1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/ScopeExit.h" 65 #include "llvm/ADT/Sequence.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/ConstantFolding.h" 70 #include "llvm/Analysis/InstructionSimplify.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 73 #include "llvm/Analysis/TargetLibraryInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/GlobalAlias.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/InstIterator.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Metadata.h" 87 #include "llvm/IR/Operator.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/ErrorHandling.h" 92 #include "llvm/Support/KnownBits.h" 93 #include "llvm/Support/MathExtras.h" 94 #include "llvm/Support/SaveAndRestore.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include <algorithm> 97 using namespace llvm; 98 99 #define DEBUG_TYPE "scalar-evolution" 100 101 STATISTIC(NumArrayLenItCounts, 102 "Number of trip counts computed with array length"); 103 STATISTIC(NumTripCountsComputed, 104 "Number of loops with predictable loop counts"); 105 STATISTIC(NumTripCountsNotComputed, 106 "Number of loops without predictable loop counts"); 107 STATISTIC(NumBruteForceTripCountsComputed, 108 "Number of loops with trip counts computed by force"); 109 110 static cl::opt<unsigned> 111 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 112 cl::desc("Maximum number of iterations SCEV will " 113 "symbolically execute a constant " 114 "derived loop"), 115 cl::init(100)); 116 117 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 118 static cl::opt<bool> 119 VerifySCEV("verify-scev", 120 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 121 static cl::opt<bool> 122 VerifySCEVMap("verify-scev-maps", 123 cl::desc("Verify no dangling value in ScalarEvolution's " 124 "ExprValueMap (slow)")); 125 126 static cl::opt<unsigned> MulOpsInlineThreshold( 127 "scev-mulops-inline-threshold", cl::Hidden, 128 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 129 cl::init(32)); 130 131 static cl::opt<unsigned> AddOpsInlineThreshold( 132 "scev-addops-inline-threshold", cl::Hidden, 133 cl::desc("Threshold for inlining addition operands into a SCEV"), 134 cl::init(500)); 135 136 static cl::opt<unsigned> MaxSCEVCompareDepth( 137 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 138 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 139 cl::init(32)); 140 141 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 142 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 143 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 144 cl::init(2)); 145 146 static cl::opt<unsigned> MaxValueCompareDepth( 147 "scalar-evolution-max-value-compare-depth", cl::Hidden, 148 cl::desc("Maximum depth of recursive value complexity comparisons"), 149 cl::init(2)); 150 151 static cl::opt<unsigned> 152 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 153 cl::desc("Maximum depth of recursive arithmetics"), 154 cl::init(32)); 155 156 static cl::opt<unsigned> MaxConstantEvolvingDepth( 157 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 158 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 159 160 static cl::opt<unsigned> 161 MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden, 162 cl::desc("Maximum depth of recursive SExt/ZExt"), 163 cl::init(8)); 164 165 static cl::opt<unsigned> 166 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 167 cl::desc("Max coefficients in AddRec during evolving"), 168 cl::init(16)); 169 170 //===----------------------------------------------------------------------===// 171 // SCEV class definitions 172 //===----------------------------------------------------------------------===// 173 174 //===----------------------------------------------------------------------===// 175 // Implementation of the SCEV class. 176 // 177 178 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 179 LLVM_DUMP_METHOD void SCEV::dump() const { 180 print(dbgs()); 181 dbgs() << '\n'; 182 } 183 #endif 184 185 void SCEV::print(raw_ostream &OS) const { 186 switch (static_cast<SCEVTypes>(getSCEVType())) { 187 case scConstant: 188 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 189 return; 190 case scTruncate: { 191 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 192 const SCEV *Op = Trunc->getOperand(); 193 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 194 << *Trunc->getType() << ")"; 195 return; 196 } 197 case scZeroExtend: { 198 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 199 const SCEV *Op = ZExt->getOperand(); 200 OS << "(zext " << *Op->getType() << " " << *Op << " to " 201 << *ZExt->getType() << ")"; 202 return; 203 } 204 case scSignExtend: { 205 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 206 const SCEV *Op = SExt->getOperand(); 207 OS << "(sext " << *Op->getType() << " " << *Op << " to " 208 << *SExt->getType() << ")"; 209 return; 210 } 211 case scAddRecExpr: { 212 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 213 OS << "{" << *AR->getOperand(0); 214 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 215 OS << ",+," << *AR->getOperand(i); 216 OS << "}<"; 217 if (AR->hasNoUnsignedWrap()) 218 OS << "nuw><"; 219 if (AR->hasNoSignedWrap()) 220 OS << "nsw><"; 221 if (AR->hasNoSelfWrap() && 222 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 223 OS << "nw><"; 224 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 225 OS << ">"; 226 return; 227 } 228 case scAddExpr: 229 case scMulExpr: 230 case scUMaxExpr: 231 case scSMaxExpr: { 232 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 233 const char *OpStr = nullptr; 234 switch (NAry->getSCEVType()) { 235 case scAddExpr: OpStr = " + "; break; 236 case scMulExpr: OpStr = " * "; break; 237 case scUMaxExpr: OpStr = " umax "; break; 238 case scSMaxExpr: OpStr = " smax "; break; 239 } 240 OS << "("; 241 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 242 I != E; ++I) { 243 OS << **I; 244 if (std::next(I) != E) 245 OS << OpStr; 246 } 247 OS << ")"; 248 switch (NAry->getSCEVType()) { 249 case scAddExpr: 250 case scMulExpr: 251 if (NAry->hasNoUnsignedWrap()) 252 OS << "<nuw>"; 253 if (NAry->hasNoSignedWrap()) 254 OS << "<nsw>"; 255 } 256 return; 257 } 258 case scUDivExpr: { 259 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 260 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 261 return; 262 } 263 case scUnknown: { 264 const SCEVUnknown *U = cast<SCEVUnknown>(this); 265 Type *AllocTy; 266 if (U->isSizeOf(AllocTy)) { 267 OS << "sizeof(" << *AllocTy << ")"; 268 return; 269 } 270 if (U->isAlignOf(AllocTy)) { 271 OS << "alignof(" << *AllocTy << ")"; 272 return; 273 } 274 275 Type *CTy; 276 Constant *FieldNo; 277 if (U->isOffsetOf(CTy, FieldNo)) { 278 OS << "offsetof(" << *CTy << ", "; 279 FieldNo->printAsOperand(OS, false); 280 OS << ")"; 281 return; 282 } 283 284 // Otherwise just print it normally. 