1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/Instructions.h" 67 #include "llvm/LLVMContext.h" 68 #include "llvm/Operator.h" 69 #include "llvm/Analysis/ConstantFolding.h" 70 #include "llvm/Analysis/Dominators.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/Assembly/Writer.h" 74 #include "llvm/Target/TargetData.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/ErrorHandling.h" 79 #include "llvm/Support/GetElementPtrTypeIterator.h" 80 #include "llvm/Support/InstIterator.h" 81 #include "llvm/Support/MathExtras.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/ADT/Statistic.h" 84 #include "llvm/ADT/STLExtras.h" 85 #include "llvm/ADT/SmallPtrSet.h" 86 #include <algorithm> 87 using namespace llvm; 88 89 STATISTIC(NumArrayLenItCounts, 90 "Number of trip counts computed with array length"); 91 STATISTIC(NumTripCountsComputed, 92 "Number of loops with predictable loop counts"); 93 STATISTIC(NumTripCountsNotComputed, 94 "Number of loops without predictable loop counts"); 95 STATISTIC(NumBruteForceTripCountsComputed, 96 "Number of loops with trip counts computed by force"); 97 98 static cl::opt<unsigned> 99 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 100 cl::desc("Maximum number of iterations SCEV will " 101 "symbolically execute a constant " 102 "derived loop"), 103 cl::init(100)); 104 105 static RegisterPass<ScalarEvolution> 106 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 107 char ScalarEvolution::ID = 0; 108 109 //===----------------------------------------------------------------------===// 110 // SCEV class definitions 111 //===----------------------------------------------------------------------===// 112 113 //===----------------------------------------------------------------------===// 114 // Implementation of the SCEV class. 115 // 116 117 SCEV::~SCEV() {} 118 119 void SCEV::dump() const { 120 print(errs()); 121 errs() << '\n'; 122 } 123 124 void SCEV::print(std::ostream &o) const { 125 raw_os_ostream OS(o); 126 print(OS); 127 } 128 129 bool SCEV::isZero() const { 130 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 131 return SC->getValue()->isZero(); 132 return false; 133 } 134 135 bool SCEV::isOne() const { 136 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 137 return SC->getValue()->isOne(); 138 return false; 139 } 140 141 bool SCEV::isAllOnesValue() const { 142 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 143 return SC->getValue()->isAllOnesValue(); 144 return false; 145 } 146 147 SCEVCouldNotCompute::SCEVCouldNotCompute() : 148 SCEV(FoldingSetNodeID(), scCouldNotCompute) {} 149 150 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 151 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 152 return false; 153 } 154 155 const Type *SCEVCouldNotCompute::getType() const { 156 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 157 return 0; 158 } 159 160 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 161 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 162 return false; 163 } 164 165 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 166 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 167 return false; 168 } 169 170 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 171 OS << "***COULDNOTCOMPUTE***"; 172 } 173 174 bool SCEVCouldNotCompute::classof(const SCEV *S) { 175 return S->getSCEVType() == scCouldNotCompute; 176 } 177 178 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 179 FoldingSetNodeID ID; 180 ID.AddInteger(scConstant); 181 ID.AddPointer(V); 182 void *IP = 0; 183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 184 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>(); 185 new (S) SCEVConstant(ID, V); 186 UniqueSCEVs.InsertNode(S, IP); 187 return S; 188 } 189 190 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 191 return getConstant(ConstantInt::get(getContext(), Val)); 192 } 193 194 const SCEV * 195 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 196 return getConstant( 197 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); 198 } 199 200 const Type *SCEVConstant::getType() const { return V->getType(); } 201 202 void SCEVConstant::print(raw_ostream &OS) const { 203 WriteAsOperand(OS, V, false); 204 } 205 206 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID, 207 unsigned SCEVTy, const SCEV *op, const Type *ty) 208 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 209 210 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 211 return Op->dominates(BB, DT); 212 } 213 214 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID, 215 const SCEV *op, const Type *ty) 216 : SCEVCastExpr(ID, scTruncate, op, ty) { 217 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 218 (Ty->isInteger() || isa<PointerType>(Ty)) && 219 "Cannot truncate non-integer value!"); 220 } 221 222 void SCEVTruncateExpr::print(raw_ostream &OS) const { 223 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 224 } 225 226 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID, 227 const SCEV *op, const Type *ty) 228 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 229 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 230 (Ty->isInteger() || isa<PointerType>(Ty)) && 231 "Cannot zero extend non-integer value!"); 232 } 233 234 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 235 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 236 } 237 238 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID, 239 const SCEV *op, const Type *ty) 240 : SCEVCastExpr(ID, scSignExtend, op, ty) { 241 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 242 (Ty->isInteger() || isa<PointerType>(Ty)) && 243 "Cannot sign extend non-integer value!"); 244 } 245 246 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 247 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 248 } 249 250 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 251 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 252 const char *OpStr = getOperationStr(); 253 OS << "(" << *Operands[0]; 254 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 255 OS << OpStr << *Operands[i]; 256 OS << ")"; 257 } 258 259 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 260 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 261 if (!getOperand(i)->dominates(BB, DT)) 262 return false; 263 } 264 return true; 265 } 266 267 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 268 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 269 } 270 271 void SCEVUDivExpr::print(raw_ostream &OS) const { 272 OS << "(" << *LHS << " /u " << *RHS << ")"; 273 } 274 275 const Type *SCEVUDivExpr::getType() const { 276 // In most cases the types of LHS and RHS will be the same, but in some 277 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 278 // depend on the type for correctness, but handling types carefully can 279 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 280 // a pointer type than the RHS, so use the RHS' type here. 281 return RHS->getType(); 282 } 283 284 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 285 // Add recurrences are never invariant in the function-body (null loop). 286 if (!QueryLoop) 287 return false; 288 289 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 290 if (QueryLoop->contains(L->getHeader())) 291 return false; 292 293 // This recurrence is variant w.r.t. QueryLoop if any of its operands 294 // are variant. 295 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 296 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 297 return false; 298 299 // Otherwise it's loop-invariant. 300 return true; 301 } 302 303 void SCEVAddRecExpr::print(raw_ostream &OS) const { 304 OS << "{" << *Operands[0]; 305 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 306 OS << ",+," << *Operands[i]; 307 OS << "}<" << L->getHeader()->getName() + ">"; 308 } 309 310 void SCEVFieldOffsetExpr::print(raw_ostream &OS) const { 311 // LLVM struct fields don't have names, so just print the field number. 312 OS << "offsetof(" << *STy << ", " << FieldNo << ")"; 313 } 314 315 void SCEVAllocSizeExpr::print(raw_ostream &OS) const { 316 OS << "sizeof(" << *AllocTy << ")"; 317 } 318 319 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 320 // All non-instruction values are loop invariant. All instructions are loop 321 // invariant if they are not contained in the specified loop. 322 // Instructions are never considered invariant in the function body 323 // (null loop) because they are defined within the "loop". 324 if (Instruction *I = dyn_cast<Instruction>(V)) 325 return L && !L->contains(I->getParent()); 326 return true; 327 } 328 329 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 330 if (Instruction *I = dyn_cast<Instruction>(getValue())) 331 return DT->dominates(I->getParent(), BB); 332 return true; 333 } 334 335 const Type *SCEVUnknown::getType() const { 336 return V->getType(); 337 } 338 339 void SCEVUnknown::print(raw_ostream &OS) const { 340 WriteAsOperand(OS, V, false); 341 } 342 343 //===----------------------------------------------------------------------===// 344 // SCEV Utilities 345 //===----------------------------------------------------------------------===// 346 347 static bool CompareTypes(const Type *A, const Type *B) { 348 if (A->getTypeID() != B->getTypeID()) 349 return A->getTypeID() < B->getTypeID(); 350 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { 351 const IntegerType *BI = cast<IntegerType>(B); 352 return AI->getBitWidth() < BI->getBitWidth(); 353 } 354 if (const PointerType *AI = dyn_cast<PointerType>(A)) { 355 const PointerType *BI = cast<PointerType>(B); 356 return CompareTypes(AI->getElementType(), BI->getElementType()); 357 } 358 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { 359 const ArrayType *BI = cast<ArrayType>(B); 360 if (AI->getNumElements() != BI->getNumElements()) 361 return AI->getNumElements() < BI->getNumElements(); 362 return CompareTypes(AI->getElementType(), BI->getElementType()); 363 } 364 if (const VectorType *AI = dyn_cast<VectorType>(A)) { 365 const VectorType *BI = cast<VectorType>(B); 366 if (AI->getNumElements() != BI->getNumElements()) 367 return AI->getNumElements() < BI->getNumElements(); 368 return CompareTypes(AI->getElementType(), BI->getElementType()); 369 } 370 if (const StructType *AI = dyn_cast<StructType>(A)) { 371 const StructType *BI = cast<StructType>(B); 372 if (AI->getNumElements() != BI->getNumElements()) 373 return AI->getNumElements() < BI->getNumElements(); 374 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) 375 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || 376 CompareTypes(BI->getElementType(i), AI->getElementType(i))) 377 return CompareTypes(AI->getElementType(i), BI->getElementType(i)); 378 } 379 return false; 380 } 381 382 namespace { 383 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 384 /// than the complexity of the RHS. This comparator is used to canonicalize 385 /// expressions. 386 class VISIBILITY_HIDDEN SCEVComplexityCompare { 387 LoopInfo *LI; 388 public: 389 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 390 391 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 392 // Primarily, sort the SCEVs by their getSCEVType(). 393 if (LHS->getSCEVType() != RHS->getSCEVType()) 394 return LHS->getSCEVType() < RHS->getSCEVType(); 395 396 // Aside from the getSCEVType() ordering, the particular ordering 397 // isn't very important except that it's beneficial to be consistent, 398 // so that (a + b) and (b + a) don't end up as different expressions. 399 400 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 401 // not as complete as it could be. 402 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 403 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 404 405 // Order pointer values after integer values. This helps SCEVExpander 406 // form GEPs. 407 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) 408 return false; 409 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) 410 return true; 411 412 // Compare getValueID values. 413 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 414 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 415 416 // Sort arguments by their position. 417 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 418 const Argument *RA = cast<Argument>(RU->getValue()); 419 return LA->getArgNo() < RA->getArgNo(); 420 } 421 422 // For instructions, compare their loop depth, and their opcode. 423 // This is pretty loose. 424 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 425 Instruction *RV = cast<Instruction>(RU->getValue()); 426 427 // Compare loop depths. 428 if (LI->getLoopDepth(LV->getParent()) != 429 LI->getLoopDepth(RV->getParent())) 430 return LI->getLoopDepth(LV->getParent()) < 431 LI->getLoopDepth(RV->getParent()); 432 433 // Compare opcodes. 434 if (LV->getOpcode() != RV->getOpcode()) 435 return LV->getOpcode() < RV->getOpcode(); 436 437 // Compare the number of operands. 438 if (LV->getNumOperands() != RV->getNumOperands()) 439 return LV->getNumOperands() < RV->getNumOperands(); 440 } 441 442 return false; 443 } 444 445 // Compare constant values. 446 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 447 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 448 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth()) 449 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth(); 450 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 451 } 452 453 // Compare addrec loop depths. 454 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 455 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 456 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 457 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 458 } 459 460 // Lexicographically compare n-ary expressions. 461 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 462 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 463 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 464 if (i >= RC->getNumOperands()) 465 return false; 466 if (operator()(LC->getOperand(i), RC->getOperand(i))) 467 return true; 468 if (operator()(RC->getOperand(i), LC->getOperand(i))) 469 return false; 470 } 471 return LC->getNumOperands() < RC->getNumOperands(); 472 } 473 474 // Lexicographically compare udiv expressions. 475 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 476 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 477 if (operator()(LC->getLHS(), RC->getLHS())) 478 return true; 479 if (operator()(RC->getLHS(), LC->getLHS())) 480 return false; 481 if (operator()(LC->getRHS(), RC->getRHS())) 482 return true; 483 if (operator()(RC->getRHS(), LC->getRHS())) 484 return false; 485 return false; 486 } 487 488 // Compare cast expressions by operand. 489 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 490 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 491 return operator()(LC->getOperand(), RC->getOperand()); 492 } 493 494 // Compare offsetof expressions. 495 if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) { 496 const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS); 497 if (CompareTypes(LA->getStructType(), RA->getStructType()) || 498 CompareTypes(RA->getStructType(), LA->getStructType())) 499 return CompareTypes(LA->getStructType(), RA->getStructType()); 500 return LA->getFieldNo() < RA->getFieldNo(); 501 } 502 503 // Compare sizeof expressions by the allocation type. 504 if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) { 505 const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS); 506 return CompareTypes(LA->getAllocType(), RA->getAllocType()); 507 } 508 509 llvm_unreachable("Unknown SCEV kind!"); 510 return false; 511 } 512 }; 513 } 514 515 /// GroupByComplexity - Given a list of SCEV objects, order them by their 516 /// complexity, and group objects of the same complexity together by value. 517 /// When this routine is finished, we know that any duplicates in the vector are 518 /// consecutive and that complexity is monotonically increasing. 519 /// 520 /// Note that we go take special precautions to ensure that we get determinstic 521 /// results from this routine. In other words, we don't want the results of 522 /// this to depend on where the addresses of various SCEV objects happened to 523 /// land in memory. 524 /// 525 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 526 LoopInfo *LI) { 527 if (Ops.size() < 2) return; // Noop 528 if (Ops.size() == 2) { 529 // This is the common case, which also happens to be trivially simple. 530 // Special case it. 531 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 532 std::swap(Ops[0], Ops[1]); 533 return; 534 } 535 536 // Do the rough sort by complexity. 537 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 538 539 // Now that we are sorted by complexity, group elements of the same 540 // complexity. Note that this is, at worst, N^2, but the vector is likely to 541 // be extremely short in practice. Note that we take this approach because we 542 // do not want to depend on the addresses of the objects we are grouping. 543 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 544 const SCEV *S = Ops[i]; 545 unsigned Complexity = S->getSCEVType(); 546 547 // If there are any objects of the same complexity and same value as this 548 // one, group them. 549 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 550 if (Ops[j] == S) { // Found a duplicate. 551 // Move it to immediately after i'th element. 552 std::swap(Ops[i+1], Ops[j]); 553 ++i; // no need to rescan it. 554 if (i == e-2) return; // Done! 555 } 556 } 557 } 558 } 559 560 561 562 //===----------------------------------------------------------------------===// 563 // Simple SCEV method implementations 564 //===----------------------------------------------------------------------===// 565 566 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 567 /// Assume, K > 0. 568 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 569 ScalarEvolution &SE, 570 const Type* ResultTy) { 571 // Handle the simplest case efficiently. 572 if (K == 1) 573 return SE.getTruncateOrZeroExtend(It, ResultTy); 574 575 // We are using the following formula for BC(It, K): 576 // 577 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 578 // 579 // Suppose, W is the bitwidth of the return value. We must be prepared for 580 // overflow. Hence, we must assure that the result of our computation is 581 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 582 // safe in modular arithmetic. 583 // 584 // However, this code doesn't use exactly that formula; the formula it uses 585 // is something like the following, where T is the number of factors of 2 in 586 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 587 // exponentiation: 588 // 589 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 590 // 591 // This formula is trivially equivalent to the previous formula. However, 592 // this formula can be implemented much more efficiently. The trick is that 593 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 594 // arithmetic. To do exact division in modular arithmetic, all we have 595 // to do is multiply by the inverse. Therefore, this step can be done at 596 // width W. 597 // 598 // The next issue is how to safely do the division by 2^T. The way this 599 // is done is by doing the multiplication step at a width of at least W + T 600 // bits. This way, the bottom W+T bits of the product are accurate. Then, 601 // when we perform the division by 2^T (which is equivalent to a right shift 602 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 603 // truncated out after the division by 2^T. 604 // 605 // In comparison to just directly using the first formula, this technique 606 // is much more efficient; using the first formula requires W * K bits, 607 // but this formula less than W + K bits. Also, the first formula requires 608 // a division step, whereas this formula only requires multiplies and shifts. 609 // 610 // It doesn't matter whether the subtraction step is done in the calculation 611 // width or the input iteration count's width; if the subtraction overflows, 612 // the result must be zero anyway. We prefer here to do it in the width of 613 // the induction variable because it helps a lot for certain cases; CodeGen 614 // isn't smart enough to ignore the overflow, which leads to much less 615 // efficient code if the width of the subtraction is wider than the native 616 // register width. 617 // 618 // (It's possible to not widen at all by pulling out factors of 2 before 619 // the multiplication; for example, K=2 can be calculated as 620 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 621 // extra arithmetic, so it's not an obvious win, and it gets 622 // much more complicated for K > 3.) 623 624 // Protection from insane SCEVs; this bound is conservative, 625 // but it probably doesn't matter. 626 if (K > 1000) 627 return SE.getCouldNotCompute(); 628 629 unsigned W = SE.getTypeSizeInBits(ResultTy); 630 631 // Calculate K! / 2^T and T; we divide out the factors of two before 632 // multiplying for calculating K! / 2^T to avoid overflow. 633 // Other overflow doesn't matter because we only care about the bottom 634 // W bits of the result. 635 APInt OddFactorial(W, 1); 636 unsigned T = 1; 637 for (unsigned i = 3; i <= K; ++i) { 638 APInt Mult(W, i); 639 unsigned TwoFactors = Mult.countTrailingZeros(); 640 T += TwoFactors; 641 Mult = Mult.lshr(TwoFactors); 642 OddFactorial *= Mult; 643 } 644 645 // We need at least W + T bits for the multiplication step 646 unsigned CalculationBits = W + T; 647 648 // Calcuate 2^T, at width T+W. 649 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 650 651 // Calculate the multiplicative inverse of K! / 2^T; 652 // this multiplication factor will perform the exact division by 653 // K! / 2^T. 654 APInt Mod = APInt::getSignedMinValue(W+1); 655 APInt MultiplyFactor = OddFactorial.zext(W+1); 656 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 657 MultiplyFactor = MultiplyFactor.trunc(W); 658 659 // Calculate the product, at width T+W 660 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 661 CalculationBits); 662 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 663 for (unsigned i = 1; i != K; ++i) { 664 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 665 Dividend = SE.getMulExpr(Dividend, 666 SE.getTruncateOrZeroExtend(S, CalculationTy)); 667 } 668 669 // Divide by 2^T 670 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 671 672 // Truncate the result, and divide by K! / 2^T. 673 674 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 675 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 676 } 677 678 /// evaluateAtIteration - Return the value of this chain of recurrences at 679 /// the specified iteration number. We can evaluate this recurrence by 680 /// multiplying each element in the chain by the binomial coefficient 681 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 682 /// 683 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 684 /// 685 /// where BC(It, k) stands for binomial coefficient. 686 /// 687 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 688 ScalarEvolution &SE) const { 689 const SCEV *Result = getStart(); 690 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 691 // The computation is correct in the face of overflow provided that the 692 // multiplication is performed _after_ the evaluation of the binomial 693 // coefficient. 694 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 695 if (isa<SCEVCouldNotCompute>(Coeff)) 696 return Coeff; 697 698 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 699 } 700 return Result; 701 } 702 703 //===----------------------------------------------------------------------===// 704 // SCEV Expression folder implementations 705 //===----------------------------------------------------------------------===// 706 707 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 708 const Type *Ty) { 709 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 710 "This is not a truncating conversion!"); 711 assert(isSCEVable(Ty) && 712 "This is not a conversion to a SCEVable type!"); 713 Ty = getEffectiveSCEVType(Ty); 714 715 FoldingSetNodeID ID; 716 ID.AddInteger(scTruncate); 717 ID.AddPointer(Op); 718 ID.AddPointer(Ty); 719 void *IP = 0; 720 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 721 722 // Fold if the operand is constant. 