1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/ScopeExit.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/Statistic.h" 67 #include "llvm/Analysis/AssumptionCache.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/InstructionSimplify.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 72 #include "llvm/Analysis/TargetLibraryInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/IR/ConstantRange.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Dominators.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/GlobalAlias.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InstIterator.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/LLVMContext.h" 85 #include "llvm/IR/Metadata.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/ErrorHandling.h" 91 #include "llvm/Support/MathExtras.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Support/SaveAndRestore.h" 94 #include <algorithm> 95 using namespace llvm; 96 97 #define DEBUG_TYPE "scalar-evolution" 98 99 STATISTIC(NumArrayLenItCounts, 100 "Number of trip counts computed with array length"); 101 STATISTIC(NumTripCountsComputed, 102 "Number of loops with predictable loop counts"); 103 STATISTIC(NumTripCountsNotComputed, 104 "Number of loops without predictable loop counts"); 105 STATISTIC(NumBruteForceTripCountsComputed, 106 "Number of loops with trip counts computed by force"); 107 108 static cl::opt<unsigned> 109 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 110 cl::desc("Maximum number of iterations SCEV will " 111 "symbolically execute a constant " 112 "derived loop"), 113 cl::init(100)); 114 115 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 116 static cl::opt<bool> 117 VerifySCEV("verify-scev", 118 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 119 static cl::opt<bool> 120 VerifySCEVMap("verify-scev-maps", 121 cl::desc("Verify no dangling value in ScalarEvolution's " 122 "ExprValueMap (slow)")); 123 124 //===----------------------------------------------------------------------===// 125 // SCEV class definitions 126 //===----------------------------------------------------------------------===// 127 128 //===----------------------------------------------------------------------===// 129 // Implementation of the SCEV class. 130 // 131 132 LLVM_DUMP_METHOD 133 void SCEV::dump() const { 134 print(dbgs()); 135 dbgs() << '\n'; 136 } 137 138 void SCEV::print(raw_ostream &OS) const { 139 switch (static_cast<SCEVTypes>(getSCEVType())) { 140 case scConstant: 141 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 142 return; 143 case scTruncate: { 144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 145 const SCEV *Op = Trunc->getOperand(); 146 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 147 << *Trunc->getType() << ")"; 148 return; 149 } 150 case scZeroExtend: { 151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 152 const SCEV *Op = ZExt->getOperand(); 153 OS << "(zext " << *Op->getType() << " " << *Op << " to " 154 << *ZExt->getType() << ")"; 155 return; 156 } 157 case scSignExtend: { 158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 159 const SCEV *Op = SExt->getOperand(); 160 OS << "(sext " << *Op->getType() << " " << *Op << " to " 161 << *SExt->getType() << ")"; 162 return; 163 } 164 case scAddRecExpr: { 165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 166 OS << "{" << *AR->getOperand(0); 167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 168 OS << ",+," << *AR->getOperand(i); 169 OS << "}<"; 170 if (AR->hasNoUnsignedWrap()) 171 OS << "nuw><"; 172 if (AR->hasNoSignedWrap()) 173 OS << "nsw><"; 174 if (AR->hasNoSelfWrap() && 175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 176 OS << "nw><"; 177 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 178 OS << ">"; 179 return; 180 } 181 case scAddExpr: 182 case scMulExpr: 183 case scUMaxExpr: 184 case scSMaxExpr: { 185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 186 const char *OpStr = nullptr; 187 switch (NAry->getSCEVType()) { 188 case scAddExpr: OpStr = " + "; break; 189 case scMulExpr: OpStr = " * "; break; 190 case scUMaxExpr: OpStr = " umax "; break; 191 case scSMaxExpr: OpStr = " smax "; break; 192 } 193 OS << "("; 194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 195 I != E; ++I) { 196 OS << **I; 197 if (std::next(I) != E) 198 OS << OpStr; 199 } 200 OS << ")"; 201 switch (NAry->getSCEVType()) { 202 case scAddExpr: 203 case scMulExpr: 204 if (NAry->hasNoUnsignedWrap()) 205 OS << "<nuw>"; 206 if (NAry->hasNoSignedWrap()) 207 OS << "<nsw>"; 208 } 209 return; 210 } 211 case scUDivExpr: { 212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 214 return; 215 } 216 case scUnknown: { 217 const SCEVUnknown *U = cast<SCEVUnknown>(this); 218 Type *AllocTy; 219 if (U->isSizeOf(AllocTy)) { 220 OS << "sizeof(" << *AllocTy << ")"; 221 return; 222 } 223 if (U->isAlignOf(AllocTy)) { 224 OS << "alignof(" << *AllocTy << ")"; 225 return; 226 } 227 228 Type *CTy; 229 Constant *FieldNo; 230 if (U->isOffsetOf(CTy, FieldNo)) { 231 OS << "offsetof(" << *CTy << ", "; 232 FieldNo->printAsOperand(OS, false); 233 OS << ")"; 234 return; 235 } 236 237 // Otherwise just print it normally. 238 U->getValue()->printAsOperand(OS, false); 239 return; 240 } 241 case scCouldNotCompute: 242 OS << "***COULDNOTCOMPUTE***"; 243 return; 244 } 245 llvm_unreachable("Unknown SCEV kind!"); 246 } 247 248 Type *SCEV::getType() const { 249 switch (static_cast<SCEVTypes>(getSCEVType())) { 250 case scConstant: 251 return cast<SCEVConstant>(this)->getType(); 252 case scTruncate: 253 case scZeroExtend: 254 case scSignExtend: 255 return cast<SCEVCastExpr>(this)->getType(); 256 case scAddRecExpr: 257 case scMulExpr: 258 case scUMaxExpr: 259 case scSMaxExpr: 260 return cast<SCEVNAryExpr>(this)->getType(); 261 case scAddExpr: 262 return cast<SCEVAddExpr>(this)->getType(); 263 case scUDivExpr: 264 return cast<SCEVUDivExpr>(this)->getType(); 265 case scUnknown: 266 return cast<SCEVUnknown>(this)->getType(); 267 case scCouldNotCompute: 268 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 269 } 270 llvm_unreachable("Unknown SCEV kind!"); 271 } 272 273 bool SCEV::isZero() const { 274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 275 return SC->getValue()->isZero(); 276 return false; 277 } 278 279 bool SCEV::isOne() const { 280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 281 return SC->getValue()->isOne(); 282 return false; 283 } 284 285 bool SCEV::isAllOnesValue() const { 286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 287 return SC->getValue()->isAllOnesValue(); 288 return false; 289 } 290 291 bool SCEV::isNonConstantNegative() const { 292 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 293 if (!Mul) return false; 294 295 // If there is a constant factor, it will be first. 296 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 297 if (!SC) return false; 298 299 // Return true if the value is negative, this matches things like (-42 * V). 300 return SC->getAPInt().isNegative(); 301 } 302 303 SCEVCouldNotCompute::SCEVCouldNotCompute() : 304 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 305 306 bool SCEVCouldNotCompute::classof(const SCEV *S) { 307 return S->getSCEVType() == scCouldNotCompute; 308 } 309 310 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 311 FoldingSetNodeID ID; 312 ID.AddInteger(scConstant); 313 ID.AddPointer(V); 314 void *IP = nullptr; 315 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 316 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 317 UniqueSCEVs.InsertNode(S, IP); 318 return S; 319 } 320 321 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 322 return getConstant(ConstantInt::get(getContext(), Val)); 323 } 324 325 const SCEV * 326 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 327 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 328 return getConstant(ConstantInt::get(ITy, V, isSigned)); 329 } 330 331 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 332 unsigned SCEVTy, const SCEV *op, Type *ty) 333 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 334 335 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 336 const SCEV *op, Type *ty) 337 : SCEVCastExpr(ID, scTruncate, op, ty) { 338 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 339 (Ty->isIntegerTy() || Ty->isPointerTy()) && 340 "Cannot truncate non-integer value!"); 341 } 342 343 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 344 const SCEV *op, Type *ty) 345 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 346 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 347 (Ty->isIntegerTy() || Ty->isPointerTy()) && 348 "Cannot zero extend non-integer value!"); 349 } 350 351 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 352 const SCEV *op, Type *ty) 353 : SCEVCastExpr(ID, scSignExtend, op, ty) { 354 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 355 (Ty->isIntegerTy() || Ty->isPointerTy()) && 356 "Cannot sign extend non-integer value!"); 357 } 358 359 void SCEVUnknown::deleted() { 360 // Clear this SCEVUnknown from various maps. 361 SE->forgetMemoizedResults(this); 362 363 // Remove this SCEVUnknown from the uniquing map. 364 SE->UniqueSCEVs.RemoveNode(this); 365 366 // Release the value. 367 setValPtr(nullptr); 368 } 369 370 void SCEVUnknown::allUsesReplacedWith(Value *New) { 371 // Clear this SCEVUnknown from various maps. 372 SE->forgetMemoizedResults(this); 373 374 // Remove this SCEVUnknown from the uniquing map. 375 SE->UniqueSCEVs.RemoveNode(this); 376 377 // Update this SCEVUnknown to point to the new value. This is needed 378 // because there may still be outstanding SCEVs which still point to 379 // this SCEVUnknown. 380 setValPtr(New); 381 } 382 383 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 385 if (VCE->getOpcode() == Instruction::PtrToInt) 386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 387 if (CE->getOpcode() == Instruction::GetElementPtr && 388 CE->getOperand(0)->isNullValue() && 389 CE->getNumOperands() == 2) 390 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 391 if (CI->isOne()) { 392 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 393 ->getElementType(); 394 return true; 395 } 396 397 return false; 398 } 399 400 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 401 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 402 if (VCE->getOpcode() == Instruction::PtrToInt) 403 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 404 if (CE->getOpcode() == Instruction::GetElementPtr && 405 CE->getOperand(0)->isNullValue()) { 406 Type *Ty = 407 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 408 if (StructType *STy = dyn_cast<StructType>(Ty)) 409 if (!STy->isPacked() && 410 CE->getNumOperands() == 3 && 411 CE->getOperand(1)->isNullValue()) { 412 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 413 if (CI->isOne() && 414 STy->getNumElements() == 2 && 415 STy->getElementType(0)->isIntegerTy(1)) { 416 AllocTy = STy->getElementType(1); 417 return true; 418 } 419 } 420 } 421 422 return false; 423 } 424 425 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 426 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 427 if (VCE->getOpcode() == Instruction::PtrToInt) 428 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 429 if (CE->getOpcode() == Instruction::GetElementPtr && 430 CE->getNumOperands() == 3 && 431 CE->getOperand(0)->isNullValue() && 432 CE->getOperand(1)->isNullValue()) { 433 Type *Ty = 434 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 435 // Ignore vector types here so that ScalarEvolutionExpander doesn't 436 // emit getelementptrs that index into vectors. 437 if (Ty->isStructTy() || Ty->isArrayTy()) { 438 CTy = Ty; 439 FieldNo = CE->getOperand(2); 440 return true; 441 } 442 } 443 444 return false; 445 } 446 447 //===----------------------------------------------------------------------===// 448 // SCEV Utilities 449 //===----------------------------------------------------------------------===// 450 451 static int CompareValueComplexity(const LoopInfo *const LI, Value *LV, 452 Value *RV, unsigned DepthLeft = 2) { 453 if (DepthLeft == 0) 454 return 0; 455 456 // Order pointer values after integer values. This helps SCEVExpander form 457 // GEPs. 458 bool LIsPointer = LV->getType()->isPointerTy(), 459 RIsPointer = RV->getType()->isPointerTy(); 460 if (LIsPointer != RIsPointer) 461 return (int)LIsPointer - (int)RIsPointer; 462 463 // Compare getValueID values. 464 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 465 if (LID != RID) 466 return (int)LID - (int)RID; 467 468 // Sort arguments by their position. 469 if (const Argument *LA = dyn_cast<Argument>(LV)) { 470 const Argument *RA = cast<Argument>(RV); 471 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 472 return (int)LArgNo - (int)RArgNo; 473 } 474 475 // For instructions, compare their loop depth, and their operand count. This 476 // is pretty loose. 477 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 478 const Instruction *RInst = cast<Instruction>(RV); 479 480 // Compare loop depths. 481 const BasicBlock *LParent = LInst->getParent(), 482 *RParent = RInst->getParent(); 483 if (LParent != RParent) { 484 unsigned LDepth = LI->getLoopDepth(LParent), 485 RDepth = LI->getLoopDepth(RParent); 486 if (LDepth != RDepth) 487 return (int)LDepth - (int)RDepth; 488 } 489 490 // Compare the number of operands. 491 unsigned LNumOps = LInst->getNumOperands(), 492 RNumOps = RInst->getNumOperands(); 493 if (LNumOps != RNumOps || LNumOps != 1) 494 return (int)LNumOps - (int)RNumOps; 495 496 // We only bother "recursing" if we have one operand to look at (so we don't 497 // really recurse as much as we iterate). We can consider expanding this 498 // logic in the future. 499 return CompareValueComplexity(LI, LInst->getOperand(0), 500 RInst->getOperand(0), DepthLeft - 1); 501 } 502 503 return 0; 504 } 505 506 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 507 // than RHS, respectively. A three-way result allows recursive comparisons to be 508 // more efficient. 509 static int CompareSCEVComplexity(const LoopInfo *const LI, const SCEV *LHS, 510 const SCEV *RHS) { 511 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 512 if (LHS == RHS) 513 return 0; 514 515 // Primarily, sort the SCEVs by their getSCEVType(). 516 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 517 if (LType != RType) 518 return (int)LType - (int)RType; 519 520 // Aside from the getSCEVType() ordering, the particular ordering 521 // isn't very important except that it's beneficial to be consistent, 522 // so that (a + b) and (b + a) don't end up as different expressions. 523 switch (static_cast<SCEVTypes>(LType)) { 524 case scUnknown: { 525 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 526 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 527 528 return CompareValueComplexity(LI, LU->getValue(), RU->getValue()); 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getAPInt(); 537 const APInt &RA = RC->getAPInt(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), RDepth = RLoop->getLoopDepth(); 552 if (LDepth != RDepth) 553 return (int)LDepth - (int)RDepth; 554 } 555 556 // Addrec complexity grows with operand count. 557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 558 if (LNumOps != RNumOps) 559 return (int)LNumOps - (int)RNumOps; 560 561 // Lexicographically compare. 562 for (unsigned i = 0; i != LNumOps; ++i) { 563 long X = CompareSCEVComplexity(LI, LA->getOperand(i), RA->getOperand(i)); 564 if (X != 0) 565 return X; 566 } 567 568 return 0; 569 } 570 571 case scAddExpr: 572 case scMulExpr: 573 case scSMaxExpr: 574 case scUMaxExpr: { 575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 577 578 // Lexicographically compare n-ary expressions. 579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 580 if (LNumOps != RNumOps) 581 return (int)LNumOps - (int)RNumOps; 582 583 for (unsigned i = 0; i != LNumOps; ++i) { 584 if (i >= RNumOps) 585 return 1; 586 long X = CompareSCEVComplexity(LI, LC->getOperand(i), RC->getOperand(i)); 587 if (X != 0) 588 return X; 589 } 590 return (int)LNumOps - (int)RNumOps; 591 } 592 593 case scUDivExpr: { 594 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 595 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 596 597 // Lexicographically compare udiv expressions. 598 long X = CompareSCEVComplexity(LI, LC->getLHS(), RC->getLHS()); 599 if (X != 0) 600 return X; 601 return CompareSCEVComplexity(LI, LC->getRHS(), RC->getRHS()); 602 } 603 604 case scTruncate: 605 case scZeroExtend: 606 case scSignExtend: { 607 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 608 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 609 610 // Compare cast expressions by operand. 611 return CompareSCEVComplexity(LI, LC->getOperand(), RC->getOperand()); 612 } 613 614 case scCouldNotCompute: 615 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 616 } 617 llvm_unreachable("Unknown SCEV kind!"); 618 } 619 620 /// Given a list of SCEV objects, order them by their complexity, and group 621 /// objects of the same complexity together by value. When this routine is 622 /// finished, we know that any duplicates in the vector are consecutive and that 623 /// complexity is monotonically increasing. 624 /// 625 /// Note that we go take special precautions to ensure that we get deterministic 626 /// results from this routine. In other words, we don't want the results of 627 /// this to depend on where the addresses of various SCEV objects happened to 628 /// land in memory. 629 /// 630 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 631 LoopInfo *LI) { 632 if (Ops.size() < 2) return; // Noop 633 if (Ops.size() == 2) { 634 // This is the common case, which also happens to be trivially simple. 635 // Special case it. 636 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 637 if (CompareSCEVComplexity(LI, RHS, LHS) < 0) 638 std::swap(LHS, RHS); 639 return; 640 } 641 642 // Do the rough sort by complexity. 643 std::stable_sort(Ops.begin(), Ops.end(), 644 [LI](const SCEV *LHS, const SCEV *RHS) { 645 return CompareSCEVComplexity(LI, LHS, RHS) < 0; 646 }); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 // Returns the size of the SCEV S. 670 static inline int sizeOfSCEV(const SCEV *S) { 671 struct FindSCEVSize { 672 int Size; 673 FindSCEVSize() : Size(0) {} 674 675 bool follow(const SCEV *S) { 676 ++Size; 677 // Keep looking at all operands of S. 678 return true; 679 } 680 bool isDone() const { 681 return false; 682 } 683 }; 684 685 FindSCEVSize F; 686 SCEVTraversal<FindSCEVSize> ST(F); 687 ST.visitAll(S); 688 return F.Size; 689 } 690 691 namespace { 692 693 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 694 public: 695 // Computes the Quotient and Remainder of the division of Numerator by 696 // Denominator. 697 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 698 const SCEV *Denominator, const SCEV **Quotient, 699 const SCEV **Remainder) { 700 assert(Numerator && Denominator && "Uninitialized SCEV"); 701 702 SCEVDivision D(SE, Numerator, Denominator); 703 704 // Check for the trivial case here to avoid having to check for it in the 705 // rest of the code. 706 if (Numerator == Denominator) { 707 *Quotient = D.One; 708 *Remainder = D.Zero; 709 return; 710 } 711 712 if (Numerator->isZero()) { 713 *Quotient = D.Zero; 714 *Remainder = D.Zero; 715 return; 716 } 717 718 // A simple case when N/1. The quotient is N. 719 if (Denominator->isOne()) { 720 *Quotient = Numerator; 721 *Remainder = D.Zero; 722 return; 723 } 724 725 // Split the Denominator when it is a product. 726 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 727 const SCEV *Q, *R; 728 *Quotient = Numerator; 729 for (const SCEV *Op : T->operands()) { 730 divide(SE, *Quotient, Op, &Q, &R); 731 *Quotient = Q; 732 733 // Bail out when the Numerator is not divisible by one of the terms of 734 // the Denominator. 735 if (!R->isZero()) { 736 *Quotient = D.Zero; 737 *Remainder = Numerator; 738 return; 739 } 740 } 741 *Remainder = D.Zero; 742 return; 743 } 744 745 D.visit(Numerator); 746 *Quotient = D.Quotient; 747 *Remainder = D.Remainder; 748 } 749 750 // Except in the trivial case described above, we do not know how to divide 751 // Expr by Denominator for the following functions with empty implementation. 752 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 753 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 754 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 755 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 756 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 757 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 758 void visitUnknown(const SCEVUnknown *Numerator) {} 759 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 760 761 void visitConstant(const SCEVConstant *Numerator) { 762 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 763 APInt NumeratorVal = Numerator->getAPInt(); 764 APInt DenominatorVal = D->getAPInt(); 765 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 766 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 767 768 if (NumeratorBW > DenominatorBW) 769 DenominatorVal = DenominatorVal.sext(NumeratorBW); 770 else if (NumeratorBW < DenominatorBW) 771 NumeratorVal = NumeratorVal.sext(DenominatorBW); 772 773 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 774 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 775 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 776 Quotient = SE.getConstant(QuotientVal); 777 Remainder = SE.getConstant(RemainderVal); 778 return; 779 } 780 } 781 782 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 783 const SCEV *StartQ, *StartR, *StepQ, *StepR; 784 if (!Numerator->isAffine()) 785 return cannotDivide(Numerator); 786 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 787 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 788 // Bail out if the types do not match. 789 Type *Ty = Denominator->getType(); 790 if (Ty != StartQ->getType() || Ty != StartR->getType() || 791 Ty != StepQ->getType() || Ty != StepR->getType()) 792 return cannotDivide(Numerator); 793 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 794 Numerator->getNoWrapFlags()); 795 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 } 798 799 void visitAddExpr(const SCEVAddExpr *Numerator) { 800 SmallVector<const SCEV *, 2> Qs, Rs; 801 Type *Ty = Denominator->getType(); 802 803 for (const SCEV *Op : Numerator->operands()) { 804 const SCEV *Q, *R; 805 divide(SE, Op, Denominator, &Q, &R); 806 807 // Bail out if types do not match. 808 if (Ty != Q->getType() || Ty != R->getType()) 809 return cannotDivide(Numerator); 810 811 Qs.push_back(Q); 812 Rs.push_back(R); 813 } 814 815 if (Qs.size() == 1) { 816 Quotient = Qs[0]; 817 Remainder = Rs[0]; 818 return; 819 } 820 821 Quotient = SE.getAddExpr(Qs); 822 Remainder = SE.getAddExpr(Rs); 823 } 824 825 void visitMulExpr(const SCEVMulExpr *Numerator) { 826 SmallVector<const SCEV *, 2> Qs; 827 Type *Ty = Denominator->getType(); 828 829 bool FoundDenominatorTerm = false; 830 for (const SCEV *Op : Numerator->operands()) { 831 // Bail out if types do not match. 832 if (Ty != Op->getType()) 833 return cannotDivide(Numerator); 834 835 if (FoundDenominatorTerm) { 836 Qs.push_back(Op); 837 continue; 838 } 839 840 // Check whether Denominator divides one of the product operands. 841 const SCEV *Q, *R; 842 divide(SE, Op, Denominator, &Q, &R); 843 if (!R->isZero()) { 844 Qs.push_back(Op); 845 continue; 846 } 847 848 // Bail out if types do not match. 849 if (Ty != Q->getType()) 850 return cannotDivide(Numerator); 851 852 FoundDenominatorTerm = true; 853 Qs.push_back(Q); 854 } 855 856 if (FoundDenominatorTerm) { 857 Remainder = Zero; 858 if (Qs.size() == 1) 859 Quotient = Qs[0]; 860 else 861 Quotient = SE.getMulExpr(Qs); 862 return; 863 } 864 865 if (!isa<SCEVUnknown>(Denominator)) 866 return cannotDivide(Numerator); 867 868 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 869 ValueToValueMap RewriteMap; 870 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 871 cast<SCEVConstant>(Zero)->getValue(); 872 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 873 874 if (Remainder->isZero()) { 875 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 876 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 877 cast<SCEVConstant>(One)->getValue(); 878 Quotient = 879 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 880 return; 881 } 882 883 // Quotient is (Numerator - Remainder) divided by Denominator. 884 const SCEV *Q, *R; 885 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 886 // This SCEV does not seem to simplify: fail the division here. 887 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 888 return cannotDivide(Numerator); 889 divide(SE, Diff, Denominator, &Q, &R); 890 if (R != Zero) 891 return cannotDivide(Numerator); 892 Quotient = Q; 893 } 894 895 private: 896 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 897 const SCEV *Denominator) 898 : SE(S), Denominator(Denominator) { 899 Zero = SE.getZero(Denominator->getType()); 900 One = SE.getOne(Denominator->getType()); 901 902 // We generally do not know how to divide Expr by Denominator. We 903 // initialize the division to a "cannot divide" state to simplify the rest 904 // of the code. 905 cannotDivide(Numerator); 906 } 907 908 // Convenience function for giving up on the division. We set the quotient to 909 // be equal to zero and the remainder to be equal to the numerator. 910 void cannotDivide(const SCEV *Numerator) { 911 Quotient = Zero; 912 Remainder = Numerator; 913 } 914 915 ScalarEvolution &SE; 916 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 917 }; 918 919 } 920 921 //===----------------------------------------------------------------------===// 922 // Simple SCEV method implementations 923 //===----------------------------------------------------------------------===// 924 925 /// Compute BC(It, K). The result has width W. Assume, K > 0. 926 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 927 ScalarEvolution &SE, 928 Type *ResultTy) { 929 // Handle the simplest case efficiently. 930 if (K == 1) 931 return SE.getTruncateOrZeroExtend(It, ResultTy); 932 933 // We are using the following formula for BC(It, K): 934 // 935 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 936 // 937 // Suppose, W is the bitwidth of the return value. We must be prepared for 938 // overflow. Hence, we must assure that the result of our computation is 939 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 940 // safe in modular arithmetic. 941 // 942 // However, this code doesn't use exactly that formula; the formula it uses 943 // is something like the following, where T is the number of factors of 2 in 944 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 945 // exponentiation: 946 // 947 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 948 // 949 // This formula is trivially equivalent to the previous formula. However, 950 // this formula can be implemented much more efficiently. The trick is that 951 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 952 // arithmetic. To do exact division in modular arithmetic, all we have 953 // to do is multiply by the inverse. Therefore, this step can be done at 954 // width W. 955 // 956 // The next issue is how to safely do the division by 2^T. The way this 957 // is done is by doing the multiplication step at a width of at least W + T 958 // bits. This way, the bottom W+T bits of the product are accurate. Then, 959 // when we perform the division by 2^T (which is equivalent to a right shift 960 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 961 // truncated out after the division by 2^T. 962 // 963 // In comparison to just directly using the first formula, this technique 964 // is much more efficient; using the first formula requires W * K bits, 965 // but this formula less than W + K bits. Also, the first formula requires 966 // a division step, whereas this formula only requires multiplies and shifts. 967 // 968 // It doesn't matter whether the subtraction step is done in the calculation 969 // width or the input iteration count's width; if the subtraction overflows, 970 // the result must be zero anyway. We prefer here to do it in the width of 971 // the induction variable because it helps a lot for certain cases; CodeGen 972 // isn't smart enough to ignore the overflow, which leads to much less 973 // efficient code if the width of the subtraction is wider than the native 974 // register width. 975 // 976 // (It's possible to not widen at all by pulling out factors of 2 before 977 // the multiplication; for example, K=2 can be calculated as 978 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 979 // extra arithmetic, so it's not an obvious win, and it gets 980 // much more complicated for K > 3.) 981 982 // Protection from insane SCEVs; this bound is conservative, 983 // but it probably doesn't matter. 984 if (K > 1000) 985 return SE.getCouldNotCompute(); 986 987 unsigned W = SE.getTypeSizeInBits(ResultTy); 988 989 // Calculate K! / 2^T and T; we divide out the factors of two before 990 // multiplying for calculating K! / 2^T to avoid overflow. 991 // Other overflow doesn't matter because we only care about the bottom 992 // W bits of the result. 993 APInt OddFactorial(W, 1); 994 unsigned T = 1; 995 for (unsigned i = 3; i <= K; ++i) { 996 APInt Mult(W, i); 997 unsigned TwoFactors = Mult.countTrailingZeros(); 998 T += TwoFactors; 999 Mult = Mult.lshr(TwoFactors); 1000 OddFactorial *= Mult; 1001 } 1002 1003 // We need at least W + T bits for the multiplication step 1004 unsigned CalculationBits = W + T; 1005 1006 // Calculate 2^T, at width T+W. 1007 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1008 1009 // Calculate the multiplicative inverse of K! / 2^T; 1010 // this multiplication factor will perform the exact division by 1011 // K! / 2^T. 1012 APInt Mod = APInt::getSignedMinValue(W+1); 1013 APInt MultiplyFactor = OddFactorial.zext(W+1); 1014 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1015 MultiplyFactor = MultiplyFactor.trunc(W); 1016 1017 // Calculate the product, at width T+W 1018 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1019 CalculationBits); 1020 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1021 for (unsigned i = 1; i != K; ++i) { 1022 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1023 Dividend = SE.getMulExpr(Dividend, 1024 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1025 } 1026 1027 // Divide by 2^T 1028 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1029 1030 // Truncate the result, and divide by K! / 2^T. 1031 1032 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1033 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1034 } 1035 1036 /// Return the value of this chain of recurrences at the specified iteration 1037 /// number. We can evaluate this recurrence by multiplying each element in the 1038 /// chain by the binomial coefficient corresponding to it. In other words, we 1039 /// can evaluate {A,+,B,+,C,+,D} as: 1040 /// 1041 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1042 /// 1043 /// where BC(It, k) stands for binomial coefficient. 1044 /// 1045 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1046 ScalarEvolution &SE) const { 1047 const SCEV *Result = getStart(); 1048 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1049 // The computation is correct in the face of overflow provided that the 1050 // multiplication is performed _after_ the evaluation of the binomial 1051 // coefficient. 1052 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1053 if (isa<SCEVCouldNotCompute>(Coeff)) 1054 return Coeff; 1055 1056 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1057 } 1058 return Result; 1059 } 1060 1061 //===----------------------------------------------------------------------===// 1062 // SCEV Expression folder implementations 1063 //===----------------------------------------------------------------------===// 1064 1065 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1066 Type *Ty) { 1067 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1068 "This is not a truncating conversion!"); 1069 assert(isSCEVable(Ty) && 1070 "This is not a conversion to a SCEVable type!"); 1071 Ty = getEffectiveSCEVType(Ty); 1072 1073 FoldingSetNodeID ID; 1074 ID.AddInteger(scTruncate); 1075 ID.AddPointer(Op); 1076 ID.AddPointer(Ty); 1077 void *IP = nullptr; 1078 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1079 1080 // Fold if the operand is constant. 1081 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1082 return getConstant( 1083 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1084 1085 // trunc(trunc(x)) --> trunc(x) 1086 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1087 return getTruncateExpr(ST->getOperand(), Ty); 1088 1089 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1090 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1091 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1092 1093 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1094 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1095 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1096 1097 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1098 // eliminate all the truncates, or we replace other casts with truncates. 1099 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1100 SmallVector<const SCEV *, 4> Operands; 1101 bool hasTrunc = false; 1102 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1103 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1104 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1105 hasTrunc = isa<SCEVTruncateExpr>(S); 1106 Operands.push_back(S); 1107 } 1108 if (!hasTrunc) 1109 return getAddExpr(Operands); 1110 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1111 } 1112 1113 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1114 // eliminate all the truncates, or we replace other casts with truncates. 1115 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1116 SmallVector<const SCEV *, 4> Operands; 1117 bool hasTrunc = false; 1118 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1119 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1120 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1121 hasTrunc = isa<SCEVTruncateExpr>(S); 1122 Operands.push_back(S); 1123 } 1124 if (!hasTrunc) 1125 return getMulExpr(Operands); 1126 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1127 } 1128 1129 // If the input value is a chrec scev, truncate the chrec's operands. 1130 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1131 SmallVector<const SCEV *, 4> Operands; 1132 for (const SCEV *Op : AddRec->operands()) 1133 Operands.push_back(getTruncateExpr(Op, Ty)); 1134 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1135 } 1136 1137 // The cast wasn't folded; create an explicit cast node. We can reuse 1138 // the existing insert position since if we get here, we won't have 1139 // made any changes which would invalidate it. 1140 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1141 Op, Ty); 1142 UniqueSCEVs.InsertNode(S, IP); 1143 return S; 1144 } 1145 1146 // Get the limit of a recurrence such that incrementing by Step cannot cause 1147 // signed overflow as long as the value of the recurrence within the 1148 // loop does not exceed this limit before incrementing. 1149 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1150 ICmpInst::Predicate *Pred, 1151 ScalarEvolution *SE) { 1152 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1153 if (SE->isKnownPositive(Step)) { 1154 *Pred = ICmpInst::ICMP_SLT; 1155 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1156 SE->getSignedRange(Step).getSignedMax()); 1157 } 1158 if (SE->isKnownNegative(Step)) { 1159 *Pred = ICmpInst::ICMP_SGT; 1160 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1161 SE->getSignedRange(Step).getSignedMin()); 1162 } 1163 return nullptr; 1164 } 1165 1166 // Get the limit of a recurrence such that incrementing by Step cannot cause 1167 // unsigned overflow as long as the value of the recurrence within the loop does 1168 // not exceed this limit before incrementing. 1169 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1170 ICmpInst::Predicate *Pred, 1171 ScalarEvolution *SE) { 1172 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1173 *Pred = ICmpInst::ICMP_ULT; 1174 1175 return SE->getConstant(APInt::getMinValue(BitWidth) - 1176 SE->getUnsignedRange(Step).getUnsignedMax()); 1177 } 1178 1179 namespace { 1180 1181 struct ExtendOpTraitsBase { 1182 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1183 }; 1184 1185 // Used to make code generic over signed and unsigned overflow. 1186 template <typename ExtendOp> struct ExtendOpTraits { 1187 // Members present: 1188 // 1189 // static const SCEV::NoWrapFlags WrapType; 1190 // 1191 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1192 // 1193 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1194 // ICmpInst::Predicate *Pred, 1195 // ScalarEvolution *SE); 1196 }; 1197 1198 template <> 1199 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1200 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1201 1202 static const GetExtendExprTy GetExtendExpr; 1203 1204 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1205 ICmpInst::Predicate *Pred, 1206 ScalarEvolution *SE) { 1207 return getSignedOverflowLimitForStep(Step, Pred, SE); 1208 } 1209 }; 1210 1211 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1212 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1213 1214 template <> 1215 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1216 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1217 1218 static const GetExtendExprTy GetExtendExpr; 1219 1220 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1221 ICmpInst::Predicate *Pred, 1222 ScalarEvolution *SE) { 1223 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1224 } 1225 }; 1226 1227 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1228 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1229 } 1230 1231 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1232 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1233 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1234 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1235 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1236 // expression "Step + sext/zext(PreIncAR)" is congruent with 1237 // "sext/zext(PostIncAR)" 1238 template <typename ExtendOpTy> 1239 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1240 ScalarEvolution *SE) { 1241 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1242 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1243 1244 const Loop *L = AR->getLoop(); 1245 const SCEV *Start = AR->getStart(); 1246 const SCEV *Step = AR->getStepRecurrence(*SE); 1247 1248 // Check for a simple looking step prior to loop entry. 1249 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1250 if (!SA) 1251 return nullptr; 1252 1253 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1254 // subtraction is expensive. For this purpose, perform a quick and dirty 1255 // difference, by checking for Step in the operand list. 1256 SmallVector<const SCEV *, 4> DiffOps; 1257 for (const SCEV *Op : SA->operands()) 1258 if (Op != Step) 1259 DiffOps.push_back(Op); 1260 1261 if (DiffOps.size() == SA->getNumOperands()) 1262 return nullptr; 1263 1264 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1265 // `Step`: 1266 1267 // 1. NSW/NUW flags on the step increment. 1268 auto PreStartFlags = 1269 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1270 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1271 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1272 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1273 1274 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1275 // "S+X does not sign/unsign-overflow". 1276 // 1277 1278 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1279 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1280 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1281 return PreStart; 1282 1283 // 2. Direct overflow check on the step operation's expression. 1284 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1285 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1286 const SCEV *OperandExtendedStart = 1287 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1288 (SE->*GetExtendExpr)(Step, WideTy)); 1289 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1290 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1291 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1292 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1293 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1294 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1295 } 1296 return PreStart; 1297 } 1298 1299 // 3. Loop precondition. 1300 ICmpInst::Predicate Pred; 1301 const SCEV *OverflowLimit = 1302 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1303 1304 if (OverflowLimit && 1305 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1306 return PreStart; 1307 1308 return nullptr; 1309 } 1310 1311 // Get the normalized zero or sign extended expression for this AddRec's Start. 1312 template <typename ExtendOpTy> 1313 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1314 ScalarEvolution *SE) { 1315 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1316 1317 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1318 if (!PreStart) 1319 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1320 1321 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1322 (SE->*GetExtendExpr)(PreStart, Ty)); 1323 } 1324 1325 // Try to prove away overflow by looking at "nearby" add recurrences. A 1326 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1327 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1328 // 1329 // Formally: 1330 // 1331 // {S,+,X} == {S-T,+,X} + T 1332 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1333 // 1334 // If ({S-T,+,X} + T) does not overflow ... (1) 1335 // 1336 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1337 // 1338 // If {S-T,+,X} does not overflow ... (2) 1339 // 1340 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1341 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1342 // 1343 // If (S-T)+T does not overflow ... (3) 1344 // 1345 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1346 // == {Ext(S),+,Ext(X)} == LHS 1347 // 1348 // Thus, if (1), (2) and (3) are true for some T, then 1349 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1350 // 1351 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1352 // does not overflow" restricted to the 0th iteration. Therefore we only need 1353 // to check for (1) and (2). 1354 // 1355 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1356 // is `Delta` (defined below). 1357 // 1358 template <typename ExtendOpTy> 1359 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1360 const SCEV *Step, 1361 const Loop *L) { 1362 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1363 1364 // We restrict `Start` to a constant to prevent SCEV from spending too much 1365 // time here. It is correct (but more expensive) to continue with a 1366 // non-constant `Start` and do a general SCEV subtraction to compute 1367 // `PreStart` below. 1368 // 1369 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1370 if (!StartC) 1371 return false; 1372 1373 APInt StartAI = StartC->getAPInt(); 1374 1375 for (unsigned Delta : {-2, -1, 1, 2}) { 1376 const SCEV *PreStart = getConstant(StartAI - Delta); 1377 1378 FoldingSetNodeID ID; 1379 ID.AddInteger(scAddRecExpr); 1380 ID.AddPointer(PreStart); 1381 ID.AddPointer(Step); 1382 ID.AddPointer(L); 1383 void *IP = nullptr; 1384 const auto *PreAR = 1385 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1386 1387 // Give up if we don't already have the add recurrence we need because 1388 // actually constructing an add recurrence is relatively expensive. 1389 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1390 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1391 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1392 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1393 DeltaS, &Pred, this); 1394 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1395 return true; 1396 } 1397 } 1398 1399 return false; 1400 } 1401 1402 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1403 Type *Ty) { 1404 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1405 "This is not an extending conversion!"); 1406 assert(isSCEVable(Ty) && 1407 "This is not a conversion to a SCEVable type!"); 1408 Ty = getEffectiveSCEVType(Ty); 1409 1410 // Fold if the operand is constant. 1411 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1412 return getConstant( 1413 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1414 1415 // zext(zext(x)) --> zext(x) 1416 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1417 return getZeroExtendExpr(SZ->getOperand(), Ty); 1418 1419 // Before doing any expensive analysis, check to see if we've already 1420 // computed a SCEV for this Op and Ty. 1421 FoldingSetNodeID ID; 1422 ID.AddInteger(scZeroExtend); 1423 ID.AddPointer(Op); 1424 ID.AddPointer(Ty); 1425 void *IP = nullptr; 1426 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1427 1428 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1429 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1430 // It's possible the bits taken off by the truncate were all zero bits. If 1431 // so, we should be able to simplify this further. 1432 const SCEV *X = ST->getOperand(); 1433 ConstantRange CR = getUnsignedRange(X); 1434 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1435 unsigned NewBits = getTypeSizeInBits(Ty); 1436 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1437 CR.zextOrTrunc(NewBits))) 1438 return getTruncateOrZeroExtend(X, Ty); 1439 } 1440 1441 // If the input value is a chrec scev, and we can prove that the value 1442 // did not overflow the old, smaller, value, we can zero extend all of the 1443 // operands (often constants). This allows analysis of something like 1444 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1445 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1446 if (AR->isAffine()) { 1447 const SCEV *Start = AR->getStart(); 1448 const SCEV *Step = AR->getStepRecurrence(*this); 1449 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1450 const Loop *L = AR->getLoop(); 1451 1452 if (!AR->hasNoUnsignedWrap()) { 1453 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1454 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1455 } 1456 1457 // If we have special knowledge that this addrec won't overflow, 1458 // we don't need to do any further analysis. 