1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/ConstantFolding.h" 67 #include "llvm/Analysis/InstructionSimplify.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 70 #include "llvm/Analysis/ValueTracking.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/GlobalAlias.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/ConstantRange.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GetElementPtrTypeIterator.h" 85 #include "llvm/Support/InstIterator.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetLibraryInfo.h" 89 #include <algorithm> 90 using namespace llvm; 91 92 STATISTIC(NumArrayLenItCounts, 93 "Number of trip counts computed with array length"); 94 STATISTIC(NumTripCountsComputed, 95 "Number of loops with predictable loop counts"); 96 STATISTIC(NumTripCountsNotComputed, 97 "Number of loops without predictable loop counts"); 98 STATISTIC(NumBruteForceTripCountsComputed, 99 "Number of loops with trip counts computed by force"); 100 101 static cl::opt<unsigned> 102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 103 cl::desc("Maximum number of iterations SCEV will " 104 "symbolically execute a constant " 105 "derived loop"), 106 cl::init(100)); 107 108 // FIXME: Enable this with XDEBUG when the test suite is clean. 109 static cl::opt<bool> 110 VerifySCEV("verify-scev", 111 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 112 113 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 114 "Scalar Evolution Analysis", false, true) 115 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 116 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 117 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 118 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 119 "Scalar Evolution Analysis", false, true) 120 char ScalarEvolution::ID = 0; 121 122 //===----------------------------------------------------------------------===// 123 // SCEV class definitions 124 //===----------------------------------------------------------------------===// 125 126 //===----------------------------------------------------------------------===// 127 // Implementation of the SCEV class. 128 // 129 130 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 131 void SCEV::dump() const { 132 print(dbgs()); 133 dbgs() << '\n'; 134 } 135 #endif 136 137 void SCEV::print(raw_ostream &OS) const { 138 switch (getSCEVType()) { 139 case scConstant: 140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 141 return; 142 case scTruncate: { 143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 144 const SCEV *Op = Trunc->getOperand(); 145 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 146 << *Trunc->getType() << ")"; 147 return; 148 } 149 case scZeroExtend: { 150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 151 const SCEV *Op = ZExt->getOperand(); 152 OS << "(zext " << *Op->getType() << " " << *Op << " to " 153 << *ZExt->getType() << ")"; 154 return; 155 } 156 case scSignExtend: { 157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 158 const SCEV *Op = SExt->getOperand(); 159 OS << "(sext " << *Op->getType() << " " << *Op << " to " 160 << *SExt->getType() << ")"; 161 return; 162 } 163 case scAddRecExpr: { 164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 165 OS << "{" << *AR->getOperand(0); 166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 167 OS << ",+," << *AR->getOperand(i); 168 OS << "}<"; 169 if (AR->getNoWrapFlags(FlagNUW)) 170 OS << "nuw><"; 171 if (AR->getNoWrapFlags(FlagNSW)) 172 OS << "nsw><"; 173 if (AR->getNoWrapFlags(FlagNW) && 174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 175 OS << "nw><"; 176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 177 OS << ">"; 178 return; 179 } 180 case scAddExpr: 181 case scMulExpr: 182 case scUMaxExpr: 183 case scSMaxExpr: { 184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 185 const char *OpStr = 0; 186 switch (NAry->getSCEVType()) { 187 case scAddExpr: OpStr = " + "; break; 188 case scMulExpr: OpStr = " * "; break; 189 case scUMaxExpr: OpStr = " umax "; break; 190 case scSMaxExpr: OpStr = " smax "; break; 191 } 192 OS << "("; 193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 194 I != E; ++I) { 195 OS << **I; 196 if (llvm::next(I) != E) 197 OS << OpStr; 198 } 199 OS << ")"; 200 switch (NAry->getSCEVType()) { 201 case scAddExpr: 202 case scMulExpr: 203 if (NAry->getNoWrapFlags(FlagNUW)) 204 OS << "<nuw>"; 205 if (NAry->getNoWrapFlags(FlagNSW)) 206 OS << "<nsw>"; 207 } 208 return; 209 } 210 case scUDivExpr: { 211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 213 return; 214 } 215 case scUnknown: { 216 const SCEVUnknown *U = cast<SCEVUnknown>(this); 217 Type *AllocTy; 218 if (U->isSizeOf(AllocTy)) { 219 OS << "sizeof(" << *AllocTy << ")"; 220 return; 221 } 222 if (U->isAlignOf(AllocTy)) { 223 OS << "alignof(" << *AllocTy << ")"; 224 return; 225 } 226 227 Type *CTy; 228 Constant *FieldNo; 229 if (U->isOffsetOf(CTy, FieldNo)) { 230 OS << "offsetof(" << *CTy << ", "; 231 FieldNo->printAsOperand(OS, false); 232 OS << ")"; 233 return; 234 } 235 236 // Otherwise just print it normally. 237 U->getValue()->printAsOperand(OS, false); 238 return; 239 } 240 case scCouldNotCompute: 241 OS << "***COULDNOTCOMPUTE***"; 242 return; 243 default: break; 244 } 245 llvm_unreachable("Unknown SCEV kind!"); 246 } 247 248 Type *SCEV::getType() const { 249 switch (getSCEVType()) { 250 case scConstant: 251 return cast<SCEVConstant>(this)->getType(); 252 case scTruncate: 253 case scZeroExtend: 254 case scSignExtend: 255 return cast<SCEVCastExpr>(this)->getType(); 256 case scAddRecExpr: 257 case scMulExpr: 258 case scUMaxExpr: 259 case scSMaxExpr: 260 return cast<SCEVNAryExpr>(this)->getType(); 261 case scAddExpr: 262 return cast<SCEVAddExpr>(this)->getType(); 263 case scUDivExpr: 264 return cast<SCEVUDivExpr>(this)->getType(); 265 case scUnknown: 266 return cast<SCEVUnknown>(this)->getType(); 267 case scCouldNotCompute: 268 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 269 default: 270 llvm_unreachable("Unknown SCEV kind!"); 271 } 272 } 273 274 bool SCEV::isZero() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isZero(); 277 return false; 278 } 279 280 bool SCEV::isOne() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isOne(); 283 return false; 284 } 285 286 bool SCEV::isAllOnesValue() const { 287 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 288 return SC->getValue()->isAllOnesValue(); 289 return false; 290 } 291 292 /// isNonConstantNegative - Return true if the specified scev is negated, but 293 /// not a constant. 294 bool SCEV::isNonConstantNegative() const { 295 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 296 if (!Mul) return false; 297 298 // If there is a constant factor, it will be first. 299 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 300 if (!SC) return false; 301 302 // Return true if the value is negative, this matches things like (-42 * V). 303 return SC->getValue()->getValue().isNegative(); 304 } 305 306 SCEVCouldNotCompute::SCEVCouldNotCompute() : 307 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 308 309 bool SCEVCouldNotCompute::classof(const SCEV *S) { 310 return S->getSCEVType() == scCouldNotCompute; 311 } 312 313 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 314 FoldingSetNodeID ID; 315 ID.AddInteger(scConstant); 316 ID.AddPointer(V); 317 void *IP = 0; 318 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 319 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 320 UniqueSCEVs.InsertNode(S, IP); 321 return S; 322 } 323 324 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 325 return getConstant(ConstantInt::get(getContext(), Val)); 326 } 327 328 const SCEV * 329 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 330 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 331 return getConstant(ConstantInt::get(ITy, V, isSigned)); 332 } 333 334 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 335 unsigned SCEVTy, const SCEV *op, Type *ty) 336 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 337 338 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 339 const SCEV *op, Type *ty) 340 : SCEVCastExpr(ID, scTruncate, op, ty) { 341 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 342 (Ty->isIntegerTy() || Ty->isPointerTy()) && 343 "Cannot truncate non-integer value!"); 344 } 345 346 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 347 const SCEV *op, Type *ty) 348 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 349 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 350 (Ty->isIntegerTy() || Ty->isPointerTy()) && 351 "Cannot zero extend non-integer value!"); 352 } 353 354 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 355 const SCEV *op, Type *ty) 356 : SCEVCastExpr(ID, scSignExtend, op, ty) { 357 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 358 (Ty->isIntegerTy() || Ty->isPointerTy()) && 359 "Cannot sign extend non-integer value!"); 360 } 361 362 void SCEVUnknown::deleted() { 363 // Clear this SCEVUnknown from various maps. 364 SE->forgetMemoizedResults(this); 365 366 // Remove this SCEVUnknown from the uniquing map. 367 SE->UniqueSCEVs.RemoveNode(this); 368 369 // Release the value. 370 setValPtr(0); 371 } 372 373 void SCEVUnknown::allUsesReplacedWith(Value *New) { 374 // Clear this SCEVUnknown from various maps. 375 SE->forgetMemoizedResults(this); 376 377 // Remove this SCEVUnknown from the uniquing map. 378 SE->UniqueSCEVs.RemoveNode(this); 379 380 // Update this SCEVUnknown to point to the new value. This is needed 381 // because there may still be outstanding SCEVs which still point to 382 // this SCEVUnknown. 383 setValPtr(New); 384 } 385 386 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 387 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 388 if (VCE->getOpcode() == Instruction::PtrToInt) 389 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 390 if (CE->getOpcode() == Instruction::GetElementPtr && 391 CE->getOperand(0)->isNullValue() && 392 CE->getNumOperands() == 2) 393 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 394 if (CI->isOne()) { 395 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 396 ->getElementType(); 397 return true; 398 } 399 400 return false; 401 } 402 403 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 404 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 405 if (VCE->getOpcode() == Instruction::PtrToInt) 406 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 407 if (CE->getOpcode() == Instruction::GetElementPtr && 408 CE->getOperand(0)->isNullValue()) { 409 Type *Ty = 410 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 411 if (StructType *STy = dyn_cast<StructType>(Ty)) 412 if (!STy->isPacked() && 413 CE->getNumOperands() == 3 && 414 CE->getOperand(1)->isNullValue()) { 415 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 416 if (CI->isOne() && 417 STy->getNumElements() == 2 && 418 STy->getElementType(0)->isIntegerTy(1)) { 419 AllocTy = STy->getElementType(1); 420 return true; 421 } 422 } 423 } 424 425 return false; 426 } 427 428 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 429 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 430 if (VCE->getOpcode() == Instruction::PtrToInt) 431 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 432 if (CE->getOpcode() == Instruction::GetElementPtr && 433 CE->getNumOperands() == 3 && 434 CE->getOperand(0)->isNullValue() && 435 CE->getOperand(1)->isNullValue()) { 436 Type *Ty = 437 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 438 // Ignore vector types here so that ScalarEvolutionExpander doesn't 439 // emit getelementptrs that index into vectors. 440 if (Ty->isStructTy() || Ty->isArrayTy()) { 441 CTy = Ty; 442 FieldNo = CE->getOperand(2); 443 return true; 444 } 445 } 446 447 return false; 448 } 449 450 //===----------------------------------------------------------------------===// 451 // SCEV Utilities 452 //===----------------------------------------------------------------------===// 453 454 namespace { 455 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 456 /// than the complexity of the RHS. This comparator is used to canonicalize 457 /// expressions. 458 class SCEVComplexityCompare { 459 const LoopInfo *const LI; 460 public: 461 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 462 463 // Return true or false if LHS is less than, or at least RHS, respectively. 464 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 465 return compare(LHS, RHS) < 0; 466 } 467 468 // Return negative, zero, or positive, if LHS is less than, equal to, or 469 // greater than RHS, respectively. A three-way result allows recursive 470 // comparisons to be more efficient. 471 int compare(const SCEV *LHS, const SCEV *RHS) const { 472 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 473 if (LHS == RHS) 474 return 0; 475 476 // Primarily, sort the SCEVs by their getSCEVType(). 477 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 478 if (LType != RType) 479 return (int)LType - (int)RType; 480 481 // Aside from the getSCEVType() ordering, the particular ordering 482 // isn't very important except that it's beneficial to be consistent, 483 // so that (a + b) and (b + a) don't end up as different expressions. 484 switch (LType) { 485 case scUnknown: { 486 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 487 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 488 489 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 490 // not as complete as it could be. 491 const Value *LV = LU->getValue(), *RV = RU->getValue(); 492 493 // Order pointer values after integer values. This helps SCEVExpander 494 // form GEPs. 495 bool LIsPointer = LV->getType()->isPointerTy(), 496 RIsPointer = RV->getType()->isPointerTy(); 497 if (LIsPointer != RIsPointer) 498 return (int)LIsPointer - (int)RIsPointer; 499 500 // Compare getValueID values. 501 unsigned LID = LV->getValueID(), 502 RID = RV->getValueID(); 503 if (LID != RID) 504 return (int)LID - (int)RID; 505 506 // Sort arguments by their position. 507 if (const Argument *LA = dyn_cast<Argument>(LV)) { 508 const Argument *RA = cast<Argument>(RV); 509 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 510 return (int)LArgNo - (int)RArgNo; 511 } 512 513 // For instructions, compare their loop depth, and their operand 514 // count. This is pretty loose. 515 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 516 const Instruction *RInst = cast<Instruction>(RV); 517 518 // Compare loop depths. 519 const BasicBlock *LParent = LInst->getParent(), 520 *RParent = RInst->getParent(); 521 if (LParent != RParent) { 522 unsigned LDepth = LI->getLoopDepth(LParent), 523 RDepth = LI->getLoopDepth(RParent); 524 if (LDepth != RDepth) 525 return (int)LDepth - (int)RDepth; 526 } 527 528 // Compare the number of operands. 529 unsigned LNumOps = LInst->getNumOperands(), 530 RNumOps = RInst->getNumOperands(); 531 return (int)LNumOps - (int)RNumOps; 532 } 533 534 return 0; 535 } 536 537 case scConstant: { 538 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 539 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 540 541 // Compare constant values. 542 const APInt &LA = LC->getValue()->getValue(); 543 const APInt &RA = RC->getValue()->getValue(); 544 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 545 if (LBitWidth != RBitWidth) 546 return (int)LBitWidth - (int)RBitWidth; 547 return LA.ult(RA) ? -1 : 1; 548 } 549 550 case scAddRecExpr: { 551 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 552 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 553 554 // Compare addrec loop depths. 555 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 556 if (LLoop != RLoop) { 557 unsigned LDepth = LLoop->getLoopDepth(), 558 RDepth = RLoop->getLoopDepth(); 559 if (LDepth != RDepth) 560 return (int)LDepth - (int)RDepth; 561 } 562 563 // Addrec complexity grows with operand count. 564 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 565 if (LNumOps != RNumOps) 566 return (int)LNumOps - (int)RNumOps; 567 568 // Lexicographically compare. 569 for (unsigned i = 0; i != LNumOps; ++i) { 570 long X = compare(LA->getOperand(i), RA->getOperand(i)); 571 if (X != 0) 572 return X; 573 } 574 575 return 0; 576 } 577 578 case scAddExpr: 579 case scMulExpr: 580 case scSMaxExpr: 581 case scUMaxExpr: { 582 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 583 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 584 585 // Lexicographically compare n-ary expressions. 586 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 587 if (LNumOps != RNumOps) 588 return (int)LNumOps - (int)RNumOps; 589 590 for (unsigned i = 0; i != LNumOps; ++i) { 591 if (i >= RNumOps) 592 return 1; 593 long X = compare(LC->getOperand(i), RC->getOperand(i)); 594 if (X != 0) 595 return X; 596 } 597 return (int)LNumOps - (int)RNumOps; 598 } 599 600 case scUDivExpr: { 601 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 602 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 603 604 // Lexicographically compare udiv expressions. 605 long X = compare(LC->getLHS(), RC->getLHS()); 606 if (X != 0) 607 return X; 608 return compare(LC->getRHS(), RC->getRHS()); 609 } 610 611 case scTruncate: 612 case scZeroExtend: 613 case scSignExtend: { 614 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 615 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 616 617 // Compare cast expressions by operand. 618 return compare(LC->getOperand(), RC->getOperand()); 619 } 620 621 default: 622 llvm_unreachable("Unknown SCEV kind!"); 623 } 624 } 625 }; 626 } 627 628 /// GroupByComplexity - Given a list of SCEV objects, order them by their 629 /// complexity, and group objects of the same complexity together by value. 630 /// When this routine is finished, we know that any duplicates in the vector are 631 /// consecutive and that complexity is monotonically increasing. 632 /// 633 /// Note that we go take special precautions to ensure that we get deterministic 634 /// results from this routine. In other words, we don't want the results of 635 /// this to depend on where the addresses of various SCEV objects happened to 636 /// land in memory. 637 /// 638 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 639 LoopInfo *LI) { 640 if (Ops.size() < 2) return; // Noop 641 if (Ops.size() == 2) { 642 // This is the common case, which also happens to be trivially simple. 643 // Special case it. 644 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 645 if (SCEVComplexityCompare(LI)(RHS, LHS)) 646 std::swap(LHS, RHS); 647 return; 648 } 649 650 // Do the rough sort by complexity. 651 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 652 653 // Now that we are sorted by complexity, group elements of the same 654 // complexity. Note that this is, at worst, N^2, but the vector is likely to 655 // be extremely short in practice. Note that we take this approach because we 656 // do not want to depend on the addresses of the objects we are grouping. 657 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 658 const SCEV *S = Ops[i]; 659 unsigned Complexity = S->getSCEVType(); 660 661 // If there are any objects of the same complexity and same value as this 662 // one, group them. 663 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 664 if (Ops[j] == S) { // Found a duplicate. 665 // Move it to immediately after i'th element. 666 std::swap(Ops[i+1], Ops[j]); 667 ++i; // no need to rescan it. 668 if (i == e-2) return; // Done! 669 } 670 } 671 } 672 } 673 674 675 676 //===----------------------------------------------------------------------===// 677 // Simple SCEV method implementations 678 //===----------------------------------------------------------------------===// 679 680 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 681 /// Assume, K > 0. 682 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 683 ScalarEvolution &SE, 684 Type *ResultTy) { 685 // Handle the simplest case efficiently. 686 if (K == 1) 687 return SE.getTruncateOrZeroExtend(It, ResultTy); 688 689 // We are using the following formula for BC(It, K): 690 // 691 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 692 // 693 // Suppose, W is the bitwidth of the return value. We must be prepared for 694 // overflow. Hence, we must assure that the result of our computation is 695 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 696 // safe in modular arithmetic. 697 // 698 // However, this code doesn't use exactly that formula; the formula it uses 699 // is something like the following, where T is the number of factors of 2 in 700 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 701 // exponentiation: 702 // 703 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 704 // 705 // This formula is trivially equivalent to the previous formula. However, 706 // this formula can be implemented much more efficiently. The trick is that 707 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 708 // arithmetic. To do exact division in modular arithmetic, all we have 709 // to do is multiply by the inverse. Therefore, this step can be done at 710 // width W. 711 // 712 // The next issue is how to safely do the division by 2^T. The way this 713 // is done is by doing the multiplication step at a width of at least W + T 714 // bits. This way, the bottom W+T bits of the product are accurate. Then, 715 // when we perform the division by 2^T (which is equivalent to a right shift 716 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 717 // truncated out after the division by 2^T. 718 // 719 // In comparison to just directly using the first formula, this technique 720 // is much more efficient; using the first formula requires W * K bits, 721 // but this formula less than W + K bits. Also, the first formula requires 722 // a division step, whereas this formula only requires multiplies and shifts. 723 // 724 // It doesn't matter whether the subtraction step is done in the calculation 725 // width or the input iteration count's width; if the subtraction overflows, 726 // the result must be zero anyway. We prefer here to do it in the width of 727 // the induction variable because it helps a lot for certain cases; CodeGen 728 // isn't smart enough to ignore the overflow, which leads to much less 729 // efficient code if the width of the subtraction is wider than the native 730 // register width. 731 // 732 // (It's possible to not widen at all by pulling out factors of 2 before 733 // the multiplication; for example, K=2 can be calculated as 734 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 735 // extra arithmetic, so it's not an obvious win, and it gets 736 // much more complicated for K > 3.) 737 738 // Protection from insane SCEVs; this bound is conservative, 739 // but it probably doesn't matter. 740 if (K > 1000) 741 return SE.getCouldNotCompute(); 742 743 unsigned W = SE.getTypeSizeInBits(ResultTy); 744 745 // Calculate K! / 2^T and T; we divide out the factors of two before 746 // multiplying for calculating K! / 2^T to avoid overflow. 747 // Other overflow doesn't matter because we only care about the bottom 748 // W bits of the result. 749 APInt OddFactorial(W, 1); 750 unsigned T = 1; 751 for (unsigned i = 3; i <= K; ++i) { 752 APInt Mult(W, i); 753 unsigned TwoFactors = Mult.countTrailingZeros(); 754 T += TwoFactors; 755 Mult = Mult.lshr(TwoFactors); 756 OddFactorial *= Mult; 757 } 758 759 // We need at least W + T bits for the multiplication step 760 unsigned CalculationBits = W + T; 761 762 // Calculate 2^T, at width T+W. 763 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 764 765 // Calculate the multiplicative inverse of K! / 2^T; 766 // this multiplication factor will perform the exact division by 767 // K! / 2^T. 768 APInt Mod = APInt::getSignedMinValue(W+1); 769 APInt MultiplyFactor = OddFactorial.zext(W+1); 770 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 771 MultiplyFactor = MultiplyFactor.trunc(W); 772 773 // Calculate the product, at width T+W 774 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 775 CalculationBits); 776 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 777 for (unsigned i = 1; i != K; ++i) { 778 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 779 Dividend = SE.getMulExpr(Dividend, 780 SE.getTruncateOrZeroExtend(S, CalculationTy)); 781 } 782 783 // Divide by 2^T 784 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 785 786 // Truncate the result, and divide by K! / 2^T. 787 788 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 789 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 790 } 791 792 /// evaluateAtIteration - Return the value of this chain of recurrences at 793 /// the specified iteration number. We can evaluate this recurrence by 794 /// multiplying each element in the chain by the binomial coefficient 795 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 796 /// 797 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 798 /// 799 /// where BC(It, k) stands for binomial coefficient. 800 /// 801 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 802 ScalarEvolution &SE) const { 803 const SCEV *Result = getStart(); 804 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 805 // The computation is correct in the face of overflow provided that the 806 // multiplication is performed _after_ the evaluation of the binomial 807 // coefficient. 808 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 809 if (isa<SCEVCouldNotCompute>(Coeff)) 810 return Coeff; 811 812 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 813 } 814 return Result; 815 } 816 817 //===----------------------------------------------------------------------===// 818 // SCEV Expression folder implementations 819 //===----------------------------------------------------------------------===// 820 821 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 822 Type *Ty) { 823 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 824 "This is not a truncating conversion!"); 825 assert(isSCEVable(Ty) && 826 "This is not a conversion to a SCEVable type!"); 827 Ty = getEffectiveSCEVType(Ty); 828 829 FoldingSetNodeID ID; 830 ID.AddInteger(scTruncate); 831 ID.AddPointer(Op); 832 ID.AddPointer(Ty); 833 void *IP = 0; 834 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 835 836 // Fold if the operand is constant. 837 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 838 return getConstant( 839 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 840 841 // trunc(trunc(x)) --> trunc(x) 842 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 843 return getTruncateExpr(ST->getOperand(), Ty); 844 845 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 846 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 847 return getTruncateOrSignExtend(SS->getOperand(), Ty); 848 849 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 850 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 851 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 852 853 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 854 // eliminate all the truncates. 855 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 856 SmallVector<const SCEV *, 4> Operands; 857 bool hasTrunc = false; 858 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 859 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 860 hasTrunc = isa<SCEVTruncateExpr>(S); 861 Operands.push_back(S); 862 } 863 if (!hasTrunc) 864 return getAddExpr(Operands); 865 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 866 } 867 868 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 869 // eliminate all the truncates. 870 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 871 SmallVector<const SCEV *, 4> Operands; 872 bool hasTrunc = false; 873 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 874 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 875 hasTrunc = isa<SCEVTruncateExpr>(S); 876 Operands.push_back(S); 877 } 878 if (!hasTrunc) 879 return getMulExpr(Operands); 880 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 881 } 882 883 // If the input value is a chrec scev, truncate the chrec's operands. 884 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 885 SmallVector<const SCEV *, 4> Operands; 886 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 887 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 888 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 889 } 890 891 // The cast wasn't folded; create an explicit cast node. We can reuse 892 // the existing insert position since if we get here, we won't have 893 // made any changes which would invalidate it. 894 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 895 Op, Ty); 896 UniqueSCEVs.InsertNode(S, IP); 897 return S; 898 } 899 900 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 901 Type *Ty) { 902 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 903 "This is not an extending conversion!"); 904 assert(isSCEVable(Ty) && 905 "This is not a conversion to a SCEVable type!"); 906 Ty = getEffectiveSCEVType(Ty); 907 908 // Fold if the operand is constant. 909 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 910 return getConstant( 911 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 912 913 // zext(zext(x)) --> zext(x) 914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 915 return getZeroExtendExpr(SZ->getOperand(), Ty); 916 917 // Before doing any expensive analysis, check to see if we've already 918 // computed a SCEV for this Op and Ty. 919 FoldingSetNodeID ID; 920 ID.AddInteger(scZeroExtend); 921 ID.AddPointer(Op); 922 ID.AddPointer(Ty); 923 void *IP = 0; 924 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 925 926 // zext(trunc(x)) --> zext(x) or x or trunc(x) 927 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 928 // It's possible the bits taken off by the truncate were all zero bits. If 929 // so, we should be able to simplify this further. 930 const SCEV *X = ST->getOperand(); 931 ConstantRange CR = getUnsignedRange(X); 932 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 933 unsigned NewBits = getTypeSizeInBits(Ty); 934 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 935 CR.zextOrTrunc(NewBits))) 936 return getTruncateOrZeroExtend(X, Ty); 937 } 938 939 // If the input value is a chrec scev, and we can prove that the value 940 // did not overflow the old, smaller, value, we can zero extend all of the 941 // operands (often constants). This allows analysis of something like 942 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 943 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 944 if (AR->isAffine()) { 945 const SCEV *Start = AR->getStart(); 946 const SCEV *Step = AR->getStepRecurrence(*this); 947 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 948 const Loop *L = AR->getLoop(); 949 950 // If we have special knowledge that this addrec won't overflow, 951 // we don't need to do any further analysis. 952 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 953 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 954 getZeroExtendExpr(Step, Ty), 955 L, AR->getNoWrapFlags()); 956 957 // Check whether the backedge-taken count is SCEVCouldNotCompute. 958 // Note that this serves two purposes: It filters out loops that are 959 // simply not analyzable, and it covers the case where this code is 960 // being called from within backedge-taken count analysis, such that 961 // attempting to ask for the backedge-taken count would likely result 962 // in infinite recursion. In the later case, the analysis code will 963 // cope with a conservative value, and it will take care to purge 964 // that value once it has finished. 965 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 966 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 967 // Manually compute the final value for AR, checking for 968 // overflow. 969 970 // Check whether the backedge-taken count can be losslessly casted to 971 // the addrec's type. The count is always unsigned. 972 const SCEV *CastedMaxBECount = 973 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 974 const SCEV *RecastedMaxBECount = 975 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 976 if (MaxBECount == RecastedMaxBECount) { 977 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 978 // Check whether Start+Step*MaxBECount has no unsigned overflow. 979 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 980 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 981 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 982 const SCEV *WideMaxBECount = 983 getZeroExtendExpr(CastedMaxBECount, WideTy); 984 const SCEV *OperandExtendedAdd = 985 getAddExpr(WideStart, 986 getMulExpr(WideMaxBECount, 987 getZeroExtendExpr(Step, WideTy))); 988 if (ZAdd == OperandExtendedAdd) { 989 // Cache knowledge of AR NUW, which is propagated to this AddRec. 990 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 991 // Return the expression with the addrec on the outside. 992 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 993 getZeroExtendExpr(Step, Ty), 994 L, AR->getNoWrapFlags()); 995 } 996 // Similar to above, only this time treat the step value as signed. 997 // This covers loops that count down. 998 OperandExtendedAdd = 999 getAddExpr(WideStart, 1000 getMulExpr(WideMaxBECount, 1001 getSignExtendExpr(Step, WideTy))); 1002 if (ZAdd == OperandExtendedAdd) { 1003 // Cache knowledge of AR NW, which is propagated to this AddRec. 1004 // Negative step causes unsigned wrap, but it still can't self-wrap. 1005 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1006 // Return the expression with the addrec on the outside. 1007 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1008 getSignExtendExpr(Step, Ty), 1009 L, AR->getNoWrapFlags()); 1010 } 1011 } 1012 1013 // If the backedge is guarded by a comparison with the pre-inc value 1014 // the addrec is safe. Also, if the entry is guarded by a comparison 1015 // with the start value and the backedge is guarded by a comparison 1016 // with the post-inc value, the addrec is safe. 1017 if (isKnownPositive(Step)) { 1018 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1019 getUnsignedRange(Step).getUnsignedMax()); 1020 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1021 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1022 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1023 AR->getPostIncExpr(*this), N))) { 1024 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1025 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1026 // Return the expression with the addrec on the outside. 1027 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1028 getZeroExtendExpr(Step, Ty), 1029 L, AR->getNoWrapFlags()); 1030 } 1031 } else if (isKnownNegative(Step)) { 1032 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1033 getSignedRange(Step).getSignedMin()); 1034 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1035 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1036 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1037 AR->getPostIncExpr(*this), N))) { 1038 // Cache knowledge of AR NW, which is propagated to this AddRec. 1039 // Negative step causes unsigned wrap, but it still can't self-wrap. 1040 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1041 // Return the expression with the addrec on the outside. 1042 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1043 getSignExtendExpr(Step, Ty), 1044 L, AR->getNoWrapFlags()); 1045 } 1046 } 1047 } 1048 } 1049 1050 // The cast wasn't folded; create an explicit cast node. 1051 // Recompute the insert position, as it may have been invalidated. 