723 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 724 return getConstant( 725 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 726 727 // trunc(trunc(x)) --> trunc(x) 728 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 729 return getTruncateExpr(ST->getOperand(), Ty); 730 731 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 732 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 733 return getTruncateOrSignExtend(SS->getOperand(), Ty); 734 735 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 736 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 737 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 738 739 // If the input value is a chrec scev, truncate the chrec's operands. 740 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 741 SmallVector<const SCEV *, 4> Operands; 742 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 743 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 744 return getAddRecExpr(Operands, AddRec->getLoop()); 745 } 746 747 // The cast wasn't folded; create an explicit cast node. 748 // Recompute the insert position, as it may have been invalidated. 749 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 750 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>(); 751 new (S) SCEVTruncateExpr(ID, Op, Ty); 752 UniqueSCEVs.InsertNode(S, IP); 753 return S; 754 } 755 756 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 757 const Type *Ty) { 758 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 759 "This is not an extending conversion!"); 760 assert(isSCEVable(Ty) && 761 "This is not a conversion to a SCEVable type!"); 762 Ty = getEffectiveSCEVType(Ty); 763 764 // Fold if the operand is constant. 765 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 766 const Type *IntTy = getEffectiveSCEVType(Ty); 767 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 768 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 769 return getConstant(cast<ConstantInt>(C)); 770 } 771 772 // zext(zext(x)) --> zext(x) 773 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 774 return getZeroExtendExpr(SZ->getOperand(), Ty); 775 776 // Before doing any expensive analysis, check to see if we've already 777 // computed a SCEV for this Op and Ty. 778 FoldingSetNodeID ID; 779 ID.AddInteger(scZeroExtend); 780 ID.AddPointer(Op); 781 ID.AddPointer(Ty); 782 void *IP = 0; 783 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 784 785 // If the input value is a chrec scev, and we can prove that the value 786 // did not overflow the old, smaller, value, we can zero extend all of the 787 // operands (often constants). This allows analysis of something like 788 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 789 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 790 if (AR->isAffine()) { 791 const SCEV *Start = AR->getStart(); 792 const SCEV *Step = AR->getStepRecurrence(*this); 793 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 794 const Loop *L = AR->getLoop(); 795 796 // If we have special knowledge that this addrec won't overflow, 797 // we don't need to do any further analysis. 798 if (AR->hasNoUnsignedOverflow()) 799 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 800 getZeroExtendExpr(Step, Ty), 801 L); 802 803 // Check whether the backedge-taken count is SCEVCouldNotCompute. 804 // Note that this serves two purposes: It filters out loops that are 805 // simply not analyzable, and it covers the case where this code is 806 // being called from within backedge-taken count analysis, such that 807 // attempting to ask for the backedge-taken count would likely result 808 // in infinite recursion. In the later case, the analysis code will 809 // cope with a conservative value, and it will take care to purge 810 // that value once it has finished. 811 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 812 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 813 // Manually compute the final value for AR, checking for 814 // overflow. 815 816 // Check whether the backedge-taken count can be losslessly casted to 817 // the addrec's type. The count is always unsigned. 818 const SCEV *CastedMaxBECount = 819 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 820 const SCEV *RecastedMaxBECount = 821 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 822 if (MaxBECount == RecastedMaxBECount) { 823 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 824 // Check whether Start+Step*MaxBECount has no unsigned overflow. 825 const SCEV *ZMul = 826 getMulExpr(CastedMaxBECount, 827 getTruncateOrZeroExtend(Step, Start->getType())); 828 const SCEV *Add = getAddExpr(Start, ZMul); 829 const SCEV *OperandExtendedAdd = 830 getAddExpr(getZeroExtendExpr(Start, WideTy), 831 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 832 getZeroExtendExpr(Step, WideTy))); 833 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 834 // Return the expression with the addrec on the outside. 835 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 836 getZeroExtendExpr(Step, Ty), 837 L); 838 839 // Similar to above, only this time treat the step value as signed. 840 // This covers loops that count down. 841 const SCEV *SMul = 842 getMulExpr(CastedMaxBECount, 843 getTruncateOrSignExtend(Step, Start->getType())); 844 Add = getAddExpr(Start, SMul); 845 OperandExtendedAdd = 846 getAddExpr(getZeroExtendExpr(Start, WideTy), 847 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 848 getSignExtendExpr(Step, WideTy))); 849 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 850 // Return the expression with the addrec on the outside. 851 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 852 getSignExtendExpr(Step, Ty), 853 L); 854 } 855 856 // If the backedge is guarded by a comparison with the pre-inc value 857 // the addrec is safe. Also, if the entry is guarded by a comparison 858 // with the start value and the backedge is guarded by a comparison 859 // with the post-inc value, the addrec is safe. 860 if (isKnownPositive(Step)) { 861 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 862 getUnsignedRange(Step).getUnsignedMax()); 863 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 864 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 865 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 866 AR->getPostIncExpr(*this), N))) 867 // Return the expression with the addrec on the outside. 868 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 869 getZeroExtendExpr(Step, Ty), 870 L); 871 } else if (isKnownNegative(Step)) { 872 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 873 getSignedRange(Step).getSignedMin()); 874 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) && 875 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) || 876 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 877 AR->getPostIncExpr(*this), N))) 878 // Return the expression with the addrec on the outside. 879 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 880 getSignExtendExpr(Step, Ty), 881 L); 882 } 883 } 884 } 885 886 // The cast wasn't folded; create an explicit cast node. 887 // Recompute the insert position, as it may have been invalidated. 888 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 889 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>(); 890 new (S) SCEVZeroExtendExpr(ID, Op, Ty); 891 UniqueSCEVs.InsertNode(S, IP); 892 return S; 893 } 894 895 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 896 const Type *Ty) { 897 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 898 "This is not an extending conversion!"); 899 assert(isSCEVable(Ty) && 900 "This is not a conversion to a SCEVable type!"); 901 Ty = getEffectiveSCEVType(Ty); 902 903 // Fold if the operand is constant. 904 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 905 const Type *IntTy = getEffectiveSCEVType(Ty); 906 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 907 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 908 return getConstant(cast<ConstantInt>(C)); 909 } 910 911 // sext(sext(x)) --> sext(x) 912 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 913 return getSignExtendExpr(SS->getOperand(), Ty); 914 915 // Before doing any expensive analysis, check to see if we've already 916 // computed a SCEV for this Op and Ty. 917 FoldingSetNodeID ID; 918 ID.AddInteger(scSignExtend); 919 ID.AddPointer(Op); 920 ID.AddPointer(Ty); 921 void *IP = 0; 922 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 923 924 // If the input value is a chrec scev, and we can prove that the value 925 // did not overflow the old, smaller, value, we can sign extend all of the 926 // operands (often constants). This allows analysis of something like 927 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 928 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 929 if (AR->isAffine()) { 930 const SCEV *Start = AR->getStart(); 931 const SCEV *Step = AR->getStepRecurrence(*this); 932 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 933 const Loop *L = AR->getLoop(); 934 935 // If we have special knowledge that this addrec won't overflow, 936 // we don't need to do any further analysis. 937 if (AR->hasNoSignedOverflow()) 938 return getAddRecExpr(getSignExtendExpr(Start, Ty), 939 getSignExtendExpr(Step, Ty), 940 L); 941 942 // Check whether the backedge-taken count is SCEVCouldNotCompute. 943 // Note that this serves two purposes: It filters out loops that are 944 // simply not analyzable, and it covers the case where this code is 945 // being called from within backedge-taken count analysis, such that 946 // attempting to ask for the backedge-taken count would likely result 947 // in infinite recursion. In the later case, the analysis code will 948 // cope with a conservative value, and it will take care to purge 949 // that value once it has finished. 950 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 951 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 952 // Manually compute the final value for AR, checking for 953 // overflow. 954 955 // Check whether the backedge-taken count can be losslessly casted to 956 // the addrec's type. The count is always unsigned. 957 const SCEV *CastedMaxBECount = 958 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 959 const SCEV *RecastedMaxBECount = 960 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 961 if (MaxBECount == RecastedMaxBECount) { 962 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 963 // Check whether Start+Step*MaxBECount has no signed overflow. 964 const SCEV *SMul = 965 getMulExpr(CastedMaxBECount, 966 getTruncateOrSignExtend(Step, Start->getType())); 967 const SCEV *Add = getAddExpr(Start, SMul); 968 const SCEV *OperandExtendedAdd = 969 getAddExpr(getSignExtendExpr(Start, WideTy), 970 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 971 getSignExtendExpr(Step, WideTy))); 972 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 973 // Return the expression with the addrec on the outside. 974 return getAddRecExpr(getSignExtendExpr(Start, Ty), 975 getSignExtendExpr(Step, Ty), 976 L); 977 978 // Similar to above, only this time treat the step value as unsigned. 979 // This covers loops that count up with an unsigned step. 980 const SCEV *UMul = 981 getMulExpr(CastedMaxBECount, 982 getTruncateOrZeroExtend(Step, Start->getType())); 983 Add = getAddExpr(Start, UMul); 984 OperandExtendedAdd = 985 getAddExpr(getSignExtendExpr(Start, WideTy), 986 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 987 getZeroExtendExpr(Step, WideTy))); 988 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 989 // Return the expression with the addrec on the outside. 990 return getAddRecExpr(getSignExtendExpr(Start, Ty), 991 getZeroExtendExpr(Step, Ty), 992 L); 993 } 994 995 // If the backedge is guarded by a comparison with the pre-inc value 996 // the addrec is safe. Also, if the entry is guarded by a comparison 997 // with the start value and the backedge is guarded by a comparison 998 // with the post-inc value, the addrec is safe. 999 if (isKnownPositive(Step)) { 1000 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1001 getSignedRange(Step).getSignedMax()); 1002 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1003 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1004 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1005 AR->getPostIncExpr(*this), N))) 1006 // Return the expression with the addrec on the outside. 1007 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1008 getSignExtendExpr(Step, Ty), 1009 L); 1010 } else if (isKnownNegative(Step)) { 1011 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1012 getSignedRange(Step).getSignedMin()); 1013 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1014 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1015 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1016 AR->getPostIncExpr(*this), N))) 1017 // Return the expression with the addrec on the outside. 1018 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1019 getSignExtendExpr(Step, Ty), 1020 L); 1021 } 1022 } 1023 } 1024 1025 // The cast wasn't folded; create an explicit cast node. 1026 // Recompute the insert position, as it may have been invalidated. 1027 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1028 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>(); 1029 new (S) SCEVSignExtendExpr(ID, Op, Ty); 1030 UniqueSCEVs.InsertNode(S, IP); 1031 return S; 1032 } 1033 1034 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1035 /// unspecified bits out to the given type. 1036 /// 1037 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1038 const Type *Ty) { 1039 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1040 "This is not an extending conversion!"); 1041 assert(isSCEVable(Ty) && 1042 "This is not a conversion to a SCEVable type!"); 1043 Ty = getEffectiveSCEVType(Ty); 1044 1045 // Sign-extend negative constants. 1046 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1047 if (SC->getValue()->getValue().isNegative()) 1048 return getSignExtendExpr(Op, Ty); 1049 1050 // Peel off a truncate cast. 1051 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1052 const SCEV *NewOp = T->getOperand(); 1053 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1054 return getAnyExtendExpr(NewOp, Ty); 1055 return getTruncateOrNoop(NewOp, Ty); 1056 } 1057 1058 // Next try a zext cast. If the cast is folded, use it. 1059 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1060 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1061 return ZExt; 1062 1063 // Next try a sext cast. If the cast is folded, use it. 1064 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1065 if (!isa<SCEVSignExtendExpr>(SExt)) 1066 return SExt; 1067 1068 // If the expression is obviously signed, use the sext cast value. 1069 if (isa<SCEVSMaxExpr>(Op)) 1070 return SExt; 1071 1072 // Absent any other information, use the zext cast value. 1073 return ZExt; 1074 } 1075 1076 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1077 /// a list of operands to be added under the given scale, update the given 1078 /// map. This is a helper function for getAddRecExpr. As an example of 1079 /// what it does, given a sequence of operands that would form an add 1080 /// expression like this: 1081 /// 1082 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1083 /// 1084 /// where A and B are constants, update the map with these values: 1085 /// 1086 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1087 /// 1088 /// and add 13 + A*B*29 to AccumulatedConstant. 1089 /// This will allow getAddRecExpr to produce this: 1090 /// 1091 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1092 /// 1093 /// This form often exposes folding opportunities that are hidden in 1094 /// the original operand list. 1095 /// 1096 /// Return true iff it appears that any interesting folding opportunities 1097 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1098 /// the common case where no interesting opportunities are present, and 1099 /// is also used as a check to avoid infinite recursion. 1100 /// 1101 static bool 1102 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1103 SmallVector<const SCEV *, 8> &NewOps, 1104 APInt &AccumulatedConstant, 1105 const SmallVectorImpl<const SCEV *> &Ops, 1106 const APInt &Scale, 1107 ScalarEvolution &SE) { 1108 bool Interesting = false; 1109 1110 // Iterate over the add operands. 1111 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1112 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1113 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1114 APInt NewScale = 1115 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1116 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1117 // A multiplication of a constant with another add; recurse. 1118 Interesting |= 1119 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1120 cast<SCEVAddExpr>(Mul->getOperand(1)) 1121 ->getOperands(), 1122 NewScale, SE); 1123 } else { 1124 // A multiplication of a constant with some other value. Update 1125 // the map. 1126 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1127 const SCEV *Key = SE.getMulExpr(MulOps); 1128 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1129 M.insert(std::make_pair(Key, NewScale)); 1130 if (Pair.second) { 1131 NewOps.push_back(Pair.first->first); 1132 } else { 1133 Pair.first->second += NewScale; 1134 // The map already had an entry for this value, which may indicate 1135 // a folding opportunity. 1136 Interesting = true; 1137 } 1138 } 1139 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1140 // Pull a buried constant out to the outside. 1141 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) 1142 Interesting = true; 1143 AccumulatedConstant += Scale * C->getValue()->getValue(); 1144 } else { 1145 // An ordinary operand. Update the map. 1146 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1147 M.insert(std::make_pair(Ops[i], Scale)); 1148 if (Pair.second) { 1149 NewOps.push_back(Pair.first->first); 1150 } else { 1151 Pair.first->second += Scale; 1152 // The map already had an entry for this value, which may indicate 1153 // a folding opportunity. 1154 Interesting = true; 1155 } 1156 } 1157 } 1158 1159 return Interesting; 1160 } 1161 1162 namespace { 1163 struct APIntCompare { 1164 bool operator()(const APInt &LHS, const APInt &RHS) const { 1165 return LHS.ult(RHS); 1166 } 1167 }; 1168 } 1169 1170 /// getAddExpr - Get a canonical add expression, or something simpler if 1171 /// possible. 1172 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) { 1173 assert(!Ops.empty() && "Cannot get empty add!"); 1174 if (Ops.size() == 1) return Ops[0]; 1175 #ifndef NDEBUG 1176 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1177 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1178 getEffectiveSCEVType(Ops[0]->getType()) && 1179 "SCEVAddExpr operand types don't match!"); 1180 #endif 1181 1182 // Sort by complexity, this groups all similar expression types together. 1183 GroupByComplexity(Ops, LI); 1184 1185 // If there are any constants, fold them together. 1186 unsigned Idx = 0; 1187 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1188 ++Idx; 1189 assert(Idx < Ops.size()); 1190 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1191 // We found two constants, fold them together! 1192 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1193 RHSC->getValue()->getValue()); 1194 if (Ops.size() == 2) return Ops[0]; 1195 Ops.erase(Ops.begin()+1); // Erase the folded element 1196 LHSC = cast<SCEVConstant>(Ops[0]); 1197 } 1198 1199 // If we are left with a constant zero being added, strip it off. 1200 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1201 Ops.erase(Ops.begin()); 1202 --Idx; 1203 } 1204 } 1205 1206 if (Ops.size() == 1) return Ops[0]; 1207 1208 // Okay, check to see if the same value occurs in the operand list twice. If 1209 // so, merge them together into an multiply expression. Since we sorted the 1210 // list, these values are required to be adjacent. 1211 const Type *Ty = Ops[0]->getType(); 1212 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1213 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1214 // Found a match, merge the two values into a multiply, and add any 1215 // remaining values to the result. 1216 const SCEV *Two = getIntegerSCEV(2, Ty); 1217 const SCEV *Mul = getMulExpr(Ops[i], Two); 1218 if (Ops.size() == 2) 1219 return Mul; 1220 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1221 Ops.push_back(Mul); 1222 return getAddExpr(Ops); 1223 } 1224 1225 // Check for truncates. If all the operands are truncated from the same 1226 // type, see if factoring out the truncate would permit the result to be 1227 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1228 // if the contents of the resulting outer trunc fold to something simple. 1229 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1230 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1231 const Type *DstType = Trunc->getType(); 1232 const Type *SrcType = Trunc->getOperand()->getType(); 1233 SmallVector<const SCEV *, 8> LargeOps; 1234 bool Ok = true; 1235 // Check all the operands to see if they can be represented in the 1236 // source type of the truncate. 1237 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1238 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1239 if (T->getOperand()->getType() != SrcType) { 1240 Ok = false; 1241 break; 1242 } 1243 LargeOps.push_back(T->getOperand()); 1244 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1245 // This could be either sign or zero extension, but sign extension 1246 // is much more likely to be foldable here. 1247 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 1248 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1249 SmallVector<const SCEV *, 8> LargeMulOps; 1250 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1251 if (const SCEVTruncateExpr *T = 1252 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1253 if (T->getOperand()->getType() != SrcType) { 1254 Ok = false; 1255 break; 1256 } 1257 LargeMulOps.push_back(T->getOperand()); 1258 } else if (const SCEVConstant *C = 1259 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1260 // This could be either sign or zero extension, but sign extension 1261 // is much more likely to be foldable here. 1262 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1263 } else { 1264 Ok = false; 1265 break; 1266 } 1267 } 1268 if (Ok) 1269 LargeOps.push_back(getMulExpr(LargeMulOps)); 1270 } else { 1271 Ok = false; 1272 break; 1273 } 1274 } 1275 if (Ok) { 1276 // Evaluate the expression in the larger type. 1277 const SCEV *Fold = getAddExpr(LargeOps); 1278 // If it folds to something simple, use it. Otherwise, don't. 1279 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1280 return getTruncateExpr(Fold, DstType); 1281 } 1282 } 1283 1284 // Skip past any other cast SCEVs. 1285 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1286 ++Idx; 1287 1288 // If there are add operands they would be next. 1289 if (Idx < Ops.size()) { 1290 bool DeletedAdd = false; 1291 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1292 // If we have an add, expand the add operands onto the end of the operands 1293 // list. 1294 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1295 Ops.erase(Ops.begin()+Idx); 1296 DeletedAdd = true; 1297 } 1298 1299 // If we deleted at least one add, we added operands to the end of the list, 1300 // and they are not necessarily sorted. Recurse to resort and resimplify 1301 // any operands we just aquired. 1302 if (DeletedAdd) 1303 return getAddExpr(Ops); 1304 } 1305 1306 // Skip over the add expression until we get to a multiply. 1307 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1308 ++Idx; 1309 1310 // Check to see if there are any folding opportunities present with 1311 // operands multiplied by constant values. 1312 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1313 uint64_t BitWidth = getTypeSizeInBits(Ty); 1314 DenseMap<const SCEV *, APInt> M; 1315 SmallVector<const SCEV *, 8> NewOps; 1316 APInt AccumulatedConstant(BitWidth, 0); 1317 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1318 Ops, APInt(BitWidth, 1), *this)) { 1319 // Some interesting folding opportunity is present, so its worthwhile to 1320 // re-generate the operands list. Group the operands by constant scale, 1321 // to avoid multiplying by the same constant scale multiple times. 