAddRecWithPreds(Expr); 11786 } 11787 11788 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 11789 const SCEV *Operand = visit(Expr->getOperand()); 11790 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 11791 if (AR && AR->getLoop() == L && AR->isAffine()) { 11792 // This couldn't be folded because the operand didn't have the nuw 11793 // flag. Add the nusw flag as an assumption that we could make. 11794 const SCEV *Step = AR->getStepRecurrence(SE); 11795 Type *Ty = Expr->getType(); 11796 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 11797 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 11798 SE.getSignExtendExpr(Step, Ty), L, 11799 AR->getNoWrapFlags()); 11800 } 11801 return SE.getZeroExtendExpr(Operand, Expr->getType()); 11802 } 11803 11804 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 11805 const SCEV *Operand = visit(Expr->getOperand()); 11806 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 11807 if (AR && AR->getLoop() == L && AR->isAffine()) { 11808 // This couldn't be folded because the operand didn't have the nsw 11809 // flag. Add the nssw flag as an assumption that we could make. 11810 const SCEV *Step = AR->getStepRecurrence(SE); 11811 Type *Ty = Expr->getType(); 11812 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 11813 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 11814 SE.getSignExtendExpr(Step, Ty), L, 11815 AR->getNoWrapFlags()); 11816 } 11817 return SE.getSignExtendExpr(Operand, Expr->getType()); 11818 } 11819 11820 private: 11821 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 11822 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 11823 SCEVUnionPredicate *Pred) 11824 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 11825 11826 bool addOverflowAssumption(const SCEVPredicate *P) { 11827 if (!NewPreds) { 11828 // Check if we've already made this assumption. 11829 return Pred && Pred->implies(P); 11830 } 11831 NewPreds->insert(P); 11832 return true; 11833 } 11834 11835 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 11836 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 11837 auto *A = SE.getWrapPredicate(AR, AddedFlags); 11838 return addOverflowAssumption(A); 11839 } 11840 11841 // If \p Expr represents a PHINode, we try to see if it can be represented 11842 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 11843 // to add this predicate as a runtime overflow check, we return the AddRec. 11844 // If \p Expr does not meet these conditions (is not a PHI node, or we 11845 // couldn't create an AddRec for it, or couldn't add the predicate), we just 11846 // return \p Expr. 11847 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 11848 if (!isa<PHINode>(Expr->getValue())) 11849 return Expr; 11850 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 11851 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 11852 if (!PredicatedRewrite) 11853 return Expr; 11854 for (auto *P : PredicatedRewrite->second){ 11855 // Wrap predicates from outer loops are not supported. 11856 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 11857 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 11858 if (L != AR->getLoop()) 11859 return Expr; 11860 } 11861 if (!addOverflowAssumption(P)) 11862 return Expr; 11863 } 11864 return PredicatedRewrite->first; 11865 } 11866 11867 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 11868 SCEVUnionPredicate *Pred; 11869 const Loop *L; 11870 }; 11871 11872 } // end anonymous namespace 11873 11874 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 11875 SCEVUnionPredicate &Preds) { 11876 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 11877 } 11878 11879 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 11880 const SCEV *S, const Loop *L, 11881 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 11882 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 11883 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 11884 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 11885 11886 if (!AddRec) 11887 return nullptr; 11888 11889 // Since the transformation was successful, we can now transfer the SCEV 11890 // predicates. 11891 for (auto *P : TransformPreds) 11892 Preds.insert(P); 11893 11894 return AddRec; 11895 } 11896 11897 /// SCEV predicates 11898 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 11899 SCEVPredicateKind Kind) 11900 : FastID(ID), Kind(Kind) {} 11901 11902 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 11903 const SCEV *LHS, const SCEV *RHS) 11904 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 11905 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 11906 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 11907 } 11908 11909 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 11910 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 11911 11912 if (!Op) 11913 return false; 11914 11915 return Op->LHS == LHS && Op->RHS == RHS; 11916 } 11917 11918 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 11919 11920 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 11921 11922 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 11923 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 11924 } 11925 11926 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 11927 const SCEVAddRecExpr *AR, 11928 IncrementWrapFlags Flags) 11929 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 11930 11931 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 11932 11933 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 11934 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 11935 11936 return Op && Op->AR == AR && (Flags | Op->Flags) == Flags; 11937 } 11938 11939 bool SCEVWrapPredicate::isAlwaysTrue() const { 11940 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 11941 IncrementWrapFlags IFlags = Flags; 11942 11943 if ((ScevFlags | SCEV::FlagNSW) == ScevFlags) 11944 IFlags &= ~IncrementNSSW; 11945 11946 return IFlags == IncrementAnyWrap; 11947 } 11948 11949 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 11950 OS.indent(Depth) << *getExpr() << " Added Flags: "; 11951 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 11952 OS << "<nusw>"; 11953 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 11954 OS << "<nssw>"; 11955 OS << "\n"; 11956 } 11957 11958 SCEVWrapPredicate::IncrementWrapFlags 11959 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 11960 ScalarEvolution &SE) { 11961 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 11962 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 11963 11964 // We can safely transfer the NSW flag as NSSW. 11965 if ((StaticFlags | SCEV::FlagNSW) == StaticFlags) 11966 ImpliedFlags = IncrementNSSW; 11967 11968 if ((StaticFlags | SCEV::FlagNUW) == StaticFlags) { 11969 // If the increment is positive, the SCEV NUW flag will also imply the 11970 // WrapPredicate NUSW flag. 11971 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 11972 if (Step->getValue()->getValue().isNonNegative()) 11973 ImpliedFlags |= IncrementNUSW; 11974 } 11975 11976 return ImpliedFlags; 11977 } 11978 11979 /// Union predicates don't get cached so create a dummy set ID for it. 11980 SCEVUnionPredicate::SCEVUnionPredicate() 11981 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 11982 11983 bool SCEVUnionPredicate::isAlwaysTrue() const { 11984 return all_of(Preds, 11985 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 11986 } 11987 11988 ArrayRef<const SCEVPredicate *> 11989 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 11990 auto I = SCEVToPreds.find(Expr); 11991 if (I == SCEVToPreds.end()) 11992 return ArrayRef<const SCEVPredicate *>(); 11993 return I->second; 11994 } 11995 11996 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 11997 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 11998 return all_of(Set->Preds, 11999 [this](const SCEVPredicate *I) { return this->implies(I); }); 12000 12001 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12002 if (ScevPredsIt == SCEVToPreds.end()) 12003 return false; 12004 auto &SCEVPreds = ScevPredsIt->second; 12005 12006 return any_of(SCEVPreds, 12007 [N](const SCEVPredicate *I) { return I->implies(N); }); 12008 } 12009 12010 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12011 12012 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12013 for (auto Pred : Preds) 12014 Pred->print(OS, Depth); 12015 } 12016 12017 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12018 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12019 for (auto Pred : Set->Preds) 12020 add(Pred); 12021 return; 12022 } 12023 12024 if (implies(N)) 12025 return; 12026 12027 const SCEV *Key = N->getExpr(); 12028 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12029 " associated expression!"); 12030 12031 SCEVToPreds[Key].push_back(N); 12032 Preds.push_back(N); 12033 } 12034 12035 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12036 Loop &L) 12037 : SE(SE), L(L) {} 12038 12039 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12040 const SCEV *Expr = SE.getSCEV(V); 12041 RewriteEntry &Entry = RewriteMap[Expr]; 12042 12043 // If we already have an entry and the version matches, return it. 12044 if (Entry.second && Generation == Entry.first) 12045 return Entry.second; 12046 12047 // We found an entry but it's stale. Rewrite the stale entry 12048 // according to the current predicate. 12049 if (Entry.second) 12050 Expr = Entry.second; 12051 12052 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12053 Entry = {Generation, NewSCEV}; 12054 12055 return NewSCEV; 12056 } 12057 12058 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12059 if (!BackedgeCount) { 12060 SCEVUnionPredicate BackedgePred; 12061 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12062 addPredicate(BackedgePred); 12063 } 12064 return BackedgeCount; 12065 } 12066 12067 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12068 if (Preds.implies(&Pred)) 12069 return; 12070 Preds.add(&Pred); 12071 updateGeneration(); 12072 } 12073 12074 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12075 return Preds; 12076 } 12077 12078 void PredicatedScalarEvolution::updateGeneration() { 12079 // If the generation number wrapped recompute everything. 12080 if (++Generation == 0) { 12081 for (auto &II : RewriteMap) { 12082 const SCEV *Rewritten = II.second.second; 12083 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12084 } 12085 } 12086 } 12087 12088 void PredicatedScalarEvolution::setNoOverflow( 12089 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12090 const SCEV *Expr = getSCEV(V); 12091 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12092 12093 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12094 12095 // Clear the statically implied flags. 12096 Flags &= ~ImpliedFlags; 12097 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12098 12099 auto II = FlagsMap.insert({V, Flags}); 12100 if (!II.second) 12101 II.first->second |= Flags; 12102 } 12103 12104 bool PredicatedScalarEvolution::hasNoOverflow( 12105 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12106 const SCEV *Expr = getSCEV(V); 12107 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12108 12109 Flags &= ~SCEVWrapPredicate::getImpliedFlags(AR, SE); 12110 12111 auto II = FlagsMap.find(V); 12112 12113 if (II != FlagsMap.end()) 12114 Flags &= ~II->second; 12115 12116 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12117 } 12118 12119 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12120 const SCEV *Expr = this->getSCEV(V); 12121 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12122 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12123 12124 if (!New) 12125 return nullptr; 12126 12127 for (auto *P : NewPreds) 12128 Preds.add(P); 12129 12130 updateGeneration(); 12131 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12132 return New; 12133 } 12134 12135 PredicatedScalarEvolution::PredicatedScalarEvolution( 12136 const PredicatedScalarEvolution &Init) 12137 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12138 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12139 for (const auto &I : Init.FlagsMap) 12140 FlagsMap.insert(I); 12141 } 12142 12143 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12144 // For each block. 12145 for (auto *BB : L.getBlocks()) 12146 for (auto &I : *BB) { 12147 if (!SE.isSCEVable(I.getType())) 12148 continue; 12149 12150 auto *Expr = SE.getSCEV(&I); 12151 auto II = RewriteMap.find(Expr); 12152 12153 if (II == RewriteMap.end()) 12154 continue; 12155 12156 // Don't print things that are not interesting. 12157 if (II->second.second == Expr) 12158 continue; 12159 12160 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12161 OS.indent(Depth + 2) << *Expr << "\n"; 12162 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12163 } 12164 } 12165