1052 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1053 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1054 Op, Ty); 1055 UniqueSCEVs.InsertNode(S, IP); 1056 return S; 1057 } 1058 1059 // Get the limit of a recurrence such that incrementing by Step cannot cause 1060 // signed overflow as long as the value of the recurrence within the loop does 1061 // not exceed this limit before incrementing. 1062 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1063 ICmpInst::Predicate *Pred, 1064 ScalarEvolution *SE) { 1065 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1066 if (SE->isKnownPositive(Step)) { 1067 *Pred = ICmpInst::ICMP_SLT; 1068 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1069 SE->getSignedRange(Step).getSignedMax()); 1070 } 1071 if (SE->isKnownNegative(Step)) { 1072 *Pred = ICmpInst::ICMP_SGT; 1073 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1074 SE->getSignedRange(Step).getSignedMin()); 1075 } 1076 return 0; 1077 } 1078 1079 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1080 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1081 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1082 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1083 // result, the expression "Step + sext(PreIncAR)" is congruent with 1084 // "sext(PostIncAR)" 1085 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1086 Type *Ty, 1087 ScalarEvolution *SE) { 1088 const Loop *L = AR->getLoop(); 1089 const SCEV *Start = AR->getStart(); 1090 const SCEV *Step = AR->getStepRecurrence(*SE); 1091 1092 // Check for a simple looking step prior to loop entry. 1093 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1094 if (!SA) 1095 return 0; 1096 1097 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1098 // subtraction is expensive. For this purpose, perform a quick and dirty 1099 // difference, by checking for Step in the operand list. 1100 SmallVector<const SCEV *, 4> DiffOps; 1101 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end(); 1102 I != E; ++I) { 1103 if (*I != Step) 1104 DiffOps.push_back(*I); 1105 } 1106 if (DiffOps.size() == SA->getNumOperands()) 1107 return 0; 1108 1109 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1110 // same three conditions that getSignExtendedExpr checks. 1111 1112 // 1. NSW flags on the step increment. 1113 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1114 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1115 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1116 1117 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1118 return PreStart; 1119 1120 // 2. Direct overflow check on the step operation's expression. 1121 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1122 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1123 const SCEV *OperandExtendedStart = 1124 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1125 SE->getSignExtendExpr(Step, WideTy)); 1126 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1127 // Cache knowledge of PreAR NSW. 1128 if (PreAR) 1129 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1130 // FIXME: this optimization needs a unit test 1131 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1132 return PreStart; 1133 } 1134 1135 // 3. Loop precondition. 1136 ICmpInst::Predicate Pred; 1137 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1138 1139 if (OverflowLimit && 1140 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1141 return PreStart; 1142 } 1143 return 0; 1144 } 1145 1146 // Get the normalized sign-extended expression for this AddRec's Start. 1147 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1148 Type *Ty, 1149 ScalarEvolution *SE) { 1150 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1151 if (!PreStart) 1152 return SE->getSignExtendExpr(AR->getStart(), Ty); 1153 1154 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1155 SE->getSignExtendExpr(PreStart, Ty)); 1156 } 1157 1158 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1159 Type *Ty) { 1160 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1161 "This is not an extending conversion!"); 1162 assert(isSCEVable(Ty) && 1163 "This is not a conversion to a SCEVable type!"); 1164 Ty = getEffectiveSCEVType(Ty); 1165 1166 // Fold if the operand is constant. 1167 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1168 return getConstant( 1169 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1170 1171 // sext(sext(x)) --> sext(x) 1172 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1173 return getSignExtendExpr(SS->getOperand(), Ty); 1174 1175 // sext(zext(x)) --> zext(x) 1176 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1177 return getZeroExtendExpr(SZ->getOperand(), Ty); 1178 1179 // Before doing any expensive analysis, check to see if we've already 1180 // computed a SCEV for this Op and Ty. 1181 FoldingSetNodeID ID; 1182 ID.AddInteger(scSignExtend); 1183 ID.AddPointer(Op); 1184 ID.AddPointer(Ty); 1185 void *IP = 0; 1186 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1187 1188 // If the input value is provably positive, build a zext instead. 1189 if (isKnownNonNegative(Op)) 1190 return getZeroExtendExpr(Op, Ty); 1191 1192 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1193 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1194 // It's possible the bits taken off by the truncate were all sign bits. If 1195 // so, we should be able to simplify this further. 1196 const SCEV *X = ST->getOperand(); 1197 ConstantRange CR = getSignedRange(X); 1198 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1199 unsigned NewBits = getTypeSizeInBits(Ty); 1200 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1201 CR.sextOrTrunc(NewBits))) 1202 return getTruncateOrSignExtend(X, Ty); 1203 } 1204 1205 // If the input value is a chrec scev, and we can prove that the value 1206 // did not overflow the old, smaller, value, we can sign extend all of the 1207 // operands (often constants). This allows analysis of something like 1208 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1209 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1210 if (AR->isAffine()) { 1211 const SCEV *Start = AR->getStart(); 1212 const SCEV *Step = AR->getStepRecurrence(*this); 1213 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1214 const Loop *L = AR->getLoop(); 1215 1216 // If we have special knowledge that this addrec won't overflow, 1217 // we don't need to do any further analysis. 1218 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1219 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1220 getSignExtendExpr(Step, Ty), 1221 L, SCEV::FlagNSW); 1222 1223 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1224 // Note that this serves two purposes: It filters out loops that are 1225 // simply not analyzable, and it covers the case where this code is 1226 // being called from within backedge-taken count analysis, such that 1227 // attempting to ask for the backedge-taken count would likely result 1228 // in infinite recursion. In the later case, the analysis code will 1229 // cope with a conservative value, and it will take care to purge 1230 // that value once it has finished. 1231 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1232 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1233 // Manually compute the final value for AR, checking for 1234 // overflow. 1235 1236 // Check whether the backedge-taken count can be losslessly casted to 1237 // the addrec's type. The count is always unsigned. 1238 const SCEV *CastedMaxBECount = 1239 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1240 const SCEV *RecastedMaxBECount = 1241 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1242 if (MaxBECount == RecastedMaxBECount) { 1243 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1244 // Check whether Start+Step*MaxBECount has no signed overflow. 1245 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1246 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1247 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1248 const SCEV *WideMaxBECount = 1249 getZeroExtendExpr(CastedMaxBECount, WideTy); 1250 const SCEV *OperandExtendedAdd = 1251 getAddExpr(WideStart, 1252 getMulExpr(WideMaxBECount, 1253 getSignExtendExpr(Step, WideTy))); 1254 if (SAdd == OperandExtendedAdd) { 1255 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1256 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1257 // Return the expression with the addrec on the outside. 1258 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1259 getSignExtendExpr(Step, Ty), 1260 L, AR->getNoWrapFlags()); 1261 } 1262 // Similar to above, only this time treat the step value as unsigned. 1263 // This covers loops that count up with an unsigned step. 1264 OperandExtendedAdd = 1265 getAddExpr(WideStart, 1266 getMulExpr(WideMaxBECount, 1267 getZeroExtendExpr(Step, WideTy))); 1268 if (SAdd == OperandExtendedAdd) { 1269 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1270 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1271 // Return the expression with the addrec on the outside. 1272 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1273 getZeroExtendExpr(Step, Ty), 1274 L, AR->getNoWrapFlags()); 1275 } 1276 } 1277 1278 // If the backedge is guarded by a comparison with the pre-inc value 1279 // the addrec is safe. Also, if the entry is guarded by a comparison 1280 // with the start value and the backedge is guarded by a comparison 1281 // with the post-inc value, the addrec is safe. 1282 ICmpInst::Predicate Pred; 1283 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1284 if (OverflowLimit && 1285 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1286 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1287 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1288 OverflowLimit)))) { 1289 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1290 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1291 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1292 getSignExtendExpr(Step, Ty), 1293 L, AR->getNoWrapFlags()); 1294 } 1295 } 1296 } 1297 1298 // The cast wasn't folded; create an explicit cast node. 1299 // Recompute the insert position, as it may have been invalidated. 1300 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1301 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1302 Op, Ty); 1303 UniqueSCEVs.InsertNode(S, IP); 1304 return S; 1305 } 1306 1307 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1308 /// unspecified bits out to the given type. 1309 /// 1310 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1311 Type *Ty) { 1312 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1313 "This is not an extending conversion!"); 1314 assert(isSCEVable(Ty) && 1315 "This is not a conversion to a SCEVable type!"); 1316 Ty = getEffectiveSCEVType(Ty); 1317 1318 // Sign-extend negative constants. 1319 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1320 if (SC->getValue()->getValue().isNegative()) 1321 return getSignExtendExpr(Op, Ty); 1322 1323 // Peel off a truncate cast. 1324 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1325 const SCEV *NewOp = T->getOperand(); 1326 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1327 return getAnyExtendExpr(NewOp, Ty); 1328 return getTruncateOrNoop(NewOp, Ty); 1329 } 1330 1331 // Next try a zext cast. If the cast is folded, use it. 1332 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1333 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1334 return ZExt; 1335 1336 // Next try a sext cast. If the cast is folded, use it. 1337 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1338 if (!isa<SCEVSignExtendExpr>(SExt)) 1339 return SExt; 1340 1341 // Force the cast to be folded into the operands of an addrec. 1342 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1343 SmallVector<const SCEV *, 4> Ops; 1344 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1345 I != E; ++I) 1346 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1347 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1348 } 1349 1350 // If the expression is obviously signed, use the sext cast value. 1351 if (isa<SCEVSMaxExpr>(Op)) 1352 return SExt; 1353 1354 // Absent any other information, use the zext cast value. 1355 return ZExt; 1356 } 1357 1358 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1359 /// a list of operands to be added under the given scale, update the given 1360 /// map. This is a helper function for getAddRecExpr. As an example of 1361 /// what it does, given a sequence of operands that would form an add 1362 /// expression like this: 1363 /// 1364 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1365 /// 1366 /// where A and B are constants, update the map with these values: 1367 /// 1368 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1369 /// 1370 /// and add 13 + A*B*29 to AccumulatedConstant. 1371 /// This will allow getAddRecExpr to produce this: 1372 /// 1373 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1374 /// 1375 /// This form often exposes folding opportunities that are hidden in 1376 /// the original operand list. 1377 /// 1378 /// Return true iff it appears that any interesting folding opportunities 1379 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1380 /// the common case where no interesting opportunities are present, and 1381 /// is also used as a check to avoid infinite recursion. 1382 /// 1383 static bool 1384 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1385 SmallVectorImpl<const SCEV *> &NewOps, 1386 APInt &AccumulatedConstant, 1387 const SCEV *const *Ops, size_t NumOperands, 1388 const APInt &Scale, 1389 ScalarEvolution &SE) { 1390 bool Interesting = false; 1391 1392 // Iterate over the add operands. They are sorted, with constants first. 1393 unsigned i = 0; 1394 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1395 ++i; 1396 // Pull a buried constant out to the outside. 1397 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1398 Interesting = true; 1399 AccumulatedConstant += Scale * C->getValue()->getValue(); 1400 } 1401 1402 // Next comes everything else. We're especially interested in multiplies 1403 // here, but they're in the middle, so just visit the rest with one loop. 1404 for (; i != NumOperands; ++i) { 1405 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1406 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1407 APInt NewScale = 1408 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1409 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1410 // A multiplication of a constant with another add; recurse. 1411 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1412 Interesting |= 1413 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1414 Add->op_begin(), Add->getNumOperands(), 1415 NewScale, SE); 1416 } else { 1417 // A multiplication of a constant with some other value. Update 1418 // the map. 1419 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1420 const SCEV *Key = SE.getMulExpr(MulOps); 1421 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1422 M.insert(std::make_pair(Key, NewScale)); 1423 if (Pair.second) { 1424 NewOps.push_back(Pair.first->first); 1425 } else { 1426 Pair.first->second += NewScale; 1427 // The map already had an entry for this value, which may indicate 1428 // a folding opportunity. 1429 Interesting = true; 1430 } 1431 } 1432 } else { 1433 // An ordinary operand. Update the map. 1434 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1435 M.insert(std::make_pair(Ops[i], Scale)); 1436 if (Pair.second) { 1437 NewOps.push_back(Pair.first->first); 1438 } else { 1439 Pair.first->second += Scale; 1440 // The map already had an entry for this value, which may indicate 1441 // a folding opportunity. 1442 Interesting = true; 1443 } 1444 } 1445 } 1446 1447 return Interesting; 1448 } 1449 1450 namespace { 1451 struct APIntCompare { 1452 bool operator()(const APInt &LHS, const APInt &RHS) const { 1453 return LHS.ult(RHS); 1454 } 1455 }; 1456 } 1457 1458 /// getAddExpr - Get a canonical add expression, or something simpler if 1459 /// possible. 1460 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1461 SCEV::NoWrapFlags Flags) { 1462 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1463 "only nuw or nsw allowed"); 1464 assert(!Ops.empty() && "Cannot get empty add!"); 1465 if (Ops.size() == 1) return Ops[0]; 1466 #ifndef NDEBUG 1467 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1468 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1469 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1470 "SCEVAddExpr operand types don't match!"); 1471 #endif 1472 1473 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1474 // And vice-versa. 1475 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1476 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1477 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1478 bool All = true; 1479 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1480 E = Ops.end(); I != E; ++I) 1481 if (!isKnownNonNegative(*I)) { 1482 All = false; 1483 break; 1484 } 1485 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1486 } 1487 1488 // Sort by complexity, this groups all similar expression types together. 1489 GroupByComplexity(Ops, LI); 1490 1491 // If there are any constants, fold them together. 1492 unsigned Idx = 0; 1493 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1494 ++Idx; 1495 assert(Idx < Ops.size()); 1496 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1497 // We found two constants, fold them together! 1498 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1499 RHSC->getValue()->getValue()); 1500 if (Ops.size() == 2) return Ops[0]; 1501 Ops.erase(Ops.begin()+1); // Erase the folded element 1502 LHSC = cast<SCEVConstant>(Ops[0]); 1503 } 1504 1505 // If we are left with a constant zero being added, strip it off. 1506 if (LHSC->getValue()->isZero()) { 1507 Ops.erase(Ops.begin()); 1508 --Idx; 1509 } 1510 1511 if (Ops.size() == 1) return Ops[0]; 1512 } 1513 1514 // Okay, check to see if the same value occurs in the operand list more than 1515 // once. If so, merge them together into an multiply expression. Since we 1516 // sorted the list, these values are required to be adjacent. 1517 Type *Ty = Ops[0]->getType(); 1518 bool FoundMatch = false; 1519 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1520 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1521 // Scan ahead to count how many equal operands there are. 1522 unsigned Count = 2; 1523 while (i+Count != e && Ops[i+Count] == Ops[i]) 1524 ++Count; 1525 // Merge the values into a multiply. 1526 const SCEV *Scale = getConstant(Ty, Count); 1527 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1528 if (Ops.size() == Count) 1529 return Mul; 1530 Ops[i] = Mul; 1531 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1532 --i; e -= Count - 1; 1533 FoundMatch = true; 1534 } 1535 if (FoundMatch) 1536 return getAddExpr(Ops, Flags); 1537 1538 // Check for truncates. If all the operands are truncated from the same 1539 // type, see if factoring out the truncate would permit the result to be 1540 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1541 // if the contents of the resulting outer trunc fold to something simple. 1542 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1543 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1544 Type *DstType = Trunc->getType(); 1545 Type *SrcType = Trunc->getOperand()->getType(); 1546 SmallVector<const SCEV *, 8> LargeOps; 1547 bool Ok = true; 1548 // Check all the operands to see if they can be represented in the 1549 // source type of the truncate. 1550 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1551 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1552 if (T->getOperand()->getType() != SrcType) { 1553 Ok = false; 1554 break; 1555 } 1556 LargeOps.push_back(T->getOperand()); 1557 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1558 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1559 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1560 SmallVector<const SCEV *, 8> LargeMulOps; 1561 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1562 if (const SCEVTruncateExpr *T = 1563 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1564 if (T->getOperand()->getType() != SrcType) { 1565 Ok = false; 1566 break; 1567 } 1568 LargeMulOps.push_back(T->getOperand()); 1569 } else if (const SCEVConstant *C = 1570 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1571 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1572 } else { 1573 Ok = false; 1574 break; 1575 } 1576 } 1577 if (Ok) 1578 LargeOps.push_back(getMulExpr(LargeMulOps)); 1579 } else { 1580 Ok = false; 1581 break; 1582 } 1583 } 1584 if (Ok) { 1585 // Evaluate the expression in the larger type. 1586 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1587 // If it folds to something simple, use it. Otherwise, don't. 1588 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1589 return getTruncateExpr(Fold, DstType); 1590 } 1591 } 1592 1593 // Skip past any other cast SCEVs. 1594 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1595 ++Idx; 1596 1597 // If there are add operands they would be next. 1598 if (Idx < Ops.size()) { 1599 bool DeletedAdd = false; 1600 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1601 // If we have an add, expand the add operands onto the end of the operands 1602 // list. 1603 Ops.erase(Ops.begin()+Idx); 1604 Ops.append(Add->op_begin(), Add->op_end()); 1605 DeletedAdd = true; 1606 } 1607 1608 // If we deleted at least one add, we added operands to the end of the list, 1609 // and they are not necessarily sorted. Recurse to resort and resimplify 1610 // any operands we just acquired. 1611 if (DeletedAdd) 1612 return getAddExpr(Ops); 1613 } 1614 1615 // Skip over the add expression until we get to a multiply. 1616 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1617 ++Idx; 1618 1619 // Check to see if there are any folding opportunities present with 1620 // operands multiplied by constant values. 1621 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1622 uint64_t BitWidth = getTypeSizeInBits(Ty); 1623 DenseMap<const SCEV *, APInt> M; 1624 SmallVector<const SCEV *, 8> NewOps; 1625 APInt AccumulatedConstant(BitWidth, 0); 1626 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1627 Ops.data(), Ops.size(), 1628 APInt(BitWidth, 1), *this)) { 1629 // Some interesting folding opportunity is present, so its worthwhile to 1630 // re-generate the operands list. Group the operands by constant scale, 1631 // to avoid multiplying by the same constant scale multiple times. 1632 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1633 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 1634 E = NewOps.end(); I != E; ++I) 1635 MulOpLists[M.find(*I)->second].push_back(*I); 1636 // Re-generate the operands list. 1637 Ops.clear(); 1638 if (AccumulatedConstant != 0) 1639 Ops.push_back(getConstant(AccumulatedConstant)); 1640 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1641 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1642 if (I->first != 0) 1643 Ops.push_back(getMulExpr(getConstant(I->first), 1644 getAddExpr(I->second))); 1645 if (Ops.empty()) 1646 return getConstant(Ty, 0); 1647 if (Ops.size() == 1) 1648 return Ops[0]; 1649 return getAddExpr(Ops); 1650 } 1651 } 1652 1653 // If we are adding something to a multiply expression, make sure the 1654 // something is not already an operand of the multiply. If so, merge it into 1655 // the multiply. 1656 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1657 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1658 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1659 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1660 if (isa<SCEVConstant>(MulOpSCEV)) 1661 continue; 1662 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1663 if (MulOpSCEV == Ops[AddOp]) { 1664 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1665 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1666 if (Mul->getNumOperands() != 2) { 1667 // If the multiply has more than two operands, we must get the 1668 // Y*Z term. 1669 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1670 Mul->op_begin()+MulOp); 1671 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1672 InnerMul = getMulExpr(MulOps); 1673 } 1674 const SCEV *One = getConstant(Ty, 1); 1675 const SCEV *AddOne = getAddExpr(One, InnerMul); 1676 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1677 if (Ops.size() == 2) return OuterMul; 1678 if (AddOp < Idx) { 1679 Ops.erase(Ops.begin()+AddOp); 1680 Ops.erase(Ops.begin()+Idx-1); 1681 } else { 1682 Ops.erase(Ops.begin()+Idx); 1683 Ops.erase(Ops.begin()+AddOp-1); 1684 } 1685 Ops.push_back(OuterMul); 1686 return getAddExpr(Ops); 1687 } 1688 1689 // Check this multiply against other multiplies being added together. 1690 for (unsigned OtherMulIdx = Idx+1; 1691 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1692 ++OtherMulIdx) { 1693 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1694 // If MulOp occurs in OtherMul, we can fold the two multiplies 1695 // together. 1696 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1697 OMulOp != e; ++OMulOp) 1698 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1699 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1700 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1701 if (Mul->getNumOperands() != 2) { 1702 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1703 Mul->op_begin()+MulOp); 1704 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1705 InnerMul1 = getMulExpr(MulOps); 1706 } 1707 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1708 if (OtherMul->getNumOperands() != 2) { 1709 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1710 OtherMul->op_begin()+OMulOp); 1711 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1712 InnerMul2 = getMulExpr(MulOps); 1713 } 1714 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1715 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1716 if (Ops.size() == 2) return OuterMul; 1717 Ops.erase(Ops.begin()+Idx); 1718 Ops.erase(Ops.begin()+OtherMulIdx-1); 1719 Ops.push_back(OuterMul); 1720 return getAddExpr(Ops); 1721 } 1722 } 1723 } 1724 } 1725 1726 // If there are any add recurrences in the operands list, see if any other 1727 // added values are loop invariant. If so, we can fold them into the 1728 // recurrence. 1729 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1730 ++Idx; 1731 1732 // Scan over all recurrences, trying to fold loop invariants into them. 1733 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1734 // Scan all of the other operands to this add and add them to the vector if 1735 // they are loop invariant w.r.t. the recurrence. 1736 SmallVector<const SCEV *, 8> LIOps; 1737 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1738 const Loop *AddRecLoop = AddRec->getLoop(); 1739 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1740 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1741 LIOps.push_back(Ops[i]); 1742 Ops.erase(Ops.begin()+i); 1743 --i; --e; 1744 } 1745 1746 // If we found some loop invariants, fold them into the recurrence. 1747 if (!LIOps.empty()) { 1748 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1749 LIOps.push_back(AddRec->getStart()); 1750 1751 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1752 AddRec->op_end()); 1753 AddRecOps[0] = getAddExpr(LIOps); 1754 1755 // Build the new addrec. Propagate the NUW and NSW flags if both the 1756 // outer add and the inner addrec are guaranteed to have no overflow. 1757 // Always propagate NW. 1758 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1759 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1760 1761 // If all of the other operands were loop invariant, we are done. 1762 if (Ops.size() == 1) return NewRec; 1763 1764 // Otherwise, add the folded AddRec by the non-invariant parts. 1765 for (unsigned i = 0;; ++i) 1766 if (Ops[i] == AddRec) { 1767 Ops[i] = NewRec; 1768 break; 1769 } 1770 return getAddExpr(Ops); 1771 } 1772 1773 // Okay, if there weren't any loop invariants to be folded, check to see if 1774 // there are multiple AddRec's with the same loop induction variable being 1775 // added together. If so, we can fold them. 1776 for (unsigned OtherIdx = Idx+1; 1777 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1778 ++OtherIdx) 1779 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1780 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1781 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1782 AddRec->op_end()); 1783 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1784 ++OtherIdx) 1785 if (const SCEVAddRecExpr *OtherAddRec = 1786 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1787 if (OtherAddRec->getLoop() == AddRecLoop) { 1788 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1789 i != e; ++i) { 1790 if (i >= AddRecOps.size()) { 1791 AddRecOps.append(OtherAddRec->op_begin()+i, 1792 OtherAddRec->op_end()); 1793 break; 1794 } 1795 AddRecOps[i] = getAddExpr(AddRecOps[i], 1796 OtherAddRec->getOperand(i)); 1797 } 1798 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1799 } 1800 // Step size has changed, so we cannot guarantee no self-wraparound. 1801 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1802 return getAddExpr(Ops); 1803 } 1804 1805 // Otherwise couldn't fold anything into this recurrence. Move onto the 1806 // next one. 1807 } 1808 1809 // Okay, it looks like we really DO need an add expr. Check to see if we 1810 // already have one, otherwise create a new one. 1811 FoldingSetNodeID ID; 1812 ID.AddInteger(scAddExpr); 1813 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1814 ID.AddPointer(Ops[i]); 1815 void *IP = 0; 1816 SCEVAddExpr *S = 1817 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1818 if (!S) { 1819 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1820 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1821 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1822 O, Ops.size()); 1823 UniqueSCEVs.InsertNode(S, IP); 1824 } 1825 S->setNoWrapFlags(Flags); 1826 return S; 1827 } 1828 1829 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1830 uint64_t k = i*j; 1831 if (j > 1 && k / j != i) Overflow = true; 1832 return k; 1833 } 1834 1835 /// Compute the result of "n choose k", the binomial coefficient. If an 1836 /// intermediate computation overflows, Overflow will be set and the return will 1837 /// be garbage. Overflow is not cleared on absence of overflow. 1838 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1839 // We use the multiplicative formula: 1840 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1841 // At each iteration, we take the n-th term of the numeral and divide by the 1842 // (k-n)th term of the denominator. This division will always produce an 1843 // integral result, and helps reduce the chance of overflow in the 1844 // intermediate computations. However, we can still overflow even when the 1845 // final result would fit. 1846 1847 if (n == 0 || n == k) return 1; 1848 if (k > n) return 0; 1849 1850 if (k > n/2) 1851 k = n-k; 1852 1853 uint64_t r = 1; 1854 for (uint64_t i = 1; i <= k; ++i) { 1855 r = umul_ov(r, n-(i-1), Overflow); 1856 r /= i; 1857 } 1858 return r; 1859 } 1860 1861 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1862 /// possible. 1863 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1864 SCEV::NoWrapFlags Flags) { 1865 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1866 "only nuw or nsw allowed"); 1867 assert(!Ops.empty() && "Cannot get empty mul!"); 1868 if (Ops.size() == 1) return Ops[0]; 1869 #ifndef NDEBUG 1870 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1871 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1872 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1873 "SCEVMulExpr operand types don't match!"); 1874 #endif 1875 1876 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1877 // And vice-versa. 1878 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1879 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1880 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1881 bool All = true; 1882 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1883 E = Ops.end(); I != E; ++I) 1884 if (!isKnownNonNegative(*I)) { 1885 All = false; 1886 break; 1887 } 1888 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1889 } 1890 1891 // Sort by complexity, this groups all similar expression types together. 1892 GroupByComplexity(Ops, LI); 1893 1894 // If there are any constants, fold them together. 1895 unsigned Idx = 0; 1896 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1897 1898 // C1*(C2+V) -> C1*C2 + C1*V 1899 if (Ops.size() == 2) 1900 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1901 if (Add->getNumOperands() == 2 && 1902 isa<SCEVConstant>(Add->getOperand(0))) 1903 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1904 getMulExpr(LHSC, Add->getOperand(1))); 1905 1906 ++Idx; 1907 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1908 // We found two constants, fold them together! 1909 ConstantInt *Fold = ConstantInt::get(getContext(), 1910 LHSC->getValue()->getValue() * 1911 RHSC->getValue()->getValue()); 1912 Ops[0] = getConstant(Fold); 1913 Ops.erase(Ops.begin()+1); // Erase the folded element 1914 if (Ops.size() == 1) return Ops[0]; 1915 LHSC = cast<SCEVConstant>(Ops[0]); 1916 } 1917 1918 // If we are left with a constant one being multiplied, strip it off. 1919 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1920 Ops.erase(Ops.begin()); 1921 --Idx; 1922 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1923 // If we have a multiply of zero, it will always be zero. 1924 return Ops[0]; 1925 } else if (Ops[0]->isAllOnesValue()) { 1926 // If we have a mul by -1 of an add, try distributing the -1 among the 1927 // add operands. 1928 if (Ops.size() == 2) { 1929 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1930 SmallVector<const SCEV *, 4> NewOps; 1931 bool AnyFolded = false; 1932 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1933 E = Add->op_end(); I != E; ++I) { 1934 const SCEV *Mul = getMulExpr(Ops[0], *I); 1935 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1936 NewOps.push_back(Mul); 1937 } 1938 if (AnyFolded) 1939 return getAddExpr(NewOps); 1940 } 1941 else if (const SCEVAddRecExpr * 1942 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1943 // Negation preserves a recurrence's no self-wrap property. 1944 SmallVector<const SCEV *, 4> Operands; 1945 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1946 E = AddRec->op_end(); I != E; ++I) { 1947 Operands.push_back(getMulExpr(Ops[0], *I)); 1948 } 1949 return getAddRecExpr(Operands, AddRec->getLoop(), 1950 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1951 } 1952 } 1953 } 1954 1955 if (Ops.size() == 1) 1956 return Ops[0]; 1957 } 1958 1959 // Skip over the add expression until we get to a multiply. 1960 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1961 ++Idx; 1962 1963 // If there are mul operands inline them all into this expression. 1964 if (Idx < Ops.size()) { 1965 bool DeletedMul = false; 1966 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1967 // If we have an mul, expand the mul operands onto the end of the operands 1968 // list. 1969 Ops.erase(Ops.begin()+Idx); 1970 Ops.append(Mul->op_begin(), Mul->op_end()); 1971 DeletedMul = true; 1972 } 1973 1974 // If we deleted at least one mul, we added operands to the end of the list, 1975 // and they are not necessarily sorted. Recurse to resort and resimplify 1976 // any operands we just acquired. 1977 if (DeletedMul) 1978 return getMulExpr(Ops); 1979 } 1980 1981 // If there are any add recurrences in the operands list, see if any other 1982 // added values are loop invariant. If so, we can fold them into the 1983 // recurrence. 