1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/LoopInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Assembly/Writer.h" 75 #include "llvm/Target/TargetData.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/GetElementPtrTypeIterator.h" 81 #include "llvm/Support/InstIterator.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/ADT/Statistic.h" 85 #include "llvm/ADT/STLExtras.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include <algorithm> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant " 103 "derived loop"), 104 cl::init(100)); 105 106 static RegisterPass<ScalarEvolution> 107 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 118 SCEV::~SCEV() {} 119 120 void SCEV::dump() const { 121 print(dbgs()); 122 dbgs() << '\n'; 123 } 124 125 bool SCEV::isZero() const { 126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 127 return SC->getValue()->isZero(); 128 return false; 129 } 130 131 bool SCEV::isOne() const { 132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 133 return SC->getValue()->isOne(); 134 return false; 135 } 136 137 bool SCEV::isAllOnesValue() const { 138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 139 return SC->getValue()->isAllOnesValue(); 140 return false; 141 } 142 143 SCEVCouldNotCompute::SCEVCouldNotCompute() : 144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 145 146 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 148 return false; 149 } 150 151 const Type *SCEVCouldNotCompute::getType() const { 152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 153 return 0; 154 } 155 156 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 158 return false; 159 } 160 161 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 163 return false; 164 } 165 166 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 167 OS << "***COULDNOTCOMPUTE***"; 168 } 169 170 bool SCEVCouldNotCompute::classof(const SCEV *S) { 171 return S->getSCEVType() == scCouldNotCompute; 172 } 173 174 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 175 FoldingSetNodeID ID; 176 ID.AddInteger(scConstant); 177 ID.AddPointer(V); 178 void *IP = 0; 179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 181 UniqueSCEVs.InsertNode(S, IP); 182 return S; 183 } 184 185 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 186 return getConstant(ConstantInt::get(getContext(), Val)); 187 } 188 189 const SCEV * 190 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 192 return getConstant(ConstantInt::get(ITy, V, isSigned)); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(raw_ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 202 unsigned SCEVTy, const SCEV *op, const Type *ty) 203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 204 205 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 206 return Op->dominates(BB, DT); 207 } 208 209 bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 210 return Op->properlyDominates(BB, DT); 211 } 212 213 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 214 const SCEV *op, const Type *ty) 215 : SCEVCastExpr(ID, scTruncate, op, ty) { 216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 217 (Ty->isIntegerTy() || Ty->isPointerTy()) && 218 "Cannot truncate non-integer value!"); 219 } 220 221 void SCEVTruncateExpr::print(raw_ostream &OS) const { 222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 223 } 224 225 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 226 const SCEV *op, const Type *ty) 227 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 229 (Ty->isIntegerTy() || Ty->isPointerTy()) && 230 "Cannot zero extend non-integer value!"); 231 } 232 233 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 235 } 236 237 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 238 const SCEV *op, const Type *ty) 239 : SCEVCastExpr(ID, scSignExtend, op, ty) { 240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 241 (Ty->isIntegerTy() || Ty->isPointerTy()) && 242 "Cannot sign extend non-integer value!"); 243 } 244 245 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 247 } 248 249 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 250 const char *OpStr = getOperationStr(); 251 OS << "("; 252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) { 253 OS << **I; 254 if (next(I) != E) 255 OS << OpStr; 256 } 257 OS << ")"; 258 } 259 260 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 262 if (!getOperand(i)->dominates(BB, DT)) 263 return false; 264 } 265 return true; 266 } 267 268 bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 270 if (!getOperand(i)->properlyDominates(BB, DT)) 271 return false; 272 } 273 return true; 274 } 275 276 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 278 } 279 280 bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT); 282 } 283 284 void SCEVUDivExpr::print(raw_ostream &OS) const { 285 OS << "(" << *LHS << " /u " << *RHS << ")"; 286 } 287 288 const Type *SCEVUDivExpr::getType() const { 289 // In most cases the types of LHS and RHS will be the same, but in some 290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 291 // depend on the type for correctness, but handling types carefully can 292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 293 // a pointer type than the RHS, so use the RHS' type here. 294 return RHS->getType(); 295 } 296 297 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 298 // Add recurrences are never invariant in the function-body (null loop). 299 if (!QueryLoop) 300 return false; 301 302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 303 if (QueryLoop->contains(L)) 304 return false; 305 306 // This recurrence is variant w.r.t. QueryLoop if any of its operands 307 // are variant. 308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 309 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 310 return false; 311 312 // Otherwise it's loop-invariant. 313 return true; 314 } 315 316 bool 317 SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 318 return DT->dominates(L->getHeader(), BB) && 319 SCEVNAryExpr::dominates(BB, DT); 320 } 321 322 bool 323 SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 324 // This uses a "dominates" query instead of "properly dominates" query because 325 // the instruction which produces the addrec's value is a PHI, and a PHI 326 // effectively properly dominates its entire containing block. 327 return DT->dominates(L->getHeader(), BB) && 328 SCEVNAryExpr::properlyDominates(BB, DT); 329 } 330 331 void SCEVAddRecExpr::print(raw_ostream &OS) const { 332 OS << "{" << *Operands[0]; 333 for (unsigned i = 1, e = NumOperands; i != e; ++i) 334 OS << ",+," << *Operands[i]; 335 OS << "}<"; 336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 337 OS << ">"; 338 } 339 340 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 341 // All non-instruction values are loop invariant. All instructions are loop 342 // invariant if they are not contained in the specified loop. 343 // Instructions are never considered invariant in the function body 344 // (null loop) because they are defined within the "loop". 345 if (Instruction *I = dyn_cast<Instruction>(V)) 346 return L && !L->contains(I); 347 return true; 348 } 349 350 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 351 if (Instruction *I = dyn_cast<Instruction>(getValue())) 352 return DT->dominates(I->getParent(), BB); 353 return true; 354 } 355 356 bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 357 if (Instruction *I = dyn_cast<Instruction>(getValue())) 358 return DT->properlyDominates(I->getParent(), BB); 359 return true; 360 } 361 362 const Type *SCEVUnknown::getType() const { 363 return V->getType(); 364 } 365 366 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 368 if (VCE->getOpcode() == Instruction::PtrToInt) 369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 370 if (CE->getOpcode() == Instruction::GetElementPtr && 371 CE->getOperand(0)->isNullValue() && 372 CE->getNumOperands() == 2) 373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 374 if (CI->isOne()) { 375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 376 ->getElementType(); 377 return true; 378 } 379 380 return false; 381 } 382 383 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 385 if (VCE->getOpcode() == Instruction::PtrToInt) 386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 387 if (CE->getOpcode() == Instruction::GetElementPtr && 388 CE->getOperand(0)->isNullValue()) { 389 const Type *Ty = 390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 391 if (const StructType *STy = dyn_cast<StructType>(Ty)) 392 if (!STy->isPacked() && 393 CE->getNumOperands() == 3 && 394 CE->getOperand(1)->isNullValue()) { 395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 396 if (CI->isOne() && 397 STy->getNumElements() == 2 && 398 STy->getElementType(0)->isIntegerTy(1)) { 399 AllocTy = STy->getElementType(1); 400 return true; 401 } 402 } 403 } 404 405 return false; 406 } 407 408 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 410 if (VCE->getOpcode() == Instruction::PtrToInt) 411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 412 if (CE->getOpcode() == Instruction::GetElementPtr && 413 CE->getNumOperands() == 3 && 414 CE->getOperand(0)->isNullValue() && 415 CE->getOperand(1)->isNullValue()) { 416 const Type *Ty = 417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 418 // Ignore vector types here so that ScalarEvolutionExpander doesn't 419 // emit getelementptrs that index into vectors. 420 if (Ty->isStructTy() || Ty->isArrayTy()) { 421 CTy = Ty; 422 FieldNo = CE->getOperand(2); 423 return true; 424 } 425 } 426 427 return false; 428 } 429 430 void SCEVUnknown::print(raw_ostream &OS) const { 431 const Type *AllocTy; 432 if (isSizeOf(AllocTy)) { 433 OS << "sizeof(" << *AllocTy << ")"; 434 return; 435 } 436 if (isAlignOf(AllocTy)) { 437 OS << "alignof(" << *AllocTy << ")"; 438 return; 439 } 440 441 const Type *CTy; 442 Constant *FieldNo; 443 if (isOffsetOf(CTy, FieldNo)) { 444 OS << "offsetof(" << *CTy << ", "; 445 WriteAsOperand(OS, FieldNo, false); 446 OS << ")"; 447 return; 448 } 449 450 // Otherwise just print it normally. 451 WriteAsOperand(OS, V, false); 452 } 453 454 //===----------------------------------------------------------------------===// 455 // SCEV Utilities 456 //===----------------------------------------------------------------------===// 457 458 static bool CompareTypes(const Type *A, const Type *B) { 459 if (A->getTypeID() != B->getTypeID()) 460 return A->getTypeID() < B->getTypeID(); 461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { 462 const IntegerType *BI = cast<IntegerType>(B); 463 return AI->getBitWidth() < BI->getBitWidth(); 464 } 465 if (const PointerType *AI = dyn_cast<PointerType>(A)) { 466 const PointerType *BI = cast<PointerType>(B); 467 return CompareTypes(AI->getElementType(), BI->getElementType()); 468 } 469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { 470 const ArrayType *BI = cast<ArrayType>(B); 471 if (AI->getNumElements() != BI->getNumElements()) 472 return AI->getNumElements() < BI->getNumElements(); 473 return CompareTypes(AI->getElementType(), BI->getElementType()); 474 } 475 if (const VectorType *AI = dyn_cast<VectorType>(A)) { 476 const VectorType *BI = cast<VectorType>(B); 477 if (AI->getNumElements() != BI->getNumElements()) 478 return AI->getNumElements() < BI->getNumElements(); 479 return CompareTypes(AI->getElementType(), BI->getElementType()); 480 } 481 if (const StructType *AI = dyn_cast<StructType>(A)) { 482 const StructType *BI = cast<StructType>(B); 483 if (AI->getNumElements() != BI->getNumElements()) 484 return AI->getNumElements() < BI->getNumElements(); 485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) 486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || 487 CompareTypes(BI->getElementType(i), AI->getElementType(i))) 488 return CompareTypes(AI->getElementType(i), BI->getElementType(i)); 489 } 490 return false; 491 } 492 493 namespace { 494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 495 /// than the complexity of the RHS. This comparator is used to canonicalize 496 /// expressions. 497 class SCEVComplexityCompare { 498 LoopInfo *LI; 499 public: 500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 501 502 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 503 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 504 if (LHS == RHS) 505 return false; 506 507 // Primarily, sort the SCEVs by their getSCEVType(). 508 if (LHS->getSCEVType() != RHS->getSCEVType()) 509 return LHS->getSCEVType() < RHS->getSCEVType(); 510 511 // Aside from the getSCEVType() ordering, the particular ordering 512 // isn't very important except that it's beneficial to be consistent, 513 // so that (a + b) and (b + a) don't end up as different expressions. 514 515 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 516 // not as complete as it could be. 517 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 518 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 519 520 // Order pointer values after integer values. This helps SCEVExpander 521 // form GEPs. 522 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy()) 523 return false; 524 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy()) 525 return true; 526 527 // Compare getValueID values. 528 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 529 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 530 531 // Sort arguments by their position. 532 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 533 const Argument *RA = cast<Argument>(RU->getValue()); 534 return LA->getArgNo() < RA->getArgNo(); 535 } 536 537 // For instructions, compare their loop depth, and their opcode. 538 // This is pretty loose. 539 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 540 Instruction *RV = cast<Instruction>(RU->getValue()); 541 542 // Compare loop depths. 543 if (LI->getLoopDepth(LV->getParent()) != 544 LI->getLoopDepth(RV->getParent())) 545 return LI->getLoopDepth(LV->getParent()) < 546 LI->getLoopDepth(RV->getParent()); 547 548 // Compare opcodes. 549 if (LV->getOpcode() != RV->getOpcode()) 550 return LV->getOpcode() < RV->getOpcode(); 551 552 // Compare the number of operands. 553 if (LV->getNumOperands() != RV->getNumOperands()) 554 return LV->getNumOperands() < RV->getNumOperands(); 555 } 556 557 return false; 558 } 559 560 // Compare constant values. 561 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 562 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 563 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth()) 564 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth(); 565 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 566 } 567 568 // Compare addrec loop depths. 569 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 570 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 571 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 572 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 573 } 574 575 // Lexicographically compare n-ary expressions. 576 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 579 if (i >= RC->getNumOperands()) 580 return false; 581 if (operator()(LC->getOperand(i), RC->getOperand(i))) 582 return true; 583 if (operator()(RC->getOperand(i), LC->getOperand(i))) 584 return false; 585 } 586 return LC->getNumOperands() < RC->getNumOperands(); 587 } 588 589 // Lexicographically compare udiv expressions. 590 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 591 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 592 if (operator()(LC->getLHS(), RC->getLHS())) 593 return true; 594 if (operator()(RC->getLHS(), LC->getLHS())) 595 return false; 596 if (operator()(LC->getRHS(), RC->getRHS())) 597 return true; 598 if (operator()(RC->getRHS(), LC->getRHS())) 599 return false; 600 return false; 601 } 602 603 // Compare cast expressions by operand. 604 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 606 return operator()(LC->getOperand(), RC->getOperand()); 607 } 608 609 llvm_unreachable("Unknown SCEV kind!"); 610 return false; 611 } 612 }; 613 } 614 615 /// GroupByComplexity - Given a list of SCEV objects, order them by their 616 /// complexity, and group objects of the same complexity together by value. 617 /// When this routine is finished, we know that any duplicates in the vector are 618 /// consecutive and that complexity is monotonically increasing. 619 /// 620 /// Note that we go take special precautions to ensure that we get deterministic 621 /// results from this routine. In other words, we don't want the results of 622 /// this to depend on where the addresses of various SCEV objects happened to 623 /// land in memory. 624 /// 625 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 626 LoopInfo *LI) { 627 if (Ops.size() < 2) return; // Noop 628 if (Ops.size() == 2) { 629 // This is the common case, which also happens to be trivially simple. 630 // Special case it. 631 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 632 std::swap(Ops[0], Ops[1]); 633 return; 634 } 635 636 // Do the rough sort by complexity. 637 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 638 639 // Now that we are sorted by complexity, group elements of the same 640 // complexity. Note that this is, at worst, N^2, but the vector is likely to 641 // be extremely short in practice. Note that we take this approach because we 642 // do not want to depend on the addresses of the objects we are grouping. 643 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 644 const SCEV *S = Ops[i]; 645 unsigned Complexity = S->getSCEVType(); 646 647 // If there are any objects of the same complexity and same value as this 648 // one, group them. 649 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 650 if (Ops[j] == S) { // Found a duplicate. 651 // Move it to immediately after i'th element. 652 std::swap(Ops[i+1], Ops[j]); 653 ++i; // no need to rescan it. 654 if (i == e-2) return; // Done! 655 } 656 } 657 } 658 } 659 660 661 662 //===----------------------------------------------------------------------===// 663 // Simple SCEV method implementations 664 //===----------------------------------------------------------------------===// 665 666 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 667 /// Assume, K > 0. 668 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 669 ScalarEvolution &SE, 670 const Type* ResultTy) { 671 // Handle the simplest case efficiently. 672 if (K == 1) 673 return SE.getTruncateOrZeroExtend(It, ResultTy); 674 675 // We are using the following formula for BC(It, K): 676 // 677 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 678 // 679 // Suppose, W is the bitwidth of the return value. We must be prepared for 680 // overflow. Hence, we must assure that the result of our computation is 681 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 682 // safe in modular arithmetic. 683 // 684 // However, this code doesn't use exactly that formula; the formula it uses 685 // is something like the following, where T is the number of factors of 2 in 686 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 687 // exponentiation: 688 // 689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 690 // 691 // This formula is trivially equivalent to the previous formula. However, 692 // this formula can be implemented much more efficiently. The trick is that 693 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 694 // arithmetic. To do exact division in modular arithmetic, all we have 695 // to do is multiply by the inverse. Therefore, this step can be done at 696 // width W. 697 // 698 // The next issue is how to safely do the division by 2^T. The way this 699 // is done is by doing the multiplication step at a width of at least W + T 700 // bits. This way, the bottom W+T bits of the product are accurate. Then, 701 // when we perform the division by 2^T (which is equivalent to a right shift 702 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 703 // truncated out after the division by 2^T. 704 // 705 // In comparison to just directly using the first formula, this technique 706 // is much more efficient; using the first formula requires W * K bits, 707 // but this formula less than W + K bits. Also, the first formula requires 708 // a division step, whereas this formula only requires multiplies and shifts. 709 // 710 // It doesn't matter whether the subtraction step is done in the calculation 711 // width or the input iteration count's width; if the subtraction overflows, 712 // the result must be zero anyway. We prefer here to do it in the width of 713 // the induction variable because it helps a lot for certain cases; CodeGen 714 // isn't smart enough to ignore the overflow, which leads to much less 715 // efficient code if the width of the subtraction is wider than the native 716 // register width. 717 // 718 // (It's possible to not widen at all by pulling out factors of 2 before 719 // the multiplication; for example, K=2 can be calculated as 720 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 721 // extra arithmetic, so it's not an obvious win, and it gets 722 // much more complicated for K > 3.) 723 724 // Protection from insane SCEVs; this bound is conservative, 725 // but it probably doesn't matter. 726 if (K > 1000) 727 return SE.getCouldNotCompute(); 728 729 unsigned W = SE.getTypeSizeInBits(ResultTy); 730 731 // Calculate K! / 2^T and T; we divide out the factors of two before 732 // multiplying for calculating K! / 2^T to avoid overflow. 733 // Other overflow doesn't matter because we only care about the bottom 734 // W bits of the result. 735 APInt OddFactorial(W, 1); 736 unsigned T = 1; 737 for (unsigned i = 3; i <= K; ++i) { 738 APInt Mult(W, i); 739 unsigned TwoFactors = Mult.countTrailingZeros(); 740 T += TwoFactors; 741 Mult = Mult.lshr(TwoFactors); 742 OddFactorial *= Mult; 743 } 744 745 // We need at least W + T bits for the multiplication step 746 unsigned CalculationBits = W + T; 747 748 // Calculate 2^T, at width T+W. 749 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 750 751 // Calculate the multiplicative inverse of K! / 2^T; 752 // this multiplication factor will perform the exact division by 753 // K! / 2^T. 754 APInt Mod = APInt::getSignedMinValue(W+1); 755 APInt MultiplyFactor = OddFactorial.zext(W+1); 756 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 757 MultiplyFactor = MultiplyFactor.trunc(W); 758 759 // Calculate the product, at width T+W 760 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 761 CalculationBits); 762 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 763 for (unsigned i = 1; i != K; ++i) { 764 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 765 Dividend = SE.getMulExpr(Dividend, 766 SE.getTruncateOrZeroExtend(S, CalculationTy)); 767 } 768 769 // Divide by 2^T 770 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 771 772 // Truncate the result, and divide by K! / 2^T. 773 774 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 775 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 776 } 777 778 /// evaluateAtIteration - Return the value of this chain of recurrences at 779 /// the specified iteration number. We can evaluate this recurrence by 780 /// multiplying each element in the chain by the binomial coefficient 781 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 782 /// 783 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 784 /// 785 /// where BC(It, k) stands for binomial coefficient. 786 /// 787 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 788 ScalarEvolution &SE) const { 789 const SCEV *Result = getStart(); 790 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 791 // The computation is correct in the face of overflow provided that the 792 // multiplication is performed _after_ the evaluation of the binomial 793 // coefficient. 794 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 795 if (isa<SCEVCouldNotCompute>(Coeff)) 796 return Coeff; 797 798 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 799 } 800 return Result; 801 } 802 803 //===----------------------------------------------------------------------===// 804 // SCEV Expression folder implementations 805 //===----------------------------------------------------------------------===// 806 807 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 808 const Type *Ty) { 809 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 810 "This is not a truncating conversion!"); 811 assert(isSCEVable(Ty) && 812 "This is not a conversion to a SCEVable type!"); 813 Ty = getEffectiveSCEVType(Ty); 814 815 FoldingSetNodeID ID; 816 ID.AddInteger(scTruncate); 817 ID.AddPointer(Op); 818 ID.AddPointer(Ty); 819 void *IP = 0; 820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 821 822 // Fold if the operand is constant. 823 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 824 return getConstant( 825 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), 826 getEffectiveSCEVType(Ty)))); 827 828 // trunc(trunc(x)) --> trunc(x) 829 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 830 return getTruncateExpr(ST->getOperand(), Ty); 831 832 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 833 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 834 return getTruncateOrSignExtend(SS->getOperand(), Ty); 835 836 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 837 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 838 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 839 840 // If the input value is a chrec scev, truncate the chrec's operands. 841 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 842 SmallVector<const SCEV *, 4> Operands; 843 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 844 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 845 return getAddRecExpr(Operands, AddRec->getLoop()); 846 } 847 848 // As a special case, fold trunc(undef) to undef. We don't want to 849 // know too much about SCEVUnknowns, but this special case is handy 850 // and harmless. 851 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 852 if (isa<UndefValue>(U->getValue())) 853 return getSCEV(UndefValue::get(Ty)); 854 855 // The cast wasn't folded; create an explicit cast node. We can reuse 856 // the existing insert position since if we get here, we won't have 857 // made any changes which would invalidate it. 858 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 859 Op, Ty); 860 UniqueSCEVs.InsertNode(S, IP); 861 return S; 862 } 863 864 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 865 const Type *Ty) { 866 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 867 "This is not an extending conversion!"); 868 assert(isSCEVable(Ty) && 869 "This is not a conversion to a SCEVable type!"); 870 Ty = getEffectiveSCEVType(Ty); 871 872 // Fold if the operand is constant. 