285 U->getValue()->printAsOperand(OS, false); 286 return; 287 } 288 case scCouldNotCompute: 289 OS << "***COULDNOTCOMPUTE***"; 290 return; 291 } 292 llvm_unreachable("Unknown SCEV kind!"); 293 } 294 295 Type *SCEV::getType() const { 296 switch (static_cast<SCEVTypes>(getSCEVType())) { 297 case scConstant: 298 return cast<SCEVConstant>(this)->getType(); 299 case scTruncate: 300 case scZeroExtend: 301 case scSignExtend: 302 return cast<SCEVCastExpr>(this)->getType(); 303 case scAddRecExpr: 304 case scMulExpr: 305 case scUMaxExpr: 306 case scSMaxExpr: 307 return cast<SCEVNAryExpr>(this)->getType(); 308 case scAddExpr: 309 return cast<SCEVAddExpr>(this)->getType(); 310 case scUDivExpr: 311 return cast<SCEVUDivExpr>(this)->getType(); 312 case scUnknown: 313 return cast<SCEVUnknown>(this)->getType(); 314 case scCouldNotCompute: 315 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 316 } 317 llvm_unreachable("Unknown SCEV kind!"); 318 } 319 320 bool SCEV::isZero() const { 321 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 322 return SC->getValue()->isZero(); 323 return false; 324 } 325 326 bool SCEV::isOne() const { 327 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 328 return SC->getValue()->isOne(); 329 return false; 330 } 331 332 bool SCEV::isAllOnesValue() const { 333 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 334 return SC->getValue()->isMinusOne(); 335 return false; 336 } 337 338 bool SCEV::isNonConstantNegative() const { 339 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 340 if (!Mul) return false; 341 342 // If there is a constant factor, it will be first. 343 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 344 if (!SC) return false; 345 346 // Return true if the value is negative, this matches things like (-42 * V). 347 return SC->getAPInt().isNegative(); 348 } 349 350 SCEVCouldNotCompute::SCEVCouldNotCompute() : 351 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 352 353 bool SCEVCouldNotCompute::classof(const SCEV *S) { 354 return S->getSCEVType() == scCouldNotCompute; 355 } 356 357 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 358 FoldingSetNodeID ID; 359 ID.AddInteger(scConstant); 360 ID.AddPointer(V); 361 void *IP = nullptr; 362 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 363 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 364 UniqueSCEVs.InsertNode(S, IP); 365 return S; 366 } 367 368 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 369 return getConstant(ConstantInt::get(getContext(), Val)); 370 } 371 372 const SCEV * 373 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 374 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 375 return getConstant(ConstantInt::get(ITy, V, isSigned)); 376 } 377 378 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 379 unsigned SCEVTy, const SCEV *op, Type *ty) 380 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 381 382 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 383 const SCEV *op, Type *ty) 384 : SCEVCastExpr(ID, scTruncate, op, ty) { 385 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 386 (Ty->isIntegerTy() || Ty->isPointerTy()) && 387 "Cannot truncate non-integer value!"); 388 } 389 390 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 391 const SCEV *op, Type *ty) 392 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 393 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 394 (Ty->isIntegerTy() || Ty->isPointerTy()) && 395 "Cannot zero extend non-integer value!"); 396 } 397 398 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 399 const SCEV *op, Type *ty) 400 : SCEVCastExpr(ID, scSignExtend, op, ty) { 401 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 402 (Ty->isIntegerTy() || Ty->isPointerTy()) && 403 "Cannot sign extend non-integer value!"); 404 } 405 406 void SCEVUnknown::deleted() { 407 // Clear this SCEVUnknown from various maps. 408 SE->forgetMemoizedResults(this); 409 410 // Remove this SCEVUnknown from the uniquing map. 411 SE->UniqueSCEVs.RemoveNode(this); 412 413 // Release the value. 414 setValPtr(nullptr); 415 } 416 417 void SCEVUnknown::allUsesReplacedWith(Value *New) { 418 // Remove this SCEVUnknown from the uniquing map. 419 SE->UniqueSCEVs.RemoveNode(this); 420 421 // Update this SCEVUnknown to point to the new value. This is needed 422 // because there may still be outstanding SCEVs which still point to 423 // this SCEVUnknown. 424 setValPtr(New); 425 } 426 427 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 428 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 429 if (VCE->getOpcode() == Instruction::PtrToInt) 430 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 431 if (CE->getOpcode() == Instruction::GetElementPtr && 432 CE->getOperand(0)->isNullValue() && 433 CE->getNumOperands() == 2) 434 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 435 if (CI->isOne()) { 436 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 437 ->getElementType(); 438 return true; 439 } 440 441 return false; 442 } 443 444 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 445 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 446 if (VCE->getOpcode() == Instruction::PtrToInt) 447 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 448 if (CE->getOpcode() == Instruction::GetElementPtr && 449 CE->getOperand(0)->isNullValue()) { 450 Type *Ty = 451 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 452 if (StructType *STy = dyn_cast<StructType>(Ty)) 453 if (!STy->isPacked() && 454 CE->getNumOperands() == 3 && 455 CE->getOperand(1)->isNullValue()) { 456 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 457 if (CI->isOne() && 458 STy->getNumElements() == 2 && 459 STy->getElementType(0)->isIntegerTy(1)) { 460 AllocTy = STy->getElementType(1); 461 return true; 462 } 463 } 464 } 465 466 return false; 467 } 468 469 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 470 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 471 if (VCE->getOpcode() == Instruction::PtrToInt) 472 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 473 if (CE->getOpcode() == Instruction::GetElementPtr && 474 CE->getNumOperands() == 3 && 475 CE->getOperand(0)->isNullValue() && 476 CE->getOperand(1)->isNullValue()) { 477 Type *Ty = 478 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 479 // Ignore vector types here so that ScalarEvolutionExpander doesn't 480 // emit getelementptrs that index into vectors. 