1984 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1985 ++Idx; 1986 1987 // Scan over all recurrences, trying to fold loop invariants into them. 1988 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1989 // Scan all of the other operands to this mul and add them to the vector if 1990 // they are loop invariant w.r.t. the recurrence. 1991 SmallVector<const SCEV *, 8> LIOps; 1992 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1993 const Loop *AddRecLoop = AddRec->getLoop(); 1994 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1995 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1996 LIOps.push_back(Ops[i]); 1997 Ops.erase(Ops.begin()+i); 1998 --i; --e; 1999 } 2000 2001 // If we found some loop invariants, fold them into the recurrence. 2002 if (!LIOps.empty()) { 2003 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2004 SmallVector<const SCEV *, 4> NewOps; 2005 NewOps.reserve(AddRec->getNumOperands()); 2006 const SCEV *Scale = getMulExpr(LIOps); 2007 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2008 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2009 2010 // Build the new addrec. Propagate the NUW and NSW flags if both the 2011 // outer mul and the inner addrec are guaranteed to have no overflow. 2012 // 2013 // No self-wrap cannot be guaranteed after changing the step size, but 2014 // will be inferred if either NUW or NSW is true. 2015 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2016 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2017 2018 // If all of the other operands were loop invariant, we are done. 2019 if (Ops.size() == 1) return NewRec; 2020 2021 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2022 for (unsigned i = 0;; ++i) 2023 if (Ops[i] == AddRec) { 2024 Ops[i] = NewRec; 2025 break; 2026 } 2027 return getMulExpr(Ops); 2028 } 2029 2030 // Okay, if there weren't any loop invariants to be folded, check to see if 2031 // there are multiple AddRec's with the same loop induction variable being 2032 // multiplied together. If so, we can fold them. 2033 for (unsigned OtherIdx = Idx+1; 2034 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2035 ++OtherIdx) { 2036 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) 2037 continue; 2038 2039 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2040 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2041 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2042 // ]]],+,...up to x=2n}. 2043 // Note that the arguments to choose() are always integers with values 2044 // known at compile time, never SCEV objects. 2045 // 2046 // The implementation avoids pointless extra computations when the two 2047 // addrec's are of different length (mathematically, it's equivalent to 2048 // an infinite stream of zeros on the right). 2049 bool OpsModified = false; 2050 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2051 ++OtherIdx) { 2052 const SCEVAddRecExpr *OtherAddRec = 2053 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2054 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2055 continue; 2056 2057 bool Overflow = false; 2058 Type *Ty = AddRec->getType(); 2059 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2060 SmallVector<const SCEV*, 7> AddRecOps; 2061 for (int x = 0, xe = AddRec->getNumOperands() + 2062 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2063 const SCEV *Term = getConstant(Ty, 0); 2064 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2065 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2066 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2067 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2068 z < ze && !Overflow; ++z) { 2069 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2070 uint64_t Coeff; 2071 if (LargerThan64Bits) 2072 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2073 else 2074 Coeff = Coeff1*Coeff2; 2075 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2076 const SCEV *Term1 = AddRec->getOperand(y-z); 2077 const SCEV *Term2 = OtherAddRec->getOperand(z); 2078 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2079 } 2080 } 2081 AddRecOps.push_back(Term); 2082 } 2083 if (!Overflow) { 2084 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2085 SCEV::FlagAnyWrap); 2086 if (Ops.size() == 2) return NewAddRec; 2087 Ops[Idx] = NewAddRec; 2088 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2089 OpsModified = true; 2090 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2091 if (!AddRec) 2092 break; 2093 } 2094 } 2095 if (OpsModified) 2096 return getMulExpr(Ops); 2097 } 2098 2099 // Otherwise couldn't fold anything into this recurrence. Move onto the 2100 // next one. 2101 } 2102 2103 // Okay, it looks like we really DO need an mul expr. Check to see if we 2104 // already have one, otherwise create a new one. 2105 FoldingSetNodeID ID; 2106 ID.AddInteger(scMulExpr); 2107 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2108 ID.AddPointer(Ops[i]); 2109 void *IP = 0; 2110 SCEVMulExpr *S = 2111 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2112 if (!S) { 2113 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2114 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2115 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2116 O, Ops.size()); 2117 UniqueSCEVs.InsertNode(S, IP); 2118 } 2119 S->setNoWrapFlags(Flags); 2120 return S; 2121 } 2122 2123 /// getUDivExpr - Get a canonical unsigned division expression, or something 2124 /// simpler if possible. 2125 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2126 const SCEV *RHS) { 2127 assert(getEffectiveSCEVType(LHS->getType()) == 2128 getEffectiveSCEVType(RHS->getType()) && 2129 "SCEVUDivExpr operand types don't match!"); 2130 2131 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2132 if (RHSC->getValue()->equalsInt(1)) 2133 return LHS; // X udiv 1 --> x 2134 // If the denominator is zero, the result of the udiv is undefined. Don't 2135 // try to analyze it, because the resolution chosen here may differ from 2136 // the resolution chosen in other parts of the compiler. 2137 if (!RHSC->getValue()->isZero()) { 2138 // Determine if the division can be folded into the operands of 2139 // its operands. 2140 // TODO: Generalize this to non-constants by using known-bits information. 2141 Type *Ty = LHS->getType(); 2142 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2143 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2144 // For non-power-of-two values, effectively round the value up to the 2145 // nearest power of two. 2146 if (!RHSC->getValue()->getValue().isPowerOf2()) 2147 ++MaxShiftAmt; 2148 IntegerType *ExtTy = 2149 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2150 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2151 if (const SCEVConstant *Step = 2152 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2153 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2154 const APInt &StepInt = Step->getValue()->getValue(); 2155 const APInt &DivInt = RHSC->getValue()->getValue(); 2156 if (!StepInt.urem(DivInt) && 2157 getZeroExtendExpr(AR, ExtTy) == 2158 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2159 getZeroExtendExpr(Step, ExtTy), 2160 AR->getLoop(), SCEV::FlagAnyWrap)) { 2161 SmallVector<const SCEV *, 4> Operands; 2162 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2163 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2164 return getAddRecExpr(Operands, AR->getLoop(), 2165 SCEV::FlagNW); 2166 } 2167 /// Get a canonical UDivExpr for a recurrence. 2168 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2169 // We can currently only fold X%N if X is constant. 2170 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2171 if (StartC && !DivInt.urem(StepInt) && 2172 getZeroExtendExpr(AR, ExtTy) == 2173 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2174 getZeroExtendExpr(Step, ExtTy), 2175 AR->getLoop(), SCEV::FlagAnyWrap)) { 2176 const APInt &StartInt = StartC->getValue()->getValue(); 2177 const APInt &StartRem = StartInt.urem(StepInt); 2178 if (StartRem != 0) 2179 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2180 AR->getLoop(), SCEV::FlagNW); 2181 } 2182 } 2183 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2184 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2185 SmallVector<const SCEV *, 4> Operands; 2186 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2187 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2188 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2189 // Find an operand that's safely divisible. 2190 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2191 const SCEV *Op = M->getOperand(i); 2192 const SCEV *Div = getUDivExpr(Op, RHSC); 2193 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2194 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2195 M->op_end()); 2196 Operands[i] = Div; 2197 return getMulExpr(Operands); 2198 } 2199 } 2200 } 2201 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2202 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2203 SmallVector<const SCEV *, 4> Operands; 2204 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2205 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2206 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2207 Operands.clear(); 2208 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2209 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2210 if (isa<SCEVUDivExpr>(Op) || 2211 getMulExpr(Op, RHS) != A->getOperand(i)) 2212 break; 2213 Operands.push_back(Op); 2214 } 2215 if (Operands.size() == A->getNumOperands()) 2216 return getAddExpr(Operands); 2217 } 2218 } 2219 2220 // Fold if both operands are constant. 2221 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2222 Constant *LHSCV = LHSC->getValue(); 2223 Constant *RHSCV = RHSC->getValue(); 2224 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2225 RHSCV))); 2226 } 2227 } 2228 } 2229 2230 FoldingSetNodeID ID; 2231 ID.AddInteger(scUDivExpr); 2232 ID.AddPointer(LHS); 2233 ID.AddPointer(RHS); 2234 void *IP = 0; 2235 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2236 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2237 LHS, RHS); 2238 UniqueSCEVs.InsertNode(S, IP); 2239 return S; 2240 } 2241 2242 2243 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2244 /// Simplify the expression as much as possible. 2245 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2246 const Loop *L, 2247 SCEV::NoWrapFlags Flags) { 2248 SmallVector<const SCEV *, 4> Operands; 2249 Operands.push_back(Start); 2250 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2251 if (StepChrec->getLoop() == L) { 2252 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2253 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2254 } 2255 2256 Operands.push_back(Step); 2257 return getAddRecExpr(Operands, L, Flags); 2258 } 2259 2260 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2261 /// Simplify the expression as much as possible. 2262 const SCEV * 2263 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2264 const Loop *L, SCEV::NoWrapFlags Flags) { 2265 if (Operands.size() == 1) return Operands[0]; 2266 #ifndef NDEBUG 2267 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2268 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2269 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2270 "SCEVAddRecExpr operand types don't match!"); 2271 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2272 assert(isLoopInvariant(Operands[i], L) && 2273 "SCEVAddRecExpr operand is not loop-invariant!"); 2274 #endif 2275 2276 if (Operands.back()->isZero()) { 2277 Operands.pop_back(); 2278 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2279 } 2280 2281 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2282 // use that information to infer NUW and NSW flags. However, computing a 2283 // BE count requires calling getAddRecExpr, so we may not yet have a 2284 // meaningful BE count at this point (and if we don't, we'd be stuck 2285 // with a SCEVCouldNotCompute as the cached BE count). 2286 2287 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2288 // And vice-versa. 2289 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2290 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2291 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2292 bool All = true; 2293 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2294 E = Operands.end(); I != E; ++I) 2295 if (!isKnownNonNegative(*I)) { 2296 All = false; 2297 break; 2298 } 2299 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2300 } 2301 2302 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2303 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2304 const Loop *NestedLoop = NestedAR->getLoop(); 2305 if (L->contains(NestedLoop) ? 2306 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2307 (!NestedLoop->contains(L) && 2308 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2309 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2310 NestedAR->op_end()); 2311 Operands[0] = NestedAR->getStart(); 2312 // AddRecs require their operands be loop-invariant with respect to their 2313 // loops. Don't perform this transformation if it would break this 2314 // requirement. 2315 bool AllInvariant = true; 2316 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2317 if (!isLoopInvariant(Operands[i], L)) { 2318 AllInvariant = false; 2319 break; 2320 } 2321 if (AllInvariant) { 2322 // Create a recurrence for the outer loop with the same step size. 2323 // 2324 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2325 // inner recurrence has the same property. 2326 SCEV::NoWrapFlags OuterFlags = 2327 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2328 2329 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2330 AllInvariant = true; 2331 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2332 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2333 AllInvariant = false; 2334 break; 2335 } 2336 if (AllInvariant) { 2337 // Ok, both add recurrences are valid after the transformation. 2338 // 2339 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2340 // the outer recurrence has the same property. 2341 SCEV::NoWrapFlags InnerFlags = 2342 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2343 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2344 } 2345 } 2346 // Reset Operands to its original state. 2347 Operands[0] = NestedAR; 2348 } 2349 } 2350 2351 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2352 // already have one, otherwise create a new one. 2353 FoldingSetNodeID ID; 2354 ID.AddInteger(scAddRecExpr); 2355 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2356 ID.AddPointer(Operands[i]); 2357 ID.AddPointer(L); 2358 void *IP = 0; 2359 SCEVAddRecExpr *S = 2360 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2361 if (!S) { 2362 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2363 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2364 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2365 O, Operands.size(), L); 2366 UniqueSCEVs.InsertNode(S, IP); 2367 } 2368 S->setNoWrapFlags(Flags); 2369 return S; 2370 } 2371 2372 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2373 const SCEV *RHS) { 2374 SmallVector<const SCEV *, 2> Ops; 2375 Ops.push_back(LHS); 2376 Ops.push_back(RHS); 2377 return getSMaxExpr(Ops); 2378 } 2379 2380 const SCEV * 2381 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2382 assert(!Ops.empty() && "Cannot get empty smax!"); 2383 if (Ops.size() == 1) return Ops[0]; 2384 #ifndef NDEBUG 2385 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2386 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2387 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2388 "SCEVSMaxExpr operand types don't match!"); 2389 #endif 2390 2391 // Sort by complexity, this groups all similar expression types together. 2392 GroupByComplexity(Ops, LI); 2393 2394 // If there are any constants, fold them together. 2395 unsigned Idx = 0; 2396 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2397 ++Idx; 2398 assert(Idx < Ops.size()); 2399 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2400 // We found two constants, fold them together! 2401 ConstantInt *Fold = ConstantInt::get(getContext(), 2402 APIntOps::smax(LHSC->getValue()->getValue(), 2403 RHSC->getValue()->getValue())); 2404 Ops[0] = getConstant(Fold); 2405 Ops.erase(Ops.begin()+1); // Erase the folded element 2406 if (Ops.size() == 1) return Ops[0]; 2407 LHSC = cast<SCEVConstant>(Ops[0]); 2408 } 2409 2410 // If we are left with a constant minimum-int, strip it off. 2411 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2412 Ops.erase(Ops.begin()); 2413 --Idx; 2414 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2415 // If we have an smax with a constant maximum-int, it will always be 2416 // maximum-int. 2417 return Ops[0]; 2418 } 2419 2420 if (Ops.size() == 1) return Ops[0]; 2421 } 2422 2423 // Find the first SMax 2424 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2425 ++Idx; 2426 2427 // Check to see if one of the operands is an SMax. If so, expand its operands 2428 // onto our operand list, and recurse to simplify. 2429 if (Idx < Ops.size()) { 2430 bool DeletedSMax = false; 2431 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2432 Ops.erase(Ops.begin()+Idx); 2433 Ops.append(SMax->op_begin(), SMax->op_end()); 2434 DeletedSMax = true; 2435 } 2436 2437 if (DeletedSMax) 2438 return getSMaxExpr(Ops); 2439 } 2440 2441 // Okay, check to see if the same value occurs in the operand list twice. If 2442 // so, delete one. Since we sorted the list, these values are required to 2443 // be adjacent. 2444 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2445 // X smax Y smax Y --> X smax Y 2446 // X smax Y --> X, if X is always greater than Y 2447 if (Ops[i] == Ops[i+1] || 2448 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2449 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2450 --i; --e; 2451 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2452 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2453 --i; --e; 2454 } 2455 2456 if (Ops.size() == 1) return Ops[0]; 2457 2458 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2459 2460 // Okay, it looks like we really DO need an smax expr. Check to see if we 2461 // already have one, otherwise create a new one. 2462 FoldingSetNodeID ID; 2463 ID.AddInteger(scSMaxExpr); 2464 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2465 ID.AddPointer(Ops[i]); 2466 void *IP = 0; 2467 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2468 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2469 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2470 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2471 O, Ops.size()); 2472 UniqueSCEVs.InsertNode(S, IP); 2473 return S; 2474 } 2475 2476 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2477 const SCEV *RHS) { 2478 SmallVector<const SCEV *, 2> Ops; 2479 Ops.push_back(LHS); 2480 Ops.push_back(RHS); 2481 return getUMaxExpr(Ops); 2482 } 2483 2484 const SCEV * 2485 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2486 assert(!Ops.empty() && "Cannot get empty umax!"); 2487 if (Ops.size() == 1) return Ops[0]; 2488 #ifndef NDEBUG 2489 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2490 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2491 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2492 "SCEVUMaxExpr operand types don't match!"); 2493 #endif 2494 2495 // Sort by complexity, this groups all similar expression types together. 2496 GroupByComplexity(Ops, LI); 2497 2498 // If there are any constants, fold them together. 2499 unsigned Idx = 0; 2500 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2501 ++Idx; 2502 assert(Idx < Ops.size()); 2503 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2504 // We found two constants, fold them together! 2505 ConstantInt *Fold = ConstantInt::get(getContext(), 2506 APIntOps::umax(LHSC->getValue()->getValue(), 2507 RHSC->getValue()->getValue())); 2508 Ops[0] = getConstant(Fold); 2509 Ops.erase(Ops.begin()+1); // Erase the folded element 2510 if (Ops.size() == 1) return Ops[0]; 2511 LHSC = cast<SCEVConstant>(Ops[0]); 2512 } 2513 2514 // If we are left with a constant minimum-int, strip it off. 2515 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2516 Ops.erase(Ops.begin()); 2517 --Idx; 2518 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2519 // If we have an umax with a constant maximum-int, it will always be 2520 // maximum-int. 2521 return Ops[0]; 2522 } 2523 2524 if (Ops.size() == 1) return Ops[0]; 2525 } 2526 2527 // Find the first UMax 2528 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2529 ++Idx; 2530 2531 // Check to see if one of the operands is a UMax. If so, expand its operands 2532 // onto our operand list, and recurse to simplify. 2533 if (Idx < Ops.size()) { 2534 bool DeletedUMax = false; 2535 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2536 Ops.erase(Ops.begin()+Idx); 2537 Ops.append(UMax->op_begin(), UMax->op_end()); 2538 DeletedUMax = true; 2539 } 2540 2541 if (DeletedUMax) 2542 return getUMaxExpr(Ops); 2543 } 2544 2545 // Okay, check to see if the same value occurs in the operand list twice. If 2546 // so, delete one. Since we sorted the list, these values are required to 2547 // be adjacent. 2548 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2549 // X umax Y umax Y --> X umax Y 2550 // X umax Y --> X, if X is always greater than Y 2551 if (Ops[i] == Ops[i+1] || 2552 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2553 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2554 --i; --e; 2555 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2556 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2557 --i; --e; 2558 } 2559 2560 if (Ops.size() == 1) return Ops[0]; 2561 2562 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2563 2564 // Okay, it looks like we really DO need a umax expr. Check to see if we 2565 // already have one, otherwise create a new one. 2566 FoldingSetNodeID ID; 2567 ID.AddInteger(scUMaxExpr); 2568 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2569 ID.AddPointer(Ops[i]); 2570 void *IP = 0; 2571 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2572 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2573 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2574 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2575 O, Ops.size()); 2576 UniqueSCEVs.InsertNode(S, IP); 2577 return S; 2578 } 2579 2580 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2581 const SCEV *RHS) { 2582 // ~smax(~x, ~y) == smin(x, y). 2583 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2584 } 2585 2586 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2587 const SCEV *RHS) { 2588 // ~umax(~x, ~y) == umin(x, y) 2589 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2590 } 2591 2592 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 2593 // If we have DataLayout, we can bypass creating a target-independent 2594 // constant expression and then folding it back into a ConstantInt. 2595 // This is just a compile-time optimization. 2596 if (TD) 2597 return getConstant(IntTy, TD->getTypeAllocSize(AllocTy)); 2598 2599 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2600 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2601 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2602 C = Folded; 2603 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2604 assert(Ty == IntTy && "Effective SCEV type doesn't match"); 2605 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2606 } 2607 2608 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 2609 StructType *STy, 2610 unsigned FieldNo) { 2611 // If we have DataLayout, we can bypass creating a target-independent 2612 // constant expression and then folding it back into a ConstantInt. 2613 // This is just a compile-time optimization. 2614 if (TD) { 2615 return getConstant(IntTy, 2616 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2617 } 2618 2619 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2620 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2621 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2622 C = Folded; 2623 2624 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2625 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2626 } 2627 2628 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2629 // Don't attempt to do anything other than create a SCEVUnknown object 2630 // here. createSCEV only calls getUnknown after checking for all other 2631 // interesting possibilities, and any other code that calls getUnknown 2632 // is doing so in order to hide a value from SCEV canonicalization. 2633 2634 FoldingSetNodeID ID; 2635 ID.AddInteger(scUnknown); 2636 ID.AddPointer(V); 2637 void *IP = 0; 2638 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2639 assert(cast<SCEVUnknown>(S)->getValue() == V && 2640 "Stale SCEVUnknown in uniquing map!"); 2641 return S; 2642 } 2643 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2644 FirstUnknown); 2645 FirstUnknown = cast<SCEVUnknown>(S); 2646 UniqueSCEVs.InsertNode(S, IP); 2647 return S; 2648 } 2649 2650 //===----------------------------------------------------------------------===// 2651 // Basic SCEV Analysis and PHI Idiom Recognition Code 2652 // 2653 2654 /// isSCEVable - Test if values of the given type are analyzable within 2655 /// the SCEV framework. This primarily includes integer types, and it 2656 /// can optionally include pointer types if the ScalarEvolution class 2657 /// has access to target-specific information. 2658 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2659 // Integers and pointers are always SCEVable. 2660 return Ty->isIntegerTy() || Ty->isPointerTy(); 2661 } 2662 2663 /// getTypeSizeInBits - Return the size in bits of the specified type, 2664 /// for which isSCEVable must return true. 2665 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2666 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2667 2668 // If we have a DataLayout, use it! 2669 if (TD) 2670 return TD->getTypeSizeInBits(Ty); 2671 2672 // Integer types have fixed sizes. 2673 if (Ty->isIntegerTy()) 2674 return Ty->getPrimitiveSizeInBits(); 2675 2676 // The only other support type is pointer. Without DataLayout, conservatively 2677 // assume pointers are 64-bit. 2678 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2679 return 64; 2680 } 2681 2682 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2683 /// the given type and which represents how SCEV will treat the given 2684 /// type, for which isSCEVable must return true. For pointer types, 2685 /// this is the pointer-sized integer type. 2686 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2687 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2688 2689 if (Ty->isIntegerTy()) { 2690 return Ty; 2691 } 2692 2693 // The only other support type is pointer. 2694 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2695 2696 if (TD) 2697 return TD->getIntPtrType(Ty); 2698 2699 // Without DataLayout, conservatively assume pointers are 64-bit. 2700 return Type::getInt64Ty(getContext()); 2701 } 2702 2703 const SCEV *ScalarEvolution::getCouldNotCompute() { 2704 return &CouldNotCompute; 2705 } 2706 2707 namespace { 2708 // Helper class working with SCEVTraversal to figure out if a SCEV contains 2709 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 2710 // is set iff if find such SCEVUnknown. 2711 // 2712 struct FindInvalidSCEVUnknown { 2713 bool FindOne; 2714 FindInvalidSCEVUnknown() { FindOne = false; } 2715 bool follow(const SCEV *S) { 2716 switch (S->getSCEVType()) { 2717 case scConstant: 2718 return false; 2719 case scUnknown: 2720 if (!cast<SCEVUnknown>(S)->getValue()) 2721 FindOne = true; 2722 return false; 2723 default: 2724 return true; 2725 } 2726 } 2727 bool isDone() const { return FindOne; } 2728 }; 2729 } 2730 2731 bool ScalarEvolution::checkValidity(const SCEV *S) const { 2732 FindInvalidSCEVUnknown F; 2733 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 2734 ST.visitAll(S); 2735 2736 return !F.FindOne; 2737 } 2738 2739 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2740 /// expression and create a new one. 2741 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2742 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2743 2744 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 2745 if (I != ValueExprMap.end()) { 2746 const SCEV *S = I->second; 2747 if (checkValidity(S)) 2748 return S; 2749 else 2750 ValueExprMap.erase(I); 2751 } 2752 const SCEV *S = createSCEV(V); 2753 2754 // The process of creating a SCEV for V may have caused other SCEVs 2755 // to have been created, so it's necessary to insert the new entry 2756 // from scratch, rather than trying to remember the insert position 2757 // above. 2758 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2759 return S; 2760 } 2761 2762 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2763 /// 2764 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2765 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2766 return getConstant( 2767 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2768 2769 Type *Ty = V->getType(); 2770 Ty = getEffectiveSCEVType(Ty); 2771 return getMulExpr(V, 2772 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2773 } 2774 2775 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2776 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2777 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2778 return getConstant( 2779 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2780 2781 Type *Ty = V->getType(); 2782 Ty = getEffectiveSCEVType(Ty); 2783 const SCEV *AllOnes = 2784 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2785 return getMinusSCEV(AllOnes, V); 2786 } 2787 2788 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2789 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2790 SCEV::NoWrapFlags Flags) { 2791 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2792 2793 // Fast path: X - X --> 0. 2794 if (LHS == RHS) 2795 return getConstant(LHS->getType(), 0); 2796 2797 // X - Y --> X + -Y 2798 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2799 } 2800 2801 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2802 /// input value to the specified type. If the type must be extended, it is zero 2803 /// extended. 2804 const SCEV * 2805 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2806 Type *SrcTy = V->getType(); 2807 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2808 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2809 "Cannot truncate or zero extend with non-integer arguments!"); 2810 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2811 return V; // No conversion 2812 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2813 return getTruncateExpr(V, Ty); 2814 return getZeroExtendExpr(V, Ty); 2815 } 2816 2817 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2818 /// input value to the specified type. If the type must be extended, it is sign 2819 /// extended. 2820 const SCEV * 2821 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2822 Type *Ty) { 2823 Type *SrcTy = V->getType(); 2824 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2825 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2826 "Cannot truncate or zero extend with non-integer arguments!"); 2827 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2828 return V; // No conversion 2829 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2830 return getTruncateExpr(V, Ty); 2831 return getSignExtendExpr(V, Ty); 2832 } 2833 2834 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2835 /// input value to the specified type. If the type must be extended, it is zero 2836 /// extended. The conversion must not be narrowing. 2837 const SCEV * 2838 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2839 Type *SrcTy = V->getType(); 2840 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2841 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2842 "Cannot noop or zero extend with non-integer arguments!"); 2843 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2844 "getNoopOrZeroExtend cannot truncate!"); 2845 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2846 return V; // No conversion 2847 return getZeroExtendExpr(V, Ty); 2848 } 2849 2850 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2851 /// input value to the specified type. If the type must be extended, it is sign 2852 /// extended. The conversion must not be narrowing. 2853 const SCEV * 2854 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2855 Type *SrcTy = V->getType(); 2856 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2857 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2858 "Cannot noop or sign extend with non-integer arguments!"); 2859 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2860 "getNoopOrSignExtend cannot truncate!"); 2861 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2862 return V; // No conversion 2863 return getSignExtendExpr(V, Ty); 2864 } 2865 2866 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2867 /// the input value to the specified type. If the type must be extended, 2868 /// it is extended with unspecified bits. The conversion must not be 2869 /// narrowing. 2870 const SCEV * 2871 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2872 Type *SrcTy = V->getType(); 2873 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2874 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2875 "Cannot noop or any extend with non-integer arguments!"); 2876 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2877 "getNoopOrAnyExtend cannot truncate!"); 2878 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2879 return V; // No conversion 2880 return getAnyExtendExpr(V, Ty); 2881 } 2882 2883 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2884 /// input value to the specified type. The conversion must not be widening. 2885 const SCEV * 2886 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2887 Type *SrcTy = V->getType(); 2888 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2889 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2890 "Cannot truncate or noop with non-integer arguments!"); 2891 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2892 "getTruncateOrNoop cannot extend!"); 2893 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2894 return V; // No conversion 2895 return getTruncateExpr(V, Ty); 2896 } 2897 2898 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2899 /// the types using zero-extension, and then perform a umax operation 2900 /// with them. 2901 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2902 const SCEV *RHS) { 2903 const SCEV *PromotedLHS = LHS; 2904 const SCEV *PromotedRHS = RHS; 2905 2906 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2907 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2908 else 2909 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2910 2911 return getUMaxExpr(PromotedLHS, PromotedRHS); 2912 } 2913 2914 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2915 /// the types using zero-extension, and then perform a umin operation 2916 /// with them. 2917 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2918 const SCEV *RHS) { 2919 const SCEV *PromotedLHS = LHS; 2920 const SCEV *PromotedRHS = RHS; 2921 2922 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2923 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2924 else 2925 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2926 2927 return getUMinExpr(PromotedLHS, PromotedRHS); 2928 } 2929 2930 /// getPointerBase - Transitively follow the chain of pointer-type operands 2931 /// until reaching a SCEV that does not have a single pointer operand. This 2932 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 2933 /// but corner cases do exist. 