1322 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1323 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), 1324 E = NewOps.end(); I != E; ++I) 1325 MulOpLists[M.find(*I)->second].push_back(*I); 1326 // Re-generate the operands list. 1327 Ops.clear(); 1328 if (AccumulatedConstant != 0) 1329 Ops.push_back(getConstant(AccumulatedConstant)); 1330 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1331 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1332 if (I->first != 0) 1333 Ops.push_back(getMulExpr(getConstant(I->first), 1334 getAddExpr(I->second))); 1335 if (Ops.empty()) 1336 return getIntegerSCEV(0, Ty); 1337 if (Ops.size() == 1) 1338 return Ops[0]; 1339 return getAddExpr(Ops); 1340 } 1341 } 1342 1343 // If we are adding something to a multiply expression, make sure the 1344 // something is not already an operand of the multiply. If so, merge it into 1345 // the multiply. 1346 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1347 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1348 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1349 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1350 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1351 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1352 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1353 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1354 if (Mul->getNumOperands() != 2) { 1355 // If the multiply has more than two operands, we must get the 1356 // Y*Z term. 1357 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1358 MulOps.erase(MulOps.begin()+MulOp); 1359 InnerMul = getMulExpr(MulOps); 1360 } 1361 const SCEV *One = getIntegerSCEV(1, Ty); 1362 const SCEV *AddOne = getAddExpr(InnerMul, One); 1363 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1364 if (Ops.size() == 2) return OuterMul; 1365 if (AddOp < Idx) { 1366 Ops.erase(Ops.begin()+AddOp); 1367 Ops.erase(Ops.begin()+Idx-1); 1368 } else { 1369 Ops.erase(Ops.begin()+Idx); 1370 Ops.erase(Ops.begin()+AddOp-1); 1371 } 1372 Ops.push_back(OuterMul); 1373 return getAddExpr(Ops); 1374 } 1375 1376 // Check this multiply against other multiplies being added together. 1377 for (unsigned OtherMulIdx = Idx+1; 1378 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1379 ++OtherMulIdx) { 1380 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1381 // If MulOp occurs in OtherMul, we can fold the two multiplies 1382 // together. 1383 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1384 OMulOp != e; ++OMulOp) 1385 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1386 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1387 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1388 if (Mul->getNumOperands() != 2) { 1389 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1390 Mul->op_end()); 1391 MulOps.erase(MulOps.begin()+MulOp); 1392 InnerMul1 = getMulExpr(MulOps); 1393 } 1394 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1395 if (OtherMul->getNumOperands() != 2) { 1396 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1397 OtherMul->op_end()); 1398 MulOps.erase(MulOps.begin()+OMulOp); 1399 InnerMul2 = getMulExpr(MulOps); 1400 } 1401 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1402 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1403 if (Ops.size() == 2) return OuterMul; 1404 Ops.erase(Ops.begin()+Idx); 1405 Ops.erase(Ops.begin()+OtherMulIdx-1); 1406 Ops.push_back(OuterMul); 1407 return getAddExpr(Ops); 1408 } 1409 } 1410 } 1411 } 1412 1413 // If there are any add recurrences in the operands list, see if any other 1414 // added values are loop invariant. If so, we can fold them into the 1415 // recurrence. 1416 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1417 ++Idx; 1418 1419 // Scan over all recurrences, trying to fold loop invariants into them. 1420 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1421 // Scan all of the other operands to this add and add them to the vector if 1422 // they are loop invariant w.r.t. the recurrence. 1423 SmallVector<const SCEV *, 8> LIOps; 1424 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1425 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1426 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1427 LIOps.push_back(Ops[i]); 1428 Ops.erase(Ops.begin()+i); 1429 --i; --e; 1430 } 1431 1432 // If we found some loop invariants, fold them into the recurrence. 1433 if (!LIOps.empty()) { 1434 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1435 LIOps.push_back(AddRec->getStart()); 1436 1437 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1438 AddRec->op_end()); 1439 AddRecOps[0] = getAddExpr(LIOps); 1440 1441 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1442 // If all of the other operands were loop invariant, we are done. 1443 if (Ops.size() == 1) return NewRec; 1444 1445 // Otherwise, add the folded AddRec by the non-liv parts. 1446 for (unsigned i = 0;; ++i) 1447 if (Ops[i] == AddRec) { 1448 Ops[i] = NewRec; 1449 break; 1450 } 1451 return getAddExpr(Ops); 1452 } 1453 1454 // Okay, if there weren't any loop invariants to be folded, check to see if 1455 // there are multiple AddRec's with the same loop induction variable being 1456 // added together. If so, we can fold them. 1457 for (unsigned OtherIdx = Idx+1; 1458 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1459 if (OtherIdx != Idx) { 1460 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1461 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1462 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1463 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1464 AddRec->op_end()); 1465 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1466 if (i >= NewOps.size()) { 1467 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1468 OtherAddRec->op_end()); 1469 break; 1470 } 1471 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1472 } 1473 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1474 1475 if (Ops.size() == 2) return NewAddRec; 1476 1477 Ops.erase(Ops.begin()+Idx); 1478 Ops.erase(Ops.begin()+OtherIdx-1); 1479 Ops.push_back(NewAddRec); 1480 return getAddExpr(Ops); 1481 } 1482 } 1483 1484 // Otherwise couldn't fold anything into this recurrence. Move onto the 1485 // next one. 1486 } 1487 1488 // Okay, it looks like we really DO need an add expr. Check to see if we 1489 // already have one, otherwise create a new one. 1490 FoldingSetNodeID ID; 1491 ID.AddInteger(scAddExpr); 1492 ID.AddInteger(Ops.size()); 1493 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1494 ID.AddPointer(Ops[i]); 1495 void *IP = 0; 1496 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1497 SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>(); 1498 new (S) SCEVAddExpr(ID, Ops); 1499 UniqueSCEVs.InsertNode(S, IP); 1500 return S; 1501 } 1502 1503 1504 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1505 /// possible. 1506 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) { 1507 assert(!Ops.empty() && "Cannot get empty mul!"); 1508 #ifndef NDEBUG 1509 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1510 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1511 getEffectiveSCEVType(Ops[0]->getType()) && 1512 "SCEVMulExpr operand types don't match!"); 1513 #endif 1514 1515 // Sort by complexity, this groups all similar expression types together. 1516 GroupByComplexity(Ops, LI); 1517 1518 // If there are any constants, fold them together. 1519 unsigned Idx = 0; 1520 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1521 1522 // C1*(C2+V) -> C1*C2 + C1*V 1523 if (Ops.size() == 2) 1524 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1525 if (Add->getNumOperands() == 2 && 1526 isa<SCEVConstant>(Add->getOperand(0))) 1527 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1528 getMulExpr(LHSC, Add->getOperand(1))); 1529 1530 1531 ++Idx; 1532 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1533 // We found two constants, fold them together! 1534 ConstantInt *Fold = ConstantInt::get(getContext(), 1535 LHSC->getValue()->getValue() * 1536 RHSC->getValue()->getValue()); 1537 Ops[0] = getConstant(Fold); 1538 Ops.erase(Ops.begin()+1); // Erase the folded element 1539 if (Ops.size() == 1) return Ops[0]; 1540 LHSC = cast<SCEVConstant>(Ops[0]); 1541 } 1542 1543 // If we are left with a constant one being multiplied, strip it off. 1544 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1545 Ops.erase(Ops.begin()); 1546 --Idx; 1547 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1548 // If we have a multiply of zero, it will always be zero. 1549 return Ops[0]; 1550 } 1551 } 1552 1553 // Skip over the add expression until we get to a multiply. 1554 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1555 ++Idx; 1556 1557 if (Ops.size() == 1) 1558 return Ops[0]; 1559 1560 // If there are mul operands inline them all into this expression. 1561 if (Idx < Ops.size()) { 1562 bool DeletedMul = false; 1563 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1564 // If we have an mul, expand the mul operands onto the end of the operands 1565 // list. 1566 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1567 Ops.erase(Ops.begin()+Idx); 1568 DeletedMul = true; 1569 } 1570 1571 // If we deleted at least one mul, we added operands to the end of the list, 1572 // and they are not necessarily sorted. Recurse to resort and resimplify 1573 // any operands we just aquired. 1574 if (DeletedMul) 1575 return getMulExpr(Ops); 1576 } 1577 1578 // If there are any add recurrences in the operands list, see if any other 1579 // added values are loop invariant. If so, we can fold them into the 1580 // recurrence. 1581 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1582 ++Idx; 1583 1584 // Scan over all recurrences, trying to fold loop invariants into them. 1585 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1586 // Scan all of the other operands to this mul and add them to the vector if 1587 // they are loop invariant w.r.t. the recurrence. 1588 SmallVector<const SCEV *, 8> LIOps; 1589 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1590 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1591 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1592 LIOps.push_back(Ops[i]); 1593 Ops.erase(Ops.begin()+i); 1594 --i; --e; 1595 } 1596 1597 // If we found some loop invariants, fold them into the recurrence. 1598 if (!LIOps.empty()) { 1599 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1600 SmallVector<const SCEV *, 4> NewOps; 1601 NewOps.reserve(AddRec->getNumOperands()); 1602 if (LIOps.size() == 1) { 1603 const SCEV *Scale = LIOps[0]; 1604 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1605 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1606 } else { 1607 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1608 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end()); 1609 MulOps.push_back(AddRec->getOperand(i)); 1610 NewOps.push_back(getMulExpr(MulOps)); 1611 } 1612 } 1613 1614 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1615 1616 // If all of the other operands were loop invariant, we are done. 1617 if (Ops.size() == 1) return NewRec; 1618 1619 // Otherwise, multiply the folded AddRec by the non-liv parts. 1620 for (unsigned i = 0;; ++i) 1621 if (Ops[i] == AddRec) { 1622 Ops[i] = NewRec; 1623 break; 1624 } 1625 return getMulExpr(Ops); 1626 } 1627 1628 // Okay, if there weren't any loop invariants to be folded, check to see if 1629 // there are multiple AddRec's with the same loop induction variable being 1630 // multiplied together. If so, we can fold them. 1631 for (unsigned OtherIdx = Idx+1; 1632 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1633 if (OtherIdx != Idx) { 1634 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1635 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1636 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1637 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1638 const SCEV *NewStart = getMulExpr(F->getStart(), 1639 G->getStart()); 1640 const SCEV *B = F->getStepRecurrence(*this); 1641 const SCEV *D = G->getStepRecurrence(*this); 1642 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1643 getMulExpr(G, B), 1644 getMulExpr(B, D)); 1645 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1646 F->getLoop()); 1647 if (Ops.size() == 2) return NewAddRec; 1648 1649 Ops.erase(Ops.begin()+Idx); 1650 Ops.erase(Ops.begin()+OtherIdx-1); 1651 Ops.push_back(NewAddRec); 1652 return getMulExpr(Ops); 1653 } 1654 } 1655 1656 // Otherwise couldn't fold anything into this recurrence. Move onto the 1657 // next one. 1658 } 1659 1660 // Okay, it looks like we really DO need an mul expr. Check to see if we 1661 // already have one, otherwise create a new one. 1662 FoldingSetNodeID ID; 1663 ID.AddInteger(scMulExpr); 1664 ID.AddInteger(Ops.size()); 1665 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1666 ID.AddPointer(Ops[i]); 1667 void *IP = 0; 1668 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1669 SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>(); 1670 new (S) SCEVMulExpr(ID, Ops); 1671 UniqueSCEVs.InsertNode(S, IP); 1672 return S; 1673 } 1674 1675 /// getUDivExpr - Get a canonical unsigned division expression, or something 1676 /// simpler if possible. 1677 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1678 const SCEV *RHS) { 1679 assert(getEffectiveSCEVType(LHS->getType()) == 1680 getEffectiveSCEVType(RHS->getType()) && 1681 "SCEVUDivExpr operand types don't match!"); 1682 1683 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1684 if (RHSC->getValue()->equalsInt(1)) 1685 return LHS; // X udiv 1 --> x 1686 if (RHSC->isZero()) 1687 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1688 1689 // Determine if the division can be folded into the operands of 1690 // its operands. 1691 // TODO: Generalize this to non-constants by using known-bits information. 1692 const Type *Ty = LHS->getType(); 1693 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1694 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1695 // For non-power-of-two values, effectively round the value up to the 1696 // nearest power of two. 1697 if (!RHSC->getValue()->getValue().isPowerOf2()) 1698 ++MaxShiftAmt; 1699 const IntegerType *ExtTy = 1700 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1701 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1702 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1703 if (const SCEVConstant *Step = 1704 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1705 if (!Step->getValue()->getValue() 1706 .urem(RHSC->getValue()->getValue()) && 1707 getZeroExtendExpr(AR, ExtTy) == 1708 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1709 getZeroExtendExpr(Step, ExtTy), 1710 AR->getLoop())) { 1711 SmallVector<const SCEV *, 4> Operands; 1712 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1713 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1714 return getAddRecExpr(Operands, AR->getLoop()); 1715 } 1716 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1717 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1718 SmallVector<const SCEV *, 4> Operands; 1719 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1720 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1721 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1722 // Find an operand that's safely divisible. 1723 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1724 const SCEV *Op = M->getOperand(i); 1725 const SCEV *Div = getUDivExpr(Op, RHSC); 1726 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1727 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands(); 1728 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(), 1729 MOperands.end()); 1730 Operands[i] = Div; 1731 return getMulExpr(Operands); 1732 } 1733 } 1734 } 1735 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1736 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1737 SmallVector<const SCEV *, 4> Operands; 1738 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1739 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1740 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1741 Operands.clear(); 1742 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1743 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1744 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1745 break; 1746 Operands.push_back(Op); 1747 } 1748 if (Operands.size() == A->getNumOperands()) 1749 return getAddExpr(Operands); 1750 } 1751 } 1752 1753 // Fold if both operands are constant. 1754 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1755 Constant *LHSCV = LHSC->getValue(); 1756 Constant *RHSCV = RHSC->getValue(); 1757 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1758 RHSCV))); 1759 } 1760 } 1761 1762 FoldingSetNodeID ID; 1763 ID.AddInteger(scUDivExpr); 1764 ID.AddPointer(LHS); 1765 ID.AddPointer(RHS); 1766 void *IP = 0; 1767 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1768 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>(); 1769 new (S) SCEVUDivExpr(ID, LHS, RHS); 1770 UniqueSCEVs.InsertNode(S, IP); 1771 return S; 1772 } 1773 1774 1775 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1776 /// Simplify the expression as much as possible. 1777 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1778 const SCEV *Step, const Loop *L) { 1779 SmallVector<const SCEV *, 4> Operands; 1780 Operands.push_back(Start); 1781 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1782 if (StepChrec->getLoop() == L) { 1783 Operands.insert(Operands.end(), StepChrec->op_begin(), 1784 StepChrec->op_end()); 1785 return getAddRecExpr(Operands, L); 1786 } 1787 1788 Operands.push_back(Step); 1789 return getAddRecExpr(Operands, L); 1790 } 1791 1792 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1793 /// Simplify the expression as much as possible. 1794 const SCEV * 1795 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 1796 const Loop *L) { 1797 if (Operands.size() == 1) return Operands[0]; 1798 #ifndef NDEBUG 1799 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1800 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1801 getEffectiveSCEVType(Operands[0]->getType()) && 1802 "SCEVAddRecExpr operand types don't match!"); 1803 #endif 1804 1805 if (Operands.back()->isZero()) { 1806 Operands.pop_back(); 1807 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1808 } 1809 1810 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1811 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1812 const Loop* NestedLoop = NestedAR->getLoop(); 1813 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1814 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 1815 NestedAR->op_end()); 1816 Operands[0] = NestedAR->getStart(); 1817 // AddRecs require their operands be loop-invariant with respect to their 1818 // loops. Don't perform this transformation if it would break this 1819 // requirement. 1820 bool AllInvariant = true; 1821 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1822 if (!Operands[i]->isLoopInvariant(L)) { 1823 AllInvariant = false; 1824 break; 1825 } 1826 if (AllInvariant) { 1827 NestedOperands[0] = getAddRecExpr(Operands, L); 1828 AllInvariant = true; 1829 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 1830 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 1831 AllInvariant = false; 1832 break; 1833 } 1834 if (AllInvariant) 1835 // Ok, both add recurrences are valid after the transformation. 1836 return getAddRecExpr(NestedOperands, NestedLoop); 1837 } 1838 // Reset Operands to its original state. 1839 Operands[0] = NestedAR; 1840 } 1841 } 1842 1843 FoldingSetNodeID ID; 1844 ID.AddInteger(scAddRecExpr); 1845 ID.AddInteger(Operands.size()); 1846 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1847 ID.AddPointer(Operands[i]); 1848 ID.AddPointer(L); 1849 void *IP = 0; 1850 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1851 SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>(); 1852 new (S) SCEVAddRecExpr(ID, Operands, L); 1853 UniqueSCEVs.InsertNode(S, IP); 1854 return S; 1855 } 1856 1857 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 1858 const SCEV *RHS) { 1859 SmallVector<const SCEV *, 2> Ops; 1860 Ops.push_back(LHS); 1861 Ops.push_back(RHS); 1862 return getSMaxExpr(Ops); 1863 } 1864 1865 const SCEV * 1866 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 1867 assert(!Ops.empty() && "Cannot get empty smax!"); 1868 if (Ops.size() == 1) return Ops[0]; 1869 #ifndef NDEBUG 1870 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1871 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1872 getEffectiveSCEVType(Ops[0]->getType()) && 1873 "SCEVSMaxExpr operand types don't match!"); 1874 #endif 1875 1876 // Sort by complexity, this groups all similar expression types together. 1877 GroupByComplexity(Ops, LI); 1878 1879 // If there are any constants, fold them together. 1880 unsigned Idx = 0; 1881 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1882 ++Idx; 1883 assert(Idx < Ops.size()); 1884 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1885 // We found two constants, fold them together! 1886 ConstantInt *Fold = ConstantInt::get(getContext(), 1887 APIntOps::smax(LHSC->getValue()->getValue(), 1888 RHSC->getValue()->getValue())); 1889 Ops[0] = getConstant(Fold); 1890 Ops.erase(Ops.begin()+1); // Erase the folded element 1891 if (Ops.size() == 1) return Ops[0]; 1892 LHSC = cast<SCEVConstant>(Ops[0]); 1893 } 1894 1895 // If we are left with a constant minimum-int, strip it off. 1896 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1897 Ops.erase(Ops.begin()); 1898 --Idx; 1899 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 1900 // If we have an smax with a constant maximum-int, it will always be 1901 // maximum-int. 1902 return Ops[0]; 1903 } 1904 } 1905 1906 if (Ops.size() == 1) return Ops[0]; 1907 1908 // Find the first SMax 1909 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1910 ++Idx; 1911 1912 // Check to see if one of the operands is an SMax. If so, expand its operands 1913 // onto our operand list, and recurse to simplify. 1914 if (Idx < Ops.size()) { 1915 bool DeletedSMax = false; 1916 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1917 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1918 Ops.erase(Ops.begin()+Idx); 1919 DeletedSMax = true; 1920 } 1921 1922 if (DeletedSMax) 1923 return getSMaxExpr(Ops); 1924 } 1925 1926 // Okay, check to see if the same value occurs in the operand list twice. If 1927 // so, delete one. Since we sorted the list, these values are required to 1928 // be adjacent. 1929 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1930 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1931 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1932 --i; --e; 1933 } 1934 1935 if (Ops.size() == 1) return Ops[0]; 1936 1937 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1938 1939 // Okay, it looks like we really DO need an smax expr. Check to see if we 1940 // already have one, otherwise create a new one. 1941 FoldingSetNodeID ID; 1942 ID.AddInteger(scSMaxExpr); 1943 ID.AddInteger(Ops.size()); 1944 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1945 ID.AddPointer(Ops[i]); 1946 void *IP = 0; 1947 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1948 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>(); 1949 new (S) SCEVSMaxExpr(ID, Ops); 1950 UniqueSCEVs.InsertNode(S, IP); 1951 return S; 1952 } 1953 1954 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 1955 const SCEV *RHS) { 1956 SmallVector<const SCEV *, 2> Ops; 1957 Ops.push_back(LHS); 1958 Ops.push_back(RHS); 1959 return getUMaxExpr(Ops); 1960 } 1961 1962 const SCEV * 1963 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 1964 assert(!Ops.empty() && "Cannot get empty umax!"); 1965 if (Ops.size() == 1) return Ops[0]; 1966 #ifndef NDEBUG 1967 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1968 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1969 getEffectiveSCEVType(Ops[0]->getType()) && 1970 "SCEVUMaxExpr operand types don't match!"); 1971 #endif 1972 1973 // Sort by complexity, this groups all similar expression types together. 1974 GroupByComplexity(Ops, LI); 1975 1976 // If there are any constants, fold them together. 1977 unsigned Idx = 0; 1978 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1979 ++Idx; 1980 assert(Idx < Ops.size()); 1981 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1982 // We found two constants, fold them together! 