481 if (Ty->isStructTy() || Ty->isArrayTy()) { 482 CTy = Ty; 483 FieldNo = CE->getOperand(2); 484 return true; 485 } 486 } 487 488 return false; 489 } 490 491 //===----------------------------------------------------------------------===// 492 // SCEV Utilities 493 //===----------------------------------------------------------------------===// 494 495 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 496 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 497 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 498 /// have been previously deemed to be "equally complex" by this routine. It is 499 /// intended to avoid exponential time complexity in cases like: 500 /// 501 /// %a = f(%x, %y) 502 /// %b = f(%a, %a) 503 /// %c = f(%b, %b) 504 /// 505 /// %d = f(%x, %y) 506 /// %e = f(%d, %d) 507 /// %f = f(%e, %e) 508 /// 509 /// CompareValueComplexity(%f, %c) 510 /// 511 /// Since we do not continue running this routine on expression trees once we 512 /// have seen unequal values, there is no need to track them in the cache. 513 static int 514 CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache, 515 const LoopInfo *const LI, Value *LV, Value *RV, 516 unsigned Depth) { 517 if (Depth > MaxValueCompareDepth || EqCache.count({LV, RV})) 518 return 0; 519 520 // Order pointer values after integer values. This helps SCEVExpander form 521 // GEPs. 522 bool LIsPointer = LV->getType()->isPointerTy(), 523 RIsPointer = RV->getType()->isPointerTy(); 524 if (LIsPointer != RIsPointer) 525 return (int)LIsPointer - (int)RIsPointer; 526 527 // Compare getValueID values. 528 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 529 if (LID != RID) 530 return (int)LID - (int)RID; 531 532 // Sort arguments by their position. 533 if (const auto *LA = dyn_cast<Argument>(LV)) { 534 const auto *RA = cast<Argument>(RV); 535 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 536 return (int)LArgNo - (int)RArgNo; 537 } 538 539 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 540 const auto *RGV = cast<GlobalValue>(RV); 541 542 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 543 auto LT = GV->getLinkage(); 544 return !(GlobalValue::isPrivateLinkage(LT) || 545 GlobalValue::isInternalLinkage(LT)); 546 }; 547 548 // Use the names to distinguish the two values, but only if the 549 // names are semantically important. 550 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 551 return LGV->getName().compare(RGV->getName()); 552 } 553 554 // For instructions, compare their loop depth, and their operand count. This 555 // is pretty loose. 556 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 557 const auto *RInst = cast<Instruction>(RV); 558 559 // Compare loop depths. 560 const BasicBlock *LParent = LInst->getParent(), 561 *RParent = RInst->getParent(); 562 if (LParent != RParent) { 563 unsigned LDepth = LI->getLoopDepth(LParent), 564 RDepth = LI->getLoopDepth(RParent); 565 if (LDepth != RDepth) 566 return (int)LDepth - (int)RDepth; 567 } 568 569 // Compare the number of operands. 570 unsigned LNumOps = LInst->getNumOperands(), 571 RNumOps = RInst->getNumOperands(); 572 if (LNumOps != RNumOps) 573 return (int)LNumOps - (int)RNumOps; 574 575 for (unsigned Idx : seq(0u, LNumOps)) { 576 int Result = 577 CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx), 578 RInst->getOperand(Idx), Depth + 1); 579 if (Result != 0) 580 return Result; 581 } 582 } 583 584 EqCache.insert({LV, RV}); 585 return 0; 586 } 587 588 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 589 // than RHS, respectively. A three-way result allows recursive comparisons to be 590 // more efficient. 591 static int CompareSCEVComplexity( 592 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV, 593 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 594 DominatorTree &DT, unsigned Depth = 0) { 595 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 596 if (LHS == RHS) 597 return 0; 598 599 // Primarily, sort the SCEVs by their getSCEVType(). 600 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 601 if (LType != RType) 602 return (int)LType - (int)RType; 603 604 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.count({LHS, RHS})) 605 return 0; 606 // Aside from the getSCEVType() ordering, the particular ordering 607 // isn't very important except that it's beneficial to be consistent, 608 // so that (a + b) and (b + a) don't end up as different expressions. 609 switch (static_cast<SCEVTypes>(LType)) { 610 case scUnknown: { 611 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 612 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 613 614 SmallSet<std::pair<Value *, Value *>, 8> EqCache; 615 int X = CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue(), 616 Depth + 1); 617 if (X == 0) 618 EqCacheSCEV.insert({LHS, RHS}); 619 return X; 620 } 621 622 case scConstant: { 623 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 624 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 625 626 // Compare constant values. 627 const APInt &LA = LC->getAPInt(); 628 const APInt &RA = RC->getAPInt(); 629 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 630 if (LBitWidth != RBitWidth) 631 return (int)LBitWidth - (int)RBitWidth; 632 return LA.ult(RA) ? -1 : 1; 633 } 634 635 case scAddRecExpr: { 636 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 637 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 638 639 // There is always a dominance between two recs that are used by one SCEV, 640 // so we can safely sort recs by loop header dominance. We require such 641 // order in getAddExpr. 642 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 643 if (LLoop != RLoop) { 644 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 645 assert(LHead != RHead && "Two loops share the same header?"); 646 if (DT.dominates(LHead, RHead)) 647 return 1; 648 else 649 assert(DT.dominates(RHead, LHead) && 650 "No dominance between recurrences used by one SCEV?"); 651 return -1; 652 } 653 654 // Addrec complexity grows with operand count. 655 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 656 if (LNumOps != RNumOps) 657 return (int)LNumOps - (int)RNumOps; 658 659 // Lexicographically compare. 660 for (unsigned i = 0; i != LNumOps; ++i) { 661 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i), 662 RA->getOperand(i), DT, Depth + 1); 663 if (X != 0) 664 return X; 665 } 666 EqCacheSCEV.insert({LHS, RHS}); 667 return 0; 668 } 669 670 case scAddExpr: 671 case scMulExpr: 672 case scSMaxExpr: 673 case scUMaxExpr: { 674 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 675 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 676 677 // Lexicographically compare n-ary expressions. 678 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 679 if (LNumOps != RNumOps) 680 return (int)LNumOps - (int)RNumOps; 681 682 for (unsigned i = 0; i != LNumOps; ++i) { 683 if (i >= RNumOps) 684 return 1; 685 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i), 686 RC->getOperand(i), DT, Depth + 1); 687 if (X != 0) 688 return X; 689 } 690 EqCacheSCEV.insert({LHS, RHS}); 691 return 0; 692 } 693 694 case scUDivExpr: { 695 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 696 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 697 698 // Lexicographically compare udiv expressions. 