2934 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 2935 // A pointer operand may evaluate to a nonpointer expression, such as null. 2936 if (!V->getType()->isPointerTy()) 2937 return V; 2938 2939 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 2940 return getPointerBase(Cast->getOperand()); 2941 } 2942 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 2943 const SCEV *PtrOp = 0; 2944 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 2945 I != E; ++I) { 2946 if ((*I)->getType()->isPointerTy()) { 2947 // Cannot find the base of an expression with multiple pointer operands. 2948 if (PtrOp) 2949 return V; 2950 PtrOp = *I; 2951 } 2952 } 2953 if (!PtrOp) 2954 return V; 2955 return getPointerBase(PtrOp); 2956 } 2957 return V; 2958 } 2959 2960 /// PushDefUseChildren - Push users of the given Instruction 2961 /// onto the given Worklist. 2962 static void 2963 PushDefUseChildren(Instruction *I, 2964 SmallVectorImpl<Instruction *> &Worklist) { 2965 // Push the def-use children onto the Worklist stack. 2966 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2967 UI != UE; ++UI) 2968 Worklist.push_back(cast<Instruction>(*UI)); 2969 } 2970 2971 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2972 /// instructions that depend on the given instruction and removes them from 2973 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2974 /// resolution. 2975 void 2976 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2977 SmallVector<Instruction *, 16> Worklist; 2978 PushDefUseChildren(PN, Worklist); 2979 2980 SmallPtrSet<Instruction *, 8> Visited; 2981 Visited.insert(PN); 2982 while (!Worklist.empty()) { 2983 Instruction *I = Worklist.pop_back_val(); 2984 if (!Visited.insert(I)) continue; 2985 2986 ValueExprMapType::iterator It = 2987 ValueExprMap.find_as(static_cast<Value *>(I)); 2988 if (It != ValueExprMap.end()) { 2989 const SCEV *Old = It->second; 2990 2991 // Short-circuit the def-use traversal if the symbolic name 2992 // ceases to appear in expressions. 2993 if (Old != SymName && !hasOperand(Old, SymName)) 2994 continue; 2995 2996 // SCEVUnknown for a PHI either means that it has an unrecognized 2997 // structure, it's a PHI that's in the progress of being computed 2998 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2999 // additional loop trip count information isn't going to change anything. 3000 // In the second case, createNodeForPHI will perform the necessary 3001 // updates on its own when it gets to that point. In the third, we do 3002 // want to forget the SCEVUnknown. 3003 if (!isa<PHINode>(I) || 3004 !isa<SCEVUnknown>(Old) || 3005 (I != PN && Old == SymName)) { 3006 forgetMemoizedResults(Old); 3007 ValueExprMap.erase(It); 3008 } 3009 } 3010 3011 PushDefUseChildren(I, Worklist); 3012 } 3013 } 3014 3015 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3016 /// a loop header, making it a potential recurrence, or it doesn't. 3017 /// 3018 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3019 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3020 if (L->getHeader() == PN->getParent()) { 3021 // The loop may have multiple entrances or multiple exits; we can analyze 3022 // this phi as an addrec if it has a unique entry value and a unique 3023 // backedge value. 3024 Value *BEValueV = 0, *StartValueV = 0; 3025 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3026 Value *V = PN->getIncomingValue(i); 3027 if (L->contains(PN->getIncomingBlock(i))) { 3028 if (!BEValueV) { 3029 BEValueV = V; 3030 } else if (BEValueV != V) { 3031 BEValueV = 0; 3032 break; 3033 } 3034 } else if (!StartValueV) { 3035 StartValueV = V; 3036 } else if (StartValueV != V) { 3037 StartValueV = 0; 3038 break; 3039 } 3040 } 3041 if (BEValueV && StartValueV) { 3042 // While we are analyzing this PHI node, handle its value symbolically. 3043 const SCEV *SymbolicName = getUnknown(PN); 3044 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3045 "PHI node already processed?"); 3046 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3047 3048 // Using this symbolic name for the PHI, analyze the value coming around 3049 // the back-edge. 3050 const SCEV *BEValue = getSCEV(BEValueV); 3051 3052 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3053 // has a special value for the first iteration of the loop. 3054 3055 // If the value coming around the backedge is an add with the symbolic 3056 // value we just inserted, then we found a simple induction variable! 3057 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3058 // If there is a single occurrence of the symbolic value, replace it 3059 // with a recurrence. 3060 unsigned FoundIndex = Add->getNumOperands(); 3061 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3062 if (Add->getOperand(i) == SymbolicName) 3063 if (FoundIndex == e) { 3064 FoundIndex = i; 3065 break; 3066 } 3067 3068 if (FoundIndex != Add->getNumOperands()) { 3069 // Create an add with everything but the specified operand. 3070 SmallVector<const SCEV *, 8> Ops; 3071 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3072 if (i != FoundIndex) 3073 Ops.push_back(Add->getOperand(i)); 3074 const SCEV *Accum = getAddExpr(Ops); 3075 3076 // This is not a valid addrec if the step amount is varying each 3077 // loop iteration, but is not itself an addrec in this loop. 3078 if (isLoopInvariant(Accum, L) || 3079 (isa<SCEVAddRecExpr>(Accum) && 3080 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3081 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3082 3083 // If the increment doesn't overflow, then neither the addrec nor 3084 // the post-increment will overflow. 3085 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3086 if (OBO->hasNoUnsignedWrap()) 3087 Flags = setFlags(Flags, SCEV::FlagNUW); 3088 if (OBO->hasNoSignedWrap()) 3089 Flags = setFlags(Flags, SCEV::FlagNSW); 3090 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3091 // If the increment is an inbounds GEP, then we know the address 3092 // space cannot be wrapped around. We cannot make any guarantee 3093 // about signed or unsigned overflow because pointers are 3094 // unsigned but we may have a negative index from the base 3095 // pointer. We can guarantee that no unsigned wrap occurs if the 3096 // indices form a positive value. 3097 if (GEP->isInBounds()) { 3098 Flags = setFlags(Flags, SCEV::FlagNW); 3099 3100 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3101 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3102 Flags = setFlags(Flags, SCEV::FlagNUW); 3103 } 3104 } else if (const SubOperator *OBO = 3105 dyn_cast<SubOperator>(BEValueV)) { 3106 if (OBO->hasNoUnsignedWrap()) 3107 Flags = setFlags(Flags, SCEV::FlagNUW); 3108 if (OBO->hasNoSignedWrap()) 3109 Flags = setFlags(Flags, SCEV::FlagNSW); 3110 } 3111 3112 const SCEV *StartVal = getSCEV(StartValueV); 3113 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3114 3115 // Since the no-wrap flags are on the increment, they apply to the 3116 // post-incremented value as well. 3117 if (isLoopInvariant(Accum, L)) 3118 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3119 Accum, L, Flags); 3120 3121 // Okay, for the entire analysis of this edge we assumed the PHI 3122 // to be symbolic. We now need to go back and purge all of the 3123 // entries for the scalars that use the symbolic expression. 3124 ForgetSymbolicName(PN, SymbolicName); 3125 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3126 return PHISCEV; 3127 } 3128 } 3129 } else if (const SCEVAddRecExpr *AddRec = 3130 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3131 // Otherwise, this could be a loop like this: 3132 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3133 // In this case, j = {1,+,1} and BEValue is j. 3134 // Because the other in-value of i (0) fits the evolution of BEValue 3135 // i really is an addrec evolution. 3136 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3137 const SCEV *StartVal = getSCEV(StartValueV); 3138 3139 // If StartVal = j.start - j.stride, we can use StartVal as the 3140 // initial step of the addrec evolution. 3141 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3142 AddRec->getOperand(1))) { 3143 // FIXME: For constant StartVal, we should be able to infer 3144 // no-wrap flags. 3145 const SCEV *PHISCEV = 3146 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3147 SCEV::FlagAnyWrap); 3148 3149 // Okay, for the entire analysis of this edge we assumed the PHI 3150 // to be symbolic. We now need to go back and purge all of the 3151 // entries for the scalars that use the symbolic expression. 3152 ForgetSymbolicName(PN, SymbolicName); 3153 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3154 return PHISCEV; 3155 } 3156 } 3157 } 3158 } 3159 } 3160 3161 // If the PHI has a single incoming value, follow that value, unless the 3162 // PHI's incoming blocks are in a different loop, in which case doing so 3163 // risks breaking LCSSA form. Instcombine would normally zap these, but 3164 // it doesn't have DominatorTree information, so it may miss cases. 3165 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT)) 3166 if (LI->replacementPreservesLCSSAForm(PN, V)) 3167 return getSCEV(V); 3168 3169 // If it's not a loop phi, we can't handle it yet. 3170 return getUnknown(PN); 3171 } 3172 3173 /// createNodeForGEP - Expand GEP instructions into add and multiply 3174 /// operations. This allows them to be analyzed by regular SCEV code. 3175 /// 3176 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3177 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3178 Value *Base = GEP->getOperand(0); 3179 // Don't attempt to analyze GEPs over unsized objects. 3180 if (!Base->getType()->getPointerElementType()->isSized()) 3181 return getUnknown(GEP); 3182 3183 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3184 // Add expression, because the Instruction may be guarded by control flow 3185 // and the no-overflow bits may not be valid for the expression in any 3186 // context. 3187 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3188 3189 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3190 gep_type_iterator GTI = gep_type_begin(GEP); 3191 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 3192 E = GEP->op_end(); 3193 I != E; ++I) { 3194 Value *Index = *I; 3195 // Compute the (potentially symbolic) offset in bytes for this index. 3196 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3197 // For a struct, add the member offset. 3198 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3199 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3200 3201 // Add the field offset to the running total offset. 3202 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3203 } else { 3204 // For an array, add the element offset, explicitly scaled. 3205 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI); 3206 const SCEV *IndexS = getSCEV(Index); 3207 // Getelementptr indices are signed. 3208 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3209 3210 // Multiply the index by the element size to compute the element offset. 3211 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap); 3212 3213 // Add the element offset to the running total offset. 3214 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3215 } 3216 } 3217 3218 // Get the SCEV for the GEP base. 3219 const SCEV *BaseS = getSCEV(Base); 3220 3221 // Add the total offset from all the GEP indices to the base. 3222 return getAddExpr(BaseS, TotalOffset, Wrap); 3223 } 3224 3225 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3226 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3227 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3228 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3229 uint32_t 3230 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3231 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3232 return C->getValue()->getValue().countTrailingZeros(); 3233 3234 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3235 return std::min(GetMinTrailingZeros(T->getOperand()), 3236 (uint32_t)getTypeSizeInBits(T->getType())); 3237 3238 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3239 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3240 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3241 getTypeSizeInBits(E->getType()) : OpRes; 3242 } 3243 3244 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3245 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3246 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3247 getTypeSizeInBits(E->getType()) : OpRes; 3248 } 3249 3250 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3251 // The result is the min of all operands results. 3252 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3253 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3254 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3255 return MinOpRes; 3256 } 3257 3258 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3259 // The result is the sum of all operands results. 3260 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3261 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3262 for (unsigned i = 1, e = M->getNumOperands(); 3263 SumOpRes != BitWidth && i != e; ++i) 3264 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3265 BitWidth); 3266 return SumOpRes; 3267 } 3268 3269 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3270 // The result is the min of all operands results. 3271 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3272 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3273 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3274 return MinOpRes; 3275 } 3276 3277 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3278 // The result is the min of all operands results. 3279 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3280 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3281 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3282 return MinOpRes; 3283 } 3284 3285 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3286 // The result is the min of all operands results. 3287 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3288 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3289 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3290 return MinOpRes; 3291 } 3292 3293 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3294 // For a SCEVUnknown, ask ValueTracking. 3295 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3296 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3297 ComputeMaskedBits(U->getValue(), Zeros, Ones); 3298 return Zeros.countTrailingOnes(); 3299 } 3300 3301 // SCEVUDivExpr 3302 return 0; 3303 } 3304 3305 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3306 /// 3307 ConstantRange 3308 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3309 // See if we've computed this range already. 3310 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3311 if (I != UnsignedRanges.end()) 3312 return I->second; 3313 3314 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3315 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3316 3317 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3318 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3319 3320 // If the value has known zeros, the maximum unsigned value will have those 3321 // known zeros as well. 3322 uint32_t TZ = GetMinTrailingZeros(S); 3323 if (TZ != 0) 3324 ConservativeResult = 3325 ConstantRange(APInt::getMinValue(BitWidth), 3326 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3327 3328 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3329 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3330 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3331 X = X.add(getUnsignedRange(Add->getOperand(i))); 3332 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3333 } 3334 3335 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3336 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3337 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3338 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3339 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3340 } 3341 3342 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3343 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3344 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3345 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3346 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3347 } 3348 3349 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3350 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3351 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3352 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3353 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3354 } 3355 3356 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3357 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3358 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3359 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3360 } 3361 3362 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3363 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3364 return setUnsignedRange(ZExt, 3365 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3366 } 3367 3368 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3369 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3370 return setUnsignedRange(SExt, 3371 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3372 } 3373 3374 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3375 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3376 return setUnsignedRange(Trunc, 3377 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3378 } 3379 3380 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3381 // If there's no unsigned wrap, the value will never be less than its 3382 // initial value. 3383 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3384 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3385 if (!C->getValue()->isZero()) 3386 ConservativeResult = 3387 ConservativeResult.intersectWith( 3388 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3389 3390 // TODO: non-affine addrec 3391 if (AddRec->isAffine()) { 3392 Type *Ty = AddRec->getType(); 3393 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3394 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3395 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3396 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3397 3398 const SCEV *Start = AddRec->getStart(); 3399 const SCEV *Step = AddRec->getStepRecurrence(*this); 3400 3401 ConstantRange StartRange = getUnsignedRange(Start); 3402 ConstantRange StepRange = getSignedRange(Step); 3403 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3404 ConstantRange EndRange = 3405 StartRange.add(MaxBECountRange.multiply(StepRange)); 3406 3407 // Check for overflow. This must be done with ConstantRange arithmetic 3408 // because we could be called from within the ScalarEvolution overflow 3409 // checking code. 3410 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3411 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3412 ConstantRange ExtMaxBECountRange = 3413 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3414 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3415 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3416 ExtEndRange) 3417 return setUnsignedRange(AddRec, ConservativeResult); 3418 3419 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3420 EndRange.getUnsignedMin()); 3421 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3422 EndRange.getUnsignedMax()); 3423 if (Min.isMinValue() && Max.isMaxValue()) 3424 return setUnsignedRange(AddRec, ConservativeResult); 3425 return setUnsignedRange(AddRec, 3426 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3427 } 3428 } 3429 3430 return setUnsignedRange(AddRec, ConservativeResult); 3431 } 3432 3433 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3434 // For a SCEVUnknown, ask ValueTracking. 3435 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3436 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD); 3437 if (Ones == ~Zeros + 1) 3438 return setUnsignedRange(U, ConservativeResult); 3439 return setUnsignedRange(U, 3440 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3441 } 3442 3443 return setUnsignedRange(S, ConservativeResult); 3444 } 3445 3446 /// getSignedRange - Determine the signed range for a particular SCEV. 3447 /// 3448 ConstantRange 3449 ScalarEvolution::getSignedRange(const SCEV *S) { 3450 // See if we've computed this range already. 3451 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3452 if (I != SignedRanges.end()) 3453 return I->second; 3454 3455 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3456 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3457 3458 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3459 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3460 3461 // If the value has known zeros, the maximum signed value will have those 3462 // known zeros as well. 3463 uint32_t TZ = GetMinTrailingZeros(S); 3464 if (TZ != 0) 3465 ConservativeResult = 3466 ConstantRange(APInt::getSignedMinValue(BitWidth), 3467 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3468 3469 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3470 ConstantRange X = getSignedRange(Add->getOperand(0)); 3471 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3472 X = X.add(getSignedRange(Add->getOperand(i))); 3473 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3474 } 3475 3476 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3477 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3478 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3479 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3480 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3481 } 3482 3483 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3484 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3485 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3486 X = X.smax(getSignedRange(SMax->getOperand(i))); 3487 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3488 } 3489 3490 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3491 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3492 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3493 X = X.umax(getSignedRange(UMax->getOperand(i))); 3494 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3495 } 3496 3497 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3498 ConstantRange X = getSignedRange(UDiv->getLHS()); 3499 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3500 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3501 } 3502 3503 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3504 ConstantRange X = getSignedRange(ZExt->getOperand()); 3505 return setSignedRange(ZExt, 3506 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3507 } 3508 3509 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3510 ConstantRange X = getSignedRange(SExt->getOperand()); 3511 return setSignedRange(SExt, 3512 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3513 } 3514 3515 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3516 ConstantRange X = getSignedRange(Trunc->getOperand()); 3517 return setSignedRange(Trunc, 3518 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3519 } 3520 3521 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3522 // If there's no signed wrap, and all the operands have the same sign or 3523 // zero, the value won't ever change sign. 3524 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3525 bool AllNonNeg = true; 3526 bool AllNonPos = true; 3527 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3528 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3529 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3530 } 3531 if (AllNonNeg) 3532 ConservativeResult = ConservativeResult.intersectWith( 3533 ConstantRange(APInt(BitWidth, 0), 3534 APInt::getSignedMinValue(BitWidth))); 3535 else if (AllNonPos) 3536 ConservativeResult = ConservativeResult.intersectWith( 3537 ConstantRange(APInt::getSignedMinValue(BitWidth), 3538 APInt(BitWidth, 1))); 3539 } 3540 3541 // TODO: non-affine addrec 3542 if (AddRec->isAffine()) { 3543 Type *Ty = AddRec->getType(); 3544 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3545 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3546 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3547 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3548 3549 const SCEV *Start = AddRec->getStart(); 3550 const SCEV *Step = AddRec->getStepRecurrence(*this); 3551 3552 ConstantRange StartRange = getSignedRange(Start); 3553 ConstantRange StepRange = getSignedRange(Step); 3554 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3555 ConstantRange EndRange = 3556 StartRange.add(MaxBECountRange.multiply(StepRange)); 3557 3558 // Check for overflow. This must be done with ConstantRange arithmetic 3559 // because we could be called from within the ScalarEvolution overflow 3560 // checking code. 3561 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3562 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3563 ConstantRange ExtMaxBECountRange = 3564 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3565 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3566 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3567 ExtEndRange) 3568 return setSignedRange(AddRec, ConservativeResult); 3569 3570 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3571 EndRange.getSignedMin()); 3572 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3573 EndRange.getSignedMax()); 3574 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3575 return setSignedRange(AddRec, ConservativeResult); 3576 return setSignedRange(AddRec, 3577 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3578 } 3579 } 3580 3581 return setSignedRange(AddRec, ConservativeResult); 3582 } 3583 3584 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3585 // For a SCEVUnknown, ask ValueTracking. 3586 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3587 return setSignedRange(U, ConservativeResult); 3588 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3589 if (NS <= 1) 3590 return setSignedRange(U, ConservativeResult); 3591 return setSignedRange(U, ConservativeResult.intersectWith( 3592 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3593 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3594 } 3595 3596 return setSignedRange(S, ConservativeResult); 3597 } 3598 3599 /// createSCEV - We know that there is no SCEV for the specified value. 3600 /// Analyze the expression. 3601 /// 3602 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3603 if (!isSCEVable(V->getType())) 3604 return getUnknown(V); 3605 3606 unsigned Opcode = Instruction::UserOp1; 3607 if (Instruction *I = dyn_cast<Instruction>(V)) { 3608 Opcode = I->getOpcode(); 3609 3610 // Don't attempt to analyze instructions in blocks that aren't 3611 // reachable. Such instructions don't matter, and they aren't required 3612 // to obey basic rules for definitions dominating uses which this 3613 // analysis depends on. 3614 if (!DT->isReachableFromEntry(I->getParent())) 3615 return getUnknown(V); 3616 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3617 Opcode = CE->getOpcode(); 3618 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3619 return getConstant(CI); 3620 else if (isa<ConstantPointerNull>(V)) 3621 return getConstant(V->getType(), 0); 3622 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3623 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3624 else 3625 return getUnknown(V); 3626 3627 Operator *U = cast<Operator>(V); 3628 switch (Opcode) { 3629 case Instruction::Add: { 3630 // The simple thing to do would be to just call getSCEV on both operands 3631 // and call getAddExpr with the result. However if we're looking at a 3632 // bunch of things all added together, this can be quite inefficient, 3633 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3634 // Instead, gather up all the operands and make a single getAddExpr call. 3635 // LLVM IR canonical form means we need only traverse the left operands. 3636 // 3637 // Don't apply this instruction's NSW or NUW flags to the new 3638 // expression. The instruction may be guarded by control flow that the 3639 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3640 // mapped to the same SCEV expression, and it would be incorrect to transfer 3641 // NSW/NUW semantics to those operations. 3642 SmallVector<const SCEV *, 4> AddOps; 3643 AddOps.push_back(getSCEV(U->getOperand(1))); 3644 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3645 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3646 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3647 break; 3648 U = cast<Operator>(Op); 3649 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3650 if (Opcode == Instruction::Sub) 3651 AddOps.push_back(getNegativeSCEV(Op1)); 3652 else 3653 AddOps.push_back(Op1); 3654 } 3655 AddOps.push_back(getSCEV(U->getOperand(0))); 3656 return getAddExpr(AddOps); 3657 } 3658 case Instruction::Mul: { 3659 // Don't transfer NSW/NUW for the same reason as AddExpr. 3660 SmallVector<const SCEV *, 4> MulOps; 3661 MulOps.push_back(getSCEV(U->getOperand(1))); 3662 for (Value *Op = U->getOperand(0); 3663 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3664 Op = U->getOperand(0)) { 3665 U = cast<Operator>(Op); 3666 MulOps.push_back(getSCEV(U->getOperand(1))); 3667 } 3668 MulOps.push_back(getSCEV(U->getOperand(0))); 3669 return getMulExpr(MulOps); 3670 } 3671 case Instruction::UDiv: 3672 return getUDivExpr(getSCEV(U->getOperand(0)), 3673 getSCEV(U->getOperand(1))); 3674 case Instruction::Sub: 3675 return getMinusSCEV(getSCEV(U->getOperand(0)), 3676 getSCEV(U->getOperand(1))); 3677 case Instruction::And: 3678 // For an expression like x&255 that merely masks off the high bits, 3679 // use zext(trunc(x)) as the SCEV expression. 3680 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3681 if (CI->isNullValue()) 3682 return getSCEV(U->getOperand(1)); 3683 if (CI->isAllOnesValue()) 3684 return getSCEV(U->getOperand(0)); 3685 const APInt &A = CI->getValue(); 3686 3687 // Instcombine's ShrinkDemandedConstant may strip bits out of 3688 // constants, obscuring what would otherwise be a low-bits mask. 3689 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3690 // knew about to reconstruct a low-bits mask value. 3691 unsigned LZ = A.countLeadingZeros(); 3692 unsigned BitWidth = A.getBitWidth(); 3693 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3694 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD); 3695 3696 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3697 3698 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3699 return 3700 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3701 IntegerType::get(getContext(), BitWidth - LZ)), 3702 U->getType()); 3703 } 3704 break; 3705 3706 case Instruction::Or: 3707 // If the RHS of the Or is a constant, we may have something like: 3708 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3709 // optimizations will transparently handle this case. 3710 // 3711 // In order for this transformation to be safe, the LHS must be of the 3712 // form X*(2^n) and the Or constant must be less than 2^n. 3713 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3714 const SCEV *LHS = getSCEV(U->getOperand(0)); 3715 const APInt &CIVal = CI->getValue(); 3716 if (GetMinTrailingZeros(LHS) >= 3717 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3718 // Build a plain add SCEV. 3719 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3720 // If the LHS of the add was an addrec and it has no-wrap flags, 3721 // transfer the no-wrap flags, since an or won't introduce a wrap. 3722 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3723 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3724 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3725 OldAR->getNoWrapFlags()); 3726 } 3727 return S; 3728 } 3729 } 3730 break; 3731 case Instruction::Xor: 3732 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3733 // If the RHS of the xor is a signbit, then this is just an add. 3734 // Instcombine turns add of signbit into xor as a strength reduction step. 3735 if (CI->getValue().isSignBit()) 3736 return getAddExpr(getSCEV(U->getOperand(0)), 3737 getSCEV(U->getOperand(1))); 3738 3739 // If the RHS of xor is -1, then this is a not operation. 3740 if (CI->isAllOnesValue()) 3741 return getNotSCEV(getSCEV(U->getOperand(0))); 3742 3743 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3744 // This is a variant of the check for xor with -1, and it handles 3745 // the case where instcombine has trimmed non-demanded bits out 3746 // of an xor with -1. 3747 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3748 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3749 if (BO->getOpcode() == Instruction::And && 3750 LCI->getValue() == CI->getValue()) 3751 if (const SCEVZeroExtendExpr *Z = 3752 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3753 Type *UTy = U->getType(); 3754 const SCEV *Z0 = Z->getOperand(); 3755 Type *Z0Ty = Z0->getType(); 3756 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3757 3758 // If C is a low-bits mask, the zero extend is serving to 3759 // mask off the high bits. Complement the operand and 3760 // re-apply the zext. 3761 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3762 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3763 3764 // If C is a single bit, it may be in the sign-bit position 3765 // before the zero-extend. In this case, represent the xor 3766 // using an add, which is equivalent, and re-apply the zext. 3767 APInt Trunc = CI->getValue().trunc(Z0TySize); 3768 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3769 Trunc.isSignBit()) 3770 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3771 UTy); 3772 } 3773 } 3774 break; 3775 3776 case Instruction::Shl: 3777 // Turn shift left of a constant amount into a multiply. 3778 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3779 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3780 3781 // If the shift count is not less than the bitwidth, the result of 3782 // the shift is undefined. Don't try to analyze it, because the 3783 // resolution chosen here may differ from the resolution chosen in 3784 // other parts of the compiler. 3785 if (SA->getValue().uge(BitWidth)) 3786 break; 3787 3788 Constant *X = ConstantInt::get(getContext(), 3789 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3790 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3791 } 3792 break; 3793 3794 case Instruction::LShr: 3795 // Turn logical shift right of a constant into a unsigned divide. 3796 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3797 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3798 3799 // If the shift count is not less than the bitwidth, the result of 3800 // the shift is undefined. Don't try to analyze it, because the 3801 // resolution chosen here may differ from the resolution chosen in 3802 // other parts of the compiler. 3803 if (SA->getValue().uge(BitWidth)) 3804 break; 3805 3806 Constant *X = ConstantInt::get(getContext(), 3807 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3808 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3809 } 3810 break; 3811 3812 case Instruction::AShr: 3813 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3814 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3815 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3816 if (L->getOpcode() == Instruction::Shl && 3817 L->getOperand(1) == U->getOperand(1)) { 3818 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3819 3820 // If the shift count is not less than the bitwidth, the result of 3821 // the shift is undefined. Don't try to analyze it, because the 3822 // resolution chosen here may differ from the resolution chosen in 3823 // other parts of the compiler. 