1983 ConstantInt *Fold = ConstantInt::get(getContext(), 1984 APIntOps::umax(LHSC->getValue()->getValue(), 1985 RHSC->getValue()->getValue())); 1986 Ops[0] = getConstant(Fold); 1987 Ops.erase(Ops.begin()+1); // Erase the folded element 1988 if (Ops.size() == 1) return Ops[0]; 1989 LHSC = cast<SCEVConstant>(Ops[0]); 1990 } 1991 1992 // If we are left with a constant minimum-int, strip it off. 1993 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1994 Ops.erase(Ops.begin()); 1995 --Idx; 1996 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 1997 // If we have an umax with a constant maximum-int, it will always be 1998 // maximum-int. 1999 return Ops[0]; 2000 } 2001 } 2002 2003 if (Ops.size() == 1) return Ops[0]; 2004 2005 // Find the first UMax 2006 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2007 ++Idx; 2008 2009 // Check to see if one of the operands is a UMax. If so, expand its operands 2010 // onto our operand list, and recurse to simplify. 2011 if (Idx < Ops.size()) { 2012 bool DeletedUMax = false; 2013 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2014 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 2015 Ops.erase(Ops.begin()+Idx); 2016 DeletedUMax = true; 2017 } 2018 2019 if (DeletedUMax) 2020 return getUMaxExpr(Ops); 2021 } 2022 2023 // Okay, check to see if the same value occurs in the operand list twice. If 2024 // so, delete one. Since we sorted the list, these values are required to 2025 // be adjacent. 2026 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2027 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 2028 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2029 --i; --e; 2030 } 2031 2032 if (Ops.size() == 1) return Ops[0]; 2033 2034 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2035 2036 // Okay, it looks like we really DO need a umax expr. Check to see if we 2037 // already have one, otherwise create a new one. 2038 FoldingSetNodeID ID; 2039 ID.AddInteger(scUMaxExpr); 2040 ID.AddInteger(Ops.size()); 2041 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2042 ID.AddPointer(Ops[i]); 2043 void *IP = 0; 2044 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2045 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>(); 2046 new (S) SCEVUMaxExpr(ID, Ops); 2047 UniqueSCEVs.InsertNode(S, IP); 2048 return S; 2049 } 2050 2051 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2052 const SCEV *RHS) { 2053 // ~smax(~x, ~y) == smin(x, y). 2054 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2055 } 2056 2057 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2058 const SCEV *RHS) { 2059 // ~umax(~x, ~y) == umin(x, y) 2060 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2061 } 2062 2063 const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy, 2064 unsigned FieldNo) { 2065 // If we have TargetData we can determine the constant offset. 2066 if (TD) { 2067 const Type *IntPtrTy = TD->getIntPtrType(getContext()); 2068 const StructLayout &SL = *TD->getStructLayout(STy); 2069 uint64_t Offset = SL.getElementOffset(FieldNo); 2070 return getIntegerSCEV(Offset, IntPtrTy); 2071 } 2072 2073 // Field 0 is always at offset 0. 2074 if (FieldNo == 0) { 2075 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2076 return getIntegerSCEV(0, Ty); 2077 } 2078 2079 // Okay, it looks like we really DO need an offsetof expr. Check to see if we 2080 // already have one, otherwise create a new one. 2081 FoldingSetNodeID ID; 2082 ID.AddInteger(scFieldOffset); 2083 ID.AddPointer(STy); 2084 ID.AddInteger(FieldNo); 2085 void *IP = 0; 2086 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2087 SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>(); 2088 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2089 new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo); 2090 UniqueSCEVs.InsertNode(S, IP); 2091 return S; 2092 } 2093 2094 const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) { 2095 // If we have TargetData we can determine the constant size. 2096 if (TD && AllocTy->isSized()) { 2097 const Type *IntPtrTy = TD->getIntPtrType(getContext()); 2098 return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy); 2099 } 2100 2101 // Expand an array size into the element size times the number 2102 // of elements. 2103 if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) { 2104 const SCEV *E = getAllocSizeExpr(ATy->getElementType()); 2105 return getMulExpr( 2106 E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()), 2107 ATy->getNumElements()))); 2108 } 2109 2110 // Expand a vector size into the element size times the number 2111 // of elements. 2112 if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) { 2113 const SCEV *E = getAllocSizeExpr(VTy->getElementType()); 2114 return getMulExpr( 2115 E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()), 2116 VTy->getNumElements()))); 2117 } 2118 2119 // Okay, it looks like we really DO need a sizeof expr. Check to see if we 2120 // already have one, otherwise create a new one. 2121 FoldingSetNodeID ID; 2122 ID.AddInteger(scAllocSize); 2123 ID.AddPointer(AllocTy); 2124 void *IP = 0; 2125 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2126 SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>(); 2127 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2128 new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy); 2129 UniqueSCEVs.InsertNode(S, IP); 2130 return S; 2131 } 2132 2133 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2134 // Don't attempt to do anything other than create a SCEVUnknown object 2135 // here. createSCEV only calls getUnknown after checking for all other 2136 // interesting possibilities, and any other code that calls getUnknown 2137 // is doing so in order to hide a value from SCEV canonicalization. 2138 2139 FoldingSetNodeID ID; 2140 ID.AddInteger(scUnknown); 2141 ID.AddPointer(V); 2142 void *IP = 0; 2143 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2144 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>(); 2145 new (S) SCEVUnknown(ID, V); 2146 UniqueSCEVs.InsertNode(S, IP); 2147 return S; 2148 } 2149 2150 //===----------------------------------------------------------------------===// 2151 // Basic SCEV Analysis and PHI Idiom Recognition Code 2152 // 2153 2154 /// isSCEVable - Test if values of the given type are analyzable within 2155 /// the SCEV framework. This primarily includes integer types, and it 2156 /// can optionally include pointer types if the ScalarEvolution class 2157 /// has access to target-specific information. 2158 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2159 // Integers and pointers are always SCEVable. 2160 return Ty->isInteger() || isa<PointerType>(Ty); 2161 } 2162 2163 /// getTypeSizeInBits - Return the size in bits of the specified type, 2164 /// for which isSCEVable must return true. 2165 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2166 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2167 2168 // If we have a TargetData, use it! 2169 if (TD) 2170 return TD->getTypeSizeInBits(Ty); 2171 2172 // Integer types have fixed sizes. 2173 if (Ty->isInteger()) 2174 return Ty->getPrimitiveSizeInBits(); 2175 2176 // The only other support type is pointer. Without TargetData, conservatively 2177 // assume pointers are 64-bit. 2178 assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!"); 2179 return 64; 2180 } 2181 2182 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2183 /// the given type and which represents how SCEV will treat the given 2184 /// type, for which isSCEVable must return true. For pointer types, 2185 /// this is the pointer-sized integer type. 2186 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2187 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2188 2189 if (Ty->isInteger()) 2190 return Ty; 2191 2192 // The only other support type is pointer. 2193 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 2194 if (TD) return TD->getIntPtrType(getContext()); 2195 2196 // Without TargetData, conservatively assume pointers are 64-bit. 2197 return Type::getInt64Ty(getContext()); 2198 } 2199 2200 const SCEV *ScalarEvolution::getCouldNotCompute() { 2201 return &CouldNotCompute; 2202 } 2203 2204 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2205 /// expression and create a new one. 2206 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2207 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2208 2209 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); 2210 if (I != Scalars.end()) return I->second; 2211 const SCEV *S = createSCEV(V); 2212 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2213 return S; 2214 } 2215 2216 /// getIntegerSCEV - Given a SCEVable type, create a constant for the 2217 /// specified signed integer value and return a SCEV for the constant. 2218 const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 2219 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 2220 return getConstant(ConstantInt::get(ITy, Val)); 2221 } 2222 2223 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2224 /// 2225 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2226 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2227 return getConstant( 2228 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2229 2230 const Type *Ty = V->getType(); 2231 Ty = getEffectiveSCEVType(Ty); 2232 return getMulExpr(V, 2233 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2234 } 2235 2236 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2237 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2238 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2239 return getConstant( 2240 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2241 2242 const Type *Ty = V->getType(); 2243 Ty = getEffectiveSCEVType(Ty); 2244 const SCEV *AllOnes = 2245 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2246 return getMinusSCEV(AllOnes, V); 2247 } 2248 2249 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2250 /// 2251 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2252 const SCEV *RHS) { 2253 // X - Y --> X + -Y 2254 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2255 } 2256 2257 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2258 /// input value to the specified type. If the type must be extended, it is zero 2259 /// extended. 2260 const SCEV * 2261 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2262 const Type *Ty) { 2263 const Type *SrcTy = V->getType(); 2264 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2265 (Ty->isInteger() || isa<PointerType>(Ty)) && 2266 "Cannot truncate or zero extend with non-integer arguments!"); 2267 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2268 return V; // No conversion 2269 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2270 return getTruncateExpr(V, Ty); 2271 return getZeroExtendExpr(V, Ty); 2272 } 2273 2274 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2275 /// input value to the specified type. If the type must be extended, it is sign 2276 /// extended. 2277 const SCEV * 2278 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2279 const Type *Ty) { 2280 const Type *SrcTy = V->getType(); 2281 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2282 (Ty->isInteger() || isa<PointerType>(Ty)) && 2283 "Cannot truncate or zero extend with non-integer arguments!"); 2284 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2285 return V; // No conversion 2286 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2287 return getTruncateExpr(V, Ty); 2288 return getSignExtendExpr(V, Ty); 2289 } 2290 2291 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2292 /// input value to the specified type. If the type must be extended, it is zero 2293 /// extended. The conversion must not be narrowing. 2294 const SCEV * 2295 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2296 const Type *SrcTy = V->getType(); 2297 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2298 (Ty->isInteger() || isa<PointerType>(Ty)) && 2299 "Cannot noop or zero extend with non-integer arguments!"); 2300 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2301 "getNoopOrZeroExtend cannot truncate!"); 2302 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2303 return V; // No conversion 2304 return getZeroExtendExpr(V, Ty); 2305 } 2306 2307 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2308 /// input value to the specified type. If the type must be extended, it is sign 2309 /// extended. The conversion must not be narrowing. 2310 const SCEV * 2311 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2312 const Type *SrcTy = V->getType(); 2313 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2314 (Ty->isInteger() || isa<PointerType>(Ty)) && 2315 "Cannot noop or sign extend with non-integer arguments!"); 2316 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2317 "getNoopOrSignExtend cannot truncate!"); 2318 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2319 return V; // No conversion 2320 return getSignExtendExpr(V, Ty); 2321 } 2322 2323 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2324 /// the input value to the specified type. If the type must be extended, 2325 /// it is extended with unspecified bits. The conversion must not be 2326 /// narrowing. 2327 const SCEV * 2328 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2329 const Type *SrcTy = V->getType(); 2330 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2331 (Ty->isInteger() || isa<PointerType>(Ty)) && 2332 "Cannot noop or any extend with non-integer arguments!"); 2333 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2334 "getNoopOrAnyExtend cannot truncate!"); 2335 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2336 return V; // No conversion 2337 return getAnyExtendExpr(V, Ty); 2338 } 2339 2340 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2341 /// input value to the specified type. The conversion must not be widening. 2342 const SCEV * 2343 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2344 const Type *SrcTy = V->getType(); 2345 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2346 (Ty->isInteger() || isa<PointerType>(Ty)) && 2347 "Cannot truncate or noop with non-integer arguments!"); 2348 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2349 "getTruncateOrNoop cannot extend!"); 2350 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2351 return V; // No conversion 2352 return getTruncateExpr(V, Ty); 2353 } 2354 2355 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2356 /// the types using zero-extension, and then perform a umax operation 2357 /// with them. 2358 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2359 const SCEV *RHS) { 2360 const SCEV *PromotedLHS = LHS; 2361 const SCEV *PromotedRHS = RHS; 2362 2363 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2364 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2365 else 2366 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2367 2368 return getUMaxExpr(PromotedLHS, PromotedRHS); 2369 } 2370 2371 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2372 /// the types using zero-extension, and then perform a umin operation 2373 /// with them. 2374 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2375 const SCEV *RHS) { 2376 const SCEV *PromotedLHS = LHS; 2377 const SCEV *PromotedRHS = RHS; 2378 2379 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2380 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2381 else 2382 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2383 2384 return getUMinExpr(PromotedLHS, PromotedRHS); 2385 } 2386 2387 /// PushDefUseChildren - Push users of the given Instruction 2388 /// onto the given Worklist. 2389 static void 2390 PushDefUseChildren(Instruction *I, 2391 SmallVectorImpl<Instruction *> &Worklist) { 2392 // Push the def-use children onto the Worklist stack. 2393 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2394 UI != UE; ++UI) 2395 Worklist.push_back(cast<Instruction>(UI)); 2396 } 2397 2398 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2399 /// instructions that depend on the given instruction and removes them from 2400 /// the Scalars map if they reference SymName. This is used during PHI 2401 /// resolution. 2402 void 2403 ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) { 2404 SmallVector<Instruction *, 16> Worklist; 2405 PushDefUseChildren(I, Worklist); 2406 2407 SmallPtrSet<Instruction *, 8> Visited; 2408 Visited.insert(I); 2409 while (!Worklist.empty()) { 2410 Instruction *I = Worklist.pop_back_val(); 2411 if (!Visited.insert(I)) continue; 2412 2413 std::map<SCEVCallbackVH, const SCEV*>::iterator It = 2414 Scalars.find(static_cast<Value *>(I)); 2415 if (It != Scalars.end()) { 2416 // Short-circuit the def-use traversal if the symbolic name 2417 // ceases to appear in expressions. 2418 if (!It->second->hasOperand(SymName)) 2419 continue; 2420 2421 // SCEVUnknown for a PHI either means that it has an unrecognized 2422 // structure, or it's a PHI that's in the progress of being computed 2423 // by createNodeForPHI. In the former case, additional loop trip 2424 // count information isn't going to change anything. In the later 2425 // case, createNodeForPHI will perform the necessary updates on its 2426 // own when it gets to that point. 2427 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) 2428 Scalars.erase(It); 2429 ValuesAtScopes.erase(I); 2430 } 2431 2432 PushDefUseChildren(I, Worklist); 2433 } 2434 } 2435 2436 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2437 /// a loop header, making it a potential recurrence, or it doesn't. 2438 /// 2439 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2440 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 2441 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2442 if (L->getHeader() == PN->getParent()) { 2443 // If it lives in the loop header, it has two incoming values, one 2444 // from outside the loop, and one from inside. 2445 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 2446 unsigned BackEdge = IncomingEdge^1; 2447 2448 // While we are analyzing this PHI node, handle its value symbolically. 2449 const SCEV *SymbolicName = getUnknown(PN); 2450 assert(Scalars.find(PN) == Scalars.end() && 2451 "PHI node already processed?"); 2452 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2453 2454 // Using this symbolic name for the PHI, analyze the value coming around 2455 // the back-edge. 2456 Value *BEValueV = PN->getIncomingValue(BackEdge); 2457 const SCEV *BEValue = getSCEV(BEValueV); 2458 2459 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2460 // has a special value for the first iteration of the loop. 2461 2462 // If the value coming around the backedge is an add with the symbolic 2463 // value we just inserted, then we found a simple induction variable! 2464 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2465 // If there is a single occurrence of the symbolic value, replace it 2466 // with a recurrence. 2467 unsigned FoundIndex = Add->getNumOperands(); 2468 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2469 if (Add->getOperand(i) == SymbolicName) 2470 if (FoundIndex == e) { 2471 FoundIndex = i; 2472 break; 2473 } 2474 2475 if (FoundIndex != Add->getNumOperands()) { 2476 // Create an add with everything but the specified operand. 2477 SmallVector<const SCEV *, 8> Ops; 2478 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2479 if (i != FoundIndex) 2480 Ops.push_back(Add->getOperand(i)); 2481 const SCEV *Accum = getAddExpr(Ops); 2482 2483 // This is not a valid addrec if the step amount is varying each 2484 // loop iteration, but is not itself an addrec in this loop. 2485 if (Accum->isLoopInvariant(L) || 2486 (isa<SCEVAddRecExpr>(Accum) && 2487 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2488 const SCEV *StartVal = 2489 getSCEV(PN->getIncomingValue(IncomingEdge)); 2490 const SCEVAddRecExpr *PHISCEV = 2491 cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L)); 2492 2493 // If the increment doesn't overflow, then neither the addrec nor the 2494 // post-increment will overflow. 2495 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) 2496 if (OBO->getOperand(0) == PN && 2497 getSCEV(OBO->getOperand(1)) == 2498 PHISCEV->getStepRecurrence(*this)) { 2499 const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this); 2500 if (OBO->hasNoUnsignedOverflow()) { 2501 const_cast<SCEVAddRecExpr *>(PHISCEV) 2502 ->setHasNoUnsignedOverflow(true); 2503 const_cast<SCEVAddRecExpr *>(PostInc) 2504 ->setHasNoUnsignedOverflow(true); 2505 } 2506 if (OBO->hasNoSignedOverflow()) { 2507 const_cast<SCEVAddRecExpr *>(PHISCEV) 2508 ->setHasNoSignedOverflow(true); 2509 const_cast<SCEVAddRecExpr *>(PostInc) 2510 ->setHasNoSignedOverflow(true); 2511 } 2512 } 2513 2514 // Okay, for the entire analysis of this edge we assumed the PHI 2515 // to be symbolic. We now need to go back and purge all of the 2516 // entries for the scalars that use the symbolic expression. 2517 ForgetSymbolicName(PN, SymbolicName); 2518 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2519 return PHISCEV; 2520 } 2521 } 2522 } else if (const SCEVAddRecExpr *AddRec = 2523 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2524 // Otherwise, this could be a loop like this: 2525 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2526 // In this case, j = {1,+,1} and BEValue is j. 2527 // Because the other in-value of i (0) fits the evolution of BEValue 2528 // i really is an addrec evolution. 2529 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2530 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2531 2532 // If StartVal = j.start - j.stride, we can use StartVal as the 2533 // initial step of the addrec evolution. 2534 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2535 AddRec->getOperand(1))) { 2536 const SCEV *PHISCEV = 2537 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2538 2539 // Okay, for the entire analysis of this edge we assumed the PHI 2540 // to be symbolic. We now need to go back and purge all of the 2541 // entries for the scalars that use the symbolic expression. 2542 ForgetSymbolicName(PN, SymbolicName); 2543 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2544 return PHISCEV; 2545 } 2546 } 2547 } 2548 2549 return SymbolicName; 2550 } 2551 2552 // It's tempting to recognize PHIs with a unique incoming value, however 2553 // this leads passes like indvars to break LCSSA form. Fortunately, such 2554 // PHIs are rare, as instcombine zaps them. 2555 2556 // If it's not a loop phi, we can't handle it yet. 2557 return getUnknown(PN); 2558 } 2559 2560 /// createNodeForGEP - Expand GEP instructions into add and multiply 2561 /// operations. This allows them to be analyzed by regular SCEV code. 2562 /// 2563 const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) { 2564 2565 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2566 Value *Base = GEP->getOperand(0); 2567 // Don't attempt to analyze GEPs over unsized objects. 2568 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2569 return getUnknown(GEP); 2570 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy); 2571 gep_type_iterator GTI = gep_type_begin(GEP); 2572 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2573 E = GEP->op_end(); 2574 I != E; ++I) { 2575 Value *Index = *I; 2576 // Compute the (potentially symbolic) offset in bytes for this index. 2577 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2578 // For a struct, add the member offset. 2579 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2580 TotalOffset = getAddExpr(TotalOffset, 2581 getFieldOffsetExpr(STy, FieldNo)); 2582 } else { 2583 // For an array, add the element offset, explicitly scaled. 2584 const SCEV *LocalOffset = getSCEV(Index); 2585 if (!isa<PointerType>(LocalOffset->getType())) 2586 // Getelementptr indicies are signed. 