699 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(), 700 DT, Depth + 1); 701 if (X != 0) 702 return X; 703 X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(), DT, 704 Depth + 1); 705 if (X == 0) 706 EqCacheSCEV.insert({LHS, RHS}); 707 return X; 708 } 709 710 case scTruncate: 711 case scZeroExtend: 712 case scSignExtend: { 713 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 714 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 715 716 // Compare cast expressions by operand. 717 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(), 718 RC->getOperand(), DT, Depth + 1); 719 if (X == 0) 720 EqCacheSCEV.insert({LHS, RHS}); 721 return X; 722 } 723 724 case scCouldNotCompute: 725 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 726 } 727 llvm_unreachable("Unknown SCEV kind!"); 728 } 729 730 /// Given a list of SCEV objects, order them by their complexity, and group 731 /// objects of the same complexity together by value. When this routine is 732 /// finished, we know that any duplicates in the vector are consecutive and that 733 /// complexity is monotonically increasing. 734 /// 735 /// Note that we go take special precautions to ensure that we get deterministic 736 /// results from this routine. In other words, we don't want the results of 737 /// this to depend on where the addresses of various SCEV objects happened to 738 /// land in memory. 739 /// 740 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 741 LoopInfo *LI, DominatorTree &DT) { 742 if (Ops.size() < 2) return; // Noop 743 744 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache; 745 if (Ops.size() == 2) { 746 // This is the common case, which also happens to be trivially simple. 747 // Special case it. 748 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 749 if (CompareSCEVComplexity(EqCache, LI, RHS, LHS, DT) < 0) 750 std::swap(LHS, RHS); 751 return; 752 } 753 754 // Do the rough sort by complexity. 755 std::stable_sort(Ops.begin(), Ops.end(), 756 [&EqCache, LI, &DT](const SCEV *LHS, const SCEV *RHS) { 757 return 758 CompareSCEVComplexity(EqCache, LI, LHS, RHS, DT) < 0; 759 }); 760 761 // Now that we are sorted by complexity, group elements of the same 762 // complexity. Note that this is, at worst, N^2, but the vector is likely to 763 // be extremely short in practice. Note that we take this approach because we 764 // do not want to depend on the addresses of the objects we are grouping. 765 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 766 const SCEV *S = Ops[i]; 767 unsigned Complexity = S->getSCEVType(); 768 769 // If there are any objects of the same complexity and same value as this 770 // one, group them. 771 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 772 if (Ops[j] == S) { // Found a duplicate. 773 // Move it to immediately after i'th element. 774 std::swap(Ops[i+1], Ops[j]); 775 ++i; // no need to rescan it. 776 if (i == e-2) return; // Done! 777 } 778 } 779 } 780 } 781 782 // Returns the size of the SCEV S. 783 static inline int sizeOfSCEV(const SCEV *S) { 784 struct FindSCEVSize { 785 int Size; 786 FindSCEVSize() : Size(0) {} 787 788 bool follow(const SCEV *S) { 789 ++Size; 790 // Keep looking at all operands of S. 791 return true; 792 } 793 bool isDone() const { 794 return false; 795 } 796 }; 797 798 FindSCEVSize F; 799 SCEVTraversal<FindSCEVSize> ST(F); 800 ST.visitAll(S); 801 return F.Size; 802 } 803 804 namespace { 805 806 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 807 public: 808 // Computes the Quotient and Remainder of the division of Numerator by 809 // Denominator. 810 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 811 const SCEV *Denominator, const SCEV **Quotient, 812 const SCEV **Remainder) { 813 assert(Numerator && Denominator && "Uninitialized SCEV"); 814 815 SCEVDivision D(SE, Numerator, Denominator); 816 817 // Check for the trivial case here to avoid having to check for it in the 818 // rest of the code. 819 if (Numerator == Denominator) { 820 *Quotient = D.One; 821 *Remainder = D.Zero; 822 return; 823 } 824 825 if (Numerator->isZero()) { 826 *Quotient = D.Zero; 827 *Remainder = D.Zero; 828 return; 829 } 830 831 // A simple case when N/1. The quotient is N. 832 if (Denominator->isOne()) { 833 *Quotient = Numerator; 834 *Remainder = D.Zero; 835 return; 836 } 837 838 // Split the Denominator when it is a product. 839 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 840 const SCEV *Q, *R; 841 *Quotient = Numerator; 842 for (const SCEV *Op : T->operands()) { 843 divide(SE, *Quotient, Op, &Q, &R); 844 *Quotient = Q; 845 846 // Bail out when the Numerator is not divisible by one of the terms of 847 // the Denominator. 848 if (!R->isZero()) { 849 *Quotient = D.Zero; 850 *Remainder = Numerator; 851 return; 852 } 853 } 854 *Remainder = D.Zero; 855 return; 856 } 857 858 D.visit(Numerator); 859 *Quotient = D.Quotient; 860 *Remainder = D.Remainder; 861 } 862 863 // Except in the trivial case described above, we do not know how to divide 864 // Expr by Denominator for the following functions with empty implementation. 865 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 866 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 867 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 868 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 869 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 870 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 871 void visitUnknown(const SCEVUnknown *Numerator) {} 872 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 873 874 void visitConstant(const SCEVConstant *Numerator) { 875 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 876 APInt NumeratorVal = Numerator->getAPInt(); 877 APInt DenominatorVal = D->getAPInt(); 878 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 879 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 880 881 if (NumeratorBW > DenominatorBW) 882 DenominatorVal = DenominatorVal.sext(NumeratorBW); 883 else if (NumeratorBW < DenominatorBW) 884 NumeratorVal = NumeratorVal.sext(DenominatorBW); 885 886 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 887 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 888 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 889 Quotient = SE.getConstant(QuotientVal); 890 Remainder = SE.getConstant(RemainderVal); 891 return; 892 } 893 } 894 895 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 896 const SCEV *StartQ, *StartR, *StepQ, *StepR; 897 if (!Numerator->isAffine()) 898 return cannotDivide(Numerator); 899 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 900 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 901 // Bail out if the types do not match. 