3824 if (CI->getValue().uge(BitWidth)) 3825 break; 3826 3827 uint64_t Amt = BitWidth - CI->getZExtValue(); 3828 if (Amt == BitWidth) 3829 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3830 return 3831 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3832 IntegerType::get(getContext(), 3833 Amt)), 3834 U->getType()); 3835 } 3836 break; 3837 3838 case Instruction::Trunc: 3839 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3840 3841 case Instruction::ZExt: 3842 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3843 3844 case Instruction::SExt: 3845 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3846 3847 case Instruction::BitCast: 3848 // BitCasts are no-op casts so we just eliminate the cast. 3849 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3850 return getSCEV(U->getOperand(0)); 3851 break; 3852 3853 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3854 // lead to pointer expressions which cannot safely be expanded to GEPs, 3855 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3856 // simplifying integer expressions. 3857 3858 case Instruction::GetElementPtr: 3859 return createNodeForGEP(cast<GEPOperator>(U)); 3860 3861 case Instruction::PHI: 3862 return createNodeForPHI(cast<PHINode>(U)); 3863 3864 case Instruction::Select: 3865 // This could be a smax or umax that was lowered earlier. 3866 // Try to recover it. 3867 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3868 Value *LHS = ICI->getOperand(0); 3869 Value *RHS = ICI->getOperand(1); 3870 switch (ICI->getPredicate()) { 3871 case ICmpInst::ICMP_SLT: 3872 case ICmpInst::ICMP_SLE: 3873 std::swap(LHS, RHS); 3874 // fall through 3875 case ICmpInst::ICMP_SGT: 3876 case ICmpInst::ICMP_SGE: 3877 // a >s b ? a+x : b+x -> smax(a, b)+x 3878 // a >s b ? b+x : a+x -> smin(a, b)+x 3879 if (LHS->getType() == U->getType()) { 3880 const SCEV *LS = getSCEV(LHS); 3881 const SCEV *RS = getSCEV(RHS); 3882 const SCEV *LA = getSCEV(U->getOperand(1)); 3883 const SCEV *RA = getSCEV(U->getOperand(2)); 3884 const SCEV *LDiff = getMinusSCEV(LA, LS); 3885 const SCEV *RDiff = getMinusSCEV(RA, RS); 3886 if (LDiff == RDiff) 3887 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3888 LDiff = getMinusSCEV(LA, RS); 3889 RDiff = getMinusSCEV(RA, LS); 3890 if (LDiff == RDiff) 3891 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3892 } 3893 break; 3894 case ICmpInst::ICMP_ULT: 3895 case ICmpInst::ICMP_ULE: 3896 std::swap(LHS, RHS); 3897 // fall through 3898 case ICmpInst::ICMP_UGT: 3899 case ICmpInst::ICMP_UGE: 3900 // a >u b ? a+x : b+x -> umax(a, b)+x 3901 // a >u b ? b+x : a+x -> umin(a, b)+x 3902 if (LHS->getType() == U->getType()) { 3903 const SCEV *LS = getSCEV(LHS); 3904 const SCEV *RS = getSCEV(RHS); 3905 const SCEV *LA = getSCEV(U->getOperand(1)); 3906 const SCEV *RA = getSCEV(U->getOperand(2)); 3907 const SCEV *LDiff = getMinusSCEV(LA, LS); 3908 const SCEV *RDiff = getMinusSCEV(RA, RS); 3909 if (LDiff == RDiff) 3910 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3911 LDiff = getMinusSCEV(LA, RS); 3912 RDiff = getMinusSCEV(RA, LS); 3913 if (LDiff == RDiff) 3914 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3915 } 3916 break; 3917 case ICmpInst::ICMP_NE: 3918 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3919 if (LHS->getType() == U->getType() && 3920 isa<ConstantInt>(RHS) && 3921 cast<ConstantInt>(RHS)->isZero()) { 3922 const SCEV *One = getConstant(LHS->getType(), 1); 3923 const SCEV *LS = getSCEV(LHS); 3924 const SCEV *LA = getSCEV(U->getOperand(1)); 3925 const SCEV *RA = getSCEV(U->getOperand(2)); 3926 const SCEV *LDiff = getMinusSCEV(LA, LS); 3927 const SCEV *RDiff = getMinusSCEV(RA, One); 3928 if (LDiff == RDiff) 3929 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3930 } 3931 break; 3932 case ICmpInst::ICMP_EQ: 3933 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3934 if (LHS->getType() == U->getType() && 3935 isa<ConstantInt>(RHS) && 3936 cast<ConstantInt>(RHS)->isZero()) { 3937 const SCEV *One = getConstant(LHS->getType(), 1); 3938 const SCEV *LS = getSCEV(LHS); 3939 const SCEV *LA = getSCEV(U->getOperand(1)); 3940 const SCEV *RA = getSCEV(U->getOperand(2)); 3941 const SCEV *LDiff = getMinusSCEV(LA, One); 3942 const SCEV *RDiff = getMinusSCEV(RA, LS); 3943 if (LDiff == RDiff) 3944 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3945 } 3946 break; 3947 default: 3948 break; 3949 } 3950 } 3951 3952 default: // We cannot analyze this expression. 3953 break; 3954 } 3955 3956 return getUnknown(V); 3957 } 3958 3959 3960 3961 //===----------------------------------------------------------------------===// 3962 // Iteration Count Computation Code 3963 // 3964 3965 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 3966 /// normal unsigned value. Returns 0 if the trip count is unknown or not 3967 /// constant. Will also return 0 if the maximum trip count is very large (>= 3968 /// 2^32). 3969 /// 3970 /// This "trip count" assumes that control exits via ExitingBlock. More 3971 /// precisely, it is the number of times that control may reach ExitingBlock 3972 /// before taking the branch. For loops with multiple exits, it may not be the 3973 /// number times that the loop header executes because the loop may exit 3974 /// prematurely via another branch. 3975 /// 3976 /// FIXME: We conservatively call getBackedgeTakenCount(L) instead of 3977 /// getExitCount(L, ExitingBlock) to compute a safe trip count considering all 3978 /// loop exits. getExitCount() may return an exact count for this branch 3979 /// assuming no-signed-wrap. The number of well-defined iterations may actually 3980 /// be higher than this trip count if this exit test is skipped and the loop 3981 /// exits via a different branch. Ideally, getExitCount() would know whether it 3982 /// depends on a NSW assumption, and we would only fall back to a conservative 3983 /// trip count in that case. 3984 unsigned ScalarEvolution:: 3985 getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) { 3986 const SCEVConstant *ExitCount = 3987 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L)); 3988 if (!ExitCount) 3989 return 0; 3990 3991 ConstantInt *ExitConst = ExitCount->getValue(); 3992 3993 // Guard against huge trip counts. 3994 if (ExitConst->getValue().getActiveBits() > 32) 3995 return 0; 3996 3997 // In case of integer overflow, this returns 0, which is correct. 3998 return ((unsigned)ExitConst->getZExtValue()) + 1; 3999 } 4000 4001 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4002 /// trip count of this loop as a normal unsigned value, if possible. This 4003 /// means that the actual trip count is always a multiple of the returned 4004 /// value (don't forget the trip count could very well be zero as well!). 4005 /// 4006 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4007 /// multiple of a constant (which is also the case if the trip count is simply 4008 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4009 /// if the trip count is very large (>= 2^32). 4010 /// 4011 /// As explained in the comments for getSmallConstantTripCount, this assumes 4012 /// that control exits the loop via ExitingBlock. 4013 unsigned ScalarEvolution:: 4014 getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) { 4015 const SCEV *ExitCount = getBackedgeTakenCount(L); 4016 if (ExitCount == getCouldNotCompute()) 4017 return 1; 4018 4019 // Get the trip count from the BE count by adding 1. 4020 const SCEV *TCMul = getAddExpr(ExitCount, 4021 getConstant(ExitCount->getType(), 1)); 4022 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4023 // to factor simple cases. 4024 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4025 TCMul = Mul->getOperand(0); 4026 4027 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4028 if (!MulC) 4029 return 1; 4030 4031 ConstantInt *Result = MulC->getValue(); 4032 4033 // Guard against huge trip counts (this requires checking 4034 // for zero to handle the case where the trip count == -1 and the 4035 // addition wraps). 4036 if (!Result || Result->getValue().getActiveBits() > 32 || 4037 Result->getValue().getActiveBits() == 0) 4038 return 1; 4039 4040 return (unsigned)Result->getZExtValue(); 4041 } 4042 4043 // getExitCount - Get the expression for the number of loop iterations for which 4044 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4045 // SCEVCouldNotCompute. 4046 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4047 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4048 } 4049 4050 /// getBackedgeTakenCount - If the specified loop has a predictable 4051 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4052 /// object. The backedge-taken count is the number of times the loop header 4053 /// will be branched to from within the loop. This is one less than the 4054 /// trip count of the loop, since it doesn't count the first iteration, 4055 /// when the header is branched to from outside the loop. 4056 /// 4057 /// Note that it is not valid to call this method on a loop without a 4058 /// loop-invariant backedge-taken count (see 4059 /// hasLoopInvariantBackedgeTakenCount). 4060 /// 4061 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4062 return getBackedgeTakenInfo(L).getExact(this); 4063 } 4064 4065 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4066 /// return the least SCEV value that is known never to be less than the 4067 /// actual backedge taken count. 4068 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4069 return getBackedgeTakenInfo(L).getMax(this); 4070 } 4071 4072 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4073 /// onto the given Worklist. 4074 static void 4075 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4076 BasicBlock *Header = L->getHeader(); 4077 4078 // Push all Loop-header PHIs onto the Worklist stack. 4079 for (BasicBlock::iterator I = Header->begin(); 4080 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4081 Worklist.push_back(PN); 4082 } 4083 4084 const ScalarEvolution::BackedgeTakenInfo & 4085 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4086 // Initially insert an invalid entry for this loop. If the insertion 4087 // succeeds, proceed to actually compute a backedge-taken count and 4088 // update the value. The temporary CouldNotCompute value tells SCEV 4089 // code elsewhere that it shouldn't attempt to request a new 4090 // backedge-taken count, which could result in infinite recursion. 4091 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4092 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4093 if (!Pair.second) 4094 return Pair.first->second; 4095 4096 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4097 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4098 // must be cleared in this scope. 4099 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4100 4101 if (Result.getExact(this) != getCouldNotCompute()) { 4102 assert(isLoopInvariant(Result.getExact(this), L) && 4103 isLoopInvariant(Result.getMax(this), L) && 4104 "Computed backedge-taken count isn't loop invariant for loop!"); 4105 ++NumTripCountsComputed; 4106 } 4107 else if (Result.getMax(this) == getCouldNotCompute() && 4108 isa<PHINode>(L->getHeader()->begin())) { 4109 // Only count loops that have phi nodes as not being computable. 4110 ++NumTripCountsNotComputed; 4111 } 4112 4113 // Now that we know more about the trip count for this loop, forget any 4114 // existing SCEV values for PHI nodes in this loop since they are only 4115 // conservative estimates made without the benefit of trip count 4116 // information. This is similar to the code in forgetLoop, except that 4117 // it handles SCEVUnknown PHI nodes specially. 4118 if (Result.hasAnyInfo()) { 4119 SmallVector<Instruction *, 16> Worklist; 4120 PushLoopPHIs(L, Worklist); 4121 4122 SmallPtrSet<Instruction *, 8> Visited; 4123 while (!Worklist.empty()) { 4124 Instruction *I = Worklist.pop_back_val(); 4125 if (!Visited.insert(I)) continue; 4126 4127 ValueExprMapType::iterator It = 4128 ValueExprMap.find_as(static_cast<Value *>(I)); 4129 if (It != ValueExprMap.end()) { 4130 const SCEV *Old = It->second; 4131 4132 // SCEVUnknown for a PHI either means that it has an unrecognized 4133 // structure, or it's a PHI that's in the progress of being computed 4134 // by createNodeForPHI. In the former case, additional loop trip 4135 // count information isn't going to change anything. In the later 4136 // case, createNodeForPHI will perform the necessary updates on its 4137 // own when it gets to that point. 4138 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4139 forgetMemoizedResults(Old); 4140 ValueExprMap.erase(It); 4141 } 4142 if (PHINode *PN = dyn_cast<PHINode>(I)) 4143 ConstantEvolutionLoopExitValue.erase(PN); 4144 } 4145 4146 PushDefUseChildren(I, Worklist); 4147 } 4148 } 4149 4150 // Re-lookup the insert position, since the call to 4151 // ComputeBackedgeTakenCount above could result in a 4152 // recusive call to getBackedgeTakenInfo (on a different 4153 // loop), which would invalidate the iterator computed 4154 // earlier. 4155 return BackedgeTakenCounts.find(L)->second = Result; 4156 } 4157 4158 /// forgetLoop - This method should be called by the client when it has 4159 /// changed a loop in a way that may effect ScalarEvolution's ability to 4160 /// compute a trip count, or if the loop is deleted. 4161 void ScalarEvolution::forgetLoop(const Loop *L) { 4162 // Drop any stored trip count value. 4163 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4164 BackedgeTakenCounts.find(L); 4165 if (BTCPos != BackedgeTakenCounts.end()) { 4166 BTCPos->second.clear(); 4167 BackedgeTakenCounts.erase(BTCPos); 4168 } 4169 4170 // Drop information about expressions based on loop-header PHIs. 4171 SmallVector<Instruction *, 16> Worklist; 4172 PushLoopPHIs(L, Worklist); 4173 4174 SmallPtrSet<Instruction *, 8> Visited; 4175 while (!Worklist.empty()) { 4176 Instruction *I = Worklist.pop_back_val(); 4177 if (!Visited.insert(I)) continue; 4178 4179 ValueExprMapType::iterator It = 4180 ValueExprMap.find_as(static_cast<Value *>(I)); 4181 if (It != ValueExprMap.end()) { 4182 forgetMemoizedResults(It->second); 4183 ValueExprMap.erase(It); 4184 if (PHINode *PN = dyn_cast<PHINode>(I)) 4185 ConstantEvolutionLoopExitValue.erase(PN); 4186 } 4187 4188 PushDefUseChildren(I, Worklist); 4189 } 4190 4191 // Forget all contained loops too, to avoid dangling entries in the 4192 // ValuesAtScopes map. 4193 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4194 forgetLoop(*I); 4195 } 4196 4197 /// forgetValue - This method should be called by the client when it has 4198 /// changed a value in a way that may effect its value, or which may 4199 /// disconnect it from a def-use chain linking it to a loop. 4200 void ScalarEvolution::forgetValue(Value *V) { 4201 Instruction *I = dyn_cast<Instruction>(V); 4202 if (!I) return; 4203 4204 // Drop information about expressions based on loop-header PHIs. 4205 SmallVector<Instruction *, 16> Worklist; 4206 Worklist.push_back(I); 4207 4208 SmallPtrSet<Instruction *, 8> Visited; 4209 while (!Worklist.empty()) { 4210 I = Worklist.pop_back_val(); 4211 if (!Visited.insert(I)) continue; 4212 4213 ValueExprMapType::iterator It = 4214 ValueExprMap.find_as(static_cast<Value *>(I)); 4215 if (It != ValueExprMap.end()) { 4216 forgetMemoizedResults(It->second); 4217 ValueExprMap.erase(It); 4218 if (PHINode *PN = dyn_cast<PHINode>(I)) 4219 ConstantEvolutionLoopExitValue.erase(PN); 4220 } 4221 4222 PushDefUseChildren(I, Worklist); 4223 } 4224 } 4225 4226 /// getExact - Get the exact loop backedge taken count considering all loop 4227 /// exits. A computable result can only be return for loops with a single exit. 4228 /// Returning the minimum taken count among all exits is incorrect because one 4229 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4230 /// the limit of each loop test is never skipped. This is a valid assumption as 4231 /// long as the loop exits via that test. For precise results, it is the 4232 /// caller's responsibility to specify the relevant loop exit using 4233 /// getExact(ExitingBlock, SE). 4234 const SCEV * 4235 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4236 // If any exits were not computable, the loop is not computable. 4237 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4238 4239 // We need exactly one computable exit. 4240 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4241 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4242 4243 const SCEV *BECount = 0; 4244 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4245 ENT != 0; ENT = ENT->getNextExit()) { 4246 4247 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4248 4249 if (!BECount) 4250 BECount = ENT->ExactNotTaken; 4251 else if (BECount != ENT->ExactNotTaken) 4252 return SE->getCouldNotCompute(); 4253 } 4254 assert(BECount && "Invalid not taken count for loop exit"); 4255 return BECount; 4256 } 4257 4258 /// getExact - Get the exact not taken count for this loop exit. 4259 const SCEV * 4260 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4261 ScalarEvolution *SE) const { 4262 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4263 ENT != 0; ENT = ENT->getNextExit()) { 4264 4265 if (ENT->ExitingBlock == ExitingBlock) 4266 return ENT->ExactNotTaken; 4267 } 4268 return SE->getCouldNotCompute(); 4269 } 4270 4271 /// getMax - Get the max backedge taken count for the loop. 4272 const SCEV * 4273 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4274 return Max ? Max : SE->getCouldNotCompute(); 4275 } 4276 4277 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4278 ScalarEvolution *SE) const { 4279 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4280 return true; 4281 4282 if (!ExitNotTaken.ExitingBlock) 4283 return false; 4284 4285 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4286 ENT != 0; ENT = ENT->getNextExit()) { 4287 4288 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4289 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4290 return true; 4291 } 4292 } 4293 return false; 4294 } 4295 4296 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4297 /// computable exit into a persistent ExitNotTakenInfo array. 4298 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4299 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4300 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4301 4302 if (!Complete) 4303 ExitNotTaken.setIncomplete(); 4304 4305 unsigned NumExits = ExitCounts.size(); 4306 if (NumExits == 0) return; 4307 4308 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4309 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4310 if (NumExits == 1) return; 4311 4312 // Handle the rare case of multiple computable exits. 4313 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4314 4315 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4316 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4317 PrevENT->setNextExit(ENT); 4318 ENT->ExitingBlock = ExitCounts[i].first; 4319 ENT->ExactNotTaken = ExitCounts[i].second; 4320 } 4321 } 4322 4323 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4324 void ScalarEvolution::BackedgeTakenInfo::clear() { 4325 ExitNotTaken.ExitingBlock = 0; 4326 ExitNotTaken.ExactNotTaken = 0; 4327 delete[] ExitNotTaken.getNextExit(); 4328 } 4329 4330 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4331 /// of the specified loop will execute. 4332 ScalarEvolution::BackedgeTakenInfo 4333 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4334 SmallVector<BasicBlock *, 8> ExitingBlocks; 4335 L->getExitingBlocks(ExitingBlocks); 4336 4337 // Examine all exits and pick the most conservative values. 4338 const SCEV *MaxBECount = getCouldNotCompute(); 4339 bool CouldComputeBECount = true; 4340 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4341 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4342 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4343 if (EL.Exact == getCouldNotCompute()) 4344 // We couldn't compute an exact value for this exit, so 4345 // we won't be able to compute an exact value for the loop. 4346 CouldComputeBECount = false; 4347 else 4348 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4349 4350 if (MaxBECount == getCouldNotCompute()) 4351 MaxBECount = EL.Max; 4352 else if (EL.Max != getCouldNotCompute()) { 4353 // We cannot take the "min" MaxBECount, because non-unit stride loops may 4354 // skip some loop tests. Taking the max over the exits is sufficiently 4355 // conservative. TODO: We could do better taking into consideration 4356 // that (1) the loop has unit stride (2) the last loop test is 4357 // less-than/greater-than (3) any loop test is less-than/greater-than AND 4358 // falls-through some constant times less then the other tests. 4359 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max); 4360 } 4361 } 4362 4363 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4364 } 4365 4366 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4367 /// loop will execute if it exits via the specified block. 4368 ScalarEvolution::ExitLimit 4369 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4370 4371 // Okay, we've chosen an exiting block. See what condition causes us to 4372 // exit at this block. 4373 // 4374 // FIXME: we should be able to handle switch instructions (with a single exit) 4375 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 4376 if (ExitBr == 0) return getCouldNotCompute(); 4377 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 4378 4379 // At this point, we know we have a conditional branch that determines whether 4380 // the loop is exited. However, we don't know if the branch is executed each 4381 // time through the loop. If not, then the execution count of the branch will 4382 // not be equal to the trip count of the loop. 4383 // 4384 // Currently we check for this by checking to see if the Exit branch goes to 4385 // the loop header. If so, we know it will always execute the same number of 4386 // times as the loop. We also handle the case where the exit block *is* the 4387 // loop header. This is common for un-rotated loops. 4388 // 4389 // If both of those tests fail, walk up the unique predecessor chain to the 4390 // header, stopping if there is an edge that doesn't exit the loop. If the 4391 // header is reached, the execution count of the branch will be equal to the 4392 // trip count of the loop. 4393 // 4394 // More extensive analysis could be done to handle more cases here. 4395 // 4396 if (ExitBr->getSuccessor(0) != L->getHeader() && 4397 ExitBr->getSuccessor(1) != L->getHeader() && 4398 ExitBr->getParent() != L->getHeader()) { 4399 // The simple checks failed, try climbing the unique predecessor chain 4400 // up to the header. 4401 bool Ok = false; 4402 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 4403 BasicBlock *Pred = BB->getUniquePredecessor(); 4404 if (!Pred) 4405 return getCouldNotCompute(); 4406 TerminatorInst *PredTerm = Pred->getTerminator(); 4407 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4408 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4409 if (PredSucc == BB) 4410 continue; 4411 // If the predecessor has a successor that isn't BB and isn't 4412 // outside the loop, assume the worst. 4413 if (L->contains(PredSucc)) 4414 return getCouldNotCompute(); 4415 } 4416 if (Pred == L->getHeader()) { 4417 Ok = true; 4418 break; 4419 } 4420 BB = Pred; 4421 } 4422 if (!Ok) 4423 return getCouldNotCompute(); 4424 } 4425 4426 // Proceed to the next level to examine the exit condition expression. 4427 return ComputeExitLimitFromCond(L, ExitBr->getCondition(), 4428 ExitBr->getSuccessor(0), 4429 ExitBr->getSuccessor(1), 4430 /*IsSubExpr=*/false); 4431 } 4432 4433 /// ComputeExitLimitFromCond - Compute the number of times the 4434 /// backedge of the specified loop will execute if its exit condition 4435 /// were a conditional branch of ExitCond, TBB, and FBB. 4436 /// 4437 /// @param IsSubExpr is true if ExitCond does not directly control the exit 4438 /// branch. In this case, we cannot assume that the loop only exits when the 4439 /// condition is true and cannot infer that failing to meet the condition prior 4440 /// to integer wraparound results in undefined behavior. 4441 ScalarEvolution::ExitLimit 4442 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4443 Value *ExitCond, 4444 BasicBlock *TBB, 4445 BasicBlock *FBB, 4446 bool IsSubExpr) { 4447 // Check if the controlling expression for this loop is an And or Or. 4448 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4449 if (BO->getOpcode() == Instruction::And) { 4450 // Recurse on the operands of the and. 4451 bool EitherMayExit = L->contains(TBB); 4452 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4453 IsSubExpr || EitherMayExit); 4454 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4455 IsSubExpr || EitherMayExit); 4456 const SCEV *BECount = getCouldNotCompute(); 4457 const SCEV *MaxBECount = getCouldNotCompute(); 4458 if (EitherMayExit) { 4459 // Both conditions must be true for the loop to continue executing. 4460 // Choose the less conservative count. 4461 if (EL0.Exact == getCouldNotCompute() || 4462 EL1.Exact == getCouldNotCompute()) 4463 BECount = getCouldNotCompute(); 4464 else 4465 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4466 if (EL0.Max == getCouldNotCompute()) 4467 MaxBECount = EL1.Max; 4468 else if (EL1.Max == getCouldNotCompute()) 4469 MaxBECount = EL0.Max; 4470 else 4471 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4472 } else { 4473 // Both conditions must be true at the same time for the loop to exit. 4474 // For now, be conservative. 4475 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4476 if (EL0.Max == EL1.Max) 4477 MaxBECount = EL0.Max; 4478 if (EL0.Exact == EL1.Exact) 4479 BECount = EL0.Exact; 4480 } 4481 4482 return ExitLimit(BECount, MaxBECount); 4483 } 4484 if (BO->getOpcode() == Instruction::Or) { 4485 // Recurse on the operands of the or. 4486 bool EitherMayExit = L->contains(FBB); 4487 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4488 IsSubExpr || EitherMayExit); 4489 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4490 IsSubExpr || EitherMayExit); 4491 const SCEV *BECount = getCouldNotCompute(); 4492 const SCEV *MaxBECount = getCouldNotCompute(); 4493 if (EitherMayExit) { 4494 // Both conditions must be false for the loop to continue executing. 4495 // Choose the less conservative count. 4496 if (EL0.Exact == getCouldNotCompute() || 4497 EL1.Exact == getCouldNotCompute()) 4498 BECount = getCouldNotCompute(); 4499 else 4500 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4501 if (EL0.Max == getCouldNotCompute()) 4502 MaxBECount = EL1.Max; 4503 else if (EL1.Max == getCouldNotCompute()) 4504 MaxBECount = EL0.Max; 4505 else 4506 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4507 } else { 4508 // Both conditions must be false at the same time for the loop to exit. 4509 // For now, be conservative. 4510 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4511 if (EL0.Max == EL1.Max) 4512 MaxBECount = EL0.Max; 4513 if (EL0.Exact == EL1.Exact) 4514 BECount = EL0.Exact; 4515 } 4516 4517 return ExitLimit(BECount, MaxBECount); 4518 } 4519 } 4520 4521 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4522 // Proceed to the next level to examine the icmp. 4523 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4524 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr); 4525 4526 // Check for a constant condition. These are normally stripped out by 4527 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4528 // preserve the CFG and is temporarily leaving constant conditions 4529 // in place. 4530 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4531 if (L->contains(FBB) == !CI->getZExtValue()) 4532 // The backedge is always taken. 4533 return getCouldNotCompute(); 4534 else 4535 // The backedge is never taken. 4536 return getConstant(CI->getType(), 0); 4537 } 4538 4539 // If it's not an integer or pointer comparison then compute it the hard way. 4540 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4541 } 4542 4543 /// ComputeExitLimitFromICmp - Compute the number of times the 4544 /// backedge of the specified loop will execute if its exit condition 4545 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4546 ScalarEvolution::ExitLimit 4547 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4548 ICmpInst *ExitCond, 4549 BasicBlock *TBB, 4550 BasicBlock *FBB, 4551 bool IsSubExpr) { 4552 4553 // If the condition was exit on true, convert the condition to exit on false 4554 ICmpInst::Predicate Cond; 4555 if (!L->contains(FBB)) 4556 Cond = ExitCond->getPredicate(); 4557 else 4558 Cond = ExitCond->getInversePredicate(); 4559 4560 // Handle common loops like: for (X = "string"; *X; ++X) 4561 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4562 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4563 ExitLimit ItCnt = 4564 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4565 if (ItCnt.hasAnyInfo()) 4566 return ItCnt; 4567 } 4568 4569 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4570 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4571 4572 // Try to evaluate any dependencies out of the loop. 4573 LHS = getSCEVAtScope(LHS, L); 4574 RHS = getSCEVAtScope(RHS, L); 4575 4576 // At this point, we would like to compute how many iterations of the 4577 // loop the predicate will return true for these inputs. 4578 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4579 // If there is a loop-invariant, force it into the RHS. 4580 std::swap(LHS, RHS); 4581 Cond = ICmpInst::getSwappedPredicate(Cond); 4582 } 4583 4584 // Simplify the operands before analyzing them. 4585 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4586 4587 // If we have a comparison of a chrec against a constant, try to use value 4588 // ranges to answer this query. 4589 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4590 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4591 if (AddRec->getLoop() == L) { 4592 // Form the constant range. 4593 ConstantRange CompRange( 4594 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4595 4596 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4597 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4598 } 4599 4600 switch (Cond) { 4601 case ICmpInst::ICMP_NE: { // while (X != Y) 4602 // Convert to: while (X-Y != 0) 4603 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4604 if (EL.hasAnyInfo()) return EL; 4605 break; 4606 } 4607 case ICmpInst::ICMP_EQ: { // while (X == Y) 4608 // Convert to: while (X-Y == 0) 4609 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4610 if (EL.hasAnyInfo()) return EL; 4611 break; 4612 } 4613 case ICmpInst::ICMP_SLT: 4614 case ICmpInst::ICMP_ULT: { // while (X < Y) 4615 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 4616 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr); 4617 if (EL.hasAnyInfo()) return EL; 4618 break; 4619 } 4620 case ICmpInst::ICMP_SGT: 4621 case ICmpInst::ICMP_UGT: { // while (X > Y) 4622 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 4623 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr); 4624 if (EL.hasAnyInfo()) return EL; 4625 break; 4626 } 4627 default: 4628 #if 0 4629 dbgs() << "ComputeBackedgeTakenCount "; 4630 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4631 dbgs() << "[unsigned] "; 4632 dbgs() << *LHS << " " 4633 << Instruction::getOpcodeName(Instruction::ICmp) 4634 << " " << *RHS << "\n"; 4635 #endif 4636 break; 4637 } 4638 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4639 } 4640 4641 static ConstantInt * 4642 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4643 ScalarEvolution &SE) { 4644 const SCEV *InVal = SE.getConstant(C); 4645 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4646 assert(isa<SCEVConstant>(Val) && 4647 "Evaluation of SCEV at constant didn't fold correctly?"); 4648 return cast<SCEVConstant>(Val)->getValue(); 4649 } 4650 4651 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4652 /// 'icmp op load X, cst', try to see if we can compute the backedge 4653 /// execution count. 4654 ScalarEvolution::ExitLimit 4655 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4656 LoadInst *LI, 4657 Constant *RHS, 4658 const Loop *L, 4659 ICmpInst::Predicate predicate) { 4660 4661 if (LI->isVolatile()) return getCouldNotCompute(); 4662 4663 // Check to see if the loaded pointer is a getelementptr of a global. 4664 // TODO: Use SCEV instead of manually grubbing with GEPs. 4665 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4666 if (!GEP) return getCouldNotCompute(); 4667 4668 // Make sure that it is really a constant global we are gepping, with an 4669 // initializer, and make sure the first IDX is really 0. 4670 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4671 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4672 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4673 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4674 return getCouldNotCompute(); 4675 4676 // Okay, we allow one non-constant index into the GEP instruction. 4677 Value *VarIdx = 0; 4678 std::vector<Constant*> Indexes; 4679 unsigned VarIdxNum = 0; 4680 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4681 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4682 Indexes.push_back(CI); 4683 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4684 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4685 VarIdx = GEP->getOperand(i); 4686 VarIdxNum = i-2; 4687 Indexes.push_back(0); 4688 } 4689 4690 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 4691 if (!VarIdx) 4692 return getCouldNotCompute(); 4693 4694 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4695 // Check to see if X is a loop variant variable value now. 4696 const SCEV *Idx = getSCEV(VarIdx); 4697 Idx = getSCEVAtScope(Idx, L); 4698 4699 // We can only recognize very limited forms of loop index expressions, in 4700 // particular, only affine AddRec's like {C1,+,C2}. 4701 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4702 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4703 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4704 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4705 return getCouldNotCompute(); 4706 4707 unsigned MaxSteps = MaxBruteForceIterations; 4708 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4709 ConstantInt *ItCst = ConstantInt::get( 4710 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4711 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4712 4713 // Form the GEP offset. 4714 Indexes[VarIdxNum] = Val; 4715 4716 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 4717 Indexes); 4718 if (Result == 0) break; // Cannot compute! 4719 4720 // Evaluate the condition for this iteration. 4721 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4722 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4723 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4724 #if 0 4725 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4726 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4727 << "***\n"; 4728 #endif 4729 ++NumArrayLenItCounts; 4730 return getConstant(ItCst); // Found terminating iteration! 