1459 if (AR->hasNoUnsignedWrap()) 1460 return getAddRecExpr( 1461 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1462 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1463 1464 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1465 // Note that this serves two purposes: It filters out loops that are 1466 // simply not analyzable, and it covers the case where this code is 1467 // being called from within backedge-taken count analysis, such that 1468 // attempting to ask for the backedge-taken count would likely result 1469 // in infinite recursion. In the later case, the analysis code will 1470 // cope with a conservative value, and it will take care to purge 1471 // that value once it has finished. 1472 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1473 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1474 // Manually compute the final value for AR, checking for 1475 // overflow. 1476 1477 // Check whether the backedge-taken count can be losslessly casted to 1478 // the addrec's type. The count is always unsigned. 1479 const SCEV *CastedMaxBECount = 1480 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1481 const SCEV *RecastedMaxBECount = 1482 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1483 if (MaxBECount == RecastedMaxBECount) { 1484 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1485 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1486 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1487 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1488 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1489 const SCEV *WideMaxBECount = 1490 getZeroExtendExpr(CastedMaxBECount, WideTy); 1491 const SCEV *OperandExtendedAdd = 1492 getAddExpr(WideStart, 1493 getMulExpr(WideMaxBECount, 1494 getZeroExtendExpr(Step, WideTy))); 1495 if (ZAdd == OperandExtendedAdd) { 1496 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1497 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1498 // Return the expression with the addrec on the outside. 1499 return getAddRecExpr( 1500 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1501 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1502 } 1503 // Similar to above, only this time treat the step value as signed. 1504 // This covers loops that count down. 1505 OperandExtendedAdd = 1506 getAddExpr(WideStart, 1507 getMulExpr(WideMaxBECount, 1508 getSignExtendExpr(Step, WideTy))); 1509 if (ZAdd == OperandExtendedAdd) { 1510 // Cache knowledge of AR NW, which is propagated to this AddRec. 1511 // Negative step causes unsigned wrap, but it still can't self-wrap. 1512 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1513 // Return the expression with the addrec on the outside. 1514 return getAddRecExpr( 1515 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1516 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1517 } 1518 } 1519 } 1520 1521 // Normally, in the cases we can prove no-overflow via a 1522 // backedge guarding condition, we can also compute a backedge 1523 // taken count for the loop. The exceptions are assumptions and 1524 // guards present in the loop -- SCEV is not great at exploiting 1525 // these to compute max backedge taken counts, but can still use 1526 // these to prove lack of overflow. Use this fact to avoid 1527 // doing extra work that may not pay off. 1528 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1529 !AC.assumptions().empty()) { 1530 // If the backedge is guarded by a comparison with the pre-inc 1531 // value the addrec is safe. Also, if the entry is guarded by 1532 // a comparison with the start value and the backedge is 1533 // guarded by a comparison with the post-inc value, the addrec 1534 // is safe. 1535 if (isKnownPositive(Step)) { 1536 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1537 getUnsignedRange(Step).getUnsignedMax()); 1538 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1539 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1540 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1541 AR->getPostIncExpr(*this), N))) { 1542 // Cache knowledge of AR NUW, which is propagated to this 1543 // AddRec. 1544 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1545 // Return the expression with the addrec on the outside. 1546 return getAddRecExpr( 1547 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1548 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1549 } 1550 } else if (isKnownNegative(Step)) { 1551 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1552 getSignedRange(Step).getSignedMin()); 1553 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1554 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1555 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1556 AR->getPostIncExpr(*this), N))) { 1557 // Cache knowledge of AR NW, which is propagated to this 1558 // AddRec. Negative step causes unsigned wrap, but it 1559 // still can't self-wrap. 1560 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1561 // Return the expression with the addrec on the outside. 1562 return getAddRecExpr( 1563 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1564 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1565 } 1566 } 1567 } 1568 1569 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1570 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1571 return getAddRecExpr( 1572 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1573 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1574 } 1575 } 1576 1577 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1578 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1579 if (SA->hasNoUnsignedWrap()) { 1580 // If the addition does not unsign overflow then we can, by definition, 1581 // commute the zero extension with the addition operation. 1582 SmallVector<const SCEV *, 4> Ops; 1583 for (const auto *Op : SA->operands()) 1584 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1585 return getAddExpr(Ops, SCEV::FlagNUW); 1586 } 1587 } 1588 1589 // The cast wasn't folded; create an explicit cast node. 1590 // Recompute the insert position, as it may have been invalidated. 1591 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1592 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1593 Op, Ty); 1594 UniqueSCEVs.InsertNode(S, IP); 1595 return S; 1596 } 1597 1598 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1599 Type *Ty) { 1600 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1601 "This is not an extending conversion!"); 1602 assert(isSCEVable(Ty) && 1603 "This is not a conversion to a SCEVable type!"); 1604 Ty = getEffectiveSCEVType(Ty); 1605 1606 // Fold if the operand is constant. 1607 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1608 return getConstant( 1609 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1610 1611 // sext(sext(x)) --> sext(x) 1612 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1613 return getSignExtendExpr(SS->getOperand(), Ty); 1614 1615 // sext(zext(x)) --> zext(x) 1616 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1617 return getZeroExtendExpr(SZ->getOperand(), Ty); 1618 1619 // Before doing any expensive analysis, check to see if we've already 1620 // computed a SCEV for this Op and Ty. 1621 FoldingSetNodeID ID; 1622 ID.AddInteger(scSignExtend); 1623 ID.AddPointer(Op); 1624 ID.AddPointer(Ty); 1625 void *IP = nullptr; 1626 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1627 1628 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1629 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1630 // It's possible the bits taken off by the truncate were all sign bits. If 1631 // so, we should be able to simplify this further. 1632 const SCEV *X = ST->getOperand(); 1633 ConstantRange CR = getSignedRange(X); 1634 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1635 unsigned NewBits = getTypeSizeInBits(Ty); 1636 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1637 CR.sextOrTrunc(NewBits))) 1638 return getTruncateOrSignExtend(X, Ty); 1639 } 1640 1641 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1642 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1643 if (SA->getNumOperands() == 2) { 1644 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1645 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1646 if (SMul && SC1) { 1647 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1648 const APInt &C1 = SC1->getAPInt(); 1649 const APInt &C2 = SC2->getAPInt(); 1650 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1651 C2.ugt(C1) && C2.isPowerOf2()) 1652 return getAddExpr(getSignExtendExpr(SC1, Ty), 1653 getSignExtendExpr(SMul, Ty)); 1654 } 1655 } 1656 } 1657 1658 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1659 if (SA->hasNoSignedWrap()) { 1660 // If the addition does not sign overflow then we can, by definition, 1661 // commute the sign extension with the addition operation. 1662 SmallVector<const SCEV *, 4> Ops; 1663 for (const auto *Op : SA->operands()) 1664 Ops.push_back(getSignExtendExpr(Op, Ty)); 1665 return getAddExpr(Ops, SCEV::FlagNSW); 1666 } 1667 } 1668 // If the input value is a chrec scev, and we can prove that the value 1669 // did not overflow the old, smaller, value, we can sign extend all of the 1670 // operands (often constants). This allows analysis of something like 1671 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1672 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1673 if (AR->isAffine()) { 1674 const SCEV *Start = AR->getStart(); 1675 const SCEV *Step = AR->getStepRecurrence(*this); 1676 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1677 const Loop *L = AR->getLoop(); 1678 1679 if (!AR->hasNoSignedWrap()) { 1680 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1681 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1682 } 1683 1684 // If we have special knowledge that this addrec won't overflow, 1685 // we don't need to do any further analysis. 1686 if (AR->hasNoSignedWrap()) 1687 return getAddRecExpr( 1688 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1689 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1690 1691 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1692 // Note that this serves two purposes: It filters out loops that are 1693 // simply not analyzable, and it covers the case where this code is 1694 // being called from within backedge-taken count analysis, such that 1695 // attempting to ask for the backedge-taken count would likely result 1696 // in infinite recursion. In the later case, the analysis code will 1697 // cope with a conservative value, and it will take care to purge 1698 // that value once it has finished. 1699 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1700 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1701 // Manually compute the final value for AR, checking for 1702 // overflow. 1703 1704 // Check whether the backedge-taken count can be losslessly casted to 1705 // the addrec's type. The count is always unsigned. 1706 const SCEV *CastedMaxBECount = 1707 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1708 const SCEV *RecastedMaxBECount = 1709 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1710 if (MaxBECount == RecastedMaxBECount) { 1711 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1712 // Check whether Start+Step*MaxBECount has no signed overflow. 1713 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1714 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1715 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1716 const SCEV *WideMaxBECount = 1717 getZeroExtendExpr(CastedMaxBECount, WideTy); 1718 const SCEV *OperandExtendedAdd = 1719 getAddExpr(WideStart, 1720 getMulExpr(WideMaxBECount, 1721 getSignExtendExpr(Step, WideTy))); 1722 if (SAdd == OperandExtendedAdd) { 1723 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1724 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1725 // Return the expression with the addrec on the outside. 1726 return getAddRecExpr( 1727 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1728 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1729 } 1730 // Similar to above, only this time treat the step value as unsigned. 1731 // This covers loops that count up with an unsigned step. 1732 OperandExtendedAdd = 1733 getAddExpr(WideStart, 1734 getMulExpr(WideMaxBECount, 1735 getZeroExtendExpr(Step, WideTy))); 1736 if (SAdd == OperandExtendedAdd) { 1737 // If AR wraps around then 1738 // 1739 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1740 // => SAdd != OperandExtendedAdd 1741 // 1742 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1743 // (SAdd == OperandExtendedAdd => AR is NW) 1744 1745 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1746 1747 // Return the expression with the addrec on the outside. 1748 return getAddRecExpr( 1749 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1750 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1751 } 1752 } 1753 } 1754 1755 // Normally, in the cases we can prove no-overflow via a 1756 // backedge guarding condition, we can also compute a backedge 1757 // taken count for the loop. The exceptions are assumptions and 1758 // guards present in the loop -- SCEV is not great at exploiting 1759 // these to compute max backedge taken counts, but can still use 1760 // these to prove lack of overflow. Use this fact to avoid 1761 // doing extra work that may not pay off. 1762 1763 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1764 !AC.assumptions().empty()) { 1765 // If the backedge is guarded by a comparison with the pre-inc 1766 // value the addrec is safe. Also, if the entry is guarded by 1767 // a comparison with the start value and the backedge is 1768 // guarded by a comparison with the post-inc value, the addrec 1769 // is safe. 1770 ICmpInst::Predicate Pred; 1771 const SCEV *OverflowLimit = 1772 getSignedOverflowLimitForStep(Step, &Pred, this); 1773 if (OverflowLimit && 1774 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1775 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1776 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1777 OverflowLimit)))) { 1778 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1779 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1780 return getAddRecExpr( 1781 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1782 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1783 } 1784 } 1785 1786 // If Start and Step are constants, check if we can apply this 1787 // transformation: 1788 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1789 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1790 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1791 if (SC1 && SC2) { 1792 const APInt &C1 = SC1->getAPInt(); 1793 const APInt &C2 = SC2->getAPInt(); 1794 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1795 C2.isPowerOf2()) { 1796 Start = getSignExtendExpr(Start, Ty); 1797 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1798 AR->getNoWrapFlags()); 1799 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1800 } 1801 } 1802 1803 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1804 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1805 return getAddRecExpr( 1806 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1807 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1808 } 1809 } 1810 1811 // If the input value is provably positive and we could not simplify 1812 // away the sext build a zext instead. 1813 if (isKnownNonNegative(Op)) 1814 return getZeroExtendExpr(Op, Ty); 1815 1816 // The cast wasn't folded; create an explicit cast node. 1817 // Recompute the insert position, as it may have been invalidated. 1818 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1819 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1820 Op, Ty); 1821 UniqueSCEVs.InsertNode(S, IP); 1822 return S; 1823 } 1824 1825 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1826 /// unspecified bits out to the given type. 1827 /// 1828 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1829 Type *Ty) { 1830 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1831 "This is not an extending conversion!"); 1832 assert(isSCEVable(Ty) && 1833 "This is not a conversion to a SCEVable type!"); 1834 Ty = getEffectiveSCEVType(Ty); 1835 1836 // Sign-extend negative constants. 1837 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1838 if (SC->getAPInt().isNegative()) 1839 return getSignExtendExpr(Op, Ty); 1840 1841 // Peel off a truncate cast. 1842 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1843 const SCEV *NewOp = T->getOperand(); 1844 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1845 return getAnyExtendExpr(NewOp, Ty); 1846 return getTruncateOrNoop(NewOp, Ty); 1847 } 1848 1849 // Next try a zext cast. If the cast is folded, use it. 1850 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1851 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1852 return ZExt; 1853 1854 // Next try a sext cast. If the cast is folded, use it. 1855 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1856 if (!isa<SCEVSignExtendExpr>(SExt)) 1857 return SExt; 1858 1859 // Force the cast to be folded into the operands of an addrec. 1860 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1861 SmallVector<const SCEV *, 4> Ops; 1862 for (const SCEV *Op : AR->operands()) 1863 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1864 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1865 } 1866 1867 // If the expression is obviously signed, use the sext cast value. 1868 if (isa<SCEVSMaxExpr>(Op)) 1869 return SExt; 1870 1871 // Absent any other information, use the zext cast value. 1872 return ZExt; 1873 } 1874 1875 /// Process the given Ops list, which is a list of operands to be added under 1876 /// the given scale, update the given map. This is a helper function for 1877 /// getAddRecExpr. As an example of what it does, given a sequence of operands 1878 /// that would form an add expression like this: 1879 /// 1880 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1881 /// 1882 /// where A and B are constants, update the map with these values: 1883 /// 1884 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1885 /// 1886 /// and add 13 + A*B*29 to AccumulatedConstant. 1887 /// This will allow getAddRecExpr to produce this: 1888 /// 1889 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1890 /// 1891 /// This form often exposes folding opportunities that are hidden in 1892 /// the original operand list. 1893 /// 1894 /// Return true iff it appears that any interesting folding opportunities 1895 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1896 /// the common case where no interesting opportunities are present, and 1897 /// is also used as a check to avoid infinite recursion. 1898 /// 1899 static bool 1900 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1901 SmallVectorImpl<const SCEV *> &NewOps, 1902 APInt &AccumulatedConstant, 1903 const SCEV *const *Ops, size_t NumOperands, 1904 const APInt &Scale, 1905 ScalarEvolution &SE) { 1906 bool Interesting = false; 1907 1908 // Iterate over the add operands. They are sorted, with constants first. 1909 unsigned i = 0; 1910 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1911 ++i; 1912 // Pull a buried constant out to the outside. 1913 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1914 Interesting = true; 1915 AccumulatedConstant += Scale * C->getAPInt(); 1916 } 1917 1918 // Next comes everything else. We're especially interested in multiplies 1919 // here, but they're in the middle, so just visit the rest with one loop. 1920 for (; i != NumOperands; ++i) { 1921 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1922 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1923 APInt NewScale = 1924 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 1925 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1926 // A multiplication of a constant with another add; recurse. 1927 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1928 Interesting |= 1929 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1930 Add->op_begin(), Add->getNumOperands(), 1931 NewScale, SE); 1932 } else { 1933 // A multiplication of a constant with some other value. Update 1934 // the map. 1935 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1936 const SCEV *Key = SE.getMulExpr(MulOps); 1937 auto Pair = M.insert({Key, NewScale}); 1938 if (Pair.second) { 1939 NewOps.push_back(Pair.first->first); 1940 } else { 1941 Pair.first->second += NewScale; 1942 // The map already had an entry for this value, which may indicate 1943 // a folding opportunity. 1944 Interesting = true; 1945 } 1946 } 1947 } else { 1948 // An ordinary operand. Update the map. 1949 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1950 M.insert({Ops[i], Scale}); 1951 if (Pair.second) { 1952 NewOps.push_back(Pair.first->first); 1953 } else { 1954 Pair.first->second += Scale; 1955 // The map already had an entry for this value, which may indicate 1956 // a folding opportunity. 1957 Interesting = true; 1958 } 1959 } 1960 } 1961 1962 return Interesting; 1963 } 1964 1965 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1966 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1967 // can't-overflow flags for the operation if possible. 1968 static SCEV::NoWrapFlags 1969 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1970 const SmallVectorImpl<const SCEV *> &Ops, 1971 SCEV::NoWrapFlags Flags) { 1972 using namespace std::placeholders; 1973 typedef OverflowingBinaryOperator OBO; 1974 1975 bool CanAnalyze = 1976 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1977 (void)CanAnalyze; 1978 assert(CanAnalyze && "don't call from other places!"); 1979 1980 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1981 SCEV::NoWrapFlags SignOrUnsignWrap = 1982 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1983 1984 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1985 auto IsKnownNonNegative = [&](const SCEV *S) { 1986 return SE->isKnownNonNegative(S); 1987 }; 1988 1989 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 1990 Flags = 1991 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1992 1993 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1994 1995 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1996 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1997 1998 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1999 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2000 2001 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2002 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2003 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2004 Instruction::Add, C, OBO::NoSignedWrap); 2005 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2006 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2007 } 2008 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2009 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2010 Instruction::Add, C, OBO::NoUnsignedWrap); 2011 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2012 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2013 } 2014 } 2015 2016 return Flags; 2017 } 2018 2019 /// Get a canonical add expression, or something simpler if possible. 2020 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2021 SCEV::NoWrapFlags Flags) { 2022 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2023 "only nuw or nsw allowed"); 2024 assert(!Ops.empty() && "Cannot get empty add!"); 2025 if (Ops.size() == 1) return Ops[0]; 2026 #ifndef NDEBUG 2027 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2028 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2029 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2030 "SCEVAddExpr operand types don't match!"); 2031 #endif 2032 2033 // Sort by complexity, this groups all similar expression types together. 2034 GroupByComplexity(Ops, &LI); 2035 2036 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2037 2038 // If there are any constants, fold them together. 2039 unsigned Idx = 0; 2040 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2041 ++Idx; 2042 assert(Idx < Ops.size()); 2043 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2044 // We found two constants, fold them together! 2045 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2046 if (Ops.size() == 2) return Ops[0]; 2047 Ops.erase(Ops.begin()+1); // Erase the folded element 2048 LHSC = cast<SCEVConstant>(Ops[0]); 2049 } 2050 2051 // If we are left with a constant zero being added, strip it off. 2052 if (LHSC->getValue()->isZero()) { 2053 Ops.erase(Ops.begin()); 2054 --Idx; 2055 } 2056 2057 if (Ops.size() == 1) return Ops[0]; 2058 } 2059 2060 // Okay, check to see if the same value occurs in the operand list more than 2061 // once. If so, merge them together into an multiply expression. Since we 2062 // sorted the list, these values are required to be adjacent. 2063 Type *Ty = Ops[0]->getType(); 2064 bool FoundMatch = false; 2065 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2066 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2067 // Scan ahead to count how many equal operands there are. 2068 unsigned Count = 2; 2069 while (i+Count != e && Ops[i+Count] == Ops[i]) 2070 ++Count; 2071 // Merge the values into a multiply. 2072 const SCEV *Scale = getConstant(Ty, Count); 2073 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2074 if (Ops.size() == Count) 2075 return Mul; 2076 Ops[i] = Mul; 2077 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2078 --i; e -= Count - 1; 2079 FoundMatch = true; 2080 } 2081 if (FoundMatch) 2082 return getAddExpr(Ops, Flags); 2083 2084 // Check for truncates. If all the operands are truncated from the same 2085 // type, see if factoring out the truncate would permit the result to be 2086 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2087 // if the contents of the resulting outer trunc fold to something simple. 2088 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2089 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2090 Type *DstType = Trunc->getType(); 2091 Type *SrcType = Trunc->getOperand()->getType(); 2092 SmallVector<const SCEV *, 8> LargeOps; 2093 bool Ok = true; 2094 // Check all the operands to see if they can be represented in the 2095 // source type of the truncate. 2096 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2097 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2098 if (T->getOperand()->getType() != SrcType) { 2099 Ok = false; 2100 break; 2101 } 2102 LargeOps.push_back(T->getOperand()); 2103 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2104 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2105 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2106 SmallVector<const SCEV *, 8> LargeMulOps; 2107 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2108 if (const SCEVTruncateExpr *T = 2109 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2110 if (T->getOperand()->getType() != SrcType) { 2111 Ok = false; 2112 break; 2113 } 2114 LargeMulOps.push_back(T->getOperand()); 2115 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2116 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2117 } else { 2118 Ok = false; 2119 break; 2120 } 2121 } 2122 if (Ok) 2123 LargeOps.push_back(getMulExpr(LargeMulOps)); 2124 } else { 2125 Ok = false; 2126 break; 2127 } 2128 } 2129 if (Ok) { 2130 // Evaluate the expression in the larger type. 2131 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2132 // If it folds to something simple, use it. Otherwise, don't. 2133 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2134 return getTruncateExpr(Fold, DstType); 2135 } 2136 } 2137 2138 // Skip past any other cast SCEVs. 2139 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2140 ++Idx; 2141 2142 // If there are add operands they would be next. 2143 if (Idx < Ops.size()) { 2144 bool DeletedAdd = false; 2145 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2146 // If we have an add, expand the add operands onto the end of the operands 2147 // list. 2148 Ops.erase(Ops.begin()+Idx); 2149 Ops.append(Add->op_begin(), Add->op_end()); 2150 DeletedAdd = true; 2151 } 2152 2153 // If we deleted at least one add, we added operands to the end of the list, 2154 // and they are not necessarily sorted. Recurse to resort and resimplify 2155 // any operands we just acquired. 2156 if (DeletedAdd) 2157 return getAddExpr(Ops); 2158 } 2159 2160 // Skip over the add expression until we get to a multiply. 2161 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2162 ++Idx; 2163 2164 // Check to see if there are any folding opportunities present with 2165 // operands multiplied by constant values. 2166 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2167 uint64_t BitWidth = getTypeSizeInBits(Ty); 2168 DenseMap<const SCEV *, APInt> M; 2169 SmallVector<const SCEV *, 8> NewOps; 2170 APInt AccumulatedConstant(BitWidth, 0); 2171 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2172 Ops.data(), Ops.size(), 2173 APInt(BitWidth, 1), *this)) { 2174 struct APIntCompare { 2175 bool operator()(const APInt &LHS, const APInt &RHS) const { 2176 return LHS.ult(RHS); 2177 } 2178 }; 2179 2180 // Some interesting folding opportunity is present, so its worthwhile to 2181 // re-generate the operands list. Group the operands by constant scale, 2182 // to avoid multiplying by the same constant scale multiple times. 2183 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2184 for (const SCEV *NewOp : NewOps) 2185 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2186 // Re-generate the operands list. 2187 Ops.clear(); 2188 if (AccumulatedConstant != 0) 2189 Ops.push_back(getConstant(AccumulatedConstant)); 2190 for (auto &MulOp : MulOpLists) 2191 if (MulOp.first != 0) 2192 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2193 getAddExpr(MulOp.second))); 2194 if (Ops.empty()) 2195 return getZero(Ty); 2196 if (Ops.size() == 1) 2197 return Ops[0]; 2198 return getAddExpr(Ops); 2199 } 2200 } 2201 2202 // If we are adding something to a multiply expression, make sure the 2203 // something is not already an operand of the multiply. If so, merge it into 2204 // the multiply. 2205 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2206 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2207 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2208 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2209 if (isa<SCEVConstant>(MulOpSCEV)) 2210 continue; 2211 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2212 if (MulOpSCEV == Ops[AddOp]) { 2213 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2214 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2215 if (Mul->getNumOperands() != 2) { 2216 // If the multiply has more than two operands, we must get the 2217 // Y*Z term. 2218 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2219 Mul->op_begin()+MulOp); 2220 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2221 InnerMul = getMulExpr(MulOps); 2222 } 2223 const SCEV *One = getOne(Ty); 2224 const SCEV *AddOne = getAddExpr(One, InnerMul); 2225 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2226 if (Ops.size() == 2) return OuterMul; 2227 if (AddOp < Idx) { 2228 Ops.erase(Ops.begin()+AddOp); 2229 Ops.erase(Ops.begin()+Idx-1); 2230 } else { 2231 Ops.erase(Ops.begin()+Idx); 2232 Ops.erase(Ops.begin()+AddOp-1); 2233 } 2234 Ops.push_back(OuterMul); 2235 return getAddExpr(Ops); 2236 } 2237 2238 // Check this multiply against other multiplies being added together. 2239 for (unsigned OtherMulIdx = Idx+1; 2240 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2241 ++OtherMulIdx) { 2242 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2243 // If MulOp occurs in OtherMul, we can fold the two multiplies 2244 // together. 2245 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2246 OMulOp != e; ++OMulOp) 2247 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2248 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2249 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2250 if (Mul->getNumOperands() != 2) { 2251 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2252 Mul->op_begin()+MulOp); 2253 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2254 InnerMul1 = getMulExpr(MulOps); 2255 } 2256 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2257 if (OtherMul->getNumOperands() != 2) { 2258 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2259 OtherMul->op_begin()+OMulOp); 2260 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2261 InnerMul2 = getMulExpr(MulOps); 2262 } 2263 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2264 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2265 if (Ops.size() == 2) return OuterMul; 2266 Ops.erase(Ops.begin()+Idx); 2267 Ops.erase(Ops.begin()+OtherMulIdx-1); 2268 Ops.push_back(OuterMul); 2269 return getAddExpr(Ops); 2270 } 2271 } 2272 } 2273 } 2274 2275 // If there are any add recurrences in the operands list, see if any other 2276 // added values are loop invariant. If so, we can fold them into the 2277 // recurrence. 2278 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2279 ++Idx; 2280 2281 // Scan over all recurrences, trying to fold loop invariants into them. 2282 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2283 // Scan all of the other operands to this add and add them to the vector if 2284 // they are loop invariant w.r.t. the recurrence. 2285 SmallVector<const SCEV *, 8> LIOps; 2286 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2287 const Loop *AddRecLoop = AddRec->getLoop(); 2288 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2289 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2290 LIOps.push_back(Ops[i]); 2291 Ops.erase(Ops.begin()+i); 2292 --i; --e; 2293 } 2294 2295 // If we found some loop invariants, fold them into the recurrence. 2296 if (!LIOps.empty()) { 2297 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2298 LIOps.push_back(AddRec->getStart()); 2299 2300 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2301 AddRec->op_end()); 2302 // This follows from the fact that the no-wrap flags on the outer add 2303 // expression are applicable on the 0th iteration, when the add recurrence 2304 // will be equal to its start value. 2305 AddRecOps[0] = getAddExpr(LIOps, Flags); 2306 2307 // Build the new addrec. Propagate the NUW and NSW flags if both the 2308 // outer add and the inner addrec are guaranteed to have no overflow. 2309 // Always propagate NW. 2310 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2311 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2312 2313 // If all of the other operands were loop invariant, we are done. 2314 if (Ops.size() == 1) return NewRec; 2315 2316 // Otherwise, add the folded AddRec by the non-invariant parts. 2317 for (unsigned i = 0;; ++i) 2318 if (Ops[i] == AddRec) { 2319 Ops[i] = NewRec; 2320 break; 2321 } 2322 return getAddExpr(Ops); 2323 } 2324 2325 // Okay, if there weren't any loop invariants to be folded, check to see if 2326 // there are multiple AddRec's with the same loop induction variable being 2327 // added together. If so, we can fold them. 2328 for (unsigned OtherIdx = Idx+1; 2329 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2330 ++OtherIdx) 2331 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2332 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2333 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2334 AddRec->op_end()); 2335 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2336 ++OtherIdx) 2337 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2338 if (OtherAddRec->getLoop() == AddRecLoop) { 2339 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2340 i != e; ++i) { 2341 if (i >= AddRecOps.size()) { 2342 AddRecOps.append(OtherAddRec->op_begin()+i, 2343 OtherAddRec->op_end()); 2344 break; 2345 } 2346 AddRecOps[i] = getAddExpr(AddRecOps[i], 2347 OtherAddRec->getOperand(i)); 2348 } 2349 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2350 } 2351 // Step size has changed, so we cannot guarantee no self-wraparound. 2352 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2353 return getAddExpr(Ops); 2354 } 2355 2356 // Otherwise couldn't fold anything into this recurrence. Move onto the 2357 // next one. 2358 } 2359 2360 // Okay, it looks like we really DO need an add expr. Check to see if we 2361 // already have one, otherwise create a new one. 2362 FoldingSetNodeID ID; 2363 ID.AddInteger(scAddExpr); 2364 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2365 ID.AddPointer(Ops[i]); 2366 void *IP = nullptr; 2367 SCEVAddExpr *S = 2368 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2369 if (!S) { 2370 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2371 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2372 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2373 O, Ops.size()); 2374 UniqueSCEVs.InsertNode(S, IP); 2375 } 2376 S->setNoWrapFlags(Flags); 2377 return S; 2378 } 2379 2380 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2381 uint64_t k = i*j; 2382 if (j > 1 && k / j != i) Overflow = true; 2383 return k; 2384 } 2385 2386 /// Compute the result of "n choose k", the binomial coefficient. If an 2387 /// intermediate computation overflows, Overflow will be set and the return will 2388 /// be garbage. Overflow is not cleared on absence of overflow. 2389 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2390 // We use the multiplicative formula: 2391 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2392 // At each iteration, we take the n-th term of the numeral and divide by the 2393 // (k-n)th term of the denominator. This division will always produce an 2394 // integral result, and helps reduce the chance of overflow in the 2395 // intermediate computations. However, we can still overflow even when the 2396 // final result would fit. 2397 2398 if (n == 0 || n == k) return 1; 2399 if (k > n) return 0; 2400 2401 if (k > n/2) 2402 k = n-k; 2403 2404 uint64_t r = 1; 2405 for (uint64_t i = 1; i <= k; ++i) { 2406 r = umul_ov(r, n-(i-1), Overflow); 2407 r /= i; 2408 } 2409 return r; 2410 } 2411 2412 /// Determine if any of the operands in this SCEV are a constant or if 2413 /// any of the add or multiply expressions in this SCEV contain a constant. 2414 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2415 SmallVector<const SCEV *, 4> Ops; 2416 Ops.push_back(StartExpr); 2417 while (!Ops.empty()) { 2418 const SCEV *CurrentExpr = Ops.pop_back_val(); 2419 if (isa<SCEVConstant>(*CurrentExpr)) 2420 return true; 2421 2422 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2423 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2424 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2425 } 2426 } 2427 return false; 2428 } 2429 2430 /// Get a canonical multiply expression, or something simpler if possible. 2431 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2432 SCEV::NoWrapFlags Flags) { 2433 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2434 "only nuw or nsw allowed"); 2435 assert(!Ops.empty() && "Cannot get empty mul!"); 2436 if (Ops.size() == 1) return Ops[0]; 2437 #ifndef NDEBUG 2438 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2439 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2440 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2441 "SCEVMulExpr operand types don't match!"); 2442 #endif 2443 2444 // Sort by complexity, this groups all similar expression types together. 2445 GroupByComplexity(Ops, &LI); 2446 2447 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2448 2449 // If there are any constants, fold them together. 2450 unsigned Idx = 0; 2451 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2452 2453 // C1*(C2+V) -> C1*C2 + C1*V 2454 if (Ops.size() == 2) 2455 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2456 // If any of Add's ops are Adds or Muls with a constant, 2457 // apply this transformation as well. 2458 if (Add->getNumOperands() == 2) 2459 if (containsConstantSomewhere(Add)) 2460 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2461 getMulExpr(LHSC, Add->getOperand(1))); 2462 2463 ++Idx; 2464 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2465 // We found two constants, fold them together! 2466 ConstantInt *Fold = 2467 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2468 Ops[0] = getConstant(Fold); 2469 Ops.erase(Ops.begin()+1); // Erase the folded element 2470 if (Ops.size() == 1) return Ops[0]; 2471 LHSC = cast<SCEVConstant>(Ops[0]); 2472 } 2473 2474 // If we are left with a constant one being multiplied, strip it off. 2475 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2476 Ops.erase(Ops.begin()); 2477 --Idx; 2478 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2479 // If we have a multiply of zero, it will always be zero. 2480 return Ops[0]; 2481 } else if (Ops[0]->isAllOnesValue()) { 2482 // If we have a mul by -1 of an add, try distributing the -1 among the 2483 // add operands. 2484 if (Ops.size() == 2) { 2485 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2486 SmallVector<const SCEV *, 4> NewOps; 2487 bool AnyFolded = false; 2488 for (const SCEV *AddOp : Add->operands()) { 2489 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2490 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2491 NewOps.push_back(Mul); 2492 } 2493 if (AnyFolded) 2494 return getAddExpr(NewOps); 2495 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2496 // Negation preserves a recurrence's no self-wrap property. 2497 SmallVector<const SCEV *, 4> Operands; 2498 for (const SCEV *AddRecOp : AddRec->operands()) 2499 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2500 2501 return getAddRecExpr(Operands, AddRec->getLoop(), 2502 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2503 } 2504 } 2505 } 2506 2507 if (Ops.size() == 1) 2508 return Ops[0]; 2509 } 2510 2511 // Skip over the add expression until we get to a multiply. 2512 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2513 ++Idx; 2514 2515 // If there are mul operands inline them all into this expression. 2516 if (Idx < Ops.size()) { 2517 bool DeletedMul = false; 2518 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2519 // If we have an mul, expand the mul operands onto the end of the operands 2520 // list. 2521 Ops.erase(Ops.begin()+Idx); 2522 Ops.append(Mul->op_begin(), Mul->op_end()); 2523 DeletedMul = true; 2524 } 2525 2526 // If we deleted at least one mul, we added operands to the end of the list, 2527 // and they are not necessarily sorted. Recurse to resort and resimplify 2528 // any operands we just acquired. 2529 if (DeletedMul) 2530 return getMulExpr(Ops); 2531 } 2532 2533 // If there are any add recurrences in the operands list, see if any other 2534 // added values are loop invariant. If so, we can fold them into the 2535 // recurrence. 2536 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2537 ++Idx; 2538 2539 // Scan over all recurrences, trying to fold loop invariants into them. 2540 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2541 // Scan all of the other operands to this mul and add them to the vector if 2542 // they are loop invariant w.r.t. the recurrence. 2543 SmallVector<const SCEV *, 8> LIOps; 2544 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2545 const Loop *AddRecLoop = AddRec->getLoop(); 2546 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2547 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2548 LIOps.push_back(Ops[i]); 2549 Ops.erase(Ops.begin()+i); 2550 --i; --e; 2551 } 2552 2553 // If we found some loop invariants, fold them into the recurrence. 2554 if (!LIOps.empty()) { 2555 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2556 SmallVector<const SCEV *, 4> NewOps; 2557 NewOps.reserve(AddRec->getNumOperands()); 2558 const SCEV *Scale = getMulExpr(LIOps); 2559 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2560 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2561 2562 // Build the new addrec. Propagate the NUW and NSW flags if both the 2563 // outer mul and the inner addrec are guaranteed to have no overflow. 2564 // 2565 // No self-wrap cannot be guaranteed after changing the step size, but 2566 // will be inferred if either NUW or NSW is true. 2567 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2568 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2569 2570 // If all of the other operands were loop invariant, we are done. 2571 if (Ops.size() == 1) return NewRec; 2572 2573 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2574 for (unsigned i = 0;; ++i) 2575 if (Ops[i] == AddRec) { 2576 Ops[i] = NewRec; 2577 break; 2578 } 2579 return getMulExpr(Ops); 2580 } 2581 2582 // Okay, if there weren't any loop invariants to be folded, check to see if 2583 // there are multiple AddRec's with the same loop induction variable being 2584 // multiplied together. If so, we can fold them. 2585 2586 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2587 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2588 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2589 // ]]],+,...up to x=2n}. 2590 // Note that the arguments to choose() are always integers with values 2591 // known at compile time, never SCEV objects. 2592 // 2593 // The implementation avoids pointless extra computations when the two 2594 // addrec's are of different length (mathematically, it's equivalent to 2595 // an infinite stream of zeros on the right). 2596 bool OpsModified = false; 2597 for (unsigned OtherIdx = Idx+1; 2598 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2599 ++OtherIdx) { 2600 const SCEVAddRecExpr *OtherAddRec = 2601 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2602 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2603 continue; 2604 2605 bool Overflow = false; 2606 Type *Ty = AddRec->getType(); 2607 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2608 SmallVector<const SCEV*, 7> AddRecOps; 2609 for (int x = 0, xe = AddRec->getNumOperands() + 2610 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2611 const SCEV *Term = getZero(Ty); 2612 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2613 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2614 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2615 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2616 z < ze && !Overflow; ++z) { 2617 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2618 uint64_t Coeff; 2619 if (LargerThan64Bits) 2620 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2621 else 2622 Coeff = Coeff1*Coeff2; 2623 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2624 const SCEV *Term1 = AddRec->getOperand(y-z); 2625 const SCEV *Term2 = OtherAddRec->getOperand(z); 2626 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2627 } 2628 } 2629 AddRecOps.push_back(Term); 2630 } 2631 if (!Overflow) { 2632 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2633 SCEV::FlagAnyWrap); 2634 if (Ops.size() == 2) return NewAddRec; 2635 Ops[Idx] = NewAddRec; 2636 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2637 OpsModified = true; 2638 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2639 if (!AddRec) 2640 break; 2641 } 2642 } 2643 if (OpsModified) 2644 return getMulExpr(Ops); 2645 2646 // Otherwise couldn't fold anything into this recurrence. Move onto the 2647 // next one. 2648 } 2649 2650 // Okay, it looks like we really DO need an mul expr. Check to see if we 2651 // already have one, otherwise create a new one. 2652 FoldingSetNodeID ID; 2653 ID.AddInteger(scMulExpr); 2654 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2655 ID.AddPointer(Ops[i]); 2656 void *IP = nullptr; 2657 SCEVMulExpr *S = 2658 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2659 if (!S) { 2660 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2661 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2662 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2663 O, Ops.size()); 2664 UniqueSCEVs.InsertNode(S, IP); 2665 } 2666 S->setNoWrapFlags(Flags); 2667 return S; 2668 } 2669 2670 /// Get a canonical unsigned division expression, or something simpler if 2671 /// possible. 