902 Type *Ty = Denominator->getType(); 903 if (Ty != StartQ->getType() || Ty != StartR->getType() || 904 Ty != StepQ->getType() || Ty != StepR->getType()) 905 return cannotDivide(Numerator); 906 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 907 Numerator->getNoWrapFlags()); 908 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 909 Numerator->getNoWrapFlags()); 910 } 911 912 void visitAddExpr(const SCEVAddExpr *Numerator) { 913 SmallVector<const SCEV *, 2> Qs, Rs; 914 Type *Ty = Denominator->getType(); 915 916 for (const SCEV *Op : Numerator->operands()) { 917 const SCEV *Q, *R; 918 divide(SE, Op, Denominator, &Q, &R); 919 920 // Bail out if types do not match. 921 if (Ty != Q->getType() || Ty != R->getType()) 922 return cannotDivide(Numerator); 923 924 Qs.push_back(Q); 925 Rs.push_back(R); 926 } 927 928 if (Qs.size() == 1) { 929 Quotient = Qs[0]; 930 Remainder = Rs[0]; 931 return; 932 } 933 934 Quotient = SE.getAddExpr(Qs); 935 Remainder = SE.getAddExpr(Rs); 936 } 937 938 void visitMulExpr(const SCEVMulExpr *Numerator) { 939 SmallVector<const SCEV *, 2> Qs; 940 Type *Ty = Denominator->getType(); 941 942 bool FoundDenominatorTerm = false; 943 for (const SCEV *Op : Numerator->operands()) { 944 // Bail out if types do not match. 945 if (Ty != Op->getType()) 946 return cannotDivide(Numerator); 947 948 if (FoundDenominatorTerm) { 949 Qs.push_back(Op); 950 continue; 951 } 952 953 // Check whether Denominator divides one of the product operands. 954 const SCEV *Q, *R; 955 divide(SE, Op, Denominator, &Q, &R); 956 if (!R->isZero()) { 957 Qs.push_back(Op); 958 continue; 959 } 960 961 // Bail out if types do not match. 962 if (Ty != Q->getType()) 963 return cannotDivide(Numerator); 964 965 FoundDenominatorTerm = true; 966 Qs.push_back(Q); 967 } 968 969 if (FoundDenominatorTerm) { 970 Remainder = Zero; 971 if (Qs.size() == 1) 972 Quotient = Qs[0]; 973 else 974 Quotient = SE.getMulExpr(Qs); 975 return; 976 } 977 978 if (!isa<SCEVUnknown>(Denominator)) 979 return cannotDivide(Numerator); 980 981 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 982 ValueToValueMap RewriteMap; 983 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 984 cast<SCEVConstant>(Zero)->getValue(); 985 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 986 987 if (Remainder->isZero()) { 988 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 989 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 990 cast<SCEVConstant>(One)->getValue(); 991 Quotient = 992 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 993 return; 994 } 995 996 // Quotient is (Numerator - Remainder) divided by Denominator. 997 const SCEV *Q, *R; 998 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 999 // This SCEV does not seem to simplify: fail the division here. 1000 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 1001 return cannotDivide(Numerator); 1002 divide(SE, Diff, Denominator, &Q, &R); 1003 if (R != Zero) 1004 return cannotDivide(Numerator); 1005 Quotient = Q; 1006 } 1007 1008 private: 1009 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 1010 const SCEV *Denominator) 1011 : SE(S), Denominator(Denominator) { 1012 Zero = SE.getZero(Denominator->getType()); 1013 One = SE.getOne(Denominator->getType()); 1014 1015 // We generally do not know how to divide Expr by Denominator. We 1016 // initialize the division to a "cannot divide" state to simplify the rest 1017 // of the code. 1018 cannotDivide(Numerator); 1019 } 1020 1021 // Convenience function for giving up on the division. We set the quotient to 1022 // be equal to zero and the remainder to be equal to the numerator. 1023 void cannotDivide(const SCEV *Numerator) { 1024 Quotient = Zero; 1025 Remainder = Numerator; 1026 } 1027 1028 ScalarEvolution &SE; 1029 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1030 }; 1031 1032 } 1033 1034 //===----------------------------------------------------------------------===// 1035 // Simple SCEV method implementations 1036 //===----------------------------------------------------------------------===// 1037 1038 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1039 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1040 ScalarEvolution &SE, 1041 Type *ResultTy) { 1042 // Handle the simplest case efficiently. 1043 if (K == 1) 1044 return SE.getTruncateOrZeroExtend(It, ResultTy); 1045 1046 // We are using the following formula for BC(It, K): 1047 // 1048 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1049 // 1050 // Suppose, W is the bitwidth of the return value. We must be prepared for 1051 // overflow. Hence, we must assure that the result of our computation is 1052 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1053 // safe in modular arithmetic. 1054 // 1055 // However, this code doesn't use exactly that formula; the formula it uses 1056 // is something like the following, where T is the number of factors of 2 in 1057 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1058 // exponentiation: 1059 // 1060 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1061 // 1062 // This formula is trivially equivalent to the previous formula. However, 1063 // this formula can be implemented much more efficiently. The trick is that 1064 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1065 // arithmetic. To do exact division in modular arithmetic, all we have 1066 // to do is multiply by the inverse. Therefore, this step can be done at 1067 // width W. 1068 // 1069 // The next issue is how to safely do the division by 2^T. The way this 1070 // is done is by doing the multiplication step at a width of at least W + T 1071 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1072 // when we perform the division by 2^T (which is equivalent to a right shift 1073 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1074 // truncated out after the division by 2^T. 1075 // 1076 // In comparison to just directly using the first formula, this technique 1077 // is much more efficient; using the first formula requires W * K bits, 1078 // but this formula less than W + K bits. Also, the first formula requires 1079 // a division step, whereas this formula only requires multiplies and shifts. 1080 // 1081 // It doesn't matter whether the subtraction step is done in the calculation 1082 // width or the input iteration count's width; if the subtraction overflows, 1083 // the result must be zero anyway. We prefer here to do it in the width of 1084 // the induction variable because it helps a lot for certain cases; CodeGen 1085 // isn't smart enough to ignore the overflow, which leads to much less 1086 // efficient code if the width of the subtraction is wider than the native 1087 // register width. 