4731 } 4732 } 4733 return getCouldNotCompute(); 4734 } 4735 4736 4737 /// CanConstantFold - Return true if we can constant fold an instruction of the 4738 /// specified type, assuming that all operands were constants. 4739 static bool CanConstantFold(const Instruction *I) { 4740 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4741 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4742 isa<LoadInst>(I)) 4743 return true; 4744 4745 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4746 if (const Function *F = CI->getCalledFunction()) 4747 return canConstantFoldCallTo(F); 4748 return false; 4749 } 4750 4751 /// Determine whether this instruction can constant evolve within this loop 4752 /// assuming its operands can all constant evolve. 4753 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4754 // An instruction outside of the loop can't be derived from a loop PHI. 4755 if (!L->contains(I)) return false; 4756 4757 if (isa<PHINode>(I)) { 4758 if (L->getHeader() == I->getParent()) 4759 return true; 4760 else 4761 // We don't currently keep track of the control flow needed to evaluate 4762 // PHIs, so we cannot handle PHIs inside of loops. 4763 return false; 4764 } 4765 4766 // If we won't be able to constant fold this expression even if the operands 4767 // are constants, bail early. 4768 return CanConstantFold(I); 4769 } 4770 4771 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4772 /// recursing through each instruction operand until reaching a loop header phi. 4773 static PHINode * 4774 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4775 DenseMap<Instruction *, PHINode *> &PHIMap) { 4776 4777 // Otherwise, we can evaluate this instruction if all of its operands are 4778 // constant or derived from a PHI node themselves. 4779 PHINode *PHI = 0; 4780 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4781 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4782 4783 if (isa<Constant>(*OpI)) continue; 4784 4785 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4786 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0; 4787 4788 PHINode *P = dyn_cast<PHINode>(OpInst); 4789 if (!P) 4790 // If this operand is already visited, reuse the prior result. 4791 // We may have P != PHI if this is the deepest point at which the 4792 // inconsistent paths meet. 4793 P = PHIMap.lookup(OpInst); 4794 if (!P) { 4795 // Recurse and memoize the results, whether a phi is found or not. 4796 // This recursive call invalidates pointers into PHIMap. 4797 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4798 PHIMap[OpInst] = P; 4799 } 4800 if (P == 0) return 0; // Not evolving from PHI 4801 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs. 4802 PHI = P; 4803 } 4804 // This is a expression evolving from a constant PHI! 4805 return PHI; 4806 } 4807 4808 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4809 /// in the loop that V is derived from. We allow arbitrary operations along the 4810 /// way, but the operands of an operation must either be constants or a value 4811 /// derived from a constant PHI. If this expression does not fit with these 4812 /// constraints, return null. 4813 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4814 Instruction *I = dyn_cast<Instruction>(V); 4815 if (I == 0 || !canConstantEvolve(I, L)) return 0; 4816 4817 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4818 return PN; 4819 } 4820 4821 // Record non-constant instructions contained by the loop. 4822 DenseMap<Instruction *, PHINode *> PHIMap; 4823 return getConstantEvolvingPHIOperands(I, L, PHIMap); 4824 } 4825 4826 /// EvaluateExpression - Given an expression that passes the 4827 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4828 /// in the loop has the value PHIVal. If we can't fold this expression for some 4829 /// reason, return null. 4830 static Constant *EvaluateExpression(Value *V, const Loop *L, 4831 DenseMap<Instruction *, Constant *> &Vals, 4832 const DataLayout *TD, 4833 const TargetLibraryInfo *TLI) { 4834 // Convenient constant check, but redundant for recursive calls. 4835 if (Constant *C = dyn_cast<Constant>(V)) return C; 4836 Instruction *I = dyn_cast<Instruction>(V); 4837 if (!I) return 0; 4838 4839 if (Constant *C = Vals.lookup(I)) return C; 4840 4841 // An instruction inside the loop depends on a value outside the loop that we 4842 // weren't given a mapping for, or a value such as a call inside the loop. 4843 if (!canConstantEvolve(I, L)) return 0; 4844 4845 // An unmapped PHI can be due to a branch or another loop inside this loop, 4846 // or due to this not being the initial iteration through a loop where we 4847 // couldn't compute the evolution of this particular PHI last time. 4848 if (isa<PHINode>(I)) return 0; 4849 4850 std::vector<Constant*> Operands(I->getNumOperands()); 4851 4852 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4853 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 4854 if (!Operand) { 4855 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 4856 if (!Operands[i]) return 0; 4857 continue; 4858 } 4859 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI); 4860 Vals[Operand] = C; 4861 if (!C) return 0; 4862 Operands[i] = C; 4863 } 4864 4865 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4866 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4867 Operands[1], TD, TLI); 4868 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4869 if (!LI->isVolatile()) 4870 return ConstantFoldLoadFromConstPtr(Operands[0], TD); 4871 } 4872 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD, 4873 TLI); 4874 } 4875 4876 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4877 /// in the header of its containing loop, we know the loop executes a 4878 /// constant number of times, and the PHI node is just a recurrence 4879 /// involving constants, fold it. 4880 Constant * 4881 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4882 const APInt &BEs, 4883 const Loop *L) { 4884 DenseMap<PHINode*, Constant*>::const_iterator I = 4885 ConstantEvolutionLoopExitValue.find(PN); 4886 if (I != ConstantEvolutionLoopExitValue.end()) 4887 return I->second; 4888 4889 if (BEs.ugt(MaxBruteForceIterations)) 4890 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4891 4892 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4893 4894 DenseMap<Instruction *, Constant *> CurrentIterVals; 4895 BasicBlock *Header = L->getHeader(); 4896 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4897 4898 // Since the loop is canonicalized, the PHI node must have two entries. One 4899 // entry must be a constant (coming in from outside of the loop), and the 4900 // second must be derived from the same PHI. 4901 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4902 PHINode *PHI = 0; 4903 for (BasicBlock::iterator I = Header->begin(); 4904 (PHI = dyn_cast<PHINode>(I)); ++I) { 4905 Constant *StartCST = 4906 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4907 if (StartCST == 0) continue; 4908 CurrentIterVals[PHI] = StartCST; 4909 } 4910 if (!CurrentIterVals.count(PN)) 4911 return RetVal = 0; 4912 4913 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4914 4915 // Execute the loop symbolically to determine the exit value. 4916 if (BEs.getActiveBits() >= 32) 4917 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4918 4919 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4920 unsigned IterationNum = 0; 4921 for (; ; ++IterationNum) { 4922 if (IterationNum == NumIterations) 4923 return RetVal = CurrentIterVals[PN]; // Got exit value! 4924 4925 // Compute the value of the PHIs for the next iteration. 4926 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 4927 DenseMap<Instruction *, Constant *> NextIterVals; 4928 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, 4929 TLI); 4930 if (NextPHI == 0) 4931 return 0; // Couldn't evaluate! 4932 NextIterVals[PN] = NextPHI; 4933 4934 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 4935 4936 // Also evaluate the other PHI nodes. However, we don't get to stop if we 4937 // cease to be able to evaluate one of them or if they stop evolving, 4938 // because that doesn't necessarily prevent us from computing PN. 4939 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 4940 for (DenseMap<Instruction *, Constant *>::const_iterator 4941 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4942 PHINode *PHI = dyn_cast<PHINode>(I->first); 4943 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 4944 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 4945 } 4946 // We use two distinct loops because EvaluateExpression may invalidate any 4947 // iterators into CurrentIterVals. 4948 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 4949 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 4950 PHINode *PHI = I->first; 4951 Constant *&NextPHI = NextIterVals[PHI]; 4952 if (!NextPHI) { // Not already computed. 4953 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 4954 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 4955 } 4956 if (NextPHI != I->second) 4957 StoppedEvolving = false; 4958 } 4959 4960 // If all entries in CurrentIterVals == NextIterVals then we can stop 4961 // iterating, the loop can't continue to change. 4962 if (StoppedEvolving) 4963 return RetVal = CurrentIterVals[PN]; 4964 4965 CurrentIterVals.swap(NextIterVals); 4966 } 4967 } 4968 4969 /// ComputeExitCountExhaustively - If the loop is known to execute a 4970 /// constant number of times (the condition evolves only from constants), 4971 /// try to evaluate a few iterations of the loop until we get the exit 4972 /// condition gets a value of ExitWhen (true or false). If we cannot 4973 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4974 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 4975 Value *Cond, 4976 bool ExitWhen) { 4977 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4978 if (PN == 0) return getCouldNotCompute(); 4979 4980 // If the loop is canonicalized, the PHI will have exactly two entries. 4981 // That's the only form we support here. 4982 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4983 4984 DenseMap<Instruction *, Constant *> CurrentIterVals; 4985 BasicBlock *Header = L->getHeader(); 4986 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4987 4988 // One entry must be a constant (coming in from outside of the loop), and the 4989 // second must be derived from the same PHI. 4990 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4991 PHINode *PHI = 0; 4992 for (BasicBlock::iterator I = Header->begin(); 4993 (PHI = dyn_cast<PHINode>(I)); ++I) { 4994 Constant *StartCST = 4995 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4996 if (StartCST == 0) continue; 4997 CurrentIterVals[PHI] = StartCST; 4998 } 4999 if (!CurrentIterVals.count(PN)) 5000 return getCouldNotCompute(); 5001 5002 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5003 // the loop symbolically to determine when the condition gets a value of 5004 // "ExitWhen". 5005 5006 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5007 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5008 ConstantInt *CondVal = 5009 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 5010 TD, TLI)); 5011 5012 // Couldn't symbolically evaluate. 5013 if (!CondVal) return getCouldNotCompute(); 5014 5015 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5016 ++NumBruteForceTripCountsComputed; 5017 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5018 } 5019 5020 // Update all the PHI nodes for the next iteration. 5021 DenseMap<Instruction *, Constant *> NextIterVals; 5022 5023 // Create a list of which PHIs we need to compute. We want to do this before 5024 // calling EvaluateExpression on them because that may invalidate iterators 5025 // into CurrentIterVals. 5026 SmallVector<PHINode *, 8> PHIsToCompute; 5027 for (DenseMap<Instruction *, Constant *>::const_iterator 5028 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5029 PHINode *PHI = dyn_cast<PHINode>(I->first); 5030 if (!PHI || PHI->getParent() != Header) continue; 5031 PHIsToCompute.push_back(PHI); 5032 } 5033 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5034 E = PHIsToCompute.end(); I != E; ++I) { 5035 PHINode *PHI = *I; 5036 Constant *&NextPHI = NextIterVals[PHI]; 5037 if (NextPHI) continue; // Already computed! 5038 5039 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5040 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 5041 } 5042 CurrentIterVals.swap(NextIterVals); 5043 } 5044 5045 // Too many iterations were needed to evaluate. 5046 return getCouldNotCompute(); 5047 } 5048 5049 /// getSCEVAtScope - Return a SCEV expression for the specified value 5050 /// at the specified scope in the program. The L value specifies a loop 5051 /// nest to evaluate the expression at, where null is the top-level or a 5052 /// specified loop is immediately inside of the loop. 5053 /// 5054 /// This method can be used to compute the exit value for a variable defined 5055 /// in a loop by querying what the value will hold in the parent loop. 5056 /// 5057 /// In the case that a relevant loop exit value cannot be computed, the 5058 /// original value V is returned. 5059 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5060 // Check to see if we've folded this expression at this loop before. 5061 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5062 for (unsigned u = 0; u < Values.size(); u++) { 5063 if (Values[u].first == L) 5064 return Values[u].second ? Values[u].second : V; 5065 } 5066 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(0))); 5067 // Otherwise compute it. 5068 const SCEV *C = computeSCEVAtScope(V, L); 5069 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5070 for (unsigned u = Values2.size(); u > 0; u--) { 5071 if (Values2[u - 1].first == L) { 5072 Values2[u - 1].second = C; 5073 break; 5074 } 5075 } 5076 return C; 5077 } 5078 5079 /// This builds up a Constant using the ConstantExpr interface. That way, we 5080 /// will return Constants for objects which aren't represented by a 5081 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5082 /// Returns NULL if the SCEV isn't representable as a Constant. 5083 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5084 switch (V->getSCEVType()) { 5085 default: // TODO: smax, umax. 5086 case scCouldNotCompute: 5087 case scAddRecExpr: 5088 break; 5089 case scConstant: 5090 return cast<SCEVConstant>(V)->getValue(); 5091 case scUnknown: 5092 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5093 case scSignExtend: { 5094 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5095 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5096 return ConstantExpr::getSExt(CastOp, SS->getType()); 5097 break; 5098 } 5099 case scZeroExtend: { 5100 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5101 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5102 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5103 break; 5104 } 5105 case scTruncate: { 5106 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5107 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5108 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5109 break; 5110 } 5111 case scAddExpr: { 5112 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5113 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5114 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5115 unsigned AS = PTy->getAddressSpace(); 5116 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5117 C = ConstantExpr::getBitCast(C, DestPtrTy); 5118 } 5119 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5120 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5121 if (!C2) return 0; 5122 5123 // First pointer! 5124 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5125 unsigned AS = C2->getType()->getPointerAddressSpace(); 5126 std::swap(C, C2); 5127 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5128 // The offsets have been converted to bytes. We can add bytes to an 5129 // i8* by GEP with the byte count in the first index. 5130 C = ConstantExpr::getBitCast(C, DestPtrTy); 5131 } 5132 5133 // Don't bother trying to sum two pointers. We probably can't 5134 // statically compute a load that results from it anyway. 5135 if (C2->getType()->isPointerTy()) 5136 return 0; 5137 5138 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5139 if (PTy->getElementType()->isStructTy()) 5140 C2 = ConstantExpr::getIntegerCast( 5141 C2, Type::getInt32Ty(C->getContext()), true); 5142 C = ConstantExpr::getGetElementPtr(C, C2); 5143 } else 5144 C = ConstantExpr::getAdd(C, C2); 5145 } 5146 return C; 5147 } 5148 break; 5149 } 5150 case scMulExpr: { 5151 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5152 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5153 // Don't bother with pointers at all. 5154 if (C->getType()->isPointerTy()) return 0; 5155 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5156 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5157 if (!C2 || C2->getType()->isPointerTy()) return 0; 5158 C = ConstantExpr::getMul(C, C2); 5159 } 5160 return C; 5161 } 5162 break; 5163 } 5164 case scUDivExpr: { 5165 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5166 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5167 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5168 if (LHS->getType() == RHS->getType()) 5169 return ConstantExpr::getUDiv(LHS, RHS); 5170 break; 5171 } 5172 } 5173 return 0; 5174 } 5175 5176 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5177 if (isa<SCEVConstant>(V)) return V; 5178 5179 // If this instruction is evolved from a constant-evolving PHI, compute the 5180 // exit value from the loop without using SCEVs. 5181 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5182 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5183 const Loop *LI = (*this->LI)[I->getParent()]; 5184 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5185 if (PHINode *PN = dyn_cast<PHINode>(I)) 5186 if (PN->getParent() == LI->getHeader()) { 5187 // Okay, there is no closed form solution for the PHI node. Check 5188 // to see if the loop that contains it has a known backedge-taken 5189 // count. If so, we may be able to force computation of the exit 5190 // value. 5191 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5192 if (const SCEVConstant *BTCC = 5193 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5194 // Okay, we know how many times the containing loop executes. If 5195 // this is a constant evolving PHI node, get the final value at 5196 // the specified iteration number. 5197 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5198 BTCC->getValue()->getValue(), 5199 LI); 5200 if (RV) return getSCEV(RV); 5201 } 5202 } 5203 5204 // Okay, this is an expression that we cannot symbolically evaluate 5205 // into a SCEV. Check to see if it's possible to symbolically evaluate 5206 // the arguments into constants, and if so, try to constant propagate the 5207 // result. This is particularly useful for computing loop exit values. 5208 if (CanConstantFold(I)) { 5209 SmallVector<Constant *, 4> Operands; 5210 bool MadeImprovement = false; 5211 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5212 Value *Op = I->getOperand(i); 5213 if (Constant *C = dyn_cast<Constant>(Op)) { 5214 Operands.push_back(C); 5215 continue; 5216 } 5217 5218 // If any of the operands is non-constant and if they are 5219 // non-integer and non-pointer, don't even try to analyze them 5220 // with scev techniques. 5221 if (!isSCEVable(Op->getType())) 5222 return V; 5223 5224 const SCEV *OrigV = getSCEV(Op); 5225 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5226 MadeImprovement |= OrigV != OpV; 5227 5228 Constant *C = BuildConstantFromSCEV(OpV); 5229 if (!C) return V; 5230 if (C->getType() != Op->getType()) 5231 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5232 Op->getType(), 5233 false), 5234 C, Op->getType()); 5235 Operands.push_back(C); 5236 } 5237 5238 // Check to see if getSCEVAtScope actually made an improvement. 5239 if (MadeImprovement) { 5240 Constant *C = 0; 5241 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5242 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5243 Operands[0], Operands[1], TD, 5244 TLI); 5245 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5246 if (!LI->isVolatile()) 5247 C = ConstantFoldLoadFromConstPtr(Operands[0], TD); 5248 } else 5249 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5250 Operands, TD, TLI); 5251 if (!C) return V; 5252 return getSCEV(C); 5253 } 5254 } 5255 } 5256 5257 // This is some other type of SCEVUnknown, just return it. 5258 return V; 5259 } 5260 5261 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5262 // Avoid performing the look-up in the common case where the specified 5263 // expression has no loop-variant portions. 5264 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5265 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5266 if (OpAtScope != Comm->getOperand(i)) { 5267 // Okay, at least one of these operands is loop variant but might be 5268 // foldable. Build a new instance of the folded commutative expression. 5269 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5270 Comm->op_begin()+i); 5271 NewOps.push_back(OpAtScope); 5272 5273 for (++i; i != e; ++i) { 5274 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5275 NewOps.push_back(OpAtScope); 5276 } 5277 if (isa<SCEVAddExpr>(Comm)) 5278 return getAddExpr(NewOps); 5279 if (isa<SCEVMulExpr>(Comm)) 5280 return getMulExpr(NewOps); 5281 if (isa<SCEVSMaxExpr>(Comm)) 5282 return getSMaxExpr(NewOps); 5283 if (isa<SCEVUMaxExpr>(Comm)) 5284 return getUMaxExpr(NewOps); 5285 llvm_unreachable("Unknown commutative SCEV type!"); 5286 } 5287 } 5288 // If we got here, all operands are loop invariant. 5289 return Comm; 5290 } 5291 5292 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5293 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5294 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5295 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5296 return Div; // must be loop invariant 5297 return getUDivExpr(LHS, RHS); 5298 } 5299 5300 // If this is a loop recurrence for a loop that does not contain L, then we 5301 // are dealing with the final value computed by the loop. 5302 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5303 // First, attempt to evaluate each operand. 5304 // Avoid performing the look-up in the common case where the specified 5305 // expression has no loop-variant portions. 5306 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5307 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5308 if (OpAtScope == AddRec->getOperand(i)) 5309 continue; 5310 5311 // Okay, at least one of these operands is loop variant but might be 5312 // foldable. Build a new instance of the folded commutative expression. 5313 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5314 AddRec->op_begin()+i); 5315 NewOps.push_back(OpAtScope); 5316 for (++i; i != e; ++i) 5317 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5318 5319 const SCEV *FoldedRec = 5320 getAddRecExpr(NewOps, AddRec->getLoop(), 5321 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5322 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5323 // The addrec may be folded to a nonrecurrence, for example, if the 5324 // induction variable is multiplied by zero after constant folding. Go 5325 // ahead and return the folded value. 5326 if (!AddRec) 5327 return FoldedRec; 5328 break; 5329 } 5330 5331 // If the scope is outside the addrec's loop, evaluate it by using the 5332 // loop exit value of the addrec. 5333 if (!AddRec->getLoop()->contains(L)) { 5334 // To evaluate this recurrence, we need to know how many times the AddRec 5335 // loop iterates. Compute this now. 5336 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5337 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5338 5339 // Then, evaluate the AddRec. 5340 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5341 } 5342 5343 return AddRec; 5344 } 5345 5346 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5347 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5348 if (Op == Cast->getOperand()) 5349 return Cast; // must be loop invariant 5350 return getZeroExtendExpr(Op, Cast->getType()); 5351 } 5352 5353 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5354 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5355 if (Op == Cast->getOperand()) 5356 return Cast; // must be loop invariant 5357 return getSignExtendExpr(Op, Cast->getType()); 5358 } 5359 5360 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5361 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5362 if (Op == Cast->getOperand()) 5363 return Cast; // must be loop invariant 5364 return getTruncateExpr(Op, Cast->getType()); 5365 } 5366 5367 llvm_unreachable("Unknown SCEV type!"); 5368 } 5369 5370 /// getSCEVAtScope - This is a convenience function which does 5371 /// getSCEVAtScope(getSCEV(V), L). 5372 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5373 return getSCEVAtScope(getSCEV(V), L); 5374 } 5375 5376 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5377 /// following equation: 5378 /// 5379 /// A * X = B (mod N) 5380 /// 5381 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5382 /// A and B isn't important. 5383 /// 5384 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5385 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5386 ScalarEvolution &SE) { 5387 uint32_t BW = A.getBitWidth(); 5388 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5389 assert(A != 0 && "A must be non-zero."); 5390 5391 // 1. D = gcd(A, N) 5392 // 5393 // The gcd of A and N may have only one prime factor: 2. The number of 5394 // trailing zeros in A is its multiplicity 5395 uint32_t Mult2 = A.countTrailingZeros(); 5396 // D = 2^Mult2 5397 5398 // 2. Check if B is divisible by D. 5399 // 5400 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5401 // is not less than multiplicity of this prime factor for D. 5402 if (B.countTrailingZeros() < Mult2) 5403 return SE.getCouldNotCompute(); 5404 5405 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5406 // modulo (N / D). 5407 // 5408 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5409 // bit width during computations. 5410 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5411 APInt Mod(BW + 1, 0); 5412 Mod.setBit(BW - Mult2); // Mod = N / D 5413 APInt I = AD.multiplicativeInverse(Mod); 5414 5415 // 4. Compute the minimum unsigned root of the equation: 5416 // I * (B / D) mod (N / D) 5417 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5418 5419 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5420 // bits. 5421 return SE.getConstant(Result.trunc(BW)); 5422 } 5423 5424 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5425 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5426 /// might be the same) or two SCEVCouldNotCompute objects. 5427 /// 5428 static std::pair<const SCEV *,const SCEV *> 5429 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5430 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5431 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5432 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5433 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5434 5435 // We currently can only solve this if the coefficients are constants. 5436 if (!LC || !MC || !NC) { 5437 const SCEV *CNC = SE.getCouldNotCompute(); 5438 return std::make_pair(CNC, CNC); 5439 } 5440 5441 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5442 const APInt &L = LC->getValue()->getValue(); 5443 const APInt &M = MC->getValue()->getValue(); 5444 const APInt &N = NC->getValue()->getValue(); 5445 APInt Two(BitWidth, 2); 5446 APInt Four(BitWidth, 4); 5447 5448 { 5449 using namespace APIntOps; 5450 const APInt& C = L; 5451 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5452 // The B coefficient is M-N/2 5453 APInt B(M); 5454 B -= sdiv(N,Two); 5455 5456 // The A coefficient is N/2 5457 APInt A(N.sdiv(Two)); 5458 5459 // Compute the B^2-4ac term. 5460 APInt SqrtTerm(B); 5461 SqrtTerm *= B; 5462 SqrtTerm -= Four * (A * C); 5463 5464 if (SqrtTerm.isNegative()) { 5465 // The loop is provably infinite. 5466 const SCEV *CNC = SE.getCouldNotCompute(); 5467 return std::make_pair(CNC, CNC); 5468 } 5469 5470 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5471 // integer value or else APInt::sqrt() will assert. 5472 APInt SqrtVal(SqrtTerm.sqrt()); 5473 5474 // Compute the two solutions for the quadratic formula. 5475 // The divisions must be performed as signed divisions. 5476 APInt NegB(-B); 5477 APInt TwoA(A << 1); 5478 if (TwoA.isMinValue()) { 5479 const SCEV *CNC = SE.getCouldNotCompute(); 5480 return std::make_pair(CNC, CNC); 5481 } 5482 5483 LLVMContext &Context = SE.getContext(); 5484 5485 ConstantInt *Solution1 = 5486 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5487 ConstantInt *Solution2 = 5488 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5489 5490 return std::make_pair(SE.getConstant(Solution1), 5491 SE.getConstant(Solution2)); 5492 } // end APIntOps namespace 5493 } 5494 5495 /// HowFarToZero - Return the number of times a backedge comparing the specified 5496 /// value to zero will execute. If not computable, return CouldNotCompute. 5497 /// 5498 /// This is only used for loops with a "x != y" exit test. The exit condition is 5499 /// now expressed as a single expression, V = x-y. So the exit test is 5500 /// effectively V != 0. We know and take advantage of the fact that this 5501 /// expression only being used in a comparison by zero context. 5502 ScalarEvolution::ExitLimit 5503 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) { 5504 // If the value is a constant 5505 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5506 // If the value is already zero, the branch will execute zero times. 5507 if (C->getValue()->isZero()) return C; 5508 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5509 } 5510 5511 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5512 if (!AddRec || AddRec->getLoop() != L) 5513 return getCouldNotCompute(); 5514 5515 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5516 // the quadratic equation to solve it. 5517 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5518 std::pair<const SCEV *,const SCEV *> Roots = 5519 SolveQuadraticEquation(AddRec, *this); 5520 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5521 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5522 if (R1 && R2) { 5523 #if 0 5524 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5525 << " sol#2: " << *R2 << "\n"; 5526 #endif 5527 // Pick the smallest positive root value. 5528 if (ConstantInt *CB = 5529 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5530 R1->getValue(), 5531 R2->getValue()))) { 5532 if (CB->getZExtValue() == false) 5533 std::swap(R1, R2); // R1 is the minimum root now. 5534 5535 // We can only use this value if the chrec ends up with an exact zero 5536 // value at this index. When solving for "X*X != 5", for example, we 5537 // should not accept a root of 2. 5538 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5539 if (Val->isZero()) 5540 return R1; // We found a quadratic root! 5541 } 5542 } 5543 return getCouldNotCompute(); 5544 } 5545 5546 // Otherwise we can only handle this if it is affine. 5547 if (!AddRec->isAffine()) 5548 return getCouldNotCompute(); 5549 5550 // If this is an affine expression, the execution count of this branch is 5551 // the minimum unsigned root of the following equation: 5552 // 5553 // Start + Step*N = 0 (mod 2^BW) 5554 // 5555 // equivalent to: 5556 // 5557 // Step*N = -Start (mod 2^BW) 5558 // 5559 // where BW is the common bit width of Start and Step. 5560 5561 // Get the initial value for the loop. 5562 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5563 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5564 5565 // For now we handle only constant steps. 5566 // 5567 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5568 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5569 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5570 // We have not yet seen any such cases. 5571 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5572 if (StepC == 0 || StepC->getValue()->equalsInt(0)) 5573 return getCouldNotCompute(); 5574 5575 // For positive steps (counting up until unsigned overflow): 5576 // N = -Start/Step (as unsigned) 5577 // For negative steps (counting down to zero): 5578 // N = Start/-Step 5579 // First compute the unsigned distance from zero in the direction of Step. 5580 bool CountDown = StepC->getValue()->getValue().isNegative(); 5581 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5582 5583 // Handle unitary steps, which cannot wraparound. 5584 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5585 // N = Distance (as unsigned) 5586 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5587 ConstantRange CR = getUnsignedRange(Start); 5588 const SCEV *MaxBECount; 5589 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5590 // When counting up, the worst starting value is 1, not 0. 5591 MaxBECount = CR.getUnsignedMax().isMinValue() 5592 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5593 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5594 else 5595 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5596 : -CR.getUnsignedMin()); 5597 return ExitLimit(Distance, MaxBECount); 5598 } 5599 5600 // If the recurrence is known not to wraparound, unsigned divide computes the 5601 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know 5602 // that the value will either become zero (and thus the loop terminates), that 5603 // the loop will terminate through some other exit condition first, or that 5604 // the loop has undefined behavior. This means we can't "miss" the exit 5605 // value, even with nonunit stride. 5606 // 5607 // This is only valid for expressions that directly compute the loop exit. It 5608 // is invalid for subexpressions in which the loop may exit through this 5609 // branch even if this subexpression is false. In that case, the trip count 5610 // computed by this udiv could be smaller than the number of well-defined 5611 // iterations. 5612 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) 5613 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5614 5615 // Then, try to solve the above equation provided that Start is constant. 5616 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5617 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5618 -StartC->getValue()->getValue(), 5619 *this); 5620 return getCouldNotCompute(); 5621 } 5622 5623 /// HowFarToNonZero - Return the number of times a backedge checking the 5624 /// specified value for nonzero will execute. If not computable, return 5625 /// CouldNotCompute 5626 ScalarEvolution::ExitLimit 5627 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5628 // Loops that look like: while (X == 0) are very strange indeed. We don't 5629 // handle them yet except for the trivial case. This could be expanded in the 5630 // future as needed. 5631 5632 // If the value is a constant, check to see if it is known to be non-zero 5633 // already. If so, the backedge will execute zero times. 5634 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5635 if (!C->getValue()->isNullValue()) 5636 return getConstant(C->getType(), 0); 5637 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5638 } 5639 5640 // We could implement others, but I really doubt anyone writes loops like 5641 // this, and if they did, they would already be constant folded. 5642 return getCouldNotCompute(); 5643 } 5644 5645 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5646 /// (which may not be an immediate predecessor) which has exactly one 5647 /// successor from which BB is reachable, or null if no such block is 5648 /// found. 