873 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 874 return getConstant( 875 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), 876 getEffectiveSCEVType(Ty)))); 877 878 // zext(zext(x)) --> zext(x) 879 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 880 return getZeroExtendExpr(SZ->getOperand(), Ty); 881 882 // Before doing any expensive analysis, check to see if we've already 883 // computed a SCEV for this Op and Ty. 884 FoldingSetNodeID ID; 885 ID.AddInteger(scZeroExtend); 886 ID.AddPointer(Op); 887 ID.AddPointer(Ty); 888 void *IP = 0; 889 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 890 891 // If the input value is a chrec scev, and we can prove that the value 892 // did not overflow the old, smaller, value, we can zero extend all of the 893 // operands (often constants). This allows analysis of something like 894 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 895 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 896 if (AR->isAffine()) { 897 const SCEV *Start = AR->getStart(); 898 const SCEV *Step = AR->getStepRecurrence(*this); 899 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 900 const Loop *L = AR->getLoop(); 901 902 // If we have special knowledge that this addrec won't overflow, 903 // we don't need to do any further analysis. 904 if (AR->hasNoUnsignedWrap()) 905 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 906 getZeroExtendExpr(Step, Ty), 907 L); 908 909 // Check whether the backedge-taken count is SCEVCouldNotCompute. 910 // Note that this serves two purposes: It filters out loops that are 911 // simply not analyzable, and it covers the case where this code is 912 // being called from within backedge-taken count analysis, such that 913 // attempting to ask for the backedge-taken count would likely result 914 // in infinite recursion. In the later case, the analysis code will 915 // cope with a conservative value, and it will take care to purge 916 // that value once it has finished. 917 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 918 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 919 // Manually compute the final value for AR, checking for 920 // overflow. 921 922 // Check whether the backedge-taken count can be losslessly casted to 923 // the addrec's type. The count is always unsigned. 924 const SCEV *CastedMaxBECount = 925 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 926 const SCEV *RecastedMaxBECount = 927 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 928 if (MaxBECount == RecastedMaxBECount) { 929 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 930 // Check whether Start+Step*MaxBECount has no unsigned overflow. 931 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 932 const SCEV *Add = getAddExpr(Start, ZMul); 933 const SCEV *OperandExtendedAdd = 934 getAddExpr(getZeroExtendExpr(Start, WideTy), 935 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 936 getZeroExtendExpr(Step, WideTy))); 937 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 938 // Return the expression with the addrec on the outside. 939 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 940 getZeroExtendExpr(Step, Ty), 941 L); 942 943 // Similar to above, only this time treat the step value as signed. 944 // This covers loops that count down. 945 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 946 Add = getAddExpr(Start, SMul); 947 OperandExtendedAdd = 948 getAddExpr(getZeroExtendExpr(Start, WideTy), 949 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 950 getSignExtendExpr(Step, WideTy))); 951 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 952 // Return the expression with the addrec on the outside. 953 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 954 getSignExtendExpr(Step, Ty), 955 L); 956 } 957 958 // If the backedge is guarded by a comparison with the pre-inc value 959 // the addrec is safe. Also, if the entry is guarded by a comparison 960 // with the start value and the backedge is guarded by a comparison 961 // with the post-inc value, the addrec is safe. 962 if (isKnownPositive(Step)) { 963 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 964 getUnsignedRange(Step).getUnsignedMax()); 965 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 966 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 967 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 968 AR->getPostIncExpr(*this), N))) 969 // Return the expression with the addrec on the outside. 970 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 971 getZeroExtendExpr(Step, Ty), 972 L); 973 } else if (isKnownNegative(Step)) { 974 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 975 getSignedRange(Step).getSignedMin()); 976 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 977 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 978 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 979 AR->getPostIncExpr(*this), N))) 980 // Return the expression with the addrec on the outside. 981 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 982 getSignExtendExpr(Step, Ty), 983 L); 984 } 985 } 986 } 987 988 // The cast wasn't folded; create an explicit cast node. 989 // Recompute the insert position, as it may have been invalidated. 990 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 991 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 992 Op, Ty); 993 UniqueSCEVs.InsertNode(S, IP); 994 return S; 995 } 996 997 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 998 const Type *Ty) { 999 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1000 "This is not an extending conversion!"); 1001 assert(isSCEVable(Ty) && 1002 "This is not a conversion to a SCEVable type!"); 1003 Ty = getEffectiveSCEVType(Ty); 1004 1005 // Fold if the operand is constant. 1006 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1007 return getConstant( 1008 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), 1009 getEffectiveSCEVType(Ty)))); 1010 1011 // sext(sext(x)) --> sext(x) 1012 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1013 return getSignExtendExpr(SS->getOperand(), Ty); 1014 1015 // Before doing any expensive analysis, check to see if we've already 1016 // computed a SCEV for this Op and Ty. 1017 FoldingSetNodeID ID; 1018 ID.AddInteger(scSignExtend); 1019 ID.AddPointer(Op); 1020 ID.AddPointer(Ty); 1021 void *IP = 0; 1022 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1023 1024 // If the input value is a chrec scev, and we can prove that the value 1025 // did not overflow the old, smaller, value, we can sign extend all of the 1026 // operands (often constants). This allows analysis of something like 1027 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1028 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1029 if (AR->isAffine()) { 1030 const SCEV *Start = AR->getStart(); 1031 const SCEV *Step = AR->getStepRecurrence(*this); 1032 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1033 const Loop *L = AR->getLoop(); 1034 1035 // If we have special knowledge that this addrec won't overflow, 1036 // we don't need to do any further analysis. 1037 if (AR->hasNoSignedWrap()) 1038 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1039 getSignExtendExpr(Step, Ty), 1040 L); 1041 1042 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1043 // Note that this serves two purposes: It filters out loops that are 1044 // simply not analyzable, and it covers the case where this code is 1045 // being called from within backedge-taken count analysis, such that 1046 // attempting to ask for the backedge-taken count would likely result 1047 // in infinite recursion. In the later case, the analysis code will 1048 // cope with a conservative value, and it will take care to purge 1049 // that value once it has finished. 1050 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1051 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1052 // Manually compute the final value for AR, checking for 1053 // overflow. 1054 1055 // Check whether the backedge-taken count can be losslessly casted to 1056 // the addrec's type. The count is always unsigned. 1057 const SCEV *CastedMaxBECount = 1058 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1059 const SCEV *RecastedMaxBECount = 1060 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1061 if (MaxBECount == RecastedMaxBECount) { 1062 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1063 // Check whether Start+Step*MaxBECount has no signed overflow. 1064 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1065 const SCEV *Add = getAddExpr(Start, SMul); 1066 const SCEV *OperandExtendedAdd = 1067 getAddExpr(getSignExtendExpr(Start, WideTy), 1068 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1069 getSignExtendExpr(Step, WideTy))); 1070 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1071 // Return the expression with the addrec on the outside. 1072 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1073 getSignExtendExpr(Step, Ty), 1074 L); 1075 1076 // Similar to above, only this time treat the step value as unsigned. 1077 // This covers loops that count up with an unsigned step. 1078 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1079 Add = getAddExpr(Start, UMul); 1080 OperandExtendedAdd = 1081 getAddExpr(getSignExtendExpr(Start, WideTy), 1082 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1083 getZeroExtendExpr(Step, WideTy))); 1084 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1085 // Return the expression with the addrec on the outside. 1086 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1087 getZeroExtendExpr(Step, Ty), 1088 L); 1089 } 1090 1091 // If the backedge is guarded by a comparison with the pre-inc value 1092 // the addrec is safe. Also, if the entry is guarded by a comparison 1093 // with the start value and the backedge is guarded by a comparison 1094 // with the post-inc value, the addrec is safe. 1095 if (isKnownPositive(Step)) { 1096 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1097 getSignedRange(Step).getSignedMax()); 1098 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1099 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1100 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1101 AR->getPostIncExpr(*this), N))) 1102 // Return the expression with the addrec on the outside. 1103 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1104 getSignExtendExpr(Step, Ty), 1105 L); 1106 } else if (isKnownNegative(Step)) { 1107 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1108 getSignedRange(Step).getSignedMin()); 1109 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1110 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1111 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1112 AR->getPostIncExpr(*this), N))) 1113 // Return the expression with the addrec on the outside. 1114 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1115 getSignExtendExpr(Step, Ty), 1116 L); 1117 } 1118 } 1119 } 1120 1121 // The cast wasn't folded; create an explicit cast node. 1122 // Recompute the insert position, as it may have been invalidated. 1123 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1124 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1125 Op, Ty); 1126 UniqueSCEVs.InsertNode(S, IP); 1127 return S; 1128 } 1129 1130 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1131 /// unspecified bits out to the given type. 1132 /// 1133 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1134 const Type *Ty) { 1135 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1136 "This is not an extending conversion!"); 1137 assert(isSCEVable(Ty) && 1138 "This is not a conversion to a SCEVable type!"); 1139 Ty = getEffectiveSCEVType(Ty); 1140 1141 // Sign-extend negative constants. 1142 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1143 if (SC->getValue()->getValue().isNegative()) 1144 return getSignExtendExpr(Op, Ty); 1145 1146 // Peel off a truncate cast. 1147 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1148 const SCEV *NewOp = T->getOperand(); 1149 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1150 return getAnyExtendExpr(NewOp, Ty); 1151 return getTruncateOrNoop(NewOp, Ty); 1152 } 1153 1154 // Next try a zext cast. If the cast is folded, use it. 1155 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1156 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1157 return ZExt; 1158 1159 // Next try a sext cast. If the cast is folded, use it. 1160 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1161 if (!isa<SCEVSignExtendExpr>(SExt)) 1162 return SExt; 1163 1164 // Force the cast to be folded into the operands of an addrec. 1165 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1166 SmallVector<const SCEV *, 4> Ops; 1167 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1168 I != E; ++I) 1169 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1170 return getAddRecExpr(Ops, AR->getLoop()); 1171 } 1172 1173 // As a special case, fold anyext(undef) to undef. We don't want to 1174 // know too much about SCEVUnknowns, but this special case is handy 1175 // and harmless. 1176 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op)) 1177 if (isa<UndefValue>(U->getValue())) 1178 return getSCEV(UndefValue::get(Ty)); 1179 1180 // If the expression is obviously signed, use the sext cast value. 1181 if (isa<SCEVSMaxExpr>(Op)) 1182 return SExt; 1183 1184 // Absent any other information, use the zext cast value. 1185 return ZExt; 1186 } 1187 1188 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1189 /// a list of operands to be added under the given scale, update the given 1190 /// map. This is a helper function for getAddRecExpr. As an example of 1191 /// what it does, given a sequence of operands that would form an add 1192 /// expression like this: 1193 /// 1194 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1195 /// 1196 /// where A and B are constants, update the map with these values: 1197 /// 1198 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1199 /// 1200 /// and add 13 + A*B*29 to AccumulatedConstant. 1201 /// This will allow getAddRecExpr to produce this: 1202 /// 1203 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1204 /// 1205 /// This form often exposes folding opportunities that are hidden in 1206 /// the original operand list. 1207 /// 1208 /// Return true iff it appears that any interesting folding opportunities 1209 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1210 /// the common case where no interesting opportunities are present, and 1211 /// is also used as a check to avoid infinite recursion. 1212 /// 1213 static bool 1214 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1215 SmallVector<const SCEV *, 8> &NewOps, 1216 APInt &AccumulatedConstant, 1217 const SCEV *const *Ops, size_t NumOperands, 1218 const APInt &Scale, 1219 ScalarEvolution &SE) { 1220 bool Interesting = false; 1221 1222 // Iterate over the add operands. They are sorted, with constants first. 1223 unsigned i = 0; 1224 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1225 ++i; 1226 // Pull a buried constant out to the outside. 1227 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1228 Interesting = true; 1229 AccumulatedConstant += Scale * C->getValue()->getValue(); 1230 } 1231 1232 // Next comes everything else. We're especially interested in multiplies 1233 // here, but they're in the middle, so just visit the rest with one loop. 1234 for (; i != NumOperands; ++i) { 1235 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1236 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1237 APInt NewScale = 1238 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1239 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1240 // A multiplication of a constant with another add; recurse. 1241 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1242 Interesting |= 1243 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1244 Add->op_begin(), Add->getNumOperands(), 1245 NewScale, SE); 1246 } else { 1247 // A multiplication of a constant with some other value. Update 1248 // the map. 1249 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1250 const SCEV *Key = SE.getMulExpr(MulOps); 1251 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1252 M.insert(std::make_pair(Key, NewScale)); 1253 if (Pair.second) { 1254 NewOps.push_back(Pair.first->first); 1255 } else { 1256 Pair.first->second += NewScale; 1257 // The map already had an entry for this value, which may indicate 1258 // a folding opportunity. 1259 Interesting = true; 1260 } 1261 } 1262 } else { 1263 // An ordinary operand. Update the map. 1264 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1265 M.insert(std::make_pair(Ops[i], Scale)); 1266 if (Pair.second) { 1267 NewOps.push_back(Pair.first->first); 1268 } else { 1269 Pair.first->second += Scale; 1270 // The map already had an entry for this value, which may indicate 1271 // a folding opportunity. 1272 Interesting = true; 1273 } 1274 } 1275 } 1276 1277 return Interesting; 1278 } 1279 1280 namespace { 1281 struct APIntCompare { 1282 bool operator()(const APInt &LHS, const APInt &RHS) const { 1283 return LHS.ult(RHS); 1284 } 1285 }; 1286 } 1287 1288 /// getAddExpr - Get a canonical add expression, or something simpler if 1289 /// possible. 1290 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1291 bool HasNUW, bool HasNSW) { 1292 assert(!Ops.empty() && "Cannot get empty add!"); 1293 if (Ops.size() == 1) return Ops[0]; 1294 #ifndef NDEBUG 1295 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1296 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1297 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1298 "SCEVAddExpr operand types don't match!"); 1299 #endif 1300 1301 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1302 if (!HasNUW && HasNSW) { 1303 bool All = true; 1304 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1305 if (!isKnownNonNegative(Ops[i])) { 1306 All = false; 1307 break; 1308 } 1309 if (All) HasNUW = true; 1310 } 1311 1312 // Sort by complexity, this groups all similar expression types together. 1313 GroupByComplexity(Ops, LI); 1314 1315 // If there are any constants, fold them together. 1316 unsigned Idx = 0; 1317 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1318 ++Idx; 1319 assert(Idx < Ops.size()); 1320 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1321 // We found two constants, fold them together! 1322 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1323 RHSC->getValue()->getValue()); 1324 if (Ops.size() == 2) return Ops[0]; 1325 Ops.erase(Ops.begin()+1); // Erase the folded element 1326 LHSC = cast<SCEVConstant>(Ops[0]); 1327 } 1328 1329 // If we are left with a constant zero being added, strip it off. 1330 if (LHSC->getValue()->isZero()) { 1331 Ops.erase(Ops.begin()); 1332 --Idx; 1333 } 1334 1335 if (Ops.size() == 1) return Ops[0]; 1336 } 1337 1338 // Okay, check to see if the same value occurs in the operand list twice. If 1339 // so, merge them together into an multiply expression. Since we sorted the 1340 // list, these values are required to be adjacent. 1341 const Type *Ty = Ops[0]->getType(); 1342 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1343 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1344 // Found a match, merge the two values into a multiply, and add any 1345 // remaining values to the result. 1346 const SCEV *Two = getConstant(Ty, 2); 1347 const SCEV *Mul = getMulExpr(Ops[i], Two); 1348 if (Ops.size() == 2) 1349 return Mul; 1350 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1351 Ops.push_back(Mul); 1352 return getAddExpr(Ops, HasNUW, HasNSW); 1353 } 1354 1355 // Check for truncates. If all the operands are truncated from the same 1356 // type, see if factoring out the truncate would permit the result to be 1357 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1358 // if the contents of the resulting outer trunc fold to something simple. 1359 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1360 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1361 const Type *DstType = Trunc->getType(); 1362 const Type *SrcType = Trunc->getOperand()->getType(); 1363 SmallVector<const SCEV *, 8> LargeOps; 1364 bool Ok = true; 1365 // Check all the operands to see if they can be represented in the 1366 // source type of the truncate. 1367 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1368 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1369 if (T->getOperand()->getType() != SrcType) { 1370 Ok = false; 1371 break; 1372 } 1373 LargeOps.push_back(T->getOperand()); 1374 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1375 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1376 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1377 SmallVector<const SCEV *, 8> LargeMulOps; 1378 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1379 if (const SCEVTruncateExpr *T = 1380 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1381 if (T->getOperand()->getType() != SrcType) { 1382 Ok = false; 1383 break; 1384 } 1385 LargeMulOps.push_back(T->getOperand()); 1386 } else if (const SCEVConstant *C = 1387 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1388 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1389 } else { 1390 Ok = false; 1391 break; 1392 } 1393 } 1394 if (Ok) 1395 LargeOps.push_back(getMulExpr(LargeMulOps)); 1396 } else { 1397 Ok = false; 1398 break; 1399 } 1400 } 1401 if (Ok) { 1402 // Evaluate the expression in the larger type. 1403 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1404 // If it folds to something simple, use it. Otherwise, don't. 1405 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1406 return getTruncateExpr(Fold, DstType); 1407 } 1408 } 1409 1410 // Skip past any other cast SCEVs. 1411 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1412 ++Idx; 1413 1414 // If there are add operands they would be next. 1415 if (Idx < Ops.size()) { 1416 bool DeletedAdd = false; 1417 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1418 // If we have an add, expand the add operands onto the end of the operands 1419 // list. 1420 Ops.erase(Ops.begin()+Idx); 1421 Ops.append(Add->op_begin(), Add->op_end()); 1422 DeletedAdd = true; 1423 } 1424 1425 // If we deleted at least one add, we added operands to the end of the list, 1426 // and they are not necessarily sorted. Recurse to resort and resimplify 1427 // any operands we just acquired. 1428 if (DeletedAdd) 1429 return getAddExpr(Ops); 1430 } 1431 1432 // Skip over the add expression until we get to a multiply. 1433 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1434 ++Idx; 1435 1436 // Check to see if there are any folding opportunities present with 1437 // operands multiplied by constant values. 1438 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1439 uint64_t BitWidth = getTypeSizeInBits(Ty); 1440 DenseMap<const SCEV *, APInt> M; 1441 SmallVector<const SCEV *, 8> NewOps; 1442 APInt AccumulatedConstant(BitWidth, 0); 1443 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1444 Ops.data(), Ops.size(), 1445 APInt(BitWidth, 1), *this)) { 1446 // Some interesting folding opportunity is present, so its worthwhile to 1447 // re-generate the operands list. Group the operands by constant scale, 1448 // to avoid multiplying by the same constant scale multiple times. 1449 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1450 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), 1451 E = NewOps.end(); I != E; ++I) 1452 MulOpLists[M.find(*I)->second].push_back(*I); 1453 // Re-generate the operands list. 1454 Ops.clear(); 1455 if (AccumulatedConstant != 0) 1456 Ops.push_back(getConstant(AccumulatedConstant)); 1457 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1458 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1459 if (I->first != 0) 1460 Ops.push_back(getMulExpr(getConstant(I->first), 1461 getAddExpr(I->second))); 1462 if (Ops.empty()) 1463 return getConstant(Ty, 0); 1464 if (Ops.size() == 1) 1465 return Ops[0]; 1466 return getAddExpr(Ops); 1467 } 1468 } 1469 1470 // If we are adding something to a multiply expression, make sure the 1471 // something is not already an operand of the multiply. If so, merge it into 1472 // the multiply. 1473 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1474 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1475 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1476 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1477 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1478 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1479 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1480 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1481 if (Mul->getNumOperands() != 2) { 1482 // If the multiply has more than two operands, we must get the 1483 // Y*Z term. 1484 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1485 MulOps.erase(MulOps.begin()+MulOp); 1486 InnerMul = getMulExpr(MulOps); 1487 } 1488 const SCEV *One = getConstant(Ty, 1); 1489 const SCEV *AddOne = getAddExpr(InnerMul, One); 1490 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1491 if (Ops.size() == 2) return OuterMul; 1492 if (AddOp < Idx) { 1493 Ops.erase(Ops.begin()+AddOp); 1494 Ops.erase(Ops.begin()+Idx-1); 1495 } else { 1496 Ops.erase(Ops.begin()+Idx); 1497 Ops.erase(Ops.begin()+AddOp-1); 1498 } 1499 Ops.push_back(OuterMul); 1500 return getAddExpr(Ops); 1501 } 1502 1503 // Check this multiply against other multiplies being added together. 1504 for (unsigned OtherMulIdx = Idx+1; 1505 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1506 ++OtherMulIdx) { 1507 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1508 // If MulOp occurs in OtherMul, we can fold the two multiplies 1509 // together. 1510 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1511 OMulOp != e; ++OMulOp) 1512 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1513 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1514 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1515 if (Mul->getNumOperands() != 2) { 1516 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1517 Mul->op_end()); 1518 MulOps.erase(MulOps.begin()+MulOp); 1519 InnerMul1 = getMulExpr(MulOps); 1520 } 1521 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1522 if (OtherMul->getNumOperands() != 2) { 1523 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1524 OtherMul->op_end()); 1525 MulOps.erase(MulOps.begin()+OMulOp); 1526 InnerMul2 = getMulExpr(MulOps); 1527 } 1528 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1529 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1530 if (Ops.size() == 2) return OuterMul; 1531 Ops.erase(Ops.begin()+Idx); 1532 Ops.erase(Ops.begin()+OtherMulIdx-1); 1533 Ops.push_back(OuterMul); 1534 return getAddExpr(Ops); 1535 } 1536 } 1537 } 1538 } 1539 1540 // If there are any add recurrences in the operands list, see if any other 1541 // added values are loop invariant. If so, we can fold them into the 1542 // recurrence. 1543 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1544 ++Idx; 1545 1546 // Scan over all recurrences, trying to fold loop invariants into them. 1547 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1548 // Scan all of the other operands to this add and add them to the vector if 1549 // they are loop invariant w.r.t. the recurrence. 