2672 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2673 const SCEV *RHS) { 2674 assert(getEffectiveSCEVType(LHS->getType()) == 2675 getEffectiveSCEVType(RHS->getType()) && 2676 "SCEVUDivExpr operand types don't match!"); 2677 2678 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2679 if (RHSC->getValue()->equalsInt(1)) 2680 return LHS; // X udiv 1 --> x 2681 // If the denominator is zero, the result of the udiv is undefined. Don't 2682 // try to analyze it, because the resolution chosen here may differ from 2683 // the resolution chosen in other parts of the compiler. 2684 if (!RHSC->getValue()->isZero()) { 2685 // Determine if the division can be folded into the operands of 2686 // its operands. 2687 // TODO: Generalize this to non-constants by using known-bits information. 2688 Type *Ty = LHS->getType(); 2689 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2690 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2691 // For non-power-of-two values, effectively round the value up to the 2692 // nearest power of two. 2693 if (!RHSC->getAPInt().isPowerOf2()) 2694 ++MaxShiftAmt; 2695 IntegerType *ExtTy = 2696 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2697 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2698 if (const SCEVConstant *Step = 2699 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2700 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2701 const APInt &StepInt = Step->getAPInt(); 2702 const APInt &DivInt = RHSC->getAPInt(); 2703 if (!StepInt.urem(DivInt) && 2704 getZeroExtendExpr(AR, ExtTy) == 2705 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2706 getZeroExtendExpr(Step, ExtTy), 2707 AR->getLoop(), SCEV::FlagAnyWrap)) { 2708 SmallVector<const SCEV *, 4> Operands; 2709 for (const SCEV *Op : AR->operands()) 2710 Operands.push_back(getUDivExpr(Op, RHS)); 2711 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2712 } 2713 /// Get a canonical UDivExpr for a recurrence. 2714 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2715 // We can currently only fold X%N if X is constant. 2716 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2717 if (StartC && !DivInt.urem(StepInt) && 2718 getZeroExtendExpr(AR, ExtTy) == 2719 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2720 getZeroExtendExpr(Step, ExtTy), 2721 AR->getLoop(), SCEV::FlagAnyWrap)) { 2722 const APInt &StartInt = StartC->getAPInt(); 2723 const APInt &StartRem = StartInt.urem(StepInt); 2724 if (StartRem != 0) 2725 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2726 AR->getLoop(), SCEV::FlagNW); 2727 } 2728 } 2729 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2730 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2731 SmallVector<const SCEV *, 4> Operands; 2732 for (const SCEV *Op : M->operands()) 2733 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2734 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2735 // Find an operand that's safely divisible. 2736 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2737 const SCEV *Op = M->getOperand(i); 2738 const SCEV *Div = getUDivExpr(Op, RHSC); 2739 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2740 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2741 M->op_end()); 2742 Operands[i] = Div; 2743 return getMulExpr(Operands); 2744 } 2745 } 2746 } 2747 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2748 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2749 SmallVector<const SCEV *, 4> Operands; 2750 for (const SCEV *Op : A->operands()) 2751 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2752 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2753 Operands.clear(); 2754 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2755 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2756 if (isa<SCEVUDivExpr>(Op) || 2757 getMulExpr(Op, RHS) != A->getOperand(i)) 2758 break; 2759 Operands.push_back(Op); 2760 } 2761 if (Operands.size() == A->getNumOperands()) 2762 return getAddExpr(Operands); 2763 } 2764 } 2765 2766 // Fold if both operands are constant. 2767 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2768 Constant *LHSCV = LHSC->getValue(); 2769 Constant *RHSCV = RHSC->getValue(); 2770 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2771 RHSCV))); 2772 } 2773 } 2774 } 2775 2776 FoldingSetNodeID ID; 2777 ID.AddInteger(scUDivExpr); 2778 ID.AddPointer(LHS); 2779 ID.AddPointer(RHS); 2780 void *IP = nullptr; 2781 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2782 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2783 LHS, RHS); 2784 UniqueSCEVs.InsertNode(S, IP); 2785 return S; 2786 } 2787 2788 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2789 APInt A = C1->getAPInt().abs(); 2790 APInt B = C2->getAPInt().abs(); 2791 uint32_t ABW = A.getBitWidth(); 2792 uint32_t BBW = B.getBitWidth(); 2793 2794 if (ABW > BBW) 2795 B = B.zext(ABW); 2796 else if (ABW < BBW) 2797 A = A.zext(BBW); 2798 2799 return APIntOps::GreatestCommonDivisor(A, B); 2800 } 2801 2802 /// Get a canonical unsigned division expression, or something simpler if 2803 /// possible. There is no representation for an exact udiv in SCEV IR, but we 2804 /// can attempt to remove factors from the LHS and RHS. We can't do this when 2805 /// it's not exact because the udiv may be clearing bits. 2806 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2807 const SCEV *RHS) { 2808 // TODO: we could try to find factors in all sorts of things, but for now we 2809 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2810 // end of this file for inspiration. 2811 2812 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2813 if (!Mul) 2814 return getUDivExpr(LHS, RHS); 2815 2816 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2817 // If the mulexpr multiplies by a constant, then that constant must be the 2818 // first element of the mulexpr. 2819 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2820 if (LHSCst == RHSCst) { 2821 SmallVector<const SCEV *, 2> Operands; 2822 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2823 return getMulExpr(Operands); 2824 } 2825 2826 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2827 // that there's a factor provided by one of the other terms. We need to 2828 // check. 2829 APInt Factor = gcd(LHSCst, RHSCst); 2830 if (!Factor.isIntN(1)) { 2831 LHSCst = 2832 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 2833 RHSCst = 2834 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 2835 SmallVector<const SCEV *, 2> Operands; 2836 Operands.push_back(LHSCst); 2837 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2838 LHS = getMulExpr(Operands); 2839 RHS = RHSCst; 2840 Mul = dyn_cast<SCEVMulExpr>(LHS); 2841 if (!Mul) 2842 return getUDivExactExpr(LHS, RHS); 2843 } 2844 } 2845 } 2846 2847 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2848 if (Mul->getOperand(i) == RHS) { 2849 SmallVector<const SCEV *, 2> Operands; 2850 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2851 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2852 return getMulExpr(Operands); 2853 } 2854 } 2855 2856 return getUDivExpr(LHS, RHS); 2857 } 2858 2859 /// Get an add recurrence expression for the specified loop. Simplify the 2860 /// expression as much as possible. 2861 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2862 const Loop *L, 2863 SCEV::NoWrapFlags Flags) { 2864 SmallVector<const SCEV *, 4> Operands; 2865 Operands.push_back(Start); 2866 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2867 if (StepChrec->getLoop() == L) { 2868 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2869 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2870 } 2871 2872 Operands.push_back(Step); 2873 return getAddRecExpr(Operands, L, Flags); 2874 } 2875 2876 /// Get an add recurrence expression for the specified loop. Simplify the 2877 /// expression as much as possible. 2878 const SCEV * 2879 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2880 const Loop *L, SCEV::NoWrapFlags Flags) { 2881 if (Operands.size() == 1) return Operands[0]; 2882 #ifndef NDEBUG 2883 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2884 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2885 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2886 "SCEVAddRecExpr operand types don't match!"); 2887 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2888 assert(isLoopInvariant(Operands[i], L) && 2889 "SCEVAddRecExpr operand is not loop-invariant!"); 2890 #endif 2891 2892 if (Operands.back()->isZero()) { 2893 Operands.pop_back(); 2894 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2895 } 2896 2897 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2898 // use that information to infer NUW and NSW flags. However, computing a 2899 // BE count requires calling getAddRecExpr, so we may not yet have a 2900 // meaningful BE count at this point (and if we don't, we'd be stuck 2901 // with a SCEVCouldNotCompute as the cached BE count). 2902 2903 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2904 2905 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2906 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2907 const Loop *NestedLoop = NestedAR->getLoop(); 2908 if (L->contains(NestedLoop) 2909 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2910 : (!NestedLoop->contains(L) && 2911 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2912 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2913 NestedAR->op_end()); 2914 Operands[0] = NestedAR->getStart(); 2915 // AddRecs require their operands be loop-invariant with respect to their 2916 // loops. Don't perform this transformation if it would break this 2917 // requirement. 2918 bool AllInvariant = all_of( 2919 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2920 2921 if (AllInvariant) { 2922 // Create a recurrence for the outer loop with the same step size. 2923 // 2924 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2925 // inner recurrence has the same property. 2926 SCEV::NoWrapFlags OuterFlags = 2927 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2928 2929 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2930 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 2931 return isLoopInvariant(Op, NestedLoop); 2932 }); 2933 2934 if (AllInvariant) { 2935 // Ok, both add recurrences are valid after the transformation. 2936 // 2937 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2938 // the outer recurrence has the same property. 2939 SCEV::NoWrapFlags InnerFlags = 2940 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2941 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2942 } 2943 } 2944 // Reset Operands to its original state. 2945 Operands[0] = NestedAR; 2946 } 2947 } 2948 2949 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2950 // already have one, otherwise create a new one. 2951 FoldingSetNodeID ID; 2952 ID.AddInteger(scAddRecExpr); 2953 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2954 ID.AddPointer(Operands[i]); 2955 ID.AddPointer(L); 2956 void *IP = nullptr; 2957 SCEVAddRecExpr *S = 2958 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2959 if (!S) { 2960 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2961 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2962 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2963 O, Operands.size(), L); 2964 UniqueSCEVs.InsertNode(S, IP); 2965 } 2966 S->setNoWrapFlags(Flags); 2967 return S; 2968 } 2969 2970 const SCEV * 2971 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2972 const SmallVectorImpl<const SCEV *> &IndexExprs, 2973 bool InBounds) { 2974 // getSCEV(Base)->getType() has the same address space as Base->getType() 2975 // because SCEV::getType() preserves the address space. 2976 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2977 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2978 // instruction to its SCEV, because the Instruction may be guarded by control 2979 // flow and the no-overflow bits may not be valid for the expression in any 2980 // context. This can be fixed similarly to how these flags are handled for 2981 // adds. 2982 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2983 2984 const SCEV *TotalOffset = getZero(IntPtrTy); 2985 // The address space is unimportant. The first thing we do on CurTy is getting 2986 // its element type. 2987 Type *CurTy = PointerType::getUnqual(PointeeType); 2988 for (const SCEV *IndexExpr : IndexExprs) { 2989 // Compute the (potentially symbolic) offset in bytes for this index. 2990 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2991 // For a struct, add the member offset. 2992 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2993 unsigned FieldNo = Index->getZExtValue(); 2994 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2995 2996 // Add the field offset to the running total offset. 2997 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2998 2999 // Update CurTy to the type of the field at Index. 3000 CurTy = STy->getTypeAtIndex(Index); 3001 } else { 3002 // Update CurTy to its element type. 3003 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3004 // For an array, add the element offset, explicitly scaled. 3005 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3006 // Getelementptr indices are signed. 3007 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3008 3009 // Multiply the index by the element size to compute the element offset. 3010 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3011 3012 // Add the element offset to the running total offset. 3013 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3014 } 3015 } 3016 3017 // Add the total offset from all the GEP indices to the base. 3018 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3019 } 3020 3021 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3022 const SCEV *RHS) { 3023 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3024 return getSMaxExpr(Ops); 3025 } 3026 3027 const SCEV * 3028 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3029 assert(!Ops.empty() && "Cannot get empty smax!"); 3030 if (Ops.size() == 1) return Ops[0]; 3031 #ifndef NDEBUG 3032 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3033 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3034 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3035 "SCEVSMaxExpr operand types don't match!"); 3036 #endif 3037 3038 // Sort by complexity, this groups all similar expression types together. 3039 GroupByComplexity(Ops, &LI); 3040 3041 // If there are any constants, fold them together. 3042 unsigned Idx = 0; 3043 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3044 ++Idx; 3045 assert(Idx < Ops.size()); 3046 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3047 // We found two constants, fold them together! 3048 ConstantInt *Fold = ConstantInt::get( 3049 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3050 Ops[0] = getConstant(Fold); 3051 Ops.erase(Ops.begin()+1); // Erase the folded element 3052 if (Ops.size() == 1) return Ops[0]; 3053 LHSC = cast<SCEVConstant>(Ops[0]); 3054 } 3055 3056 // If we are left with a constant minimum-int, strip it off. 3057 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3058 Ops.erase(Ops.begin()); 3059 --Idx; 3060 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3061 // If we have an smax with a constant maximum-int, it will always be 3062 // maximum-int. 3063 return Ops[0]; 3064 } 3065 3066 if (Ops.size() == 1) return Ops[0]; 3067 } 3068 3069 // Find the first SMax 3070 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3071 ++Idx; 3072 3073 // Check to see if one of the operands is an SMax. If so, expand its operands 3074 // onto our operand list, and recurse to simplify. 3075 if (Idx < Ops.size()) { 3076 bool DeletedSMax = false; 3077 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3078 Ops.erase(Ops.begin()+Idx); 3079 Ops.append(SMax->op_begin(), SMax->op_end()); 3080 DeletedSMax = true; 3081 } 3082 3083 if (DeletedSMax) 3084 return getSMaxExpr(Ops); 3085 } 3086 3087 // Okay, check to see if the same value occurs in the operand list twice. If 3088 // so, delete one. Since we sorted the list, these values are required to 3089 // be adjacent. 3090 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3091 // X smax Y smax Y --> X smax Y 3092 // X smax Y --> X, if X is always greater than Y 3093 if (Ops[i] == Ops[i+1] || 3094 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3095 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3096 --i; --e; 3097 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3098 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3099 --i; --e; 3100 } 3101 3102 if (Ops.size() == 1) return Ops[0]; 3103 3104 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3105 3106 // Okay, it looks like we really DO need an smax expr. Check to see if we 3107 // already have one, otherwise create a new one. 3108 FoldingSetNodeID ID; 3109 ID.AddInteger(scSMaxExpr); 3110 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3111 ID.AddPointer(Ops[i]); 3112 void *IP = nullptr; 3113 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3114 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3115 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3116 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3117 O, Ops.size()); 3118 UniqueSCEVs.InsertNode(S, IP); 3119 return S; 3120 } 3121 3122 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3123 const SCEV *RHS) { 3124 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3125 return getUMaxExpr(Ops); 3126 } 3127 3128 const SCEV * 3129 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3130 assert(!Ops.empty() && "Cannot get empty umax!"); 3131 if (Ops.size() == 1) return Ops[0]; 3132 #ifndef NDEBUG 3133 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3134 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3135 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3136 "SCEVUMaxExpr operand types don't match!"); 3137 #endif 3138 3139 // Sort by complexity, this groups all similar expression types together. 3140 GroupByComplexity(Ops, &LI); 3141 3142 // If there are any constants, fold them together. 3143 unsigned Idx = 0; 3144 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3145 ++Idx; 3146 assert(Idx < Ops.size()); 3147 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3148 // We found two constants, fold them together! 3149 ConstantInt *Fold = ConstantInt::get( 3150 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3151 Ops[0] = getConstant(Fold); 3152 Ops.erase(Ops.begin()+1); // Erase the folded element 3153 if (Ops.size() == 1) return Ops[0]; 3154 LHSC = cast<SCEVConstant>(Ops[0]); 3155 } 3156 3157 // If we are left with a constant minimum-int, strip it off. 3158 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3159 Ops.erase(Ops.begin()); 3160 --Idx; 3161 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3162 // If we have an umax with a constant maximum-int, it will always be 3163 // maximum-int. 3164 return Ops[0]; 3165 } 3166 3167 if (Ops.size() == 1) return Ops[0]; 3168 } 3169 3170 // Find the first UMax 3171 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3172 ++Idx; 3173 3174 // Check to see if one of the operands is a UMax. If so, expand its operands 3175 // onto our operand list, and recurse to simplify. 3176 if (Idx < Ops.size()) { 3177 bool DeletedUMax = false; 3178 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3179 Ops.erase(Ops.begin()+Idx); 3180 Ops.append(UMax->op_begin(), UMax->op_end()); 3181 DeletedUMax = true; 3182 } 3183 3184 if (DeletedUMax) 3185 return getUMaxExpr(Ops); 3186 } 3187 3188 // Okay, check to see if the same value occurs in the operand list twice. If 3189 // so, delete one. Since we sorted the list, these values are required to 3190 // be adjacent. 3191 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3192 // X umax Y umax Y --> X umax Y 3193 // X umax Y --> X, if X is always greater than Y 3194 if (Ops[i] == Ops[i+1] || 3195 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3196 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3197 --i; --e; 3198 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3199 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3200 --i; --e; 3201 } 3202 3203 if (Ops.size() == 1) return Ops[0]; 3204 3205 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3206 3207 // Okay, it looks like we really DO need a umax expr. Check to see if we 3208 // already have one, otherwise create a new one. 3209 FoldingSetNodeID ID; 3210 ID.AddInteger(scUMaxExpr); 3211 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3212 ID.AddPointer(Ops[i]); 3213 void *IP = nullptr; 3214 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3215 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3216 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3217 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3218 O, Ops.size()); 3219 UniqueSCEVs.InsertNode(S, IP); 3220 return S; 3221 } 3222 3223 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3224 const SCEV *RHS) { 3225 // ~smax(~x, ~y) == smin(x, y). 3226 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3227 } 3228 3229 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3230 const SCEV *RHS) { 3231 // ~umax(~x, ~y) == umin(x, y) 3232 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3233 } 3234 3235 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3236 // We can bypass creating a target-independent 3237 // constant expression and then folding it back into a ConstantInt. 3238 // This is just a compile-time optimization. 3239 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3240 } 3241 3242 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3243 StructType *STy, 3244 unsigned FieldNo) { 3245 // We can bypass creating a target-independent 3246 // constant expression and then folding it back into a ConstantInt. 3247 // This is just a compile-time optimization. 3248 return getConstant( 3249 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3250 } 3251 3252 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3253 // Don't attempt to do anything other than create a SCEVUnknown object 3254 // here. createSCEV only calls getUnknown after checking for all other 3255 // interesting possibilities, and any other code that calls getUnknown 3256 // is doing so in order to hide a value from SCEV canonicalization. 3257 3258 FoldingSetNodeID ID; 3259 ID.AddInteger(scUnknown); 3260 ID.AddPointer(V); 3261 void *IP = nullptr; 3262 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3263 assert(cast<SCEVUnknown>(S)->getValue() == V && 3264 "Stale SCEVUnknown in uniquing map!"); 3265 return S; 3266 } 3267 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3268 FirstUnknown); 3269 FirstUnknown = cast<SCEVUnknown>(S); 3270 UniqueSCEVs.InsertNode(S, IP); 3271 return S; 3272 } 3273 3274 //===----------------------------------------------------------------------===// 3275 // Basic SCEV Analysis and PHI Idiom Recognition Code 3276 // 3277 3278 /// Test if values of the given type are analyzable within the SCEV 3279 /// framework. This primarily includes integer types, and it can optionally 3280 /// include pointer types if the ScalarEvolution class has access to 3281 /// target-specific information. 3282 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3283 // Integers and pointers are always SCEVable. 3284 return Ty->isIntegerTy() || Ty->isPointerTy(); 3285 } 3286 3287 /// Return the size in bits of the specified type, for which isSCEVable must 3288 /// return true. 3289 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3290 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3291 return getDataLayout().getTypeSizeInBits(Ty); 3292 } 3293 3294 /// Return a type with the same bitwidth as the given type and which represents 3295 /// how SCEV will treat the given type, for which isSCEVable must return 3296 /// true. For pointer types, this is the pointer-sized integer type. 3297 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3298 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3299 3300 if (Ty->isIntegerTy()) 3301 return Ty; 3302 3303 // The only other support type is pointer. 3304 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3305 return getDataLayout().getIntPtrType(Ty); 3306 } 3307 3308 const SCEV *ScalarEvolution::getCouldNotCompute() { 3309 return CouldNotCompute.get(); 3310 } 3311 3312 3313 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3314 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3315 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3316 // is set iff if find such SCEVUnknown. 3317 // 3318 struct FindInvalidSCEVUnknown { 3319 bool FindOne; 3320 FindInvalidSCEVUnknown() { FindOne = false; } 3321 bool follow(const SCEV *S) { 3322 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3323 case scConstant: 3324 return false; 3325 case scUnknown: 3326 if (!cast<SCEVUnknown>(S)->getValue()) 3327 FindOne = true; 3328 return false; 3329 default: 3330 return true; 3331 } 3332 } 3333 bool isDone() const { return FindOne; } 3334 }; 3335 3336 FindInvalidSCEVUnknown F; 3337 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3338 ST.visitAll(S); 3339 3340 return !F.FindOne; 3341 } 3342 3343 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3344 // Helper class working with SCEVTraversal to figure out if a SCEV contains a 3345 // sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set iff 3346 // if such sub scAddRecExpr type SCEV is found. 3347 struct FindAddRecurrence { 3348 bool FoundOne; 3349 FindAddRecurrence() : FoundOne(false) {} 3350 3351 bool follow(const SCEV *S) { 3352 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3353 case scAddRecExpr: 3354 FoundOne = true; 3355 case scConstant: 3356 case scUnknown: 3357 case scCouldNotCompute: 3358 return false; 3359 default: 3360 return true; 3361 } 3362 } 3363 bool isDone() const { return FoundOne; } 3364 }; 3365 3366 HasRecMapType::iterator I = HasRecMap.find(S); 3367 if (I != HasRecMap.end()) 3368 return I->second; 3369 3370 FindAddRecurrence F; 3371 SCEVTraversal<FindAddRecurrence> ST(F); 3372 ST.visitAll(S); 3373 HasRecMap.insert({S, F.FoundOne}); 3374 return F.FoundOne; 3375 } 3376 3377 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3378 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3379 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3380 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3381 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3382 if (!Add) 3383 return {S, nullptr}; 3384 3385 if (Add->getNumOperands() != 2) 3386 return {S, nullptr}; 3387 3388 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3389 if (!ConstOp) 3390 return {S, nullptr}; 3391 3392 return {Add->getOperand(1), ConstOp->getValue()}; 3393 } 3394 3395 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3396 /// by the value and offset from any ValueOffsetPair in the set. 3397 SetVector<ScalarEvolution::ValueOffsetPair> * 3398 ScalarEvolution::getSCEVValues(const SCEV *S) { 3399 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3400 if (SI == ExprValueMap.end()) 3401 return nullptr; 3402 #ifndef NDEBUG 3403 if (VerifySCEVMap) { 3404 // Check there is no dangling Value in the set returned. 3405 for (const auto &VE : SI->second) 3406 assert(ValueExprMap.count(VE.first)); 3407 } 3408 #endif 3409 return &SI->second; 3410 } 3411 3412 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3413 /// cannot be used separately. eraseValueFromMap should be used to remove 3414 /// V from ValueExprMap and ExprValueMap at the same time. 3415 void ScalarEvolution::eraseValueFromMap(Value *V) { 3416 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3417 if (I != ValueExprMap.end()) { 3418 const SCEV *S = I->second; 3419 // Remove {V, 0} from the set of ExprValueMap[S] 3420 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3421 SV->remove({V, nullptr}); 3422 3423 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3424 const SCEV *Stripped; 3425 ConstantInt *Offset; 3426 std::tie(Stripped, Offset) = splitAddExpr(S); 3427 if (Offset != nullptr) { 3428 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3429 SV->remove({V, Offset}); 3430 } 3431 ValueExprMap.erase(V); 3432 } 3433 } 3434 3435 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3436 /// create a new one. 3437 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3438 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3439 3440 const SCEV *S = getExistingSCEV(V); 3441 if (S == nullptr) { 3442 S = createSCEV(V); 3443 // During PHI resolution, it is possible to create two SCEVs for the same 3444 // V, so it is needed to double check whether V->S is inserted into 3445 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3446 std::pair<ValueExprMapType::iterator, bool> Pair = 3447 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3448 if (Pair.second) { 3449 ExprValueMap[S].insert({V, nullptr}); 3450 3451 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3452 // ExprValueMap. 3453 const SCEV *Stripped = S; 3454 ConstantInt *Offset = nullptr; 3455 std::tie(Stripped, Offset) = splitAddExpr(S); 3456 // If stripped is SCEVUnknown, don't bother to save 3457 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3458 // increase the complexity of the expansion code. 3459 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3460 // because it may generate add/sub instead of GEP in SCEV expansion. 3461 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3462 !isa<GetElementPtrInst>(V)) 3463 ExprValueMap[Stripped].insert({V, Offset}); 3464 } 3465 } 3466 return S; 3467 } 3468 3469 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3470 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3471 3472 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3473 if (I != ValueExprMap.end()) { 3474 const SCEV *S = I->second; 3475 if (checkValidity(S)) 3476 return S; 3477 eraseValueFromMap(V); 3478 forgetMemoizedResults(S); 3479 } 3480 return nullptr; 3481 } 3482 3483 /// Return a SCEV corresponding to -V = -1*V 3484 /// 3485 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3486 SCEV::NoWrapFlags Flags) { 3487 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3488 return getConstant( 3489 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3490 3491 Type *Ty = V->getType(); 3492 Ty = getEffectiveSCEVType(Ty); 3493 return getMulExpr( 3494 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3495 } 3496 3497 /// Return a SCEV corresponding to ~V = -1-V 3498 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3499 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3500 return getConstant( 3501 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3502 3503 Type *Ty = V->getType(); 3504 Ty = getEffectiveSCEVType(Ty); 3505 const SCEV *AllOnes = 3506 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3507 return getMinusSCEV(AllOnes, V); 3508 } 3509 3510 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3511 SCEV::NoWrapFlags Flags) { 3512 // Fast path: X - X --> 0. 3513 if (LHS == RHS) 3514 return getZero(LHS->getType()); 3515 3516 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3517 // makes it so that we cannot make much use of NUW. 3518 auto AddFlags = SCEV::FlagAnyWrap; 3519 const bool RHSIsNotMinSigned = 3520 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3521 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3522 // Let M be the minimum representable signed value. Then (-1)*RHS 3523 // signed-wraps if and only if RHS is M. That can happen even for 3524 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3525 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3526 // (-1)*RHS, we need to prove that RHS != M. 3527 // 3528 // If LHS is non-negative and we know that LHS - RHS does not 3529 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3530 // either by proving that RHS > M or that LHS >= 0. 3531 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3532 AddFlags = SCEV::FlagNSW; 3533 } 3534 } 3535 3536 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3537 // RHS is NSW and LHS >= 0. 3538 // 3539 // The difficulty here is that the NSW flag may have been proven 3540 // relative to a loop that is to be found in a recurrence in LHS and 3541 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3542 // larger scope than intended. 3543 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3544 3545 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3546 } 3547 3548 const SCEV * 3549 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3550 Type *SrcTy = V->getType(); 3551 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3552 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3553 "Cannot truncate or zero extend with non-integer arguments!"); 3554 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3555 return V; // No conversion 3556 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3557 return getTruncateExpr(V, Ty); 3558 return getZeroExtendExpr(V, Ty); 3559 } 3560 3561 const SCEV * 3562 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3563 Type *Ty) { 3564 Type *SrcTy = V->getType(); 3565 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3566 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3567 "Cannot truncate or zero extend with non-integer arguments!"); 3568 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3569 return V; // No conversion 3570 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3571 return getTruncateExpr(V, Ty); 3572 return getSignExtendExpr(V, Ty); 3573 } 3574 3575 const SCEV * 3576 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3577 Type *SrcTy = V->getType(); 3578 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3579 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3580 "Cannot noop or zero extend with non-integer arguments!"); 3581 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3582 "getNoopOrZeroExtend cannot truncate!"); 3583 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3584 return V; // No conversion 3585 return getZeroExtendExpr(V, Ty); 3586 } 3587 3588 const SCEV * 3589 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3590 Type *SrcTy = V->getType(); 3591 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3592 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3593 "Cannot noop or sign extend with non-integer arguments!"); 3594 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3595 "getNoopOrSignExtend cannot truncate!"); 3596 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3597 return V; // No conversion 3598 return getSignExtendExpr(V, Ty); 3599 } 3600 3601 const SCEV * 3602 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3603 Type *SrcTy = V->getType(); 3604 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3605 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3606 "Cannot noop or any extend with non-integer arguments!"); 3607 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3608 "getNoopOrAnyExtend cannot truncate!"); 3609 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3610 return V; // No conversion 3611 return getAnyExtendExpr(V, Ty); 3612 } 3613 3614 const SCEV * 3615 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3616 Type *SrcTy = V->getType(); 3617 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3618 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3619 "Cannot truncate or noop with non-integer arguments!"); 3620 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3621 "getTruncateOrNoop cannot extend!"); 3622 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3623 return V; // No conversion 3624 return getTruncateExpr(V, Ty); 3625 } 3626 3627 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3628 const SCEV *RHS) { 3629 const SCEV *PromotedLHS = LHS; 3630 const SCEV *PromotedRHS = RHS; 3631 3632 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3633 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3634 else 3635 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3636 3637 return getUMaxExpr(PromotedLHS, PromotedRHS); 3638 } 3639 3640 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3641 const SCEV *RHS) { 3642 const SCEV *PromotedLHS = LHS; 3643 const SCEV *PromotedRHS = RHS; 3644 3645 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3646 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3647 else 3648 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3649 3650 return getUMinExpr(PromotedLHS, PromotedRHS); 3651 } 3652 3653 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3654 // A pointer operand may evaluate to a nonpointer expression, such as null. 3655 if (!V->getType()->isPointerTy()) 3656 return V; 3657 3658 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3659 return getPointerBase(Cast->getOperand()); 3660 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3661 const SCEV *PtrOp = nullptr; 3662 for (const SCEV *NAryOp : NAry->operands()) { 3663 if (NAryOp->getType()->isPointerTy()) { 3664 // Cannot find the base of an expression with multiple pointer operands. 3665 if (PtrOp) 3666 return V; 3667 PtrOp = NAryOp; 3668 } 3669 } 3670 if (!PtrOp) 3671 return V; 3672 return getPointerBase(PtrOp); 3673 } 3674 return V; 3675 } 3676 3677 /// Push users of the given Instruction onto the given Worklist. 3678 static void 3679 PushDefUseChildren(Instruction *I, 3680 SmallVectorImpl<Instruction *> &Worklist) { 3681 // Push the def-use children onto the Worklist stack. 3682 for (User *U : I->users()) 3683 Worklist.push_back(cast<Instruction>(U)); 3684 } 3685 3686 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3687 SmallVector<Instruction *, 16> Worklist; 3688 PushDefUseChildren(PN, Worklist); 3689 3690 SmallPtrSet<Instruction *, 8> Visited; 3691 Visited.insert(PN); 3692 while (!Worklist.empty()) { 3693 Instruction *I = Worklist.pop_back_val(); 3694 if (!Visited.insert(I).second) 3695 continue; 3696 3697 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3698 if (It != ValueExprMap.end()) { 3699 const SCEV *Old = It->second; 3700 3701 // Short-circuit the def-use traversal if the symbolic name 3702 // ceases to appear in expressions. 3703 if (Old != SymName && !hasOperand(Old, SymName)) 3704 continue; 3705 3706 // SCEVUnknown for a PHI either means that it has an unrecognized 3707 // structure, it's a PHI that's in the progress of being computed 3708 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3709 // additional loop trip count information isn't going to change anything. 3710 // In the second case, createNodeForPHI will perform the necessary 3711 // updates on its own when it gets to that point. In the third, we do 3712 // want to forget the SCEVUnknown. 3713 if (!isa<PHINode>(I) || 3714 !isa<SCEVUnknown>(Old) || 3715 (I != PN && Old == SymName)) { 3716 eraseValueFromMap(It->first); 3717 forgetMemoizedResults(Old); 3718 } 3719 } 3720 3721 PushDefUseChildren(I, Worklist); 3722 } 3723 } 3724 3725 namespace { 3726 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3727 public: 3728 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3729 ScalarEvolution &SE) { 3730 SCEVInitRewriter Rewriter(L, SE); 3731 const SCEV *Result = Rewriter.visit(S); 3732 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3733 } 3734 3735 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3736 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3737 3738 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3739 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3740 Valid = false; 3741 return Expr; 3742 } 3743 3744 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3745 // Only allow AddRecExprs for this loop. 3746 if (Expr->getLoop() == L) 3747 return Expr->getStart(); 3748 Valid = false; 3749 return Expr; 3750 } 3751 3752 bool isValid() { return Valid; } 3753 3754 private: 3755 const Loop *L; 3756 bool Valid; 3757 }; 3758 3759 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3760 public: 3761 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3762 ScalarEvolution &SE) { 3763 SCEVShiftRewriter Rewriter(L, SE); 3764 const SCEV *Result = Rewriter.visit(S); 3765 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3766 } 3767 3768 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3769 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3770 3771 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3772 // Only allow AddRecExprs for this loop. 3773 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3774 Valid = false; 3775 return Expr; 3776 } 3777 3778 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3779 if (Expr->getLoop() == L && Expr->isAffine()) 3780 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3781 Valid = false; 3782 return Expr; 3783 } 3784 bool isValid() { return Valid; } 3785 3786 private: 3787 const Loop *L; 3788 bool Valid; 3789 }; 3790 } // end anonymous namespace 3791 3792 SCEV::NoWrapFlags 3793 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 3794 if (!AR->isAffine()) 3795 return SCEV::FlagAnyWrap; 3796 3797 typedef OverflowingBinaryOperator OBO; 3798 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 3799 3800 if (!AR->hasNoSignedWrap()) { 3801 ConstantRange AddRecRange = getSignedRange(AR); 3802 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 3803 3804 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3805 Instruction::Add, IncRange, OBO::NoSignedWrap); 3806 if (NSWRegion.contains(AddRecRange)) 3807 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 3808 } 3809 3810 if (!AR->hasNoUnsignedWrap()) { 3811 ConstantRange AddRecRange = getUnsignedRange(AR); 3812 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 3813 3814 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3815 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 3816 if (NUWRegion.contains(AddRecRange)) 3817 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 3818 } 3819 3820 return Result; 3821 } 3822 3823 namespace { 3824 /// Represents an abstract binary operation. This may exist as a 3825 /// normal instruction or constant expression, or may have been 3826 /// derived from an expression tree. 3827 struct BinaryOp { 3828 unsigned Opcode; 3829 Value *LHS; 3830 Value *RHS; 3831 bool IsNSW; 3832 bool IsNUW; 3833 3834 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 3835 /// constant expression. 3836 Operator *Op; 3837 3838 explicit BinaryOp(Operator *Op) 3839 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 3840 IsNSW(false), IsNUW(false), Op(Op) { 3841 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 3842 IsNSW = OBO->hasNoSignedWrap(); 3843 IsNUW = OBO->hasNoUnsignedWrap(); 3844 } 3845 } 3846 3847 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 3848 bool IsNUW = false) 3849 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 3850 Op(nullptr) {} 3851 }; 3852 } 3853 3854 3855 /// Try to map \p V into a BinaryOp, and return \c None on failure. 3856 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 3857 auto *Op = dyn_cast<Operator>(V); 3858 if (!Op) 3859 return None; 3860 3861 // Implementation detail: all the cleverness here should happen without 3862 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 3863 // SCEV expressions when possible, and we should not break that. 3864 3865 switch (Op->getOpcode()) { 3866 case Instruction::Add: 3867 case Instruction::Sub: 3868 case Instruction::Mul: 3869 case Instruction::UDiv: 3870 case Instruction::And: 3871 case Instruction::Or: 3872 case Instruction::AShr: 3873 case Instruction::Shl: 3874 return BinaryOp(Op); 3875 3876 case Instruction::Xor: 3877 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 3878 // If the RHS of the xor is a signbit, then this is just an add. 3879 // Instcombine turns add of signbit into xor as a strength reduction step. 3880 if (RHSC->getValue().isSignBit()) 3881 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 3882 return BinaryOp(Op); 3883 3884 case Instruction::LShr: 3885 // Turn logical shift right of a constant into a unsigned divide. 3886 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 3887 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 3888 3889 // If the shift count is not less than the bitwidth, the result of 3890 // the shift is undefined. Don't try to analyze it, because the 3891 // resolution chosen here may differ from the resolution chosen in 3892 // other parts of the compiler. 3893 if (SA->getValue().ult(BitWidth)) { 3894 Constant *X = 3895 ConstantInt::get(SA->getContext(), 3896 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3897 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 3898 } 3899 } 3900 return BinaryOp(Op); 3901 3902 case Instruction::ExtractValue: { 3903 auto *EVI = cast<ExtractValueInst>(Op); 3904 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 3905 break; 3906 3907 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 3908 if (!CI) 3909 break; 3910 3911 if (auto *F = CI->getCalledFunction()) 3912 switch (F->getIntrinsicID()) { 3913 case Intrinsic::sadd_with_overflow: 3914 case Intrinsic::uadd_with_overflow: { 3915 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 3916 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3917 CI->getArgOperand(1)); 3918 3919 // Now that we know that all uses of the arithmetic-result component of 3920 // CI are guarded by the overflow check, we can go ahead and pretend 3921 // that the arithmetic is non-overflowing. 3922 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 3923 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3924 CI->getArgOperand(1), /* IsNSW = */ true, 3925 /* IsNUW = */ false); 3926 else 3927 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 3928 CI->getArgOperand(1), /* IsNSW = */ false, 3929 /* IsNUW*/ true); 3930 } 3931 3932 case Intrinsic::ssub_with_overflow: 3933 case Intrinsic::usub_with_overflow: 3934 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 3935 CI->getArgOperand(1)); 3936 3937 case Intrinsic::smul_with_overflow: 3938 case Intrinsic::umul_with_overflow: 3939 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 3940 CI->getArgOperand(1)); 3941 default: 3942 break; 3943 } 3944 } 3945 3946 default: 3947 break; 3948 } 3949 3950 return None; 3951 } 3952 3953 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3954 const Loop *L = LI.getLoopFor(PN->getParent()); 3955 if (!L || L->getHeader() != PN->getParent()) 3956 return nullptr; 3957 3958 // The loop may have multiple entrances or multiple exits; we can analyze 3959 // this phi as an addrec if it has a unique entry value and a unique 3960 // backedge value. 