5649 /// 5650 std::pair<BasicBlock *, BasicBlock *> 5651 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5652 // If the block has a unique predecessor, then there is no path from the 5653 // predecessor to the block that does not go through the direct edge 5654 // from the predecessor to the block. 5655 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5656 return std::make_pair(Pred, BB); 5657 5658 // A loop's header is defined to be a block that dominates the loop. 5659 // If the header has a unique predecessor outside the loop, it must be 5660 // a block that has exactly one successor that can reach the loop. 5661 if (Loop *L = LI->getLoopFor(BB)) 5662 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5663 5664 return std::pair<BasicBlock *, BasicBlock *>(); 5665 } 5666 5667 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5668 /// testing whether two expressions are equal, however for the purposes of 5669 /// looking for a condition guarding a loop, it can be useful to be a little 5670 /// more general, since a front-end may have replicated the controlling 5671 /// expression. 5672 /// 5673 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5674 // Quick check to see if they are the same SCEV. 5675 if (A == B) return true; 5676 5677 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5678 // two different instructions with the same value. Check for this case. 5679 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5680 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5681 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5682 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5683 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5684 return true; 5685 5686 // Otherwise assume they may have a different value. 5687 return false; 5688 } 5689 5690 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5691 /// predicate Pred. Return true iff any changes were made. 5692 /// 5693 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5694 const SCEV *&LHS, const SCEV *&RHS, 5695 unsigned Depth) { 5696 bool Changed = false; 5697 5698 // If we hit the max recursion limit bail out. 5699 if (Depth >= 3) 5700 return false; 5701 5702 // Canonicalize a constant to the right side. 5703 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5704 // Check for both operands constant. 5705 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5706 if (ConstantExpr::getICmp(Pred, 5707 LHSC->getValue(), 5708 RHSC->getValue())->isNullValue()) 5709 goto trivially_false; 5710 else 5711 goto trivially_true; 5712 } 5713 // Otherwise swap the operands to put the constant on the right. 5714 std::swap(LHS, RHS); 5715 Pred = ICmpInst::getSwappedPredicate(Pred); 5716 Changed = true; 5717 } 5718 5719 // If we're comparing an addrec with a value which is loop-invariant in the 5720 // addrec's loop, put the addrec on the left. Also make a dominance check, 5721 // as both operands could be addrecs loop-invariant in each other's loop. 5722 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5723 const Loop *L = AR->getLoop(); 5724 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5725 std::swap(LHS, RHS); 5726 Pred = ICmpInst::getSwappedPredicate(Pred); 5727 Changed = true; 5728 } 5729 } 5730 5731 // If there's a constant operand, canonicalize comparisons with boundary 5732 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5733 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5734 const APInt &RA = RC->getValue()->getValue(); 5735 switch (Pred) { 5736 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5737 case ICmpInst::ICMP_EQ: 5738 case ICmpInst::ICMP_NE: 5739 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 5740 if (!RA) 5741 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 5742 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 5743 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 5744 ME->getOperand(0)->isAllOnesValue()) { 5745 RHS = AE->getOperand(1); 5746 LHS = ME->getOperand(1); 5747 Changed = true; 5748 } 5749 break; 5750 case ICmpInst::ICMP_UGE: 5751 if ((RA - 1).isMinValue()) { 5752 Pred = ICmpInst::ICMP_NE; 5753 RHS = getConstant(RA - 1); 5754 Changed = true; 5755 break; 5756 } 5757 if (RA.isMaxValue()) { 5758 Pred = ICmpInst::ICMP_EQ; 5759 Changed = true; 5760 break; 5761 } 5762 if (RA.isMinValue()) goto trivially_true; 5763 5764 Pred = ICmpInst::ICMP_UGT; 5765 RHS = getConstant(RA - 1); 5766 Changed = true; 5767 break; 5768 case ICmpInst::ICMP_ULE: 5769 if ((RA + 1).isMaxValue()) { 5770 Pred = ICmpInst::ICMP_NE; 5771 RHS = getConstant(RA + 1); 5772 Changed = true; 5773 break; 5774 } 5775 if (RA.isMinValue()) { 5776 Pred = ICmpInst::ICMP_EQ; 5777 Changed = true; 5778 break; 5779 } 5780 if (RA.isMaxValue()) goto trivially_true; 5781 5782 Pred = ICmpInst::ICMP_ULT; 5783 RHS = getConstant(RA + 1); 5784 Changed = true; 5785 break; 5786 case ICmpInst::ICMP_SGE: 5787 if ((RA - 1).isMinSignedValue()) { 5788 Pred = ICmpInst::ICMP_NE; 5789 RHS = getConstant(RA - 1); 5790 Changed = true; 5791 break; 5792 } 5793 if (RA.isMaxSignedValue()) { 5794 Pred = ICmpInst::ICMP_EQ; 5795 Changed = true; 5796 break; 5797 } 5798 if (RA.isMinSignedValue()) goto trivially_true; 5799 5800 Pred = ICmpInst::ICMP_SGT; 5801 RHS = getConstant(RA - 1); 5802 Changed = true; 5803 break; 5804 case ICmpInst::ICMP_SLE: 5805 if ((RA + 1).isMaxSignedValue()) { 5806 Pred = ICmpInst::ICMP_NE; 5807 RHS = getConstant(RA + 1); 5808 Changed = true; 5809 break; 5810 } 5811 if (RA.isMinSignedValue()) { 5812 Pred = ICmpInst::ICMP_EQ; 5813 Changed = true; 5814 break; 5815 } 5816 if (RA.isMaxSignedValue()) goto trivially_true; 5817 5818 Pred = ICmpInst::ICMP_SLT; 5819 RHS = getConstant(RA + 1); 5820 Changed = true; 5821 break; 5822 case ICmpInst::ICMP_UGT: 5823 if (RA.isMinValue()) { 5824 Pred = ICmpInst::ICMP_NE; 5825 Changed = true; 5826 break; 5827 } 5828 if ((RA + 1).isMaxValue()) { 5829 Pred = ICmpInst::ICMP_EQ; 5830 RHS = getConstant(RA + 1); 5831 Changed = true; 5832 break; 5833 } 5834 if (RA.isMaxValue()) goto trivially_false; 5835 break; 5836 case ICmpInst::ICMP_ULT: 5837 if (RA.isMaxValue()) { 5838 Pred = ICmpInst::ICMP_NE; 5839 Changed = true; 5840 break; 5841 } 5842 if ((RA - 1).isMinValue()) { 5843 Pred = ICmpInst::ICMP_EQ; 5844 RHS = getConstant(RA - 1); 5845 Changed = true; 5846 break; 5847 } 5848 if (RA.isMinValue()) goto trivially_false; 5849 break; 5850 case ICmpInst::ICMP_SGT: 5851 if (RA.isMinSignedValue()) { 5852 Pred = ICmpInst::ICMP_NE; 5853 Changed = true; 5854 break; 5855 } 5856 if ((RA + 1).isMaxSignedValue()) { 5857 Pred = ICmpInst::ICMP_EQ; 5858 RHS = getConstant(RA + 1); 5859 Changed = true; 5860 break; 5861 } 5862 if (RA.isMaxSignedValue()) goto trivially_false; 5863 break; 5864 case ICmpInst::ICMP_SLT: 5865 if (RA.isMaxSignedValue()) { 5866 Pred = ICmpInst::ICMP_NE; 5867 Changed = true; 5868 break; 5869 } 5870 if ((RA - 1).isMinSignedValue()) { 5871 Pred = ICmpInst::ICMP_EQ; 5872 RHS = getConstant(RA - 1); 5873 Changed = true; 5874 break; 5875 } 5876 if (RA.isMinSignedValue()) goto trivially_false; 5877 break; 5878 } 5879 } 5880 5881 // Check for obvious equality. 5882 if (HasSameValue(LHS, RHS)) { 5883 if (ICmpInst::isTrueWhenEqual(Pred)) 5884 goto trivially_true; 5885 if (ICmpInst::isFalseWhenEqual(Pred)) 5886 goto trivially_false; 5887 } 5888 5889 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5890 // adding or subtracting 1 from one of the operands. 5891 switch (Pred) { 5892 case ICmpInst::ICMP_SLE: 5893 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5894 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5895 SCEV::FlagNSW); 5896 Pred = ICmpInst::ICMP_SLT; 5897 Changed = true; 5898 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5899 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5900 SCEV::FlagNSW); 5901 Pred = ICmpInst::ICMP_SLT; 5902 Changed = true; 5903 } 5904 break; 5905 case ICmpInst::ICMP_SGE: 5906 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5907 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5908 SCEV::FlagNSW); 5909 Pred = ICmpInst::ICMP_SGT; 5910 Changed = true; 5911 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5912 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5913 SCEV::FlagNSW); 5914 Pred = ICmpInst::ICMP_SGT; 5915 Changed = true; 5916 } 5917 break; 5918 case ICmpInst::ICMP_ULE: 5919 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5920 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5921 SCEV::FlagNUW); 5922 Pred = ICmpInst::ICMP_ULT; 5923 Changed = true; 5924 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5925 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5926 SCEV::FlagNUW); 5927 Pred = ICmpInst::ICMP_ULT; 5928 Changed = true; 5929 } 5930 break; 5931 case ICmpInst::ICMP_UGE: 5932 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5933 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5934 SCEV::FlagNUW); 5935 Pred = ICmpInst::ICMP_UGT; 5936 Changed = true; 5937 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5938 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5939 SCEV::FlagNUW); 5940 Pred = ICmpInst::ICMP_UGT; 5941 Changed = true; 5942 } 5943 break; 5944 default: 5945 break; 5946 } 5947 5948 // TODO: More simplifications are possible here. 5949 5950 // Recursively simplify until we either hit a recursion limit or nothing 5951 // changes. 5952 if (Changed) 5953 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 5954 5955 return Changed; 5956 5957 trivially_true: 5958 // Return 0 == 0. 5959 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5960 Pred = ICmpInst::ICMP_EQ; 5961 return true; 5962 5963 trivially_false: 5964 // Return 0 != 0. 5965 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5966 Pred = ICmpInst::ICMP_NE; 5967 return true; 5968 } 5969 5970 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5971 return getSignedRange(S).getSignedMax().isNegative(); 5972 } 5973 5974 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5975 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5976 } 5977 5978 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5979 return !getSignedRange(S).getSignedMin().isNegative(); 5980 } 5981 5982 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5983 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5984 } 5985 5986 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5987 return isKnownNegative(S) || isKnownPositive(S); 5988 } 5989 5990 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5991 const SCEV *LHS, const SCEV *RHS) { 5992 // Canonicalize the inputs first. 5993 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5994 5995 // If LHS or RHS is an addrec, check to see if the condition is true in 5996 // every iteration of the loop. 5997 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5998 if (isLoopEntryGuardedByCond( 5999 AR->getLoop(), Pred, AR->getStart(), RHS) && 6000 isLoopBackedgeGuardedByCond( 6001 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 6002 return true; 6003 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 6004 if (isLoopEntryGuardedByCond( 6005 AR->getLoop(), Pred, LHS, AR->getStart()) && 6006 isLoopBackedgeGuardedByCond( 6007 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 6008 return true; 6009 6010 // Otherwise see what can be done with known constant ranges. 6011 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6012 } 6013 6014 bool 6015 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6016 const SCEV *LHS, const SCEV *RHS) { 6017 if (HasSameValue(LHS, RHS)) 6018 return ICmpInst::isTrueWhenEqual(Pred); 6019 6020 // This code is split out from isKnownPredicate because it is called from 6021 // within isLoopEntryGuardedByCond. 6022 switch (Pred) { 6023 default: 6024 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6025 case ICmpInst::ICMP_SGT: 6026 Pred = ICmpInst::ICMP_SLT; 6027 std::swap(LHS, RHS); 6028 case ICmpInst::ICMP_SLT: { 6029 ConstantRange LHSRange = getSignedRange(LHS); 6030 ConstantRange RHSRange = getSignedRange(RHS); 6031 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6032 return true; 6033 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6034 return false; 6035 break; 6036 } 6037 case ICmpInst::ICMP_SGE: 6038 Pred = ICmpInst::ICMP_SLE; 6039 std::swap(LHS, RHS); 6040 case ICmpInst::ICMP_SLE: { 6041 ConstantRange LHSRange = getSignedRange(LHS); 6042 ConstantRange RHSRange = getSignedRange(RHS); 6043 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6044 return true; 6045 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6046 return false; 6047 break; 6048 } 6049 case ICmpInst::ICMP_UGT: 6050 Pred = ICmpInst::ICMP_ULT; 6051 std::swap(LHS, RHS); 6052 case ICmpInst::ICMP_ULT: { 6053 ConstantRange LHSRange = getUnsignedRange(LHS); 6054 ConstantRange RHSRange = getUnsignedRange(RHS); 6055 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6056 return true; 6057 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6058 return false; 6059 break; 6060 } 6061 case ICmpInst::ICMP_UGE: 6062 Pred = ICmpInst::ICMP_ULE; 6063 std::swap(LHS, RHS); 6064 case ICmpInst::ICMP_ULE: { 6065 ConstantRange LHSRange = getUnsignedRange(LHS); 6066 ConstantRange RHSRange = getUnsignedRange(RHS); 6067 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6068 return true; 6069 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6070 return false; 6071 break; 6072 } 6073 case ICmpInst::ICMP_NE: { 6074 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6075 return true; 6076 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6077 return true; 6078 6079 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6080 if (isKnownNonZero(Diff)) 6081 return true; 6082 break; 6083 } 6084 case ICmpInst::ICMP_EQ: 6085 // The check at the top of the function catches the case where 6086 // the values are known to be equal. 6087 break; 6088 } 6089 return false; 6090 } 6091 6092 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6093 /// protected by a conditional between LHS and RHS. This is used to 6094 /// to eliminate casts. 6095 bool 6096 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6097 ICmpInst::Predicate Pred, 6098 const SCEV *LHS, const SCEV *RHS) { 6099 // Interpret a null as meaning no loop, where there is obviously no guard 6100 // (interprocedural conditions notwithstanding). 6101 if (!L) return true; 6102 6103 BasicBlock *Latch = L->getLoopLatch(); 6104 if (!Latch) 6105 return false; 6106 6107 BranchInst *LoopContinuePredicate = 6108 dyn_cast<BranchInst>(Latch->getTerminator()); 6109 if (!LoopContinuePredicate || 6110 LoopContinuePredicate->isUnconditional()) 6111 return false; 6112 6113 return isImpliedCond(Pred, LHS, RHS, 6114 LoopContinuePredicate->getCondition(), 6115 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6116 } 6117 6118 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6119 /// by a conditional between LHS and RHS. This is used to help avoid max 6120 /// expressions in loop trip counts, and to eliminate casts. 6121 bool 6122 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6123 ICmpInst::Predicate Pred, 6124 const SCEV *LHS, const SCEV *RHS) { 6125 // Interpret a null as meaning no loop, where there is obviously no guard 6126 // (interprocedural conditions notwithstanding). 6127 if (!L) return false; 6128 6129 // Starting at the loop predecessor, climb up the predecessor chain, as long 6130 // as there are predecessors that can be found that have unique successors 6131 // leading to the original header. 6132 for (std::pair<BasicBlock *, BasicBlock *> 6133 Pair(L->getLoopPredecessor(), L->getHeader()); 6134 Pair.first; 6135 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6136 6137 BranchInst *LoopEntryPredicate = 6138 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6139 if (!LoopEntryPredicate || 6140 LoopEntryPredicate->isUnconditional()) 6141 continue; 6142 6143 if (isImpliedCond(Pred, LHS, RHS, 6144 LoopEntryPredicate->getCondition(), 6145 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6146 return true; 6147 } 6148 6149 return false; 6150 } 6151 6152 /// RAII wrapper to prevent recursive application of isImpliedCond. 6153 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6154 /// currently evaluating isImpliedCond. 6155 struct MarkPendingLoopPredicate { 6156 Value *Cond; 6157 DenseSet<Value*> &LoopPreds; 6158 bool Pending; 6159 6160 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6161 : Cond(C), LoopPreds(LP) { 6162 Pending = !LoopPreds.insert(Cond).second; 6163 } 6164 ~MarkPendingLoopPredicate() { 6165 if (!Pending) 6166 LoopPreds.erase(Cond); 6167 } 6168 }; 6169 6170 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6171 /// and RHS is true whenever the given Cond value evaluates to true. 6172 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6173 const SCEV *LHS, const SCEV *RHS, 6174 Value *FoundCondValue, 6175 bool Inverse) { 6176 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6177 if (Mark.Pending) 6178 return false; 6179 6180 // Recursively handle And and Or conditions. 6181 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6182 if (BO->getOpcode() == Instruction::And) { 6183 if (!Inverse) 6184 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6185 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6186 } else if (BO->getOpcode() == Instruction::Or) { 6187 if (Inverse) 6188 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6189 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6190 } 6191 } 6192 6193 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6194 if (!ICI) return false; 6195 6196 // Bail if the ICmp's operands' types are wider than the needed type 6197 // before attempting to call getSCEV on them. This avoids infinite 6198 // recursion, since the analysis of widening casts can require loop 6199 // exit condition information for overflow checking, which would 6200 // lead back here. 6201 if (getTypeSizeInBits(LHS->getType()) < 6202 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6203 return false; 6204 6205 // Now that we found a conditional branch that dominates the loop or controls 6206 // the loop latch. Check to see if it is the comparison we are looking for. 6207 ICmpInst::Predicate FoundPred; 6208 if (Inverse) 6209 FoundPred = ICI->getInversePredicate(); 6210 else 6211 FoundPred = ICI->getPredicate(); 6212 6213 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6214 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6215 6216 // Balance the types. The case where FoundLHS' type is wider than 6217 // LHS' type is checked for above. 6218 if (getTypeSizeInBits(LHS->getType()) > 6219 getTypeSizeInBits(FoundLHS->getType())) { 6220 if (CmpInst::isSigned(FoundPred)) { 6221 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6222 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6223 } else { 6224 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6225 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6226 } 6227 } 6228 6229 // Canonicalize the query to match the way instcombine will have 6230 // canonicalized the comparison. 6231 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6232 if (LHS == RHS) 6233 return CmpInst::isTrueWhenEqual(Pred); 6234 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6235 if (FoundLHS == FoundRHS) 6236 return CmpInst::isFalseWhenEqual(FoundPred); 6237 6238 // Check to see if we can make the LHS or RHS match. 6239 if (LHS == FoundRHS || RHS == FoundLHS) { 6240 if (isa<SCEVConstant>(RHS)) { 6241 std::swap(FoundLHS, FoundRHS); 6242 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6243 } else { 6244 std::swap(LHS, RHS); 6245 Pred = ICmpInst::getSwappedPredicate(Pred); 6246 } 6247 } 6248 6249 // Check whether the found predicate is the same as the desired predicate. 6250 if (FoundPred == Pred) 6251 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6252 6253 // Check whether swapping the found predicate makes it the same as the 6254 // desired predicate. 6255 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6256 if (isa<SCEVConstant>(RHS)) 6257 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6258 else 6259 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6260 RHS, LHS, FoundLHS, FoundRHS); 6261 } 6262 6263 // Check whether the actual condition is beyond sufficient. 6264 if (FoundPred == ICmpInst::ICMP_EQ) 6265 if (ICmpInst::isTrueWhenEqual(Pred)) 6266 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6267 return true; 6268 if (Pred == ICmpInst::ICMP_NE) 6269 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6270 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6271 return true; 6272 6273 // Otherwise assume the worst. 6274 return false; 6275 } 6276 6277 /// isImpliedCondOperands - Test whether the condition described by Pred, 6278 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6279 /// and FoundRHS is true. 6280 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6281 const SCEV *LHS, const SCEV *RHS, 6282 const SCEV *FoundLHS, 6283 const SCEV *FoundRHS) { 6284 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6285 FoundLHS, FoundRHS) || 6286 // ~x < ~y --> x > y 6287 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6288 getNotSCEV(FoundRHS), 6289 getNotSCEV(FoundLHS)); 6290 } 6291 6292 /// isImpliedCondOperandsHelper - Test whether the condition described by 6293 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6294 /// FoundLHS, and FoundRHS is true. 6295 bool 6296 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6297 const SCEV *LHS, const SCEV *RHS, 6298 const SCEV *FoundLHS, 6299 const SCEV *FoundRHS) { 6300 switch (Pred) { 6301 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6302 case ICmpInst::ICMP_EQ: 6303 case ICmpInst::ICMP_NE: 6304 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6305 return true; 6306 break; 6307 case ICmpInst::ICMP_SLT: 6308 case ICmpInst::ICMP_SLE: 6309 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6310 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6311 return true; 6312 break; 6313 case ICmpInst::ICMP_SGT: 6314 case ICmpInst::ICMP_SGE: 6315 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6316 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6317 return true; 6318 break; 6319 case ICmpInst::ICMP_ULT: 6320 case ICmpInst::ICMP_ULE: 6321 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6322 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6323 return true; 6324 break; 6325 case ICmpInst::ICMP_UGT: 6326 case ICmpInst::ICMP_UGE: 6327 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6328 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6329 return true; 6330 break; 6331 } 6332 6333 return false; 6334 } 6335 6336 // Verify if an linear IV with positive stride can overflow when in a 6337 // less-than comparison, knowing the invariant term of the comparison, the 6338 // stride and the knowledge of NSW/NUW flags on the recurrence. 6339 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 6340 bool IsSigned, bool NoWrap) { 6341 if (NoWrap) return false; 6342 6343 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6344 const SCEV *One = getConstant(Stride->getType(), 1); 6345 6346 if (IsSigned) { 6347 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 6348 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 6349 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 6350 .getSignedMax(); 6351 6352 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 6353 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 6354 } 6355 6356 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 6357 APInt MaxValue = APInt::getMaxValue(BitWidth); 6358 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 6359 .getUnsignedMax(); 6360 6361 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 6362 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 6363 } 6364 6365 // Verify if an linear IV with negative stride can overflow when in a 6366 // greater-than comparison, knowing the invariant term of the comparison, 6367 // the stride and the knowledge of NSW/NUW flags on the recurrence. 6368 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 6369 bool IsSigned, bool NoWrap) { 6370 if (NoWrap) return false; 6371 6372 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6373 const SCEV *One = getConstant(Stride->getType(), 1); 6374 6375 if (IsSigned) { 6376 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 6377 APInt MinValue = APInt::getSignedMinValue(BitWidth); 6378 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 6379 .getSignedMax(); 6380 6381 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 6382 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 6383 } 6384 6385 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 6386 APInt MinValue = APInt::getMinValue(BitWidth); 6387 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 6388 .getUnsignedMax(); 6389 6390 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 6391 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 6392 } 6393 6394 // Compute the backedge taken count knowing the interval difference, the 6395 // stride and presence of the equality in the comparison. 6396 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 6397 bool Equality) { 6398 const SCEV *One = getConstant(Step->getType(), 1); 6399 Delta = Equality ? getAddExpr(Delta, Step) 6400 : getAddExpr(Delta, getMinusSCEV(Step, One)); 6401 return getUDivExpr(Delta, Step); 6402 } 6403 6404 /// HowManyLessThans - Return the number of times a backedge containing the 6405 /// specified less-than comparison will execute. If not computable, return 6406 /// CouldNotCompute. 6407 /// 6408 /// @param IsSubExpr is true when the LHS < RHS condition does not directly 6409 /// control the branch. In this case, we can only compute an iteration count for 6410 /// a subexpression that cannot overflow before evaluating true. 6411 ScalarEvolution::ExitLimit 6412 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6413 const Loop *L, bool IsSigned, 6414 bool IsSubExpr) { 6415 // We handle only IV < Invariant 6416 if (!isLoopInvariant(RHS, L)) 6417 return getCouldNotCompute(); 6418 6419 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 6420 6421 // Avoid weird loops 6422 if (!IV || IV->getLoop() != L || !IV->isAffine()) 6423 return getCouldNotCompute(); 6424 6425 bool NoWrap = !IsSubExpr && 6426 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 6427 6428 const SCEV *Stride = IV->getStepRecurrence(*this); 6429 6430 // Avoid negative or zero stride values 6431 if (!isKnownPositive(Stride)) 6432 return getCouldNotCompute(); 6433 6434 // Avoid proven overflow cases: this will ensure that the backedge taken count 6435 // will not generate any unsigned overflow. Relaxed no-overflow conditions 6436 // exploit NoWrapFlags, allowing to optimize in presence of undefined 6437 // behaviors like the case of C language. 6438 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 6439 return getCouldNotCompute(); 6440 6441 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 6442 : ICmpInst::ICMP_ULT; 6443 const SCEV *Start = IV->getStart(); 6444 const SCEV *End = RHS; 6445 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 6446 End = IsSigned ? getSMaxExpr(RHS, Start) 6447 : getUMaxExpr(RHS, Start); 6448 6449 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 6450 6451 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 6452 : getUnsignedRange(Start).getUnsignedMin(); 6453 6454 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 6455 : getUnsignedRange(Stride).getUnsignedMin(); 6456 6457 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 6458 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 6459 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 6460 6461 // Although End can be a MAX expression we estimate MaxEnd considering only 6462 // the case End = RHS. This is safe because in the other case (End - Start) 6463 // is zero, leading to a zero maximum backedge taken count. 6464 APInt MaxEnd = 6465 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 6466 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 6467 6468 const SCEV *MaxBECount = getCouldNotCompute(); 6469 if (isa<SCEVConstant>(BECount)) 6470 MaxBECount = BECount; 6471 else 6472 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 6473 getConstant(MinStride), false); 6474 6475 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6476 MaxBECount = BECount; 6477 6478 return ExitLimit(BECount, MaxBECount); 6479 } 6480 6481 ScalarEvolution::ExitLimit 6482 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 6483 const Loop *L, bool IsSigned, 6484 bool IsSubExpr) { 6485 // We handle only IV > Invariant 6486 if (!isLoopInvariant(RHS, L)) 6487 return getCouldNotCompute(); 6488 6489 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 6490 6491 // Avoid weird loops 6492 if (!IV || IV->getLoop() != L || !IV->isAffine()) 6493 return getCouldNotCompute(); 6494 6495 bool NoWrap = !IsSubExpr && 6496 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 6497 6498 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 6499 6500 // Avoid negative or zero stride values 6501 if (!isKnownPositive(Stride)) 6502 return getCouldNotCompute(); 6503 6504 // Avoid proven overflow cases: this will ensure that the backedge taken count 6505 // will not generate any unsigned overflow. Relaxed no-overflow conditions 6506 // exploit NoWrapFlags, allowing to optimize in presence of undefined 6507 // behaviors like the case of C language. 6508 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 6509 return getCouldNotCompute(); 6510 6511 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 6512 : ICmpInst::ICMP_UGT; 6513 6514 const SCEV *Start = IV->getStart(); 6515 const SCEV *End = RHS; 6516 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 6517 End = IsSigned ? getSMinExpr(RHS, Start) 6518 : getUMinExpr(RHS, Start); 6519 6520 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 6521 6522 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 6523 : getUnsignedRange(Start).getUnsignedMax(); 6524 6525 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 6526 : getUnsignedRange(Stride).getUnsignedMin(); 6527 6528 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 6529 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 6530 : APInt::getMinValue(BitWidth) + (MinStride - 1); 6531 6532 // Although End can be a MIN expression we estimate MinEnd considering only 6533 // the case End = RHS. This is safe because in the other case (Start - End) 6534 // is zero, leading to a zero maximum backedge taken count. 6535 APInt MinEnd = 6536 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 6537 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 6538 6539 6540 const SCEV *MaxBECount = getCouldNotCompute(); 6541 if (isa<SCEVConstant>(BECount)) 6542 MaxBECount = BECount; 6543 else 6544 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 6545 getConstant(MinStride), false); 6546 6547 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6548 MaxBECount = BECount; 6549 6550 return ExitLimit(BECount, MaxBECount); 6551 } 6552 6553 /// getNumIterationsInRange - Return the number of iterations of this loop that 6554 /// produce values in the specified constant range. Another way of looking at 6555 /// this is that it returns the first iteration number where the value is not in 6556 /// the condition, thus computing the exit count. If the iteration count can't 6557 /// be computed, an instance of SCEVCouldNotCompute is returned. 6558 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6559 ScalarEvolution &SE) const { 6560 if (Range.isFullSet()) // Infinite loop. 6561 return SE.getCouldNotCompute(); 6562 6563 // If the start is a non-zero constant, shift the range to simplify things. 6564 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6565 if (!SC->getValue()->isZero()) { 6566 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6567 Operands[0] = SE.getConstant(SC->getType(), 0); 6568 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6569 getNoWrapFlags(FlagNW)); 6570 if (const SCEVAddRecExpr *ShiftedAddRec = 6571 dyn_cast<SCEVAddRecExpr>(Shifted)) 6572 return ShiftedAddRec->getNumIterationsInRange( 6573 Range.subtract(SC->getValue()->getValue()), SE); 6574 // This is strange and shouldn't happen. 6575 return SE.getCouldNotCompute(); 6576 } 6577 6578 // The only time we can solve this is when we have all constant indices. 6579 // Otherwise, we cannot determine the overflow conditions. 6580 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6581 if (!isa<SCEVConstant>(getOperand(i))) 6582 return SE.getCouldNotCompute(); 6583 6584 6585 // Okay at this point we know that all elements of the chrec are constants and 6586 // that the start element is zero. 6587 6588 // First check to see if the range contains zero. If not, the first 6589 // iteration exits. 6590 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6591 if (!Range.contains(APInt(BitWidth, 0))) 6592 return SE.getConstant(getType(), 0); 6593 6594 if (isAffine()) { 6595 // If this is an affine expression then we have this situation: 6596 // Solve {0,+,A} in Range === Ax in Range 6597 6598 // We know that zero is in the range. If A is positive then we know that 6599 // the upper value of the range must be the first possible exit value. 6600 // If A is negative then the lower of the range is the last possible loop 6601 // value. Also note that we already checked for a full range. 6602 APInt One(BitWidth,1); 6603 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6604 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6605 6606 // The exit value should be (End+A)/A. 6607 APInt ExitVal = (End + A).udiv(A); 6608 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6609 6610 // Evaluate at the exit value. If we really did fall out of the valid 6611 // range, then we computed our trip count, otherwise wrap around or other 6612 // things must have happened. 6613 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6614 if (Range.contains(Val->getValue())) 6615 return SE.getCouldNotCompute(); // Something strange happened 6616 6617 // Ensure that the previous value is in the range. This is a sanity check. 6618 assert(Range.contains( 6619 EvaluateConstantChrecAtConstant(this, 6620 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6621 "Linear scev computation is off in a bad way!"); 6622 return SE.getConstant(ExitValue); 6623 } else if (isQuadratic()) { 6624 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6625 // quadratic equation to solve it. To do this, we must frame our problem in 6626 // terms of figuring out when zero is crossed, instead of when 6627 // Range.getUpper() is crossed. 6628 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6629 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6630 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6631 // getNoWrapFlags(FlagNW) 6632 FlagAnyWrap); 6633 6634 // Next, solve the constructed addrec 6635 std::pair<const SCEV *,const SCEV *> Roots = 6636 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6637 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6638 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6639 if (R1) { 6640 // Pick the smallest positive root value. 6641 if (ConstantInt *CB = 6642 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6643 R1->getValue(), R2->getValue()))) { 6644 if (CB->getZExtValue() == false) 6645 std::swap(R1, R2); // R1 is the minimum root now. 6646 6647 // Make sure the root is not off by one. The returned iteration should 6648 // not be in the range, but the previous one should be. When solving 6649 // for "X*X < 5", for example, we should not return a root of 2. 