1088 // 1089 // (It's possible to not widen at all by pulling out factors of 2 before 1090 // the multiplication; for example, K=2 can be calculated as 1091 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1092 // extra arithmetic, so it's not an obvious win, and it gets 1093 // much more complicated for K > 3.) 1094 1095 // Protection from insane SCEVs; this bound is conservative, 1096 // but it probably doesn't matter. 1097 if (K > 1000) 1098 return SE.getCouldNotCompute(); 1099 1100 unsigned W = SE.getTypeSizeInBits(ResultTy); 1101 1102 // Calculate K! / 2^T and T; we divide out the factors of two before 1103 // multiplying for calculating K! / 2^T to avoid overflow. 1104 // Other overflow doesn't matter because we only care about the bottom 1105 // W bits of the result. 1106 APInt OddFactorial(W, 1); 1107 unsigned T = 1; 1108 for (unsigned i = 3; i <= K; ++i) { 1109 APInt Mult(W, i); 1110 unsigned TwoFactors = Mult.countTrailingZeros(); 1111 T += TwoFactors; 1112 Mult.lshrInPlace(TwoFactors); 1113 OddFactorial *= Mult; 1114 } 1115 1116 // We need at least W + T bits for the multiplication step 1117 unsigned CalculationBits = W + T; 1118 1119 // Calculate 2^T, at width T+W. 1120 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1121 1122 // Calculate the multiplicative inverse of K! / 2^T; 1123 // this multiplication factor will perform the exact division by 1124 // K! / 2^T. 1125 APInt Mod = APInt::getSignedMinValue(W+1); 1126 APInt MultiplyFactor = OddFactorial.zext(W+1); 1127 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1128 MultiplyFactor = MultiplyFactor.trunc(W); 1129 1130 // Calculate the product, at width T+W 1131 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1132 CalculationBits); 1133 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1134 for (unsigned i = 1; i != K; ++i) { 1135 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1136 Dividend = SE.getMulExpr(Dividend, 1137 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1138 } 1139 1140 // Divide by 2^T 1141 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1142 1143 // Truncate the result, and divide by K! / 2^T. 1144 1145 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1146 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1147 } 1148 1149 /// Return the value of this chain of recurrences at the specified iteration 1150 /// number. We can evaluate this recurrence by multiplying each element in the 1151 /// chain by the binomial coefficient corresponding to it. In other words, we 1152 /// can evaluate {A,+,B,+,C,+,D} as: 1153 /// 1154 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1155 /// 1156 /// where BC(It, k) stands for binomial coefficient. 1157 /// 1158 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1159 ScalarEvolution &SE) const { 1160 const SCEV *Result = getStart(); 1161 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1162 // The computation is correct in the face of overflow provided that the 1163 // multiplication is performed _after_ the evaluation of the binomial 1164 // coefficient. 1165 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1166 if (isa<SCEVCouldNotCompute>(Coeff)) 1167 return Coeff; 1168 1169 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1170 } 1171 return Result; 1172 } 1173 1174 //===----------------------------------------------------------------------===// 1175 // SCEV Expression folder implementations 1176 //===----------------------------------------------------------------------===// 1177 1178 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1179 Type *Ty) { 1180 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1181 "This is not a truncating conversion!"); 1182 assert(isSCEVable(Ty) && 1183 "This is not a conversion to a SCEVable type!"); 1184 Ty = getEffectiveSCEVType(Ty); 1185 1186 FoldingSetNodeID ID; 1187 ID.AddInteger(scTruncate); 1188 ID.AddPointer(Op); 1189 ID.AddPointer(Ty); 1190 void *IP = nullptr; 1191 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1192 1193 // Fold if the operand is constant. 1194 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1195 return getConstant( 1196 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1197 1198 // trunc(trunc(x)) --> trunc(x) 1199 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1200 return getTruncateExpr(ST->getOperand(), Ty); 1201 1202 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1203 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1204 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1205 1206 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1207 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1208 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1209 1210 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1211 // eliminate all the truncates, or we replace other casts with truncates. 1212 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1213 SmallVector<const SCEV *, 4> Operands; 1214 bool hasTrunc = false; 1215 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1216 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1217 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1218 hasTrunc = isa<SCEVTruncateExpr>(S); 1219 Operands.push_back(S); 1220 } 1221 if (!hasTrunc) 1222 return getAddExpr(Operands); 1223 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1224 } 1225 1226 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1227 // eliminate all the truncates, or we replace other casts with truncates. 1228 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1229 SmallVector<const SCEV *, 4> Operands; 1230 bool hasTrunc = false; 1231 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1232 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1233 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1234 hasTrunc = isa<SCEVTruncateExpr>(S); 1235 Operands.push_back(S); 1236 } 1237 if (!hasTrunc) 1238 return getMulExpr(Operands); 1239 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1240 } 1241 1242 // If the input value is a chrec scev, truncate the chrec's operands. 1243 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1244 SmallVector<const SCEV *, 4> Operands; 1245 for (const SCEV *Op : AddRec->operands()) 1246 Operands.push_back(getTruncateExpr(Op, Ty)); 1247 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1248 } 1249 1250 // The cast wasn't folded; create an explicit cast node. We can reuse 1251 // the existing insert position since if we get here, we won't have 1252 // made any changes which would invalidate it. 1253 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1254 Op, Ty); 1255 UniqueSCEVs.InsertNode(S, IP); 1256 return S; 1257 } 1258 1259 // Get the limit of a recurrence such that incrementing by Step cannot cause 1260 // signed overflow as long as the value of the recurrence within the 1261 // loop does not exceed this limit before incrementing. 