3961 Value *BEValueV = nullptr, *StartValueV = nullptr; 3962 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3963 Value *V = PN->getIncomingValue(i); 3964 if (L->contains(PN->getIncomingBlock(i))) { 3965 if (!BEValueV) { 3966 BEValueV = V; 3967 } else if (BEValueV != V) { 3968 BEValueV = nullptr; 3969 break; 3970 } 3971 } else if (!StartValueV) { 3972 StartValueV = V; 3973 } else if (StartValueV != V) { 3974 StartValueV = nullptr; 3975 break; 3976 } 3977 } 3978 if (BEValueV && StartValueV) { 3979 // While we are analyzing this PHI node, handle its value symbolically. 3980 const SCEV *SymbolicName = getUnknown(PN); 3981 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3982 "PHI node already processed?"); 3983 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 3984 3985 // Using this symbolic name for the PHI, analyze the value coming around 3986 // the back-edge. 3987 const SCEV *BEValue = getSCEV(BEValueV); 3988 3989 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3990 // has a special value for the first iteration of the loop. 3991 3992 // If the value coming around the backedge is an add with the symbolic 3993 // value we just inserted, then we found a simple induction variable! 3994 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3995 // If there is a single occurrence of the symbolic value, replace it 3996 // with a recurrence. 3997 unsigned FoundIndex = Add->getNumOperands(); 3998 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3999 if (Add->getOperand(i) == SymbolicName) 4000 if (FoundIndex == e) { 4001 FoundIndex = i; 4002 break; 4003 } 4004 4005 if (FoundIndex != Add->getNumOperands()) { 4006 // Create an add with everything but the specified operand. 4007 SmallVector<const SCEV *, 8> Ops; 4008 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4009 if (i != FoundIndex) 4010 Ops.push_back(Add->getOperand(i)); 4011 const SCEV *Accum = getAddExpr(Ops); 4012 4013 // This is not a valid addrec if the step amount is varying each 4014 // loop iteration, but is not itself an addrec in this loop. 4015 if (isLoopInvariant(Accum, L) || 4016 (isa<SCEVAddRecExpr>(Accum) && 4017 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4018 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4019 4020 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4021 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4022 if (BO->IsNUW) 4023 Flags = setFlags(Flags, SCEV::FlagNUW); 4024 if (BO->IsNSW) 4025 Flags = setFlags(Flags, SCEV::FlagNSW); 4026 } 4027 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4028 // If the increment is an inbounds GEP, then we know the address 4029 // space cannot be wrapped around. We cannot make any guarantee 4030 // about signed or unsigned overflow because pointers are 4031 // unsigned but we may have a negative index from the base 4032 // pointer. We can guarantee that no unsigned wrap occurs if the 4033 // indices form a positive value. 4034 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4035 Flags = setFlags(Flags, SCEV::FlagNW); 4036 4037 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4038 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4039 Flags = setFlags(Flags, SCEV::FlagNUW); 4040 } 4041 4042 // We cannot transfer nuw and nsw flags from subtraction 4043 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4044 // for instance. 4045 } 4046 4047 const SCEV *StartVal = getSCEV(StartValueV); 4048 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4049 4050 // Okay, for the entire analysis of this edge we assumed the PHI 4051 // to be symbolic. We now need to go back and purge all of the 4052 // entries for the scalars that use the symbolic expression. 4053 forgetSymbolicName(PN, SymbolicName); 4054 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4055 4056 // We can add Flags to the post-inc expression only if we 4057 // know that it us *undefined behavior* for BEValueV to 4058 // overflow. 4059 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4060 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4061 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4062 4063 return PHISCEV; 4064 } 4065 } 4066 } else { 4067 // Otherwise, this could be a loop like this: 4068 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4069 // In this case, j = {1,+,1} and BEValue is j. 4070 // Because the other in-value of i (0) fits the evolution of BEValue 4071 // i really is an addrec evolution. 4072 // 4073 // We can generalize this saying that i is the shifted value of BEValue 4074 // by one iteration: 4075 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4076 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4077 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 4078 if (Shifted != getCouldNotCompute() && 4079 Start != getCouldNotCompute()) { 4080 const SCEV *StartVal = getSCEV(StartValueV); 4081 if (Start == StartVal) { 4082 // Okay, for the entire analysis of this edge we assumed the PHI 4083 // to be symbolic. We now need to go back and purge all of the 4084 // entries for the scalars that use the symbolic expression. 4085 forgetSymbolicName(PN, SymbolicName); 4086 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4087 return Shifted; 4088 } 4089 } 4090 } 4091 4092 // Remove the temporary PHI node SCEV that has been inserted while intending 4093 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4094 // as it will prevent later (possibly simpler) SCEV expressions to be added 4095 // to the ValueExprMap. 4096 eraseValueFromMap(PN); 4097 } 4098 4099 return nullptr; 4100 } 4101 4102 // Checks if the SCEV S is available at BB. S is considered available at BB 4103 // if S can be materialized at BB without introducing a fault. 4104 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4105 BasicBlock *BB) { 4106 struct CheckAvailable { 4107 bool TraversalDone = false; 4108 bool Available = true; 4109 4110 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4111 BasicBlock *BB = nullptr; 4112 DominatorTree &DT; 4113 4114 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4115 : L(L), BB(BB), DT(DT) {} 4116 4117 bool setUnavailable() { 4118 TraversalDone = true; 4119 Available = false; 4120 return false; 4121 } 4122 4123 bool follow(const SCEV *S) { 4124 switch (S->getSCEVType()) { 4125 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4126 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4127 // These expressions are available if their operand(s) is/are. 4128 return true; 4129 4130 case scAddRecExpr: { 4131 // We allow add recurrences that are on the loop BB is in, or some 4132 // outer loop. This guarantees availability because the value of the 4133 // add recurrence at BB is simply the "current" value of the induction 4134 // variable. We can relax this in the future; for instance an add 4135 // recurrence on a sibling dominating loop is also available at BB. 4136 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 4137 if (L && (ARLoop == L || ARLoop->contains(L))) 4138 return true; 4139 4140 return setUnavailable(); 4141 } 4142 4143 case scUnknown: { 4144 // For SCEVUnknown, we check for simple dominance. 4145 const auto *SU = cast<SCEVUnknown>(S); 4146 Value *V = SU->getValue(); 4147 4148 if (isa<Argument>(V)) 4149 return false; 4150 4151 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 4152 return false; 4153 4154 return setUnavailable(); 4155 } 4156 4157 case scUDivExpr: 4158 case scCouldNotCompute: 4159 // We do not try to smart about these at all. 4160 return setUnavailable(); 4161 } 4162 llvm_unreachable("switch should be fully covered!"); 4163 } 4164 4165 bool isDone() { return TraversalDone; } 4166 }; 4167 4168 CheckAvailable CA(L, BB, DT); 4169 SCEVTraversal<CheckAvailable> ST(CA); 4170 4171 ST.visitAll(S); 4172 return CA.Available; 4173 } 4174 4175 // Try to match a control flow sequence that branches out at BI and merges back 4176 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 4177 // match. 4178 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 4179 Value *&C, Value *&LHS, Value *&RHS) { 4180 C = BI->getCondition(); 4181 4182 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 4183 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 4184 4185 if (!LeftEdge.isSingleEdge()) 4186 return false; 4187 4188 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 4189 4190 Use &LeftUse = Merge->getOperandUse(0); 4191 Use &RightUse = Merge->getOperandUse(1); 4192 4193 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 4194 LHS = LeftUse; 4195 RHS = RightUse; 4196 return true; 4197 } 4198 4199 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4200 LHS = RightUse; 4201 RHS = LeftUse; 4202 return true; 4203 } 4204 4205 return false; 4206 } 4207 4208 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4209 auto IsReachable = 4210 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 4211 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 4212 const Loop *L = LI.getLoopFor(PN->getParent()); 4213 4214 // We don't want to break LCSSA, even in a SCEV expression tree. 4215 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4216 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4217 return nullptr; 4218 4219 // Try to match 4220 // 4221 // br %cond, label %left, label %right 4222 // left: 4223 // br label %merge 4224 // right: 4225 // br label %merge 4226 // merge: 4227 // V = phi [ %x, %left ], [ %y, %right ] 4228 // 4229 // as "select %cond, %x, %y" 4230 4231 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4232 assert(IDom && "At least the entry block should dominate PN"); 4233 4234 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4235 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4236 4237 if (BI && BI->isConditional() && 4238 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4239 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4240 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4241 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4242 } 4243 4244 return nullptr; 4245 } 4246 4247 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4248 if (const SCEV *S = createAddRecFromPHI(PN)) 4249 return S; 4250 4251 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4252 return S; 4253 4254 // If the PHI has a single incoming value, follow that value, unless the 4255 // PHI's incoming blocks are in a different loop, in which case doing so 4256 // risks breaking LCSSA form. Instcombine would normally zap these, but 4257 // it doesn't have DominatorTree information, so it may miss cases. 4258 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 4259 if (LI.replacementPreservesLCSSAForm(PN, V)) 4260 return getSCEV(V); 4261 4262 // If it's not a loop phi, we can't handle it yet. 4263 return getUnknown(PN); 4264 } 4265 4266 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4267 Value *Cond, 4268 Value *TrueVal, 4269 Value *FalseVal) { 4270 // Handle "constant" branch or select. This can occur for instance when a 4271 // loop pass transforms an inner loop and moves on to process the outer loop. 4272 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4273 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4274 4275 // Try to match some simple smax or umax patterns. 4276 auto *ICI = dyn_cast<ICmpInst>(Cond); 4277 if (!ICI) 4278 return getUnknown(I); 4279 4280 Value *LHS = ICI->getOperand(0); 4281 Value *RHS = ICI->getOperand(1); 4282 4283 switch (ICI->getPredicate()) { 4284 case ICmpInst::ICMP_SLT: 4285 case ICmpInst::ICMP_SLE: 4286 std::swap(LHS, RHS); 4287 LLVM_FALLTHROUGH; 4288 case ICmpInst::ICMP_SGT: 4289 case ICmpInst::ICMP_SGE: 4290 // a >s b ? a+x : b+x -> smax(a, b)+x 4291 // a >s b ? b+x : a+x -> smin(a, b)+x 4292 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4293 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4294 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4295 const SCEV *LA = getSCEV(TrueVal); 4296 const SCEV *RA = getSCEV(FalseVal); 4297 const SCEV *LDiff = getMinusSCEV(LA, LS); 4298 const SCEV *RDiff = getMinusSCEV(RA, RS); 4299 if (LDiff == RDiff) 4300 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4301 LDiff = getMinusSCEV(LA, RS); 4302 RDiff = getMinusSCEV(RA, LS); 4303 if (LDiff == RDiff) 4304 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4305 } 4306 break; 4307 case ICmpInst::ICMP_ULT: 4308 case ICmpInst::ICMP_ULE: 4309 std::swap(LHS, RHS); 4310 LLVM_FALLTHROUGH; 4311 case ICmpInst::ICMP_UGT: 4312 case ICmpInst::ICMP_UGE: 4313 // a >u b ? a+x : b+x -> umax(a, b)+x 4314 // a >u b ? b+x : a+x -> umin(a, b)+x 4315 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4316 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4317 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4318 const SCEV *LA = getSCEV(TrueVal); 4319 const SCEV *RA = getSCEV(FalseVal); 4320 const SCEV *LDiff = getMinusSCEV(LA, LS); 4321 const SCEV *RDiff = getMinusSCEV(RA, RS); 4322 if (LDiff == RDiff) 4323 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4324 LDiff = getMinusSCEV(LA, RS); 4325 RDiff = getMinusSCEV(RA, LS); 4326 if (LDiff == RDiff) 4327 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4328 } 4329 break; 4330 case ICmpInst::ICMP_NE: 4331 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4332 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4333 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4334 const SCEV *One = getOne(I->getType()); 4335 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4336 const SCEV *LA = getSCEV(TrueVal); 4337 const SCEV *RA = getSCEV(FalseVal); 4338 const SCEV *LDiff = getMinusSCEV(LA, LS); 4339 const SCEV *RDiff = getMinusSCEV(RA, One); 4340 if (LDiff == RDiff) 4341 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4342 } 4343 break; 4344 case ICmpInst::ICMP_EQ: 4345 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4346 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4347 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4348 const SCEV *One = getOne(I->getType()); 4349 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4350 const SCEV *LA = getSCEV(TrueVal); 4351 const SCEV *RA = getSCEV(FalseVal); 4352 const SCEV *LDiff = getMinusSCEV(LA, One); 4353 const SCEV *RDiff = getMinusSCEV(RA, LS); 4354 if (LDiff == RDiff) 4355 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4356 } 4357 break; 4358 default: 4359 break; 4360 } 4361 4362 return getUnknown(I); 4363 } 4364 4365 /// Expand GEP instructions into add and multiply operations. This allows them 4366 /// to be analyzed by regular SCEV code. 4367 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4368 // Don't attempt to analyze GEPs over unsized objects. 4369 if (!GEP->getSourceElementType()->isSized()) 4370 return getUnknown(GEP); 4371 4372 SmallVector<const SCEV *, 4> IndexExprs; 4373 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4374 IndexExprs.push_back(getSCEV(*Index)); 4375 return getGEPExpr(GEP->getSourceElementType(), 4376 getSCEV(GEP->getPointerOperand()), 4377 IndexExprs, GEP->isInBounds()); 4378 } 4379 4380 uint32_t 4381 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4382 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4383 return C->getAPInt().countTrailingZeros(); 4384 4385 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4386 return std::min(GetMinTrailingZeros(T->getOperand()), 4387 (uint32_t)getTypeSizeInBits(T->getType())); 4388 4389 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4390 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4391 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4392 getTypeSizeInBits(E->getType()) : OpRes; 4393 } 4394 4395 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4396 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4397 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4398 getTypeSizeInBits(E->getType()) : OpRes; 4399 } 4400 4401 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4402 // The result is the min of all operands results. 4403 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4404 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4405 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4406 return MinOpRes; 4407 } 4408 4409 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4410 // The result is the sum of all operands results. 4411 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4412 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4413 for (unsigned i = 1, e = M->getNumOperands(); 4414 SumOpRes != BitWidth && i != e; ++i) 4415 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4416 BitWidth); 4417 return SumOpRes; 4418 } 4419 4420 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4421 // The result is the min of all operands results. 4422 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4423 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4424 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4425 return MinOpRes; 4426 } 4427 4428 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4429 // The result is the min of all operands results. 4430 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4431 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4432 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4433 return MinOpRes; 4434 } 4435 4436 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4437 // The result is the min of all operands results. 4438 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4439 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4440 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4441 return MinOpRes; 4442 } 4443 4444 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4445 // For a SCEVUnknown, ask ValueTracking. 4446 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4447 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4448 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4449 nullptr, &DT); 4450 return Zeros.countTrailingOnes(); 4451 } 4452 4453 // SCEVUDivExpr 4454 return 0; 4455 } 4456 4457 /// Helper method to assign a range to V from metadata present in the IR. 4458 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4459 if (Instruction *I = dyn_cast<Instruction>(V)) 4460 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4461 return getConstantRangeFromMetadata(*MD); 4462 4463 return None; 4464 } 4465 4466 /// Determine the range for a particular SCEV. If SignHint is 4467 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4468 /// with a "cleaner" unsigned (resp. signed) representation. 4469 ConstantRange 4470 ScalarEvolution::getRange(const SCEV *S, 4471 ScalarEvolution::RangeSignHint SignHint) { 4472 DenseMap<const SCEV *, ConstantRange> &Cache = 4473 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4474 : SignedRanges; 4475 4476 // See if we've computed this range already. 4477 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4478 if (I != Cache.end()) 4479 return I->second; 4480 4481 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4482 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4483 4484 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4485 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4486 4487 // If the value has known zeros, the maximum value will have those known zeros 4488 // as well. 4489 uint32_t TZ = GetMinTrailingZeros(S); 4490 if (TZ != 0) { 4491 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4492 ConservativeResult = 4493 ConstantRange(APInt::getMinValue(BitWidth), 4494 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4495 else 4496 ConservativeResult = ConstantRange( 4497 APInt::getSignedMinValue(BitWidth), 4498 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4499 } 4500 4501 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4502 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4503 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4504 X = X.add(getRange(Add->getOperand(i), SignHint)); 4505 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4506 } 4507 4508 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4509 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4510 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4511 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4512 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4513 } 4514 4515 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4516 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4517 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4518 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4519 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4520 } 4521 4522 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4523 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4524 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4525 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4526 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4527 } 4528 4529 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4530 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4531 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4532 return setRange(UDiv, SignHint, 4533 ConservativeResult.intersectWith(X.udiv(Y))); 4534 } 4535 4536 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4537 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4538 return setRange(ZExt, SignHint, 4539 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4540 } 4541 4542 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4543 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4544 return setRange(SExt, SignHint, 4545 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4546 } 4547 4548 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4549 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4550 return setRange(Trunc, SignHint, 4551 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4552 } 4553 4554 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4555 // If there's no unsigned wrap, the value will never be less than its 4556 // initial value. 4557 if (AddRec->hasNoUnsignedWrap()) 4558 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4559 if (!C->getValue()->isZero()) 4560 ConservativeResult = ConservativeResult.intersectWith( 4561 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4562 4563 // If there's no signed wrap, and all the operands have the same sign or 4564 // zero, the value won't ever change sign. 4565 if (AddRec->hasNoSignedWrap()) { 4566 bool AllNonNeg = true; 4567 bool AllNonPos = true; 4568 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4569 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4570 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4571 } 4572 if (AllNonNeg) 4573 ConservativeResult = ConservativeResult.intersectWith( 4574 ConstantRange(APInt(BitWidth, 0), 4575 APInt::getSignedMinValue(BitWidth))); 4576 else if (AllNonPos) 4577 ConservativeResult = ConservativeResult.intersectWith( 4578 ConstantRange(APInt::getSignedMinValue(BitWidth), 4579 APInt(BitWidth, 1))); 4580 } 4581 4582 // TODO: non-affine addrec 4583 if (AddRec->isAffine()) { 4584 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4585 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4586 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4587 auto RangeFromAffine = getRangeForAffineAR( 4588 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4589 BitWidth); 4590 if (!RangeFromAffine.isFullSet()) 4591 ConservativeResult = 4592 ConservativeResult.intersectWith(RangeFromAffine); 4593 4594 auto RangeFromFactoring = getRangeViaFactoring( 4595 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4596 BitWidth); 4597 if (!RangeFromFactoring.isFullSet()) 4598 ConservativeResult = 4599 ConservativeResult.intersectWith(RangeFromFactoring); 4600 } 4601 } 4602 4603 return setRange(AddRec, SignHint, ConservativeResult); 4604 } 4605 4606 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4607 // Check if the IR explicitly contains !range metadata. 4608 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4609 if (MDRange.hasValue()) 4610 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4611 4612 // Split here to avoid paying the compile-time cost of calling both 4613 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4614 // if needed. 4615 const DataLayout &DL = getDataLayout(); 4616 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4617 // For a SCEVUnknown, ask ValueTracking. 4618 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4619 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4620 if (Ones != ~Zeros + 1) 4621 ConservativeResult = 4622 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4623 } else { 4624 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4625 "generalize as needed!"); 4626 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4627 if (NS > 1) 4628 ConservativeResult = ConservativeResult.intersectWith( 4629 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4630 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4631 } 4632 4633 return setRange(U, SignHint, ConservativeResult); 4634 } 4635 4636 return setRange(S, SignHint, ConservativeResult); 4637 } 4638 4639 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 4640 const SCEV *Step, 4641 const SCEV *MaxBECount, 4642 unsigned BitWidth) { 4643 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 4644 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 4645 "Precondition!"); 4646 4647 ConstantRange Result(BitWidth, /* isFullSet = */ true); 4648 4649 // Check for overflow. This must be done with ConstantRange arithmetic 4650 // because we could be called from within the ScalarEvolution overflow 4651 // checking code. 4652 4653 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 4654 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4655 ConstantRange ZExtMaxBECountRange = 4656 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4657 4658 ConstantRange StepSRange = getSignedRange(Step); 4659 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4660 4661 ConstantRange StartURange = getUnsignedRange(Start); 4662 ConstantRange EndURange = 4663 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4664 4665 // Check for unsigned overflow. 4666 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1); 4667 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4668 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4669 ZExtEndURange) { 4670 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4671 EndURange.getUnsignedMin()); 4672 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4673 EndURange.getUnsignedMax()); 4674 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4675 if (!IsFullRange) 4676 Result = 4677 Result.intersectWith(ConstantRange(Min, Max + 1)); 4678 } 4679 4680 ConstantRange StartSRange = getSignedRange(Start); 4681 ConstantRange EndSRange = 4682 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4683 4684 // Check for signed overflow. This must be done with ConstantRange 4685 // arithmetic because we could be called from within the ScalarEvolution 4686 // overflow checking code. 4687 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4688 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4689 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4690 SExtEndSRange) { 4691 APInt Min = 4692 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin()); 4693 APInt Max = 4694 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax()); 4695 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4696 if (!IsFullRange) 4697 Result = 4698 Result.intersectWith(ConstantRange(Min, Max + 1)); 4699 } 4700 4701 return Result; 4702 } 4703 4704 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 4705 const SCEV *Step, 4706 const SCEV *MaxBECount, 4707 unsigned BitWidth) { 4708 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 4709 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 4710 4711 struct SelectPattern { 4712 Value *Condition = nullptr; 4713 APInt TrueValue; 4714 APInt FalseValue; 4715 4716 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 4717 const SCEV *S) { 4718 Optional<unsigned> CastOp; 4719 APInt Offset(BitWidth, 0); 4720 4721 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 4722 "Should be!"); 4723 4724 // Peel off a constant offset: 4725 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 4726 // In the future we could consider being smarter here and handle 4727 // {Start+Step,+,Step} too. 4728 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 4729 return; 4730 4731 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 4732 S = SA->getOperand(1); 4733 } 4734 4735 // Peel off a cast operation 4736 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 4737 CastOp = SCast->getSCEVType(); 4738 S = SCast->getOperand(); 4739 } 4740 4741 using namespace llvm::PatternMatch; 4742 4743 auto *SU = dyn_cast<SCEVUnknown>(S); 4744 const APInt *TrueVal, *FalseVal; 4745 if (!SU || 4746 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 4747 m_APInt(FalseVal)))) { 4748 Condition = nullptr; 4749 return; 4750 } 4751 4752 TrueValue = *TrueVal; 4753 FalseValue = *FalseVal; 4754 4755 // Re-apply the cast we peeled off earlier 4756 if (CastOp.hasValue()) 4757 switch (*CastOp) { 4758 default: 4759 llvm_unreachable("Unknown SCEV cast type!"); 4760 4761 case scTruncate: 4762 TrueValue = TrueValue.trunc(BitWidth); 4763 FalseValue = FalseValue.trunc(BitWidth); 4764 break; 4765 case scZeroExtend: 4766 TrueValue = TrueValue.zext(BitWidth); 4767 FalseValue = FalseValue.zext(BitWidth); 4768 break; 4769 case scSignExtend: 4770 TrueValue = TrueValue.sext(BitWidth); 4771 FalseValue = FalseValue.sext(BitWidth); 4772 break; 4773 } 4774 4775 // Re-apply the constant offset we peeled off earlier 4776 TrueValue += Offset; 4777 FalseValue += Offset; 4778 } 4779 4780 bool isRecognized() { return Condition != nullptr; } 4781 }; 4782 4783 SelectPattern StartPattern(*this, BitWidth, Start); 4784 if (!StartPattern.isRecognized()) 4785 return ConstantRange(BitWidth, /* isFullSet = */ true); 4786 4787 SelectPattern StepPattern(*this, BitWidth, Step); 4788 if (!StepPattern.isRecognized()) 4789 return ConstantRange(BitWidth, /* isFullSet = */ true); 4790 4791 if (StartPattern.Condition != StepPattern.Condition) { 4792 // We don't handle this case today; but we could, by considering four 4793 // possibilities below instead of two. I'm not sure if there are cases where 4794 // that will help over what getRange already does, though. 4795 return ConstantRange(BitWidth, /* isFullSet = */ true); 4796 } 4797 4798 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 4799 // construct arbitrary general SCEV expressions here. This function is called 4800 // from deep in the call stack, and calling getSCEV (on a sext instruction, 4801 // say) can end up caching a suboptimal value. 4802 4803 // FIXME: without the explicit `this` receiver below, MSVC errors out with 4804 // C2352 and C2512 (otherwise it isn't needed). 4805 4806 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 4807 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 4808 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 4809 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 4810 4811 ConstantRange TrueRange = 4812 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 4813 ConstantRange FalseRange = 4814 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 4815 4816 return TrueRange.unionWith(FalseRange); 4817 } 4818 4819 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4820 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4821 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4822 4823 // Return early if there are no flags to propagate to the SCEV. 4824 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4825 if (BinOp->hasNoUnsignedWrap()) 4826 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4827 if (BinOp->hasNoSignedWrap()) 4828 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4829 if (Flags == SCEV::FlagAnyWrap) 4830 return SCEV::FlagAnyWrap; 4831 4832 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 4833 } 4834 4835 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 4836 // Here we check that I is in the header of the innermost loop containing I, 4837 // since we only deal with instructions in the loop header. The actual loop we 4838 // need to check later will come from an add recurrence, but getting that 4839 // requires computing the SCEV of the operands, which can be expensive. This 4840 // check we can do cheaply to rule out some cases early. 4841 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 4842 if (InnermostContainingLoop == nullptr || 4843 InnermostContainingLoop->getHeader() != I->getParent()) 4844 return false; 4845 4846 // Only proceed if we can prove that I does not yield poison. 4847 if (!isKnownNotFullPoison(I)) return false; 4848 4849 // At this point we know that if I is executed, then it does not wrap 4850 // according to at least one of NSW or NUW. If I is not executed, then we do 4851 // not know if the calculation that I represents would wrap. Multiple 4852 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 4853 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4854 // derived from other instructions that map to the same SCEV. We cannot make 4855 // that guarantee for cases where I is not executed. So we need to find the 4856 // loop that I is considered in relation to and prove that I is executed for 4857 // every iteration of that loop. That implies that the value that I 4858 // calculates does not wrap anywhere in the loop, so then we can apply the 4859 // flags to the SCEV. 4860 // 4861 // We check isLoopInvariant to disambiguate in case we are adding recurrences 4862 // from different loops, so that we know which loop to prove that I is 4863 // executed in. 4864 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 4865 // I could be an extractvalue from a call to an overflow intrinsic. 4866 // TODO: We can do better here in some cases. 4867 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 4868 return false; 4869 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 4870 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4871 bool AllOtherOpsLoopInvariant = true; 4872 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 4873 ++OtherOpIndex) { 4874 if (OtherOpIndex != OpIndex) { 4875 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 4876 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 4877 AllOtherOpsLoopInvariant = false; 4878 break; 4879 } 4880 } 4881 } 4882 if (AllOtherOpsLoopInvariant && 4883 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 4884 return true; 4885 } 4886 } 4887 return false; 4888 } 4889 4890 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 4891 // If we know that \c I can never be poison period, then that's enough. 4892 if (isSCEVExprNeverPoison(I)) 4893 return true; 4894 4895 // For an add recurrence specifically, we assume that infinite loops without 4896 // side effects are undefined behavior, and then reason as follows: 4897 // 4898 // If the add recurrence is poison in any iteration, it is poison on all 4899 // future iterations (since incrementing poison yields poison). If the result 4900 // of the add recurrence is fed into the loop latch condition and the loop 4901 // does not contain any throws or exiting blocks other than the latch, we now 4902 // have the ability to "choose" whether the backedge is taken or not (by 4903 // choosing a sufficiently evil value for the poison feeding into the branch) 4904 // for every iteration including and after the one in which \p I first became 4905 // poison. There are two possibilities (let's call the iteration in which \p 4906 // I first became poison as K): 4907 // 4908 // 1. In the set of iterations including and after K, the loop body executes 4909 // no side effects. In this case executing the backege an infinte number 4910 // of times will yield undefined behavior. 4911 // 4912 // 2. In the set of iterations including and after K, the loop body executes 4913 // at least one side effect. In this case, that specific instance of side 4914 // effect is control dependent on poison, which also yields undefined 4915 // behavior. 4916 4917 auto *ExitingBB = L->getExitingBlock(); 4918 auto *LatchBB = L->getLoopLatch(); 4919 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 4920 return false; 4921 4922 SmallPtrSet<const Instruction *, 16> Pushed; 4923 SmallVector<const Instruction *, 8> PoisonStack; 4924 4925 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 4926 // things that are known to be fully poison under that assumption go on the 4927 // PoisonStack. 4928 Pushed.insert(I); 4929 PoisonStack.push_back(I); 4930 4931 bool LatchControlDependentOnPoison = false; 4932 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 4933 const Instruction *Poison = PoisonStack.pop_back_val(); 4934 4935 for (auto *PoisonUser : Poison->users()) { 4936 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 4937 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 4938 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 4939 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 4940 assert(BI->isConditional() && "Only possibility!"); 4941 if (BI->getParent() == LatchBB) { 4942 LatchControlDependentOnPoison = true; 4943 break; 4944 } 4945 } 4946 } 4947 } 4948 4949 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 4950 } 4951 4952 ScalarEvolution::LoopProperties 4953 ScalarEvolution::getLoopProperties(const Loop *L) { 4954 typedef ScalarEvolution::LoopProperties LoopProperties; 4955 4956 auto Itr = LoopPropertiesCache.find(L); 4957 if (Itr == LoopPropertiesCache.end()) { 4958 auto HasSideEffects = [](Instruction *I) { 4959 if (auto *SI = dyn_cast<StoreInst>(I)) 4960 return !SI->isSimple(); 4961 4962 return I->mayHaveSideEffects(); 4963 }; 4964 4965 LoopProperties LP = {/* HasNoAbnormalExits */ true, 4966 /*HasNoSideEffects*/ true}; 4967 4968 for (auto *BB : L->getBlocks()) 4969 for (auto &I : *BB) { 4970 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4971 LP.HasNoAbnormalExits = false; 4972 if (HasSideEffects(&I)) 4973 LP.HasNoSideEffects = false; 4974 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 4975 break; // We're already as pessimistic as we can get. 4976 } 4977 4978 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 4979 assert(InsertPair.second && "We just checked!"); 4980 Itr = InsertPair.first; 4981 } 4982 4983 return Itr->second; 4984 } 4985 4986 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4987 if (!isSCEVable(V->getType())) 4988 return getUnknown(V); 4989 4990 if (Instruction *I = dyn_cast<Instruction>(V)) { 4991 // Don't attempt to analyze instructions in blocks that aren't 4992 // reachable. Such instructions don't matter, and they aren't required 4993 // to obey basic rules for definitions dominating uses which this 4994 // analysis depends on. 4995 if (!DT.isReachableFromEntry(I->getParent())) 4996 return getUnknown(V); 4997 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4998 return getConstant(CI); 4999 else if (isa<ConstantPointerNull>(V)) 5000 return getZero(V->getType()); 5001 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5002 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5003 else if (!isa<ConstantExpr>(V)) 5004 return getUnknown(V); 5005 5006 Operator *U = cast<Operator>(V); 5007 if (auto BO = MatchBinaryOp(U, DT)) { 5008 switch (BO->Opcode) { 5009 case Instruction::Add: { 5010 // The simple thing to do would be to just call getSCEV on both operands 5011 // and call getAddExpr with the result. However if we're looking at a 5012 // bunch of things all added together, this can be quite inefficient, 5013 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5014 // Instead, gather up all the operands and make a single getAddExpr call. 5015 // LLVM IR canonical form means we need only traverse the left operands. 5016 SmallVector<const SCEV *, 4> AddOps; 5017 do { 5018 if (BO->Op) { 5019 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5020 AddOps.push_back(OpSCEV); 5021 break; 5022 } 5023 5024 // If a NUW or NSW flag can be applied to the SCEV for this 5025 // addition, then compute the SCEV for this addition by itself 5026 // with a separate call to getAddExpr. We need to do that 5027 // instead of pushing the operands of the addition onto AddOps, 5028 // since the flags are only known to apply to this particular 5029 // addition - they may not apply to other additions that can be 5030 // formed with operands from AddOps. 5031 const SCEV *RHS = getSCEV(BO->RHS); 5032 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5033 if (Flags != SCEV::FlagAnyWrap) { 5034 const SCEV *LHS = getSCEV(BO->LHS); 5035 if (BO->Opcode == Instruction::Sub) 5036 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 5037 else 5038 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 5039 break; 5040 } 5041 } 5042 5043 if (BO->Opcode == Instruction::Sub) 5044 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 5045 else 5046 AddOps.push_back(getSCEV(BO->RHS)); 5047 5048 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5049 if (!NewBO || (NewBO->Opcode != Instruction::Add && 5050 NewBO->Opcode != Instruction::Sub)) { 5051 AddOps.push_back(getSCEV(BO->LHS)); 5052 break; 5053 } 5054 BO = NewBO; 5055 } while (true); 5056 5057 return getAddExpr(AddOps); 5058 } 5059 5060 case Instruction::Mul: { 5061 SmallVector<const SCEV *, 4> MulOps; 5062 do { 5063 if (BO->Op) { 5064 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5065 MulOps.push_back(OpSCEV); 5066 break; 5067 } 5068 5069 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5070 if (Flags != SCEV::FlagAnyWrap) { 5071 MulOps.push_back( 5072 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 5073 break; 5074 } 5075 } 5076 5077 MulOps.push_back(getSCEV(BO->RHS)); 5078 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5079 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 5080 MulOps.push_back(getSCEV(BO->LHS)); 5081 break; 5082 } 5083 BO = NewBO; 5084 } while (true); 5085 5086 return getMulExpr(MulOps); 5087 } 5088 case Instruction::UDiv: 5089 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 5090 case Instruction::Sub: { 5091 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5092 if (BO->Op) 5093 Flags = getNoWrapFlagsFromUB(BO->Op); 5094 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 5095 } 5096 case Instruction::And: 5097 // For an expression like x&255 that merely masks off the high bits, 5098 // use zext(trunc(x)) as the SCEV expression. 5099 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5100 if (CI->isNullValue()) 5101 return getSCEV(BO->RHS); 5102 if (CI->isAllOnesValue()) 5103 return getSCEV(BO->LHS); 5104 const APInt &A = CI->getValue(); 5105 5106 // Instcombine's ShrinkDemandedConstant may strip bits out of 5107 // constants, obscuring what would otherwise be a low-bits mask. 5108 // Use computeKnownBits to compute what ShrinkDemandedConstant 5109 // knew about to reconstruct a low-bits mask value. 5110 unsigned LZ = A.countLeadingZeros(); 5111 unsigned TZ = A.countTrailingZeros(); 5112 unsigned BitWidth = A.getBitWidth(); 5113 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 5114 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(), 5115 0, &AC, nullptr, &DT); 5116 5117 APInt EffectiveMask = 5118 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 5119 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 5120 const SCEV *MulCount = getConstant(ConstantInt::get( 5121 getContext(), APInt::getOneBitSet(BitWidth, TZ))); 5122 return getMulExpr( 5123 getZeroExtendExpr( 5124 getTruncateExpr( 5125 getUDivExactExpr(getSCEV(BO->LHS), MulCount), 5126 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 5127 BO->LHS->getType()), 5128 MulCount); 5129 } 5130 } 5131 break; 5132 5133 case Instruction::Or: 5134 // If the RHS of the Or is a constant, we may have something like: 5135 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 5136 // optimizations will transparently handle this case. 5137 // 5138 // In order for this transformation to be safe, the LHS must be of the 5139 // form X*(2^n) and the Or constant must be less than 2^n. 5140 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5141 const SCEV *LHS = getSCEV(BO->LHS); 5142 const APInt &CIVal = CI->getValue(); 5143 if (GetMinTrailingZeros(LHS) >= 5144 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 5145 // Build a plain add SCEV. 5146 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 5147 // If the LHS of the add was an addrec and it has no-wrap flags, 5148 // transfer the no-wrap flags, since an or won't introduce a wrap. 5149 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 5150 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 5151 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 5152 OldAR->getNoWrapFlags()); 5153 } 5154 return S; 5155 } 5156 } 5157 break; 5158 5159 case Instruction::Xor: 5160 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5161 // If the RHS of xor is -1, then this is a not operation. 5162 if (CI->isAllOnesValue()) 5163 return getNotSCEV(getSCEV(BO->LHS)); 5164 5165 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 5166 // This is a variant of the check for xor with -1, and it handles 5167 // the case where instcombine has trimmed non-demanded bits out 5168 // of an xor with -1. 5169 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 5170 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 5171 if (LBO->getOpcode() == Instruction::And && 5172 LCI->getValue() == CI->getValue()) 5173 if (const SCEVZeroExtendExpr *Z = 5174 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 5175 Type *UTy = BO->LHS->getType(); 5176 const SCEV *Z0 = Z->getOperand(); 5177 Type *Z0Ty = Z0->getType(); 5178 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 5179 5180 // If C is a low-bits mask, the zero extend is serving to 5181 // mask off the high bits. Complement the operand and 5182 // re-apply the zext. 5183 if (APIntOps::isMask(Z0TySize, CI->getValue())) 5184 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 5185 5186 // If C is a single bit, it may be in the sign-bit position 5187 // before the zero-extend. In this case, represent the xor 5188 // using an add, which is equivalent, and re-apply the zext. 5189 APInt Trunc = CI->getValue().trunc(Z0TySize); 5190 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 5191 Trunc.isSignBit()) 5192 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 5193 UTy); 5194 } 5195 } 5196 break; 5197 5198 case Instruction::Shl: 5199 // Turn shift left of a constant amount into a multiply. 