6650 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6651 R1->getValue(), 6652 SE); 6653 if (Range.contains(R1Val->getValue())) { 6654 // The next iteration must be out of the range... 6655 ConstantInt *NextVal = 6656 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6657 6658 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6659 if (!Range.contains(R1Val->getValue())) 6660 return SE.getConstant(NextVal); 6661 return SE.getCouldNotCompute(); // Something strange happened 6662 } 6663 6664 // If R1 was not in the range, then it is a good return value. Make 6665 // sure that R1-1 WAS in the range though, just in case. 6666 ConstantInt *NextVal = 6667 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6668 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6669 if (Range.contains(R1Val->getValue())) 6670 return R1; 6671 return SE.getCouldNotCompute(); // Something strange happened 6672 } 6673 } 6674 } 6675 6676 return SE.getCouldNotCompute(); 6677 } 6678 6679 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 6680 APInt A = C1->getValue()->getValue().abs(); 6681 APInt B = C2->getValue()->getValue().abs(); 6682 uint32_t ABW = A.getBitWidth(); 6683 uint32_t BBW = B.getBitWidth(); 6684 6685 if (ABW > BBW) 6686 B = B.zext(ABW); 6687 else if (ABW < BBW) 6688 A = A.zext(BBW); 6689 6690 return APIntOps::GreatestCommonDivisor(A, B); 6691 } 6692 6693 static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) { 6694 APInt A = C1->getValue()->getValue(); 6695 APInt B = C2->getValue()->getValue(); 6696 uint32_t ABW = A.getBitWidth(); 6697 uint32_t BBW = B.getBitWidth(); 6698 6699 if (ABW > BBW) 6700 B = B.sext(ABW); 6701 else if (ABW < BBW) 6702 A = A.sext(BBW); 6703 6704 return APIntOps::srem(A, B); 6705 } 6706 6707 static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) { 6708 APInt A = C1->getValue()->getValue(); 6709 APInt B = C2->getValue()->getValue(); 6710 uint32_t ABW = A.getBitWidth(); 6711 uint32_t BBW = B.getBitWidth(); 6712 6713 if (ABW > BBW) 6714 B = B.sext(ABW); 6715 else if (ABW < BBW) 6716 A = A.sext(BBW); 6717 6718 return APIntOps::sdiv(A, B); 6719 } 6720 6721 namespace { 6722 struct SCEVGCD : public SCEVVisitor<SCEVGCD, const SCEV *> { 6723 public: 6724 // Pattern match Step into Start. When Step is a multiply expression, find 6725 // the largest subexpression of Step that appears in Start. When Start is an 6726 // add expression, try to match Step in the subexpressions of Start, non 6727 // matching subexpressions are returned under Remainder. 6728 static const SCEV *findGCD(ScalarEvolution &SE, const SCEV *Start, 6729 const SCEV *Step, const SCEV **Remainder) { 6730 assert(Remainder && "Remainder should not be NULL"); 6731 SCEVGCD R(SE, Step, SE.getConstant(Step->getType(), 0)); 6732 const SCEV *Res = R.visit(Start); 6733 *Remainder = R.Remainder; 6734 return Res; 6735 } 6736 6737 SCEVGCD(ScalarEvolution &S, const SCEV *G, const SCEV *R) 6738 : SE(S), GCD(G), Remainder(R) { 6739 Zero = SE.getConstant(GCD->getType(), 0); 6740 One = SE.getConstant(GCD->getType(), 1); 6741 } 6742 6743 const SCEV *visitConstant(const SCEVConstant *Constant) { 6744 if (GCD == Constant || Constant == Zero) 6745 return GCD; 6746 6747 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) { 6748 const SCEV *Res = SE.getConstant(gcd(Constant, CGCD)); 6749 if (Res != One) 6750 return Res; 6751 6752 Remainder = SE.getConstant(srem(Constant, CGCD)); 6753 Constant = cast<SCEVConstant>(SE.getMinusSCEV(Constant, Remainder)); 6754 Res = SE.getConstant(gcd(Constant, CGCD)); 6755 return Res; 6756 } 6757 6758 // When GCD is not a constant, it could be that the GCD is an Add, Mul, 6759 // AddRec, etc., in which case we want to find out how many times the 6760 // Constant divides the GCD: we then return that as the new GCD. 6761 const SCEV *Rem = Zero; 6762 const SCEV *Res = findGCD(SE, GCD, Constant, &Rem); 6763 6764 if (Res == One || Rem != Zero) { 6765 Remainder = Constant; 6766 return One; 6767 } 6768 6769 assert(isa<SCEVConstant>(Res) && "Res should be a constant"); 6770 Remainder = SE.getConstant(srem(Constant, cast<SCEVConstant>(Res))); 6771 return Res; 6772 } 6773 6774 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { 6775 if (GCD != Expr) 6776 Remainder = Expr; 6777 return GCD; 6778 } 6779 6780 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 6781 if (GCD != Expr) 6782 Remainder = Expr; 6783 return GCD; 6784 } 6785 6786 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 6787 if (GCD != Expr) 6788 Remainder = Expr; 6789 return GCD; 6790 } 6791 6792 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 6793 if (GCD == Expr) 6794 return GCD; 6795 6796 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 6797 const SCEV *Rem = Zero; 6798 const SCEV *Res = findGCD(SE, Expr->getOperand(e - 1 - i), GCD, &Rem); 6799 6800 // FIXME: There may be ambiguous situations: for instance, 6801 // GCD(-4 + (3 * %m), 2 * %m) where 2 divides -4 and %m divides (3 * %m). 6802 // The order in which the AddExpr is traversed computes a different GCD 6803 // and Remainder. 6804 if (Res != One) 6805 GCD = Res; 6806 if (Rem != Zero) 6807 Remainder = SE.getAddExpr(Remainder, Rem); 6808 } 6809 6810 return GCD; 6811 } 6812 6813 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 6814 if (GCD == Expr) 6815 return GCD; 6816 6817 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 6818 if (Expr->getOperand(i) == GCD) 6819 return GCD; 6820 } 6821 6822 // If we have not returned yet, it means that GCD is not part of Expr. 6823 const SCEV *PartialGCD = One; 6824 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 6825 const SCEV *Rem = Zero; 6826 const SCEV *Res = findGCD(SE, Expr->getOperand(i), GCD, &Rem); 6827 if (Rem != Zero) 6828 // GCD does not divide Expr->getOperand(i). 6829 continue; 6830 6831 if (Res == GCD) 6832 return GCD; 6833 PartialGCD = SE.getMulExpr(PartialGCD, Res); 6834 if (PartialGCD == GCD) 6835 return GCD; 6836 } 6837 6838 if (PartialGCD != One) 6839 return PartialGCD; 6840 6841 Remainder = Expr; 6842 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(GCD); 6843 if (!Mul) 6844 return PartialGCD; 6845 6846 // When the GCD is a multiply expression, try to decompose it: 6847 // this occurs when Step does not divide the Start expression 6848 // as in: {(-4 + (3 * %m)),+,(2 * %m)} 6849 for (int i = 0, e = Mul->getNumOperands(); i < e; ++i) { 6850 const SCEV *Rem = Zero; 6851 const SCEV *Res = findGCD(SE, Expr, Mul->getOperand(i), &Rem); 6852 if (Rem == Zero) { 6853 Remainder = Rem; 6854 return Res; 6855 } 6856 } 6857 6858 return PartialGCD; 6859 } 6860 6861 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { 6862 if (GCD != Expr) 6863 Remainder = Expr; 6864 return GCD; 6865 } 6866 6867 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 6868 if (GCD == Expr) 6869 return GCD; 6870 6871 if (!Expr->isAffine()) { 6872 Remainder = Expr; 6873 return GCD; 6874 } 6875 6876 const SCEV *Rem = Zero; 6877 const SCEV *Res = findGCD(SE, Expr->getOperand(0), GCD, &Rem); 6878 if (Rem != Zero) 6879 Remainder = SE.getAddExpr(Remainder, Rem); 6880 6881 Rem = Zero; 6882 Res = findGCD(SE, Expr->getOperand(1), Res, &Rem); 6883 if (Rem != Zero) { 6884 Remainder = Expr; 6885 return GCD; 6886 } 6887 6888 return Res; 6889 } 6890 6891 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { 6892 if (GCD != Expr) 6893 Remainder = Expr; 6894 return GCD; 6895 } 6896 6897 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { 6898 if (GCD != Expr) 6899 Remainder = Expr; 6900 return GCD; 6901 } 6902 6903 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 6904 if (GCD != Expr) 6905 Remainder = Expr; 6906 return GCD; 6907 } 6908 6909 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 6910 return One; 6911 } 6912 6913 private: 6914 ScalarEvolution &SE; 6915 const SCEV *GCD, *Remainder, *Zero, *One; 6916 }; 6917 6918 struct SCEVDivision : public SCEVVisitor<SCEVDivision, const SCEV *> { 6919 public: 6920 // Remove from Start all multiples of Step. 6921 static const SCEV *divide(ScalarEvolution &SE, const SCEV *Start, 6922 const SCEV *Step) { 6923 SCEVDivision D(SE, Step); 6924 const SCEV *Rem = D.Zero; 6925 (void)Rem; 6926 // The division is guaranteed to succeed: Step should divide Start with no 6927 // remainder. 6928 assert(Step == SCEVGCD::findGCD(SE, Start, Step, &Rem) && Rem == D.Zero && 6929 "Step should divide Start with no remainder."); 6930 return D.visit(Start); 6931 } 6932 6933 SCEVDivision(ScalarEvolution &S, const SCEV *G) : SE(S), GCD(G) { 6934 Zero = SE.getConstant(GCD->getType(), 0); 6935 One = SE.getConstant(GCD->getType(), 1); 6936 } 6937 6938 const SCEV *visitConstant(const SCEVConstant *Constant) { 6939 if (GCD == Constant) 6940 return One; 6941 6942 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) 6943 return SE.getConstant(sdiv(Constant, CGCD)); 6944 return Constant; 6945 } 6946 6947 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { 6948 if (GCD == Expr) 6949 return One; 6950 return Expr; 6951 } 6952 6953 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 6954 if (GCD == Expr) 6955 return One; 6956 return Expr; 6957 } 6958 6959 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 6960 if (GCD == Expr) 6961 return One; 6962 return Expr; 6963 } 6964 6965 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 6966 if (GCD == Expr) 6967 return One; 6968 6969 SmallVector<const SCEV *, 2> Operands; 6970 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) 6971 Operands.push_back(divide(SE, Expr->getOperand(i), GCD)); 6972 6973 if (Operands.size() == 1) 6974 return Operands[0]; 6975 return SE.getAddExpr(Operands); 6976 } 6977 6978 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 6979 if (GCD == Expr) 6980 return One; 6981 6982 bool FoundGCDTerm = false; 6983 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) 6984 if (Expr->getOperand(i) == GCD) 6985 FoundGCDTerm = true; 6986 6987 SmallVector<const SCEV *, 2> Operands; 6988 if (FoundGCDTerm) { 6989 FoundGCDTerm = false; 6990 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 6991 if (FoundGCDTerm) 6992 Operands.push_back(Expr->getOperand(i)); 6993 else if (Expr->getOperand(i) == GCD) 6994 FoundGCDTerm = true; 6995 else 6996 Operands.push_back(Expr->getOperand(i)); 6997 } 6998 } else { 6999 FoundGCDTerm = false; 7000 const SCEV *PartialGCD = One; 7001 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 7002 if (PartialGCD == GCD) { 7003 Operands.push_back(Expr->getOperand(i)); 7004 continue; 7005 } 7006 7007 const SCEV *Rem = Zero; 7008 const SCEV *Res = SCEVGCD::findGCD(SE, Expr->getOperand(i), GCD, &Rem); 7009 if (Rem == Zero) { 7010 PartialGCD = SE.getMulExpr(PartialGCD, Res); 7011 Operands.push_back(divide(SE, Expr->getOperand(i), GCD)); 7012 } else { 7013 Operands.push_back(Expr->getOperand(i)); 7014 } 7015 } 7016 } 7017 7018 if (Operands.size() == 1) 7019 return Operands[0]; 7020 return SE.getMulExpr(Operands); 7021 } 7022 7023 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { 7024 if (GCD == Expr) 7025 return One; 7026 return Expr; 7027 } 7028 7029 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 7030 if (GCD == Expr) 7031 return One; 7032 7033 assert(Expr->isAffine() && "Expr should be affine"); 7034 7035 const SCEV *Start = divide(SE, Expr->getStart(), GCD); 7036 const SCEV *Step = divide(SE, Expr->getStepRecurrence(SE), GCD); 7037 7038 return SE.getAddRecExpr(Start, Step, Expr->getLoop(), 7039 Expr->getNoWrapFlags()); 7040 } 7041 7042 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { 7043 if (GCD == Expr) 7044 return One; 7045 return Expr; 7046 } 7047 7048 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { 7049 if (GCD == Expr) 7050 return One; 7051 return Expr; 7052 } 7053 7054 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 7055 if (GCD == Expr) 7056 return One; 7057 return Expr; 7058 } 7059 7060 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 7061 return Expr; 7062 } 7063 7064 private: 7065 ScalarEvolution &SE; 7066 const SCEV *GCD, *Zero, *One; 7067 }; 7068 } 7069 7070 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 7071 /// sizes of an array access. Returns the remainder of the delinearization that 7072 /// is the offset start of the array. The SCEV->delinearize algorithm computes 7073 /// the multiples of SCEV coefficients: that is a pattern matching of sub 7074 /// expressions in the stride and base of a SCEV corresponding to the 7075 /// computation of a GCD (greatest common divisor) of base and stride. When 7076 /// SCEV->delinearize fails, it returns the SCEV unchanged. 7077 /// 7078 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 7079 /// 7080 /// void foo(long n, long m, long o, double A[n][m][o]) { 7081 /// 7082 /// for (long i = 0; i < n; i++) 7083 /// for (long j = 0; j < m; j++) 7084 /// for (long k = 0; k < o; k++) 7085 /// A[i][j][k] = 1.0; 7086 /// } 7087 /// 7088 /// the delinearization input is the following AddRec SCEV: 7089 /// 7090 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 7091 /// 7092 /// From this SCEV, we are able to say that the base offset of the access is %A 7093 /// because it appears as an offset that does not divide any of the strides in 7094 /// the loops: 7095 /// 7096 /// CHECK: Base offset: %A 7097 /// 7098 /// and then SCEV->delinearize determines the size of some of the dimensions of 7099 /// the array as these are the multiples by which the strides are happening: 7100 /// 7101 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 7102 /// 7103 /// Note that the outermost dimension remains of UnknownSize because there are 7104 /// no strides that would help identifying the size of the last dimension: when 7105 /// the array has been statically allocated, one could compute the size of that 7106 /// dimension by dividing the overall size of the array by the size of the known 7107 /// dimensions: %m * %o * 8. 7108 /// 7109 /// Finally delinearize provides the access functions for the array reference 7110 /// that does correspond to A[i][j][k] of the above C testcase: 7111 /// 7112 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 7113 /// 7114 /// The testcases are checking the output of a function pass: 7115 /// DelinearizationPass that walks through all loads and stores of a function 7116 /// asking for the SCEV of the memory access with respect to all enclosing 7117 /// loops, calling SCEV->delinearize on that and printing the results. 7118 7119 const SCEV * 7120 SCEVAddRecExpr::delinearize(ScalarEvolution &SE, 7121 SmallVectorImpl<const SCEV *> &Subscripts, 7122 SmallVectorImpl<const SCEV *> &Sizes) const { 7123 // Early exit in case this SCEV is not an affine multivariate function. 7124 if (!this->isAffine()) 7125 return this; 7126 7127 const SCEV *Start = this->getStart(); 7128 const SCEV *Step = this->getStepRecurrence(SE); 7129 7130 // Build the SCEV representation of the cannonical induction variable in the 7131 // loop of this SCEV. 7132 const SCEV *Zero = SE.getConstant(this->getType(), 0); 7133 const SCEV *One = SE.getConstant(this->getType(), 1); 7134 const SCEV *IV = 7135 SE.getAddRecExpr(Zero, One, this->getLoop(), this->getNoWrapFlags()); 7136 7137 DEBUG(dbgs() << "(delinearize: " << *this << "\n"); 7138 7139 // Currently we fail to delinearize when the stride of this SCEV is 1. We 7140 // could decide to not fail in this case: we could just return 1 for the size 7141 // of the subscript, and this same SCEV for the access function. 7142 if (Step == One) { 7143 DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n"); 7144 return this; 7145 } 7146 7147 // Find the GCD and Remainder of the Start and Step coefficients of this SCEV. 7148 const SCEV *Remainder = NULL; 7149 const SCEV *GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder); 7150 7151 DEBUG(dbgs() << "GCD: " << *GCD << "\n"); 7152 DEBUG(dbgs() << "Remainder: " << *Remainder << "\n"); 7153 7154 // Same remark as above: we currently fail the delinearization, although we 7155 // can very well handle this special case. 7156 if (GCD == One) { 7157 DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n"); 7158 return this; 7159 } 7160 7161 // As findGCD computed Remainder, GCD divides "Start - Remainder." The 7162 // Quotient is then this SCEV without Remainder, scaled down by the GCD. The 7163 // Quotient is what will be used in the next subscript delinearization. 7164 const SCEV *Quotient = 7165 SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD); 7166 DEBUG(dbgs() << "Quotient: " << *Quotient << "\n"); 7167 7168 const SCEV *Rem; 7169 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Quotient)) 7170 // Recursively call delinearize on the Quotient until there are no more 7171 // multiples that can be recognized. 7172 Rem = AR->delinearize(SE, Subscripts, Sizes); 7173 else 7174 Rem = Quotient; 7175 7176 // Scale up the cannonical induction variable IV by whatever remains from the 7177 // Step after division by the GCD: the GCD is the size of all the sub-array. 7178 if (Step != GCD) { 7179 Step = SCEVDivision::divide(SE, Step, GCD); 7180 IV = SE.getMulExpr(IV, Step); 7181 } 7182 // The access function in the current subscript is computed as the cannonical 7183 // induction variable IV (potentially scaled up by the step) and offset by 7184 // Rem, the offset of delinearization in the sub-array. 7185 const SCEV *Index = SE.getAddExpr(IV, Rem); 7186 7187 // Record the access function and the size of the current subscript. 7188 Subscripts.push_back(Index); 7189 Sizes.push_back(GCD); 7190 7191 #ifndef NDEBUG 7192 int Size = Sizes.size(); 7193 DEBUG(dbgs() << "succeeded to delinearize " << *this << "\n"); 7194 DEBUG(dbgs() << "ArrayDecl[UnknownSize]"); 7195 for (int i = 0; i < Size - 1; i++) 7196 DEBUG(dbgs() << "[" << *Sizes[i] << "]"); 7197 DEBUG(dbgs() << " with elements of " << *Sizes[Size - 1] << " bytes.\n"); 7198 7199 DEBUG(dbgs() << "ArrayRef"); 7200 for (int i = 0; i < Size; i++) 7201 DEBUG(dbgs() << "[" << *Subscripts[i] << "]"); 7202 DEBUG(dbgs() << "\n)\n"); 7203 #endif 7204 7205 return Remainder; 7206 } 7207 7208 //===----------------------------------------------------------------------===// 7209 // SCEVCallbackVH Class Implementation 7210 //===----------------------------------------------------------------------===// 7211 7212 void ScalarEvolution::SCEVCallbackVH::deleted() { 7213 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7214 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 7215 SE->ConstantEvolutionLoopExitValue.erase(PN); 7216 SE->ValueExprMap.erase(getValPtr()); 7217 // this now dangles! 7218 } 7219 7220 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 7221 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7222 7223 // Forget all the expressions associated with users of the old value, 7224 // so that future queries will recompute the expressions using the new 7225 // value. 7226 Value *Old = getValPtr(); 7227 SmallVector<User *, 16> Worklist; 7228 SmallPtrSet<User *, 8> Visited; 7229 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 7230 UI != UE; ++UI) 7231 Worklist.push_back(*UI); 7232 while (!Worklist.empty()) { 7233 User *U = Worklist.pop_back_val(); 7234 // Deleting the Old value will cause this to dangle. Postpone 7235 // that until everything else is done. 7236 if (U == Old) 7237 continue; 7238 if (!Visited.insert(U)) 7239 continue; 7240 if (PHINode *PN = dyn_cast<PHINode>(U)) 7241 SE->ConstantEvolutionLoopExitValue.erase(PN); 7242 SE->ValueExprMap.erase(U); 7243 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 7244 UI != UE; ++UI) 7245 Worklist.push_back(*UI); 7246 } 7247 // Delete the Old value. 7248 if (PHINode *PN = dyn_cast<PHINode>(Old)) 7249 SE->ConstantEvolutionLoopExitValue.erase(PN); 7250 SE->ValueExprMap.erase(Old); 7251 // this now dangles! 7252 } 7253 7254 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 7255 : CallbackVH(V), SE(se) {} 7256 7257 //===----------------------------------------------------------------------===// 7258 // ScalarEvolution Class Implementation 7259 //===----------------------------------------------------------------------===// 7260 7261 ScalarEvolution::ScalarEvolution() 7262 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), FirstUnknown(0) { 7263 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 7264 } 7265 7266 bool ScalarEvolution::runOnFunction(Function &F) { 7267 this->F = &F; 7268 LI = &getAnalysis<LoopInfo>(); 7269 TD = getAnalysisIfAvailable<DataLayout>(); 7270 TLI = &getAnalysis<TargetLibraryInfo>(); 7271 DT = &getAnalysis<DominatorTree>(); 7272 return false; 7273 } 7274 7275 void ScalarEvolution::releaseMemory() { 7276 // Iterate through all the SCEVUnknown instances and call their 7277 // destructors, so that they release their references to their values. 7278 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 7279 U->~SCEVUnknown(); 7280 FirstUnknown = 0; 7281 7282 ValueExprMap.clear(); 7283 7284 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 7285 // that a loop had multiple computable exits. 7286 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7287 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 7288 I != E; ++I) { 7289 I->second.clear(); 7290 } 7291 7292 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 7293 7294 BackedgeTakenCounts.clear(); 7295 ConstantEvolutionLoopExitValue.clear(); 7296 ValuesAtScopes.clear(); 7297 LoopDispositions.clear(); 7298 BlockDispositions.clear(); 7299 UnsignedRanges.clear(); 7300 SignedRanges.clear(); 7301 UniqueSCEVs.clear(); 7302 SCEVAllocator.Reset(); 7303 } 7304 7305 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 7306 AU.setPreservesAll(); 7307 AU.addRequiredTransitive<LoopInfo>(); 7308 AU.addRequiredTransitive<DominatorTree>(); 7309 AU.addRequired<TargetLibraryInfo>(); 7310 } 7311 7312 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 7313 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 7314 } 7315 7316 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 7317 const Loop *L) { 7318 // Print all inner loops first 7319 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 7320 PrintLoopInfo(OS, SE, *I); 7321 7322 OS << "Loop "; 7323 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 7324 OS << ": "; 7325 7326 SmallVector<BasicBlock *, 8> ExitBlocks; 7327 L->getExitBlocks(ExitBlocks); 7328 if (ExitBlocks.size() != 1) 7329 OS << "<multiple exits> "; 7330 7331 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 7332 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 7333 } else { 7334 OS << "Unpredictable backedge-taken count. "; 7335 } 7336 7337 OS << "\n" 7338 "Loop "; 7339 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 7340 OS << ": "; 7341 7342 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 7343 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 7344 } else { 7345 OS << "Unpredictable max backedge-taken count. "; 7346 } 7347 7348 OS << "\n"; 7349 } 7350 7351 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 7352 // ScalarEvolution's implementation of the print method is to print 7353 // out SCEV values of all instructions that are interesting. Doing 7354 // this potentially causes it to create new SCEV objects though, 7355 // which technically conflicts with the const qualifier. This isn't 7356 // observable from outside the class though, so casting away the 7357 // const isn't dangerous. 7358 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7359 7360 OS << "Classifying expressions for: "; 7361 F->printAsOperand(OS, /*PrintType=*/false); 7362 OS << "\n"; 7363 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 7364 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 7365 OS << *I << '\n'; 7366 OS << " --> "; 7367 const SCEV *SV = SE.getSCEV(&*I); 7368 SV->print(OS); 7369 7370 const Loop *L = LI->getLoopFor((*I).getParent()); 7371 7372 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 7373 if (AtUse != SV) { 7374 OS << " --> "; 7375 AtUse->print(OS); 7376 } 7377 7378 if (L) { 7379 OS << "\t\t" "Exits: "; 7380 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 7381 if (!SE.isLoopInvariant(ExitValue, L)) { 7382 OS << "<<Unknown>>"; 7383 } else { 7384 OS << *ExitValue; 7385 } 7386 } 7387 7388 OS << "\n"; 7389 } 7390 7391 OS << "Determining loop execution counts for: "; 7392 F->printAsOperand(OS, /*PrintType=*/false); 7393 OS << "\n"; 7394 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 7395 PrintLoopInfo(OS, &SE, *I); 7396 } 7397 7398 ScalarEvolution::LoopDisposition 7399 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 7400 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S]; 7401 for (unsigned u = 0; u < Values.size(); u++) { 7402 if (Values[u].first == L) 7403 return Values[u].second; 7404 } 7405 Values.push_back(std::make_pair(L, LoopVariant)); 7406 LoopDisposition D = computeLoopDisposition(S, L); 7407 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S]; 7408 for (unsigned u = Values2.size(); u > 0; u--) { 7409 if (Values2[u - 1].first == L) { 7410 Values2[u - 1].second = D; 7411 break; 7412 } 7413 } 7414 return D; 7415 } 7416 7417 ScalarEvolution::LoopDisposition 7418 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 7419 switch (S->getSCEVType()) { 7420 case scConstant: 7421 return LoopInvariant; 7422 case scTruncate: 7423 case scZeroExtend: 7424 case scSignExtend: 7425 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 7426 case scAddRecExpr: { 7427 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 7428 7429 // If L is the addrec's loop, it's computable. 7430 if (AR->getLoop() == L) 7431 return LoopComputable; 7432 7433 // Add recurrences are never invariant in the function-body (null loop). 7434 if (!L) 7435 return LoopVariant; 7436 7437 // This recurrence is variant w.r.t. L if L contains AR's loop. 7438 if (L->contains(AR->getLoop())) 7439 return LoopVariant; 7440 7441 // This recurrence is invariant w.r.t. L if AR's loop contains L. 7442 if (AR->getLoop()->contains(L)) 7443 return LoopInvariant; 7444 7445 // This recurrence is variant w.r.t. L if any of its operands 7446 // are variant. 7447 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 7448 I != E; ++I) 7449 if (!isLoopInvariant(*I, L)) 7450 return LoopVariant; 7451 7452 // Otherwise it's loop-invariant. 7453 return LoopInvariant; 7454 } 7455 case scAddExpr: 7456 case scMulExpr: 7457 case scUMaxExpr: 7458 case scSMaxExpr: { 7459 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 7460 bool HasVarying = false; 7461 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 7462 I != E; ++I) { 7463 LoopDisposition D = getLoopDisposition(*I, L); 7464 if (D == LoopVariant) 7465 return LoopVariant; 7466 if (D == LoopComputable) 7467 HasVarying = true; 7468 } 7469 return HasVarying ? LoopComputable : LoopInvariant; 7470 } 7471 case scUDivExpr: { 7472 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 7473 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 7474 if (LD == LoopVariant) 7475 return LoopVariant; 7476 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 7477 if (RD == LoopVariant) 7478 return LoopVariant; 7479 return (LD == LoopInvariant && RD == LoopInvariant) ? 7480 LoopInvariant : LoopComputable; 7481 } 7482 case scUnknown: 7483 // All non-instruction values are loop invariant. All instructions are loop 7484 // invariant if they are not contained in the specified loop. 7485 // Instructions are never considered invariant in the function body 7486 // (null loop) because they are defined within the "loop". 7487 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 7488 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 7489 return LoopInvariant; 7490 case scCouldNotCompute: 7491 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7492 default: llvm_unreachable("Unknown SCEV kind!"); 7493 } 7494 } 7495 7496 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 7497 return getLoopDisposition(S, L) == LoopInvariant; 7498 } 7499 7500 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 7501 return getLoopDisposition(S, L) == LoopComputable; 7502 } 7503 7504 ScalarEvolution::BlockDisposition 7505 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 7506 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S]; 7507 for (unsigned u = 0; u < Values.size(); u++) { 7508 if (Values[u].first == BB) 7509 return Values[u].second; 7510 } 7511 Values.push_back(std::make_pair(BB, DoesNotDominateBlock)); 7512 BlockDisposition D = computeBlockDisposition(S, BB); 7513 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S]; 7514 for (unsigned u = Values2.size(); u > 0; u--) { 7515 if (Values2[u - 1].first == BB) { 7516 Values2[u - 1].second = D; 7517 break; 7518 } 7519 } 7520 return D; 7521 } 7522 7523 ScalarEvolution::BlockDisposition 7524 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 7525 switch (S->getSCEVType()) { 7526 case scConstant: 7527 return ProperlyDominatesBlock; 7528 case scTruncate: 7529 case scZeroExtend: 7530 case scSignExtend: 7531 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 7532 case scAddRecExpr: { 7533 // This uses a "dominates" query instead of "properly dominates" query 7534 // to test for proper dominance too, because the instruction which 7535 // produces the addrec's value is a PHI, and a PHI effectively properly 7536 // dominates its entire containing block. 7537 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 7538 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 7539 return DoesNotDominateBlock; 7540 } 7541 // FALL THROUGH into SCEVNAryExpr handling. 7542 case scAddExpr: 7543 case scMulExpr: 7544 case scUMaxExpr: 7545 case scSMaxExpr: { 7546 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 7547 bool Proper = true; 7548 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 7549 I != E; ++I) { 7550 BlockDisposition D = getBlockDisposition(*I, BB); 7551 if (D == DoesNotDominateBlock) 7552 return DoesNotDominateBlock; 7553 if (D == DominatesBlock) 7554 Proper = false; 7555 } 7556 return Proper ? ProperlyDominatesBlock : DominatesBlock; 7557 } 7558 case scUDivExpr: { 7559 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 7560 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 7561 BlockDisposition LD = getBlockDisposition(LHS, BB); 7562 if (LD == DoesNotDominateBlock) 7563 return DoesNotDominateBlock; 7564 BlockDisposition RD = getBlockDisposition(RHS, BB); 7565 if (RD == DoesNotDominateBlock) 7566 return DoesNotDominateBlock; 7567 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 7568 ProperlyDominatesBlock : DominatesBlock; 7569 } 7570 case scUnknown: 7571 if (Instruction *I = 7572 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 7573 if (I->getParent() == BB) 7574 return DominatesBlock; 7575 if (DT->properlyDominates(I->getParent(), BB)) 7576 return ProperlyDominatesBlock; 7577 return DoesNotDominateBlock; 7578 } 7579 return ProperlyDominatesBlock; 7580 case scCouldNotCompute: 7581 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7582 default: 7583 llvm_unreachable("Unknown SCEV kind!"); 7584 } 7585 } 7586 7587 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 7588 return getBlockDisposition(S, BB) >= DominatesBlock; 7589 } 7590 7591 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 7592 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 7593 } 7594 7595 namespace { 7596 // Search for a SCEV expression node within an expression tree. 7597 // Implements SCEVTraversal::Visitor. 7598 struct SCEVSearch { 7599 const SCEV *Node; 7600 bool IsFound; 7601 7602 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 7603 7604 bool follow(const SCEV *S) { 7605 IsFound |= (S == Node); 7606 return !IsFound; 7607 } 7608 bool isDone() const { return IsFound; } 7609 }; 7610 } 7611 7612 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 7613 SCEVSearch Search(Op); 7614 visitAll(S, Search); 7615 return Search.IsFound; 7616 } 7617 7618 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 7619 ValuesAtScopes.erase(S); 7620 LoopDispositions.erase(S); 7621 BlockDispositions.erase(S); 7622 UnsignedRanges.erase(S); 7623 SignedRanges.erase(S); 7624 7625 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7626 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 7627 BackedgeTakenInfo &BEInfo = I->second; 7628 if (BEInfo.hasOperand(S, this)) { 7629 BEInfo.clear(); 7630 BackedgeTakenCounts.erase(I++); 7631 } 7632 else 7633 ++I; 7634 } 7635 } 7636 7637 typedef DenseMap<const Loop *, std::string> VerifyMap; 7638 7639 /// replaceSubString - Replaces all occurences of From in Str with To. 7640 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 7641 size_t Pos = 0; 7642 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 7643 Str.replace(Pos, From.size(), To.data(), To.size()); 7644 Pos += To.size(); 7645 } 7646 } 7647 7648 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 7649 static void 7650 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 7651 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 7652 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 7653 7654 std::string &S = Map[L]; 7655 if (S.empty()) { 7656 raw_string_ostream OS(S); 7657 SE.getBackedgeTakenCount(L)->print(OS); 7658 7659 // false and 0 are semantically equivalent. This can happen in dead loops. 7660 replaceSubString(OS.str(), "false", "0"); 7661 // Remove wrap flags, their use in SCEV is highly fragile. 7662 // FIXME: Remove this when SCEV gets smarter about them. 7663 replaceSubString(OS.str(), "<nw>", ""); 7664 replaceSubString(OS.str(), "<nsw>", ""); 7665 replaceSubString(OS.str(), "<nuw>", ""); 7666 } 7667 } 7668 } 7669 7670 void ScalarEvolution::verifyAnalysis() const { 7671 if (!VerifySCEV) 7672 return; 7673 7674 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7675 7676 // Gather stringified backedge taken counts for all loops using SCEV's caches. 7677 // FIXME: It would be much better to store actual values instead of strings, 7678 // but SCEV pointers will change if we drop the caches. 7679 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 7680 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 7681 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 7682 7683 // Gather stringified backedge taken counts for all loops without using 7684 // SCEV's caches. 7685 SE.releaseMemory(); 7686 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 7687 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 7688 7689 // Now compare whether they're the same with and without caches. This allows 7690 // verifying that no pass changed the cache. 7691 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 7692 "New loops suddenly appeared!"); 7693 7694 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 7695 OldE = BackedgeDumpsOld.end(), 7696 NewI = BackedgeDumpsNew.begin(); 7697 OldI != OldE; ++OldI, ++NewI) { 7698 assert(OldI->first == NewI->first && "Loop order changed!"); 7699 7700 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 7701 // changes. 7702 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 7703 // means that a pass is buggy or SCEV has to learn a new pattern but is 7704 // usually not harmful. 7705 if (OldI->second != NewI->second && 7706 OldI->second.find("undef") == std::string::npos && 7707 NewI->second.find("undef") == std::string::npos && 7708 OldI->second != "***COULDNOTCOMPUTE***" && 7709 NewI->second != "***COULDNOTCOMPUTE***") { 7710 dbgs() << "SCEVValidator: SCEV for loop '" 7711 << OldI->first->getHeader()->getName() 7712 << "' changed from '" << OldI->second 7713 << "' to '" << NewI->second << "'!\n"; 7714 std::abort(); 7715 } 7716 } 7717 7718 // TODO: Verify more things. 7719 } 7720