2587 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy); 2588 LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI)); 2589 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2590 } 2591 } 2592 return getAddExpr(getSCEV(Base), TotalOffset); 2593 } 2594 2595 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2596 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2597 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2598 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2599 uint32_t 2600 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2601 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2602 return C->getValue()->getValue().countTrailingZeros(); 2603 2604 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2605 return std::min(GetMinTrailingZeros(T->getOperand()), 2606 (uint32_t)getTypeSizeInBits(T->getType())); 2607 2608 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2609 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2610 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2611 getTypeSizeInBits(E->getType()) : OpRes; 2612 } 2613 2614 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2615 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2616 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2617 getTypeSizeInBits(E->getType()) : OpRes; 2618 } 2619 2620 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2621 // The result is the min of all operands results. 2622 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2623 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2624 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2625 return MinOpRes; 2626 } 2627 2628 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2629 // The result is the sum of all operands results. 2630 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2631 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2632 for (unsigned i = 1, e = M->getNumOperands(); 2633 SumOpRes != BitWidth && i != e; ++i) 2634 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2635 BitWidth); 2636 return SumOpRes; 2637 } 2638 2639 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2640 // The result is the min of all operands results. 2641 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2642 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2643 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2644 return MinOpRes; 2645 } 2646 2647 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2648 // The result is the min of all operands results. 2649 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2650 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2651 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2652 return MinOpRes; 2653 } 2654 2655 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2656 // The result is the min of all operands results. 2657 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2658 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2659 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2660 return MinOpRes; 2661 } 2662 2663 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2664 // For a SCEVUnknown, ask ValueTracking. 2665 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2666 APInt Mask = APInt::getAllOnesValue(BitWidth); 2667 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2668 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2669 return Zeros.countTrailingOnes(); 2670 } 2671 2672 // SCEVUDivExpr 2673 return 0; 2674 } 2675 2676 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2677 /// 2678 ConstantRange 2679 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2680 2681 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2682 return ConstantRange(C->getValue()->getValue()); 2683 2684 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2685 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2686 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2687 X = X.add(getUnsignedRange(Add->getOperand(i))); 2688 return X; 2689 } 2690 2691 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2692 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2693 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2694 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2695 return X; 2696 } 2697 2698 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2699 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2700 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2701 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2702 return X; 2703 } 2704 2705 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2706 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2707 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2708 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2709 return X; 2710 } 2711 2712 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2713 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 2714 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 2715 return X.udiv(Y); 2716 } 2717 2718 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2719 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 2720 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth()); 2721 } 2722 2723 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2724 ConstantRange X = getUnsignedRange(SExt->getOperand()); 2725 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth()); 2726 } 2727 2728 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2729 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 2730 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth()); 2731 } 2732 2733 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true); 2734 2735 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2736 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop()); 2737 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T); 2738 if (!Trip) return FullSet; 2739 2740 // TODO: non-affine addrec 2741 if (AddRec->isAffine()) { 2742 const Type *Ty = AddRec->getType(); 2743 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 2744 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) { 2745 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 2746 2747 const SCEV *Start = AddRec->getStart(); 2748 const SCEV *Step = AddRec->getStepRecurrence(*this); 2749 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 2750 2751 // Check for overflow. 2752 // TODO: This is very conservative. 2753 if (!(Step->isOne() && 2754 isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) && 2755 !(Step->isAllOnesValue() && 2756 isKnownPredicate(ICmpInst::ICMP_UGT, Start, End))) 2757 return FullSet; 2758 2759 ConstantRange StartRange = getUnsignedRange(Start); 2760 ConstantRange EndRange = getUnsignedRange(End); 2761 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 2762 EndRange.getUnsignedMin()); 2763 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 2764 EndRange.getUnsignedMax()); 2765 if (Min.isMinValue() && Max.isMaxValue()) 2766 return FullSet; 2767 return ConstantRange(Min, Max+1); 2768 } 2769 } 2770 } 2771 2772 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2773 // For a SCEVUnknown, ask ValueTracking. 2774 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2775 APInt Mask = APInt::getAllOnesValue(BitWidth); 2776 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2777 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 2778 if (Ones == ~Zeros + 1) 2779 return FullSet; 2780 return ConstantRange(Ones, ~Zeros + 1); 2781 } 2782 2783 return FullSet; 2784 } 2785 2786 /// getSignedRange - Determine the signed range for a particular SCEV. 2787 /// 2788 ConstantRange 2789 ScalarEvolution::getSignedRange(const SCEV *S) { 2790 2791 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2792 return ConstantRange(C->getValue()->getValue()); 2793 2794 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2795 ConstantRange X = getSignedRange(Add->getOperand(0)); 2796 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2797 X = X.add(getSignedRange(Add->getOperand(i))); 2798 return X; 2799 } 2800 2801 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2802 ConstantRange X = getSignedRange(Mul->getOperand(0)); 2803 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2804 X = X.multiply(getSignedRange(Mul->getOperand(i))); 2805 return X; 2806 } 2807 2808 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2809 ConstantRange X = getSignedRange(SMax->getOperand(0)); 2810 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2811 X = X.smax(getSignedRange(SMax->getOperand(i))); 2812 return X; 2813 } 2814 2815 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2816 ConstantRange X = getSignedRange(UMax->getOperand(0)); 2817 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2818 X = X.umax(getSignedRange(UMax->getOperand(i))); 2819 return X; 2820 } 2821 2822 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2823 ConstantRange X = getSignedRange(UDiv->getLHS()); 2824 ConstantRange Y = getSignedRange(UDiv->getRHS()); 2825 return X.udiv(Y); 2826 } 2827 2828 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2829 ConstantRange X = getSignedRange(ZExt->getOperand()); 2830 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth()); 2831 } 2832 2833 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2834 ConstantRange X = getSignedRange(SExt->getOperand()); 2835 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth()); 2836 } 2837 2838 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2839 ConstantRange X = getSignedRange(Trunc->getOperand()); 2840 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth()); 2841 } 2842 2843 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true); 2844 2845 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2846 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop()); 2847 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T); 2848 if (!Trip) return FullSet; 2849 2850 // TODO: non-affine addrec 2851 if (AddRec->isAffine()) { 2852 const Type *Ty = AddRec->getType(); 2853 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 2854 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) { 2855 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 2856 2857 const SCEV *Start = AddRec->getStart(); 2858 const SCEV *Step = AddRec->getStepRecurrence(*this); 2859 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 2860 2861 // Check for overflow. 2862 // TODO: This is very conservative. 2863 if (!(Step->isOne() && 2864 isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) && 2865 !(Step->isAllOnesValue() && 2866 isKnownPredicate(ICmpInst::ICMP_SGT, Start, End))) 2867 return FullSet; 2868 2869 ConstantRange StartRange = getSignedRange(Start); 2870 ConstantRange EndRange = getSignedRange(End); 2871 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 2872 EndRange.getSignedMin()); 2873 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 2874 EndRange.getSignedMax()); 2875 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 2876 return FullSet; 2877 return ConstantRange(Min, Max+1); 2878 } 2879 } 2880 } 2881 2882 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2883 // For a SCEVUnknown, ask ValueTracking. 2884 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2885 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 2886 if (NS == 1) 2887 return FullSet; 2888 return 2889 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 2890 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1); 2891 } 2892 2893 return FullSet; 2894 } 2895 2896 /// createSCEV - We know that there is no SCEV for the specified value. 2897 /// Analyze the expression. 2898 /// 2899 const SCEV *ScalarEvolution::createSCEV(Value *V) { 2900 if (!isSCEVable(V->getType())) 2901 return getUnknown(V); 2902 2903 unsigned Opcode = Instruction::UserOp1; 2904 if (Instruction *I = dyn_cast<Instruction>(V)) 2905 Opcode = I->getOpcode(); 2906 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2907 Opcode = CE->getOpcode(); 2908 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 2909 return getConstant(CI); 2910 else if (isa<ConstantPointerNull>(V)) 2911 return getIntegerSCEV(0, V->getType()); 2912 else if (isa<UndefValue>(V)) 2913 return getIntegerSCEV(0, V->getType()); 2914 else 2915 return getUnknown(V); 2916 2917 Operator *U = cast<Operator>(V); 2918 switch (Opcode) { 2919 case Instruction::Add: 2920 return getAddExpr(getSCEV(U->getOperand(0)), 2921 getSCEV(U->getOperand(1))); 2922 case Instruction::Mul: 2923 return getMulExpr(getSCEV(U->getOperand(0)), 2924 getSCEV(U->getOperand(1))); 2925 case Instruction::UDiv: 2926 return getUDivExpr(getSCEV(U->getOperand(0)), 2927 getSCEV(U->getOperand(1))); 2928 case Instruction::Sub: 2929 return getMinusSCEV(getSCEV(U->getOperand(0)), 2930 getSCEV(U->getOperand(1))); 2931 case Instruction::And: 2932 // For an expression like x&255 that merely masks off the high bits, 2933 // use zext(trunc(x)) as the SCEV expression. 2934 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2935 if (CI->isNullValue()) 2936 return getSCEV(U->getOperand(1)); 2937 if (CI->isAllOnesValue()) 2938 return getSCEV(U->getOperand(0)); 2939 const APInt &A = CI->getValue(); 2940 2941 // Instcombine's ShrinkDemandedConstant may strip bits out of 2942 // constants, obscuring what would otherwise be a low-bits mask. 2943 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 2944 // knew about to reconstruct a low-bits mask value. 2945 unsigned LZ = A.countLeadingZeros(); 2946 unsigned BitWidth = A.getBitWidth(); 2947 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 2948 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2949 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 2950 2951 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 2952 2953 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 2954 return 2955 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 2956 IntegerType::get(getContext(), BitWidth - LZ)), 2957 U->getType()); 2958 } 2959 break; 2960 2961 case Instruction::Or: 2962 // If the RHS of the Or is a constant, we may have something like: 2963 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 2964 // optimizations will transparently handle this case. 2965 // 2966 // In order for this transformation to be safe, the LHS must be of the 2967 // form X*(2^n) and the Or constant must be less than 2^n. 2968 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2969 const SCEV *LHS = getSCEV(U->getOperand(0)); 2970 const APInt &CIVal = CI->getValue(); 2971 if (GetMinTrailingZeros(LHS) >= 2972 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 2973 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 2974 } 2975 break; 2976 case Instruction::Xor: 2977 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2978 // If the RHS of the xor is a signbit, then this is just an add. 2979 // Instcombine turns add of signbit into xor as a strength reduction step. 2980 if (CI->getValue().isSignBit()) 2981 return getAddExpr(getSCEV(U->getOperand(0)), 2982 getSCEV(U->getOperand(1))); 2983 2984 // If the RHS of xor is -1, then this is a not operation. 2985 if (CI->isAllOnesValue()) 2986 return getNotSCEV(getSCEV(U->getOperand(0))); 2987 2988 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 2989 // This is a variant of the check for xor with -1, and it handles 2990 // the case where instcombine has trimmed non-demanded bits out 2991 // of an xor with -1. 2992 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 2993 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 2994 if (BO->getOpcode() == Instruction::And && 2995 LCI->getValue() == CI->getValue()) 2996 if (const SCEVZeroExtendExpr *Z = 2997 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 2998 const Type *UTy = U->getType(); 2999 const SCEV *Z0 = Z->getOperand(); 3000 const Type *Z0Ty = Z0->getType(); 3001 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3002 3003 // If C is a low-bits mask, the zero extend is zerving to 3004 // mask off the high bits. Complement the operand and 3005 // re-apply the zext. 3006 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3007 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3008 3009 // If C is a single bit, it may be in the sign-bit position 3010 // before the zero-extend. In this case, represent the xor 3011 // using an add, which is equivalent, and re-apply the zext. 3012 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3013 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3014 Trunc.isSignBit()) 3015 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3016 UTy); 3017 } 3018 } 3019 break; 3020 3021 case Instruction::Shl: 3022 // Turn shift left of a constant amount into a multiply. 3023 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3024 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 3025 Constant *X = ConstantInt::get(getContext(), 3026 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 3027 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3028 } 3029 break; 3030 3031 case Instruction::LShr: 3032 // Turn logical shift right of a constant into a unsigned divide. 3033 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3034 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 3035 Constant *X = ConstantInt::get(getContext(), 3036 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 3037 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3038 } 3039 break; 3040 3041 case Instruction::AShr: 3042 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3043 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3044 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 3045 if (L->getOpcode() == Instruction::Shl && 3046 L->getOperand(1) == U->getOperand(1)) { 3047 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3048 uint64_t Amt = BitWidth - CI->getZExtValue(); 3049 if (Amt == BitWidth) 3050 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3051 if (Amt > BitWidth) 3052 return getIntegerSCEV(0, U->getType()); // value is undefined 3053 return 3054 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3055 IntegerType::get(getContext(), Amt)), 3056 U->getType()); 3057 } 3058 break; 3059 3060 case Instruction::Trunc: 3061 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3062 3063 case Instruction::ZExt: 3064 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3065 3066 case Instruction::SExt: 3067 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3068 3069 case Instruction::BitCast: 3070 // BitCasts are no-op casts so we just eliminate the cast. 3071 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3072 return getSCEV(U->getOperand(0)); 3073 break; 3074 3075 // It's tempting to handle inttoptr and ptrtoint, however this can 3076 // lead to pointer expressions which cannot be expanded to GEPs 3077 // (because they may overflow). For now, the only pointer-typed 3078 // expressions we handle are GEPs and address literals. 3079 3080 case Instruction::GetElementPtr: 3081 return createNodeForGEP(U); 3082 3083 case Instruction::PHI: 3084 return createNodeForPHI(cast<PHINode>(U)); 3085 3086 case Instruction::Select: 3087 // This could be a smax or umax that was lowered earlier. 3088 // Try to recover it. 3089 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3090 Value *LHS = ICI->getOperand(0); 3091 Value *RHS = ICI->getOperand(1); 3092 switch (ICI->getPredicate()) { 3093 case ICmpInst::ICMP_SLT: 3094 case ICmpInst::ICMP_SLE: 3095 std::swap(LHS, RHS); 3096 // fall through 3097 case ICmpInst::ICMP_SGT: 3098 case ICmpInst::ICMP_SGE: 3099 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 3100 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 3101 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 3102 return getSMinExpr(getSCEV(LHS), getSCEV(RHS)); 3103 break; 3104 case ICmpInst::ICMP_ULT: 3105 case ICmpInst::ICMP_ULE: 3106 std::swap(LHS, RHS); 3107 // fall through 3108 case ICmpInst::ICMP_UGT: 3109 case ICmpInst::ICMP_UGE: 3110 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 3111 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 3112 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 3113 return getUMinExpr(getSCEV(LHS), getSCEV(RHS)); 3114 break; 3115 case ICmpInst::ICMP_NE: 3116 // n != 0 ? n : 1 -> umax(n, 1) 3117 if (LHS == U->getOperand(1) && 3118 isa<ConstantInt>(U->getOperand(2)) && 3119 cast<ConstantInt>(U->getOperand(2))->isOne() && 3120 isa<ConstantInt>(RHS) && 3121 cast<ConstantInt>(RHS)->isZero()) 3122 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2))); 3123 break; 3124 case ICmpInst::ICMP_EQ: 3125 // n == 0 ? 1 : n -> umax(n, 1) 3126 if (LHS == U->getOperand(2) && 3127 isa<ConstantInt>(U->getOperand(1)) && 3128 cast<ConstantInt>(U->getOperand(1))->isOne() && 3129 isa<ConstantInt>(RHS) && 3130 cast<ConstantInt>(RHS)->isZero()) 3131 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1))); 3132 break; 3133 default: 3134 break; 3135 } 3136 } 3137 3138 default: // We cannot analyze this expression. 3139 break; 3140 } 3141 3142 return getUnknown(V); 3143 } 3144 3145 3146 3147 //===----------------------------------------------------------------------===// 3148 // Iteration Count Computation Code 3149 // 3150 3151 /// getBackedgeTakenCount - If the specified loop has a predictable 3152 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3153 /// object. The backedge-taken count is the number of times the loop header 3154 /// will be branched to from within the loop. This is one less than the 3155 /// trip count of the loop, since it doesn't count the first iteration, 3156 /// when the header is branched to from outside the loop. 3157 /// 3158 /// Note that it is not valid to call this method on a loop without a 3159 /// loop-invariant backedge-taken count (see 3160 /// hasLoopInvariantBackedgeTakenCount). 3161 /// 3162 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3163 return getBackedgeTakenInfo(L).Exact; 3164 } 3165 3166 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3167 /// return the least SCEV value that is known never to be less than the 3168 /// actual backedge taken count. 3169 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3170 return getBackedgeTakenInfo(L).Max; 3171 } 3172 3173 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3174 /// onto the given Worklist. 3175 static void 3176 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3177 BasicBlock *Header = L->getHeader(); 3178 3179 // Push all Loop-header PHIs onto the Worklist stack. 3180 for (BasicBlock::iterator I = Header->begin(); 3181 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3182 Worklist.push_back(PN); 3183 } 3184 3185 const ScalarEvolution::BackedgeTakenInfo & 3186 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3187 // Initially insert a CouldNotCompute for this loop. If the insertion 3188 // succeeds, procede to actually compute a backedge-taken count and 3189 // update the value. The temporary CouldNotCompute value tells SCEV 3190 // code elsewhere that it shouldn't attempt to request a new 3191 // backedge-taken count, which could result in infinite recursion. 3192 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = 3193 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3194 if (Pair.second) { 3195 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); 3196 if (ItCount.Exact != getCouldNotCompute()) { 3197 assert(ItCount.Exact->isLoopInvariant(L) && 3198 ItCount.Max->isLoopInvariant(L) && 3199 "Computed trip count isn't loop invariant for loop!"); 3200 ++NumTripCountsComputed; 3201 3202 // Update the value in the map. 3203 Pair.first->second = ItCount; 3204 } else { 3205 if (ItCount.Max != getCouldNotCompute()) 3206 // Update the value in the map. 3207 Pair.first->second = ItCount; 3208 if (isa<PHINode>(L->getHeader()->begin())) 3209 // Only count loops that have phi nodes as not being computable. 3210 ++NumTripCountsNotComputed; 3211 } 3212 3213 // Now that we know more about the trip count for this loop, forget any 3214 // existing SCEV values for PHI nodes in this loop since they are only 3215 // conservative estimates made without the benefit of trip count 3216 // information. This is similar to the code in 3217 // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI 3218 // nodes specially. 3219 if (ItCount.hasAnyInfo()) { 3220 SmallVector<Instruction *, 16> Worklist; 3221 PushLoopPHIs(L, Worklist); 3222 3223 SmallPtrSet<Instruction *, 8> Visited; 3224 while (!Worklist.empty()) { 3225 Instruction *I = Worklist.pop_back_val(); 3226 if (!Visited.insert(I)) continue; 3227 3228 std::map<SCEVCallbackVH, const SCEV*>::iterator It = 3229 Scalars.find(static_cast<Value *>(I)); 3230 if (It != Scalars.end()) { 3231 // SCEVUnknown for a PHI either means that it has an unrecognized 3232 // structure, or it's a PHI that's in the progress of being computed 3233 // by createNodeForPHI. In the former case, additional loop trip 3234 // count information isn't going to change anything. In the later 3235 // case, createNodeForPHI will perform the necessary updates on its 3236 // own when it gets to that point. 