5200 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 5201 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 5202 5203 // If the shift count is not less than the bitwidth, the result of 5204 // the shift is undefined. Don't try to analyze it, because the 5205 // resolution chosen here may differ from the resolution chosen in 5206 // other parts of the compiler. 5207 if (SA->getValue().uge(BitWidth)) 5208 break; 5209 5210 // It is currently not resolved how to interpret NSW for left 5211 // shift by BitWidth - 1, so we avoid applying flags in that 5212 // case. Remove this check (or this comment) once the situation 5213 // is resolved. See 5214 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 5215 // and http://reviews.llvm.org/D8890 . 5216 auto Flags = SCEV::FlagAnyWrap; 5217 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 5218 Flags = getNoWrapFlagsFromUB(BO->Op); 5219 5220 Constant *X = ConstantInt::get(getContext(), 5221 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5222 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 5223 } 5224 break; 5225 5226 case Instruction::AShr: 5227 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 5228 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) 5229 if (Operator *L = dyn_cast<Operator>(BO->LHS)) 5230 if (L->getOpcode() == Instruction::Shl && 5231 L->getOperand(1) == BO->RHS) { 5232 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType()); 5233 5234 // If the shift count is not less than the bitwidth, the result of 5235 // the shift is undefined. Don't try to analyze it, because the 5236 // resolution chosen here may differ from the resolution chosen in 5237 // other parts of the compiler. 5238 if (CI->getValue().uge(BitWidth)) 5239 break; 5240 5241 uint64_t Amt = BitWidth - CI->getZExtValue(); 5242 if (Amt == BitWidth) 5243 return getSCEV(L->getOperand(0)); // shift by zero --> noop 5244 return getSignExtendExpr( 5245 getTruncateExpr(getSCEV(L->getOperand(0)), 5246 IntegerType::get(getContext(), Amt)), 5247 BO->LHS->getType()); 5248 } 5249 break; 5250 } 5251 } 5252 5253 switch (U->getOpcode()) { 5254 case Instruction::Trunc: 5255 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 5256 5257 case Instruction::ZExt: 5258 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5259 5260 case Instruction::SExt: 5261 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5262 5263 case Instruction::BitCast: 5264 // BitCasts are no-op casts so we just eliminate the cast. 5265 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 5266 return getSCEV(U->getOperand(0)); 5267 break; 5268 5269 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 5270 // lead to pointer expressions which cannot safely be expanded to GEPs, 5271 // because ScalarEvolution doesn't respect the GEP aliasing rules when 5272 // simplifying integer expressions. 5273 5274 case Instruction::GetElementPtr: 5275 return createNodeForGEP(cast<GEPOperator>(U)); 5276 5277 case Instruction::PHI: 5278 return createNodeForPHI(cast<PHINode>(U)); 5279 5280 case Instruction::Select: 5281 // U can also be a select constant expr, which let fall through. Since 5282 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 5283 // constant expressions cannot have instructions as operands, we'd have 5284 // returned getUnknown for a select constant expressions anyway. 5285 if (isa<Instruction>(U)) 5286 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 5287 U->getOperand(1), U->getOperand(2)); 5288 break; 5289 5290 case Instruction::Call: 5291 case Instruction::Invoke: 5292 if (Value *RV = CallSite(U).getReturnedArgOperand()) 5293 return getSCEV(RV); 5294 break; 5295 } 5296 5297 return getUnknown(V); 5298 } 5299 5300 5301 5302 //===----------------------------------------------------------------------===// 5303 // Iteration Count Computation Code 5304 // 5305 5306 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 5307 if (!ExitCount) 5308 return 0; 5309 5310 ConstantInt *ExitConst = ExitCount->getValue(); 5311 5312 // Guard against huge trip counts. 5313 if (ExitConst->getValue().getActiveBits() > 32) 5314 return 0; 5315 5316 // In case of integer overflow, this returns 0, which is correct. 5317 return ((unsigned)ExitConst->getZExtValue()) + 1; 5318 } 5319 5320 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 5321 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5322 return getSmallConstantTripCount(L, ExitingBB); 5323 5324 // No trip count information for multiple exits. 5325 return 0; 5326 } 5327 5328 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 5329 BasicBlock *ExitingBlock) { 5330 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5331 assert(L->isLoopExiting(ExitingBlock) && 5332 "Exiting block must actually branch out of the loop!"); 5333 const SCEVConstant *ExitCount = 5334 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 5335 return getConstantTripCount(ExitCount); 5336 } 5337 5338 unsigned ScalarEvolution::getSmallConstantMaxTripCount(Loop *L) { 5339 const auto *MaxExitCount = 5340 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 5341 return getConstantTripCount(MaxExitCount); 5342 } 5343 5344 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 5345 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5346 return getSmallConstantTripMultiple(L, ExitingBB); 5347 5348 // No trip multiple information for multiple exits. 5349 return 0; 5350 } 5351 5352 /// Returns the largest constant divisor of the trip count of this loop as a 5353 /// normal unsigned value, if possible. This means that the actual trip count is 5354 /// always a multiple of the returned value (don't forget the trip count could 5355 /// very well be zero as well!). 5356 /// 5357 /// Returns 1 if the trip count is unknown or not guaranteed to be the 5358 /// multiple of a constant (which is also the case if the trip count is simply 5359 /// constant, use getSmallConstantTripCount for that case), Will also return 1 5360 /// if the trip count is very large (>= 2^32). 5361 /// 5362 /// As explained in the comments for getSmallConstantTripCount, this assumes 5363 /// that control exits the loop via ExitingBlock. 5364 unsigned 5365 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 5366 BasicBlock *ExitingBlock) { 5367 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5368 assert(L->isLoopExiting(ExitingBlock) && 5369 "Exiting block must actually branch out of the loop!"); 5370 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 5371 if (ExitCount == getCouldNotCompute()) 5372 return 1; 5373 5374 // Get the trip count from the BE count by adding 1. 5375 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 5376 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 5377 // to factor simple cases. 5378 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 5379 TCMul = Mul->getOperand(0); 5380 5381 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 5382 if (!MulC) 5383 return 1; 5384 5385 ConstantInt *Result = MulC->getValue(); 5386 5387 // Guard against huge trip counts (this requires checking 5388 // for zero to handle the case where the trip count == -1 and the 5389 // addition wraps). 5390 if (!Result || Result->getValue().getActiveBits() > 32 || 5391 Result->getValue().getActiveBits() == 0) 5392 return 1; 5393 5394 return (unsigned)Result->getZExtValue(); 5395 } 5396 5397 /// Get the expression for the number of loop iterations for which this loop is 5398 /// guaranteed not to exit via ExitingBlock. Otherwise return 5399 /// SCEVCouldNotCompute. 5400 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 5401 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 5402 } 5403 5404 const SCEV * 5405 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 5406 SCEVUnionPredicate &Preds) { 5407 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds); 5408 } 5409 5410 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 5411 return getBackedgeTakenInfo(L).getExact(this); 5412 } 5413 5414 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 5415 /// known never to be less than the actual backedge taken count. 5416 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 5417 return getBackedgeTakenInfo(L).getMax(this); 5418 } 5419 5420 /// Push PHI nodes in the header of the given loop onto the given Worklist. 5421 static void 5422 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5423 BasicBlock *Header = L->getHeader(); 5424 5425 // Push all Loop-header PHIs onto the Worklist stack. 5426 for (BasicBlock::iterator I = Header->begin(); 5427 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5428 Worklist.push_back(PN); 5429 } 5430 5431 const ScalarEvolution::BackedgeTakenInfo & 5432 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 5433 auto &BTI = getBackedgeTakenInfo(L); 5434 if (BTI.hasFullInfo()) 5435 return BTI; 5436 5437 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5438 5439 if (!Pair.second) 5440 return Pair.first->second; 5441 5442 BackedgeTakenInfo Result = 5443 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 5444 5445 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 5446 } 5447 5448 const ScalarEvolution::BackedgeTakenInfo & 5449 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5450 // Initially insert an invalid entry for this loop. If the insertion 5451 // succeeds, proceed to actually compute a backedge-taken count and 5452 // update the value. The temporary CouldNotCompute value tells SCEV 5453 // code elsewhere that it shouldn't attempt to request a new 5454 // backedge-taken count, which could result in infinite recursion. 5455 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5456 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5457 if (!Pair.second) 5458 return Pair.first->second; 5459 5460 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5461 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5462 // must be cleared in this scope. 5463 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5464 5465 if (Result.getExact(this) != getCouldNotCompute()) { 5466 assert(isLoopInvariant(Result.getExact(this), L) && 5467 isLoopInvariant(Result.getMax(this), L) && 5468 "Computed backedge-taken count isn't loop invariant for loop!"); 5469 ++NumTripCountsComputed; 5470 } 5471 else if (Result.getMax(this) == getCouldNotCompute() && 5472 isa<PHINode>(L->getHeader()->begin())) { 5473 // Only count loops that have phi nodes as not being computable. 5474 ++NumTripCountsNotComputed; 5475 } 5476 5477 // Now that we know more about the trip count for this loop, forget any 5478 // existing SCEV values for PHI nodes in this loop since they are only 5479 // conservative estimates made without the benefit of trip count 5480 // information. This is similar to the code in forgetLoop, except that 5481 // it handles SCEVUnknown PHI nodes specially. 5482 if (Result.hasAnyInfo()) { 5483 SmallVector<Instruction *, 16> Worklist; 5484 PushLoopPHIs(L, Worklist); 5485 5486 SmallPtrSet<Instruction *, 8> Visited; 5487 while (!Worklist.empty()) { 5488 Instruction *I = Worklist.pop_back_val(); 5489 if (!Visited.insert(I).second) 5490 continue; 5491 5492 ValueExprMapType::iterator It = 5493 ValueExprMap.find_as(static_cast<Value *>(I)); 5494 if (It != ValueExprMap.end()) { 5495 const SCEV *Old = It->second; 5496 5497 // SCEVUnknown for a PHI either means that it has an unrecognized 5498 // structure, or it's a PHI that's in the progress of being computed 5499 // by createNodeForPHI. In the former case, additional loop trip 5500 // count information isn't going to change anything. In the later 5501 // case, createNodeForPHI will perform the necessary updates on its 5502 // own when it gets to that point. 5503 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5504 eraseValueFromMap(It->first); 5505 forgetMemoizedResults(Old); 5506 } 5507 if (PHINode *PN = dyn_cast<PHINode>(I)) 5508 ConstantEvolutionLoopExitValue.erase(PN); 5509 } 5510 5511 PushDefUseChildren(I, Worklist); 5512 } 5513 } 5514 5515 // Re-lookup the insert position, since the call to 5516 // computeBackedgeTakenCount above could result in a 5517 // recusive call to getBackedgeTakenInfo (on a different 5518 // loop), which would invalidate the iterator computed 5519 // earlier. 5520 return BackedgeTakenCounts.find(L)->second = std::move(Result); 5521 } 5522 5523 void ScalarEvolution::forgetLoop(const Loop *L) { 5524 // Drop any stored trip count value. 5525 auto RemoveLoopFromBackedgeMap = 5526 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 5527 auto BTCPos = Map.find(L); 5528 if (BTCPos != Map.end()) { 5529 BTCPos->second.clear(); 5530 Map.erase(BTCPos); 5531 } 5532 }; 5533 5534 RemoveLoopFromBackedgeMap(BackedgeTakenCounts); 5535 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts); 5536 5537 // Drop information about expressions based on loop-header PHIs. 5538 SmallVector<Instruction *, 16> Worklist; 5539 PushLoopPHIs(L, Worklist); 5540 5541 SmallPtrSet<Instruction *, 8> Visited; 5542 while (!Worklist.empty()) { 5543 Instruction *I = Worklist.pop_back_val(); 5544 if (!Visited.insert(I).second) 5545 continue; 5546 5547 ValueExprMapType::iterator It = 5548 ValueExprMap.find_as(static_cast<Value *>(I)); 5549 if (It != ValueExprMap.end()) { 5550 eraseValueFromMap(It->first); 5551 forgetMemoizedResults(It->second); 5552 if (PHINode *PN = dyn_cast<PHINode>(I)) 5553 ConstantEvolutionLoopExitValue.erase(PN); 5554 } 5555 5556 PushDefUseChildren(I, Worklist); 5557 } 5558 5559 // Forget all contained loops too, to avoid dangling entries in the 5560 // ValuesAtScopes map. 5561 for (Loop *I : *L) 5562 forgetLoop(I); 5563 5564 LoopPropertiesCache.erase(L); 5565 } 5566 5567 void ScalarEvolution::forgetValue(Value *V) { 5568 Instruction *I = dyn_cast<Instruction>(V); 5569 if (!I) return; 5570 5571 // Drop information about expressions based on loop-header PHIs. 5572 SmallVector<Instruction *, 16> Worklist; 5573 Worklist.push_back(I); 5574 5575 SmallPtrSet<Instruction *, 8> Visited; 5576 while (!Worklist.empty()) { 5577 I = Worklist.pop_back_val(); 5578 if (!Visited.insert(I).second) 5579 continue; 5580 5581 ValueExprMapType::iterator It = 5582 ValueExprMap.find_as(static_cast<Value *>(I)); 5583 if (It != ValueExprMap.end()) { 5584 eraseValueFromMap(It->first); 5585 forgetMemoizedResults(It->second); 5586 if (PHINode *PN = dyn_cast<PHINode>(I)) 5587 ConstantEvolutionLoopExitValue.erase(PN); 5588 } 5589 5590 PushDefUseChildren(I, Worklist); 5591 } 5592 } 5593 5594 /// Get the exact loop backedge taken count considering all loop exits. A 5595 /// computable result can only be returned for loops with a single exit. 5596 /// Returning the minimum taken count among all exits is incorrect because one 5597 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that 5598 /// the limit of each loop test is never skipped. This is a valid assumption as 5599 /// long as the loop exits via that test. For precise results, it is the 5600 /// caller's responsibility to specify the relevant loop exit using 5601 /// getExact(ExitingBlock, SE). 5602 const SCEV * 5603 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE, 5604 SCEVUnionPredicate *Preds) const { 5605 // If any exits were not computable, the loop is not computable. 5606 if (!isComplete() || ExitNotTaken.empty()) 5607 return SE->getCouldNotCompute(); 5608 5609 const SCEV *BECount = nullptr; 5610 for (auto &ENT : ExitNotTaken) { 5611 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5612 5613 if (!BECount) 5614 BECount = ENT.ExactNotTaken; 5615 else if (BECount != ENT.ExactNotTaken) 5616 return SE->getCouldNotCompute(); 5617 if (Preds && !ENT.hasAlwaysTruePredicate()) 5618 Preds->add(ENT.Predicate.get()); 5619 5620 assert((Preds || ENT.hasAlwaysTruePredicate()) && 5621 "Predicate should be always true!"); 5622 } 5623 5624 assert(BECount && "Invalid not taken count for loop exit"); 5625 return BECount; 5626 } 5627 5628 /// Get the exact not taken count for this loop exit. 5629 const SCEV * 5630 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5631 ScalarEvolution *SE) const { 5632 for (auto &ENT : ExitNotTaken) 5633 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 5634 return ENT.ExactNotTaken; 5635 5636 return SE->getCouldNotCompute(); 5637 } 5638 5639 /// getMax - Get the max backedge taken count for the loop. 5640 const SCEV * 5641 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5642 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5643 return !ENT.hasAlwaysTruePredicate(); 5644 }; 5645 5646 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 5647 return SE->getCouldNotCompute(); 5648 5649 return getMax(); 5650 } 5651 5652 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5653 ScalarEvolution *SE) const { 5654 if (getMax() && getMax() != SE->getCouldNotCompute() && 5655 SE->hasOperand(getMax(), S)) 5656 return true; 5657 5658 for (auto &ENT : ExitNotTaken) 5659 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 5660 SE->hasOperand(ENT.ExactNotTaken, S)) 5661 return true; 5662 5663 return false; 5664 } 5665 5666 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5667 /// computable exit into a persistent ExitNotTakenInfo array. 5668 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5669 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 5670 &&ExitCounts, 5671 bool Complete, const SCEV *MaxCount) 5672 : MaxAndComplete(MaxCount, Complete) { 5673 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 5674 ExitNotTaken.reserve(ExitCounts.size()); 5675 std::transform( 5676 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 5677 [&](const EdgeExitInfo &EEI) { 5678 BasicBlock *ExitBB = EEI.first; 5679 const ExitLimit &EL = EEI.second; 5680 if (EL.Predicates.empty()) 5681 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 5682 5683 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 5684 for (auto *Pred : EL.Predicates) 5685 Predicate->add(Pred); 5686 5687 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 5688 }); 5689 } 5690 5691 /// Invalidate this result and free the ExitNotTakenInfo array. 5692 void ScalarEvolution::BackedgeTakenInfo::clear() { 5693 ExitNotTaken.clear(); 5694 } 5695 5696 /// Compute the number of times the backedge of the specified loop will execute. 5697 ScalarEvolution::BackedgeTakenInfo 5698 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 5699 bool AllowPredicates) { 5700 SmallVector<BasicBlock *, 8> ExitingBlocks; 5701 L->getExitingBlocks(ExitingBlocks); 5702 5703 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 5704 5705 SmallVector<EdgeExitInfo, 4> ExitCounts; 5706 bool CouldComputeBECount = true; 5707 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5708 const SCEV *MustExitMaxBECount = nullptr; 5709 const SCEV *MayExitMaxBECount = nullptr; 5710 5711 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5712 // and compute maxBECount. 5713 // Do a union of all the predicates here. 5714 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5715 BasicBlock *ExitBB = ExitingBlocks[i]; 5716 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 5717 5718 assert((AllowPredicates || EL.Predicates.empty()) && 5719 "Predicated exit limit when predicates are not allowed!"); 5720 5721 // 1. For each exit that can be computed, add an entry to ExitCounts. 5722 // CouldComputeBECount is true only if all exits can be computed. 5723 if (EL.ExactNotTaken == getCouldNotCompute()) 5724 // We couldn't compute an exact value for this exit, so 5725 // we won't be able to compute an exact value for the loop. 5726 CouldComputeBECount = false; 5727 else 5728 ExitCounts.emplace_back(ExitBB, EL); 5729 5730 // 2. Derive the loop's MaxBECount from each exit's max number of 5731 // non-exiting iterations. Partition the loop exits into two kinds: 5732 // LoopMustExits and LoopMayExits. 5733 // 5734 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5735 // is a LoopMayExit. If any computable LoopMustExit is found, then 5736 // MaxBECount is the minimum EL.MaxNotTaken of computable 5737 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 5738 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 5739 // computable EL.MaxNotTaken. 5740 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 5741 DT.dominates(ExitBB, Latch)) { 5742 if (!MustExitMaxBECount) 5743 MustExitMaxBECount = EL.MaxNotTaken; 5744 else { 5745 MustExitMaxBECount = 5746 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 5747 } 5748 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5749 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 5750 MayExitMaxBECount = EL.MaxNotTaken; 5751 else { 5752 MayExitMaxBECount = 5753 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 5754 } 5755 } 5756 } 5757 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5758 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5759 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 5760 MaxBECount); 5761 } 5762 5763 ScalarEvolution::ExitLimit 5764 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 5765 bool AllowPredicates) { 5766 5767 // Okay, we've chosen an exiting block. See what condition causes us to exit 5768 // at this block and remember the exit block and whether all other targets 5769 // lead to the loop header. 5770 bool MustExecuteLoopHeader = true; 5771 BasicBlock *Exit = nullptr; 5772 for (auto *SBB : successors(ExitingBlock)) 5773 if (!L->contains(SBB)) { 5774 if (Exit) // Multiple exit successors. 5775 return getCouldNotCompute(); 5776 Exit = SBB; 5777 } else if (SBB != L->getHeader()) { 5778 MustExecuteLoopHeader = false; 5779 } 5780 5781 // At this point, we know we have a conditional branch that determines whether 5782 // the loop is exited. However, we don't know if the branch is executed each 5783 // time through the loop. If not, then the execution count of the branch will 5784 // not be equal to the trip count of the loop. 5785 // 5786 // Currently we check for this by checking to see if the Exit branch goes to 5787 // the loop header. If so, we know it will always execute the same number of 5788 // times as the loop. We also handle the case where the exit block *is* the 5789 // loop header. This is common for un-rotated loops. 5790 // 5791 // If both of those tests fail, walk up the unique predecessor chain to the 5792 // header, stopping if there is an edge that doesn't exit the loop. If the 5793 // header is reached, the execution count of the branch will be equal to the 5794 // trip count of the loop. 5795 // 5796 // More extensive analysis could be done to handle more cases here. 5797 // 5798 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5799 // The simple checks failed, try climbing the unique predecessor chain 5800 // up to the header. 5801 bool Ok = false; 5802 for (BasicBlock *BB = ExitingBlock; BB; ) { 5803 BasicBlock *Pred = BB->getUniquePredecessor(); 5804 if (!Pred) 5805 return getCouldNotCompute(); 5806 TerminatorInst *PredTerm = Pred->getTerminator(); 5807 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5808 if (PredSucc == BB) 5809 continue; 5810 // If the predecessor has a successor that isn't BB and isn't 5811 // outside the loop, assume the worst. 5812 if (L->contains(PredSucc)) 5813 return getCouldNotCompute(); 5814 } 5815 if (Pred == L->getHeader()) { 5816 Ok = true; 5817 break; 5818 } 5819 BB = Pred; 5820 } 5821 if (!Ok) 5822 return getCouldNotCompute(); 5823 } 5824 5825 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5826 TerminatorInst *Term = ExitingBlock->getTerminator(); 5827 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5828 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5829 // Proceed to the next level to examine the exit condition expression. 5830 return computeExitLimitFromCond( 5831 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1), 5832 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 5833 } 5834 5835 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5836 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5837 /*ControlsExit=*/IsOnlyExit); 5838 5839 return getCouldNotCompute(); 5840 } 5841 5842 ScalarEvolution::ExitLimit 5843 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5844 Value *ExitCond, 5845 BasicBlock *TBB, 5846 BasicBlock *FBB, 5847 bool ControlsExit, 5848 bool AllowPredicates) { 5849 // Check if the controlling expression for this loop is an And or Or. 5850 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5851 if (BO->getOpcode() == Instruction::And) { 5852 // Recurse on the operands of the and. 5853 bool EitherMayExit = L->contains(TBB); 5854 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5855 ControlsExit && !EitherMayExit, 5856 AllowPredicates); 5857 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5858 ControlsExit && !EitherMayExit, 5859 AllowPredicates); 5860 const SCEV *BECount = getCouldNotCompute(); 5861 const SCEV *MaxBECount = getCouldNotCompute(); 5862 if (EitherMayExit) { 5863 // Both conditions must be true for the loop to continue executing. 5864 // Choose the less conservative count. 5865 if (EL0.ExactNotTaken == getCouldNotCompute() || 5866 EL1.ExactNotTaken == getCouldNotCompute()) 5867 BECount = getCouldNotCompute(); 5868 else 5869 BECount = 5870 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 5871 if (EL0.MaxNotTaken == getCouldNotCompute()) 5872 MaxBECount = EL1.MaxNotTaken; 5873 else if (EL1.MaxNotTaken == getCouldNotCompute()) 5874 MaxBECount = EL0.MaxNotTaken; 5875 else 5876 MaxBECount = 5877 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 5878 } else { 5879 // Both conditions must be true at the same time for the loop to exit. 5880 // For now, be conservative. 5881 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5882 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 5883 MaxBECount = EL0.MaxNotTaken; 5884 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 5885 BECount = EL0.ExactNotTaken; 5886 } 5887 5888 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 5889 // to be more aggressive when computing BECount than when computing 5890 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 5891 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 5892 // to not. 5893 if (isa<SCEVCouldNotCompute>(MaxBECount) && 5894 !isa<SCEVCouldNotCompute>(BECount)) 5895 MaxBECount = BECount; 5896 5897 return ExitLimit(BECount, MaxBECount, {&EL0.Predicates, &EL1.Predicates}); 5898 } 5899 if (BO->getOpcode() == Instruction::Or) { 5900 // Recurse on the operands of the or. 5901 bool EitherMayExit = L->contains(FBB); 5902 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5903 ControlsExit && !EitherMayExit, 5904 AllowPredicates); 5905 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5906 ControlsExit && !EitherMayExit, 5907 AllowPredicates); 5908 const SCEV *BECount = getCouldNotCompute(); 5909 const SCEV *MaxBECount = getCouldNotCompute(); 5910 if (EitherMayExit) { 5911 // Both conditions must be false for the loop to continue executing. 5912 // Choose the less conservative count. 5913 if (EL0.ExactNotTaken == getCouldNotCompute() || 5914 EL1.ExactNotTaken == getCouldNotCompute()) 5915 BECount = getCouldNotCompute(); 5916 else 5917 BECount = 5918 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 5919 if (EL0.MaxNotTaken == getCouldNotCompute()) 5920 MaxBECount = EL1.MaxNotTaken; 5921 else if (EL1.MaxNotTaken == getCouldNotCompute()) 5922 MaxBECount = EL0.MaxNotTaken; 5923 else 5924 MaxBECount = 5925 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 5926 } else { 5927 // Both conditions must be false at the same time for the loop to exit. 5928 // For now, be conservative. 5929 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5930 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 5931 MaxBECount = EL0.MaxNotTaken; 5932 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 5933 BECount = EL0.ExactNotTaken; 5934 } 5935 5936 return ExitLimit(BECount, MaxBECount, {&EL0.Predicates, &EL1.Predicates}); 5937 } 5938 } 5939 5940 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5941 // Proceed to the next level to examine the icmp. 5942 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 5943 ExitLimit EL = 5944 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5945 if (EL.hasFullInfo() || !AllowPredicates) 5946 return EL; 5947 5948 // Try again, but use SCEV predicates this time. 5949 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit, 5950 /*AllowPredicates=*/true); 5951 } 5952 5953 // Check for a constant condition. These are normally stripped out by 5954 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5955 // preserve the CFG and is temporarily leaving constant conditions 5956 // in place. 5957 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5958 if (L->contains(FBB) == !CI->getZExtValue()) 5959 // The backedge is always taken. 5960 return getCouldNotCompute(); 5961 else 5962 // The backedge is never taken. 5963 return getZero(CI->getType()); 5964 } 5965 5966 // If it's not an integer or pointer comparison then compute it the hard way. 5967 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5968 } 5969 5970 ScalarEvolution::ExitLimit 5971 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5972 ICmpInst *ExitCond, 5973 BasicBlock *TBB, 5974 BasicBlock *FBB, 5975 bool ControlsExit, 5976 bool AllowPredicates) { 5977 5978 // If the condition was exit on true, convert the condition to exit on false 5979 ICmpInst::Predicate Cond; 5980 if (!L->contains(FBB)) 5981 Cond = ExitCond->getPredicate(); 5982 else 5983 Cond = ExitCond->getInversePredicate(); 5984 5985 // Handle common loops like: for (X = "string"; *X; ++X) 5986 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5987 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5988 ExitLimit ItCnt = 5989 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5990 if (ItCnt.hasAnyInfo()) 5991 return ItCnt; 5992 } 5993 5994 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5995 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5996 5997 // Try to evaluate any dependencies out of the loop. 5998 LHS = getSCEVAtScope(LHS, L); 5999 RHS = getSCEVAtScope(RHS, L); 6000 6001 // At this point, we would like to compute how many iterations of the 6002 // loop the predicate will return true for these inputs. 6003 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 6004 // If there is a loop-invariant, force it into the RHS. 6005 std::swap(LHS, RHS); 6006 Cond = ICmpInst::getSwappedPredicate(Cond); 6007 } 6008 6009 // Simplify the operands before analyzing them. 6010 (void)SimplifyICmpOperands(Cond, LHS, RHS); 6011 6012 // If we have a comparison of a chrec against a constant, try to use value 6013 // ranges to answer this query. 6014 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 6015 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 6016 if (AddRec->getLoop() == L) { 6017 // Form the constant range. 6018 ConstantRange CompRange = 6019 ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt()); 6020 6021 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 6022 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 6023 } 6024 6025 switch (Cond) { 6026 case ICmpInst::ICMP_NE: { // while (X != Y) 6027 // Convert to: while (X-Y != 0) 6028 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 6029 AllowPredicates); 6030 if (EL.hasAnyInfo()) return EL; 6031 break; 6032 } 6033 case ICmpInst::ICMP_EQ: { // while (X == Y) 6034 // Convert to: while (X-Y == 0) 6035 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 6036 if (EL.hasAnyInfo()) return EL; 6037 break; 6038 } 6039 case ICmpInst::ICMP_SLT: 6040 case ICmpInst::ICMP_ULT: { // while (X < Y) 6041 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 6042 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 6043 AllowPredicates); 6044 if (EL.hasAnyInfo()) return EL; 6045 break; 6046 } 6047 case ICmpInst::ICMP_SGT: 6048 case ICmpInst::ICMP_UGT: { // while (X > Y) 6049 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 6050 ExitLimit EL = 6051 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 6052 AllowPredicates); 6053 if (EL.hasAnyInfo()) return EL; 6054 break; 6055 } 6056 default: 6057 break; 6058 } 6059 6060 auto *ExhaustiveCount = 6061 computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6062 6063 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 6064 return ExhaustiveCount; 6065 6066 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 6067 ExitCond->getOperand(1), L, Cond); 6068 } 6069 6070 ScalarEvolution::ExitLimit 6071 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 6072 SwitchInst *Switch, 6073 BasicBlock *ExitingBlock, 6074 bool ControlsExit) { 6075 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 6076 6077 // Give up if the exit is the default dest of a switch. 6078 if (Switch->getDefaultDest() == ExitingBlock) 6079 return getCouldNotCompute(); 6080 6081 assert(L->contains(Switch->getDefaultDest()) && 6082 "Default case must not exit the loop!"); 6083 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 6084 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 6085 6086 // while (X != Y) --> while (X-Y != 0) 6087 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 6088 if (EL.hasAnyInfo()) 6089 return EL; 6090 6091 return getCouldNotCompute(); 6092 } 6093 6094 static ConstantInt * 6095 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 6096 ScalarEvolution &SE) { 6097 const SCEV *InVal = SE.getConstant(C); 6098 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 6099 assert(isa<SCEVConstant>(Val) && 6100 "Evaluation of SCEV at constant didn't fold correctly?"); 6101 return cast<SCEVConstant>(Val)->getValue(); 6102 } 6103 6104 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 6105 /// compute the backedge execution count. 6106 ScalarEvolution::ExitLimit 6107 ScalarEvolution::computeLoadConstantCompareExitLimit( 6108 LoadInst *LI, 6109 Constant *RHS, 6110 const Loop *L, 6111 ICmpInst::Predicate predicate) { 6112 6113 if (LI->isVolatile()) return getCouldNotCompute(); 6114 6115 // Check to see if the loaded pointer is a getelementptr of a global. 6116 // TODO: Use SCEV instead of manually grubbing with GEPs. 6117 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 6118 if (!GEP) return getCouldNotCompute(); 6119 6120 // Make sure that it is really a constant global we are gepping, with an 6121 // initializer, and make sure the first IDX is really 0. 6122 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 6123 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 6124 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 6125 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 6126 return getCouldNotCompute(); 6127 6128 // Okay, we allow one non-constant index into the GEP instruction. 6129 Value *VarIdx = nullptr; 6130 std::vector<Constant*> Indexes; 6131 unsigned VarIdxNum = 0; 6132 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 6133 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 6134 Indexes.push_back(CI); 6135 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 6136 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 6137 VarIdx = GEP->getOperand(i); 6138 VarIdxNum = i-2; 6139 Indexes.push_back(nullptr); 6140 } 6141 6142 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 6143 if (!VarIdx) 6144 return getCouldNotCompute(); 6145 6146 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 6147 // Check to see if X is a loop variant variable value now. 6148 const SCEV *Idx = getSCEV(VarIdx); 6149 Idx = getSCEVAtScope(Idx, L); 6150 6151 // We can only recognize very limited forms of loop index expressions, in 6152 // particular, only affine AddRec's like {C1,+,C2}. 6153 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 6154 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 6155 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 6156 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 6157 return getCouldNotCompute(); 6158 6159 unsigned MaxSteps = MaxBruteForceIterations; 6160 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 6161 ConstantInt *ItCst = ConstantInt::get( 6162 cast<IntegerType>(IdxExpr->getType()), IterationNum); 6163 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 6164 6165 // Form the GEP offset. 6166 Indexes[VarIdxNum] = Val; 6167 6168 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 6169 Indexes); 6170 if (!Result) break; // Cannot compute! 6171 6172 // Evaluate the condition for this iteration. 6173 Result = ConstantExpr::getICmp(predicate, Result, RHS); 6174 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 6175 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 6176 ++NumArrayLenItCounts; 6177 return getConstant(ItCst); // Found terminating iteration! 6178 } 6179 } 6180 return getCouldNotCompute(); 6181 } 6182 6183 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 6184 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 6185 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 6186 if (!RHS) 6187 return getCouldNotCompute(); 6188 6189 const BasicBlock *Latch = L->getLoopLatch(); 6190 if (!Latch) 6191 return getCouldNotCompute(); 6192 6193 const BasicBlock *Predecessor = L->getLoopPredecessor(); 6194 if (!Predecessor) 6195 return getCouldNotCompute(); 6196 6197 // Return true if V is of the form "LHS `shift_op` <positive constant>". 6198 // Return LHS in OutLHS and shift_opt in OutOpCode. 6199 auto MatchPositiveShift = 6200 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 6201 6202 using namespace PatternMatch; 6203 6204 ConstantInt *ShiftAmt; 6205 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6206 OutOpCode = Instruction::LShr; 6207 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6208 OutOpCode = Instruction::AShr; 6209 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6210 OutOpCode = Instruction::Shl; 6211 else 6212 return false; 6213 6214 return ShiftAmt->getValue().isStrictlyPositive(); 6215 }; 6216 6217 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 6218 // 6219 // loop: 6220 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 6221 // %iv.shifted = lshr i32 %iv, <positive constant> 6222 // 6223 // Return true on a succesful match. Return the corresponding PHI node (%iv 6224 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 6225 auto MatchShiftRecurrence = 6226 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 6227 Optional<Instruction::BinaryOps> PostShiftOpCode; 6228 6229 { 6230 Instruction::BinaryOps OpC; 6231 Value *V; 6232 6233 // If we encounter a shift instruction, "peel off" the shift operation, 6234 // and remember that we did so. Later when we inspect %iv's backedge 6235 // value, we will make sure that the backedge value uses the same 6236 // operation. 6237 // 6238 // Note: the peeled shift operation does not have to be the same 6239 // instruction as the one feeding into the PHI's backedge value. We only 6240 // really care about it being the same *kind* of shift instruction -- 6241 // that's all that is required for our later inferences to hold. 6242 if (MatchPositiveShift(LHS, V, OpC)) { 6243 PostShiftOpCode = OpC; 6244 LHS = V; 6245 } 6246 } 6247 6248 PNOut = dyn_cast<PHINode>(LHS); 6249 if (!PNOut || PNOut->getParent() != L->getHeader()) 6250 return false; 6251 6252 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 6253 Value *OpLHS; 6254 6255 return 6256 // The backedge value for the PHI node must be a shift by a positive 6257 // amount 6258 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 6259 6260 // of the PHI node itself 6261 OpLHS == PNOut && 6262 6263 // and the kind of shift should be match the kind of shift we peeled 6264 // off, if any. 6265 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 6266 }; 6267 6268 PHINode *PN; 6269 Instruction::BinaryOps OpCode; 6270 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 6271 return getCouldNotCompute(); 6272 6273 const DataLayout &DL = getDataLayout(); 6274 6275 // The key rationale for this optimization is that for some kinds of shift 6276 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 6277 // within a finite number of iterations. If the condition guarding the 6278 // backedge (in the sense that the backedge is taken if the condition is true) 6279 // is false for the value the shift recurrence stabilizes to, then we know 6280 // that the backedge is taken only a finite number of times. 6281 6282 ConstantInt *StableValue = nullptr; 6283 switch (OpCode) { 6284 default: 6285 llvm_unreachable("Impossible case!"); 6286 6287 case Instruction::AShr: { 6288 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 6289 // bitwidth(K) iterations. 6290 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 6291 bool KnownZero, KnownOne; 6292 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 6293 Predecessor->getTerminator(), &DT); 6294 auto *Ty = cast<IntegerType>(RHS->getType()); 6295 if (KnownZero) 6296 StableValue = ConstantInt::get(Ty, 0); 6297 else if (KnownOne) 6298 StableValue = ConstantInt::get(Ty, -1, true); 6299 else 6300 return getCouldNotCompute(); 6301 6302 break; 6303 } 6304 case Instruction::LShr: 6305 case Instruction::Shl: 6306 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 6307 // stabilize to 0 in at most bitwidth(K) iterations. 6308 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 6309 break; 6310 } 6311 6312 auto *Result = 6313 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 6314 assert(Result->getType()->isIntegerTy(1) && 6315 "Otherwise cannot be an operand to a branch instruction"); 6316 6317 if (Result->isZeroValue()) { 6318 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6319 const SCEV *UpperBound = 6320 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 6321 return ExitLimit(getCouldNotCompute(), UpperBound); 6322 } 6323 6324 return getCouldNotCompute(); 6325 } 6326 6327 /// Return true if we can constant fold an instruction of the specified type, 6328 /// assuming that all operands were constants. 6329 static bool CanConstantFold(const Instruction *I) { 6330 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 6331 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6332 isa<LoadInst>(I)) 6333 return true; 6334 6335 if (const CallInst *CI = dyn_cast<CallInst>(I)) 6336 if (const Function *F = CI->getCalledFunction()) 6337 return canConstantFoldCallTo(F); 6338 return false; 6339 } 6340 6341 /// Determine whether this instruction can constant evolve within this loop 6342 /// assuming its operands can all constant evolve. 6343 static bool canConstantEvolve(Instruction *I, const Loop *L) { 6344 // An instruction outside of the loop can't be derived from a loop PHI. 6345 if (!L->contains(I)) return false; 6346 6347 if (isa<PHINode>(I)) { 6348 // We don't currently keep track of the control flow needed to evaluate 6349 // PHIs, so we cannot handle PHIs inside of loops. 6350 return L->getHeader() == I->getParent(); 6351 } 6352 6353 // If we won't be able to constant fold this expression even if the operands 6354 // are constants, bail early. 6355 return CanConstantFold(I); 6356 } 6357 6358 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 6359 /// recursing through each instruction operand until reaching a loop header phi. 6360 static PHINode * 6361 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 6362 DenseMap<Instruction *, PHINode *> &PHIMap) { 6363 6364 // Otherwise, we can evaluate this instruction if all of its operands are 6365 // constant or derived from a PHI node themselves. 6366 PHINode *PHI = nullptr; 6367 for (Value *Op : UseInst->operands()) { 6368 if (isa<Constant>(Op)) continue; 6369 6370 Instruction *OpInst = dyn_cast<Instruction>(Op); 6371 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 6372 6373 PHINode *P = dyn_cast<PHINode>(OpInst); 6374 if (!P) 6375 // If this operand is already visited, reuse the prior result. 6376 // We may have P != PHI if this is the deepest point at which the 6377 // inconsistent paths meet. 6378 P = PHIMap.lookup(OpInst); 6379 if (!P) { 6380 // Recurse and memoize the results, whether a phi is found or not. 6381 // This recursive call invalidates pointers into PHIMap. 6382 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 6383 PHIMap[OpInst] = P; 6384 } 6385 if (!P) 6386 return nullptr; // Not evolving from PHI 6387 if (PHI && PHI != P) 6388 return nullptr; // Evolving from multiple different PHIs. 6389 PHI = P; 6390 } 6391 // This is a expression evolving from a constant PHI! 6392 return PHI; 6393 } 6394 6395 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 6396 /// in the loop that V is derived from. We allow arbitrary operations along the 6397 /// way, but the operands of an operation must either be constants or a value 6398 /// derived from a constant PHI. If this expression does not fit with these 6399 /// constraints, return null. 6400 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 6401 Instruction *I = dyn_cast<Instruction>(V); 6402 if (!I || !canConstantEvolve(I, L)) return nullptr; 6403 6404 if (PHINode *PN = dyn_cast<PHINode>(I)) 6405 return PN; 6406 6407 // Record non-constant instructions contained by the loop. 6408 DenseMap<Instruction *, PHINode *> PHIMap; 6409 return getConstantEvolvingPHIOperands(I, L, PHIMap); 6410 } 6411 6412 /// EvaluateExpression - Given an expression that passes the 6413 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 6414 /// in the loop has the value PHIVal. If we can't fold this expression for some 6415 /// reason, return null. 6416 static Constant *EvaluateExpression(Value *V, const Loop *L, 6417 DenseMap<Instruction *, Constant *> &Vals, 6418 const DataLayout &DL, 6419 const TargetLibraryInfo *TLI) { 6420 // Convenient constant check, but redundant for recursive calls. 6421 if (Constant *C = dyn_cast<Constant>(V)) return C; 6422 Instruction *I = dyn_cast<Instruction>(V); 6423 if (!I) return nullptr; 6424 6425 if (Constant *C = Vals.lookup(I)) return C; 6426 6427 // An instruction inside the loop depends on a value outside the loop that we 6428 // weren't given a mapping for, or a value such as a call inside the loop. 6429 if (!canConstantEvolve(I, L)) return nullptr; 6430 6431 // An unmapped PHI can be due to a branch or another loop inside this loop, 6432 // or due to this not being the initial iteration through a loop where we 6433 // couldn't compute the evolution of this particular PHI last time. 6434 if (isa<PHINode>(I)) return nullptr; 6435 6436 std::vector<Constant*> Operands(I->getNumOperands()); 6437 6438 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 6439 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 6440 if (!Operand) { 6441 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 6442 if (!Operands[i]) return nullptr; 6443 continue; 6444 } 6445 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 6446 Vals[Operand] = C; 6447 if (!C) return nullptr; 6448 Operands[i] = C; 6449 } 6450 6451 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6452 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6453 Operands[1], DL, TLI); 6454 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6455 if (!LI->isVolatile()) 6456 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6457 } 6458 return ConstantFoldInstOperands(I, Operands, DL, TLI); 6459 } 6460 6461 6462 // If every incoming value to PN except the one for BB is a specific Constant, 6463 // return that, else return nullptr. 