1262 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1263 ICmpInst::Predicate *Pred, 1264 ScalarEvolution *SE) { 1265 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1266 if (SE->isKnownPositive(Step)) { 1267 *Pred = ICmpInst::ICMP_SLT; 1268 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1269 SE->getSignedRangeMax(Step)); 1270 } 1271 if (SE->isKnownNegative(Step)) { 1272 *Pred = ICmpInst::ICMP_SGT; 1273 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1274 SE->getSignedRangeMin(Step)); 1275 } 1276 return nullptr; 1277 } 1278 1279 // Get the limit of a recurrence such that incrementing by Step cannot cause 1280 // unsigned overflow as long as the value of the recurrence within the loop does 1281 // not exceed this limit before incrementing. 1282 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1283 ICmpInst::Predicate *Pred, 1284 ScalarEvolution *SE) { 1285 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1286 *Pred = ICmpInst::ICMP_ULT; 1287 1288 return SE->getConstant(APInt::getMinValue(BitWidth) - 1289 SE->getUnsignedRangeMax(Step)); 1290 } 1291 1292 namespace { 1293 1294 struct ExtendOpTraitsBase { 1295 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1296 unsigned); 1297 }; 1298 1299 // Used to make code generic over signed and unsigned overflow. 1300 template <typename ExtendOp> struct ExtendOpTraits { 1301 // Members present: 1302 // 1303 // static const SCEV::NoWrapFlags WrapType; 1304 // 1305 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1306 // 1307 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1308 // ICmpInst::Predicate *Pred, 1309 // ScalarEvolution *SE); 1310 }; 1311 1312 template <> 1313 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1314 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1315 1316 static const GetExtendExprTy GetExtendExpr; 1317 1318 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1319 ICmpInst::Predicate *Pred, 1320 ScalarEvolution *SE) { 1321 return getSignedOverflowLimitForStep(Step, Pred, SE); 1322 } 1323 }; 1324 1325 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1326 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1327 1328 template <> 1329 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1330 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1331 1332 static const GetExtendExprTy GetExtendExpr; 1333 1334 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1335 ICmpInst::Predicate *Pred, 1336 ScalarEvolution *SE) { 1337 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1338 } 1339 }; 1340 1341 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1342 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1343 } 1344 1345 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1346 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1347 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1348 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1349 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1350 // expression "Step + sext/zext(PreIncAR)" is congruent with 1351 // "sext/zext(PostIncAR)" 1352 template <typename ExtendOpTy> 1353 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1354 ScalarEvolution *SE, unsigned Depth) { 1355 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1356 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1357 1358 const Loop *L = AR->getLoop(); 1359 const SCEV *Start = AR->getStart(); 1360 const SCEV *Step = AR->getStepRecurrence(*SE); 1361 1362 // Check for a simple looking step prior to loop entry. 1363 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1364 if (!SA) 1365 return nullptr; 1366 1367 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1368 // subtraction is expensive. For this purpose, perform a quick and dirty 1369 // difference, by checking for Step in the operand list. 1370 SmallVector<const SCEV *, 4> DiffOps; 1371 for (const SCEV *Op : SA->operands()) 1372 if (Op != Step) 1373 DiffOps.push_back(Op); 1374 1375 if (DiffOps.size() == SA->getNumOperands()) 1376 return nullptr; 1377 1378 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1379 // `Step`: 1380 1381 // 1. NSW/NUW flags on the step increment. 1382 auto PreStartFlags = 1383 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1384 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1385 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1386 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1387 1388 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1389 // "S+X does not sign/unsign-overflow". 1390 // 1391 1392 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1393 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1394 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1395 return PreStart; 1396 1397 // 2. Direct overflow check on the step operation's expression. 1398 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1399 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1400 const SCEV *OperandExtendedStart = 1401 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1402 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1403 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1404 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1405 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1406 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1407 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1408 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1409 } 1410 return PreStart; 1411 } 1412 1413 // 3. Loop precondition. 1414 ICmpInst::Predicate Pred; 1415 const SCEV *OverflowLimit = 1416 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1417 1418 if (OverflowLimit && 1419 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1420 return PreStart; 1421 1422 return nullptr; 1423 } 1424 1425 // Get the normalized zero or sign extended expression for this AddRec's Start. 