3237 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) 3238 Scalars.erase(It); 3239 ValuesAtScopes.erase(I); 3240 if (PHINode *PN = dyn_cast<PHINode>(I)) 3241 ConstantEvolutionLoopExitValue.erase(PN); 3242 } 3243 3244 PushDefUseChildren(I, Worklist); 3245 } 3246 } 3247 } 3248 return Pair.first->second; 3249 } 3250 3251 /// forgetLoopBackedgeTakenCount - This method should be called by the 3252 /// client when it has changed a loop in a way that may effect 3253 /// ScalarEvolution's ability to compute a trip count, or if the loop 3254 /// is deleted. 3255 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 3256 BackedgeTakenCounts.erase(L); 3257 3258 SmallVector<Instruction *, 16> Worklist; 3259 PushLoopPHIs(L, Worklist); 3260 3261 SmallPtrSet<Instruction *, 8> Visited; 3262 while (!Worklist.empty()) { 3263 Instruction *I = Worklist.pop_back_val(); 3264 if (!Visited.insert(I)) continue; 3265 3266 std::map<SCEVCallbackVH, const SCEV*>::iterator It = 3267 Scalars.find(static_cast<Value *>(I)); 3268 if (It != Scalars.end()) { 3269 Scalars.erase(It); 3270 ValuesAtScopes.erase(I); 3271 if (PHINode *PN = dyn_cast<PHINode>(I)) 3272 ConstantEvolutionLoopExitValue.erase(PN); 3273 } 3274 3275 PushDefUseChildren(I, Worklist); 3276 } 3277 } 3278 3279 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3280 /// of the specified loop will execute. 3281 ScalarEvolution::BackedgeTakenInfo 3282 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3283 SmallVector<BasicBlock*, 8> ExitingBlocks; 3284 L->getExitingBlocks(ExitingBlocks); 3285 3286 // Examine all exits and pick the most conservative values. 3287 const SCEV *BECount = getCouldNotCompute(); 3288 const SCEV *MaxBECount = getCouldNotCompute(); 3289 bool CouldNotComputeBECount = false; 3290 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3291 BackedgeTakenInfo NewBTI = 3292 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3293 3294 if (NewBTI.Exact == getCouldNotCompute()) { 3295 // We couldn't compute an exact value for this exit, so 3296 // we won't be able to compute an exact value for the loop. 3297 CouldNotComputeBECount = true; 3298 BECount = getCouldNotCompute(); 3299 } else if (!CouldNotComputeBECount) { 3300 if (BECount == getCouldNotCompute()) 3301 BECount = NewBTI.Exact; 3302 else 3303 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3304 } 3305 if (MaxBECount == getCouldNotCompute()) 3306 MaxBECount = NewBTI.Max; 3307 else if (NewBTI.Max != getCouldNotCompute()) 3308 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3309 } 3310 3311 return BackedgeTakenInfo(BECount, MaxBECount); 3312 } 3313 3314 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3315 /// of the specified loop will execute if it exits via the specified block. 3316 ScalarEvolution::BackedgeTakenInfo 3317 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3318 BasicBlock *ExitingBlock) { 3319 3320 // Okay, we've chosen an exiting block. See what condition causes us to 3321 // exit at this block. 3322 // 3323 // FIXME: we should be able to handle switch instructions (with a single exit) 3324 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3325 if (ExitBr == 0) return getCouldNotCompute(); 3326 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3327 3328 // At this point, we know we have a conditional branch that determines whether 3329 // the loop is exited. However, we don't know if the branch is executed each 3330 // time through the loop. If not, then the execution count of the branch will 3331 // not be equal to the trip count of the loop. 3332 // 3333 // Currently we check for this by checking to see if the Exit branch goes to 3334 // the loop header. If so, we know it will always execute the same number of 3335 // times as the loop. We also handle the case where the exit block *is* the 3336 // loop header. This is common for un-rotated loops. 3337 // 3338 // If both of those tests fail, walk up the unique predecessor chain to the 3339 // header, stopping if there is an edge that doesn't exit the loop. If the 3340 // header is reached, the execution count of the branch will be equal to the 3341 // trip count of the loop. 3342 // 3343 // More extensive analysis could be done to handle more cases here. 3344 // 3345 if (ExitBr->getSuccessor(0) != L->getHeader() && 3346 ExitBr->getSuccessor(1) != L->getHeader() && 3347 ExitBr->getParent() != L->getHeader()) { 3348 // The simple checks failed, try climbing the unique predecessor chain 3349 // up to the header. 3350 bool Ok = false; 3351 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3352 BasicBlock *Pred = BB->getUniquePredecessor(); 3353 if (!Pred) 3354 return getCouldNotCompute(); 3355 TerminatorInst *PredTerm = Pred->getTerminator(); 3356 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3357 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3358 if (PredSucc == BB) 3359 continue; 3360 // If the predecessor has a successor that isn't BB and isn't 3361 // outside the loop, assume the worst. 3362 if (L->contains(PredSucc)) 3363 return getCouldNotCompute(); 3364 } 3365 if (Pred == L->getHeader()) { 3366 Ok = true; 3367 break; 3368 } 3369 BB = Pred; 3370 } 3371 if (!Ok) 3372 return getCouldNotCompute(); 3373 } 3374 3375 // Procede to the next level to examine the exit condition expression. 3376 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3377 ExitBr->getSuccessor(0), 3378 ExitBr->getSuccessor(1)); 3379 } 3380 3381 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3382 /// backedge of the specified loop will execute if its exit condition 3383 /// were a conditional branch of ExitCond, TBB, and FBB. 3384 ScalarEvolution::BackedgeTakenInfo 3385 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3386 Value *ExitCond, 3387 BasicBlock *TBB, 3388 BasicBlock *FBB) { 3389 // Check if the controlling expression for this loop is an And or Or. 3390 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3391 if (BO->getOpcode() == Instruction::And) { 3392 // Recurse on the operands of the and. 3393 BackedgeTakenInfo BTI0 = 3394 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3395 BackedgeTakenInfo BTI1 = 3396 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3397 const SCEV *BECount = getCouldNotCompute(); 3398 const SCEV *MaxBECount = getCouldNotCompute(); 3399 if (L->contains(TBB)) { 3400 // Both conditions must be true for the loop to continue executing. 3401 // Choose the less conservative count. 3402 if (BTI0.Exact == getCouldNotCompute() || 3403 BTI1.Exact == getCouldNotCompute()) 3404 BECount = getCouldNotCompute(); 3405 else 3406 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3407 if (BTI0.Max == getCouldNotCompute()) 3408 MaxBECount = BTI1.Max; 3409 else if (BTI1.Max == getCouldNotCompute()) 3410 MaxBECount = BTI0.Max; 3411 else 3412 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3413 } else { 3414 // Both conditions must be true for the loop to exit. 3415 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3416 if (BTI0.Exact != getCouldNotCompute() && 3417 BTI1.Exact != getCouldNotCompute()) 3418 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3419 if (BTI0.Max != getCouldNotCompute() && 3420 BTI1.Max != getCouldNotCompute()) 3421 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3422 } 3423 3424 return BackedgeTakenInfo(BECount, MaxBECount); 3425 } 3426 if (BO->getOpcode() == Instruction::Or) { 3427 // Recurse on the operands of the or. 3428 BackedgeTakenInfo BTI0 = 3429 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3430 BackedgeTakenInfo BTI1 = 3431 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3432 const SCEV *BECount = getCouldNotCompute(); 3433 const SCEV *MaxBECount = getCouldNotCompute(); 3434 if (L->contains(FBB)) { 3435 // Both conditions must be false for the loop to continue executing. 3436 // Choose the less conservative count. 3437 if (BTI0.Exact == getCouldNotCompute() || 3438 BTI1.Exact == getCouldNotCompute()) 3439 BECount = getCouldNotCompute(); 3440 else 3441 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3442 if (BTI0.Max == getCouldNotCompute()) 3443 MaxBECount = BTI1.Max; 3444 else if (BTI1.Max == getCouldNotCompute()) 3445 MaxBECount = BTI0.Max; 3446 else 3447 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3448 } else { 3449 // Both conditions must be false for the loop to exit. 3450 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3451 if (BTI0.Exact != getCouldNotCompute() && 3452 BTI1.Exact != getCouldNotCompute()) 3453 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3454 if (BTI0.Max != getCouldNotCompute() && 3455 BTI1.Max != getCouldNotCompute()) 3456 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3457 } 3458 3459 return BackedgeTakenInfo(BECount, MaxBECount); 3460 } 3461 } 3462 3463 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3464 // Procede to the next level to examine the icmp. 3465 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3466 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3467 3468 // If it's not an integer or pointer comparison then compute it the hard way. 3469 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3470 } 3471 3472 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3473 /// backedge of the specified loop will execute if its exit condition 3474 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3475 ScalarEvolution::BackedgeTakenInfo 3476 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3477 ICmpInst *ExitCond, 3478 BasicBlock *TBB, 3479 BasicBlock *FBB) { 3480 3481 // If the condition was exit on true, convert the condition to exit on false 3482 ICmpInst::Predicate Cond; 3483 if (!L->contains(FBB)) 3484 Cond = ExitCond->getPredicate(); 3485 else 3486 Cond = ExitCond->getInversePredicate(); 3487 3488 // Handle common loops like: for (X = "string"; *X; ++X) 3489 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3490 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3491 const SCEV *ItCnt = 3492 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3493 if (!isa<SCEVCouldNotCompute>(ItCnt)) { 3494 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType()); 3495 return BackedgeTakenInfo(ItCnt, 3496 isa<SCEVConstant>(ItCnt) ? ItCnt : 3497 getConstant(APInt::getMaxValue(BitWidth)-1)); 3498 } 3499 } 3500 3501 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3502 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3503 3504 // Try to evaluate any dependencies out of the loop. 3505 LHS = getSCEVAtScope(LHS, L); 3506 RHS = getSCEVAtScope(RHS, L); 3507 3508 // At this point, we would like to compute how many iterations of the 3509 // loop the predicate will return true for these inputs. 3510 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3511 // If there is a loop-invariant, force it into the RHS. 3512 std::swap(LHS, RHS); 3513 Cond = ICmpInst::getSwappedPredicate(Cond); 3514 } 3515 3516 // If we have a comparison of a chrec against a constant, try to use value 3517 // ranges to answer this query. 3518 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3519 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3520 if (AddRec->getLoop() == L) { 3521 // Form the constant range. 3522 ConstantRange CompRange( 3523 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3524 3525 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3526 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3527 } 3528 3529 switch (Cond) { 3530 case ICmpInst::ICMP_NE: { // while (X != Y) 3531 // Convert to: while (X-Y != 0) 3532 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3533 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3534 break; 3535 } 3536 case ICmpInst::ICMP_EQ: { 3537 // Convert to: while (X-Y == 0) // while (X == Y) 3538 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3539 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3540 break; 3541 } 3542 case ICmpInst::ICMP_SLT: { 3543 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3544 if (BTI.hasAnyInfo()) return BTI; 3545 break; 3546 } 3547 case ICmpInst::ICMP_SGT: { 3548 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3549 getNotSCEV(RHS), L, true); 3550 if (BTI.hasAnyInfo()) return BTI; 3551 break; 3552 } 3553 case ICmpInst::ICMP_ULT: { 3554 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 3555 if (BTI.hasAnyInfo()) return BTI; 3556 break; 3557 } 3558 case ICmpInst::ICMP_UGT: { 3559 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3560 getNotSCEV(RHS), L, false); 3561 if (BTI.hasAnyInfo()) return BTI; 3562 break; 3563 } 3564 default: 3565 #if 0 3566 errs() << "ComputeBackedgeTakenCount "; 3567 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 3568 errs() << "[unsigned] "; 3569 errs() << *LHS << " " 3570 << Instruction::getOpcodeName(Instruction::ICmp) 3571 << " " << *RHS << "\n"; 3572 #endif 3573 break; 3574 } 3575 return 3576 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3577 } 3578 3579 static ConstantInt * 3580 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 3581 ScalarEvolution &SE) { 3582 const SCEV *InVal = SE.getConstant(C); 3583 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 3584 assert(isa<SCEVConstant>(Val) && 3585 "Evaluation of SCEV at constant didn't fold correctly?"); 3586 return cast<SCEVConstant>(Val)->getValue(); 3587 } 3588 3589 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 3590 /// and a GEP expression (missing the pointer index) indexing into it, return 3591 /// the addressed element of the initializer or null if the index expression is 3592 /// invalid. 3593 static Constant * 3594 GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV, 3595 const std::vector<ConstantInt*> &Indices) { 3596 Constant *Init = GV->getInitializer(); 3597 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 3598 uint64_t Idx = Indices[i]->getZExtValue(); 3599 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 3600 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 3601 Init = cast<Constant>(CS->getOperand(Idx)); 3602 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 3603 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 3604 Init = cast<Constant>(CA->getOperand(Idx)); 3605 } else if (isa<ConstantAggregateZero>(Init)) { 3606 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 3607 assert(Idx < STy->getNumElements() && "Bad struct index!"); 3608 Init = Constant::getNullValue(STy->getElementType(Idx)); 3609 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 3610 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 3611 Init = Constant::getNullValue(ATy->getElementType()); 3612 } else { 3613 llvm_unreachable("Unknown constant aggregate type!"); 3614 } 3615 return 0; 3616 } else { 3617 return 0; // Unknown initializer type 3618 } 3619 } 3620 return Init; 3621 } 3622 3623 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 3624 /// 'icmp op load X, cst', try to see if we can compute the backedge 3625 /// execution count. 3626 const SCEV * 3627 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 3628 LoadInst *LI, 3629 Constant *RHS, 3630 const Loop *L, 3631 ICmpInst::Predicate predicate) { 3632 if (LI->isVolatile()) return getCouldNotCompute(); 3633 3634 // Check to see if the loaded pointer is a getelementptr of a global. 3635 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 3636 if (!GEP) return getCouldNotCompute(); 3637 3638 // Make sure that it is really a constant global we are gepping, with an 3639 // initializer, and make sure the first IDX is really 0. 3640 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 3641 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 3642 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 3643 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 3644 return getCouldNotCompute(); 3645 3646 // Okay, we allow one non-constant index into the GEP instruction. 3647 Value *VarIdx = 0; 3648 std::vector<ConstantInt*> Indexes; 3649 unsigned VarIdxNum = 0; 3650 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 3651 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 3652 Indexes.push_back(CI); 3653 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 3654 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 3655 VarIdx = GEP->getOperand(i); 3656 VarIdxNum = i-2; 3657 Indexes.push_back(0); 3658 } 3659 3660 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 3661 // Check to see if X is a loop variant variable value now. 3662 const SCEV *Idx = getSCEV(VarIdx); 3663 Idx = getSCEVAtScope(Idx, L); 3664 3665 // We can only recognize very limited forms of loop index expressions, in 3666 // particular, only affine AddRec's like {C1,+,C2}. 3667 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 3668 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 3669 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 3670 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 3671 return getCouldNotCompute(); 3672 3673 unsigned MaxSteps = MaxBruteForceIterations; 3674 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 3675 ConstantInt *ItCst = ConstantInt::get( 3676 cast<IntegerType>(IdxExpr->getType()), IterationNum); 3677 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 3678 3679 // Form the GEP offset. 3680 Indexes[VarIdxNum] = Val; 3681 3682 Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes); 3683 if (Result == 0) break; // Cannot compute! 3684 3685 // Evaluate the condition for this iteration. 3686 Result = ConstantExpr::getICmp(predicate, Result, RHS); 3687 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 3688 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 3689 #if 0 3690 errs() << "\n***\n*** Computed loop count " << *ItCst 3691 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 3692 << "***\n"; 3693 #endif 3694 ++NumArrayLenItCounts; 3695 return getConstant(ItCst); // Found terminating iteration! 3696 } 3697 } 3698 return getCouldNotCompute(); 3699 } 3700 3701 3702 /// CanConstantFold - Return true if we can constant fold an instruction of the 3703 /// specified type, assuming that all operands were constants. 3704 static bool CanConstantFold(const Instruction *I) { 3705 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 3706 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 3707 return true; 3708 3709 if (const CallInst *CI = dyn_cast<CallInst>(I)) 3710 if (const Function *F = CI->getCalledFunction()) 3711 return canConstantFoldCallTo(F); 3712 return false; 3713 } 3714 3715 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 3716 /// in the loop that V is derived from. We allow arbitrary operations along the 3717 /// way, but the operands of an operation must either be constants or a value 3718 /// derived from a constant PHI. If this expression does not fit with these 3719 /// constraints, return null. 3720 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 3721 // If this is not an instruction, or if this is an instruction outside of the 3722 // loop, it can't be derived from a loop PHI. 3723 Instruction *I = dyn_cast<Instruction>(V); 3724 if (I == 0 || !L->contains(I->getParent())) return 0; 3725 3726 if (PHINode *PN = dyn_cast<PHINode>(I)) { 3727 if (L->getHeader() == I->getParent()) 3728 return PN; 3729 else 3730 // We don't currently keep track of the control flow needed to evaluate 3731 // PHIs, so we cannot handle PHIs inside of loops. 3732 return 0; 3733 } 3734 3735 // If we won't be able to constant fold this expression even if the operands 3736 // are constants, return early. 3737 if (!CanConstantFold(I)) return 0; 3738 3739 // Otherwise, we can evaluate this instruction if all of its operands are 3740 // constant or derived from a PHI node themselves. 3741 PHINode *PHI = 0; 3742 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 3743 if (!(isa<Constant>(I->getOperand(Op)) || 3744 isa<GlobalValue>(I->getOperand(Op)))) { 3745 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 3746 if (P == 0) return 0; // Not evolving from PHI 3747 if (PHI == 0) 3748 PHI = P; 3749 else if (PHI != P) 3750 return 0; // Evolving from multiple different PHIs. 3751 } 3752 3753 // This is a expression evolving from a constant PHI! 3754 return PHI; 3755 } 3756 3757 /// EvaluateExpression - Given an expression that passes the 3758 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 3759 /// in the loop has the value PHIVal. If we can't fold this expression for some 3760 /// reason, return null. 3761 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 3762 if (isa<PHINode>(V)) return PHIVal; 3763 if (Constant *C = dyn_cast<Constant>(V)) return C; 3764 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 3765 Instruction *I = cast<Instruction>(V); 3766 LLVMContext &Context = I->getParent()->getContext(); 3767 3768 std::vector<Constant*> Operands; 3769 Operands.resize(I->getNumOperands()); 3770 3771 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3772 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 3773 if (Operands[i] == 0) return 0; 3774 } 3775 3776 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3777 return ConstantFoldCompareInstOperands(CI->getPredicate(), 3778 &Operands[0], Operands.size(), 3779 Context); 3780 else 3781 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3782 &Operands[0], Operands.size(), 3783 Context); 3784 } 3785 3786 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 3787 /// in the header of its containing loop, we know the loop executes a 3788 /// constant number of times, and the PHI node is just a recurrence 3789 /// involving constants, fold it. 3790 Constant * 3791 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 3792 const APInt& BEs, 3793 const Loop *L) { 3794 std::map<PHINode*, Constant*>::iterator I = 3795 ConstantEvolutionLoopExitValue.find(PN); 3796 if (I != ConstantEvolutionLoopExitValue.end()) 3797 return I->second; 3798 3799 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 3800 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 3801 3802 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 3803 3804 // Since the loop is canonicalized, the PHI node must have two entries. One 3805 // entry must be a constant (coming in from outside of the loop), and the 3806 // second must be derived from the same PHI. 3807 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3808 Constant *StartCST = 3809 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3810 if (StartCST == 0) 3811 return RetVal = 0; // Must be a constant. 3812 3813 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3814 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3815 if (PN2 != PN) 3816 return RetVal = 0; // Not derived from same PHI. 3817 3818 // Execute the loop symbolically to determine the exit value. 3819 if (BEs.getActiveBits() >= 32) 3820 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 3821 3822 unsigned NumIterations = BEs.getZExtValue(); // must be in range 3823 unsigned IterationNum = 0; 3824 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 3825 if (IterationNum == NumIterations) 3826 return RetVal = PHIVal; // Got exit value! 3827 3828 // Compute the value of the PHI node for the next iteration. 3829 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3830 if (NextPHI == PHIVal) 3831 return RetVal = NextPHI; // Stopped evolving! 3832 if (NextPHI == 0) 3833 return 0; // Couldn't evaluate! 3834 PHIVal = NextPHI; 3835 } 3836 } 3837 3838 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 3839 /// constant number of times (the condition evolves only from constants), 3840 /// try to evaluate a few iterations of the loop until we get the exit 3841 /// condition gets a value of ExitWhen (true or false). If we cannot 3842 /// evaluate the trip count of the loop, return getCouldNotCompute(). 3843 const SCEV * 3844 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 3845 Value *Cond, 3846 bool ExitWhen) { 3847 PHINode *PN = getConstantEvolvingPHI(Cond, L); 3848 if (PN == 0) return getCouldNotCompute(); 3849 3850 // Since the loop is canonicalized, the PHI node must have two entries. One 3851 // entry must be a constant (coming in from outside of the loop), and the 3852 // second must be derived from the same PHI. 3853 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3854 Constant *StartCST = 3855 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3856 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 3857 3858 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3859 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3860 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI. 3861 3862 // Okay, we find a PHI node that defines the trip count of this loop. Execute 3863 // the loop symbolically to determine when the condition gets a value of 3864 // "ExitWhen". 