6464 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6465 Constant *IncomingVal = nullptr; 6466 6467 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6468 if (PN->getIncomingBlock(i) == BB) 6469 continue; 6470 6471 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6472 if (!CurrentVal) 6473 return nullptr; 6474 6475 if (IncomingVal != CurrentVal) { 6476 if (IncomingVal) 6477 return nullptr; 6478 IncomingVal = CurrentVal; 6479 } 6480 } 6481 6482 return IncomingVal; 6483 } 6484 6485 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6486 /// in the header of its containing loop, we know the loop executes a 6487 /// constant number of times, and the PHI node is just a recurrence 6488 /// involving constants, fold it. 6489 Constant * 6490 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6491 const APInt &BEs, 6492 const Loop *L) { 6493 auto I = ConstantEvolutionLoopExitValue.find(PN); 6494 if (I != ConstantEvolutionLoopExitValue.end()) 6495 return I->second; 6496 6497 if (BEs.ugt(MaxBruteForceIterations)) 6498 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6499 6500 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6501 6502 DenseMap<Instruction *, Constant *> CurrentIterVals; 6503 BasicBlock *Header = L->getHeader(); 6504 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6505 6506 BasicBlock *Latch = L->getLoopLatch(); 6507 if (!Latch) 6508 return nullptr; 6509 6510 for (auto &I : *Header) { 6511 PHINode *PHI = dyn_cast<PHINode>(&I); 6512 if (!PHI) break; 6513 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6514 if (!StartCST) continue; 6515 CurrentIterVals[PHI] = StartCST; 6516 } 6517 if (!CurrentIterVals.count(PN)) 6518 return RetVal = nullptr; 6519 6520 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6521 6522 // Execute the loop symbolically to determine the exit value. 6523 if (BEs.getActiveBits() >= 32) 6524 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6525 6526 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6527 unsigned IterationNum = 0; 6528 const DataLayout &DL = getDataLayout(); 6529 for (; ; ++IterationNum) { 6530 if (IterationNum == NumIterations) 6531 return RetVal = CurrentIterVals[PN]; // Got exit value! 6532 6533 // Compute the value of the PHIs for the next iteration. 6534 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6535 DenseMap<Instruction *, Constant *> NextIterVals; 6536 Constant *NextPHI = 6537 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6538 if (!NextPHI) 6539 return nullptr; // Couldn't evaluate! 6540 NextIterVals[PN] = NextPHI; 6541 6542 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6543 6544 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6545 // cease to be able to evaluate one of them or if they stop evolving, 6546 // because that doesn't necessarily prevent us from computing PN. 6547 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6548 for (const auto &I : CurrentIterVals) { 6549 PHINode *PHI = dyn_cast<PHINode>(I.first); 6550 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6551 PHIsToCompute.emplace_back(PHI, I.second); 6552 } 6553 // We use two distinct loops because EvaluateExpression may invalidate any 6554 // iterators into CurrentIterVals. 6555 for (const auto &I : PHIsToCompute) { 6556 PHINode *PHI = I.first; 6557 Constant *&NextPHI = NextIterVals[PHI]; 6558 if (!NextPHI) { // Not already computed. 6559 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6560 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6561 } 6562 if (NextPHI != I.second) 6563 StoppedEvolving = false; 6564 } 6565 6566 // If all entries in CurrentIterVals == NextIterVals then we can stop 6567 // iterating, the loop can't continue to change. 6568 if (StoppedEvolving) 6569 return RetVal = CurrentIterVals[PN]; 6570 6571 CurrentIterVals.swap(NextIterVals); 6572 } 6573 } 6574 6575 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6576 Value *Cond, 6577 bool ExitWhen) { 6578 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6579 if (!PN) return getCouldNotCompute(); 6580 6581 // If the loop is canonicalized, the PHI will have exactly two entries. 6582 // That's the only form we support here. 6583 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6584 6585 DenseMap<Instruction *, Constant *> CurrentIterVals; 6586 BasicBlock *Header = L->getHeader(); 6587 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6588 6589 BasicBlock *Latch = L->getLoopLatch(); 6590 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6591 6592 for (auto &I : *Header) { 6593 PHINode *PHI = dyn_cast<PHINode>(&I); 6594 if (!PHI) 6595 break; 6596 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6597 if (!StartCST) continue; 6598 CurrentIterVals[PHI] = StartCST; 6599 } 6600 if (!CurrentIterVals.count(PN)) 6601 return getCouldNotCompute(); 6602 6603 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6604 // the loop symbolically to determine when the condition gets a value of 6605 // "ExitWhen". 6606 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6607 const DataLayout &DL = getDataLayout(); 6608 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6609 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6610 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6611 6612 // Couldn't symbolically evaluate. 6613 if (!CondVal) return getCouldNotCompute(); 6614 6615 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6616 ++NumBruteForceTripCountsComputed; 6617 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6618 } 6619 6620 // Update all the PHI nodes for the next iteration. 6621 DenseMap<Instruction *, Constant *> NextIterVals; 6622 6623 // Create a list of which PHIs we need to compute. We want to do this before 6624 // calling EvaluateExpression on them because that may invalidate iterators 6625 // into CurrentIterVals. 6626 SmallVector<PHINode *, 8> PHIsToCompute; 6627 for (const auto &I : CurrentIterVals) { 6628 PHINode *PHI = dyn_cast<PHINode>(I.first); 6629 if (!PHI || PHI->getParent() != Header) continue; 6630 PHIsToCompute.push_back(PHI); 6631 } 6632 for (PHINode *PHI : PHIsToCompute) { 6633 Constant *&NextPHI = NextIterVals[PHI]; 6634 if (NextPHI) continue; // Already computed! 6635 6636 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6637 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6638 } 6639 CurrentIterVals.swap(NextIterVals); 6640 } 6641 6642 // Too many iterations were needed to evaluate. 6643 return getCouldNotCompute(); 6644 } 6645 6646 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6647 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6648 ValuesAtScopes[V]; 6649 // Check to see if we've folded this expression at this loop before. 6650 for (auto &LS : Values) 6651 if (LS.first == L) 6652 return LS.second ? LS.second : V; 6653 6654 Values.emplace_back(L, nullptr); 6655 6656 // Otherwise compute it. 6657 const SCEV *C = computeSCEVAtScope(V, L); 6658 for (auto &LS : reverse(ValuesAtScopes[V])) 6659 if (LS.first == L) { 6660 LS.second = C; 6661 break; 6662 } 6663 return C; 6664 } 6665 6666 /// This builds up a Constant using the ConstantExpr interface. That way, we 6667 /// will return Constants for objects which aren't represented by a 6668 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6669 /// Returns NULL if the SCEV isn't representable as a Constant. 6670 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6671 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6672 case scCouldNotCompute: 6673 case scAddRecExpr: 6674 break; 6675 case scConstant: 6676 return cast<SCEVConstant>(V)->getValue(); 6677 case scUnknown: 6678 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6679 case scSignExtend: { 6680 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6681 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6682 return ConstantExpr::getSExt(CastOp, SS->getType()); 6683 break; 6684 } 6685 case scZeroExtend: { 6686 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6687 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6688 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6689 break; 6690 } 6691 case scTruncate: { 6692 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6693 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6694 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6695 break; 6696 } 6697 case scAddExpr: { 6698 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6699 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6700 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6701 unsigned AS = PTy->getAddressSpace(); 6702 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6703 C = ConstantExpr::getBitCast(C, DestPtrTy); 6704 } 6705 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6706 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6707 if (!C2) return nullptr; 6708 6709 // First pointer! 6710 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6711 unsigned AS = C2->getType()->getPointerAddressSpace(); 6712 std::swap(C, C2); 6713 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6714 // The offsets have been converted to bytes. We can add bytes to an 6715 // i8* by GEP with the byte count in the first index. 6716 C = ConstantExpr::getBitCast(C, DestPtrTy); 6717 } 6718 6719 // Don't bother trying to sum two pointers. We probably can't 6720 // statically compute a load that results from it anyway. 6721 if (C2->getType()->isPointerTy()) 6722 return nullptr; 6723 6724 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6725 if (PTy->getElementType()->isStructTy()) 6726 C2 = ConstantExpr::getIntegerCast( 6727 C2, Type::getInt32Ty(C->getContext()), true); 6728 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6729 } else 6730 C = ConstantExpr::getAdd(C, C2); 6731 } 6732 return C; 6733 } 6734 break; 6735 } 6736 case scMulExpr: { 6737 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6738 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6739 // Don't bother with pointers at all. 6740 if (C->getType()->isPointerTy()) return nullptr; 6741 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6742 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6743 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6744 C = ConstantExpr::getMul(C, C2); 6745 } 6746 return C; 6747 } 6748 break; 6749 } 6750 case scUDivExpr: { 6751 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6752 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6753 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6754 if (LHS->getType() == RHS->getType()) 6755 return ConstantExpr::getUDiv(LHS, RHS); 6756 break; 6757 } 6758 case scSMaxExpr: 6759 case scUMaxExpr: 6760 break; // TODO: smax, umax. 6761 } 6762 return nullptr; 6763 } 6764 6765 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6766 if (isa<SCEVConstant>(V)) return V; 6767 6768 // If this instruction is evolved from a constant-evolving PHI, compute the 6769 // exit value from the loop without using SCEVs. 6770 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6771 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6772 const Loop *LI = this->LI[I->getParent()]; 6773 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6774 if (PHINode *PN = dyn_cast<PHINode>(I)) 6775 if (PN->getParent() == LI->getHeader()) { 6776 // Okay, there is no closed form solution for the PHI node. Check 6777 // to see if the loop that contains it has a known backedge-taken 6778 // count. If so, we may be able to force computation of the exit 6779 // value. 6780 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6781 if (const SCEVConstant *BTCC = 6782 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6783 // Okay, we know how many times the containing loop executes. If 6784 // this is a constant evolving PHI node, get the final value at 6785 // the specified iteration number. 6786 Constant *RV = 6787 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 6788 if (RV) return getSCEV(RV); 6789 } 6790 } 6791 6792 // Okay, this is an expression that we cannot symbolically evaluate 6793 // into a SCEV. Check to see if it's possible to symbolically evaluate 6794 // the arguments into constants, and if so, try to constant propagate the 6795 // result. This is particularly useful for computing loop exit values. 6796 if (CanConstantFold(I)) { 6797 SmallVector<Constant *, 4> Operands; 6798 bool MadeImprovement = false; 6799 for (Value *Op : I->operands()) { 6800 if (Constant *C = dyn_cast<Constant>(Op)) { 6801 Operands.push_back(C); 6802 continue; 6803 } 6804 6805 // If any of the operands is non-constant and if they are 6806 // non-integer and non-pointer, don't even try to analyze them 6807 // with scev techniques. 6808 if (!isSCEVable(Op->getType())) 6809 return V; 6810 6811 const SCEV *OrigV = getSCEV(Op); 6812 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6813 MadeImprovement |= OrigV != OpV; 6814 6815 Constant *C = BuildConstantFromSCEV(OpV); 6816 if (!C) return V; 6817 if (C->getType() != Op->getType()) 6818 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6819 Op->getType(), 6820 false), 6821 C, Op->getType()); 6822 Operands.push_back(C); 6823 } 6824 6825 // Check to see if getSCEVAtScope actually made an improvement. 6826 if (MadeImprovement) { 6827 Constant *C = nullptr; 6828 const DataLayout &DL = getDataLayout(); 6829 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6830 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6831 Operands[1], DL, &TLI); 6832 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6833 if (!LI->isVolatile()) 6834 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6835 } else 6836 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 6837 if (!C) return V; 6838 return getSCEV(C); 6839 } 6840 } 6841 } 6842 6843 // This is some other type of SCEVUnknown, just return it. 6844 return V; 6845 } 6846 6847 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6848 // Avoid performing the look-up in the common case where the specified 6849 // expression has no loop-variant portions. 6850 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6851 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6852 if (OpAtScope != Comm->getOperand(i)) { 6853 // Okay, at least one of these operands is loop variant but might be 6854 // foldable. Build a new instance of the folded commutative expression. 6855 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6856 Comm->op_begin()+i); 6857 NewOps.push_back(OpAtScope); 6858 6859 for (++i; i != e; ++i) { 6860 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6861 NewOps.push_back(OpAtScope); 6862 } 6863 if (isa<SCEVAddExpr>(Comm)) 6864 return getAddExpr(NewOps); 6865 if (isa<SCEVMulExpr>(Comm)) 6866 return getMulExpr(NewOps); 6867 if (isa<SCEVSMaxExpr>(Comm)) 6868 return getSMaxExpr(NewOps); 6869 if (isa<SCEVUMaxExpr>(Comm)) 6870 return getUMaxExpr(NewOps); 6871 llvm_unreachable("Unknown commutative SCEV type!"); 6872 } 6873 } 6874 // If we got here, all operands are loop invariant. 6875 return Comm; 6876 } 6877 6878 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6879 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6880 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6881 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6882 return Div; // must be loop invariant 6883 return getUDivExpr(LHS, RHS); 6884 } 6885 6886 // If this is a loop recurrence for a loop that does not contain L, then we 6887 // are dealing with the final value computed by the loop. 6888 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6889 // First, attempt to evaluate each operand. 6890 // Avoid performing the look-up in the common case where the specified 6891 // expression has no loop-variant portions. 6892 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6893 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6894 if (OpAtScope == AddRec->getOperand(i)) 6895 continue; 6896 6897 // Okay, at least one of these operands is loop variant but might be 6898 // foldable. Build a new instance of the folded commutative expression. 6899 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6900 AddRec->op_begin()+i); 6901 NewOps.push_back(OpAtScope); 6902 for (++i; i != e; ++i) 6903 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6904 6905 const SCEV *FoldedRec = 6906 getAddRecExpr(NewOps, AddRec->getLoop(), 6907 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6908 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6909 // The addrec may be folded to a nonrecurrence, for example, if the 6910 // induction variable is multiplied by zero after constant folding. Go 6911 // ahead and return the folded value. 6912 if (!AddRec) 6913 return FoldedRec; 6914 break; 6915 } 6916 6917 // If the scope is outside the addrec's loop, evaluate it by using the 6918 // loop exit value of the addrec. 6919 if (!AddRec->getLoop()->contains(L)) { 6920 // To evaluate this recurrence, we need to know how many times the AddRec 6921 // loop iterates. Compute this now. 6922 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6923 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6924 6925 // Then, evaluate the AddRec. 6926 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6927 } 6928 6929 return AddRec; 6930 } 6931 6932 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6933 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6934 if (Op == Cast->getOperand()) 6935 return Cast; // must be loop invariant 6936 return getZeroExtendExpr(Op, Cast->getType()); 6937 } 6938 6939 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6940 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6941 if (Op == Cast->getOperand()) 6942 return Cast; // must be loop invariant 6943 return getSignExtendExpr(Op, Cast->getType()); 6944 } 6945 6946 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6947 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6948 if (Op == Cast->getOperand()) 6949 return Cast; // must be loop invariant 6950 return getTruncateExpr(Op, Cast->getType()); 6951 } 6952 6953 llvm_unreachable("Unknown SCEV type!"); 6954 } 6955 6956 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6957 return getSCEVAtScope(getSCEV(V), L); 6958 } 6959 6960 /// Finds the minimum unsigned root of the following equation: 6961 /// 6962 /// A * X = B (mod N) 6963 /// 6964 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6965 /// A and B isn't important. 6966 /// 6967 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6968 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6969 ScalarEvolution &SE) { 6970 uint32_t BW = A.getBitWidth(); 6971 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6972 assert(A != 0 && "A must be non-zero."); 6973 6974 // 1. D = gcd(A, N) 6975 // 6976 // The gcd of A and N may have only one prime factor: 2. The number of 6977 // trailing zeros in A is its multiplicity 6978 uint32_t Mult2 = A.countTrailingZeros(); 6979 // D = 2^Mult2 6980 6981 // 2. Check if B is divisible by D. 6982 // 6983 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6984 // is not less than multiplicity of this prime factor for D. 6985 if (B.countTrailingZeros() < Mult2) 6986 return SE.getCouldNotCompute(); 6987 6988 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6989 // modulo (N / D). 6990 // 6991 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6992 // bit width during computations. 6993 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6994 APInt Mod(BW + 1, 0); 6995 Mod.setBit(BW - Mult2); // Mod = N / D 6996 APInt I = AD.multiplicativeInverse(Mod); 6997 6998 // 4. Compute the minimum unsigned root of the equation: 6999 // I * (B / D) mod (N / D) 7000 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 7001 7002 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 7003 // bits. 7004 return SE.getConstant(Result.trunc(BW)); 7005 } 7006 7007 /// Find the roots of the quadratic equation for the given quadratic chrec 7008 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 7009 /// two SCEVCouldNotCompute objects. 7010 /// 7011 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 7012 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 7013 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 7014 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 7015 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 7016 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 7017 7018 // We currently can only solve this if the coefficients are constants. 7019 if (!LC || !MC || !NC) 7020 return None; 7021 7022 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 7023 const APInt &L = LC->getAPInt(); 7024 const APInt &M = MC->getAPInt(); 7025 const APInt &N = NC->getAPInt(); 7026 APInt Two(BitWidth, 2); 7027 APInt Four(BitWidth, 4); 7028 7029 { 7030 using namespace APIntOps; 7031 const APInt& C = L; 7032 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 7033 // The B coefficient is M-N/2 7034 APInt B(M); 7035 B -= sdiv(N,Two); 7036 7037 // The A coefficient is N/2 7038 APInt A(N.sdiv(Two)); 7039 7040 // Compute the B^2-4ac term. 7041 APInt SqrtTerm(B); 7042 SqrtTerm *= B; 7043 SqrtTerm -= Four * (A * C); 7044 7045 if (SqrtTerm.isNegative()) { 7046 // The loop is provably infinite. 7047 return None; 7048 } 7049 7050 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 7051 // integer value or else APInt::sqrt() will assert. 7052 APInt SqrtVal(SqrtTerm.sqrt()); 7053 7054 // Compute the two solutions for the quadratic formula. 7055 // The divisions must be performed as signed divisions. 7056 APInt NegB(-B); 7057 APInt TwoA(A << 1); 7058 if (TwoA.isMinValue()) 7059 return None; 7060 7061 LLVMContext &Context = SE.getContext(); 7062 7063 ConstantInt *Solution1 = 7064 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 7065 ConstantInt *Solution2 = 7066 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 7067 7068 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 7069 cast<SCEVConstant>(SE.getConstant(Solution2))); 7070 } // end APIntOps namespace 7071 } 7072 7073 ScalarEvolution::ExitLimit 7074 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 7075 bool AllowPredicates) { 7076 7077 // This is only used for loops with a "x != y" exit test. The exit condition 7078 // is now expressed as a single expression, V = x-y. So the exit test is 7079 // effectively V != 0. We know and take advantage of the fact that this 7080 // expression only being used in a comparison by zero context. 7081 7082 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 7083 // If the value is a constant 7084 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7085 // If the value is already zero, the branch will execute zero times. 7086 if (C->getValue()->isZero()) return C; 7087 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7088 } 7089 7090 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 7091 if (!AddRec && AllowPredicates) 7092 // Try to make this an AddRec using runtime tests, in the first X 7093 // iterations of this loop, where X is the SCEV expression found by the 7094 // algorithm below. 7095 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 7096 7097 if (!AddRec || AddRec->getLoop() != L) 7098 return getCouldNotCompute(); 7099 7100 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 7101 // the quadratic equation to solve it. 7102 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 7103 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 7104 const SCEVConstant *R1 = Roots->first; 7105 const SCEVConstant *R2 = Roots->second; 7106 // Pick the smallest positive root value. 7107 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 7108 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 7109 if (!CB->getZExtValue()) 7110 std::swap(R1, R2); // R1 is the minimum root now. 7111 7112 // We can only use this value if the chrec ends up with an exact zero 7113 // value at this index. When solving for "X*X != 5", for example, we 7114 // should not accept a root of 2. 7115 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 7116 if (Val->isZero()) 7117 return ExitLimit(R1, R1, Predicates); // We found a quadratic root! 7118 } 7119 } 7120 return getCouldNotCompute(); 7121 } 7122 7123 // Otherwise we can only handle this if it is affine. 7124 if (!AddRec->isAffine()) 7125 return getCouldNotCompute(); 7126 7127 // If this is an affine expression, the execution count of this branch is 7128 // the minimum unsigned root of the following equation: 7129 // 7130 // Start + Step*N = 0 (mod 2^BW) 7131 // 7132 // equivalent to: 7133 // 7134 // Step*N = -Start (mod 2^BW) 7135 // 7136 // where BW is the common bit width of Start and Step. 7137 7138 // Get the initial value for the loop. 7139 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 7140 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 7141 7142 // For now we handle only constant steps. 7143 // 7144 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 7145 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 7146 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 7147 // We have not yet seen any such cases. 7148 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 7149 if (!StepC || StepC->getValue()->equalsInt(0)) 7150 return getCouldNotCompute(); 7151 7152 // For positive steps (counting up until unsigned overflow): 7153 // N = -Start/Step (as unsigned) 7154 // For negative steps (counting down to zero): 7155 // N = Start/-Step 7156 // First compute the unsigned distance from zero in the direction of Step. 7157 bool CountDown = StepC->getAPInt().isNegative(); 7158 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 7159 7160 // Handle unitary steps, which cannot wraparound. 7161 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 7162 // N = Distance (as unsigned) 7163 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 7164 ConstantRange CR = getUnsignedRange(Start); 7165 const SCEV *MaxBECount; 7166 if (!CountDown && CR.getUnsignedMin().isMinValue()) 7167 // When counting up, the worst starting value is 1, not 0. 7168 MaxBECount = CR.getUnsignedMax().isMinValue() 7169 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 7170 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 7171 else 7172 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 7173 : -CR.getUnsignedMin()); 7174 return ExitLimit(Distance, MaxBECount, Predicates); 7175 } 7176 7177 // As a special case, handle the instance where Step is a positive power of 7178 // two. In this case, determining whether Step divides Distance evenly can be 7179 // done by counting and comparing the number of trailing zeros of Step and 7180 // Distance. 7181 if (!CountDown) { 7182 const APInt &StepV = StepC->getAPInt(); 7183 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 7184 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 7185 // case is not handled as this code is guarded by !CountDown. 7186 if (StepV.isPowerOf2() && 7187 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 7188 // Here we've constrained the equation to be of the form 7189 // 7190 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 7191 // 7192 // where we're operating on a W bit wide integer domain and k is 7193 // non-negative. The smallest unsigned solution for X is the trip count. 7194 // 7195 // (0) is equivalent to: 7196 // 7197 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 7198 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 7199 // <=> 2^k * Distance' - X = L * 2^(W - N) 7200 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 7201 // 7202 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 7203 // by 2^(W - N). 7204 // 7205 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 7206 // 7207 // E.g. say we're solving 7208 // 7209 // 2 * Val = 2 * X (in i8) ... (3) 7210 // 7211 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 7212 // 7213 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 7214 // necessarily the smallest unsigned value of X that satisfies (3). 7215 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 7216 // is i8 1, not i8 -127 7217 7218 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 7219 7220 // Since SCEV does not have a URem node, we construct one using a truncate 7221 // and a zero extend. 7222 7223 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 7224 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 7225 auto *WideTy = Distance->getType(); 7226 7227 const SCEV *Limit = 7228 getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 7229 return ExitLimit(Limit, Limit, Predicates); 7230 } 7231 } 7232 7233 // If the condition controls loop exit (the loop exits only if the expression 7234 // is true) and the addition is no-wrap we can use unsigned divide to 7235 // compute the backedge count. In this case, the step may not divide the 7236 // distance, but we don't care because if the condition is "missed" the loop 7237 // will have undefined behavior due to wrapping. 7238 if (ControlsExit && AddRec->hasNoSelfWrap() && 7239 loopHasNoAbnormalExits(AddRec->getLoop())) { 7240 const SCEV *Exact = 7241 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 7242 return ExitLimit(Exact, Exact, Predicates); 7243 } 7244 7245 // Then, try to solve the above equation provided that Start is constant. 7246 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) { 7247 const SCEV *E = SolveLinEquationWithOverflow( 7248 StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this); 7249 return ExitLimit(E, E, Predicates); 7250 } 7251 return getCouldNotCompute(); 7252 } 7253 7254 ScalarEvolution::ExitLimit 7255 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 7256 // Loops that look like: while (X == 0) are very strange indeed. We don't 7257 // handle them yet except for the trivial case. This could be expanded in the 7258 // future as needed. 7259 7260 // If the value is a constant, check to see if it is known to be non-zero 7261 // already. If so, the backedge will execute zero times. 7262 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7263 if (!C->getValue()->isNullValue()) 7264 return getZero(C->getType()); 7265 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7266 } 7267 7268 // We could implement others, but I really doubt anyone writes loops like 7269 // this, and if they did, they would already be constant folded. 7270 return getCouldNotCompute(); 7271 } 7272 7273 std::pair<BasicBlock *, BasicBlock *> 7274 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 7275 // If the block has a unique predecessor, then there is no path from the 7276 // predecessor to the block that does not go through the direct edge 7277 // from the predecessor to the block. 7278 if (BasicBlock *Pred = BB->getSinglePredecessor()) 7279 return {Pred, BB}; 7280 7281 // A loop's header is defined to be a block that dominates the loop. 7282 // If the header has a unique predecessor outside the loop, it must be 7283 // a block that has exactly one successor that can reach the loop. 7284 if (Loop *L = LI.getLoopFor(BB)) 7285 return {L->getLoopPredecessor(), L->getHeader()}; 7286 7287 return {nullptr, nullptr}; 7288 } 7289 7290 /// SCEV structural equivalence is usually sufficient for testing whether two 7291 /// expressions are equal, however for the purposes of looking for a condition 7292 /// guarding a loop, it can be useful to be a little more general, since a 7293 /// front-end may have replicated the controlling expression. 7294 /// 7295 static bool HasSameValue(const SCEV *A, const SCEV *B) { 7296 // Quick check to see if they are the same SCEV. 7297 if (A == B) return true; 7298 7299 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 7300 // Not all instructions that are "identical" compute the same value. For 7301 // instance, two distinct alloca instructions allocating the same type are 7302 // identical and do not read memory; but compute distinct values. 7303 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 7304 }; 7305 7306 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 7307 // two different instructions with the same value. Check for this case. 7308 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 7309 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 7310 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 7311 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 7312 if (ComputesEqualValues(AI, BI)) 7313 return true; 7314 7315 // Otherwise assume they may have a different value. 7316 return false; 7317 } 7318 7319 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 7320 const SCEV *&LHS, const SCEV *&RHS, 7321 unsigned Depth) { 7322 bool Changed = false; 7323 7324 // If we hit the max recursion limit bail out. 7325 if (Depth >= 3) 7326 return false; 7327 7328 // Canonicalize a constant to the right side. 7329 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 7330 // Check for both operands constant. 7331 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 7332 if (ConstantExpr::getICmp(Pred, 7333 LHSC->getValue(), 7334 RHSC->getValue())->isNullValue()) 7335 goto trivially_false; 7336 else 7337 goto trivially_true; 7338 } 7339 // Otherwise swap the operands to put the constant on the right. 7340 std::swap(LHS, RHS); 7341 Pred = ICmpInst::getSwappedPredicate(Pred); 7342 Changed = true; 7343 } 7344 7345 // If we're comparing an addrec with a value which is loop-invariant in the 7346 // addrec's loop, put the addrec on the left. Also make a dominance check, 7347 // as both operands could be addrecs loop-invariant in each other's loop. 7348 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 7349 const Loop *L = AR->getLoop(); 7350 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 7351 std::swap(LHS, RHS); 7352 Pred = ICmpInst::getSwappedPredicate(Pred); 7353 Changed = true; 7354 } 7355 } 7356 7357 // If there's a constant operand, canonicalize comparisons with boundary 7358 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 7359 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 7360 const APInt &RA = RC->getAPInt(); 7361 7362 bool SimplifiedByConstantRange = false; 7363 7364 if (!ICmpInst::isEquality(Pred)) { 7365 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 7366 if (ExactCR.isFullSet()) 7367 goto trivially_true; 7368 else if (ExactCR.isEmptySet()) 7369 goto trivially_false; 7370 7371 APInt NewRHS; 7372 CmpInst::Predicate NewPred; 7373 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 7374 ICmpInst::isEquality(NewPred)) { 7375 // We were able to convert an inequality to an equality. 7376 Pred = NewPred; 7377 RHS = getConstant(NewRHS); 7378 Changed = SimplifiedByConstantRange = true; 7379 } 7380 } 7381 7382 if (!SimplifiedByConstantRange) { 7383 switch (Pred) { 7384 default: 7385 break; 7386 case ICmpInst::ICMP_EQ: 7387 case ICmpInst::ICMP_NE: 7388 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 7389 if (!RA) 7390 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 7391 if (const SCEVMulExpr *ME = 7392 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 7393 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 7394 ME->getOperand(0)->isAllOnesValue()) { 7395 RHS = AE->getOperand(1); 7396 LHS = ME->getOperand(1); 7397 Changed = true; 7398 } 7399 break; 7400 7401 7402 // The "Should have been caught earlier!" messages refer to the fact 7403 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 7404 // should have fired on the corresponding cases, and canonicalized the 7405 // check to trivially_true or trivially_false. 7406 7407 case ICmpInst::ICMP_UGE: 7408 assert(!RA.isMinValue() && "Should have been caught earlier!"); 7409 Pred = ICmpInst::ICMP_UGT; 7410 RHS = getConstant(RA - 1); 7411 Changed = true; 7412 break; 7413 case ICmpInst::ICMP_ULE: 7414 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 7415 Pred = ICmpInst::ICMP_ULT; 7416 RHS = getConstant(RA + 1); 7417 Changed = true; 7418 break; 7419 case ICmpInst::ICMP_SGE: 7420 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 7421 Pred = ICmpInst::ICMP_SGT; 7422 RHS = getConstant(RA - 1); 7423 Changed = true; 7424 break; 7425 case ICmpInst::ICMP_SLE: 7426 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 7427 Pred = ICmpInst::ICMP_SLT; 7428 RHS = getConstant(RA + 1); 7429 Changed = true; 7430 break; 7431 } 7432 } 7433 } 7434 7435 // Check for obvious equality. 7436 if (HasSameValue(LHS, RHS)) { 7437 if (ICmpInst::isTrueWhenEqual(Pred)) 7438 goto trivially_true; 7439 if (ICmpInst::isFalseWhenEqual(Pred)) 7440 goto trivially_false; 7441 } 7442 7443 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7444 // adding or subtracting 1 from one of the operands. 7445 switch (Pred) { 7446 case ICmpInst::ICMP_SLE: 7447 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7448 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7449 SCEV::FlagNSW); 7450 Pred = ICmpInst::ICMP_SLT; 7451 Changed = true; 7452 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7453 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7454 SCEV::FlagNSW); 7455 Pred = ICmpInst::ICMP_SLT; 7456 Changed = true; 7457 } 7458 break; 7459 case ICmpInst::ICMP_SGE: 7460 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7461 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7462 SCEV::FlagNSW); 7463 Pred = ICmpInst::ICMP_SGT; 7464 Changed = true; 7465 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7466 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7467 SCEV::FlagNSW); 7468 Pred = ICmpInst::ICMP_SGT; 7469 Changed = true; 7470 } 7471 break; 7472 case ICmpInst::ICMP_ULE: 7473 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7474 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7475 SCEV::FlagNUW); 7476 Pred = ICmpInst::ICMP_ULT; 7477 Changed = true; 7478 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7479 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7480 Pred = ICmpInst::ICMP_ULT; 7481 Changed = true; 7482 } 7483 break; 7484 case ICmpInst::ICMP_UGE: 7485 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7486 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7487 Pred = ICmpInst::ICMP_UGT; 7488 Changed = true; 7489 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7490 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7491 SCEV::FlagNUW); 7492 Pred = ICmpInst::ICMP_UGT; 7493 Changed = true; 7494 } 7495 break; 7496 default: 7497 break; 7498 } 7499 7500 // TODO: More simplifications are possible here. 7501 7502 // Recursively simplify until we either hit a recursion limit or nothing 7503 // changes. 7504 if (Changed) 7505 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7506 7507 return Changed; 7508 7509 trivially_true: 7510 // Return 0 == 0. 7511 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7512 Pred = ICmpInst::ICMP_EQ; 7513 return true; 7514 7515 trivially_false: 7516 // Return 0 != 0. 7517 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7518 Pred = ICmpInst::ICMP_NE; 7519 return true; 7520 } 7521 7522 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7523 return getSignedRange(S).getSignedMax().isNegative(); 7524 } 7525 7526 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7527 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7528 } 7529 7530 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7531 return !getSignedRange(S).getSignedMin().isNegative(); 7532 } 7533 7534 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7535 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7536 } 7537 7538 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7539 return isKnownNegative(S) || isKnownPositive(S); 7540 } 7541 7542 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7543 const SCEV *LHS, const SCEV *RHS) { 7544 // Canonicalize the inputs first. 7545 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7546 7547 // If LHS or RHS is an addrec, check to see if the condition is true in 7548 // every iteration of the loop. 7549 // If LHS and RHS are both addrec, both conditions must be true in 7550 // every iteration of the loop. 7551 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7552 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7553 bool LeftGuarded = false; 7554 bool RightGuarded = false; 7555 if (LAR) { 7556 const Loop *L = LAR->getLoop(); 7557 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7558 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7559 if (!RAR) return true; 7560 LeftGuarded = true; 7561 } 7562 } 7563 if (RAR) { 7564 const Loop *L = RAR->getLoop(); 7565 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7566 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7567 if (!LAR) return true; 7568 RightGuarded = true; 7569 } 7570 } 7571 if (LeftGuarded && RightGuarded) 7572 return true; 7573 7574 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7575 return true; 7576 7577 // Otherwise see what can be done with known constant ranges. 7578 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7579 } 7580 7581 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7582 ICmpInst::Predicate Pred, 7583 bool &Increasing) { 7584 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7585 7586 #ifndef NDEBUG 7587 // Verify an invariant: inverting the predicate should turn a monotonically 7588 // increasing change to a monotonically decreasing one, and vice versa. 7589 bool IncreasingSwapped; 7590 bool ResultSwapped = isMonotonicPredicateImpl( 7591 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7592 7593 assert(Result == ResultSwapped && "should be able to analyze both!"); 7594 if (ResultSwapped) 7595 assert(Increasing == !IncreasingSwapped && 7596 "monotonicity should flip as we flip the predicate"); 7597 #endif 7598 7599 return Result; 7600 } 7601 7602 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7603 ICmpInst::Predicate Pred, 7604 bool &Increasing) { 7605 7606 // A zero step value for LHS means the induction variable is essentially a 7607 // loop invariant value. We don't really depend on the predicate actually 7608 // flipping from false to true (for increasing predicates, and the other way 7609 // around for decreasing predicates), all we care about is that *if* the 7610 // predicate changes then it only changes from false to true. 7611 // 7612 // A zero step value in itself is not very useful, but there may be places 7613 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7614 // as general as possible. 7615 7616 switch (Pred) { 7617 default: 7618 return false; // Conservative answer 7619 7620 case ICmpInst::ICMP_UGT: 7621 case ICmpInst::ICMP_UGE: 7622 case ICmpInst::ICMP_ULT: 7623 case ICmpInst::ICMP_ULE: 7624 if (!LHS->hasNoUnsignedWrap()) 7625 return false; 7626 7627 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7628 return true; 7629 7630 case ICmpInst::ICMP_SGT: 7631 case ICmpInst::ICMP_SGE: 7632 case ICmpInst::ICMP_SLT: 7633 case ICmpInst::ICMP_SLE: { 7634 if (!LHS->hasNoSignedWrap()) 7635 return false; 7636 7637 const SCEV *Step = LHS->getStepRecurrence(*this); 7638 7639 if (isKnownNonNegative(Step)) { 7640 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7641 return true; 7642 } 7643 7644 if (isKnownNonPositive(Step)) { 7645 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7646 return true; 7647 } 7648 7649 return false; 7650 } 7651 7652 } 7653 7654 llvm_unreachable("switch has default clause!"); 7655 } 7656 7657 bool ScalarEvolution::isLoopInvariantPredicate( 7658 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7659 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7660 const SCEV *&InvariantRHS) { 7661 7662 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7663 if (!isLoopInvariant(RHS, L)) { 7664 if (!isLoopInvariant(LHS, L)) 7665 return false; 7666 7667 std::swap(LHS, RHS); 7668 Pred = ICmpInst::getSwappedPredicate(Pred); 7669 } 7670 7671 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7672 if (!ArLHS || ArLHS->getLoop() != L) 7673 return false; 7674 7675 bool Increasing; 7676 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7677 return false; 7678 7679 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7680 // true as the loop iterates, and the backedge is control dependent on 7681 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7682 // 7683 // * if the predicate was false in the first iteration then the predicate 7684 // is never evaluated again, since the loop exits without taking the 7685 // backedge. 7686 // * if the predicate was true in the first iteration then it will 7687 // continue to be true for all future iterations since it is 7688 // monotonically increasing. 7689 // 7690 // For both the above possibilities, we can replace the loop varying 7691 // predicate with its value on the first iteration of the loop (which is 7692 // loop invariant). 7693 // 7694 // A similar reasoning applies for a monotonically decreasing predicate, by 7695 // replacing true with false and false with true in the above two bullets. 7696 7697 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7698 7699 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7700 return false; 7701 7702 InvariantPred = Pred; 7703 InvariantLHS = ArLHS->getStart(); 7704 InvariantRHS = RHS; 7705 return true; 7706 } 7707 7708 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 7709 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7710 if (HasSameValue(LHS, RHS)) 7711 return ICmpInst::isTrueWhenEqual(Pred); 7712 7713 // This code is split out from isKnownPredicate because it is called from 7714 // within isLoopEntryGuardedByCond. 7715 7716 auto CheckRanges = 7717 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 7718 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 7719 .contains(RangeLHS); 7720 }; 7721 7722 // The check at the top of the function catches the case where the values are 7723 // known to be equal. 