1550 SmallVector<const SCEV *, 8> LIOps; 1551 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1552 const Loop *AddRecLoop = AddRec->getLoop(); 1553 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1554 if (Ops[i]->isLoopInvariant(AddRecLoop)) { 1555 LIOps.push_back(Ops[i]); 1556 Ops.erase(Ops.begin()+i); 1557 --i; --e; 1558 } 1559 1560 // If we found some loop invariants, fold them into the recurrence. 1561 if (!LIOps.empty()) { 1562 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1563 LIOps.push_back(AddRec->getStart()); 1564 1565 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1566 AddRec->op_end()); 1567 AddRecOps[0] = getAddExpr(LIOps); 1568 1569 // Build the new addrec. Propagate the NUW and NSW flags if both the 1570 // outer add and the inner addrec are guaranteed to have no overflow. 1571 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, 1572 HasNUW && AddRec->hasNoUnsignedWrap(), 1573 HasNSW && AddRec->hasNoSignedWrap()); 1574 1575 // If all of the other operands were loop invariant, we are done. 1576 if (Ops.size() == 1) return NewRec; 1577 1578 // Otherwise, add the folded AddRec by the non-liv parts. 1579 for (unsigned i = 0;; ++i) 1580 if (Ops[i] == AddRec) { 1581 Ops[i] = NewRec; 1582 break; 1583 } 1584 return getAddExpr(Ops); 1585 } 1586 1587 // Okay, if there weren't any loop invariants to be folded, check to see if 1588 // there are multiple AddRec's with the same loop induction variable being 1589 // added together. If so, we can fold them. 1590 for (unsigned OtherIdx = Idx+1; 1591 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1592 if (OtherIdx != Idx) { 1593 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1594 if (AddRecLoop == OtherAddRec->getLoop()) { 1595 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1596 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1597 AddRec->op_end()); 1598 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1599 if (i >= NewOps.size()) { 1600 NewOps.append(OtherAddRec->op_begin()+i, 1601 OtherAddRec->op_end()); 1602 break; 1603 } 1604 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1605 } 1606 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop); 1607 1608 if (Ops.size() == 2) return NewAddRec; 1609 1610 Ops.erase(Ops.begin()+Idx); 1611 Ops.erase(Ops.begin()+OtherIdx-1); 1612 Ops.push_back(NewAddRec); 1613 return getAddExpr(Ops); 1614 } 1615 } 1616 1617 // Otherwise couldn't fold anything into this recurrence. Move onto the 1618 // next one. 1619 } 1620 1621 // Okay, it looks like we really DO need an add expr. Check to see if we 1622 // already have one, otherwise create a new one. 1623 FoldingSetNodeID ID; 1624 ID.AddInteger(scAddExpr); 1625 ID.AddInteger(Ops.size()); 1626 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1627 ID.AddPointer(Ops[i]); 1628 void *IP = 0; 1629 SCEVAddExpr *S = 1630 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1631 if (!S) { 1632 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1633 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1634 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1635 O, Ops.size()); 1636 UniqueSCEVs.InsertNode(S, IP); 1637 } 1638 if (HasNUW) S->setHasNoUnsignedWrap(true); 1639 if (HasNSW) S->setHasNoSignedWrap(true); 1640 return S; 1641 } 1642 1643 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1644 /// possible. 1645 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1646 bool HasNUW, bool HasNSW) { 1647 assert(!Ops.empty() && "Cannot get empty mul!"); 1648 if (Ops.size() == 1) return Ops[0]; 1649 #ifndef NDEBUG 1650 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1651 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1652 getEffectiveSCEVType(Ops[0]->getType()) && 1653 "SCEVMulExpr operand types don't match!"); 1654 #endif 1655 1656 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1657 if (!HasNUW && HasNSW) { 1658 bool All = true; 1659 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1660 if (!isKnownNonNegative(Ops[i])) { 1661 All = false; 1662 break; 1663 } 1664 if (All) HasNUW = true; 1665 } 1666 1667 // Sort by complexity, this groups all similar expression types together. 1668 GroupByComplexity(Ops, LI); 1669 1670 // If there are any constants, fold them together. 1671 unsigned Idx = 0; 1672 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1673 1674 // C1*(C2+V) -> C1*C2 + C1*V 1675 if (Ops.size() == 2) 1676 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1677 if (Add->getNumOperands() == 2 && 1678 isa<SCEVConstant>(Add->getOperand(0))) 1679 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1680 getMulExpr(LHSC, Add->getOperand(1))); 1681 1682 ++Idx; 1683 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1684 // We found two constants, fold them together! 1685 ConstantInt *Fold = ConstantInt::get(getContext(), 1686 LHSC->getValue()->getValue() * 1687 RHSC->getValue()->getValue()); 1688 Ops[0] = getConstant(Fold); 1689 Ops.erase(Ops.begin()+1); // Erase the folded element 1690 if (Ops.size() == 1) return Ops[0]; 1691 LHSC = cast<SCEVConstant>(Ops[0]); 1692 } 1693 1694 // If we are left with a constant one being multiplied, strip it off. 1695 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1696 Ops.erase(Ops.begin()); 1697 --Idx; 1698 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1699 // If we have a multiply of zero, it will always be zero. 1700 return Ops[0]; 1701 } else if (Ops[0]->isAllOnesValue()) { 1702 // If we have a mul by -1 of an add, try distributing the -1 among the 1703 // add operands. 1704 if (Ops.size() == 2) 1705 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1706 SmallVector<const SCEV *, 4> NewOps; 1707 bool AnyFolded = false; 1708 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1709 I != E; ++I) { 1710 const SCEV *Mul = getMulExpr(Ops[0], *I); 1711 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1712 NewOps.push_back(Mul); 1713 } 1714 if (AnyFolded) 1715 return getAddExpr(NewOps); 1716 } 1717 } 1718 1719 if (Ops.size() == 1) 1720 return Ops[0]; 1721 } 1722 1723 // Skip over the add expression until we get to a multiply. 1724 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1725 ++Idx; 1726 1727 // If there are mul operands inline them all into this expression. 1728 if (Idx < Ops.size()) { 1729 bool DeletedMul = false; 1730 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1731 // If we have an mul, expand the mul operands onto the end of the operands 1732 // list. 1733 Ops.erase(Ops.begin()+Idx); 1734 Ops.append(Mul->op_begin(), Mul->op_end()); 1735 DeletedMul = true; 1736 } 1737 1738 // If we deleted at least one mul, we added operands to the end of the list, 1739 // and they are not necessarily sorted. Recurse to resort and resimplify 1740 // any operands we just acquired. 1741 if (DeletedMul) 1742 return getMulExpr(Ops); 1743 } 1744 1745 // If there are any add recurrences in the operands list, see if any other 1746 // added values are loop invariant. If so, we can fold them into the 1747 // recurrence. 1748 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1749 ++Idx; 1750 1751 // Scan over all recurrences, trying to fold loop invariants into them. 1752 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1753 // Scan all of the other operands to this mul and add them to the vector if 1754 // they are loop invariant w.r.t. the recurrence. 1755 SmallVector<const SCEV *, 8> LIOps; 1756 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1757 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1758 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1759 LIOps.push_back(Ops[i]); 1760 Ops.erase(Ops.begin()+i); 1761 --i; --e; 1762 } 1763 1764 // If we found some loop invariants, fold them into the recurrence. 1765 if (!LIOps.empty()) { 1766 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1767 SmallVector<const SCEV *, 4> NewOps; 1768 NewOps.reserve(AddRec->getNumOperands()); 1769 const SCEV *Scale = getMulExpr(LIOps); 1770 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1771 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1772 1773 // Build the new addrec. Propagate the NUW and NSW flags if both the 1774 // outer mul and the inner addrec are guaranteed to have no overflow. 1775 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), 1776 HasNUW && AddRec->hasNoUnsignedWrap(), 1777 HasNSW && AddRec->hasNoSignedWrap()); 1778 1779 // If all of the other operands were loop invariant, we are done. 1780 if (Ops.size() == 1) return NewRec; 1781 1782 // Otherwise, multiply the folded AddRec by the non-liv parts. 1783 for (unsigned i = 0;; ++i) 1784 if (Ops[i] == AddRec) { 1785 Ops[i] = NewRec; 1786 break; 1787 } 1788 return getMulExpr(Ops); 1789 } 1790 1791 // Okay, if there weren't any loop invariants to be folded, check to see if 1792 // there are multiple AddRec's with the same loop induction variable being 1793 // multiplied together. If so, we can fold them. 1794 for (unsigned OtherIdx = Idx+1; 1795 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1796 if (OtherIdx != Idx) { 1797 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1798 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1799 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1800 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1801 const SCEV *NewStart = getMulExpr(F->getStart(), 1802 G->getStart()); 1803 const SCEV *B = F->getStepRecurrence(*this); 1804 const SCEV *D = G->getStepRecurrence(*this); 1805 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1806 getMulExpr(G, B), 1807 getMulExpr(B, D)); 1808 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1809 F->getLoop()); 1810 if (Ops.size() == 2) return NewAddRec; 1811 1812 Ops.erase(Ops.begin()+Idx); 1813 Ops.erase(Ops.begin()+OtherIdx-1); 1814 Ops.push_back(NewAddRec); 1815 return getMulExpr(Ops); 1816 } 1817 } 1818 1819 // Otherwise couldn't fold anything into this recurrence. Move onto the 1820 // next one. 1821 } 1822 1823 // Okay, it looks like we really DO need an mul expr. Check to see if we 1824 // already have one, otherwise create a new one. 1825 FoldingSetNodeID ID; 1826 ID.AddInteger(scMulExpr); 1827 ID.AddInteger(Ops.size()); 1828 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1829 ID.AddPointer(Ops[i]); 1830 void *IP = 0; 1831 SCEVMulExpr *S = 1832 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1833 if (!S) { 1834 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1835 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1836 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 1837 O, Ops.size()); 1838 UniqueSCEVs.InsertNode(S, IP); 1839 } 1840 if (HasNUW) S->setHasNoUnsignedWrap(true); 1841 if (HasNSW) S->setHasNoSignedWrap(true); 1842 return S; 1843 } 1844 1845 /// getUDivExpr - Get a canonical unsigned division expression, or something 1846 /// simpler if possible. 1847 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1848 const SCEV *RHS) { 1849 assert(getEffectiveSCEVType(LHS->getType()) == 1850 getEffectiveSCEVType(RHS->getType()) && 1851 "SCEVUDivExpr operand types don't match!"); 1852 1853 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1854 if (RHSC->getValue()->equalsInt(1)) 1855 return LHS; // X udiv 1 --> x 1856 // If the denominator is zero, the result of the udiv is undefined. Don't 1857 // try to analyze it, because the resolution chosen here may differ from 1858 // the resolution chosen in other parts of the compiler. 1859 if (!RHSC->getValue()->isZero()) { 1860 // Determine if the division can be folded into the operands of 1861 // its operands. 1862 // TODO: Generalize this to non-constants by using known-bits information. 1863 const Type *Ty = LHS->getType(); 1864 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1865 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1866 // For non-power-of-two values, effectively round the value up to the 1867 // nearest power of two. 1868 if (!RHSC->getValue()->getValue().isPowerOf2()) 1869 ++MaxShiftAmt; 1870 const IntegerType *ExtTy = 1871 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1872 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1873 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1874 if (const SCEVConstant *Step = 1875 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1876 if (!Step->getValue()->getValue() 1877 .urem(RHSC->getValue()->getValue()) && 1878 getZeroExtendExpr(AR, ExtTy) == 1879 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1880 getZeroExtendExpr(Step, ExtTy), 1881 AR->getLoop())) { 1882 SmallVector<const SCEV *, 4> Operands; 1883 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1884 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1885 return getAddRecExpr(Operands, AR->getLoop()); 1886 } 1887 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1888 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1889 SmallVector<const SCEV *, 4> Operands; 1890 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1891 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1892 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1893 // Find an operand that's safely divisible. 1894 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1895 const SCEV *Op = M->getOperand(i); 1896 const SCEV *Div = getUDivExpr(Op, RHSC); 1897 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1898 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 1899 M->op_end()); 1900 Operands[i] = Div; 1901 return getMulExpr(Operands); 1902 } 1903 } 1904 } 1905 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1906 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1907 SmallVector<const SCEV *, 4> Operands; 1908 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1909 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1910 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1911 Operands.clear(); 1912 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1913 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1914 if (isa<SCEVUDivExpr>(Op) || 1915 getMulExpr(Op, RHS) != A->getOperand(i)) 1916 break; 1917 Operands.push_back(Op); 1918 } 1919 if (Operands.size() == A->getNumOperands()) 1920 return getAddExpr(Operands); 1921 } 1922 } 1923 1924 // Fold if both operands are constant. 1925 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1926 Constant *LHSCV = LHSC->getValue(); 1927 Constant *RHSCV = RHSC->getValue(); 1928 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1929 RHSCV))); 1930 } 1931 } 1932 } 1933 1934 FoldingSetNodeID ID; 1935 ID.AddInteger(scUDivExpr); 1936 ID.AddPointer(LHS); 1937 ID.AddPointer(RHS); 1938 void *IP = 0; 1939 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1940 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 1941 LHS, RHS); 1942 UniqueSCEVs.InsertNode(S, IP); 1943 return S; 1944 } 1945 1946 1947 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1948 /// Simplify the expression as much as possible. 1949 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1950 const SCEV *Step, const Loop *L, 1951 bool HasNUW, bool HasNSW) { 1952 SmallVector<const SCEV *, 4> Operands; 1953 Operands.push_back(Start); 1954 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1955 if (StepChrec->getLoop() == L) { 1956 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 1957 return getAddRecExpr(Operands, L); 1958 } 1959 1960 Operands.push_back(Step); 1961 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 1962 } 1963 1964 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1965 /// Simplify the expression as much as possible. 1966 const SCEV * 1967 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 1968 const Loop *L, 1969 bool HasNUW, bool HasNSW) { 1970 if (Operands.size() == 1) return Operands[0]; 1971 #ifndef NDEBUG 1972 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1973 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1974 getEffectiveSCEVType(Operands[0]->getType()) && 1975 "SCEVAddRecExpr operand types don't match!"); 1976 #endif 1977 1978 if (Operands.back()->isZero()) { 1979 Operands.pop_back(); 1980 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 1981 } 1982 1983 // It's tempting to want to call getMaxBackedgeTakenCount count here and 1984 // use that information to infer NUW and NSW flags. However, computing a 1985 // BE count requires calling getAddRecExpr, so we may not yet have a 1986 // meaningful BE count at this point (and if we don't, we'd be stuck 1987 // with a SCEVCouldNotCompute as the cached BE count). 1988 1989 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1990 if (!HasNUW && HasNSW) { 1991 bool All = true; 1992 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1993 if (!isKnownNonNegative(Operands[i])) { 1994 All = false; 1995 break; 1996 } 1997 if (All) HasNUW = true; 1998 } 1999 2000 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2001 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2002 const Loop *NestedLoop = NestedAR->getLoop(); 2003 if (L->contains(NestedLoop->getHeader()) ? 2004 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2005 (!NestedLoop->contains(L->getHeader()) && 2006 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2007 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2008 NestedAR->op_end()); 2009 Operands[0] = NestedAR->getStart(); 2010 // AddRecs require their operands be loop-invariant with respect to their 2011 // loops. Don't perform this transformation if it would break this 2012 // requirement. 2013 bool AllInvariant = true; 2014 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2015 if (!Operands[i]->isLoopInvariant(L)) { 2016 AllInvariant = false; 2017 break; 2018 } 2019 if (AllInvariant) { 2020 NestedOperands[0] = getAddRecExpr(Operands, L); 2021 AllInvariant = true; 2022 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2023 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 2024 AllInvariant = false; 2025 break; 2026 } 2027 if (AllInvariant) 2028 // Ok, both add recurrences are valid after the transformation. 2029 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2030 } 2031 // Reset Operands to its original state. 2032 Operands[0] = NestedAR; 2033 } 2034 } 2035 2036 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2037 // already have one, otherwise create a new one. 2038 FoldingSetNodeID ID; 2039 ID.AddInteger(scAddRecExpr); 2040 ID.AddInteger(Operands.size()); 2041 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2042 ID.AddPointer(Operands[i]); 2043 ID.AddPointer(L); 2044 void *IP = 0; 2045 SCEVAddRecExpr *S = 2046 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2047 if (!S) { 2048 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2049 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2050 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2051 O, Operands.size(), L); 2052 UniqueSCEVs.InsertNode(S, IP); 2053 } 2054 if (HasNUW) S->setHasNoUnsignedWrap(true); 2055 if (HasNSW) S->setHasNoSignedWrap(true); 2056 return S; 2057 } 2058 2059 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2060 const SCEV *RHS) { 2061 SmallVector<const SCEV *, 2> Ops; 2062 Ops.push_back(LHS); 2063 Ops.push_back(RHS); 2064 return getSMaxExpr(Ops); 2065 } 2066 2067 const SCEV * 2068 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2069 assert(!Ops.empty() && "Cannot get empty smax!"); 2070 if (Ops.size() == 1) return Ops[0]; 2071 #ifndef NDEBUG 2072 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2073 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2074 getEffectiveSCEVType(Ops[0]->getType()) && 2075 "SCEVSMaxExpr operand types don't match!"); 2076 #endif 2077 2078 // Sort by complexity, this groups all similar expression types together. 2079 GroupByComplexity(Ops, LI); 2080 2081 // If there are any constants, fold them together. 2082 unsigned Idx = 0; 2083 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2084 ++Idx; 2085 assert(Idx < Ops.size()); 2086 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2087 // We found two constants, fold them together! 2088 ConstantInt *Fold = ConstantInt::get(getContext(), 2089 APIntOps::smax(LHSC->getValue()->getValue(), 2090 RHSC->getValue()->getValue())); 2091 Ops[0] = getConstant(Fold); 2092 Ops.erase(Ops.begin()+1); // Erase the folded element 2093 if (Ops.size() == 1) return Ops[0]; 2094 LHSC = cast<SCEVConstant>(Ops[0]); 2095 } 2096 2097 // If we are left with a constant minimum-int, strip it off. 2098 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2099 Ops.erase(Ops.begin()); 2100 --Idx; 2101 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2102 // If we have an smax with a constant maximum-int, it will always be 2103 // maximum-int. 2104 return Ops[0]; 2105 } 2106 2107 if (Ops.size() == 1) return Ops[0]; 2108 } 2109 2110 // Find the first SMax 2111 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2112 ++Idx; 2113 2114 // Check to see if one of the operands is an SMax. If so, expand its operands 2115 // onto our operand list, and recurse to simplify. 2116 if (Idx < Ops.size()) { 2117 bool DeletedSMax = false; 2118 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2119 Ops.erase(Ops.begin()+Idx); 2120 Ops.append(SMax->op_begin(), SMax->op_end()); 2121 DeletedSMax = true; 2122 } 2123 2124 if (DeletedSMax) 2125 return getSMaxExpr(Ops); 2126 } 2127 2128 // Okay, check to see if the same value occurs in the operand list twice. If 2129 // so, delete one. Since we sorted the list, these values are required to 2130 // be adjacent. 2131 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2132 // X smax Y smax Y --> X smax Y 2133 // X smax Y --> X, if X is always greater than Y 2134 if (Ops[i] == Ops[i+1] || 2135 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2136 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2137 --i; --e; 2138 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2139 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2140 --i; --e; 2141 } 2142 2143 if (Ops.size() == 1) return Ops[0]; 2144 2145 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2146 2147 // Okay, it looks like we really DO need an smax expr. Check to see if we 2148 // already have one, otherwise create a new one. 2149 FoldingSetNodeID ID; 2150 ID.AddInteger(scSMaxExpr); 2151 ID.AddInteger(Ops.size()); 2152 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2153 ID.AddPointer(Ops[i]); 2154 void *IP = 0; 2155 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2156 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2157 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2158 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2159 O, Ops.size()); 2160 UniqueSCEVs.InsertNode(S, IP); 2161 return S; 2162 } 2163 2164 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2165 const SCEV *RHS) { 2166 SmallVector<const SCEV *, 2> Ops; 2167 Ops.push_back(LHS); 2168 Ops.push_back(RHS); 2169 return getUMaxExpr(Ops); 2170 } 2171 2172 const SCEV * 2173 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2174 assert(!Ops.empty() && "Cannot get empty umax!"); 2175 if (Ops.size() == 1) return Ops[0]; 2176 #ifndef NDEBUG 2177 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2178 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2179 getEffectiveSCEVType(Ops[0]->getType()) && 2180 "SCEVUMaxExpr operand types don't match!"); 2181 #endif 2182 2183 // Sort by complexity, this groups all similar expression types together. 2184 GroupByComplexity(Ops, LI); 2185 2186 // If there are any constants, fold them together. 2187 unsigned Idx = 0; 2188 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2189 ++Idx; 2190 assert(Idx < Ops.size()); 2191 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2192 // We found two constants, fold them together! 2193 ConstantInt *Fold = ConstantInt::get(getContext(), 2194 APIntOps::umax(LHSC->getValue()->getValue(), 2195 RHSC->getValue()->getValue())); 2196 Ops[0] = getConstant(Fold); 2197 Ops.erase(Ops.begin()+1); // Erase the folded element 2198 if (Ops.size() == 1) return Ops[0]; 2199 LHSC = cast<SCEVConstant>(Ops[0]); 2200 } 2201 2202 // If we are left with a constant minimum-int, strip it off. 2203 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2204 Ops.erase(Ops.begin()); 2205 --Idx; 2206 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2207 // If we have an umax with a constant maximum-int, it will always be 2208 // maximum-int. 2209 return Ops[0]; 2210 } 2211 2212 if (Ops.size() == 1) return Ops[0]; 2213 } 2214 2215 // Find the first UMax 2216 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2217 ++Idx; 2218 2219 // Check to see if one of the operands is a UMax. If so, expand its operands 2220 // onto our operand list, and recurse to simplify. 2221 if (Idx < Ops.size()) { 2222 bool DeletedUMax = false; 2223 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2224 Ops.erase(Ops.begin()+Idx); 2225 Ops.append(UMax->op_begin(), UMax->op_end()); 2226 DeletedUMax = true; 2227 } 2228 2229 if (DeletedUMax) 2230 return getUMaxExpr(Ops); 2231 } 2232 2233 // Okay, check to see if the same value occurs in the operand list twice. If 2234 // so, delete one. Since we sorted the list, these values are required to 2235 // be adjacent. 2236 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2237 // X umax Y umax Y --> X umax Y 2238 // X umax Y --> X, if X is always greater than Y 2239 if (Ops[i] == Ops[i+1] || 2240 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2241 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2242 --i; --e; 2243 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2244 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2245 --i; --e; 2246 } 2247 2248 if (Ops.size() == 1) return Ops[0]; 2249 2250 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2251 2252 // Okay, it looks like we really DO need a umax expr. Check to see if we 2253 // already have one, otherwise create a new one. 2254 FoldingSetNodeID ID; 2255 ID.AddInteger(scUMaxExpr); 2256 ID.AddInteger(Ops.size()); 2257 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2258 ID.AddPointer(Ops[i]); 2259 void *IP = 0; 2260 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2261 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2262 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2263 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2264 O, Ops.size()); 2265 UniqueSCEVs.InsertNode(S, IP); 2266 return S; 2267 } 2268 2269 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2270 const SCEV *RHS) { 2271 // ~smax(~x, ~y) == smin(x, y). 2272 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2273 } 2274 2275 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2276 const SCEV *RHS) { 2277 // ~umax(~x, ~y) == umin(x, y) 2278 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2279 } 2280 2281 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2282 // If we have TargetData, we can bypass creating a target-independent 2283 // constant expression and then folding it back into a ConstantInt. 