3865 unsigned IterationNum = 0; 3866 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 3867 for (Constant *PHIVal = StartCST; 3868 IterationNum != MaxIterations; ++IterationNum) { 3869 ConstantInt *CondVal = 3870 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 3871 3872 // Couldn't symbolically evaluate. 3873 if (!CondVal) return getCouldNotCompute(); 3874 3875 if (CondVal->getValue() == uint64_t(ExitWhen)) { 3876 ++NumBruteForceTripCountsComputed; 3877 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 3878 } 3879 3880 // Compute the value of the PHI node for the next iteration. 3881 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3882 if (NextPHI == 0 || NextPHI == PHIVal) 3883 return getCouldNotCompute();// Couldn't evaluate or not making progress... 3884 PHIVal = NextPHI; 3885 } 3886 3887 // Too many iterations were needed to evaluate. 3888 return getCouldNotCompute(); 3889 } 3890 3891 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 3892 /// at the specified scope in the program. The L value specifies a loop 3893 /// nest to evaluate the expression at, where null is the top-level or a 3894 /// specified loop is immediately inside of the loop. 3895 /// 3896 /// This method can be used to compute the exit value for a variable defined 3897 /// in a loop by querying what the value will hold in the parent loop. 3898 /// 3899 /// In the case that a relevant loop exit value cannot be computed, the 3900 /// original value V is returned. 3901 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 3902 // FIXME: this should be turned into a virtual method on SCEV! 3903 3904 if (isa<SCEVConstant>(V)) return V; 3905 3906 // If this instruction is evolved from a constant-evolving PHI, compute the 3907 // exit value from the loop without using SCEVs. 3908 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 3909 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 3910 const Loop *LI = (*this->LI)[I->getParent()]; 3911 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 3912 if (PHINode *PN = dyn_cast<PHINode>(I)) 3913 if (PN->getParent() == LI->getHeader()) { 3914 // Okay, there is no closed form solution for the PHI node. Check 3915 // to see if the loop that contains it has a known backedge-taken 3916 // count. If so, we may be able to force computation of the exit 3917 // value. 3918 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 3919 if (const SCEVConstant *BTCC = 3920 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 3921 // Okay, we know how many times the containing loop executes. If 3922 // this is a constant evolving PHI node, get the final value at 3923 // the specified iteration number. 3924 Constant *RV = getConstantEvolutionLoopExitValue(PN, 3925 BTCC->getValue()->getValue(), 3926 LI); 3927 if (RV) return getSCEV(RV); 3928 } 3929 } 3930 3931 // Okay, this is an expression that we cannot symbolically evaluate 3932 // into a SCEV. Check to see if it's possible to symbolically evaluate 3933 // the arguments into constants, and if so, try to constant propagate the 3934 // result. This is particularly useful for computing loop exit values. 3935 if (CanConstantFold(I)) { 3936 // Check to see if we've folded this instruction at this loop before. 3937 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I]; 3938 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair = 3939 Values.insert(std::make_pair(L, static_cast<Constant *>(0))); 3940 if (!Pair.second) 3941 return Pair.first->second ? &*getSCEV(Pair.first->second) : V; 3942 3943 std::vector<Constant*> Operands; 3944 Operands.reserve(I->getNumOperands()); 3945 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3946 Value *Op = I->getOperand(i); 3947 if (Constant *C = dyn_cast<Constant>(Op)) { 3948 Operands.push_back(C); 3949 } else { 3950 // If any of the operands is non-constant and if they are 3951 // non-integer and non-pointer, don't even try to analyze them 3952 // with scev techniques. 3953 if (!isSCEVable(Op->getType())) 3954 return V; 3955 3956 const SCEV* OpV = getSCEVAtScope(Op, L); 3957 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 3958 Constant *C = SC->getValue(); 3959 if (C->getType() != Op->getType()) 3960 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3961 Op->getType(), 3962 false), 3963 C, Op->getType()); 3964 Operands.push_back(C); 3965 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 3966 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 3967 if (C->getType() != Op->getType()) 3968 C = 3969 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3970 Op->getType(), 3971 false), 3972 C, Op->getType()); 3973 Operands.push_back(C); 3974 } else 3975 return V; 3976 } else { 3977 return V; 3978 } 3979 } 3980 } 3981 3982 Constant *C; 3983 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3984 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 3985 &Operands[0], Operands.size(), 3986 getContext()); 3987 else 3988 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3989 &Operands[0], Operands.size(), 3990 getContext()); 3991 Pair.first->second = C; 3992 return getSCEV(C); 3993 } 3994 } 3995 3996 // This is some other type of SCEVUnknown, just return it. 3997 return V; 3998 } 3999 4000 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4001 // Avoid performing the look-up in the common case where the specified 4002 // expression has no loop-variant portions. 4003 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4004 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4005 if (OpAtScope != Comm->getOperand(i)) { 4006 // Okay, at least one of these operands is loop variant but might be 4007 // foldable. Build a new instance of the folded commutative expression. 4008 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4009 Comm->op_begin()+i); 4010 NewOps.push_back(OpAtScope); 4011 4012 for (++i; i != e; ++i) { 4013 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4014 NewOps.push_back(OpAtScope); 4015 } 4016 if (isa<SCEVAddExpr>(Comm)) 4017 return getAddExpr(NewOps); 4018 if (isa<SCEVMulExpr>(Comm)) 4019 return getMulExpr(NewOps); 4020 if (isa<SCEVSMaxExpr>(Comm)) 4021 return getSMaxExpr(NewOps); 4022 if (isa<SCEVUMaxExpr>(Comm)) 4023 return getUMaxExpr(NewOps); 4024 llvm_unreachable("Unknown commutative SCEV type!"); 4025 } 4026 } 4027 // If we got here, all operands are loop invariant. 4028 return Comm; 4029 } 4030 4031 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4032 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4033 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4034 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4035 return Div; // must be loop invariant 4036 return getUDivExpr(LHS, RHS); 4037 } 4038 4039 // If this is a loop recurrence for a loop that does not contain L, then we 4040 // are dealing with the final value computed by the loop. 4041 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4042 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 4043 // To evaluate this recurrence, we need to know how many times the AddRec 4044 // loop iterates. Compute this now. 4045 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4046 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4047 4048 // Then, evaluate the AddRec. 4049 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4050 } 4051 return AddRec; 4052 } 4053 4054 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4055 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4056 if (Op == Cast->getOperand()) 4057 return Cast; // must be loop invariant 4058 return getZeroExtendExpr(Op, Cast->getType()); 4059 } 4060 4061 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4062 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4063 if (Op == Cast->getOperand()) 4064 return Cast; // must be loop invariant 4065 return getSignExtendExpr(Op, Cast->getType()); 4066 } 4067 4068 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4069 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4070 if (Op == Cast->getOperand()) 4071 return Cast; // must be loop invariant 4072 return getTruncateExpr(Op, Cast->getType()); 4073 } 4074 4075 if (isa<SCEVTargetDataConstant>(V)) 4076 return V; 4077 4078 llvm_unreachable("Unknown SCEV type!"); 4079 return 0; 4080 } 4081 4082 /// getSCEVAtScope - This is a convenience function which does 4083 /// getSCEVAtScope(getSCEV(V), L). 4084 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4085 return getSCEVAtScope(getSCEV(V), L); 4086 } 4087 4088 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4089 /// following equation: 4090 /// 4091 /// A * X = B (mod N) 4092 /// 4093 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4094 /// A and B isn't important. 4095 /// 4096 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4097 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4098 ScalarEvolution &SE) { 4099 uint32_t BW = A.getBitWidth(); 4100 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4101 assert(A != 0 && "A must be non-zero."); 4102 4103 // 1. D = gcd(A, N) 4104 // 4105 // The gcd of A and N may have only one prime factor: 2. The number of 4106 // trailing zeros in A is its multiplicity 4107 uint32_t Mult2 = A.countTrailingZeros(); 4108 // D = 2^Mult2 4109 4110 // 2. Check if B is divisible by D. 4111 // 4112 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4113 // is not less than multiplicity of this prime factor for D. 4114 if (B.countTrailingZeros() < Mult2) 4115 return SE.getCouldNotCompute(); 4116 4117 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4118 // modulo (N / D). 4119 // 4120 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4121 // bit width during computations. 4122 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4123 APInt Mod(BW + 1, 0); 4124 Mod.set(BW - Mult2); // Mod = N / D 4125 APInt I = AD.multiplicativeInverse(Mod); 4126 4127 // 4. Compute the minimum unsigned root of the equation: 4128 // I * (B / D) mod (N / D) 4129 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4130 4131 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4132 // bits. 4133 return SE.getConstant(Result.trunc(BW)); 4134 } 4135 4136 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4137 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4138 /// might be the same) or two SCEVCouldNotCompute objects. 4139 /// 4140 static std::pair<const SCEV *,const SCEV *> 4141 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4142 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4143 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4144 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4145 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4146 4147 // We currently can only solve this if the coefficients are constants. 4148 if (!LC || !MC || !NC) { 4149 const SCEV *CNC = SE.getCouldNotCompute(); 4150 return std::make_pair(CNC, CNC); 4151 } 4152 4153 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4154 const APInt &L = LC->getValue()->getValue(); 4155 const APInt &M = MC->getValue()->getValue(); 4156 const APInt &N = NC->getValue()->getValue(); 4157 APInt Two(BitWidth, 2); 4158 APInt Four(BitWidth, 4); 4159 4160 { 4161 using namespace APIntOps; 4162 const APInt& C = L; 4163 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4164 // The B coefficient is M-N/2 4165 APInt B(M); 4166 B -= sdiv(N,Two); 4167 4168 // The A coefficient is N/2 4169 APInt A(N.sdiv(Two)); 4170 4171 // Compute the B^2-4ac term. 4172 APInt SqrtTerm(B); 4173 SqrtTerm *= B; 4174 SqrtTerm -= Four * (A * C); 4175 4176 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4177 // integer value or else APInt::sqrt() will assert. 4178 APInt SqrtVal(SqrtTerm.sqrt()); 4179 4180 // Compute the two solutions for the quadratic formula. 4181 // The divisions must be performed as signed divisions. 4182 APInt NegB(-B); 4183 APInt TwoA( A << 1 ); 4184 if (TwoA.isMinValue()) { 4185 const SCEV *CNC = SE.getCouldNotCompute(); 4186 return std::make_pair(CNC, CNC); 4187 } 4188 4189 LLVMContext &Context = SE.getContext(); 4190 4191 ConstantInt *Solution1 = 4192 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4193 ConstantInt *Solution2 = 4194 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4195 4196 return std::make_pair(SE.getConstant(Solution1), 4197 SE.getConstant(Solution2)); 4198 } // end APIntOps namespace 4199 } 4200 4201 /// HowFarToZero - Return the number of times a backedge comparing the specified 4202 /// value to zero will execute. If not computable, return CouldNotCompute. 4203 const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4204 // If the value is a constant 4205 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4206 // If the value is already zero, the branch will execute zero times. 4207 if (C->getValue()->isZero()) return C; 4208 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4209 } 4210 4211 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4212 if (!AddRec || AddRec->getLoop() != L) 4213 return getCouldNotCompute(); 4214 4215 if (AddRec->isAffine()) { 4216 // If this is an affine expression, the execution count of this branch is 4217 // the minimum unsigned root of the following equation: 4218 // 4219 // Start + Step*N = 0 (mod 2^BW) 4220 // 4221 // equivalent to: 4222 // 4223 // Step*N = -Start (mod 2^BW) 4224 // 4225 // where BW is the common bit width of Start and Step. 4226 4227 // Get the initial value for the loop. 4228 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4229 L->getParentLoop()); 4230 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4231 L->getParentLoop()); 4232 4233 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4234 // For now we handle only constant steps. 4235 4236 // First, handle unitary steps. 4237 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4238 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4239 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4240 return Start; // N = Start (as unsigned) 4241 4242 // Then, try to solve the above equation provided that Start is constant. 4243 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4244 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4245 -StartC->getValue()->getValue(), 4246 *this); 4247 } 4248 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 4249 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4250 // the quadratic equation to solve it. 4251 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4252 *this); 4253 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4254 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4255 if (R1) { 4256 #if 0 4257 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 4258 << " sol#2: " << *R2 << "\n"; 4259 #endif 4260 // Pick the smallest positive root value. 4261 if (ConstantInt *CB = 4262 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4263 R1->getValue(), R2->getValue()))) { 4264 if (CB->getZExtValue() == false) 4265 std::swap(R1, R2); // R1 is the minimum root now. 4266 4267 // We can only use this value if the chrec ends up with an exact zero 4268 // value at this index. When solving for "X*X != 5", for example, we 4269 // should not accept a root of 2. 4270 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4271 if (Val->isZero()) 4272 return R1; // We found a quadratic root! 4273 } 4274 } 4275 } 4276 4277 return getCouldNotCompute(); 4278 } 4279 4280 /// HowFarToNonZero - Return the number of times a backedge checking the 4281 /// specified value for nonzero will execute. If not computable, return 4282 /// CouldNotCompute 4283 const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4284 // Loops that look like: while (X == 0) are very strange indeed. We don't 4285 // handle them yet except for the trivial case. This could be expanded in the 4286 // future as needed. 4287 4288 // If the value is a constant, check to see if it is known to be non-zero 4289 // already. If so, the backedge will execute zero times. 4290 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4291 if (!C->getValue()->isNullValue()) 4292 return getIntegerSCEV(0, C->getType()); 4293 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4294 } 4295 4296 // We could implement others, but I really doubt anyone writes loops like 4297 // this, and if they did, they would already be constant folded. 4298 return getCouldNotCompute(); 4299 } 4300 4301 /// getLoopPredecessor - If the given loop's header has exactly one unique 4302 /// predecessor outside the loop, return it. Otherwise return null. 4303 /// 4304 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { 4305 BasicBlock *Header = L->getHeader(); 4306 BasicBlock *Pred = 0; 4307 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); 4308 PI != E; ++PI) 4309 if (!L->contains(*PI)) { 4310 if (Pred && Pred != *PI) return 0; // Multiple predecessors. 4311 Pred = *PI; 4312 } 4313 return Pred; 4314 } 4315 4316 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4317 /// (which may not be an immediate predecessor) which has exactly one 4318 /// successor from which BB is reachable, or null if no such block is 4319 /// found. 4320 /// 4321 BasicBlock * 4322 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4323 // If the block has a unique predecessor, then there is no path from the 4324 // predecessor to the block that does not go through the direct edge 4325 // from the predecessor to the block. 4326 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4327 return Pred; 4328 4329 // A loop's header is defined to be a block that dominates the loop. 4330 // If the header has a unique predecessor outside the loop, it must be 4331 // a block that has exactly one successor that can reach the loop. 4332 if (Loop *L = LI->getLoopFor(BB)) 4333 return getLoopPredecessor(L); 4334 4335 return 0; 4336 } 4337 4338 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4339 /// testing whether two expressions are equal, however for the purposes of 4340 /// looking for a condition guarding a loop, it can be useful to be a little 4341 /// more general, since a front-end may have replicated the controlling 4342 /// expression. 4343 /// 4344 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4345 // Quick check to see if they are the same SCEV. 4346 if (A == B) return true; 4347 4348 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4349 // two different instructions with the same value. Check for this case. 4350 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4351 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4352 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4353 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4354 if (AI->isIdenticalTo(BI)) 4355 return true; 4356 4357 // Otherwise assume they may have a different value. 4358 return false; 4359 } 4360 4361 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 4362 return getSignedRange(S).getSignedMax().isNegative(); 4363 } 4364 4365 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 4366 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 4367 } 4368 4369 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 4370 return !getSignedRange(S).getSignedMin().isNegative(); 4371 } 4372 4373 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 4374 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 4375 } 4376 4377 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 4378 return isKnownNegative(S) || isKnownPositive(S); 4379 } 4380 4381 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 4382 const SCEV *LHS, const SCEV *RHS) { 4383 4384 if (HasSameValue(LHS, RHS)) 4385 return ICmpInst::isTrueWhenEqual(Pred); 4386 4387 switch (Pred) { 4388 default: 4389 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4390 break; 4391 case ICmpInst::ICMP_SGT: 4392 Pred = ICmpInst::ICMP_SLT; 4393 std::swap(LHS, RHS); 4394 case ICmpInst::ICMP_SLT: { 4395 ConstantRange LHSRange = getSignedRange(LHS); 4396 ConstantRange RHSRange = getSignedRange(RHS); 4397 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 4398 return true; 4399 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 4400 return false; 4401 break; 4402 } 4403 case ICmpInst::ICMP_SGE: 4404 Pred = ICmpInst::ICMP_SLE; 4405 std::swap(LHS, RHS); 4406 case ICmpInst::ICMP_SLE: { 4407 ConstantRange LHSRange = getSignedRange(LHS); 4408 ConstantRange RHSRange = getSignedRange(RHS); 4409 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 4410 return true; 4411 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 4412 return false; 4413 break; 4414 } 4415 case ICmpInst::ICMP_UGT: 4416 Pred = ICmpInst::ICMP_ULT; 4417 std::swap(LHS, RHS); 4418 case ICmpInst::ICMP_ULT: { 4419 ConstantRange LHSRange = getUnsignedRange(LHS); 4420 ConstantRange RHSRange = getUnsignedRange(RHS); 4421 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 4422 return true; 4423 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 4424 return false; 4425 break; 4426 } 4427 case ICmpInst::ICMP_UGE: 4428 Pred = ICmpInst::ICMP_ULE; 4429 std::swap(LHS, RHS); 4430 case ICmpInst::ICMP_ULE: { 4431 ConstantRange LHSRange = getUnsignedRange(LHS); 4432 ConstantRange RHSRange = getUnsignedRange(RHS); 4433 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 4434 return true; 4435 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 4436 return false; 4437 break; 4438 } 4439 case ICmpInst::ICMP_NE: { 4440 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 4441 return true; 4442 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 4443 return true; 4444 4445 const SCEV *Diff = getMinusSCEV(LHS, RHS); 4446 if (isKnownNonZero(Diff)) 4447 return true; 4448 break; 4449 } 4450 case ICmpInst::ICMP_EQ: 4451 // The check at the top of the function catches the case where 4452 // the values are known to be equal. 4453 break; 4454 } 4455 return false; 4456 } 4457 4458 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 4459 /// protected by a conditional between LHS and RHS. This is used to 4460 /// to eliminate casts. 4461 bool 4462 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 4463 ICmpInst::Predicate Pred, 4464 const SCEV *LHS, const SCEV *RHS) { 4465 // Interpret a null as meaning no loop, where there is obviously no guard 4466 // (interprocedural conditions notwithstanding). 4467 if (!L) return true; 4468 4469 BasicBlock *Latch = L->getLoopLatch(); 4470 if (!Latch) 4471 return false; 4472 4473 BranchInst *LoopContinuePredicate = 4474 dyn_cast<BranchInst>(Latch->getTerminator()); 4475 if (!LoopContinuePredicate || 4476 LoopContinuePredicate->isUnconditional()) 4477 return false; 4478 4479 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS, 4480 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 4481 } 4482 4483 /// isLoopGuardedByCond - Test whether entry to the loop is protected 4484 /// by a conditional between LHS and RHS. This is used to help avoid max 4485 /// expressions in loop trip counts, and to eliminate casts. 4486 bool 4487 ScalarEvolution::isLoopGuardedByCond(const Loop *L, 4488 ICmpInst::Predicate Pred, 4489 const SCEV *LHS, const SCEV *RHS) { 4490 // Interpret a null as meaning no loop, where there is obviously no guard 4491 // (interprocedural conditions notwithstanding). 4492 if (!L) return false; 4493 4494 BasicBlock *Predecessor = getLoopPredecessor(L); 4495 BasicBlock *PredecessorDest = L->getHeader(); 4496 4497 // Starting at the loop predecessor, climb up the predecessor chain, as long 4498 // as there are predecessors that can be found that have unique successors 4499 // leading to the original header. 4500 for (; Predecessor; 4501 PredecessorDest = Predecessor, 4502 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { 4503 4504 BranchInst *LoopEntryPredicate = 4505 dyn_cast<BranchInst>(Predecessor->getTerminator()); 4506 if (!LoopEntryPredicate || 4507 LoopEntryPredicate->isUnconditional()) 4508 continue; 4509 4510 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, 4511 LoopEntryPredicate->getSuccessor(0) != PredecessorDest)) 4512 return true; 4513 } 4514 4515 return false; 4516 } 4517 4518 /// isImpliedCond - Test whether the condition described by Pred, LHS, 4519 /// and RHS is true whenever the given Cond value evaluates to true. 4520 bool ScalarEvolution::isImpliedCond(Value *CondValue, 4521 ICmpInst::Predicate Pred, 4522 const SCEV *LHS, const SCEV *RHS, 4523 bool Inverse) { 4524 // Recursivly handle And and Or conditions. 