7724 if (Pred == CmpInst::ICMP_EQ) 7725 return false; 7726 7727 if (Pred == CmpInst::ICMP_NE) 7728 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 7729 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 7730 isKnownNonZero(getMinusSCEV(LHS, RHS)); 7731 7732 if (CmpInst::isSigned(Pred)) 7733 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 7734 7735 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 7736 } 7737 7738 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7739 const SCEV *LHS, 7740 const SCEV *RHS) { 7741 7742 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7743 // Return Y via OutY. 7744 auto MatchBinaryAddToConst = 7745 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7746 SCEV::NoWrapFlags ExpectedFlags) { 7747 const SCEV *NonConstOp, *ConstOp; 7748 SCEV::NoWrapFlags FlagsPresent; 7749 7750 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7751 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7752 return false; 7753 7754 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7755 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7756 }; 7757 7758 APInt C; 7759 7760 switch (Pred) { 7761 default: 7762 break; 7763 7764 case ICmpInst::ICMP_SGE: 7765 std::swap(LHS, RHS); 7766 case ICmpInst::ICMP_SLE: 7767 // X s<= (X + C)<nsw> if C >= 0 7768 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7769 return true; 7770 7771 // (X + C)<nsw> s<= X if C <= 0 7772 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7773 !C.isStrictlyPositive()) 7774 return true; 7775 break; 7776 7777 case ICmpInst::ICMP_SGT: 7778 std::swap(LHS, RHS); 7779 case ICmpInst::ICMP_SLT: 7780 // X s< (X + C)<nsw> if C > 0 7781 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7782 C.isStrictlyPositive()) 7783 return true; 7784 7785 // (X + C)<nsw> s< X if C < 0 7786 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7787 return true; 7788 break; 7789 } 7790 7791 return false; 7792 } 7793 7794 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7795 const SCEV *LHS, 7796 const SCEV *RHS) { 7797 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7798 return false; 7799 7800 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7801 // the stack can result in exponential time complexity. 7802 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7803 7804 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7805 // 7806 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7807 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7808 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7809 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7810 // use isKnownPredicate later if needed. 7811 return isKnownNonNegative(RHS) && 7812 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7813 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7814 } 7815 7816 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 7817 ICmpInst::Predicate Pred, 7818 const SCEV *LHS, const SCEV *RHS) { 7819 // No need to even try if we know the module has no guards. 7820 if (!HasGuards) 7821 return false; 7822 7823 return any_of(*BB, [&](Instruction &I) { 7824 using namespace llvm::PatternMatch; 7825 7826 Value *Condition; 7827 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 7828 m_Value(Condition))) && 7829 isImpliedCond(Pred, LHS, RHS, Condition, false); 7830 }); 7831 } 7832 7833 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7834 /// protected by a conditional between LHS and RHS. This is used to 7835 /// to eliminate casts. 7836 bool 7837 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7838 ICmpInst::Predicate Pred, 7839 const SCEV *LHS, const SCEV *RHS) { 7840 // Interpret a null as meaning no loop, where there is obviously no guard 7841 // (interprocedural conditions notwithstanding). 7842 if (!L) return true; 7843 7844 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7845 return true; 7846 7847 BasicBlock *Latch = L->getLoopLatch(); 7848 if (!Latch) 7849 return false; 7850 7851 BranchInst *LoopContinuePredicate = 7852 dyn_cast<BranchInst>(Latch->getTerminator()); 7853 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7854 isImpliedCond(Pred, LHS, RHS, 7855 LoopContinuePredicate->getCondition(), 7856 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7857 return true; 7858 7859 // We don't want more than one activation of the following loops on the stack 7860 // -- that can lead to O(n!) time complexity. 7861 if (WalkingBEDominatingConds) 7862 return false; 7863 7864 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7865 7866 // See if we can exploit a trip count to prove the predicate. 7867 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7868 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7869 if (LatchBECount != getCouldNotCompute()) { 7870 // We know that Latch branches back to the loop header exactly 7871 // LatchBECount times. This means the backdege condition at Latch is 7872 // equivalent to "{0,+,1} u< LatchBECount". 7873 Type *Ty = LatchBECount->getType(); 7874 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7875 const SCEV *LoopCounter = 7876 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7877 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7878 LatchBECount)) 7879 return true; 7880 } 7881 7882 // Check conditions due to any @llvm.assume intrinsics. 7883 for (auto &AssumeVH : AC.assumptions()) { 7884 if (!AssumeVH) 7885 continue; 7886 auto *CI = cast<CallInst>(AssumeVH); 7887 if (!DT.dominates(CI, Latch->getTerminator())) 7888 continue; 7889 7890 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7891 return true; 7892 } 7893 7894 // If the loop is not reachable from the entry block, we risk running into an 7895 // infinite loop as we walk up into the dom tree. These loops do not matter 7896 // anyway, so we just return a conservative answer when we see them. 7897 if (!DT.isReachableFromEntry(L->getHeader())) 7898 return false; 7899 7900 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 7901 return true; 7902 7903 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7904 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7905 7906 assert(DTN && "should reach the loop header before reaching the root!"); 7907 7908 BasicBlock *BB = DTN->getBlock(); 7909 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 7910 return true; 7911 7912 BasicBlock *PBB = BB->getSinglePredecessor(); 7913 if (!PBB) 7914 continue; 7915 7916 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7917 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7918 continue; 7919 7920 Value *Condition = ContinuePredicate->getCondition(); 7921 7922 // If we have an edge `E` within the loop body that dominates the only 7923 // latch, the condition guarding `E` also guards the backedge. This 7924 // reasoning works only for loops with a single latch. 7925 7926 BasicBlockEdge DominatingEdge(PBB, BB); 7927 if (DominatingEdge.isSingleEdge()) { 7928 // We're constructively (and conservatively) enumerating edges within the 7929 // loop body that dominate the latch. The dominator tree better agree 7930 // with us on this: 7931 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7932 7933 if (isImpliedCond(Pred, LHS, RHS, Condition, 7934 BB != ContinuePredicate->getSuccessor(0))) 7935 return true; 7936 } 7937 } 7938 7939 return false; 7940 } 7941 7942 bool 7943 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7944 ICmpInst::Predicate Pred, 7945 const SCEV *LHS, const SCEV *RHS) { 7946 // Interpret a null as meaning no loop, where there is obviously no guard 7947 // (interprocedural conditions notwithstanding). 7948 if (!L) return false; 7949 7950 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7951 return true; 7952 7953 // Starting at the loop predecessor, climb up the predecessor chain, as long 7954 // as there are predecessors that can be found that have unique successors 7955 // leading to the original header. 7956 for (std::pair<BasicBlock *, BasicBlock *> 7957 Pair(L->getLoopPredecessor(), L->getHeader()); 7958 Pair.first; 7959 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7960 7961 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS)) 7962 return true; 7963 7964 BranchInst *LoopEntryPredicate = 7965 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7966 if (!LoopEntryPredicate || 7967 LoopEntryPredicate->isUnconditional()) 7968 continue; 7969 7970 if (isImpliedCond(Pred, LHS, RHS, 7971 LoopEntryPredicate->getCondition(), 7972 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7973 return true; 7974 } 7975 7976 // Check conditions due to any @llvm.assume intrinsics. 7977 for (auto &AssumeVH : AC.assumptions()) { 7978 if (!AssumeVH) 7979 continue; 7980 auto *CI = cast<CallInst>(AssumeVH); 7981 if (!DT.dominates(CI, L->getHeader())) 7982 continue; 7983 7984 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7985 return true; 7986 } 7987 7988 return false; 7989 } 7990 7991 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7992 const SCEV *LHS, const SCEV *RHS, 7993 Value *FoundCondValue, 7994 bool Inverse) { 7995 if (!PendingLoopPredicates.insert(FoundCondValue).second) 7996 return false; 7997 7998 auto ClearOnExit = 7999 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 8000 8001 // Recursively handle And and Or conditions. 8002 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 8003 if (BO->getOpcode() == Instruction::And) { 8004 if (!Inverse) 8005 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8006 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8007 } else if (BO->getOpcode() == Instruction::Or) { 8008 if (Inverse) 8009 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8010 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8011 } 8012 } 8013 8014 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 8015 if (!ICI) return false; 8016 8017 // Now that we found a conditional branch that dominates the loop or controls 8018 // the loop latch. Check to see if it is the comparison we are looking for. 8019 ICmpInst::Predicate FoundPred; 8020 if (Inverse) 8021 FoundPred = ICI->getInversePredicate(); 8022 else 8023 FoundPred = ICI->getPredicate(); 8024 8025 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 8026 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 8027 8028 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 8029 } 8030 8031 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 8032 const SCEV *RHS, 8033 ICmpInst::Predicate FoundPred, 8034 const SCEV *FoundLHS, 8035 const SCEV *FoundRHS) { 8036 // Balance the types. 8037 if (getTypeSizeInBits(LHS->getType()) < 8038 getTypeSizeInBits(FoundLHS->getType())) { 8039 if (CmpInst::isSigned(Pred)) { 8040 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 8041 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 8042 } else { 8043 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 8044 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 8045 } 8046 } else if (getTypeSizeInBits(LHS->getType()) > 8047 getTypeSizeInBits(FoundLHS->getType())) { 8048 if (CmpInst::isSigned(FoundPred)) { 8049 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 8050 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 8051 } else { 8052 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 8053 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 8054 } 8055 } 8056 8057 // Canonicalize the query to match the way instcombine will have 8058 // canonicalized the comparison. 8059 if (SimplifyICmpOperands(Pred, LHS, RHS)) 8060 if (LHS == RHS) 8061 return CmpInst::isTrueWhenEqual(Pred); 8062 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 8063 if (FoundLHS == FoundRHS) 8064 return CmpInst::isFalseWhenEqual(FoundPred); 8065 8066 // Check to see if we can make the LHS or RHS match. 8067 if (LHS == FoundRHS || RHS == FoundLHS) { 8068 if (isa<SCEVConstant>(RHS)) { 8069 std::swap(FoundLHS, FoundRHS); 8070 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 8071 } else { 8072 std::swap(LHS, RHS); 8073 Pred = ICmpInst::getSwappedPredicate(Pred); 8074 } 8075 } 8076 8077 // Check whether the found predicate is the same as the desired predicate. 8078 if (FoundPred == Pred) 8079 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8080 8081 // Check whether swapping the found predicate makes it the same as the 8082 // desired predicate. 8083 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 8084 if (isa<SCEVConstant>(RHS)) 8085 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 8086 else 8087 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 8088 RHS, LHS, FoundLHS, FoundRHS); 8089 } 8090 8091 // Unsigned comparison is the same as signed comparison when both the operands 8092 // are non-negative. 8093 if (CmpInst::isUnsigned(FoundPred) && 8094 CmpInst::getSignedPredicate(FoundPred) == Pred && 8095 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 8096 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8097 8098 // Check if we can make progress by sharpening ranges. 8099 if (FoundPred == ICmpInst::ICMP_NE && 8100 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 8101 8102 const SCEVConstant *C = nullptr; 8103 const SCEV *V = nullptr; 8104 8105 if (isa<SCEVConstant>(FoundLHS)) { 8106 C = cast<SCEVConstant>(FoundLHS); 8107 V = FoundRHS; 8108 } else { 8109 C = cast<SCEVConstant>(FoundRHS); 8110 V = FoundLHS; 8111 } 8112 8113 // The guarding predicate tells us that C != V. If the known range 8114 // of V is [C, t), we can sharpen the range to [C + 1, t). The 8115 // range we consider has to correspond to same signedness as the 8116 // predicate we're interested in folding. 8117 8118 APInt Min = ICmpInst::isSigned(Pred) ? 8119 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 8120 8121 if (Min == C->getAPInt()) { 8122 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 8123 // This is true even if (Min + 1) wraps around -- in case of 8124 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 8125 8126 APInt SharperMin = Min + 1; 8127 8128 switch (Pred) { 8129 case ICmpInst::ICMP_SGE: 8130 case ICmpInst::ICMP_UGE: 8131 // We know V `Pred` SharperMin. If this implies LHS `Pred` 8132 // RHS, we're done. 8133 if (isImpliedCondOperands(Pred, LHS, RHS, V, 8134 getConstant(SharperMin))) 8135 return true; 8136 8137 case ICmpInst::ICMP_SGT: 8138 case ICmpInst::ICMP_UGT: 8139 // We know from the range information that (V `Pred` Min || 8140 // V == Min). We know from the guarding condition that !(V 8141 // == Min). This gives us 8142 // 8143 // V `Pred` Min || V == Min && !(V == Min) 8144 // => V `Pred` Min 8145 // 8146 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 8147 8148 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 8149 return true; 8150 8151 default: 8152 // No change 8153 break; 8154 } 8155 } 8156 } 8157 8158 // Check whether the actual condition is beyond sufficient. 8159 if (FoundPred == ICmpInst::ICMP_EQ) 8160 if (ICmpInst::isTrueWhenEqual(Pred)) 8161 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8162 return true; 8163 if (Pred == ICmpInst::ICMP_NE) 8164 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 8165 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 8166 return true; 8167 8168 // Otherwise assume the worst. 8169 return false; 8170 } 8171 8172 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 8173 const SCEV *&L, const SCEV *&R, 8174 SCEV::NoWrapFlags &Flags) { 8175 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 8176 if (!AE || AE->getNumOperands() != 2) 8177 return false; 8178 8179 L = AE->getOperand(0); 8180 R = AE->getOperand(1); 8181 Flags = AE->getNoWrapFlags(); 8182 return true; 8183 } 8184 8185 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 8186 const SCEV *Less) { 8187 // We avoid subtracting expressions here because this function is usually 8188 // fairly deep in the call stack (i.e. is called many times). 8189 8190 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 8191 const auto *LAR = cast<SCEVAddRecExpr>(Less); 8192 const auto *MAR = cast<SCEVAddRecExpr>(More); 8193 8194 if (LAR->getLoop() != MAR->getLoop()) 8195 return None; 8196 8197 // We look at affine expressions only; not for correctness but to keep 8198 // getStepRecurrence cheap. 8199 if (!LAR->isAffine() || !MAR->isAffine()) 8200 return None; 8201 8202 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 8203 return None; 8204 8205 Less = LAR->getStart(); 8206 More = MAR->getStart(); 8207 8208 // fall through 8209 } 8210 8211 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 8212 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 8213 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 8214 return M - L; 8215 } 8216 8217 const SCEV *L, *R; 8218 SCEV::NoWrapFlags Flags; 8219 if (splitBinaryAdd(Less, L, R, Flags)) 8220 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8221 if (R == More) 8222 return -(LC->getAPInt()); 8223 8224 if (splitBinaryAdd(More, L, R, Flags)) 8225 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8226 if (R == Less) 8227 return LC->getAPInt(); 8228 8229 return None; 8230 } 8231 8232 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 8233 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 8234 const SCEV *FoundLHS, const SCEV *FoundRHS) { 8235 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 8236 return false; 8237 8238 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8239 if (!AddRecLHS) 8240 return false; 8241 8242 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 8243 if (!AddRecFoundLHS) 8244 return false; 8245 8246 // We'd like to let SCEV reason about control dependencies, so we constrain 8247 // both the inequalities to be about add recurrences on the same loop. This 8248 // way we can use isLoopEntryGuardedByCond later. 8249 8250 const Loop *L = AddRecFoundLHS->getLoop(); 8251 if (L != AddRecLHS->getLoop()) 8252 return false; 8253 8254 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 8255 // 8256 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 8257 // ... (2) 8258 // 8259 // Informal proof for (2), assuming (1) [*]: 8260 // 8261 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 8262 // 8263 // Then 8264 // 8265 // FoundLHS s< FoundRHS s< INT_MIN - C 8266 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 8267 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 8268 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 8269 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 8270 // <=> FoundLHS + C s< FoundRHS + C 8271 // 8272 // [*]: (1) can be proved by ruling out overflow. 8273 // 8274 // [**]: This can be proved by analyzing all the four possibilities: 8275 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 8276 // (A s>= 0, B s>= 0). 8277 // 8278 // Note: 8279 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 8280 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 8281 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 8282 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 8283 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 8284 // C)". 8285 8286 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 8287 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 8288 if (!LDiff || !RDiff || *LDiff != *RDiff) 8289 return false; 8290 8291 if (LDiff->isMinValue()) 8292 return true; 8293 8294 APInt FoundRHSLimit; 8295 8296 if (Pred == CmpInst::ICMP_ULT) { 8297 FoundRHSLimit = -(*RDiff); 8298 } else { 8299 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 8300 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 8301 } 8302 8303 // Try to prove (1) or (2), as needed. 8304 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 8305 getConstant(FoundRHSLimit)); 8306 } 8307 8308 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 8309 const SCEV *LHS, const SCEV *RHS, 8310 const SCEV *FoundLHS, 8311 const SCEV *FoundRHS) { 8312 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8313 return true; 8314 8315 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8316 return true; 8317 8318 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 8319 FoundLHS, FoundRHS) || 8320 // ~x < ~y --> x > y 8321 isImpliedCondOperandsHelper(Pred, LHS, RHS, 8322 getNotSCEV(FoundRHS), 8323 getNotSCEV(FoundLHS)); 8324 } 8325 8326 8327 /// If Expr computes ~A, return A else return nullptr 8328 static const SCEV *MatchNotExpr(const SCEV *Expr) { 8329 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 8330 if (!Add || Add->getNumOperands() != 2 || 8331 !Add->getOperand(0)->isAllOnesValue()) 8332 return nullptr; 8333 8334 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 8335 if (!AddRHS || AddRHS->getNumOperands() != 2 || 8336 !AddRHS->getOperand(0)->isAllOnesValue()) 8337 return nullptr; 8338 8339 return AddRHS->getOperand(1); 8340 } 8341 8342 8343 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 8344 template<typename MaxExprType> 8345 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 8346 const SCEV *Candidate) { 8347 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 8348 if (!MaxExpr) return false; 8349 8350 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 8351 } 8352 8353 8354 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 8355 template<typename MaxExprType> 8356 static bool IsMinConsistingOf(ScalarEvolution &SE, 8357 const SCEV *MaybeMinExpr, 8358 const SCEV *Candidate) { 8359 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8360 if (!MaybeMaxExpr) 8361 return false; 8362 8363 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8364 } 8365 8366 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8367 ICmpInst::Predicate Pred, 8368 const SCEV *LHS, const SCEV *RHS) { 8369 8370 // If both sides are affine addrecs for the same loop, with equal 8371 // steps, and we know the recurrences don't wrap, then we only 8372 // need to check the predicate on the starting values. 8373 8374 if (!ICmpInst::isRelational(Pred)) 8375 return false; 8376 8377 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8378 if (!LAR) 8379 return false; 8380 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8381 if (!RAR) 8382 return false; 8383 if (LAR->getLoop() != RAR->getLoop()) 8384 return false; 8385 if (!LAR->isAffine() || !RAR->isAffine()) 8386 return false; 8387 8388 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8389 return false; 8390 8391 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8392 SCEV::FlagNSW : SCEV::FlagNUW; 8393 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8394 return false; 8395 8396 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8397 } 8398 8399 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8400 /// expression? 8401 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8402 ICmpInst::Predicate Pred, 8403 const SCEV *LHS, const SCEV *RHS) { 8404 switch (Pred) { 8405 default: 8406 return false; 8407 8408 case ICmpInst::ICMP_SGE: 8409 std::swap(LHS, RHS); 8410 LLVM_FALLTHROUGH; 8411 case ICmpInst::ICMP_SLE: 8412 return 8413 // min(A, ...) <= A 8414 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8415 // A <= max(A, ...) 8416 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8417 8418 case ICmpInst::ICMP_UGE: 8419 std::swap(LHS, RHS); 8420 LLVM_FALLTHROUGH; 8421 case ICmpInst::ICMP_ULE: 8422 return 8423 // min(A, ...) <= A 8424 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8425 // A <= max(A, ...) 8426 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8427 } 8428 8429 llvm_unreachable("covered switch fell through?!"); 8430 } 8431 8432 bool 8433 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8434 const SCEV *LHS, const SCEV *RHS, 8435 const SCEV *FoundLHS, 8436 const SCEV *FoundRHS) { 8437 auto IsKnownPredicateFull = 8438 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8439 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8440 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8441 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8442 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8443 }; 8444 8445 switch (Pred) { 8446 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8447 case ICmpInst::ICMP_EQ: 8448 case ICmpInst::ICMP_NE: 8449 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8450 return true; 8451 break; 8452 case ICmpInst::ICMP_SLT: 8453 case ICmpInst::ICMP_SLE: 8454 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8455 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8456 return true; 8457 break; 8458 case ICmpInst::ICMP_SGT: 8459 case ICmpInst::ICMP_SGE: 8460 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8461 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8462 return true; 8463 break; 8464 case ICmpInst::ICMP_ULT: 8465 case ICmpInst::ICMP_ULE: 8466 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8467 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8468 return true; 8469 break; 8470 case ICmpInst::ICMP_UGT: 8471 case ICmpInst::ICMP_UGE: 8472 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8473 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8474 return true; 8475 break; 8476 } 8477 8478 return false; 8479 } 8480 8481 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8482 const SCEV *LHS, 8483 const SCEV *RHS, 8484 const SCEV *FoundLHS, 8485 const SCEV *FoundRHS) { 8486 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8487 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8488 // reduce the compile time impact of this optimization. 8489 return false; 8490 8491 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 8492 if (!Addend) 8493 return false; 8494 8495 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8496 8497 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8498 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8499 ConstantRange FoundLHSRange = 8500 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8501 8502 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 8503 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 8504 8505 // We can also compute the range of values for `LHS` that satisfy the 8506 // consequent, "`LHS` `Pred` `RHS`": 8507 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8508 ConstantRange SatisfyingLHSRange = 8509 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8510 8511 // The antecedent implies the consequent if every value of `LHS` that 8512 // satisfies the antecedent also satisfies the consequent. 8513 return SatisfyingLHSRange.contains(LHSRange); 8514 } 8515 8516 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8517 bool IsSigned, bool NoWrap) { 8518 assert(isKnownPositive(Stride) && "Positive stride expected!"); 8519 8520 if (NoWrap) return false; 8521 8522 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8523 const SCEV *One = getOne(Stride->getType()); 8524 8525 if (IsSigned) { 8526 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8527 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8528 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8529 .getSignedMax(); 8530 8531 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8532 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8533 } 8534 8535 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8536 APInt MaxValue = APInt::getMaxValue(BitWidth); 8537 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8538 .getUnsignedMax(); 8539 8540 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8541 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8542 } 8543 8544 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8545 bool IsSigned, bool NoWrap) { 8546 if (NoWrap) return false; 8547 8548 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8549 const SCEV *One = getOne(Stride->getType()); 8550 8551 if (IsSigned) { 8552 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8553 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8554 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8555 .getSignedMax(); 8556 8557 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8558 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8559 } 8560 8561 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8562 APInt MinValue = APInt::getMinValue(BitWidth); 8563 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8564 .getUnsignedMax(); 8565 8566 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8567 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8568 } 8569 8570 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8571 bool Equality) { 8572 const SCEV *One = getOne(Step->getType()); 8573 Delta = Equality ? getAddExpr(Delta, Step) 8574 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8575 return getUDivExpr(Delta, Step); 8576 } 8577 8578 ScalarEvolution::ExitLimit 8579 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 8580 const Loop *L, bool IsSigned, 8581 bool ControlsExit, bool AllowPredicates) { 8582 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8583 // We handle only IV < Invariant 8584 if (!isLoopInvariant(RHS, L)) 8585 return getCouldNotCompute(); 8586 8587 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8588 bool PredicatedIV = false; 8589 8590 if (!IV && AllowPredicates) { 8591 // Try to make this an AddRec using runtime tests, in the first X 8592 // iterations of this loop, where X is the SCEV expression found by the 8593 // algorithm below. 8594 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 8595 PredicatedIV = true; 8596 } 8597 8598 // Avoid weird loops 8599 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8600 return getCouldNotCompute(); 8601 8602 bool NoWrap = ControlsExit && 8603 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8604 8605 const SCEV *Stride = IV->getStepRecurrence(*this); 8606 8607 bool PositiveStride = isKnownPositive(Stride); 8608 8609 // Avoid negative or zero stride values. 8610 if (!PositiveStride) { 8611 // We can compute the correct backedge taken count for loops with unknown 8612 // strides if we can prove that the loop is not an infinite loop with side 8613 // effects. Here's the loop structure we are trying to handle - 8614 // 8615 // i = start 8616 // do { 8617 // A[i] = i; 8618 // i += s; 8619 // } while (i < end); 8620 // 8621 // The backedge taken count for such loops is evaluated as - 8622 // (max(end, start + stride) - start - 1) /u stride 8623 // 8624 // The additional preconditions that we need to check to prove correctness 8625 // of the above formula is as follows - 8626 // 8627 // a) IV is either nuw or nsw depending upon signedness (indicated by the 8628 // NoWrap flag). 8629 // b) loop is single exit with no side effects. 8630 // 8631 // 8632 // Precondition a) implies that if the stride is negative, this is a single 8633 // trip loop. The backedge taken count formula reduces to zero in this case. 8634 // 8635 // Precondition b) implies that the unknown stride cannot be zero otherwise 8636 // we have UB. 8637 // 8638 // The positive stride case is the same as isKnownPositive(Stride) returning 8639 // true (original behavior of the function). 8640 // 8641 // We want to make sure that the stride is truly unknown as there are edge 8642 // cases where ScalarEvolution propagates no wrap flags to the 8643 // post-increment/decrement IV even though the increment/decrement operation 8644 // itself is wrapping. The computed backedge taken count may be wrong in 8645 // such cases. This is prevented by checking that the stride is not known to 8646 // be either positive or non-positive. For example, no wrap flags are 8647 // propagated to the post-increment IV of this loop with a trip count of 2 - 8648 // 8649 // unsigned char i; 8650 // for(i=127; i<128; i+=129) 8651 // A[i] = i; 8652 // 8653 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 8654 !loopHasNoSideEffects(L)) 8655 return getCouldNotCompute(); 8656 8657 } else if (!Stride->isOne() && 8658 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8659 // Avoid proven overflow cases: this will ensure that the backedge taken 8660 // count will not generate any unsigned overflow. Relaxed no-overflow 8661 // conditions exploit NoWrapFlags, allowing to optimize in presence of 8662 // undefined behaviors like the case of C language. 8663 return getCouldNotCompute(); 8664 8665 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8666 : ICmpInst::ICMP_ULT; 8667 const SCEV *Start = IV->getStart(); 8668 const SCEV *End = RHS; 8669 // If the backedge is taken at least once, then it will be taken 8670 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 8671 // is the LHS value of the less-than comparison the first time it is evaluated 8672 // and End is the RHS. 8673 const SCEV *BECountIfBackedgeTaken = 8674 computeBECount(getMinusSCEV(End, Start), Stride, false); 8675 // If the loop entry is guarded by the result of the backedge test of the 8676 // first loop iteration, then we know the backedge will be taken at least 8677 // once and so the backedge taken count is as above. If not then we use the 8678 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 8679 // as if the backedge is taken at least once max(End,Start) is End and so the 8680 // result is as above, and if not max(End,Start) is Start so we get a backedge 8681 // count of zero. 8682 const SCEV *BECount; 8683 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 8684 BECount = BECountIfBackedgeTaken; 8685 else { 8686 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 8687 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8688 } 8689 8690 const SCEV *MaxBECount; 8691 if (isa<SCEVConstant>(BECount)) 8692 MaxBECount = BECount; 8693 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) 8694 // If we know exactly how many times the backedge will be taken if it's 8695 // taken at least once, then the backedge count will either be that or 8696 // zero. 8697 MaxBECount = BECountIfBackedgeTaken; 8698 else { 8699 // Calculate the maximum backedge count based on the range of values 8700 // permitted by Start, End, and Stride. 8701 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8702 : getUnsignedRange(Start).getUnsignedMin(); 8703 8704 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8705 8706 APInt StrideForMaxBECount; 8707 8708 if (PositiveStride) 8709 StrideForMaxBECount = 8710 IsSigned ? getSignedRange(Stride).getSignedMin() 8711 : getUnsignedRange(Stride).getUnsignedMin(); 8712 else 8713 // Using a stride of 1 is safe when computing max backedge taken count for 8714 // a loop with unknown stride. 8715 StrideForMaxBECount = APInt(BitWidth, 1, IsSigned); 8716 8717 APInt Limit = 8718 IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1) 8719 : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1); 8720 8721 // Although End can be a MAX expression we estimate MaxEnd considering only 8722 // the case End = RHS. This is safe because in the other case (End - Start) 8723 // is zero, leading to a zero maximum backedge taken count. 8724 APInt MaxEnd = 8725 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8726 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8727 8728 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8729 getConstant(StrideForMaxBECount), false); 8730 } 8731 8732 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8733 MaxBECount = BECount; 8734 8735 return ExitLimit(BECount, MaxBECount, Predicates); 8736 } 8737 8738 ScalarEvolution::ExitLimit 8739 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8740 const Loop *L, bool IsSigned, 8741 bool ControlsExit, bool AllowPredicates) { 8742 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8743 // We handle only IV > Invariant 8744 if (!isLoopInvariant(RHS, L)) 8745 return getCouldNotCompute(); 8746 8747 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8748 if (!IV && AllowPredicates) 8749 // Try to make this an AddRec using runtime tests, in the first X 8750 // iterations of this loop, where X is the SCEV expression found by the 8751 // algorithm below. 8752 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 8753 8754 // Avoid weird loops 8755 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8756 return getCouldNotCompute(); 8757 8758 bool NoWrap = ControlsExit && 8759 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8760 8761 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8762 8763 // Avoid negative or zero stride values 8764 if (!isKnownPositive(Stride)) 8765 return getCouldNotCompute(); 8766 8767 // Avoid proven overflow cases: this will ensure that the backedge taken count 8768 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8769 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8770 // behaviors like the case of C language. 8771 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8772 return getCouldNotCompute(); 8773 8774 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8775 : ICmpInst::ICMP_UGT; 8776 8777 const SCEV *Start = IV->getStart(); 8778 const SCEV *End = RHS; 8779 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 8780 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 8781 8782 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8783 8784 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8785 : getUnsignedRange(Start).getUnsignedMax(); 8786 8787 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8788 : getUnsignedRange(Stride).getUnsignedMin(); 8789 8790 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8791 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8792 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8793 8794 // Although End can be a MIN expression we estimate MinEnd considering only 8795 // the case End = RHS. This is safe because in the other case (Start - End) 8796 // is zero, leading to a zero maximum backedge taken count. 8797 APInt MinEnd = 8798 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8799 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8800 8801 8802 const SCEV *MaxBECount = getCouldNotCompute(); 8803 if (isa<SCEVConstant>(BECount)) 8804 MaxBECount = BECount; 8805 else 8806 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8807 getConstant(MinStride), false); 8808 8809 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8810 MaxBECount = BECount; 8811 8812 return ExitLimit(BECount, MaxBECount, Predicates); 8813 } 8814 8815 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 8816 ScalarEvolution &SE) const { 8817 if (Range.isFullSet()) // Infinite loop. 8818 return SE.getCouldNotCompute(); 8819 8820 // If the start is a non-zero constant, shift the range to simplify things. 8821 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8822 if (!SC->getValue()->isZero()) { 8823 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8824 Operands[0] = SE.getZero(SC->getType()); 8825 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8826 getNoWrapFlags(FlagNW)); 8827 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8828 return ShiftedAddRec->getNumIterationsInRange( 8829 Range.subtract(SC->getAPInt()), SE); 8830 // This is strange and shouldn't happen. 8831 return SE.getCouldNotCompute(); 8832 } 8833 8834 // The only time we can solve this is when we have all constant indices. 8835 // Otherwise, we cannot determine the overflow conditions. 8836 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8837 return SE.getCouldNotCompute(); 8838 8839 // Okay at this point we know that all elements of the chrec are constants and 8840 // that the start element is zero. 8841 8842 // First check to see if the range contains zero. If not, the first 8843 // iteration exits. 8844 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8845 if (!Range.contains(APInt(BitWidth, 0))) 8846 return SE.getZero(getType()); 8847 8848 if (isAffine()) { 8849 // If this is an affine expression then we have this situation: 8850 // Solve {0,+,A} in Range === Ax in Range 8851 8852 // We know that zero is in the range. If A is positive then we know that 8853 // the upper value of the range must be the first possible exit value. 8854 // If A is negative then the lower of the range is the last possible loop 8855 // value. Also note that we already checked for a full range. 8856 APInt One(BitWidth,1); 8857 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 8858 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8859 8860 // The exit value should be (End+A)/A. 8861 APInt ExitVal = (End + A).udiv(A); 8862 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8863 8864 // Evaluate at the exit value. If we really did fall out of the valid 8865 // range, then we computed our trip count, otherwise wrap around or other 8866 // things must have happened. 8867 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8868 if (Range.contains(Val->getValue())) 8869 return SE.getCouldNotCompute(); // Something strange happened 8870 8871 // Ensure that the previous value is in the range. This is a sanity check. 8872 assert(Range.contains( 8873 EvaluateConstantChrecAtConstant(this, 8874 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8875 "Linear scev computation is off in a bad way!"); 8876 return SE.getConstant(ExitValue); 8877 } else if (isQuadratic()) { 8878 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8879 // quadratic equation to solve it. To do this, we must frame our problem in 8880 // terms of figuring out when zero is crossed, instead of when 8881 // Range.getUpper() is crossed. 8882 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8883 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8884 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); 8885 8886 // Next, solve the constructed addrec 8887 if (auto Roots = 8888 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 8889 const SCEVConstant *R1 = Roots->first; 8890 const SCEVConstant *R2 = Roots->second; 8891 // Pick the smallest positive root value. 8892 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8893 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8894 if (!CB->getZExtValue()) 8895 std::swap(R1, R2); // R1 is the minimum root now. 8896 8897 // Make sure the root is not off by one. The returned iteration should 8898 // not be in the range, but the previous one should be. When solving 8899 // for "X*X < 5", for example, we should not return a root of 2. 8900 ConstantInt *R1Val = 8901 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 8902 if (Range.contains(R1Val->getValue())) { 8903 // The next iteration must be out of the range... 8904 ConstantInt *NextVal = 8905 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 8906 8907 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8908 if (!Range.contains(R1Val->getValue())) 8909 return SE.getConstant(NextVal); 8910 return SE.getCouldNotCompute(); // Something strange happened 8911 } 8912 8913 // If R1 was not in the range, then it is a good return value. Make 8914 // sure that R1-1 WAS in the range though, just in case. 8915 ConstantInt *NextVal = 8916 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 8917 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8918 if (Range.contains(R1Val->getValue())) 8919 return R1; 8920 return SE.getCouldNotCompute(); // Something strange happened 8921 } 8922 } 8923 } 8924 8925 return SE.getCouldNotCompute(); 8926 } 8927 8928 namespace { 8929 struct FindUndefs { 8930 bool Found; 8931 FindUndefs() : Found(false) {} 8932 8933 bool follow(const SCEV *S) { 8934 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8935 if (isa<UndefValue>(C->getValue())) 8936 Found = true; 8937 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8938 if (isa<UndefValue>(C->getValue())) 8939 Found = true; 8940 } 8941 8942 // Keep looking if we haven't found it yet. 8943 return !Found; 8944 } 8945 bool isDone() const { 8946 // Stop recursion if we have found an undef. 8947 return Found; 8948 } 8949 }; 8950 } 8951 8952 // Return true when S contains at least an undef value. 8953 static inline bool 8954 containsUndefs(const SCEV *S) { 8955 FindUndefs F; 8956 SCEVTraversal<FindUndefs> ST(F); 8957 ST.visitAll(S); 8958 8959 return F.Found; 8960 } 8961 8962 namespace { 8963 // Collect all steps of SCEV expressions. 8964 struct SCEVCollectStrides { 8965 ScalarEvolution &SE; 8966 SmallVectorImpl<const SCEV *> &Strides; 8967 8968 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8969 : SE(SE), Strides(S) {} 8970 8971 bool follow(const SCEV *S) { 8972 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8973 Strides.push_back(AR->getStepRecurrence(SE)); 8974 return true; 8975 } 8976 bool isDone() const { return false; } 8977 }; 8978 8979 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8980 struct SCEVCollectTerms { 8981 SmallVectorImpl<const SCEV *> &Terms; 8982 8983 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8984 : Terms(T) {} 8985 8986 bool follow(const SCEV *S) { 8987 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 8988 isa<SCEVSignExtendExpr>(S)) { 8989 if (!containsUndefs(S)) 8990 Terms.push_back(S); 8991 8992 // Stop recursion: once we collected a term, do not walk its operands. 8993 return false; 8994 } 8995 8996 // Keep looking. 8997 return true; 8998 } 8999 bool isDone() const { return false; } 9000 }; 9001 9002 // Check if a SCEV contains an AddRecExpr. 9003 struct SCEVHasAddRec { 9004 bool &ContainsAddRec; 9005 9006 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 9007 ContainsAddRec = false; 9008 } 9009 9010 bool follow(const SCEV *S) { 9011 if (isa<SCEVAddRecExpr>(S)) { 9012 ContainsAddRec = true; 9013 9014 // Stop recursion: once we collected a term, do not walk its operands. 9015 return false; 9016 } 9017 9018 // Keep looking. 9019 return true; 9020 } 9021 bool isDone() const { return false; } 9022 }; 9023 9024 // Find factors that are multiplied with an expression that (possibly as a 9025 // subexpression) contains an AddRecExpr. In the expression: 9026 // 9027 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 9028 // 9029 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 9030 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 9031 // parameters as they form a product with an induction variable. 9032 // 9033 // This collector expects all array size parameters to be in the same MulExpr. 9034 // It might be necessary to later add support for collecting parameters that are 9035 // spread over different nested MulExpr. 9036 struct SCEVCollectAddRecMultiplies { 9037 SmallVectorImpl<const SCEV *> &Terms; 9038 ScalarEvolution &SE; 9039 9040 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 9041 : Terms(T), SE(SE) {} 9042 9043 bool follow(const SCEV *S) { 9044 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 9045 bool HasAddRec = false; 9046 SmallVector<const SCEV *, 0> Operands; 9047 for (auto Op : Mul->operands()) { 9048 if (isa<SCEVUnknown>(Op)) { 9049 Operands.push_back(Op); 9050 } else { 9051 bool ContainsAddRec; 9052 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 9053 visitAll(Op, ContiansAddRec); 9054 HasAddRec |= ContainsAddRec; 9055 } 9056 } 9057 if (Operands.size() == 0) 9058 return true; 9059 9060 if (!HasAddRec) 9061 return false; 9062 9063 Terms.push_back(SE.getMulExpr(Operands)); 9064 // Stop recursion: once we collected a term, do not walk its operands. 9065 return false; 9066 } 9067 9068 // Keep looking. 9069 return true; 9070 } 9071 bool isDone() const { return false; } 9072 }; 9073 } 9074 9075 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 9076 /// two places: 9077 /// 1) The strides of AddRec expressions. 9078 /// 2) Unknowns that are multiplied with AddRec expressions. 