2284 // This is just a compile-time optimization. 2285 if (TD) 2286 return getConstant(TD->getIntPtrType(getContext()), 2287 TD->getTypeAllocSize(AllocTy)); 2288 2289 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2290 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2291 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2292 C = Folded; 2293 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2294 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2295 } 2296 2297 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2298 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2299 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2300 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2301 C = Folded; 2302 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2303 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2304 } 2305 2306 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2307 unsigned FieldNo) { 2308 // If we have TargetData, we can bypass creating a target-independent 2309 // constant expression and then folding it back into a ConstantInt. 2310 // This is just a compile-time optimization. 2311 if (TD) 2312 return getConstant(TD->getIntPtrType(getContext()), 2313 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2314 2315 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2316 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2317 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2318 C = Folded; 2319 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2320 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2321 } 2322 2323 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2324 Constant *FieldNo) { 2325 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2326 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2327 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD)) 2328 C = Folded; 2329 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2330 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2331 } 2332 2333 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2334 // Don't attempt to do anything other than create a SCEVUnknown object 2335 // here. createSCEV only calls getUnknown after checking for all other 2336 // interesting possibilities, and any other code that calls getUnknown 2337 // is doing so in order to hide a value from SCEV canonicalization. 2338 2339 FoldingSetNodeID ID; 2340 ID.AddInteger(scUnknown); 2341 ID.AddPointer(V); 2342 void *IP = 0; 2343 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2344 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V); 2345 UniqueSCEVs.InsertNode(S, IP); 2346 return S; 2347 } 2348 2349 //===----------------------------------------------------------------------===// 2350 // Basic SCEV Analysis and PHI Idiom Recognition Code 2351 // 2352 2353 /// isSCEVable - Test if values of the given type are analyzable within 2354 /// the SCEV framework. This primarily includes integer types, and it 2355 /// can optionally include pointer types if the ScalarEvolution class 2356 /// has access to target-specific information. 2357 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2358 // Integers and pointers are always SCEVable. 2359 return Ty->isIntegerTy() || Ty->isPointerTy(); 2360 } 2361 2362 /// getTypeSizeInBits - Return the size in bits of the specified type, 2363 /// for which isSCEVable must return true. 2364 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2365 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2366 2367 // If we have a TargetData, use it! 2368 if (TD) 2369 return TD->getTypeSizeInBits(Ty); 2370 2371 // Integer types have fixed sizes. 2372 if (Ty->isIntegerTy()) 2373 return Ty->getPrimitiveSizeInBits(); 2374 2375 // The only other support type is pointer. Without TargetData, conservatively 2376 // assume pointers are 64-bit. 2377 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2378 return 64; 2379 } 2380 2381 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2382 /// the given type and which represents how SCEV will treat the given 2383 /// type, for which isSCEVable must return true. For pointer types, 2384 /// this is the pointer-sized integer type. 2385 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2386 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2387 2388 if (Ty->isIntegerTy()) 2389 return Ty; 2390 2391 // The only other support type is pointer. 2392 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2393 if (TD) return TD->getIntPtrType(getContext()); 2394 2395 // Without TargetData, conservatively assume pointers are 64-bit. 2396 return Type::getInt64Ty(getContext()); 2397 } 2398 2399 const SCEV *ScalarEvolution::getCouldNotCompute() { 2400 return &CouldNotCompute; 2401 } 2402 2403 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2404 /// expression and create a new one. 2405 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2406 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2407 2408 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); 2409 if (I != Scalars.end()) return I->second; 2410 const SCEV *S = createSCEV(V); 2411 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2412 return S; 2413 } 2414 2415 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2416 /// 2417 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2418 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2419 return getConstant( 2420 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2421 2422 const Type *Ty = V->getType(); 2423 Ty = getEffectiveSCEVType(Ty); 2424 return getMulExpr(V, 2425 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2426 } 2427 2428 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2429 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2430 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2431 return getConstant( 2432 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2433 2434 const Type *Ty = V->getType(); 2435 Ty = getEffectiveSCEVType(Ty); 2436 const SCEV *AllOnes = 2437 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2438 return getMinusSCEV(AllOnes, V); 2439 } 2440 2441 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2442 /// 2443 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2444 const SCEV *RHS) { 2445 // X - Y --> X + -Y 2446 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2447 } 2448 2449 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2450 /// input value to the specified type. If the type must be extended, it is zero 2451 /// extended. 2452 const SCEV * 2453 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2454 const Type *Ty) { 2455 const Type *SrcTy = V->getType(); 2456 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2457 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2458 "Cannot truncate or zero extend with non-integer arguments!"); 2459 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2460 return V; // No conversion 2461 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2462 return getTruncateExpr(V, Ty); 2463 return getZeroExtendExpr(V, Ty); 2464 } 2465 2466 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2467 /// input value to the specified type. If the type must be extended, it is sign 2468 /// extended. 2469 const SCEV * 2470 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2471 const Type *Ty) { 2472 const Type *SrcTy = V->getType(); 2473 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2474 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2475 "Cannot truncate or zero extend with non-integer arguments!"); 2476 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2477 return V; // No conversion 2478 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2479 return getTruncateExpr(V, Ty); 2480 return getSignExtendExpr(V, Ty); 2481 } 2482 2483 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2484 /// input value to the specified type. If the type must be extended, it is zero 2485 /// extended. The conversion must not be narrowing. 2486 const SCEV * 2487 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2488 const Type *SrcTy = V->getType(); 2489 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2490 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2491 "Cannot noop or zero extend with non-integer arguments!"); 2492 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2493 "getNoopOrZeroExtend cannot truncate!"); 2494 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2495 return V; // No conversion 2496 return getZeroExtendExpr(V, Ty); 2497 } 2498 2499 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2500 /// input value to the specified type. If the type must be extended, it is sign 2501 /// extended. The conversion must not be narrowing. 2502 const SCEV * 2503 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2504 const Type *SrcTy = V->getType(); 2505 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2506 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2507 "Cannot noop or sign extend with non-integer arguments!"); 2508 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2509 "getNoopOrSignExtend cannot truncate!"); 2510 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2511 return V; // No conversion 2512 return getSignExtendExpr(V, Ty); 2513 } 2514 2515 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2516 /// the input value to the specified type. If the type must be extended, 2517 /// it is extended with unspecified bits. The conversion must not be 2518 /// narrowing. 2519 const SCEV * 2520 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2521 const Type *SrcTy = V->getType(); 2522 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2523 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2524 "Cannot noop or any extend with non-integer arguments!"); 2525 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2526 "getNoopOrAnyExtend cannot truncate!"); 2527 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2528 return V; // No conversion 2529 return getAnyExtendExpr(V, Ty); 2530 } 2531 2532 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2533 /// input value to the specified type. The conversion must not be widening. 2534 const SCEV * 2535 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2536 const Type *SrcTy = V->getType(); 2537 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2538 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2539 "Cannot truncate or noop with non-integer arguments!"); 2540 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2541 "getTruncateOrNoop cannot extend!"); 2542 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2543 return V; // No conversion 2544 return getTruncateExpr(V, Ty); 2545 } 2546 2547 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2548 /// the types using zero-extension, and then perform a umax operation 2549 /// with them. 2550 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2551 const SCEV *RHS) { 2552 const SCEV *PromotedLHS = LHS; 2553 const SCEV *PromotedRHS = RHS; 2554 2555 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2556 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2557 else 2558 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2559 2560 return getUMaxExpr(PromotedLHS, PromotedRHS); 2561 } 2562 2563 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2564 /// the types using zero-extension, and then perform a umin operation 2565 /// with them. 2566 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2567 const SCEV *RHS) { 2568 const SCEV *PromotedLHS = LHS; 2569 const SCEV *PromotedRHS = RHS; 2570 2571 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2572 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2573 else 2574 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2575 2576 return getUMinExpr(PromotedLHS, PromotedRHS); 2577 } 2578 2579 /// PushDefUseChildren - Push users of the given Instruction 2580 /// onto the given Worklist. 2581 static void 2582 PushDefUseChildren(Instruction *I, 2583 SmallVectorImpl<Instruction *> &Worklist) { 2584 // Push the def-use children onto the Worklist stack. 2585 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2586 UI != UE; ++UI) 2587 Worklist.push_back(cast<Instruction>(UI)); 2588 } 2589 2590 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2591 /// instructions that depend on the given instruction and removes them from 2592 /// the Scalars map if they reference SymName. This is used during PHI 2593 /// resolution. 2594 void 2595 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2596 SmallVector<Instruction *, 16> Worklist; 2597 PushDefUseChildren(PN, Worklist); 2598 2599 SmallPtrSet<Instruction *, 8> Visited; 2600 Visited.insert(PN); 2601 while (!Worklist.empty()) { 2602 Instruction *I = Worklist.pop_back_val(); 2603 if (!Visited.insert(I)) continue; 2604 2605 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 2606 Scalars.find(static_cast<Value *>(I)); 2607 if (It != Scalars.end()) { 2608 // Short-circuit the def-use traversal if the symbolic name 2609 // ceases to appear in expressions. 2610 if (It->second != SymName && !It->second->hasOperand(SymName)) 2611 continue; 2612 2613 // SCEVUnknown for a PHI either means that it has an unrecognized 2614 // structure, it's a PHI that's in the progress of being computed 2615 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2616 // additional loop trip count information isn't going to change anything. 2617 // In the second case, createNodeForPHI will perform the necessary 2618 // updates on its own when it gets to that point. In the third, we do 2619 // want to forget the SCEVUnknown. 2620 if (!isa<PHINode>(I) || 2621 !isa<SCEVUnknown>(It->second) || 2622 (I != PN && It->second == SymName)) { 2623 ValuesAtScopes.erase(It->second); 2624 Scalars.erase(It); 2625 } 2626 } 2627 2628 PushDefUseChildren(I, Worklist); 2629 } 2630 } 2631 2632 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2633 /// a loop header, making it a potential recurrence, or it doesn't. 2634 /// 2635 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2636 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2637 if (L->getHeader() == PN->getParent()) { 2638 // The loop may have multiple entrances or multiple exits; we can analyze 2639 // this phi as an addrec if it has a unique entry value and a unique 2640 // backedge value. 2641 Value *BEValueV = 0, *StartValueV = 0; 2642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2643 Value *V = PN->getIncomingValue(i); 2644 if (L->contains(PN->getIncomingBlock(i))) { 2645 if (!BEValueV) { 2646 BEValueV = V; 2647 } else if (BEValueV != V) { 2648 BEValueV = 0; 2649 break; 2650 } 2651 } else if (!StartValueV) { 2652 StartValueV = V; 2653 } else if (StartValueV != V) { 2654 StartValueV = 0; 2655 break; 2656 } 2657 } 2658 if (BEValueV && StartValueV) { 2659 // While we are analyzing this PHI node, handle its value symbolically. 2660 const SCEV *SymbolicName = getUnknown(PN); 2661 assert(Scalars.find(PN) == Scalars.end() && 2662 "PHI node already processed?"); 2663 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2664 2665 // Using this symbolic name for the PHI, analyze the value coming around 2666 // the back-edge. 2667 const SCEV *BEValue = getSCEV(BEValueV); 2668 2669 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2670 // has a special value for the first iteration of the loop. 2671 2672 // If the value coming around the backedge is an add with the symbolic 2673 // value we just inserted, then we found a simple induction variable! 2674 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2675 // If there is a single occurrence of the symbolic value, replace it 2676 // with a recurrence. 2677 unsigned FoundIndex = Add->getNumOperands(); 2678 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2679 if (Add->getOperand(i) == SymbolicName) 2680 if (FoundIndex == e) { 2681 FoundIndex = i; 2682 break; 2683 } 2684 2685 if (FoundIndex != Add->getNumOperands()) { 2686 // Create an add with everything but the specified operand. 2687 SmallVector<const SCEV *, 8> Ops; 2688 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2689 if (i != FoundIndex) 2690 Ops.push_back(Add->getOperand(i)); 2691 const SCEV *Accum = getAddExpr(Ops); 2692 2693 // This is not a valid addrec if the step amount is varying each 2694 // loop iteration, but is not itself an addrec in this loop. 2695 if (Accum->isLoopInvariant(L) || 2696 (isa<SCEVAddRecExpr>(Accum) && 2697 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2698 bool HasNUW = false; 2699 bool HasNSW = false; 2700 2701 // If the increment doesn't overflow, then neither the addrec nor 2702 // the post-increment will overflow. 2703 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2704 if (OBO->hasNoUnsignedWrap()) 2705 HasNUW = true; 2706 if (OBO->hasNoSignedWrap()) 2707 HasNSW = true; 2708 } 2709 2710 const SCEV *StartVal = getSCEV(StartValueV); 2711 const SCEV *PHISCEV = 2712 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2713 2714 // Since the no-wrap flags are on the increment, they apply to the 2715 // post-incremented value as well. 2716 if (Accum->isLoopInvariant(L)) 2717 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2718 Accum, L, HasNUW, HasNSW); 2719 2720 // Okay, for the entire analysis of this edge we assumed the PHI 2721 // to be symbolic. We now need to go back and purge all of the 2722 // entries for the scalars that use the symbolic expression. 2723 ForgetSymbolicName(PN, SymbolicName); 2724 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2725 return PHISCEV; 2726 } 2727 } 2728 } else if (const SCEVAddRecExpr *AddRec = 2729 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2730 // Otherwise, this could be a loop like this: 2731 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2732 // In this case, j = {1,+,1} and BEValue is j. 2733 // Because the other in-value of i (0) fits the evolution of BEValue 2734 // i really is an addrec evolution. 2735 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2736 const SCEV *StartVal = getSCEV(StartValueV); 2737 2738 // If StartVal = j.start - j.stride, we can use StartVal as the 2739 // initial step of the addrec evolution. 2740 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2741 AddRec->getOperand(1))) { 2742 const SCEV *PHISCEV = 2743 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2744 2745 // Okay, for the entire analysis of this edge we assumed the PHI 2746 // to be symbolic. We now need to go back and purge all of the 2747 // entries for the scalars that use the symbolic expression. 2748 ForgetSymbolicName(PN, SymbolicName); 2749 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2750 return PHISCEV; 2751 } 2752 } 2753 } 2754 } 2755 } 2756 2757 // If the PHI has a single incoming value, follow that value, unless the 2758 // PHI's incoming blocks are in a different loop, in which case doing so 2759 // risks breaking LCSSA form. Instcombine would normally zap these, but 2760 // it doesn't have DominatorTree information, so it may miss cases. 2761 if (Value *V = PN->hasConstantValue(DT)) { 2762 bool AllSameLoop = true; 2763 Loop *PNLoop = LI->getLoopFor(PN->getParent()); 2764 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2765 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) { 2766 AllSameLoop = false; 2767 break; 2768 } 2769 if (AllSameLoop) 2770 return getSCEV(V); 2771 } 2772 2773 // If it's not a loop phi, we can't handle it yet. 2774 return getUnknown(PN); 2775 } 2776 2777 /// createNodeForGEP - Expand GEP instructions into add and multiply 2778 /// operations. This allows them to be analyzed by regular SCEV code. 2779 /// 2780 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2781 2782 // Don't blindly transfer the inbounds flag from the GEP instruction to the 2783 // Add expression, because the Instruction may be guarded by control flow 2784 // and the no-overflow bits may not be valid for the expression in any 2785 // context. 2786 2787 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2788 Value *Base = GEP->getOperand(0); 2789 // Don't attempt to analyze GEPs over unsized objects. 2790 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2791 return getUnknown(GEP); 2792 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2793 gep_type_iterator GTI = gep_type_begin(GEP); 2794 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2795 E = GEP->op_end(); 2796 I != E; ++I) { 2797 Value *Index = *I; 2798 // Compute the (potentially symbolic) offset in bytes for this index. 2799 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2800 // For a struct, add the member offset. 2801 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2802 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 2803 2804 // Add the field offset to the running total offset. 2805 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2806 } else { 2807 // For an array, add the element offset, explicitly scaled. 2808 const SCEV *ElementSize = getSizeOfExpr(*GTI); 2809 const SCEV *IndexS = getSCEV(Index); 2810 // Getelementptr indices are signed. 2811 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 2812 2813 // Multiply the index by the element size to compute the element offset. 2814 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize); 2815 2816 // Add the element offset to the running total offset. 2817 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2818 } 2819 } 2820 2821 // Get the SCEV for the GEP base. 2822 const SCEV *BaseS = getSCEV(Base); 2823 2824 // Add the total offset from all the GEP indices to the base. 2825 return getAddExpr(BaseS, TotalOffset); 2826 } 2827 2828 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2829 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2830 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2831 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2832 uint32_t 2833 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2834 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2835 return C->getValue()->getValue().countTrailingZeros(); 2836 2837 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2838 return std::min(GetMinTrailingZeros(T->getOperand()), 2839 (uint32_t)getTypeSizeInBits(T->getType())); 2840 2841 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2842 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2843 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2844 getTypeSizeInBits(E->getType()) : OpRes; 2845 } 2846 2847 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2848 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2849 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2850 getTypeSizeInBits(E->getType()) : OpRes; 2851 } 2852 2853 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2854 // The result is the min of all operands results. 2855 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2856 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2857 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2858 return MinOpRes; 2859 } 2860 2861 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2862 // The result is the sum of all operands results. 2863 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2864 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2865 for (unsigned i = 1, e = M->getNumOperands(); 2866 SumOpRes != BitWidth && i != e; ++i) 2867 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2868 BitWidth); 2869 return SumOpRes; 2870 } 2871 2872 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2873 // The result is the min of all operands results. 2874 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2875 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2876 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2877 return MinOpRes; 2878 } 2879 2880 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2881 // The result is the min of all operands results. 2882 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2883 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2884 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2885 return MinOpRes; 2886 } 2887 2888 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2889 // The result is the min of all operands results. 2890 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2891 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2892 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2893 return MinOpRes; 2894 } 2895 2896 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2897 // For a SCEVUnknown, ask ValueTracking. 2898 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2899 APInt Mask = APInt::getAllOnesValue(BitWidth); 2900 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2901 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2902 return Zeros.countTrailingOnes(); 2903 } 2904 2905 // SCEVUDivExpr 2906 return 0; 2907 } 2908 2909 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2910 /// 2911 ConstantRange 2912 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2913 2914 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2915 return ConstantRange(C->getValue()->getValue()); 2916 2917 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2918 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2919 2920 // If the value has known zeros, the maximum unsigned value will have those 2921 // known zeros as well. 2922 uint32_t TZ = GetMinTrailingZeros(S); 2923 if (TZ != 0) 2924 ConservativeResult = 2925 ConstantRange(APInt::getMinValue(BitWidth), 2926 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 2927 2928 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2929 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2930 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2931 X = X.add(getUnsignedRange(Add->getOperand(i))); 2932 return ConservativeResult.intersectWith(X); 2933 } 2934 2935 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2936 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2937 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2938 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2939 return ConservativeResult.intersectWith(X); 2940 } 2941 2942 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2943 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2944 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2945 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2946 return ConservativeResult.intersectWith(X); 2947 } 2948 2949 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2950 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2951 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2952 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2953 return ConservativeResult.intersectWith(X); 2954 } 2955 2956 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2957 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 2958 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 2959 return ConservativeResult.intersectWith(X.udiv(Y)); 2960 } 2961 2962 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2963 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 2964 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 2965 } 2966 2967 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2968 ConstantRange X = getUnsignedRange(SExt->getOperand()); 2969 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 2970 } 2971 2972 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2973 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 2974 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 2975 } 2976 2977 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2978 // If there's no unsigned wrap, the value will never be less than its 2979 // initial value. 