4525 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { 4526 if (BO->getOpcode() == Instruction::And) { 4527 if (!Inverse) 4528 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 4529 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 4530 } else if (BO->getOpcode() == Instruction::Or) { 4531 if (Inverse) 4532 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 4533 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 4534 } 4535 } 4536 4537 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); 4538 if (!ICI) return false; 4539 4540 // Bail if the ICmp's operands' types are wider than the needed type 4541 // before attempting to call getSCEV on them. This avoids infinite 4542 // recursion, since the analysis of widening casts can require loop 4543 // exit condition information for overflow checking, which would 4544 // lead back here. 4545 if (getTypeSizeInBits(LHS->getType()) < 4546 getTypeSizeInBits(ICI->getOperand(0)->getType())) 4547 return false; 4548 4549 // Now that we found a conditional branch that dominates the loop, check to 4550 // see if it is the comparison we are looking for. 4551 ICmpInst::Predicate FoundPred; 4552 if (Inverse) 4553 FoundPred = ICI->getInversePredicate(); 4554 else 4555 FoundPred = ICI->getPredicate(); 4556 4557 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 4558 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 4559 4560 // Balance the types. The case where FoundLHS' type is wider than 4561 // LHS' type is checked for above. 4562 if (getTypeSizeInBits(LHS->getType()) > 4563 getTypeSizeInBits(FoundLHS->getType())) { 4564 if (CmpInst::isSigned(Pred)) { 4565 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 4566 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 4567 } else { 4568 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 4569 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 4570 } 4571 } 4572 4573 // Canonicalize the query to match the way instcombine will have 4574 // canonicalized the comparison. 4575 // First, put a constant operand on the right. 4576 if (isa<SCEVConstant>(LHS)) { 4577 std::swap(LHS, RHS); 4578 Pred = ICmpInst::getSwappedPredicate(Pred); 4579 } 4580 // Then, canonicalize comparisons with boundary cases. 4581 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4582 const APInt &RA = RC->getValue()->getValue(); 4583 switch (Pred) { 4584 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4585 case ICmpInst::ICMP_EQ: 4586 case ICmpInst::ICMP_NE: 4587 break; 4588 case ICmpInst::ICMP_UGE: 4589 if ((RA - 1).isMinValue()) { 4590 Pred = ICmpInst::ICMP_NE; 4591 RHS = getConstant(RA - 1); 4592 break; 4593 } 4594 if (RA.isMaxValue()) { 4595 Pred = ICmpInst::ICMP_EQ; 4596 break; 4597 } 4598 if (RA.isMinValue()) return true; 4599 break; 4600 case ICmpInst::ICMP_ULE: 4601 if ((RA + 1).isMaxValue()) { 4602 Pred = ICmpInst::ICMP_NE; 4603 RHS = getConstant(RA + 1); 4604 break; 4605 } 4606 if (RA.isMinValue()) { 4607 Pred = ICmpInst::ICMP_EQ; 4608 break; 4609 } 4610 if (RA.isMaxValue()) return true; 4611 break; 4612 case ICmpInst::ICMP_SGE: 4613 if ((RA - 1).isMinSignedValue()) { 4614 Pred = ICmpInst::ICMP_NE; 4615 RHS = getConstant(RA - 1); 4616 break; 4617 } 4618 if (RA.isMaxSignedValue()) { 4619 Pred = ICmpInst::ICMP_EQ; 4620 break; 4621 } 4622 if (RA.isMinSignedValue()) return true; 4623 break; 4624 case ICmpInst::ICMP_SLE: 4625 if ((RA + 1).isMaxSignedValue()) { 4626 Pred = ICmpInst::ICMP_NE; 4627 RHS = getConstant(RA + 1); 4628 break; 4629 } 4630 if (RA.isMinSignedValue()) { 4631 Pred = ICmpInst::ICMP_EQ; 4632 break; 4633 } 4634 if (RA.isMaxSignedValue()) return true; 4635 break; 4636 case ICmpInst::ICMP_UGT: 4637 if (RA.isMinValue()) { 4638 Pred = ICmpInst::ICMP_NE; 4639 break; 4640 } 4641 if ((RA + 1).isMaxValue()) { 4642 Pred = ICmpInst::ICMP_EQ; 4643 RHS = getConstant(RA + 1); 4644 break; 4645 } 4646 if (RA.isMaxValue()) return false; 4647 break; 4648 case ICmpInst::ICMP_ULT: 4649 if (RA.isMaxValue()) { 4650 Pred = ICmpInst::ICMP_NE; 4651 break; 4652 } 4653 if ((RA - 1).isMinValue()) { 4654 Pred = ICmpInst::ICMP_EQ; 4655 RHS = getConstant(RA - 1); 4656 break; 4657 } 4658 if (RA.isMinValue()) return false; 4659 break; 4660 case ICmpInst::ICMP_SGT: 4661 if (RA.isMinSignedValue()) { 4662 Pred = ICmpInst::ICMP_NE; 4663 break; 4664 } 4665 if ((RA + 1).isMaxSignedValue()) { 4666 Pred = ICmpInst::ICMP_EQ; 4667 RHS = getConstant(RA + 1); 4668 break; 4669 } 4670 if (RA.isMaxSignedValue()) return false; 4671 break; 4672 case ICmpInst::ICMP_SLT: 4673 if (RA.isMaxSignedValue()) { 4674 Pred = ICmpInst::ICMP_NE; 4675 break; 4676 } 4677 if ((RA - 1).isMinSignedValue()) { 4678 Pred = ICmpInst::ICMP_EQ; 4679 RHS = getConstant(RA - 1); 4680 break; 4681 } 4682 if (RA.isMinSignedValue()) return false; 4683 break; 4684 } 4685 } 4686 4687 // Check to see if we can make the LHS or RHS match. 4688 if (LHS == FoundRHS || RHS == FoundLHS) { 4689 if (isa<SCEVConstant>(RHS)) { 4690 std::swap(FoundLHS, FoundRHS); 4691 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 4692 } else { 4693 std::swap(LHS, RHS); 4694 Pred = ICmpInst::getSwappedPredicate(Pred); 4695 } 4696 } 4697 4698 // Check whether the found predicate is the same as the desired predicate. 4699 if (FoundPred == Pred) 4700 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 4701 4702 // Check whether swapping the found predicate makes it the same as the 4703 // desired predicate. 4704 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 4705 if (isa<SCEVConstant>(RHS)) 4706 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 4707 else 4708 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 4709 RHS, LHS, FoundLHS, FoundRHS); 4710 } 4711 4712 // Check whether the actual condition is beyond sufficient. 4713 if (FoundPred == ICmpInst::ICMP_EQ) 4714 if (ICmpInst::isTrueWhenEqual(Pred)) 4715 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 4716 return true; 4717 if (Pred == ICmpInst::ICMP_NE) 4718 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 4719 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 4720 return true; 4721 4722 // Otherwise assume the worst. 4723 return false; 4724 } 4725 4726 /// isImpliedCondOperands - Test whether the condition described by Pred, 4727 /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS, 4728 /// and FoundRHS is true. 4729 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 4730 const SCEV *LHS, const SCEV *RHS, 4731 const SCEV *FoundLHS, 4732 const SCEV *FoundRHS) { 4733 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 4734 FoundLHS, FoundRHS) || 4735 // ~x < ~y --> x > y 4736 isImpliedCondOperandsHelper(Pred, LHS, RHS, 4737 getNotSCEV(FoundRHS), 4738 getNotSCEV(FoundLHS)); 4739 } 4740 4741 /// isImpliedCondOperandsHelper - Test whether the condition described by 4742 /// Pred, LHS, and RHS is true whenever the condition desribed by Pred, 4743 /// FoundLHS, and FoundRHS is true. 4744 bool 4745 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 4746 const SCEV *LHS, const SCEV *RHS, 4747 const SCEV *FoundLHS, 4748 const SCEV *FoundRHS) { 4749 switch (Pred) { 4750 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4751 case ICmpInst::ICMP_EQ: 4752 case ICmpInst::ICMP_NE: 4753 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 4754 return true; 4755 break; 4756 case ICmpInst::ICMP_SLT: 4757 case ICmpInst::ICMP_SLE: 4758 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 4759 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 4760 return true; 4761 break; 4762 case ICmpInst::ICMP_SGT: 4763 case ICmpInst::ICMP_SGE: 4764 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 4765 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 4766 return true; 4767 break; 4768 case ICmpInst::ICMP_ULT: 4769 case ICmpInst::ICMP_ULE: 4770 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 4771 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 4772 return true; 4773 break; 4774 case ICmpInst::ICMP_UGT: 4775 case ICmpInst::ICMP_UGE: 4776 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 4777 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 4778 return true; 4779 break; 4780 } 4781 4782 return false; 4783 } 4784 4785 /// getBECount - Subtract the end and start values and divide by the step, 4786 /// rounding up, to get the number of times the backedge is executed. Return 4787 /// CouldNotCompute if an intermediate computation overflows. 4788 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 4789 const SCEV *End, 4790 const SCEV *Step) { 4791 const Type *Ty = Start->getType(); 4792 const SCEV *NegOne = getIntegerSCEV(-1, Ty); 4793 const SCEV *Diff = getMinusSCEV(End, Start); 4794 const SCEV *RoundUp = getAddExpr(Step, NegOne); 4795 4796 // Add an adjustment to the difference between End and Start so that 4797 // the division will effectively round up. 4798 const SCEV *Add = getAddExpr(Diff, RoundUp); 4799 4800 // Check Add for unsigned overflow. 4801 // TODO: More sophisticated things could be done here. 4802 const Type *WideTy = IntegerType::get(getContext(), 4803 getTypeSizeInBits(Ty) + 1); 4804 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 4805 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 4806 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 4807 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 4808 return getCouldNotCompute(); 4809 4810 return getUDivExpr(Add, Step); 4811 } 4812 4813 /// HowManyLessThans - Return the number of times a backedge containing the 4814 /// specified less-than comparison will execute. If not computable, return 4815 /// CouldNotCompute. 4816 ScalarEvolution::BackedgeTakenInfo 4817 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 4818 const Loop *L, bool isSigned) { 4819 // Only handle: "ADDREC < LoopInvariant". 4820 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 4821 4822 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 4823 if (!AddRec || AddRec->getLoop() != L) 4824 return getCouldNotCompute(); 4825 4826 if (AddRec->isAffine()) { 4827 // FORNOW: We only support unit strides. 4828 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 4829 const SCEV *Step = AddRec->getStepRecurrence(*this); 4830 4831 // TODO: handle non-constant strides. 4832 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); 4833 if (!CStep || CStep->isZero()) 4834 return getCouldNotCompute(); 4835 if (CStep->isOne()) { 4836 // With unit stride, the iteration never steps past the limit value. 4837 } else if (CStep->getValue()->getValue().isStrictlyPositive()) { 4838 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { 4839 // Test whether a positive iteration iteration can step past the limit 4840 // value and past the maximum value for its type in a single step. 4841 if (isSigned) { 4842 APInt Max = APInt::getSignedMaxValue(BitWidth); 4843 if ((Max - CStep->getValue()->getValue()) 4844 .slt(CLimit->getValue()->getValue())) 4845 return getCouldNotCompute(); 4846 } else { 4847 APInt Max = APInt::getMaxValue(BitWidth); 4848 if ((Max - CStep->getValue()->getValue()) 4849 .ult(CLimit->getValue()->getValue())) 4850 return getCouldNotCompute(); 4851 } 4852 } else 4853 // TODO: handle non-constant limit values below. 4854 return getCouldNotCompute(); 4855 } else 4856 // TODO: handle negative strides below. 4857 return getCouldNotCompute(); 4858 4859 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 4860 // m. So, we count the number of iterations in which {n,+,s} < m is true. 4861 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 4862 // treat m-n as signed nor unsigned due to overflow possibility. 4863 4864 // First, we get the value of the LHS in the first iteration: n 4865 const SCEV *Start = AddRec->getOperand(0); 4866 4867 // Determine the minimum constant start value. 4868 const SCEV *MinStart = getConstant(isSigned ? 4869 getSignedRange(Start).getSignedMin() : 4870 getUnsignedRange(Start).getUnsignedMin()); 4871 4872 // If we know that the condition is true in order to enter the loop, 4873 // then we know that it will run exactly (m-n)/s times. Otherwise, we 4874 // only know that it will execute (max(m,n)-n)/s times. In both cases, 4875 // the division must round up. 4876 const SCEV *End = RHS; 4877 if (!isLoopGuardedByCond(L, 4878 isSigned ? ICmpInst::ICMP_SLT : 4879 ICmpInst::ICMP_ULT, 4880 getMinusSCEV(Start, Step), RHS)) 4881 End = isSigned ? getSMaxExpr(RHS, Start) 4882 : getUMaxExpr(RHS, Start); 4883 4884 // Determine the maximum constant end value. 4885 const SCEV *MaxEnd = getConstant(isSigned ? 4886 getSignedRange(End).getSignedMax() : 4887 getUnsignedRange(End).getUnsignedMax()); 4888 4889 // Finally, we subtract these two values and divide, rounding up, to get 4890 // the number of times the backedge is executed. 4891 const SCEV *BECount = getBECount(Start, End, Step); 4892 4893 // The maximum backedge count is similar, except using the minimum start 4894 // value and the maximum end value. 4895 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step); 4896 4897 return BackedgeTakenInfo(BECount, MaxBECount); 4898 } 4899 4900 return getCouldNotCompute(); 4901 } 4902 4903 /// getNumIterationsInRange - Return the number of iterations of this loop that 4904 /// produce values in the specified constant range. Another way of looking at 4905 /// this is that it returns the first iteration number where the value is not in 4906 /// the condition, thus computing the exit count. If the iteration count can't 4907 /// be computed, an instance of SCEVCouldNotCompute is returned. 4908 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 4909 ScalarEvolution &SE) const { 4910 if (Range.isFullSet()) // Infinite loop. 4911 return SE.getCouldNotCompute(); 4912 4913 // If the start is a non-zero constant, shift the range to simplify things. 4914 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 4915 if (!SC->getValue()->isZero()) { 4916 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 4917 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 4918 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 4919 if (const SCEVAddRecExpr *ShiftedAddRec = 4920 dyn_cast<SCEVAddRecExpr>(Shifted)) 4921 return ShiftedAddRec->getNumIterationsInRange( 4922 Range.subtract(SC->getValue()->getValue()), SE); 4923 // This is strange and shouldn't happen. 4924 return SE.getCouldNotCompute(); 4925 } 4926 4927 // The only time we can solve this is when we have all constant indices. 4928 // Otherwise, we cannot determine the overflow conditions. 4929 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 4930 if (!isa<SCEVConstant>(getOperand(i))) 4931 return SE.getCouldNotCompute(); 4932 4933 4934 // Okay at this point we know that all elements of the chrec are constants and 4935 // that the start element is zero. 4936 4937 // First check to see if the range contains zero. If not, the first 4938 // iteration exits. 4939 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 4940 if (!Range.contains(APInt(BitWidth, 0))) 4941 return SE.getIntegerSCEV(0, getType()); 4942 4943 if (isAffine()) { 4944 // If this is an affine expression then we have this situation: 4945 // Solve {0,+,A} in Range === Ax in Range 4946 4947 // We know that zero is in the range. If A is positive then we know that 4948 // the upper value of the range must be the first possible exit value. 4949 // If A is negative then the lower of the range is the last possible loop 4950 // value. Also note that we already checked for a full range. 4951 APInt One(BitWidth,1); 4952 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 4953 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 4954 4955 // The exit value should be (End+A)/A. 4956 APInt ExitVal = (End + A).udiv(A); 4957 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 4958 4959 // Evaluate at the exit value. If we really did fall out of the valid 4960 // range, then we computed our trip count, otherwise wrap around or other 4961 // things must have happened. 4962 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 4963 if (Range.contains(Val->getValue())) 4964 return SE.getCouldNotCompute(); // Something strange happened 4965 4966 // Ensure that the previous value is in the range. This is a sanity check. 4967 assert(Range.contains( 4968 EvaluateConstantChrecAtConstant(this, 4969 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 4970 "Linear scev computation is off in a bad way!"); 4971 return SE.getConstant(ExitValue); 4972 } else if (isQuadratic()) { 4973 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 4974 // quadratic equation to solve it. To do this, we must frame our problem in 4975 // terms of figuring out when zero is crossed, instead of when 4976 // Range.getUpper() is crossed. 4977 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 4978 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 4979 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 4980 4981 // Next, solve the constructed addrec 4982 std::pair<const SCEV *,const SCEV *> Roots = 4983 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 4984 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4985 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4986 if (R1) { 4987 // Pick the smallest positive root value. 4988 if (ConstantInt *CB = 4989 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4990 R1->getValue(), R2->getValue()))) { 4991 if (CB->getZExtValue() == false) 4992 std::swap(R1, R2); // R1 is the minimum root now. 4993 4994 // Make sure the root is not off by one. The returned iteration should 4995 // not be in the range, but the previous one should be. When solving 4996 // for "X*X < 5", for example, we should not return a root of 2. 4997 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 4998 R1->getValue(), 4999 SE); 5000 if (Range.contains(R1Val->getValue())) { 5001 // The next iteration must be out of the range... 5002 ConstantInt *NextVal = 5003 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5004 5005 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5006 if (!Range.contains(R1Val->getValue())) 5007 return SE.getConstant(NextVal); 5008 return SE.getCouldNotCompute(); // Something strange happened 5009 } 5010 5011 // If R1 was not in the range, then it is a good return value. Make 5012 // sure that R1-1 WAS in the range though, just in case. 5013 ConstantInt *NextVal = 5014 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5015 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5016 if (Range.contains(R1Val->getValue())) 5017 return R1; 5018 return SE.getCouldNotCompute(); // Something strange happened 5019 } 5020 } 5021 } 5022 5023 return SE.getCouldNotCompute(); 5024 } 5025 5026 5027 5028 //===----------------------------------------------------------------------===// 5029 // SCEVCallbackVH Class Implementation 5030 //===----------------------------------------------------------------------===// 5031 5032 void ScalarEvolution::SCEVCallbackVH::deleted() { 5033 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5034 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5035 SE->ConstantEvolutionLoopExitValue.erase(PN); 5036 if (Instruction *I = dyn_cast<Instruction>(getValPtr())) 5037 SE->ValuesAtScopes.erase(I); 5038 SE->Scalars.erase(getValPtr()); 5039 // this now dangles! 5040 } 5041 5042 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 5043 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5044 5045 // Forget all the expressions associated with users of the old value, 5046 // so that future queries will recompute the expressions using the new 5047 // value. 5048 SmallVector<User *, 16> Worklist; 5049 SmallPtrSet<User *, 8> Visited; 5050 Value *Old = getValPtr(); 5051 bool DeleteOld = false; 5052 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5053 UI != UE; ++UI) 5054 Worklist.push_back(*UI); 5055 while (!Worklist.empty()) { 5056 User *U = Worklist.pop_back_val(); 5057 // Deleting the Old value will cause this to dangle. Postpone 5058 // that until everything else is done. 5059 if (U == Old) { 5060 DeleteOld = true; 5061 continue; 5062 } 5063 if (!Visited.insert(U)) 5064 continue; 5065 if (PHINode *PN = dyn_cast<PHINode>(U)) 5066 SE->ConstantEvolutionLoopExitValue.erase(PN); 5067 if (Instruction *I = dyn_cast<Instruction>(U)) 5068 SE->ValuesAtScopes.erase(I); 5069 SE->Scalars.erase(U); 5070 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5071 UI != UE; ++UI) 5072 Worklist.push_back(*UI); 5073 } 5074 // Delete the Old value if it (indirectly) references itself. 5075 if (DeleteOld) { 5076 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5077 SE->ConstantEvolutionLoopExitValue.erase(PN); 5078 if (Instruction *I = dyn_cast<Instruction>(Old)) 5079 SE->ValuesAtScopes.erase(I); 5080 SE->Scalars.erase(Old); 5081 // this now dangles! 5082 } 5083 // this may dangle! 5084 } 5085 5086 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5087 : CallbackVH(V), SE(se) {} 5088 5089 //===----------------------------------------------------------------------===// 5090 // ScalarEvolution Class Implementation 5091 //===----------------------------------------------------------------------===// 5092 5093 ScalarEvolution::ScalarEvolution() 5094 : FunctionPass(&ID) { 5095 } 5096 5097 bool ScalarEvolution::runOnFunction(Function &F) { 5098 this->F = &F; 5099 LI = &getAnalysis<LoopInfo>(); 5100 TD = getAnalysisIfAvailable<TargetData>(); 5101 return false; 5102 } 5103 5104 void ScalarEvolution::releaseMemory() { 5105 Scalars.clear(); 5106 BackedgeTakenCounts.clear(); 5107 ConstantEvolutionLoopExitValue.clear(); 5108 ValuesAtScopes.clear(); 5109 UniqueSCEVs.clear(); 5110 SCEVAllocator.Reset(); 5111 } 5112 5113 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5114 AU.setPreservesAll(); 5115 AU.addRequiredTransitive<LoopInfo>(); 5116 } 5117 5118 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5119 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5120 } 5121 5122 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5123 const Loop *L) { 5124 // Print all inner loops first 5125 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5126 PrintLoopInfo(OS, SE, *I); 5127 5128 OS << "Loop " << L->getHeader()->getName() << ": "; 5129 5130 SmallVector<BasicBlock*, 8> ExitBlocks; 5131 L->getExitBlocks(ExitBlocks); 5132 if (ExitBlocks.size() != 1) 5133 OS << "<multiple exits> "; 5134 5135 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5136 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5137 } else { 5138 OS << "Unpredictable backedge-taken count. "; 5139 } 5140 5141 OS << "\n"; 5142 OS << "Loop " << L->getHeader()->getName() << ": "; 5143 5144 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5145 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5146 } else { 5147 OS << "Unpredictable max backedge-taken count. "; 5148 } 5149 5150 OS << "\n"; 5151 } 5152 5153 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 5154 // ScalarEvolution's implementaiton of the print method is to print 5155 // out SCEV values of all instructions that are interesting. Doing 5156 // this potentially causes it to create new SCEV objects though, 5157 // which technically conflicts with the const qualifier. This isn't 5158 // observable from outside the class though, so casting away the 5159 // const isn't dangerous. 5160 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 5161 5162 OS << "Classifying expressions for: " << F->getName() << "\n"; 5163 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5164 if (isSCEVable(I->getType())) { 5165 OS << *I << '\n'; 5166 OS << " --> "; 5167 const SCEV *SV = SE.getSCEV(&*I); 5168 SV->print(OS); 5169 5170 const Loop *L = LI->getLoopFor((*I).getParent()); 5171 5172 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5173 if (AtUse != SV) { 5174 OS << " --> "; 5175 AtUse->print(OS); 5176 } 5177 5178 if (L) { 5179 OS << "\t\t" "Exits: "; 5180 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5181 if (!ExitValue->isLoopInvariant(L)) { 5182 OS << "<<Unknown>>"; 5183 } else { 5184 OS << *ExitValue; 5185 } 5186 } 5187 5188 OS << "\n"; 5189 } 5190 5191 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 5192 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5193 PrintLoopInfo(OS, &SE, *I); 5194 } 5195 5196 void ScalarEvolution::print(std::ostream &o, const Module *M) const { 5197 raw_os_ostream OS(o); 5198 print(OS, M); 5199 } 5200