9079 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 9080 SmallVectorImpl<const SCEV *> &Terms) { 9081 SmallVector<const SCEV *, 4> Strides; 9082 SCEVCollectStrides StrideCollector(*this, Strides); 9083 visitAll(Expr, StrideCollector); 9084 9085 DEBUG({ 9086 dbgs() << "Strides:\n"; 9087 for (const SCEV *S : Strides) 9088 dbgs() << *S << "\n"; 9089 }); 9090 9091 for (const SCEV *S : Strides) { 9092 SCEVCollectTerms TermCollector(Terms); 9093 visitAll(S, TermCollector); 9094 } 9095 9096 DEBUG({ 9097 dbgs() << "Terms:\n"; 9098 for (const SCEV *T : Terms) 9099 dbgs() << *T << "\n"; 9100 }); 9101 9102 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 9103 visitAll(Expr, MulCollector); 9104 } 9105 9106 static bool findArrayDimensionsRec(ScalarEvolution &SE, 9107 SmallVectorImpl<const SCEV *> &Terms, 9108 SmallVectorImpl<const SCEV *> &Sizes) { 9109 int Last = Terms.size() - 1; 9110 const SCEV *Step = Terms[Last]; 9111 9112 // End of recursion. 9113 if (Last == 0) { 9114 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 9115 SmallVector<const SCEV *, 2> Qs; 9116 for (const SCEV *Op : M->operands()) 9117 if (!isa<SCEVConstant>(Op)) 9118 Qs.push_back(Op); 9119 9120 Step = SE.getMulExpr(Qs); 9121 } 9122 9123 Sizes.push_back(Step); 9124 return true; 9125 } 9126 9127 for (const SCEV *&Term : Terms) { 9128 // Normalize the terms before the next call to findArrayDimensionsRec. 9129 const SCEV *Q, *R; 9130 SCEVDivision::divide(SE, Term, Step, &Q, &R); 9131 9132 // Bail out when GCD does not evenly divide one of the terms. 9133 if (!R->isZero()) 9134 return false; 9135 9136 Term = Q; 9137 } 9138 9139 // Remove all SCEVConstants. 9140 Terms.erase( 9141 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 9142 Terms.end()); 9143 9144 if (Terms.size() > 0) 9145 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 9146 return false; 9147 9148 Sizes.push_back(Step); 9149 return true; 9150 } 9151 9152 // Returns true when S contains at least a SCEVUnknown parameter. 9153 static inline bool 9154 containsParameters(const SCEV *S) { 9155 struct FindParameter { 9156 bool FoundParameter; 9157 FindParameter() : FoundParameter(false) {} 9158 9159 bool follow(const SCEV *S) { 9160 if (isa<SCEVUnknown>(S)) { 9161 FoundParameter = true; 9162 // Stop recursion: we found a parameter. 9163 return false; 9164 } 9165 // Keep looking. 9166 return true; 9167 } 9168 bool isDone() const { 9169 // Stop recursion if we have found a parameter. 9170 return FoundParameter; 9171 } 9172 }; 9173 9174 FindParameter F; 9175 SCEVTraversal<FindParameter> ST(F); 9176 ST.visitAll(S); 9177 9178 return F.FoundParameter; 9179 } 9180 9181 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 9182 static inline bool 9183 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 9184 for (const SCEV *T : Terms) 9185 if (containsParameters(T)) 9186 return true; 9187 return false; 9188 } 9189 9190 // Return the number of product terms in S. 9191 static inline int numberOfTerms(const SCEV *S) { 9192 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 9193 return Expr->getNumOperands(); 9194 return 1; 9195 } 9196 9197 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 9198 if (isa<SCEVConstant>(T)) 9199 return nullptr; 9200 9201 if (isa<SCEVUnknown>(T)) 9202 return T; 9203 9204 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 9205 SmallVector<const SCEV *, 2> Factors; 9206 for (const SCEV *Op : M->operands()) 9207 if (!isa<SCEVConstant>(Op)) 9208 Factors.push_back(Op); 9209 9210 return SE.getMulExpr(Factors); 9211 } 9212 9213 return T; 9214 } 9215 9216 /// Return the size of an element read or written by Inst. 9217 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 9218 Type *Ty; 9219 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 9220 Ty = Store->getValueOperand()->getType(); 9221 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 9222 Ty = Load->getType(); 9223 else 9224 return nullptr; 9225 9226 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 9227 return getSizeOfExpr(ETy, Ty); 9228 } 9229 9230 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 9231 SmallVectorImpl<const SCEV *> &Sizes, 9232 const SCEV *ElementSize) const { 9233 if (Terms.size() < 1 || !ElementSize) 9234 return; 9235 9236 // Early return when Terms do not contain parameters: we do not delinearize 9237 // non parametric SCEVs. 9238 if (!containsParameters(Terms)) 9239 return; 9240 9241 DEBUG({ 9242 dbgs() << "Terms:\n"; 9243 for (const SCEV *T : Terms) 9244 dbgs() << *T << "\n"; 9245 }); 9246 9247 // Remove duplicates. 9248 std::sort(Terms.begin(), Terms.end()); 9249 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 9250 9251 // Put larger terms first. 9252 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 9253 return numberOfTerms(LHS) > numberOfTerms(RHS); 9254 }); 9255 9256 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9257 9258 // Try to divide all terms by the element size. If term is not divisible by 9259 // element size, proceed with the original term. 9260 for (const SCEV *&Term : Terms) { 9261 const SCEV *Q, *R; 9262 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 9263 if (!Q->isZero()) 9264 Term = Q; 9265 } 9266 9267 SmallVector<const SCEV *, 4> NewTerms; 9268 9269 // Remove constant factors. 9270 for (const SCEV *T : Terms) 9271 if (const SCEV *NewT = removeConstantFactors(SE, T)) 9272 NewTerms.push_back(NewT); 9273 9274 DEBUG({ 9275 dbgs() << "Terms after sorting:\n"; 9276 for (const SCEV *T : NewTerms) 9277 dbgs() << *T << "\n"; 9278 }); 9279 9280 if (NewTerms.empty() || 9281 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 9282 Sizes.clear(); 9283 return; 9284 } 9285 9286 // The last element to be pushed into Sizes is the size of an element. 9287 Sizes.push_back(ElementSize); 9288 9289 DEBUG({ 9290 dbgs() << "Sizes:\n"; 9291 for (const SCEV *S : Sizes) 9292 dbgs() << *S << "\n"; 9293 }); 9294 } 9295 9296 void ScalarEvolution::computeAccessFunctions( 9297 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 9298 SmallVectorImpl<const SCEV *> &Sizes) { 9299 9300 // Early exit in case this SCEV is not an affine multivariate function. 9301 if (Sizes.empty()) 9302 return; 9303 9304 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 9305 if (!AR->isAffine()) 9306 return; 9307 9308 const SCEV *Res = Expr; 9309 int Last = Sizes.size() - 1; 9310 for (int i = Last; i >= 0; i--) { 9311 const SCEV *Q, *R; 9312 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 9313 9314 DEBUG({ 9315 dbgs() << "Res: " << *Res << "\n"; 9316 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 9317 dbgs() << "Res divided by Sizes[i]:\n"; 9318 dbgs() << "Quotient: " << *Q << "\n"; 9319 dbgs() << "Remainder: " << *R << "\n"; 9320 }); 9321 9322 Res = Q; 9323 9324 // Do not record the last subscript corresponding to the size of elements in 9325 // the array. 9326 if (i == Last) { 9327 9328 // Bail out if the remainder is too complex. 9329 if (isa<SCEVAddRecExpr>(R)) { 9330 Subscripts.clear(); 9331 Sizes.clear(); 9332 return; 9333 } 9334 9335 continue; 9336 } 9337 9338 // Record the access function for the current subscript. 9339 Subscripts.push_back(R); 9340 } 9341 9342 // Also push in last position the remainder of the last division: it will be 9343 // the access function of the innermost dimension. 9344 Subscripts.push_back(Res); 9345 9346 std::reverse(Subscripts.begin(), Subscripts.end()); 9347 9348 DEBUG({ 9349 dbgs() << "Subscripts:\n"; 9350 for (const SCEV *S : Subscripts) 9351 dbgs() << *S << "\n"; 9352 }); 9353 } 9354 9355 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 9356 /// sizes of an array access. Returns the remainder of the delinearization that 9357 /// is the offset start of the array. The SCEV->delinearize algorithm computes 9358 /// the multiples of SCEV coefficients: that is a pattern matching of sub 9359 /// expressions in the stride and base of a SCEV corresponding to the 9360 /// computation of a GCD (greatest common divisor) of base and stride. When 9361 /// SCEV->delinearize fails, it returns the SCEV unchanged. 9362 /// 9363 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 9364 /// 9365 /// void foo(long n, long m, long o, double A[n][m][o]) { 9366 /// 9367 /// for (long i = 0; i < n; i++) 9368 /// for (long j = 0; j < m; j++) 9369 /// for (long k = 0; k < o; k++) 9370 /// A[i][j][k] = 1.0; 9371 /// } 9372 /// 9373 /// the delinearization input is the following AddRec SCEV: 9374 /// 9375 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 9376 /// 9377 /// From this SCEV, we are able to say that the base offset of the access is %A 9378 /// because it appears as an offset that does not divide any of the strides in 9379 /// the loops: 9380 /// 9381 /// CHECK: Base offset: %A 9382 /// 9383 /// and then SCEV->delinearize determines the size of some of the dimensions of 9384 /// the array as these are the multiples by which the strides are happening: 9385 /// 9386 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 9387 /// 9388 /// Note that the outermost dimension remains of UnknownSize because there are 9389 /// no strides that would help identifying the size of the last dimension: when 9390 /// the array has been statically allocated, one could compute the size of that 9391 /// dimension by dividing the overall size of the array by the size of the known 9392 /// dimensions: %m * %o * 8. 9393 /// 9394 /// Finally delinearize provides the access functions for the array reference 9395 /// that does correspond to A[i][j][k] of the above C testcase: 9396 /// 9397 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 9398 /// 9399 /// The testcases are checking the output of a function pass: 9400 /// DelinearizationPass that walks through all loads and stores of a function 9401 /// asking for the SCEV of the memory access with respect to all enclosing 9402 /// loops, calling SCEV->delinearize on that and printing the results. 9403 9404 void ScalarEvolution::delinearize(const SCEV *Expr, 9405 SmallVectorImpl<const SCEV *> &Subscripts, 9406 SmallVectorImpl<const SCEV *> &Sizes, 9407 const SCEV *ElementSize) { 9408 // First step: collect parametric terms. 9409 SmallVector<const SCEV *, 4> Terms; 9410 collectParametricTerms(Expr, Terms); 9411 9412 if (Terms.empty()) 9413 return; 9414 9415 // Second step: find subscript sizes. 9416 findArrayDimensions(Terms, Sizes, ElementSize); 9417 9418 if (Sizes.empty()) 9419 return; 9420 9421 // Third step: compute the access functions for each subscript. 9422 computeAccessFunctions(Expr, Subscripts, Sizes); 9423 9424 if (Subscripts.empty()) 9425 return; 9426 9427 DEBUG({ 9428 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9429 dbgs() << "ArrayDecl[UnknownSize]"; 9430 for (const SCEV *S : Sizes) 9431 dbgs() << "[" << *S << "]"; 9432 9433 dbgs() << "\nArrayRef"; 9434 for (const SCEV *S : Subscripts) 9435 dbgs() << "[" << *S << "]"; 9436 dbgs() << "\n"; 9437 }); 9438 } 9439 9440 //===----------------------------------------------------------------------===// 9441 // SCEVCallbackVH Class Implementation 9442 //===----------------------------------------------------------------------===// 9443 9444 void ScalarEvolution::SCEVCallbackVH::deleted() { 9445 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9446 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9447 SE->ConstantEvolutionLoopExitValue.erase(PN); 9448 SE->eraseValueFromMap(getValPtr()); 9449 // this now dangles! 9450 } 9451 9452 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9453 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9454 9455 // Forget all the expressions associated with users of the old value, 9456 // so that future queries will recompute the expressions using the new 9457 // value. 9458 Value *Old = getValPtr(); 9459 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9460 SmallPtrSet<User *, 8> Visited; 9461 while (!Worklist.empty()) { 9462 User *U = Worklist.pop_back_val(); 9463 // Deleting the Old value will cause this to dangle. Postpone 9464 // that until everything else is done. 9465 if (U == Old) 9466 continue; 9467 if (!Visited.insert(U).second) 9468 continue; 9469 if (PHINode *PN = dyn_cast<PHINode>(U)) 9470 SE->ConstantEvolutionLoopExitValue.erase(PN); 9471 SE->eraseValueFromMap(U); 9472 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9473 } 9474 // Delete the Old value. 9475 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9476 SE->ConstantEvolutionLoopExitValue.erase(PN); 9477 SE->eraseValueFromMap(Old); 9478 // this now dangles! 9479 } 9480 9481 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9482 : CallbackVH(V), SE(se) {} 9483 9484 //===----------------------------------------------------------------------===// 9485 // ScalarEvolution Class Implementation 9486 //===----------------------------------------------------------------------===// 9487 9488 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9489 AssumptionCache &AC, DominatorTree &DT, 9490 LoopInfo &LI) 9491 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9492 CouldNotCompute(new SCEVCouldNotCompute()), 9493 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9494 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9495 FirstUnknown(nullptr) { 9496 9497 // To use guards for proving predicates, we need to scan every instruction in 9498 // relevant basic blocks, and not just terminators. Doing this is a waste of 9499 // time if the IR does not actually contain any calls to 9500 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 9501 // 9502 // This pessimizes the case where a pass that preserves ScalarEvolution wants 9503 // to _add_ guards to the module when there weren't any before, and wants 9504 // ScalarEvolution to optimize based on those guards. For now we prefer to be 9505 // efficient in lieu of being smart in that rather obscure case. 9506 9507 auto *GuardDecl = F.getParent()->getFunction( 9508 Intrinsic::getName(Intrinsic::experimental_guard)); 9509 HasGuards = GuardDecl && !GuardDecl->use_empty(); 9510 } 9511 9512 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9513 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 9514 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 9515 ValueExprMap(std::move(Arg.ValueExprMap)), 9516 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 9517 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9518 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9519 PredicatedBackedgeTakenCounts( 9520 std::move(Arg.PredicatedBackedgeTakenCounts)), 9521 ConstantEvolutionLoopExitValue( 9522 std::move(Arg.ConstantEvolutionLoopExitValue)), 9523 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9524 LoopDispositions(std::move(Arg.LoopDispositions)), 9525 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 9526 BlockDispositions(std::move(Arg.BlockDispositions)), 9527 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9528 SignedRanges(std::move(Arg.SignedRanges)), 9529 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9530 UniquePreds(std::move(Arg.UniquePreds)), 9531 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9532 FirstUnknown(Arg.FirstUnknown) { 9533 Arg.FirstUnknown = nullptr; 9534 } 9535 9536 ScalarEvolution::~ScalarEvolution() { 9537 // Iterate through all the SCEVUnknown instances and call their 9538 // destructors, so that they release their references to their values. 9539 for (SCEVUnknown *U = FirstUnknown; U;) { 9540 SCEVUnknown *Tmp = U; 9541 U = U->Next; 9542 Tmp->~SCEVUnknown(); 9543 } 9544 FirstUnknown = nullptr; 9545 9546 ExprValueMap.clear(); 9547 ValueExprMap.clear(); 9548 HasRecMap.clear(); 9549 9550 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9551 // that a loop had multiple computable exits. 9552 for (auto &BTCI : BackedgeTakenCounts) 9553 BTCI.second.clear(); 9554 for (auto &BTCI : PredicatedBackedgeTakenCounts) 9555 BTCI.second.clear(); 9556 9557 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9558 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9559 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9560 } 9561 9562 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9563 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9564 } 9565 9566 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9567 const Loop *L) { 9568 // Print all inner loops first 9569 for (Loop *I : *L) 9570 PrintLoopInfo(OS, SE, I); 9571 9572 OS << "Loop "; 9573 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9574 OS << ": "; 9575 9576 SmallVector<BasicBlock *, 8> ExitBlocks; 9577 L->getExitBlocks(ExitBlocks); 9578 if (ExitBlocks.size() != 1) 9579 OS << "<multiple exits> "; 9580 9581 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9582 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9583 } else { 9584 OS << "Unpredictable backedge-taken count. "; 9585 } 9586 9587 OS << "\n" 9588 "Loop "; 9589 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9590 OS << ": "; 9591 9592 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9593 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9594 } else { 9595 OS << "Unpredictable max backedge-taken count. "; 9596 } 9597 9598 OS << "\n" 9599 "Loop "; 9600 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9601 OS << ": "; 9602 9603 SCEVUnionPredicate Pred; 9604 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 9605 if (!isa<SCEVCouldNotCompute>(PBT)) { 9606 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 9607 OS << " Predicates:\n"; 9608 Pred.print(OS, 4); 9609 } else { 9610 OS << "Unpredictable predicated backedge-taken count. "; 9611 } 9612 OS << "\n"; 9613 } 9614 9615 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 9616 switch (LD) { 9617 case ScalarEvolution::LoopVariant: 9618 return "Variant"; 9619 case ScalarEvolution::LoopInvariant: 9620 return "Invariant"; 9621 case ScalarEvolution::LoopComputable: 9622 return "Computable"; 9623 } 9624 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 9625 } 9626 9627 void ScalarEvolution::print(raw_ostream &OS) const { 9628 // ScalarEvolution's implementation of the print method is to print 9629 // out SCEV values of all instructions that are interesting. Doing 9630 // this potentially causes it to create new SCEV objects though, 9631 // which technically conflicts with the const qualifier. This isn't 9632 // observable from outside the class though, so casting away the 9633 // const isn't dangerous. 9634 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9635 9636 OS << "Classifying expressions for: "; 9637 F.printAsOperand(OS, /*PrintType=*/false); 9638 OS << "\n"; 9639 for (Instruction &I : instructions(F)) 9640 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9641 OS << I << '\n'; 9642 OS << " --> "; 9643 const SCEV *SV = SE.getSCEV(&I); 9644 SV->print(OS); 9645 if (!isa<SCEVCouldNotCompute>(SV)) { 9646 OS << " U: "; 9647 SE.getUnsignedRange(SV).print(OS); 9648 OS << " S: "; 9649 SE.getSignedRange(SV).print(OS); 9650 } 9651 9652 const Loop *L = LI.getLoopFor(I.getParent()); 9653 9654 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9655 if (AtUse != SV) { 9656 OS << " --> "; 9657 AtUse->print(OS); 9658 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9659 OS << " U: "; 9660 SE.getUnsignedRange(AtUse).print(OS); 9661 OS << " S: "; 9662 SE.getSignedRange(AtUse).print(OS); 9663 } 9664 } 9665 9666 if (L) { 9667 OS << "\t\t" "Exits: "; 9668 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9669 if (!SE.isLoopInvariant(ExitValue, L)) { 9670 OS << "<<Unknown>>"; 9671 } else { 9672 OS << *ExitValue; 9673 } 9674 9675 bool First = true; 9676 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 9677 if (First) { 9678 OS << "\t\t" "LoopDispositions: { "; 9679 First = false; 9680 } else { 9681 OS << ", "; 9682 } 9683 9684 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9685 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 9686 } 9687 9688 for (auto *InnerL : depth_first(L)) { 9689 if (InnerL == L) 9690 continue; 9691 if (First) { 9692 OS << "\t\t" "LoopDispositions: { "; 9693 First = false; 9694 } else { 9695 OS << ", "; 9696 } 9697 9698 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9699 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 9700 } 9701 9702 OS << " }"; 9703 } 9704 9705 OS << "\n"; 9706 } 9707 9708 OS << "Determining loop execution counts for: "; 9709 F.printAsOperand(OS, /*PrintType=*/false); 9710 OS << "\n"; 9711 for (Loop *I : LI) 9712 PrintLoopInfo(OS, &SE, I); 9713 } 9714 9715 ScalarEvolution::LoopDisposition 9716 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9717 auto &Values = LoopDispositions[S]; 9718 for (auto &V : Values) { 9719 if (V.getPointer() == L) 9720 return V.getInt(); 9721 } 9722 Values.emplace_back(L, LoopVariant); 9723 LoopDisposition D = computeLoopDisposition(S, L); 9724 auto &Values2 = LoopDispositions[S]; 9725 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9726 if (V.getPointer() == L) { 9727 V.setInt(D); 9728 break; 9729 } 9730 } 9731 return D; 9732 } 9733 9734 ScalarEvolution::LoopDisposition 9735 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9736 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9737 case scConstant: 9738 return LoopInvariant; 9739 case scTruncate: 9740 case scZeroExtend: 9741 case scSignExtend: 9742 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9743 case scAddRecExpr: { 9744 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9745 9746 // If L is the addrec's loop, it's computable. 9747 if (AR->getLoop() == L) 9748 return LoopComputable; 9749 9750 // Add recurrences are never invariant in the function-body (null loop). 9751 if (!L) 9752 return LoopVariant; 9753 9754 // This recurrence is variant w.r.t. L if L contains AR's loop. 9755 if (L->contains(AR->getLoop())) 9756 return LoopVariant; 9757 9758 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9759 if (AR->getLoop()->contains(L)) 9760 return LoopInvariant; 9761 9762 // This recurrence is variant w.r.t. L if any of its operands 9763 // are variant. 9764 for (auto *Op : AR->operands()) 9765 if (!isLoopInvariant(Op, L)) 9766 return LoopVariant; 9767 9768 // Otherwise it's loop-invariant. 9769 return LoopInvariant; 9770 } 9771 case scAddExpr: 9772 case scMulExpr: 9773 case scUMaxExpr: 9774 case scSMaxExpr: { 9775 bool HasVarying = false; 9776 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9777 LoopDisposition D = getLoopDisposition(Op, L); 9778 if (D == LoopVariant) 9779 return LoopVariant; 9780 if (D == LoopComputable) 9781 HasVarying = true; 9782 } 9783 return HasVarying ? LoopComputable : LoopInvariant; 9784 } 9785 case scUDivExpr: { 9786 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9787 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9788 if (LD == LoopVariant) 9789 return LoopVariant; 9790 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9791 if (RD == LoopVariant) 9792 return LoopVariant; 9793 return (LD == LoopInvariant && RD == LoopInvariant) ? 9794 LoopInvariant : LoopComputable; 9795 } 9796 case scUnknown: 9797 // All non-instruction values are loop invariant. All instructions are loop 9798 // invariant if they are not contained in the specified loop. 9799 // Instructions are never considered invariant in the function body 9800 // (null loop) because they are defined within the "loop". 9801 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9802 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9803 return LoopInvariant; 9804 case scCouldNotCompute: 9805 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9806 } 9807 llvm_unreachable("Unknown SCEV kind!"); 9808 } 9809 9810 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9811 return getLoopDisposition(S, L) == LoopInvariant; 9812 } 9813 9814 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9815 return getLoopDisposition(S, L) == LoopComputable; 9816 } 9817 9818 ScalarEvolution::BlockDisposition 9819 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9820 auto &Values = BlockDispositions[S]; 9821 for (auto &V : Values) { 9822 if (V.getPointer() == BB) 9823 return V.getInt(); 9824 } 9825 Values.emplace_back(BB, DoesNotDominateBlock); 9826 BlockDisposition D = computeBlockDisposition(S, BB); 9827 auto &Values2 = BlockDispositions[S]; 9828 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9829 if (V.getPointer() == BB) { 9830 V.setInt(D); 9831 break; 9832 } 9833 } 9834 return D; 9835 } 9836 9837 ScalarEvolution::BlockDisposition 9838 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9839 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9840 case scConstant: 9841 return ProperlyDominatesBlock; 9842 case scTruncate: 9843 case scZeroExtend: 9844 case scSignExtend: 9845 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9846 case scAddRecExpr: { 9847 // This uses a "dominates" query instead of "properly dominates" query 9848 // to test for proper dominance too, because the instruction which 9849 // produces the addrec's value is a PHI, and a PHI effectively properly 9850 // dominates its entire containing block. 9851 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9852 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9853 return DoesNotDominateBlock; 9854 9855 // Fall through into SCEVNAryExpr handling. 9856 LLVM_FALLTHROUGH; 9857 } 9858 case scAddExpr: 9859 case scMulExpr: 9860 case scUMaxExpr: 9861 case scSMaxExpr: { 9862 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9863 bool Proper = true; 9864 for (const SCEV *NAryOp : NAry->operands()) { 9865 BlockDisposition D = getBlockDisposition(NAryOp, BB); 9866 if (D == DoesNotDominateBlock) 9867 return DoesNotDominateBlock; 9868 if (D == DominatesBlock) 9869 Proper = false; 9870 } 9871 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9872 } 9873 case scUDivExpr: { 9874 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9875 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9876 BlockDisposition LD = getBlockDisposition(LHS, BB); 9877 if (LD == DoesNotDominateBlock) 9878 return DoesNotDominateBlock; 9879 BlockDisposition RD = getBlockDisposition(RHS, BB); 9880 if (RD == DoesNotDominateBlock) 9881 return DoesNotDominateBlock; 9882 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9883 ProperlyDominatesBlock : DominatesBlock; 9884 } 9885 case scUnknown: 9886 if (Instruction *I = 9887 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9888 if (I->getParent() == BB) 9889 return DominatesBlock; 9890 if (DT.properlyDominates(I->getParent(), BB)) 9891 return ProperlyDominatesBlock; 9892 return DoesNotDominateBlock; 9893 } 9894 return ProperlyDominatesBlock; 9895 case scCouldNotCompute: 9896 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9897 } 9898 llvm_unreachable("Unknown SCEV kind!"); 9899 } 9900 9901 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9902 return getBlockDisposition(S, BB) >= DominatesBlock; 9903 } 9904 9905 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9906 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9907 } 9908 9909 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9910 // Search for a SCEV expression node within an expression tree. 9911 // Implements SCEVTraversal::Visitor. 9912 struct SCEVSearch { 9913 const SCEV *Node; 9914 bool IsFound; 9915 9916 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9917 9918 bool follow(const SCEV *S) { 9919 IsFound |= (S == Node); 9920 return !IsFound; 9921 } 9922 bool isDone() const { return IsFound; } 9923 }; 9924 9925 SCEVSearch Search(Op); 9926 visitAll(S, Search); 9927 return Search.IsFound; 9928 } 9929 9930 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9931 ValuesAtScopes.erase(S); 9932 LoopDispositions.erase(S); 9933 BlockDispositions.erase(S); 9934 UnsignedRanges.erase(S); 9935 SignedRanges.erase(S); 9936 ExprValueMap.erase(S); 9937 HasRecMap.erase(S); 9938 9939 auto RemoveSCEVFromBackedgeMap = 9940 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 9941 for (auto I = Map.begin(), E = Map.end(); I != E;) { 9942 BackedgeTakenInfo &BEInfo = I->second; 9943 if (BEInfo.hasOperand(S, this)) { 9944 BEInfo.clear(); 9945 Map.erase(I++); 9946 } else 9947 ++I; 9948 } 9949 }; 9950 9951 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 9952 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 9953 } 9954 9955 typedef DenseMap<const Loop *, std::string> VerifyMap; 9956 9957 /// replaceSubString - Replaces all occurrences of From in Str with To. 9958 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9959 size_t Pos = 0; 9960 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9961 Str.replace(Pos, From.size(), To.data(), To.size()); 9962 Pos += To.size(); 9963 } 9964 } 9965 9966 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9967 static void 9968 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9969 std::string &S = Map[L]; 9970 if (S.empty()) { 9971 raw_string_ostream OS(S); 9972 SE.getBackedgeTakenCount(L)->print(OS); 9973 9974 // false and 0 are semantically equivalent. This can happen in dead loops. 9975 replaceSubString(OS.str(), "false", "0"); 9976 // Remove wrap flags, their use in SCEV is highly fragile. 9977 // FIXME: Remove this when SCEV gets smarter about them. 9978 replaceSubString(OS.str(), "<nw>", ""); 9979 replaceSubString(OS.str(), "<nsw>", ""); 9980 replaceSubString(OS.str(), "<nuw>", ""); 9981 } 9982 9983 for (auto *R : reverse(*L)) 9984 getLoopBackedgeTakenCounts(R, Map, SE); // recurse. 9985 } 9986 9987 void ScalarEvolution::verify() const { 9988 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9989 9990 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9991 // FIXME: It would be much better to store actual values instead of strings, 9992 // but SCEV pointers will change if we drop the caches. 9993 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9994 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9995 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9996 9997 // Gather stringified backedge taken counts for all loops using a fresh 9998 // ScalarEvolution object. 9999 ScalarEvolution SE2(F, TLI, AC, DT, LI); 10000 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 10001 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 10002 10003 // Now compare whether they're the same with and without caches. This allows 10004 // verifying that no pass changed the cache. 10005 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 10006 "New loops suddenly appeared!"); 10007 10008 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 10009 OldE = BackedgeDumpsOld.end(), 10010 NewI = BackedgeDumpsNew.begin(); 10011 OldI != OldE; ++OldI, ++NewI) { 10012 assert(OldI->first == NewI->first && "Loop order changed!"); 10013 10014 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 10015 // changes. 10016 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 10017 // means that a pass is buggy or SCEV has to learn a new pattern but is 10018 // usually not harmful. 10019 if (OldI->second != NewI->second && 10020 OldI->second.find("undef") == std::string::npos && 10021 NewI->second.find("undef") == std::string::npos && 10022 OldI->second != "***COULDNOTCOMPUTE***" && 10023 NewI->second != "***COULDNOTCOMPUTE***") { 10024 dbgs() << "SCEVValidator: SCEV for loop '" 10025 << OldI->first->getHeader()->getName() 10026 << "' changed from '" << OldI->second 10027 << "' to '" << NewI->second << "'!\n"; 10028 std::abort(); 10029 } 10030 } 10031 10032 // TODO: Verify more things. 10033 } 10034 10035 char ScalarEvolutionAnalysis::PassID; 10036 10037 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 10038 FunctionAnalysisManager &AM) { 10039 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 10040 AM.getResult<AssumptionAnalysis>(F), 10041 AM.getResult<DominatorTreeAnalysis>(F), 10042 AM.getResult<LoopAnalysis>(F)); 10043 } 10044 10045 PreservedAnalyses 10046 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 10047 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 10048 return PreservedAnalyses::all(); 10049 } 10050 10051 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 10052 "Scalar Evolution Analysis", false, true) 10053 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10054 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 10055 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 10056 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 10057 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 10058 "Scalar Evolution Analysis", false, true) 10059 char ScalarEvolutionWrapperPass::ID = 0; 10060 10061 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 10062 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 10063 } 10064 10065 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 10066 SE.reset(new ScalarEvolution( 10067 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 10068 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 10069 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 10070 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 10071 return false; 10072 } 10073 10074 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 10075 10076 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 10077 SE->print(OS); 10078 } 10079 10080 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 10081 if (!VerifySCEV) 10082 return; 10083 10084 SE->verify(); 10085 } 10086 10087 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 10088 AU.setPreservesAll(); 10089 AU.addRequiredTransitive<AssumptionCacheTracker>(); 10090 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 10091 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 10092 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 10093 } 10094 10095 const SCEVPredicate * 10096 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 10097 const SCEVConstant *RHS) { 10098 FoldingSetNodeID ID; 10099 // Unique this node based on the arguments 10100 ID.AddInteger(SCEVPredicate::P_Equal); 10101 ID.AddPointer(LHS); 10102 ID.AddPointer(RHS); 10103 void *IP = nullptr; 10104 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10105 return S; 10106 SCEVEqualPredicate *Eq = new (SCEVAllocator) 10107 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 10108 UniquePreds.InsertNode(Eq, IP); 10109 return Eq; 10110 } 10111 10112 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 10113 const SCEVAddRecExpr *AR, 10114 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10115 FoldingSetNodeID ID; 10116 // Unique this node based on the arguments 10117 ID.AddInteger(SCEVPredicate::P_Wrap); 10118 ID.AddPointer(AR); 10119 ID.AddInteger(AddedFlags); 10120 void *IP = nullptr; 10121 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10122 return S; 10123 auto *OF = new (SCEVAllocator) 10124 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 10125 UniquePreds.InsertNode(OF, IP); 10126 return OF; 10127 } 10128 10129 namespace { 10130 10131 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 10132 public: 10133 /// Rewrites \p S in the context of a loop L and the SCEV predication 10134 /// infrastructure. 10135 /// 10136 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 10137 /// equivalences present in \p Pred. 10138 /// 10139 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 10140 /// \p NewPreds such that the result will be an AddRecExpr. 10141 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 10142 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10143 SCEVUnionPredicate *Pred) { 10144 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 10145 return Rewriter.visit(S); 10146 } 10147 10148 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 10149 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10150 SCEVUnionPredicate *Pred) 10151 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 10152 10153 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 10154 if (Pred) { 10155 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 10156 for (auto *Pred : ExprPreds) 10157 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 10158 if (IPred->getLHS() == Expr) 10159 return IPred->getRHS(); 10160 } 10161 10162 return Expr; 10163 } 10164 10165 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 10166 const SCEV *Operand = visit(Expr->getOperand()); 10167 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10168 if (AR && AR->getLoop() == L && AR->isAffine()) { 10169 // This couldn't be folded because the operand didn't have the nuw 10170 // flag. Add the nusw flag as an assumption that we could make. 10171 const SCEV *Step = AR->getStepRecurrence(SE); 10172 Type *Ty = Expr->getType(); 10173 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 10174 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 10175 SE.getSignExtendExpr(Step, Ty), L, 10176 AR->getNoWrapFlags()); 10177 } 10178 return SE.getZeroExtendExpr(Operand, Expr->getType()); 10179 } 10180 10181 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 10182 const SCEV *Operand = visit(Expr->getOperand()); 10183 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10184 if (AR && AR->getLoop() == L && AR->isAffine()) { 10185 // This couldn't be folded because the operand didn't have the nsw 10186 // flag. Add the nssw flag as an assumption that we could make. 10187 const SCEV *Step = AR->getStepRecurrence(SE); 10188 Type *Ty = Expr->getType(); 10189 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 10190 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 10191 SE.getSignExtendExpr(Step, Ty), L, 10192 AR->getNoWrapFlags()); 10193 } 10194 return SE.getSignExtendExpr(Operand, Expr->getType()); 10195 } 10196 10197 private: 10198 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 10199 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10200 auto *A = SE.getWrapPredicate(AR, AddedFlags); 10201 if (!NewPreds) { 10202 // Check if we've already made this assumption. 10203 return Pred && Pred->implies(A); 10204 } 10205 NewPreds->insert(A); 10206 return true; 10207 } 10208 10209 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 10210 SCEVUnionPredicate *Pred; 10211 const Loop *L; 10212 }; 10213 } // end anonymous namespace 10214 10215 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 10216 SCEVUnionPredicate &Preds) { 10217 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 10218 } 10219 10220 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 10221 const SCEV *S, const Loop *L, 10222 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 10223 10224 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 10225 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 10226 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 10227 10228 if (!AddRec) 10229 return nullptr; 10230 10231 // Since the transformation was successful, we can now transfer the SCEV 10232 // predicates. 10233 for (auto *P : TransformPreds) 10234 Preds.insert(P); 10235 10236 return AddRec; 10237 } 10238 10239 /// SCEV predicates 10240 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 10241 SCEVPredicateKind Kind) 10242 : FastID(ID), Kind(Kind) {} 10243 10244 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 10245 const SCEVUnknown *LHS, 10246 const SCEVConstant *RHS) 10247 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 10248 10249 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 10250 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 10251 10252 if (!Op) 10253 return false; 10254 10255 return Op->LHS == LHS && Op->RHS == RHS; 10256 } 10257 10258 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 10259 10260 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 10261 10262 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 10263 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 10264 } 10265 10266 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 10267 const SCEVAddRecExpr *AR, 10268 IncrementWrapFlags Flags) 10269 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 10270 10271 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 10272 10273 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 10274 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 10275 10276 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 10277 } 10278 10279 bool SCEVWrapPredicate::isAlwaysTrue() const { 10280 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 10281 IncrementWrapFlags IFlags = Flags; 10282 10283 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 10284 IFlags = clearFlags(IFlags, IncrementNSSW); 10285 10286 return IFlags == IncrementAnyWrap; 10287 } 10288 10289 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 10290 OS.indent(Depth) << *getExpr() << " Added Flags: "; 10291 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 10292 OS << "<nusw>"; 10293 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 10294 OS << "<nssw>"; 10295 OS << "\n"; 10296 } 10297 10298 SCEVWrapPredicate::IncrementWrapFlags 10299 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 10300 ScalarEvolution &SE) { 10301 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 10302 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 10303 10304 // We can safely transfer the NSW flag as NSSW. 10305 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 10306 ImpliedFlags = IncrementNSSW; 10307 10308 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 10309 // If the increment is positive, the SCEV NUW flag will also imply the 10310 // WrapPredicate NUSW flag. 10311 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 10312 if (Step->getValue()->getValue().isNonNegative()) 10313 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 10314 } 10315 10316 return ImpliedFlags; 10317 } 10318 10319 /// Union predicates don't get cached so create a dummy set ID for it. 10320 SCEVUnionPredicate::SCEVUnionPredicate() 10321 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 10322 10323 bool SCEVUnionPredicate::isAlwaysTrue() const { 10324 return all_of(Preds, 10325 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 10326 } 10327 10328 ArrayRef<const SCEVPredicate *> 10329 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 10330 auto I = SCEVToPreds.find(Expr); 10331 if (I == SCEVToPreds.end()) 10332 return ArrayRef<const SCEVPredicate *>(); 10333 return I->second; 10334 } 10335 10336 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 10337 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 10338 return all_of(Set->Preds, 10339 [this](const SCEVPredicate *I) { return this->implies(I); }); 10340 10341 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 10342 if (ScevPredsIt == SCEVToPreds.end()) 10343 return false; 10344 auto &SCEVPreds = ScevPredsIt->second; 10345 10346 return any_of(SCEVPreds, 10347 [N](const SCEVPredicate *I) { return I->implies(N); }); 10348 } 10349 10350 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 10351 10352 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 10353 for (auto Pred : Preds) 10354 Pred->print(OS, Depth); 10355 } 10356 10357 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 10358 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 10359 for (auto Pred : Set->Preds) 10360 add(Pred); 10361 return; 10362 } 10363 10364 if (implies(N)) 10365 return; 10366 10367 const SCEV *Key = N->getExpr(); 10368 assert(Key && "Only SCEVUnionPredicate doesn't have an " 10369 " associated expression!"); 10370 10371 SCEVToPreds[Key].push_back(N); 10372 Preds.push_back(N); 10373 } 10374 10375 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 10376 Loop &L) 10377 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {} 10378 10379 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 10380 const SCEV *Expr = SE.getSCEV(V); 10381 RewriteEntry &Entry = RewriteMap[Expr]; 10382 10383 // If we already have an entry and the version matches, return it. 10384 if (Entry.second && Generation == Entry.first) 10385 return Entry.second; 10386 10387 // We found an entry but it's stale. Rewrite the stale entry 10388 // acording to the current predicate. 10389 if (Entry.second) 10390 Expr = Entry.second; 10391 10392 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 10393 Entry = {Generation, NewSCEV}; 10394 10395 return NewSCEV; 10396 } 10397 10398 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 10399 if (!BackedgeCount) { 10400 SCEVUnionPredicate BackedgePred; 10401 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 10402 addPredicate(BackedgePred); 10403 } 10404 return BackedgeCount; 10405 } 10406 10407 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 10408 if (Preds.implies(&Pred)) 10409 return; 10410 Preds.add(&Pred); 10411 updateGeneration(); 10412 } 10413 10414 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 10415 return Preds; 10416 } 10417 10418 void PredicatedScalarEvolution::updateGeneration() { 10419 // If the generation number wrapped recompute everything. 10420 if (++Generation == 0) { 10421 for (auto &II : RewriteMap) { 10422 const SCEV *Rewritten = II.second.second; 10423 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 10424 } 10425 } 10426 } 10427 10428 void PredicatedScalarEvolution::setNoOverflow( 10429 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10430 const SCEV *Expr = getSCEV(V); 10431 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10432 10433 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 10434 10435 // Clear the statically implied flags. 10436 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 10437 addPredicate(*SE.getWrapPredicate(AR, Flags)); 10438 10439 auto II = FlagsMap.insert({V, Flags}); 10440 if (!II.second) 10441 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 10442 } 10443 10444 bool PredicatedScalarEvolution::hasNoOverflow( 10445 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10446 const SCEV *Expr = getSCEV(V); 10447 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10448 10449 Flags = SCEVWrapPredicate::clearFlags( 10450 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 10451 10452 auto II = FlagsMap.find(V); 10453 10454 if (II != FlagsMap.end()) 10455 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 10456 10457 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 10458 } 10459 10460 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 10461 const SCEV *Expr = this->getSCEV(V); 10462 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 10463 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 10464 10465 if (!New) 10466 return nullptr; 10467 10468 for (auto *P : NewPreds) 10469 Preds.add(P); 10470 10471 updateGeneration(); 10472 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 10473 return New; 10474 } 10475 10476 PredicatedScalarEvolution::PredicatedScalarEvolution( 10477 const PredicatedScalarEvolution &Init) 10478 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 10479 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 10480 for (const auto &I : Init.FlagsMap) 10481 FlagsMap.insert(I); 10482 } 10483 10484 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 10485 // For each block. 10486 for (auto *BB : L.getBlocks()) 10487 for (auto &I : *BB) { 10488 if (!SE.isSCEVable(I.getType())) 10489 continue; 10490 10491 auto *Expr = SE.getSCEV(&I); 10492 auto II = RewriteMap.find(Expr); 10493 10494 if (II == RewriteMap.end()) 10495 continue; 10496 10497 // Don't print things that are not interesting. 10498 if (II->second.second == Expr) 10499 continue; 10500 10501 OS.indent(Depth) << "[PSE]" << I << ":\n"; 10502 OS.indent(Depth + 2) << *Expr << "\n"; 10503 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 10504 } 10505 } 10506