2980 if (AddRec->hasNoUnsignedWrap()) 2981 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 2982 if (!C->getValue()->isZero()) 2983 ConservativeResult = 2984 ConservativeResult.intersectWith( 2985 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 2986 2987 // TODO: non-affine addrec 2988 if (AddRec->isAffine()) { 2989 const Type *Ty = AddRec->getType(); 2990 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 2991 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 2992 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 2993 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 2994 2995 const SCEV *Start = AddRec->getStart(); 2996 const SCEV *Step = AddRec->getStepRecurrence(*this); 2997 2998 ConstantRange StartRange = getUnsignedRange(Start); 2999 ConstantRange StepRange = getSignedRange(Step); 3000 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3001 ConstantRange EndRange = 3002 StartRange.add(MaxBECountRange.multiply(StepRange)); 3003 3004 // Check for overflow. This must be done with ConstantRange arithmetic 3005 // because we could be called from within the ScalarEvolution overflow 3006 // checking code. 3007 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3008 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3009 ConstantRange ExtMaxBECountRange = 3010 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3011 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3012 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3013 ExtEndRange) 3014 return ConservativeResult; 3015 3016 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3017 EndRange.getUnsignedMin()); 3018 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3019 EndRange.getUnsignedMax()); 3020 if (Min.isMinValue() && Max.isMaxValue()) 3021 return ConservativeResult; 3022 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3023 } 3024 } 3025 3026 return ConservativeResult; 3027 } 3028 3029 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3030 // For a SCEVUnknown, ask ValueTracking. 3031 APInt Mask = APInt::getAllOnesValue(BitWidth); 3032 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3033 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 3034 if (Ones == ~Zeros + 1) 3035 return ConservativeResult; 3036 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 3037 } 3038 3039 return ConservativeResult; 3040 } 3041 3042 /// getSignedRange - Determine the signed range for a particular SCEV. 3043 /// 3044 ConstantRange 3045 ScalarEvolution::getSignedRange(const SCEV *S) { 3046 3047 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3048 return ConstantRange(C->getValue()->getValue()); 3049 3050 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3051 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3052 3053 // If the value has known zeros, the maximum signed value will have those 3054 // known zeros as well. 3055 uint32_t TZ = GetMinTrailingZeros(S); 3056 if (TZ != 0) 3057 ConservativeResult = 3058 ConstantRange(APInt::getSignedMinValue(BitWidth), 3059 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3060 3061 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3062 ConstantRange X = getSignedRange(Add->getOperand(0)); 3063 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3064 X = X.add(getSignedRange(Add->getOperand(i))); 3065 return ConservativeResult.intersectWith(X); 3066 } 3067 3068 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3069 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3070 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3071 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3072 return ConservativeResult.intersectWith(X); 3073 } 3074 3075 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3076 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3077 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3078 X = X.smax(getSignedRange(SMax->getOperand(i))); 3079 return ConservativeResult.intersectWith(X); 3080 } 3081 3082 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3083 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3084 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3085 X = X.umax(getSignedRange(UMax->getOperand(i))); 3086 return ConservativeResult.intersectWith(X); 3087 } 3088 3089 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3090 ConstantRange X = getSignedRange(UDiv->getLHS()); 3091 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3092 return ConservativeResult.intersectWith(X.udiv(Y)); 3093 } 3094 3095 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3096 ConstantRange X = getSignedRange(ZExt->getOperand()); 3097 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 3098 } 3099 3100 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3101 ConstantRange X = getSignedRange(SExt->getOperand()); 3102 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 3103 } 3104 3105 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3106 ConstantRange X = getSignedRange(Trunc->getOperand()); 3107 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3108 } 3109 3110 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3111 // If there's no signed wrap, and all the operands have the same sign or 3112 // zero, the value won't ever change sign. 3113 if (AddRec->hasNoSignedWrap()) { 3114 bool AllNonNeg = true; 3115 bool AllNonPos = true; 3116 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3117 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3118 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3119 } 3120 if (AllNonNeg) 3121 ConservativeResult = ConservativeResult.intersectWith( 3122 ConstantRange(APInt(BitWidth, 0), 3123 APInt::getSignedMinValue(BitWidth))); 3124 else if (AllNonPos) 3125 ConservativeResult = ConservativeResult.intersectWith( 3126 ConstantRange(APInt::getSignedMinValue(BitWidth), 3127 APInt(BitWidth, 1))); 3128 } 3129 3130 // TODO: non-affine addrec 3131 if (AddRec->isAffine()) { 3132 const Type *Ty = AddRec->getType(); 3133 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3134 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3135 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3136 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3137 3138 const SCEV *Start = AddRec->getStart(); 3139 const SCEV *Step = AddRec->getStepRecurrence(*this); 3140 3141 ConstantRange StartRange = getSignedRange(Start); 3142 ConstantRange StepRange = getSignedRange(Step); 3143 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3144 ConstantRange EndRange = 3145 StartRange.add(MaxBECountRange.multiply(StepRange)); 3146 3147 // Check for overflow. This must be done with ConstantRange arithmetic 3148 // because we could be called from within the ScalarEvolution overflow 3149 // checking code. 3150 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3151 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3152 ConstantRange ExtMaxBECountRange = 3153 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3154 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3155 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3156 ExtEndRange) 3157 return ConservativeResult; 3158 3159 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3160 EndRange.getSignedMin()); 3161 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3162 EndRange.getSignedMax()); 3163 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3164 return ConservativeResult; 3165 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3166 } 3167 } 3168 3169 return ConservativeResult; 3170 } 3171 3172 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3173 // For a SCEVUnknown, ask ValueTracking. 3174 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3175 return ConservativeResult; 3176 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3177 if (NS == 1) 3178 return ConservativeResult; 3179 return ConservativeResult.intersectWith( 3180 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3181 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)); 3182 } 3183 3184 return ConservativeResult; 3185 } 3186 3187 /// createSCEV - We know that there is no SCEV for the specified value. 3188 /// Analyze the expression. 3189 /// 3190 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3191 if (!isSCEVable(V->getType())) 3192 return getUnknown(V); 3193 3194 unsigned Opcode = Instruction::UserOp1; 3195 if (Instruction *I = dyn_cast<Instruction>(V)) { 3196 Opcode = I->getOpcode(); 3197 3198 // Don't attempt to analyze instructions in blocks that aren't 3199 // reachable. Such instructions don't matter, and they aren't required 3200 // to obey basic rules for definitions dominating uses which this 3201 // analysis depends on. 3202 if (!DT->isReachableFromEntry(I->getParent())) 3203 return getUnknown(V); 3204 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3205 Opcode = CE->getOpcode(); 3206 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3207 return getConstant(CI); 3208 else if (isa<ConstantPointerNull>(V)) 3209 return getConstant(V->getType(), 0); 3210 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3211 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3212 else 3213 return getUnknown(V); 3214 3215 Operator *U = cast<Operator>(V); 3216 switch (Opcode) { 3217 case Instruction::Add: 3218 return getAddExpr(getSCEV(U->getOperand(0)), 3219 getSCEV(U->getOperand(1))); 3220 case Instruction::Mul: 3221 return getMulExpr(getSCEV(U->getOperand(0)), 3222 getSCEV(U->getOperand(1))); 3223 case Instruction::UDiv: 3224 return getUDivExpr(getSCEV(U->getOperand(0)), 3225 getSCEV(U->getOperand(1))); 3226 case Instruction::Sub: 3227 return getMinusSCEV(getSCEV(U->getOperand(0)), 3228 getSCEV(U->getOperand(1))); 3229 case Instruction::And: 3230 // For an expression like x&255 that merely masks off the high bits, 3231 // use zext(trunc(x)) as the SCEV expression. 3232 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3233 if (CI->isNullValue()) 3234 return getSCEV(U->getOperand(1)); 3235 if (CI->isAllOnesValue()) 3236 return getSCEV(U->getOperand(0)); 3237 const APInt &A = CI->getValue(); 3238 3239 // Instcombine's ShrinkDemandedConstant may strip bits out of 3240 // constants, obscuring what would otherwise be a low-bits mask. 3241 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3242 // knew about to reconstruct a low-bits mask value. 3243 unsigned LZ = A.countLeadingZeros(); 3244 unsigned BitWidth = A.getBitWidth(); 3245 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3246 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3247 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3248 3249 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3250 3251 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3252 return 3253 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3254 IntegerType::get(getContext(), BitWidth - LZ)), 3255 U->getType()); 3256 } 3257 break; 3258 3259 case Instruction::Or: 3260 // If the RHS of the Or is a constant, we may have something like: 3261 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3262 // optimizations will transparently handle this case. 3263 // 3264 // In order for this transformation to be safe, the LHS must be of the 3265 // form X*(2^n) and the Or constant must be less than 2^n. 3266 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3267 const SCEV *LHS = getSCEV(U->getOperand(0)); 3268 const APInt &CIVal = CI->getValue(); 3269 if (GetMinTrailingZeros(LHS) >= 3270 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3271 // Build a plain add SCEV. 3272 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3273 // If the LHS of the add was an addrec and it has no-wrap flags, 3274 // transfer the no-wrap flags, since an or won't introduce a wrap. 3275 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3276 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3277 if (OldAR->hasNoUnsignedWrap()) 3278 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3279 if (OldAR->hasNoSignedWrap()) 3280 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3281 } 3282 return S; 3283 } 3284 } 3285 break; 3286 case Instruction::Xor: 3287 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3288 // If the RHS of the xor is a signbit, then this is just an add. 3289 // Instcombine turns add of signbit into xor as a strength reduction step. 3290 if (CI->getValue().isSignBit()) 3291 return getAddExpr(getSCEV(U->getOperand(0)), 3292 getSCEV(U->getOperand(1))); 3293 3294 // If the RHS of xor is -1, then this is a not operation. 3295 if (CI->isAllOnesValue()) 3296 return getNotSCEV(getSCEV(U->getOperand(0))); 3297 3298 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3299 // This is a variant of the check for xor with -1, and it handles 3300 // the case where instcombine has trimmed non-demanded bits out 3301 // of an xor with -1. 3302 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3303 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3304 if (BO->getOpcode() == Instruction::And && 3305 LCI->getValue() == CI->getValue()) 3306 if (const SCEVZeroExtendExpr *Z = 3307 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3308 const Type *UTy = U->getType(); 3309 const SCEV *Z0 = Z->getOperand(); 3310 const Type *Z0Ty = Z0->getType(); 3311 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3312 3313 // If C is a low-bits mask, the zero extend is serving to 3314 // mask off the high bits. Complement the operand and 3315 // re-apply the zext. 3316 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3317 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3318 3319 // If C is a single bit, it may be in the sign-bit position 3320 // before the zero-extend. In this case, represent the xor 3321 // using an add, which is equivalent, and re-apply the zext. 3322 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3323 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3324 Trunc.isSignBit()) 3325 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3326 UTy); 3327 } 3328 } 3329 break; 3330 3331 case Instruction::Shl: 3332 // Turn shift left of a constant amount into a multiply. 3333 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3334 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3335 3336 // If the shift count is not less than the bitwidth, the result of 3337 // the shift is undefined. Don't try to analyze it, because the 3338 // resolution chosen here may differ from the resolution chosen in 3339 // other parts of the compiler. 3340 if (SA->getValue().uge(BitWidth)) 3341 break; 3342 3343 Constant *X = ConstantInt::get(getContext(), 3344 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3345 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3346 } 3347 break; 3348 3349 case Instruction::LShr: 3350 // Turn logical shift right of a constant into a unsigned divide. 3351 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3352 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3353 3354 // If the shift count is not less than the bitwidth, the result of 3355 // the shift is undefined. Don't try to analyze it, because the 3356 // resolution chosen here may differ from the resolution chosen in 3357 // other parts of the compiler. 3358 if (SA->getValue().uge(BitWidth)) 3359 break; 3360 3361 Constant *X = ConstantInt::get(getContext(), 3362 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3363 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3364 } 3365 break; 3366 3367 case Instruction::AShr: 3368 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3369 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3370 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3371 if (L->getOpcode() == Instruction::Shl && 3372 L->getOperand(1) == U->getOperand(1)) { 3373 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3374 3375 // If the shift count is not less than the bitwidth, the result of 3376 // the shift is undefined. Don't try to analyze it, because the 3377 // resolution chosen here may differ from the resolution chosen in 3378 // other parts of the compiler. 3379 if (CI->getValue().uge(BitWidth)) 3380 break; 3381 3382 uint64_t Amt = BitWidth - CI->getZExtValue(); 3383 if (Amt == BitWidth) 3384 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3385 return 3386 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3387 IntegerType::get(getContext(), 3388 Amt)), 3389 U->getType()); 3390 } 3391 break; 3392 3393 case Instruction::Trunc: 3394 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3395 3396 case Instruction::ZExt: 3397 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3398 3399 case Instruction::SExt: 3400 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3401 3402 case Instruction::BitCast: 3403 // BitCasts are no-op casts so we just eliminate the cast. 3404 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3405 return getSCEV(U->getOperand(0)); 3406 break; 3407 3408 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3409 // lead to pointer expressions which cannot safely be expanded to GEPs, 3410 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3411 // simplifying integer expressions. 3412 3413 case Instruction::GetElementPtr: 3414 return createNodeForGEP(cast<GEPOperator>(U)); 3415 3416 case Instruction::PHI: 3417 return createNodeForPHI(cast<PHINode>(U)); 3418 3419 case Instruction::Select: 3420 // This could be a smax or umax that was lowered earlier. 3421 // Try to recover it. 3422 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3423 Value *LHS = ICI->getOperand(0); 3424 Value *RHS = ICI->getOperand(1); 3425 switch (ICI->getPredicate()) { 3426 case ICmpInst::ICMP_SLT: 3427 case ICmpInst::ICMP_SLE: 3428 std::swap(LHS, RHS); 3429 // fall through 3430 case ICmpInst::ICMP_SGT: 3431 case ICmpInst::ICMP_SGE: 3432 // a >s b ? a+x : b+x -> smax(a, b)+x 3433 // a >s b ? b+x : a+x -> smin(a, b)+x 3434 if (LHS->getType() == U->getType()) { 3435 const SCEV *LS = getSCEV(LHS); 3436 const SCEV *RS = getSCEV(RHS); 3437 const SCEV *LA = getSCEV(U->getOperand(1)); 3438 const SCEV *RA = getSCEV(U->getOperand(2)); 3439 const SCEV *LDiff = getMinusSCEV(LA, LS); 3440 const SCEV *RDiff = getMinusSCEV(RA, RS); 3441 if (LDiff == RDiff) 3442 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3443 LDiff = getMinusSCEV(LA, RS); 3444 RDiff = getMinusSCEV(RA, LS); 3445 if (LDiff == RDiff) 3446 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3447 } 3448 break; 3449 case ICmpInst::ICMP_ULT: 3450 case ICmpInst::ICMP_ULE: 3451 std::swap(LHS, RHS); 3452 // fall through 3453 case ICmpInst::ICMP_UGT: 3454 case ICmpInst::ICMP_UGE: 3455 // a >u b ? a+x : b+x -> umax(a, b)+x 3456 // a >u b ? b+x : a+x -> umin(a, b)+x 3457 if (LHS->getType() == U->getType()) { 3458 const SCEV *LS = getSCEV(LHS); 3459 const SCEV *RS = getSCEV(RHS); 3460 const SCEV *LA = getSCEV(U->getOperand(1)); 3461 const SCEV *RA = getSCEV(U->getOperand(2)); 3462 const SCEV *LDiff = getMinusSCEV(LA, LS); 3463 const SCEV *RDiff = getMinusSCEV(RA, RS); 3464 if (LDiff == RDiff) 3465 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3466 LDiff = getMinusSCEV(LA, RS); 3467 RDiff = getMinusSCEV(RA, LS); 3468 if (LDiff == RDiff) 3469 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3470 } 3471 break; 3472 case ICmpInst::ICMP_NE: 3473 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3474 if (LHS->getType() == U->getType() && 3475 isa<ConstantInt>(RHS) && 3476 cast<ConstantInt>(RHS)->isZero()) { 3477 const SCEV *One = getConstant(LHS->getType(), 1); 3478 const SCEV *LS = getSCEV(LHS); 3479 const SCEV *LA = getSCEV(U->getOperand(1)); 3480 const SCEV *RA = getSCEV(U->getOperand(2)); 3481 const SCEV *LDiff = getMinusSCEV(LA, LS); 3482 const SCEV *RDiff = getMinusSCEV(RA, One); 3483 if (LDiff == RDiff) 3484 return getAddExpr(getUMaxExpr(LS, One), LDiff); 3485 } 3486 break; 3487 case ICmpInst::ICMP_EQ: 3488 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3489 if (LHS->getType() == U->getType() && 3490 isa<ConstantInt>(RHS) && 3491 cast<ConstantInt>(RHS)->isZero()) { 3492 const SCEV *One = getConstant(LHS->getType(), 1); 3493 const SCEV *LS = getSCEV(LHS); 3494 const SCEV *LA = getSCEV(U->getOperand(1)); 3495 const SCEV *RA = getSCEV(U->getOperand(2)); 3496 const SCEV *LDiff = getMinusSCEV(LA, One); 3497 const SCEV *RDiff = getMinusSCEV(RA, LS); 3498 if (LDiff == RDiff) 3499 return getAddExpr(getUMaxExpr(LS, One), LDiff); 3500 } 3501 break; 3502 default: 3503 break; 3504 } 3505 } 3506 3507 default: // We cannot analyze this expression. 3508 break; 3509 } 3510 3511 return getUnknown(V); 3512 } 3513 3514 3515 3516 //===----------------------------------------------------------------------===// 3517 // Iteration Count Computation Code 3518 // 3519 3520 /// getBackedgeTakenCount - If the specified loop has a predictable 3521 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3522 /// object. The backedge-taken count is the number of times the loop header 3523 /// will be branched to from within the loop. This is one less than the 3524 /// trip count of the loop, since it doesn't count the first iteration, 3525 /// when the header is branched to from outside the loop. 3526 /// 3527 /// Note that it is not valid to call this method on a loop without a 3528 /// loop-invariant backedge-taken count (see 3529 /// hasLoopInvariantBackedgeTakenCount). 3530 /// 3531 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3532 return getBackedgeTakenInfo(L).Exact; 3533 } 3534 3535 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3536 /// return the least SCEV value that is known never to be less than the 3537 /// actual backedge taken count. 3538 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3539 return getBackedgeTakenInfo(L).Max; 3540 } 3541 3542 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3543 /// onto the given Worklist. 3544 static void 3545 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3546 BasicBlock *Header = L->getHeader(); 3547 3548 // Push all Loop-header PHIs onto the Worklist stack. 3549 for (BasicBlock::iterator I = Header->begin(); 3550 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3551 Worklist.push_back(PN); 3552 } 3553 3554 const ScalarEvolution::BackedgeTakenInfo & 3555 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3556 // Initially insert a CouldNotCompute for this loop. If the insertion 3557 // succeeds, proceed to actually compute a backedge-taken count and 3558 // update the value. The temporary CouldNotCompute value tells SCEV 3559 // code elsewhere that it shouldn't attempt to request a new 3560 // backedge-taken count, which could result in infinite recursion. 3561 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3562 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3563 if (Pair.second) { 3564 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3565 if (BECount.Exact != getCouldNotCompute()) { 3566 assert(BECount.Exact->isLoopInvariant(L) && 3567 BECount.Max->isLoopInvariant(L) && 3568 "Computed backedge-taken count isn't loop invariant for loop!"); 3569 ++NumTripCountsComputed; 3570 3571 // Update the value in the map. 3572 Pair.first->second = BECount; 3573 } else { 3574 if (BECount.Max != getCouldNotCompute()) 3575 // Update the value in the map. 3576 Pair.first->second = BECount; 3577 if (isa<PHINode>(L->getHeader()->begin())) 3578 // Only count loops that have phi nodes as not being computable. 3579 ++NumTripCountsNotComputed; 3580 } 3581 3582 // Now that we know more about the trip count for this loop, forget any 3583 // existing SCEV values for PHI nodes in this loop since they are only 3584 // conservative estimates made without the benefit of trip count 3585 // information. This is similar to the code in forgetLoop, except that 3586 // it handles SCEVUnknown PHI nodes specially. 3587 if (BECount.hasAnyInfo()) { 3588 SmallVector<Instruction *, 16> Worklist; 3589 PushLoopPHIs(L, Worklist); 3590 3591 SmallPtrSet<Instruction *, 8> Visited; 3592 while (!Worklist.empty()) { 3593 Instruction *I = Worklist.pop_back_val(); 3594 if (!Visited.insert(I)) continue; 3595 3596 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3597 Scalars.find(static_cast<Value *>(I)); 3598 if (It != Scalars.end()) { 3599 // SCEVUnknown for a PHI either means that it has an unrecognized 3600 // structure, or it's a PHI that's in the progress of being computed 3601 // by createNodeForPHI. In the former case, additional loop trip 3602 // count information isn't going to change anything. In the later 3603 // case, createNodeForPHI will perform the necessary updates on its 3604 // own when it gets to that point. 3605 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 3606 ValuesAtScopes.erase(It->second); 3607 Scalars.erase(It); 3608 } 3609 if (PHINode *PN = dyn_cast<PHINode>(I)) 3610 ConstantEvolutionLoopExitValue.erase(PN); 3611 } 3612 3613 PushDefUseChildren(I, Worklist); 3614 } 3615 } 3616 } 3617 return Pair.first->second; 3618 } 3619 3620 /// forgetLoop - This method should be called by the client when it has 3621 /// changed a loop in a way that may effect ScalarEvolution's ability to 3622 /// compute a trip count, or if the loop is deleted. 3623 void ScalarEvolution::forgetLoop(const Loop *L) { 3624 // Drop any stored trip count value. 3625 BackedgeTakenCounts.erase(L); 3626 3627 // Drop information about expressions based on loop-header PHIs. 3628 SmallVector<Instruction *, 16> Worklist; 3629 PushLoopPHIs(L, Worklist); 3630 3631 SmallPtrSet<Instruction *, 8> Visited; 3632 while (!Worklist.empty()) { 3633 Instruction *I = Worklist.pop_back_val(); 3634 if (!Visited.insert(I)) continue; 3635 3636 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3637 Scalars.find(static_cast<Value *>(I)); 3638 if (It != Scalars.end()) { 3639 ValuesAtScopes.erase(It->second); 3640 Scalars.erase(It); 3641 if (PHINode *PN = dyn_cast<PHINode>(I)) 3642 ConstantEvolutionLoopExitValue.erase(PN); 3643 } 3644 3645 PushDefUseChildren(I, Worklist); 3646 } 3647 } 3648 3649 /// forgetValue - This method should be called by the client when it has 3650 /// changed a value in a way that may effect its value, or which may 3651 /// disconnect it from a def-use chain linking it to a loop. 3652 void ScalarEvolution::forgetValue(Value *V) { 3653 Instruction *I = dyn_cast<Instruction>(V); 3654 if (!I) return; 3655 3656 // Drop information about expressions based on loop-header PHIs. 3657 SmallVector<Instruction *, 16> Worklist; 3658 Worklist.push_back(I); 3659 3660 SmallPtrSet<Instruction *, 8> Visited; 3661 while (!Worklist.empty()) { 3662 I = Worklist.pop_back_val(); 3663 if (!Visited.insert(I)) continue; 3664 3665 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3666 Scalars.find(static_cast<Value *>(I)); 3667 if (It != Scalars.end()) { 3668 ValuesAtScopes.erase(It->second); 3669 Scalars.erase(It); 3670 if (PHINode *PN = dyn_cast<PHINode>(I)) 3671 ConstantEvolutionLoopExitValue.erase(PN); 3672 } 3673 3674 // If there's a SCEVUnknown tying this value into the SCEV 3675 // space, remove it from the folding set map. The SCEVUnknown 3676 // object and any other SCEV objects which reference it 3677 // (transitively) remain allocated, effectively leaked until 3678 // the underlying BumpPtrAllocator is freed. 3679 // 3680 // This permits SCEV pointers to be used as keys in maps 3681 // such as the ValuesAtScopes map. 3682 FoldingSetNodeID ID; 3683 ID.AddInteger(scUnknown); 3684 ID.AddPointer(I); 3685 void *IP; 3686 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3687 UniqueSCEVs.RemoveNode(S); 3688 3689 // This isn't necessary, but we might as well remove the 3690 // value from the ValuesAtScopes map too. 3691 ValuesAtScopes.erase(S); 3692 } 3693 3694 PushDefUseChildren(I, Worklist); 3695 } 3696 } 3697 3698 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3699 /// of the specified loop will execute. 3700 ScalarEvolution::BackedgeTakenInfo 3701 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3702 SmallVector<BasicBlock *, 8> ExitingBlocks; 3703 L->getExitingBlocks(ExitingBlocks); 3704 3705 // Examine all exits and pick the most conservative values. 3706 const SCEV *BECount = getCouldNotCompute(); 3707 const SCEV *MaxBECount = getCouldNotCompute(); 3708 bool CouldNotComputeBECount = false; 3709 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3710 BackedgeTakenInfo NewBTI = 3711 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3712 3713 if (NewBTI.Exact == getCouldNotCompute()) { 3714 // We couldn't compute an exact value for this exit, so 3715 // we won't be able to compute an exact value for the loop. 3716 CouldNotComputeBECount = true; 3717 BECount = getCouldNotCompute(); 3718 } else if (!CouldNotComputeBECount) { 3719 if (BECount == getCouldNotCompute()) 3720 BECount = NewBTI.Exact; 3721 else 3722 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3723 } 3724 if (MaxBECount == getCouldNotCompute()) 3725 MaxBECount = NewBTI.Max; 3726 else if (NewBTI.Max != getCouldNotCompute()) 3727 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3728 } 3729 3730 return BackedgeTakenInfo(BECount, MaxBECount); 3731 } 3732 3733 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3734 /// of the specified loop will execute if it exits via the specified block. 3735 ScalarEvolution::BackedgeTakenInfo 3736 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3737 BasicBlock *ExitingBlock) { 3738 3739 // Okay, we've chosen an exiting block. See what condition causes us to 3740 // exit at this block. 3741 // 3742 // FIXME: we should be able to handle switch instructions (with a single exit) 3743 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3744 if (ExitBr == 0) return getCouldNotCompute(); 3745 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3746 3747 // At this point, we know we have a conditional branch that determines whether 3748 // the loop is exited. However, we don't know if the branch is executed each 3749 // time through the loop. If not, then the execution count of the branch will 3750 // not be equal to the trip count of the loop. 3751 // 3752 // Currently we check for this by checking to see if the Exit branch goes to 3753 // the loop header. If so, we know it will always execute the same number of 3754 // times as the loop. We also handle the case where the exit block *is* the 3755 // loop header. This is common for un-rotated loops. 3756 // 3757 // If both of those tests fail, walk up the unique predecessor chain to the 3758 // header, stopping if there is an edge that doesn't exit the loop. If the 3759 // header is reached, the execution count of the branch will be equal to the 3760 // trip count of the loop. 3761 // 3762 // More extensive analysis could be done to handle more cases here. 3763 // 3764 if (ExitBr->getSuccessor(0) != L->getHeader() && 3765 ExitBr->getSuccessor(1) != L->getHeader() && 3766 ExitBr->getParent() != L->getHeader()) { 3767 // The simple checks failed, try climbing the unique predecessor chain 3768 // up to the header. 3769 bool Ok = false; 3770 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3771 BasicBlock *Pred = BB->getUniquePredecessor(); 3772 if (!Pred) 3773 return getCouldNotCompute(); 3774 TerminatorInst *PredTerm = Pred->getTerminator(); 3775 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3776 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3777 if (PredSucc == BB) 3778 continue; 3779 // If the predecessor has a successor that isn't BB and isn't 3780 // outside the loop, assume the worst. 3781 if (L->contains(PredSucc)) 3782 return getCouldNotCompute(); 3783 } 3784 if (Pred == L->getHeader()) { 3785 Ok = true; 3786 break; 3787 } 3788 BB = Pred; 3789 } 3790 if (!Ok) 3791 return getCouldNotCompute(); 3792 } 3793 3794 // Proceed to the next level to examine the exit condition expression. 3795 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3796 ExitBr->getSuccessor(0), 3797 ExitBr->getSuccessor(1)); 3798 } 3799 3800 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3801 /// backedge of the specified loop will execute if its exit condition 3802 /// were a conditional branch of ExitCond, TBB, and FBB. 3803 ScalarEvolution::BackedgeTakenInfo 3804 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3805 Value *ExitCond, 3806 BasicBlock *TBB, 3807 BasicBlock *FBB) { 3808 // Check if the controlling expression for this loop is an And or Or. 3809 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3810 if (BO->getOpcode() == Instruction::And) { 3811 // Recurse on the operands of the and. 3812 BackedgeTakenInfo BTI0 = 3813 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3814 BackedgeTakenInfo BTI1 = 3815 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3816 const SCEV *BECount = getCouldNotCompute(); 3817 const SCEV *MaxBECount = getCouldNotCompute(); 3818 if (L->contains(TBB)) { 3819 // Both conditions must be true for the loop to continue executing. 3820 // Choose the less conservative count. 3821 if (BTI0.Exact == getCouldNotCompute() || 3822 BTI1.Exact == getCouldNotCompute()) 3823 BECount = getCouldNotCompute(); 3824 else 3825 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3826 if (BTI0.Max == getCouldNotCompute()) 3827 MaxBECount = BTI1.Max; 3828 else if (BTI1.Max == getCouldNotCompute()) 3829 MaxBECount = BTI0.Max; 3830 else 3831 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3832 } else { 3833 // Both conditions must be true for the loop to exit. 3834 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3835 if (BTI0.Exact != getCouldNotCompute() && 3836 BTI1.Exact != getCouldNotCompute()) 3837 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3838 if (BTI0.Max != getCouldNotCompute() && 3839 BTI1.Max != getCouldNotCompute()) 3840 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3841 } 3842 3843 return BackedgeTakenInfo(BECount, MaxBECount); 3844 } 3845 if (BO->getOpcode() == Instruction::Or) { 3846 // Recurse on the operands of the or. 3847 BackedgeTakenInfo BTI0 = 3848 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3849 BackedgeTakenInfo BTI1 = 3850 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3851 const SCEV *BECount = getCouldNotCompute(); 3852 const SCEV *MaxBECount = getCouldNotCompute(); 3853 if (L->contains(FBB)) { 3854 // Both conditions must be false for the loop to continue executing. 3855 // Choose the less conservative count. 3856 if (BTI0.Exact == getCouldNotCompute() || 3857 BTI1.Exact == getCouldNotCompute()) 3858 BECount = getCouldNotCompute(); 3859 else 3860 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3861 if (BTI0.Max == getCouldNotCompute()) 3862 MaxBECount = BTI1.Max; 3863 else if (BTI1.Max == getCouldNotCompute()) 3864 MaxBECount = BTI0.Max; 3865 else 3866 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3867 } else { 3868 // Both conditions must be false for the loop to exit. 3869 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3870 if (BTI0.Exact != getCouldNotCompute() && 3871 BTI1.Exact != getCouldNotCompute()) 3872 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3873 if (BTI0.Max != getCouldNotCompute() && 3874 BTI1.Max != getCouldNotCompute()) 3875 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3876 } 3877 3878 return BackedgeTakenInfo(BECount, MaxBECount); 3879 } 3880 } 3881 3882 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3883 // Proceed to the next level to examine the icmp. 3884 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3885 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3886 3887 // Check for a constant condition. These are normally stripped out by 3888 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 3889 // preserve the CFG and is temporarily leaving constant conditions 3890 // in place. 3891 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 3892 if (L->contains(FBB) == !CI->getZExtValue()) 3893 // The backedge is always taken. 3894 return getCouldNotCompute(); 3895 else 3896 // The backedge is never taken. 3897 return getConstant(CI->getType(), 0); 3898 } 3899 3900 // If it's not an integer or pointer comparison then compute it the hard way. 3901 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3902 } 3903 3904 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3905 /// backedge of the specified loop will execute if its exit condition 3906 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3907 ScalarEvolution::BackedgeTakenInfo 3908 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3909 ICmpInst *ExitCond, 3910 BasicBlock *TBB, 3911 BasicBlock *FBB) { 3912 3913 // If the condition was exit on true, convert the condition to exit on false 3914 ICmpInst::Predicate Cond; 3915 if (!L->contains(FBB)) 3916 Cond = ExitCond->getPredicate(); 3917 else 3918 Cond = ExitCond->getInversePredicate(); 3919 3920 // Handle common loops like: for (X = "string"; *X; ++X) 3921 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3922 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3923 BackedgeTakenInfo ItCnt = 3924 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3925 if (ItCnt.hasAnyInfo()) 3926 return ItCnt; 3927 } 3928 3929 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3930 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3931 3932 // Try to evaluate any dependencies out of the loop. 3933 LHS = getSCEVAtScope(LHS, L); 3934 RHS = getSCEVAtScope(RHS, L); 3935 3936 // At this point, we would like to compute how many iterations of the 3937 // loop the predicate will return true for these inputs. 3938 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3939 // If there is a loop-invariant, force it into the RHS. 3940 std::swap(LHS, RHS); 3941 Cond = ICmpInst::getSwappedPredicate(Cond); 3942 } 3943 3944 // Simplify the operands before analyzing them. 3945 (void)SimplifyICmpOperands(Cond, LHS, RHS); 3946 3947 // If we have a comparison of a chrec against a constant, try to use value 3948 // ranges to answer this query. 3949 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3950 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3951 if (AddRec->getLoop() == L) { 3952 // Form the constant range. 3953 ConstantRange CompRange( 3954 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3955 3956 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3957 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3958 } 3959 3960 switch (Cond) { 3961 case ICmpInst::ICMP_NE: { // while (X != Y) 3962 // Convert to: while (X-Y != 0) 3963 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3964 if (BTI.hasAnyInfo()) return BTI; 3965 break; 3966 } 3967 case ICmpInst::ICMP_EQ: { // while (X == Y) 3968 // Convert to: while (X-Y == 0) 3969 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3970 if (BTI.hasAnyInfo()) return BTI; 3971 break; 3972 } 3973 case ICmpInst::ICMP_SLT: { 3974 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3975 if (BTI.hasAnyInfo()) return BTI; 3976 break; 3977 } 3978 case ICmpInst::ICMP_SGT: { 3979 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3980 getNotSCEV(RHS), L, true); 3981 if (BTI.hasAnyInfo()) return BTI; 3982 break; 3983 } 3984 case ICmpInst::ICMP_ULT: { 3985 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 3986 if (BTI.hasAnyInfo()) return BTI; 3987 break; 3988 } 3989 case ICmpInst::ICMP_UGT: { 3990 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3991 getNotSCEV(RHS), L, false); 3992 if (BTI.hasAnyInfo()) return BTI; 3993 break; 3994 } 3995 default: 3996 #if 0 3997 dbgs() << "ComputeBackedgeTakenCount "; 3998 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 3999 dbgs() << "[unsigned] "; 4000 dbgs() << *LHS << " " 4001 << Instruction::getOpcodeName(Instruction::ICmp) 4002 << " " << *RHS << "\n"; 4003 #endif 4004 break; 4005 } 4006 return 4007 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 4008 } 4009 4010 static ConstantInt * 4011 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4012 ScalarEvolution &SE) { 4013 const SCEV *InVal = SE.getConstant(C); 4014 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4015 assert(isa<SCEVConstant>(Val) && 4016 "Evaluation of SCEV at constant didn't fold correctly?"); 4017 return cast<SCEVConstant>(Val)->getValue(); 4018 } 4019 4020 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 4021 /// and a GEP expression (missing the pointer index) indexing into it, return 4022 /// the addressed element of the initializer or null if the index expression is 4023 /// invalid. 4024 static Constant * 4025 GetAddressedElementFromGlobal(GlobalVariable *GV, 4026 const std::vector<ConstantInt*> &Indices) { 4027 Constant *Init = GV->getInitializer(); 4028 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 4029 uint64_t Idx = Indices[i]->getZExtValue(); 4030 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 4031 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 4032 Init = cast<Constant>(CS->getOperand(Idx)); 4033 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 4034 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 4035 Init = cast<Constant>(CA->getOperand(Idx)); 4036 } else if (isa<ConstantAggregateZero>(Init)) { 4037 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 4038 assert(Idx < STy->getNumElements() && "Bad struct index!"); 4039 Init = Constant::getNullValue(STy->getElementType(Idx)); 4040 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 4041 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 4042 Init = Constant::getNullValue(ATy->getElementType()); 4043 } else { 4044 llvm_unreachable("Unknown constant aggregate type!"); 4045 } 4046 return 0; 4047 } else { 4048 return 0; // Unknown initializer type 4049 } 4050 } 4051 return Init; 4052 } 4053 4054 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 4055 /// 'icmp op load X, cst', try to see if we can compute the backedge 4056 /// execution count. 4057 ScalarEvolution::BackedgeTakenInfo 4058 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 4059 LoadInst *LI, 4060 Constant *RHS, 4061 const Loop *L, 4062 ICmpInst::Predicate predicate) { 4063 if (LI->isVolatile()) return getCouldNotCompute(); 4064 4065 // Check to see if the loaded pointer is a getelementptr of a global. 4066 // TODO: Use SCEV instead of manually grubbing with GEPs. 4067 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4068 if (!GEP) return getCouldNotCompute(); 4069 4070 // Make sure that it is really a constant global we are gepping, with an 4071 // initializer, and make sure the first IDX is really 0. 4072 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4073 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4074 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4075 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4076 return getCouldNotCompute(); 4077 4078 // Okay, we allow one non-constant index into the GEP instruction. 4079 Value *VarIdx = 0; 4080 std::vector<ConstantInt*> Indexes; 4081 unsigned VarIdxNum = 0; 4082 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4083 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4084 Indexes.push_back(CI); 4085 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4086 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4087 VarIdx = GEP->getOperand(i); 4088 VarIdxNum = i-2; 4089 Indexes.push_back(0); 4090 } 4091 4092 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4093 // Check to see if X is a loop variant variable value now. 4094 const SCEV *Idx = getSCEV(VarIdx); 4095 Idx = getSCEVAtScope(Idx, L); 4096 4097 // We can only recognize very limited forms of loop index expressions, in 4098 // particular, only affine AddRec's like {C1,+,C2}. 4099 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4100 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 4101 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4102 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4103 return getCouldNotCompute(); 4104 4105 unsigned MaxSteps = MaxBruteForceIterations; 4106 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4107 ConstantInt *ItCst = ConstantInt::get( 4108 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4109 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4110 4111 // Form the GEP offset. 4112 Indexes[VarIdxNum] = Val; 4113 4114 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 4115 if (Result == 0) break; // Cannot compute! 4116 4117 // Evaluate the condition for this iteration. 4118 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4119 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4120 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4121 #if 0 4122 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4123 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4124 << "***\n"; 4125 #endif 4126 ++NumArrayLenItCounts; 4127 return getConstant(ItCst); // Found terminating iteration! 4128 } 4129 } 4130 return getCouldNotCompute(); 4131 } 4132 4133 4134 /// CanConstantFold - Return true if we can constant fold an instruction of the 4135 /// specified type, assuming that all operands were constants. 4136 static bool CanConstantFold(const Instruction *I) { 4137 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4138 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 4139 return true; 4140 4141 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4142 if (const Function *F = CI->getCalledFunction()) 4143 return canConstantFoldCallTo(F); 4144 return false; 4145 } 4146 4147 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4148 /// in the loop that V is derived from. We allow arbitrary operations along the 4149 /// way, but the operands of an operation must either be constants or a value 4150 /// derived from a constant PHI. If this expression does not fit with these 4151 /// constraints, return null. 4152 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4153 // If this is not an instruction, or if this is an instruction outside of the 4154 // loop, it can't be derived from a loop PHI. 4155 Instruction *I = dyn_cast<Instruction>(V); 4156 if (I == 0 || !L->contains(I)) return 0; 4157 4158 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4159 if (L->getHeader() == I->getParent()) 4160 return PN; 4161 else 4162 // We don't currently keep track of the control flow needed to evaluate 4163 // PHIs, so we cannot handle PHIs inside of loops. 4164 return 0; 4165 } 4166 4167 // If we won't be able to constant fold this expression even if the operands 4168 // are constants, return early. 4169 if (!CanConstantFold(I)) return 0; 4170 4171 // Otherwise, we can evaluate this instruction if all of its operands are 4172 // constant or derived from a PHI node themselves. 4173 PHINode *PHI = 0; 4174 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 4175 if (!isa<Constant>(I->getOperand(Op))) { 4176 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 4177 if (P == 0) return 0; // Not evolving from PHI 4178 if (PHI == 0) 4179 PHI = P; 4180 else if (PHI != P) 4181 return 0; // Evolving from multiple different PHIs. 4182 } 4183 4184 // This is a expression evolving from a constant PHI! 4185 return PHI; 4186 } 4187 4188 /// EvaluateExpression - Given an expression that passes the 4189 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4190 /// in the loop has the value PHIVal. If we can't fold this expression for some 4191 /// reason, return null. 4192 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4193 const TargetData *TD) { 4194 if (isa<PHINode>(V)) return PHIVal; 4195 if (Constant *C = dyn_cast<Constant>(V)) return C; 4196 Instruction *I = cast<Instruction>(V); 4197 4198 std::vector<Constant*> Operands(I->getNumOperands()); 4199 4200 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4201 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4202 if (Operands[i] == 0) return 0; 4203 } 4204 4205 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4206 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4207 Operands[1], TD); 4208 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4209 &Operands[0], Operands.size(), TD); 4210 } 4211 4212 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4213 /// in the header of its containing loop, we know the loop executes a 4214 /// constant number of times, and the PHI node is just a recurrence 4215 /// involving constants, fold it. 4216 Constant * 4217 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4218 const APInt &BEs, 4219 const Loop *L) { 4220 std::map<PHINode*, Constant*>::iterator I = 4221 ConstantEvolutionLoopExitValue.find(PN); 4222 if (I != ConstantEvolutionLoopExitValue.end()) 4223 return I->second; 4224 4225 if (BEs.ugt(MaxBruteForceIterations)) 4226 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4227 4228 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4229 4230 // Since the loop is canonicalized, the PHI node must have two entries. One 4231 // entry must be a constant (coming in from outside of the loop), and the 4232 // second must be derived from the same PHI. 4233 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4234 Constant *StartCST = 4235 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4236 if (StartCST == 0) 4237 return RetVal = 0; // Must be a constant. 4238 4239 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4240 if (getConstantEvolvingPHI(BEValue, L) != PN && 4241 !isa<Constant>(BEValue)) 4242 return RetVal = 0; // Not derived from same PHI. 4243 4244 // Execute the loop symbolically to determine the exit value. 4245 if (BEs.getActiveBits() >= 32) 4246 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4247 4248 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4249 unsigned IterationNum = 0; 4250 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4251 if (IterationNum == NumIterations) 4252 return RetVal = PHIVal; // Got exit value! 4253 4254 // Compute the value of the PHI node for the next iteration. 4255 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4256 if (NextPHI == PHIVal) 4257 return RetVal = NextPHI; // Stopped evolving! 4258 if (NextPHI == 0) 4259 return 0; // Couldn't evaluate! 4260 PHIVal = NextPHI; 4261 } 4262 } 4263 4264 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4265 /// constant number of times (the condition evolves only from constants), 4266 /// try to evaluate a few iterations of the loop until we get the exit 4267 /// condition gets a value of ExitWhen (true or false). If we cannot 4268 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4269 const SCEV * 4270 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4271 Value *Cond, 4272 bool ExitWhen) { 4273 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4274 if (PN == 0) return getCouldNotCompute(); 4275 4276 // If the loop is canonicalized, the PHI will have exactly two entries. 4277 // That's the only form we support here. 4278 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4279 4280 // One entry must be a constant (coming in from outside of the loop), and the 4281 // second must be derived from the same PHI. 4282 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4283 Constant *StartCST = 4284 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4285 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4286 4287 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4288 if (getConstantEvolvingPHI(BEValue, L) != PN && 4289 !isa<Constant>(BEValue)) 4290 return getCouldNotCompute(); // Not derived from same PHI. 4291 4292 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4293 // the loop symbolically to determine when the condition gets a value of 4294 // "ExitWhen". 4295 unsigned IterationNum = 0; 4296 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4297 for (Constant *PHIVal = StartCST; 4298 IterationNum != MaxIterations; ++IterationNum) { 4299 ConstantInt *CondVal = 4300 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4301 4302 // Couldn't symbolically evaluate. 4303 if (!CondVal) return getCouldNotCompute(); 4304 4305 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4306 ++NumBruteForceTripCountsComputed; 4307 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4308 } 4309 4310 // Compute the value of the PHI node for the next iteration. 4311 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4312 if (NextPHI == 0 || NextPHI == PHIVal) 4313 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4314 PHIVal = NextPHI; 4315 } 4316 4317 // Too many iterations were needed to evaluate. 4318 return getCouldNotCompute(); 4319 } 4320 4321 /// getSCEVAtScope - Return a SCEV expression for the specified value 4322 /// at the specified scope in the program. The L value specifies a loop 4323 /// nest to evaluate the expression at, where null is the top-level or a 4324 /// specified loop is immediately inside of the loop. 4325 /// 4326 /// This method can be used to compute the exit value for a variable defined 4327 /// in a loop by querying what the value will hold in the parent loop. 4328 /// 4329 /// In the case that a relevant loop exit value cannot be computed, the 4330 /// original value V is returned. 4331 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4332 // Check to see if we've folded this expression at this loop before. 4333 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4334 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4335 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4336 if (!Pair.second) 4337 return Pair.first->second ? Pair.first->second : V; 4338 4339 // Otherwise compute it. 4340 const SCEV *C = computeSCEVAtScope(V, L); 4341 ValuesAtScopes[V][L] = C; 4342 return C; 4343 } 4344 4345 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4346 if (isa<SCEVConstant>(V)) return V; 4347 4348 // If this instruction is evolved from a constant-evolving PHI, compute the 4349 // exit value from the loop without using SCEVs. 4350 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4351 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4352 const Loop *LI = (*this->LI)[I->getParent()]; 4353 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4354 if (PHINode *PN = dyn_cast<PHINode>(I)) 4355 if (PN->getParent() == LI->getHeader()) { 4356 // Okay, there is no closed form solution for the PHI node. Check 4357 // to see if the loop that contains it has a known backedge-taken 4358 // count. If so, we may be able to force computation of the exit 4359 // value. 4360 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4361 if (const SCEVConstant *BTCC = 4362 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4363 // Okay, we know how many times the containing loop executes. If 4364 // this is a constant evolving PHI node, get the final value at 4365 // the specified iteration number. 4366 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4367 BTCC->getValue()->getValue(), 4368 LI); 4369 if (RV) return getSCEV(RV); 4370 } 4371 } 4372 4373 // Okay, this is an expression that we cannot symbolically evaluate 4374 // into a SCEV. Check to see if it's possible to symbolically evaluate 4375 // the arguments into constants, and if so, try to constant propagate the 4376 // result. This is particularly useful for computing loop exit values. 4377 if (CanConstantFold(I)) { 4378 SmallVector<Constant *, 4> Operands; 4379 bool MadeImprovement = false; 4380 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4381 Value *Op = I->getOperand(i); 4382 if (Constant *C = dyn_cast<Constant>(Op)) { 4383 Operands.push_back(C); 4384 continue; 4385 } 4386 4387 // If any of the operands is non-constant and if they are 4388 // non-integer and non-pointer, don't even try to analyze them 4389 // with scev techniques. 4390 if (!isSCEVable(Op->getType())) 4391 return V; 4392 4393 const SCEV *OrigV = getSCEV(Op); 4394 const SCEV *OpV = getSCEVAtScope(OrigV, L); 4395 MadeImprovement |= OrigV != OpV; 4396 4397 Constant *C = 0; 4398 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 4399 C = SC->getValue(); 4400 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) 4401 C = dyn_cast<Constant>(SU->getValue()); 4402 if (!C) return V; 4403 if (C->getType() != Op->getType()) 4404 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4405 Op->getType(), 4406 false), 4407 C, Op->getType()); 4408 Operands.push_back(C); 4409 } 4410 4411 // Check to see if getSCEVAtScope actually made an improvement. 4412 if (MadeImprovement) { 4413 Constant *C = 0; 4414 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4415 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4416 Operands[0], Operands[1], TD); 4417 else 4418 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4419 &Operands[0], Operands.size(), TD); 4420 if (!C) return V; 4421 return getSCEV(C); 4422 } 4423 } 4424 } 4425 4426 // This is some other type of SCEVUnknown, just return it. 4427 return V; 4428 } 4429 4430 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4431 // Avoid performing the look-up in the common case where the specified 4432 // expression has no loop-variant portions. 4433 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4434 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4435 if (OpAtScope != Comm->getOperand(i)) { 4436 // Okay, at least one of these operands is loop variant but might be 4437 // foldable. Build a new instance of the folded commutative expression. 4438 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4439 Comm->op_begin()+i); 4440 NewOps.push_back(OpAtScope); 4441 4442 for (++i; i != e; ++i) { 4443 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4444 NewOps.push_back(OpAtScope); 4445 } 4446 if (isa<SCEVAddExpr>(Comm)) 4447 return getAddExpr(NewOps); 4448 if (isa<SCEVMulExpr>(Comm)) 4449 return getMulExpr(NewOps); 4450 if (isa<SCEVSMaxExpr>(Comm)) 4451 return getSMaxExpr(NewOps); 4452 if (isa<SCEVUMaxExpr>(Comm)) 4453 return getUMaxExpr(NewOps); 4454 llvm_unreachable("Unknown commutative SCEV type!"); 4455 } 4456 } 4457 // If we got here, all operands are loop invariant. 4458 return Comm; 4459 } 4460 4461 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4462 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4463 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4464 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4465 return Div; // must be loop invariant 4466 return getUDivExpr(LHS, RHS); 4467 } 4468 4469 // If this is a loop recurrence for a loop that does not contain L, then we 4470 // are dealing with the final value computed by the loop. 4471 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4472 // First, attempt to evaluate each operand. 4473 // Avoid performing the look-up in the common case where the specified 4474 // expression has no loop-variant portions. 4475 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4476 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 4477 if (OpAtScope == AddRec->getOperand(i)) 4478 continue; 4479 4480 // Okay, at least one of these operands is loop variant but might be 4481 // foldable. Build a new instance of the folded commutative expression. 4482 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 4483 AddRec->op_begin()+i); 4484 NewOps.push_back(OpAtScope); 4485 for (++i; i != e; ++i) 4486 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 4487 4488 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop())); 4489 break; 4490 } 4491 4492 // If the scope is outside the addrec's loop, evaluate it by using the 4493 // loop exit value of the addrec. 4494 if (!AddRec->getLoop()->contains(L)) { 4495 // To evaluate this recurrence, we need to know how many times the AddRec 4496 // loop iterates. Compute this now. 4497 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4498 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4499 4500 // Then, evaluate the AddRec. 4501 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4502 } 4503 4504 return AddRec; 4505 } 4506 4507 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4508 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4509 if (Op == Cast->getOperand()) 4510 return Cast; // must be loop invariant 4511 return getZeroExtendExpr(Op, Cast->getType()); 4512 } 4513 4514 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4515 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4516 if (Op == Cast->getOperand()) 4517 return Cast; // must be loop invariant 4518 return getSignExtendExpr(Op, Cast->getType()); 4519 } 4520 4521 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4522 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4523 if (Op == Cast->getOperand()) 4524 return Cast; // must be loop invariant 4525 return getTruncateExpr(Op, Cast->getType()); 4526 } 4527 4528 llvm_unreachable("Unknown SCEV type!"); 4529 return 0; 4530 } 4531 4532 /// getSCEVAtScope - This is a convenience function which does 4533 /// getSCEVAtScope(getSCEV(V), L). 4534 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4535 return getSCEVAtScope(getSCEV(V), L); 4536 } 4537 4538 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4539 /// following equation: 4540 /// 4541 /// A * X = B (mod N) 4542 /// 4543 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4544 /// A and B isn't important. 4545 /// 4546 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4547 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4548 ScalarEvolution &SE) { 4549 uint32_t BW = A.getBitWidth(); 4550 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4551 assert(A != 0 && "A must be non-zero."); 4552 4553 // 1. D = gcd(A, N) 4554 // 4555 // The gcd of A and N may have only one prime factor: 2. The number of 4556 // trailing zeros in A is its multiplicity 4557 uint32_t Mult2 = A.countTrailingZeros(); 4558 // D = 2^Mult2 4559 4560 // 2. Check if B is divisible by D. 4561 // 4562 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4563 // is not less than multiplicity of this prime factor for D. 4564 if (B.countTrailingZeros() < Mult2) 4565 return SE.getCouldNotCompute(); 4566 4567 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4568 // modulo (N / D). 4569 // 4570 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4571 // bit width during computations. 4572 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4573 APInt Mod(BW + 1, 0); 4574 Mod.set(BW - Mult2); // Mod = N / D 4575 APInt I = AD.multiplicativeInverse(Mod); 4576 4577 // 4. Compute the minimum unsigned root of the equation: 4578 // I * (B / D) mod (N / D) 4579 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4580 4581 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4582 // bits. 4583 return SE.getConstant(Result.trunc(BW)); 4584 } 4585 4586 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4587 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4588 /// might be the same) or two SCEVCouldNotCompute objects. 4589 /// 4590 static std::pair<const SCEV *,const SCEV *> 4591 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4592 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4593 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4594 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4595 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4596 4597 // We currently can only solve this if the coefficients are constants. 4598 if (!LC || !MC || !NC) { 4599 const SCEV *CNC = SE.getCouldNotCompute(); 4600 return std::make_pair(CNC, CNC); 4601 } 4602 4603 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4604 const APInt &L = LC->getValue()->getValue(); 4605 const APInt &M = MC->getValue()->getValue(); 4606 const APInt &N = NC->getValue()->getValue(); 4607 APInt Two(BitWidth, 2); 4608 APInt Four(BitWidth, 4); 4609 4610 { 4611 using namespace APIntOps; 4612 const APInt& C = L; 4613 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4614 // The B coefficient is M-N/2 4615 APInt B(M); 4616 B -= sdiv(N,Two); 4617 4618 // The A coefficient is N/2 4619 APInt A(N.sdiv(Two)); 4620 4621 // Compute the B^2-4ac term. 4622 APInt SqrtTerm(B); 4623 SqrtTerm *= B; 4624 SqrtTerm -= Four * (A * C); 4625 4626 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4627 // integer value or else APInt::sqrt() will assert. 4628 APInt SqrtVal(SqrtTerm.sqrt()); 4629 4630 // Compute the two solutions for the quadratic formula. 4631 // The divisions must be performed as signed divisions. 4632 APInt NegB(-B); 4633 APInt TwoA( A << 1 ); 4634 if (TwoA.isMinValue()) { 4635 const SCEV *CNC = SE.getCouldNotCompute(); 4636 return std::make_pair(CNC, CNC); 4637 } 4638 4639 LLVMContext &Context = SE.getContext(); 4640 4641 ConstantInt *Solution1 = 4642 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4643 ConstantInt *Solution2 = 4644 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4645 4646 return std::make_pair(SE.getConstant(Solution1), 4647 SE.getConstant(Solution2)); 4648 } // end APIntOps namespace 4649 } 4650 4651 /// HowFarToZero - Return the number of times a backedge comparing the specified 4652 /// value to zero will execute. If not computable, return CouldNotCompute. 4653 ScalarEvolution::BackedgeTakenInfo 4654 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4655 // If the value is a constant 4656 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4657 // If the value is already zero, the branch will execute zero times. 4658 if (C->getValue()->isZero()) return C; 4659 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4660 } 4661 4662 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4663 if (!AddRec || AddRec->getLoop() != L) 4664 return getCouldNotCompute(); 4665 4666 if (AddRec->isAffine()) { 4667 // If this is an affine expression, the execution count of this branch is 4668 // the minimum unsigned root of the following equation: 4669 // 4670 // Start + Step*N = 0 (mod 2^BW) 4671 // 4672 // equivalent to: 4673 // 4674 // Step*N = -Start (mod 2^BW) 4675 // 4676 // where BW is the common bit width of Start and Step. 4677 4678 // Get the initial value for the loop. 4679 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4680 L->getParentLoop()); 4681 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4682 L->getParentLoop()); 4683 4684 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4685 // For now we handle only constant steps. 4686 4687 // First, handle unitary steps. 4688 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4689 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4690 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4691 return Start; // N = Start (as unsigned) 4692 4693 // Then, try to solve the above equation provided that Start is constant. 4694 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4695 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4696 -StartC->getValue()->getValue(), 4697 *this); 4698 } 4699 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4700 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4701 // the quadratic equation to solve it. 4702 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4703 *this); 4704 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4705 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4706 if (R1) { 4707 #if 0 4708 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4709 << " sol#2: " << *R2 << "\n"; 4710 #endif 4711 // Pick the smallest positive root value. 4712 if (ConstantInt *CB = 4713 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4714 R1->getValue(), R2->getValue()))) { 4715 if (CB->getZExtValue() == false) 4716 std::swap(R1, R2); // R1 is the minimum root now. 4717 4718 // We can only use this value if the chrec ends up with an exact zero 4719 // value at this index. When solving for "X*X != 5", for example, we 4720 // should not accept a root of 2. 4721 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4722 if (Val->isZero()) 4723 return R1; // We found a quadratic root! 4724 } 4725 } 4726 } 4727 4728 return getCouldNotCompute(); 4729 } 4730 4731 /// HowFarToNonZero - Return the number of times a backedge checking the 4732 /// specified value for nonzero will execute. If not computable, return 4733 /// CouldNotCompute 4734 ScalarEvolution::BackedgeTakenInfo 4735 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4736 // Loops that look like: while (X == 0) are very strange indeed. We don't 4737 // handle them yet except for the trivial case. This could be expanded in the 4738 // future as needed. 4739 4740 // If the value is a constant, check to see if it is known to be non-zero 4741 // already. If so, the backedge will execute zero times. 4742 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4743 if (!C->getValue()->isNullValue()) 4744 return getConstant(C->getType(), 0); 4745 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4746 } 4747 4748 // We could implement others, but I really doubt anyone writes loops like 4749 // this, and if they did, they would already be constant folded. 4750 return getCouldNotCompute(); 4751 } 4752 4753 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4754 /// (which may not be an immediate predecessor) which has exactly one 4755 /// successor from which BB is reachable, or null if no such block is 4756 /// found. 4757 /// 4758 std::pair<BasicBlock *, BasicBlock *> 4759 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4760 // If the block has a unique predecessor, then there is no path from the 4761 // predecessor to the block that does not go through the direct edge 4762 // from the predecessor to the block. 4763 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4764 return std::make_pair(Pred, BB); 4765 4766 // A loop's header is defined to be a block that dominates the loop. 4767 // If the header has a unique predecessor outside the loop, it must be 4768 // a block that has exactly one successor that can reach the loop. 4769 if (Loop *L = LI->getLoopFor(BB)) 4770 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 4771 4772 return std::pair<BasicBlock *, BasicBlock *>(); 4773 } 4774 4775 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4776 /// testing whether two expressions are equal, however for the purposes of 4777 /// looking for a condition guarding a loop, it can be useful to be a little 4778 /// more general, since a front-end may have replicated the controlling 4779 /// expression. 4780 /// 4781 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4782 // Quick check to see if they are the same SCEV. 4783 if (A == B) return true; 4784 4785 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4786 // two different instructions with the same value. Check for this case. 4787 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4788 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4789 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4790 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4791 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4792 return true; 4793 4794 // Otherwise assume they may have a different value. 4795 return false; 4796 } 4797 4798 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 4799 /// predicate Pred. Return true iff any changes were made. 4800 /// 4801 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 4802 const SCEV *&LHS, const SCEV *&RHS) { 4803 bool Changed = false; 4804 4805 // Canonicalize a constant to the right side. 4806 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 4807 // Check for both operands constant. 4808 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 4809 if (ConstantExpr::getICmp(Pred, 4810 LHSC->getValue(), 4811 RHSC->getValue())->isNullValue()) 4812 goto trivially_false; 4813 else 4814 goto trivially_true; 4815 } 4816 // Otherwise swap the operands to put the constant on the right. 4817 std::swap(LHS, RHS); 4818 Pred = ICmpInst::getSwappedPredicate(Pred); 4819 Changed = true; 4820 } 4821 4822 // If we're comparing an addrec with a value which is loop-invariant in the 4823 // addrec's loop, put the addrec on the left. Also make a dominance check, 4824 // as both operands could be addrecs loop-invariant in each other's loop. 4825 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 4826 const Loop *L = AR->getLoop(); 4827 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) { 4828 std::swap(LHS, RHS); 4829 Pred = ICmpInst::getSwappedPredicate(Pred); 4830 Changed = true; 4831 } 4832 } 4833 4834 // If there's a constant operand, canonicalize comparisons with boundary 4835 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 4836 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4837 const APInt &RA = RC->getValue()->getValue(); 4838 switch (Pred) { 4839 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4840 case ICmpInst::ICMP_EQ: 4841 case ICmpInst::ICMP_NE: 4842 break; 4843 case ICmpInst::ICMP_UGE: 4844 if ((RA - 1).isMinValue()) { 4845 Pred = ICmpInst::ICMP_NE; 4846 RHS = getConstant(RA - 1); 4847 Changed = true; 4848 break; 4849 } 4850 if (RA.isMaxValue()) { 4851 Pred = ICmpInst::ICMP_EQ; 4852 Changed = true; 4853 break; 4854 } 4855 if (RA.isMinValue()) goto trivially_true; 4856 4857 Pred = ICmpInst::ICMP_UGT; 4858 RHS = getConstant(RA - 1); 4859 Changed = true; 4860 break; 4861 case ICmpInst::ICMP_ULE: 4862 if ((RA + 1).isMaxValue()) { 4863 Pred = ICmpInst::ICMP_NE; 4864 RHS = getConstant(RA + 1); 4865 Changed = true; 4866 break; 4867 } 4868 if (RA.isMinValue()) { 4869 Pred = ICmpInst::ICMP_EQ; 4870 Changed = true; 4871 break; 4872 } 4873 if (RA.isMaxValue()) goto trivially_true; 4874 4875 Pred = ICmpInst::ICMP_ULT; 4876 RHS = getConstant(RA + 1); 4877 Changed = true; 4878 break; 4879 case ICmpInst::ICMP_SGE: 4880 if ((RA - 1).isMinSignedValue()) { 4881 Pred = ICmpInst::ICMP_NE; 4882 RHS = getConstant(RA - 1); 4883 Changed = true; 4884 break; 4885 } 4886 if (RA.isMaxSignedValue()) { 4887 Pred = ICmpInst::ICMP_EQ; 4888 Changed = true; 4889 break; 4890 } 4891 if (RA.isMinSignedValue()) goto trivially_true; 4892 4893 Pred = ICmpInst::ICMP_SGT; 4894 RHS = getConstant(RA - 1); 4895 Changed = true; 4896 break; 4897 case ICmpInst::ICMP_SLE: 4898 if ((RA + 1).isMaxSignedValue()) { 4899 Pred = ICmpInst::ICMP_NE; 4900 RHS = getConstant(RA + 1); 4901 Changed = true; 4902 break; 4903 } 4904 if (RA.isMinSignedValue()) { 4905 Pred = ICmpInst::ICMP_EQ; 4906 Changed = true; 4907 break; 4908 } 4909 if (RA.isMaxSignedValue()) goto trivially_true; 4910 4911 Pred = ICmpInst::ICMP_SLT; 4912 RHS = getConstant(RA + 1); 4913 Changed = true; 4914 break; 4915 case ICmpInst::ICMP_UGT: 4916 if (RA.isMinValue()) { 4917 Pred = ICmpInst::ICMP_NE; 4918 Changed = true; 4919 break; 4920 } 4921 if ((RA + 1).isMaxValue()) { 4922 Pred = ICmpInst::ICMP_EQ; 4923 RHS = getConstant(RA + 1); 4924 Changed = true; 4925 break; 4926 } 4927 if (RA.isMaxValue()) goto trivially_false; 4928 break; 4929 case ICmpInst::ICMP_ULT: 4930 if (RA.isMaxValue()) { 4931 Pred = ICmpInst::ICMP_NE; 4932 Changed = true; 4933 break; 4934 } 4935 if ((RA - 1).isMinValue()) { 4936 Pred = ICmpInst::ICMP_EQ; 4937 RHS = getConstant(RA - 1); 4938 Changed = true; 4939 break; 4940 } 4941 if (RA.isMinValue()) goto trivially_false; 4942 break; 4943 case ICmpInst::ICMP_SGT: 4944 if (RA.isMinSignedValue()) { 4945 Pred = ICmpInst::ICMP_NE; 4946 Changed = true; 4947 break; 4948 } 4949 if ((RA + 1).isMaxSignedValue()) { 4950 Pred = ICmpInst::ICMP_EQ; 4951 RHS = getConstant(RA + 1); 4952 Changed = true; 4953 break; 4954 } 4955 if (RA.isMaxSignedValue()) goto trivially_false; 4956 break; 4957 case ICmpInst::ICMP_SLT: 4958 if (RA.isMaxSignedValue()) { 4959 Pred = ICmpInst::ICMP_NE; 4960 Changed = true; 4961 break; 4962 } 4963 if ((RA - 1).isMinSignedValue()) { 4964 Pred = ICmpInst::ICMP_EQ; 4965 RHS = getConstant(RA - 1); 4966 Changed = true; 4967 break; 4968 } 4969 if (RA.isMinSignedValue()) goto trivially_false; 4970 break; 4971 } 4972 } 4973 4974 // Check for obvious equality. 4975 if (HasSameValue(LHS, RHS)) { 4976 if (ICmpInst::isTrueWhenEqual(Pred)) 4977 goto trivially_true; 4978 if (ICmpInst::isFalseWhenEqual(Pred)) 4979 goto trivially_false; 4980 } 4981 4982 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 4983 // adding or subtracting 1 from one of the operands. 4984 switch (Pred) { 4985 case ICmpInst::ICMP_SLE: 4986 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 4987 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 4988 /*HasNUW=*/false, /*HasNSW=*/true); 4989 Pred = ICmpInst::ICMP_SLT; 4990 Changed = true; 4991 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 4992 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 4993 /*HasNUW=*/false, /*HasNSW=*/true); 4994 Pred = ICmpInst::ICMP_SLT; 4995 Changed = true; 4996 } 4997 break; 4998 case ICmpInst::ICMP_SGE: 4999 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5000 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5001 /*HasNUW=*/false, /*HasNSW=*/true); 5002 Pred = ICmpInst::ICMP_SGT; 5003 Changed = true; 5004 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5005 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5006 /*HasNUW=*/false, /*HasNSW=*/true); 5007 Pred = ICmpInst::ICMP_SGT; 5008 Changed = true; 5009 } 5010 break; 5011 case ICmpInst::ICMP_ULE: 5012 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5013 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5014 /*HasNUW=*/true, /*HasNSW=*/false); 5015 Pred = ICmpInst::ICMP_ULT; 5016 Changed = true; 5017 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5018 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5019 /*HasNUW=*/true, /*HasNSW=*/false); 5020 Pred = ICmpInst::ICMP_ULT; 5021 Changed = true; 5022 } 5023 break; 5024 case ICmpInst::ICMP_UGE: 5025 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5026 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5027 /*HasNUW=*/true, /*HasNSW=*/false); 5028 Pred = ICmpInst::ICMP_UGT; 5029 Changed = true; 5030 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5031 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5032 /*HasNUW=*/true, /*HasNSW=*/false); 5033 Pred = ICmpInst::ICMP_UGT; 5034 Changed = true; 5035 } 5036 break; 5037 default: 5038 break; 5039 } 5040 5041 // TODO: More simplifications are possible here. 5042 5043 return Changed; 5044 5045 trivially_true: 5046 // Return 0 == 0. 5047 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5048 Pred = ICmpInst::ICMP_EQ; 5049 return true; 5050 5051 trivially_false: 5052 // Return 0 != 0. 5053 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0); 5054 Pred = ICmpInst::ICMP_NE; 5055 return true; 5056 } 5057 5058 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5059 return getSignedRange(S).getSignedMax().isNegative(); 5060 } 5061 5062 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5063 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5064 } 5065 5066 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5067 return !getSignedRange(S).getSignedMin().isNegative(); 5068 } 5069 5070 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5071 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5072 } 5073 5074 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5075 return isKnownNegative(S) || isKnownPositive(S); 5076 } 5077 5078 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5079 const SCEV *LHS, const SCEV *RHS) { 5080 // Canonicalize the inputs first. 5081 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5082 5083 // If LHS or RHS is an addrec, check to see if the condition is true in 5084 // every iteration of the loop. 5085 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5086 if (isLoopEntryGuardedByCond( 5087 AR->getLoop(), Pred, AR->getStart(), RHS) && 5088 isLoopBackedgeGuardedByCond( 5089 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5090 return true; 5091 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5092 if (isLoopEntryGuardedByCond( 5093 AR->getLoop(), Pred, LHS, AR->getStart()) && 5094 isLoopBackedgeGuardedByCond( 5095 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5096 return true; 5097 5098 // Otherwise see what can be done with known constant ranges. 5099 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5100 } 5101 5102 bool 5103 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5104 const SCEV *LHS, const SCEV *RHS) { 5105 if (HasSameValue(LHS, RHS)) 5106 return ICmpInst::isTrueWhenEqual(Pred); 5107 5108 // This code is split out from isKnownPredicate because it is called from 5109 // within isLoopEntryGuardedByCond. 5110 switch (Pred) { 5111 default: 5112 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5113 break; 5114 case ICmpInst::ICMP_SGT: 5115 Pred = ICmpInst::ICMP_SLT; 5116 std::swap(LHS, RHS); 5117 case ICmpInst::ICMP_SLT: { 5118 ConstantRange LHSRange = getSignedRange(LHS); 5119 ConstantRange RHSRange = getSignedRange(RHS); 5120 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5121 return true; 5122 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5123 return false; 5124 break; 5125 } 5126 case ICmpInst::ICMP_SGE: 5127 Pred = ICmpInst::ICMP_SLE; 5128 std::swap(LHS, RHS); 5129 case ICmpInst::ICMP_SLE: { 5130 ConstantRange LHSRange = getSignedRange(LHS); 5131 ConstantRange RHSRange = getSignedRange(RHS); 5132 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5133 return true; 5134 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5135 return false; 5136 break; 5137 } 5138 case ICmpInst::ICMP_UGT: 5139 Pred = ICmpInst::ICMP_ULT; 5140 std::swap(LHS, RHS); 5141 case ICmpInst::ICMP_ULT: { 5142 ConstantRange LHSRange = getUnsignedRange(LHS); 5143 ConstantRange RHSRange = getUnsignedRange(RHS); 5144 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5145 return true; 5146 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5147 return false; 5148 break; 5149 } 5150 case ICmpInst::ICMP_UGE: 5151 Pred = ICmpInst::ICMP_ULE; 5152 std::swap(LHS, RHS); 5153 case ICmpInst::ICMP_ULE: { 5154 ConstantRange LHSRange = getUnsignedRange(LHS); 5155 ConstantRange RHSRange = getUnsignedRange(RHS); 5156 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5157 return true; 5158 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5159 return false; 5160 break; 5161 } 5162 case ICmpInst::ICMP_NE: { 5163 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5164 return true; 5165 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5166 return true; 5167 5168 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5169 if (isKnownNonZero(Diff)) 5170 return true; 5171 break; 5172 } 5173 case ICmpInst::ICMP_EQ: 5174 // The check at the top of the function catches the case where 5175 // the values are known to be equal. 5176 break; 5177 } 5178 return false; 5179 } 5180 5181 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5182 /// protected by a conditional between LHS and RHS. This is used to 5183 /// to eliminate casts. 5184 bool 5185 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5186 ICmpInst::Predicate Pred, 5187 const SCEV *LHS, const SCEV *RHS) { 5188 // Interpret a null as meaning no loop, where there is obviously no guard 5189 // (interprocedural conditions notwithstanding). 5190 if (!L) return true; 5191 5192 BasicBlock *Latch = L->getLoopLatch(); 5193 if (!Latch) 5194 return false; 5195 5196 BranchInst *LoopContinuePredicate = 5197 dyn_cast<BranchInst>(Latch->getTerminator()); 5198 if (!LoopContinuePredicate || 5199 LoopContinuePredicate->isUnconditional()) 5200 return false; 5201 5202 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS, 5203 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 5204 } 5205 5206 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 5207 /// by a conditional between LHS and RHS. This is used to help avoid max 5208 /// expressions in loop trip counts, and to eliminate casts. 5209 bool 5210 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 5211 ICmpInst::Predicate Pred, 5212 const SCEV *LHS, const SCEV *RHS) { 5213 // Interpret a null as meaning no loop, where there is obviously no guard 5214 // (interprocedural conditions notwithstanding). 5215 if (!L) return false; 5216 5217 // Starting at the loop predecessor, climb up the predecessor chain, as long 5218 // as there are predecessors that can be found that have unique successors 5219 // leading to the original header. 5220 for (std::pair<BasicBlock *, BasicBlock *> 5221 Pair(L->getLoopPredecessor(), L->getHeader()); 5222 Pair.first; 5223 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 5224 5225 BranchInst *LoopEntryPredicate = 5226 dyn_cast<BranchInst>(Pair.first->getTerminator()); 5227 if (!LoopEntryPredicate || 5228 LoopEntryPredicate->isUnconditional()) 5229 continue; 5230 5231 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, 5232 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 5233 return true; 5234 } 5235 5236 return false; 5237 } 5238 5239 /// isImpliedCond - Test whether the condition described by Pred, LHS, 5240 /// and RHS is true whenever the given Cond value evaluates to true. 5241 bool ScalarEvolution::isImpliedCond(Value *CondValue, 5242 ICmpInst::Predicate Pred, 5243 const SCEV *LHS, const SCEV *RHS, 5244 bool Inverse) { 5245 // Recursively handle And and Or conditions. 5246 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { 5247 if (BO->getOpcode() == Instruction::And) { 5248 if (!Inverse) 5249 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 5250 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 5251 } else if (BO->getOpcode() == Instruction::Or) { 5252 if (Inverse) 5253 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 5254 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 5255 } 5256 } 5257 5258 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); 5259 if (!ICI) return false; 5260 5261 // Bail if the ICmp's operands' types are wider than the needed type 5262 // before attempting to call getSCEV on them. This avoids infinite 5263 // recursion, since the analysis of widening casts can require loop 5264 // exit condition information for overflow checking, which would 5265 // lead back here. 5266 if (getTypeSizeInBits(LHS->getType()) < 5267 getTypeSizeInBits(ICI->getOperand(0)->getType())) 5268 return false; 5269 5270 // Now that we found a conditional branch that dominates the loop, check to 5271 // see if it is the comparison we are looking for. 5272 ICmpInst::Predicate FoundPred; 5273 if (Inverse) 5274 FoundPred = ICI->getInversePredicate(); 5275 else 5276 FoundPred = ICI->getPredicate(); 5277 5278 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 5279 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 5280 5281 // Balance the types. The case where FoundLHS' type is wider than 5282 // LHS' type is checked for above. 5283 if (getTypeSizeInBits(LHS->getType()) > 5284 getTypeSizeInBits(FoundLHS->getType())) { 5285 if (CmpInst::isSigned(Pred)) { 5286 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 5287 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 5288 } else { 5289 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 5290 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 5291 } 5292 } 5293 5294 // Canonicalize the query to match the way instcombine will have 5295 // canonicalized the comparison. 5296 if (SimplifyICmpOperands(Pred, LHS, RHS)) 5297 if (LHS == RHS) 5298 return CmpInst::isTrueWhenEqual(Pred); 5299 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 5300 if (FoundLHS == FoundRHS) 5301 return CmpInst::isFalseWhenEqual(Pred); 5302 5303 // Check to see if we can make the LHS or RHS match. 5304 if (LHS == FoundRHS || RHS == FoundLHS) { 5305 if (isa<SCEVConstant>(RHS)) { 5306 std::swap(FoundLHS, FoundRHS); 5307 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 5308 } else { 5309 std::swap(LHS, RHS); 5310 Pred = ICmpInst::getSwappedPredicate(Pred); 5311 } 5312 } 5313 5314 // Check whether the found predicate is the same as the desired predicate. 5315 if (FoundPred == Pred) 5316 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 5317 5318 // Check whether swapping the found predicate makes it the same as the 5319 // desired predicate. 5320 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 5321 if (isa<SCEVConstant>(RHS)) 5322 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 5323 else 5324 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 5325 RHS, LHS, FoundLHS, FoundRHS); 5326 } 5327 5328 // Check whether the actual condition is beyond sufficient. 5329 if (FoundPred == ICmpInst::ICMP_EQ) 5330 if (ICmpInst::isTrueWhenEqual(Pred)) 5331 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 5332 return true; 5333 if (Pred == ICmpInst::ICMP_NE) 5334 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 5335 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 5336 return true; 5337 5338 // Otherwise assume the worst. 5339 return false; 5340 } 5341 5342 /// isImpliedCondOperands - Test whether the condition described by Pred, 5343 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 5344 /// and FoundRHS is true. 5345 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 5346 const SCEV *LHS, const SCEV *RHS, 5347 const SCEV *FoundLHS, 5348 const SCEV *FoundRHS) { 5349 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 5350 FoundLHS, FoundRHS) || 5351 // ~x < ~y --> x > y 5352 isImpliedCondOperandsHelper(Pred, LHS, RHS, 5353 getNotSCEV(FoundRHS), 5354 getNotSCEV(FoundLHS)); 5355 } 5356 5357 /// isImpliedCondOperandsHelper - Test whether the condition described by 5358 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 5359 /// FoundLHS, and FoundRHS is true. 5360 bool 5361 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 5362 const SCEV *LHS, const SCEV *RHS, 5363 const SCEV *FoundLHS, 5364 const SCEV *FoundRHS) { 5365 switch (Pred) { 5366 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5367 case ICmpInst::ICMP_EQ: 5368 case ICmpInst::ICMP_NE: 5369 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 5370 return true; 5371 break; 5372 case ICmpInst::ICMP_SLT: 5373 case ICmpInst::ICMP_SLE: 5374 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5375 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5376 return true; 5377 break; 5378 case ICmpInst::ICMP_SGT: 5379 case ICmpInst::ICMP_SGE: 5380 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5381 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5382 return true; 5383 break; 5384 case ICmpInst::ICMP_ULT: 5385 case ICmpInst::ICMP_ULE: 5386 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5387 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5388 return true; 5389 break; 5390 case ICmpInst::ICMP_UGT: 5391 case ICmpInst::ICMP_UGE: 5392 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5393 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5394 return true; 5395 break; 5396 } 5397 5398 return false; 5399 } 5400 5401 /// getBECount - Subtract the end and start values and divide by the step, 5402 /// rounding up, to get the number of times the backedge is executed. Return 5403 /// CouldNotCompute if an intermediate computation overflows. 5404 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5405 const SCEV *End, 5406 const SCEV *Step, 5407 bool NoWrap) { 5408 assert(!isKnownNegative(Step) && 5409 "This code doesn't handle negative strides yet!"); 5410 5411 const Type *Ty = Start->getType(); 5412 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 5413 const SCEV *Diff = getMinusSCEV(End, Start); 5414 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5415 5416 // Add an adjustment to the difference between End and Start so that 5417 // the division will effectively round up. 5418 const SCEV *Add = getAddExpr(Diff, RoundUp); 5419 5420 if (!NoWrap) { 5421 // Check Add for unsigned overflow. 5422 // TODO: More sophisticated things could be done here. 5423 const Type *WideTy = IntegerType::get(getContext(), 5424 getTypeSizeInBits(Ty) + 1); 5425 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5426 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5427 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5428 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5429 return getCouldNotCompute(); 5430 } 5431 5432 return getUDivExpr(Add, Step); 5433 } 5434 5435 /// HowManyLessThans - Return the number of times a backedge containing the 5436 /// specified less-than comparison will execute. If not computable, return 5437 /// CouldNotCompute. 5438 ScalarEvolution::BackedgeTakenInfo 5439 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5440 const Loop *L, bool isSigned) { 5441 // Only handle: "ADDREC < LoopInvariant". 5442 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 5443 5444 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5445 if (!AddRec || AddRec->getLoop() != L) 5446 return getCouldNotCompute(); 5447 5448 // Check to see if we have a flag which makes analysis easy. 5449 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5450 AddRec->hasNoUnsignedWrap(); 5451 5452 if (AddRec->isAffine()) { 5453 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5454 const SCEV *Step = AddRec->getStepRecurrence(*this); 5455 5456 if (Step->isZero()) 5457 return getCouldNotCompute(); 5458 if (Step->isOne()) { 5459 // With unit stride, the iteration never steps past the limit value. 5460 } else if (isKnownPositive(Step)) { 5461 // Test whether a positive iteration can step past the limit 5462 // value and past the maximum value for its type in a single step. 5463 // Note that it's not sufficient to check NoWrap here, because even 5464 // though the value after a wrap is undefined, it's not undefined 5465 // behavior, so if wrap does occur, the loop could either terminate or 5466 // loop infinitely, but in either case, the loop is guaranteed to 5467 // iterate at least until the iteration where the wrapping occurs. 5468 const SCEV *One = getConstant(Step->getType(), 1); 5469 if (isSigned) { 5470 APInt Max = APInt::getSignedMaxValue(BitWidth); 5471 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5472 .slt(getSignedRange(RHS).getSignedMax())) 5473 return getCouldNotCompute(); 5474 } else { 5475 APInt Max = APInt::getMaxValue(BitWidth); 5476 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5477 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5478 return getCouldNotCompute(); 5479 } 5480 } else 5481 // TODO: Handle negative strides here and below. 5482 return getCouldNotCompute(); 5483 5484 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5485 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5486 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5487 // treat m-n as signed nor unsigned due to overflow possibility. 5488 5489 // First, we get the value of the LHS in the first iteration: n 5490 const SCEV *Start = AddRec->getOperand(0); 5491 5492 // Determine the minimum constant start value. 5493 const SCEV *MinStart = getConstant(isSigned ? 5494 getSignedRange(Start).getSignedMin() : 5495 getUnsignedRange(Start).getUnsignedMin()); 5496 5497 // If we know that the condition is true in order to enter the loop, 5498 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5499 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5500 // the division must round up. 5501 const SCEV *End = RHS; 5502 if (!isLoopEntryGuardedByCond(L, 5503 isSigned ? ICmpInst::ICMP_SLT : 5504 ICmpInst::ICMP_ULT, 5505 getMinusSCEV(Start, Step), RHS)) 5506 End = isSigned ? getSMaxExpr(RHS, Start) 5507 : getUMaxExpr(RHS, Start); 5508 5509 // Determine the maximum constant end value. 5510 const SCEV *MaxEnd = getConstant(isSigned ? 5511 getSignedRange(End).getSignedMax() : 5512 getUnsignedRange(End).getUnsignedMax()); 5513 5514 // If MaxEnd is within a step of the maximum integer value in its type, 5515 // adjust it down to the minimum value which would produce the same effect. 5516 // This allows the subsequent ceiling division of (N+(step-1))/step to 5517 // compute the correct value. 5518 const SCEV *StepMinusOne = getMinusSCEV(Step, 5519 getConstant(Step->getType(), 1)); 5520 MaxEnd = isSigned ? 5521 getSMinExpr(MaxEnd, 5522 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5523 StepMinusOne)) : 5524 getUMinExpr(MaxEnd, 5525 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5526 StepMinusOne)); 5527 5528 // Finally, we subtract these two values and divide, rounding up, to get 5529 // the number of times the backedge is executed. 5530 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5531 5532 // The maximum backedge count is similar, except using the minimum start 5533 // value and the maximum end value. 5534 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5535 5536 return BackedgeTakenInfo(BECount, MaxBECount); 5537 } 5538 5539 return getCouldNotCompute(); 5540 } 5541 5542 /// getNumIterationsInRange - Return the number of iterations of this loop that 5543 /// produce values in the specified constant range. Another way of looking at 5544 /// this is that it returns the first iteration number where the value is not in 5545 /// the condition, thus computing the exit count. If the iteration count can't 5546 /// be computed, an instance of SCEVCouldNotCompute is returned. 5547 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5548 ScalarEvolution &SE) const { 5549 if (Range.isFullSet()) // Infinite loop. 5550 return SE.getCouldNotCompute(); 5551 5552 // If the start is a non-zero constant, shift the range to simplify things. 5553 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5554 if (!SC->getValue()->isZero()) { 5555 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5556 Operands[0] = SE.getConstant(SC->getType(), 0); 5557 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5558 if (const SCEVAddRecExpr *ShiftedAddRec = 5559 dyn_cast<SCEVAddRecExpr>(Shifted)) 5560 return ShiftedAddRec->getNumIterationsInRange( 5561 Range.subtract(SC->getValue()->getValue()), SE); 5562 // This is strange and shouldn't happen. 5563 return SE.getCouldNotCompute(); 5564 } 5565 5566 // The only time we can solve this is when we have all constant indices. 5567 // Otherwise, we cannot determine the overflow conditions. 5568 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5569 if (!isa<SCEVConstant>(getOperand(i))) 5570 return SE.getCouldNotCompute(); 5571 5572 5573 // Okay at this point we know that all elements of the chrec are constants and 5574 // that the start element is zero. 5575 5576 // First check to see if the range contains zero. If not, the first 5577 // iteration exits. 5578 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5579 if (!Range.contains(APInt(BitWidth, 0))) 5580 return SE.getConstant(getType(), 0); 5581 5582 if (isAffine()) { 5583 // If this is an affine expression then we have this situation: 5584 // Solve {0,+,A} in Range === Ax in Range 5585 5586 // We know that zero is in the range. If A is positive then we know that 5587 // the upper value of the range must be the first possible exit value. 5588 // If A is negative then the lower of the range is the last possible loop 5589 // value. Also note that we already checked for a full range. 5590 APInt One(BitWidth,1); 5591 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5592 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5593 5594 // The exit value should be (End+A)/A. 5595 APInt ExitVal = (End + A).udiv(A); 5596 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5597 5598 // Evaluate at the exit value. If we really did fall out of the valid 5599 // range, then we computed our trip count, otherwise wrap around or other 5600 // things must have happened. 5601 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5602 if (Range.contains(Val->getValue())) 5603 return SE.getCouldNotCompute(); // Something strange happened 5604 5605 // Ensure that the previous value is in the range. This is a sanity check. 5606 assert(Range.contains( 5607 EvaluateConstantChrecAtConstant(this, 5608 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5609 "Linear scev computation is off in a bad way!"); 5610 return SE.getConstant(ExitValue); 5611 } else if (isQuadratic()) { 5612 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5613 // quadratic equation to solve it. To do this, we must frame our problem in 5614 // terms of figuring out when zero is crossed, instead of when 5615 // Range.getUpper() is crossed. 5616 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5617 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5618 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5619 5620 // Next, solve the constructed addrec 5621 std::pair<const SCEV *,const SCEV *> Roots = 5622 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5623 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5624 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5625 if (R1) { 5626 // Pick the smallest positive root value. 5627 if (ConstantInt *CB = 5628 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5629 R1->getValue(), R2->getValue()))) { 5630 if (CB->getZExtValue() == false) 5631 std::swap(R1, R2); // R1 is the minimum root now. 5632 5633 // Make sure the root is not off by one. The returned iteration should 5634 // not be in the range, but the previous one should be. When solving 5635 // for "X*X < 5", for example, we should not return a root of 2. 5636 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5637 R1->getValue(), 5638 SE); 5639 if (Range.contains(R1Val->getValue())) { 5640 // The next iteration must be out of the range... 5641 ConstantInt *NextVal = 5642 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5643 5644 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5645 if (!Range.contains(R1Val->getValue())) 5646 return SE.getConstant(NextVal); 5647 return SE.getCouldNotCompute(); // Something strange happened 5648 } 5649 5650 // If R1 was not in the range, then it is a good return value. Make 5651 // sure that R1-1 WAS in the range though, just in case. 5652 ConstantInt *NextVal = 5653 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5654 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5655 if (Range.contains(R1Val->getValue())) 5656 return R1; 5657 return SE.getCouldNotCompute(); // Something strange happened 5658 } 5659 } 5660 } 5661 5662 return SE.getCouldNotCompute(); 5663 } 5664 5665 5666 5667 //===----------------------------------------------------------------------===// 5668 // SCEVCallbackVH Class Implementation 5669 //===----------------------------------------------------------------------===// 5670 5671 void ScalarEvolution::SCEVCallbackVH::deleted() { 5672 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5673 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5674 SE->ConstantEvolutionLoopExitValue.erase(PN); 5675 SE->Scalars.erase(getValPtr()); 5676 // this now dangles! 5677 } 5678 5679 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 5680 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5681 5682 // Forget all the expressions associated with users of the old value, 5683 // so that future queries will recompute the expressions using the new 5684 // value. 5685 SmallVector<User *, 16> Worklist; 5686 SmallPtrSet<User *, 8> Visited; 5687 Value *Old = getValPtr(); 5688 bool DeleteOld = false; 5689 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5690 UI != UE; ++UI) 5691 Worklist.push_back(*UI); 5692 while (!Worklist.empty()) { 5693 User *U = Worklist.pop_back_val(); 5694 // Deleting the Old value will cause this to dangle. Postpone 5695 // that until everything else is done. 5696 if (U == Old) { 5697 DeleteOld = true; 5698 continue; 5699 } 5700 if (!Visited.insert(U)) 5701 continue; 5702 if (PHINode *PN = dyn_cast<PHINode>(U)) 5703 SE->ConstantEvolutionLoopExitValue.erase(PN); 5704 SE->Scalars.erase(U); 5705 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5706 UI != UE; ++UI) 5707 Worklist.push_back(*UI); 5708 } 5709 // Delete the Old value if it (indirectly) references itself. 5710 if (DeleteOld) { 5711 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5712 SE->ConstantEvolutionLoopExitValue.erase(PN); 5713 SE->Scalars.erase(Old); 5714 // this now dangles! 5715 } 5716 // this may dangle! 5717 } 5718 5719 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5720 : CallbackVH(V), SE(se) {} 5721 5722 //===----------------------------------------------------------------------===// 5723 // ScalarEvolution Class Implementation 5724 //===----------------------------------------------------------------------===// 5725 5726 ScalarEvolution::ScalarEvolution() 5727 : FunctionPass(&ID) { 5728 } 5729 5730 bool ScalarEvolution::runOnFunction(Function &F) { 5731 this->F = &F; 5732 LI = &getAnalysis<LoopInfo>(); 5733 TD = getAnalysisIfAvailable<TargetData>(); 5734 DT = &getAnalysis<DominatorTree>(); 5735 return false; 5736 } 5737 5738 void ScalarEvolution::releaseMemory() { 5739 Scalars.clear(); 5740 BackedgeTakenCounts.clear(); 5741 ConstantEvolutionLoopExitValue.clear(); 5742 ValuesAtScopes.clear(); 5743 UniqueSCEVs.clear(); 5744 SCEVAllocator.Reset(); 5745 } 5746 5747 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5748 AU.setPreservesAll(); 5749 AU.addRequiredTransitive<LoopInfo>(); 5750 AU.addRequiredTransitive<DominatorTree>(); 5751 } 5752 5753 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5754 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5755 } 5756 5757 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5758 const Loop *L) { 5759 // Print all inner loops first 5760 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5761 PrintLoopInfo(OS, SE, *I); 5762 5763 OS << "Loop "; 5764 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5765 OS << ": "; 5766 5767 SmallVector<BasicBlock *, 8> ExitBlocks; 5768 L->getExitBlocks(ExitBlocks); 5769 if (ExitBlocks.size() != 1) 5770 OS << "<multiple exits> "; 5771 5772 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5773 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5774 } else { 5775 OS << "Unpredictable backedge-taken count. "; 5776 } 5777 5778 OS << "\n" 5779 "Loop "; 5780 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5781 OS << ": "; 5782 5783 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5784 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5785 } else { 5786 OS << "Unpredictable max backedge-taken count. "; 5787 } 5788 5789 OS << "\n"; 5790 } 5791 5792 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 5793 // ScalarEvolution's implementation of the print method is to print 5794 // out SCEV values of all instructions that are interesting. Doing 5795 // this potentially causes it to create new SCEV objects though, 5796 // which technically conflicts with the const qualifier. This isn't 5797 // observable from outside the class though, so casting away the 5798 // const isn't dangerous. 5799 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 5800 5801 OS << "Classifying expressions for: "; 5802 WriteAsOperand(OS, F, /*PrintType=*/false); 5803 OS << "\n"; 5804 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5805 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 5806 OS << *I << '\n'; 5807 OS << " --> "; 5808 const SCEV *SV = SE.getSCEV(&*I); 5809 SV->print(OS); 5810 5811 const Loop *L = LI->getLoopFor((*I).getParent()); 5812 5813 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5814 if (AtUse != SV) { 5815 OS << " --> "; 5816 AtUse->print(OS); 5817 } 5818 5819 if (L) { 5820 OS << "\t\t" "Exits: "; 5821 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5822 if (!ExitValue->isLoopInvariant(L)) { 5823 OS << "<<Unknown>>"; 5824 } else { 5825 OS << *ExitValue; 5826 } 5827 } 5828 5829 OS << "\n"; 5830 } 5831 5832 OS << "Determining loop execution counts for: "; 5833 WriteAsOperand(OS, F, /*PrintType=*/false); 5834 OS << "\n"; 5835 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5836 PrintLoopInfo(OS, &SE, *I); 5837 } 5838 5839