1426 template <typename ExtendOpTy> 1427 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1428 ScalarEvolution *SE, 1429 unsigned Depth) { 1430 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1431 1432 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1433 if (!PreStart) 1434 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1435 1436 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1437 Depth), 1438 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1439 } 1440 1441 // Try to prove away overflow by looking at "nearby" add recurrences. A 1442 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1443 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1444 // 1445 // Formally: 1446 // 1447 // {S,+,X} == {S-T,+,X} + T 1448 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1449 // 1450 // If ({S-T,+,X} + T) does not overflow ... (1) 1451 // 1452 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1453 // 1454 // If {S-T,+,X} does not overflow ... (2) 1455 // 1456 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1457 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1458 // 1459 // If (S-T)+T does not overflow ... (3) 1460 // 1461 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1462 // == {Ext(S),+,Ext(X)} == LHS 1463 // 1464 // Thus, if (1), (2) and (3) are true for some T, then 1465 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1466 // 1467 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1468 // does not overflow" restricted to the 0th iteration. Therefore we only need 1469 // to check for (1) and (2). 1470 // 1471 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1472 // is `Delta` (defined below). 1473 // 1474 template <typename ExtendOpTy> 1475 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1476 const SCEV *Step, 1477 const Loop *L) { 1478 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1479 1480 // We restrict `Start` to a constant to prevent SCEV from spending too much 1481 // time here. It is correct (but more expensive) to continue with a 1482 // non-constant `Start` and do a general SCEV subtraction to compute 1483 // `PreStart` below. 1484 // 1485 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1486 if (!StartC) 1487 return false; 1488 1489 APInt StartAI = StartC->getAPInt(); 1490 1491 for (unsigned Delta : {-2, -1, 1, 2}) { 1492 const SCEV *PreStart = getConstant(StartAI - Delta); 1493 1494 FoldingSetNodeID ID; 1495 ID.AddInteger(scAddRecExpr); 1496 ID.AddPointer(PreStart); 1497 ID.AddPointer(Step); 1498 ID.AddPointer(L); 1499 void *IP = nullptr; 1500 const auto *PreAR = 1501 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1502 1503 // Give up if we don't already have the add recurrence we need because 1504 // actually constructing an add recurrence is relatively expensive. 1505 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1506 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1507 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1508 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1509 DeltaS, &Pred, this); 1510 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1511 return true; 1512 } 1513 } 1514 1515 return false; 1516 } 1517 1518 const SCEV * 1519 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1520 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1521 "This is not an extending conversion!"); 1522 assert(isSCEVable(Ty) && 1523 "This is not a conversion to a SCEVable type!"); 1524 Ty = getEffectiveSCEVType(Ty); 1525 1526 // Fold if the operand is constant. 1527 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1528 return getConstant( 1529 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1530 1531 // zext(zext(x)) --> zext(x) 1532 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1533 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1534 1535 // Before doing any expensive analysis, check to see if we've already 1536 // computed a SCEV for this Op and Ty. 1537 FoldingSetNodeID ID; 1538 ID.AddInteger(scZeroExtend); 1539 ID.AddPointer(Op); 1540 ID.AddPointer(Ty); 1541 void *IP = nullptr; 1542 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1543 if (Depth > MaxExtDepth) { 1544 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1545 Op, Ty); 1546 UniqueSCEVs.InsertNode(S, IP); 1547 return S; 1548 } 1549 1550 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1551 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1552 // It's possible the bits taken off by the truncate were all zero bits. If 1553 // so, we should be able to simplify this further. 1554 const SCEV *X = ST->getOperand(); 1555 ConstantRange CR = getUnsignedRange(X); 1556 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1557 unsigned NewBits = getTypeSizeInBits(Ty); 1558 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1559 CR.zextOrTrunc(NewBits))) 1560 return getTruncateOrZeroExtend(X, Ty); 1561 } 1562 1563 // If the input value is a chrec scev, and we can prove that the value 1564 // did not overflow the old, smaller, value, we can zero extend all of the 1565 // operands (often constants). This allows analysis of something like 1566 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1567 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1568 if (AR->isAffine()) { 1569 const SCEV *Start = AR->getStart(); 1570 const SCEV *Step = AR->getStepRecurrence(*this); 1571 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1572 const Loop *L = AR->getLoop(); 1573 1574 if (!AR->hasNoUnsignedWrap()) { 1575 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1576 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1577 } 1578 1579 // If we have special knowledge that this addrec won't overflow, 1580 // we don't need to do any further analysis. 1581 if (AR->hasNoUnsignedWrap()) 1582 return getAddRecExpr( 1583 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1584 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1585 1586 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1587 // Note that this serves two purposes: It filters out loops that are 1588 // simply not analyzable, and it covers the case where this code is 1589 // being called from within backedge-taken count analysis, such that 1590 // attempting to ask for the backedge-taken count would likely result 1591 // in infinite recursion. In the later case, the analysis code will 1592 // cope with a conservative value, and it will take care to purge 1593 // that value once it has finished. 1594 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1595 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1596 // Manually compute the final value for AR, checking for 1597 // overflow. 1598 1599 // Check whether the backedge-taken count can be losslessly casted to 1600 // the addrec's type. The count is always unsigned. 1601 const SCEV *CastedMaxBECount = 1602 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1603 const SCEV *RecastedMaxBECount = 1604 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1605 if (MaxBECount == RecastedMaxBECount) { 1606 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1607 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1608 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1609 SCEV::FlagAnyWrap, Depth + 1); 1610 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1611 SCEV::FlagAnyWrap, 1612 Depth + 1), 1613 WideTy, Depth + 1); 1614 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1615 const SCEV *WideMaxBECount = 1616 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1617 const SCEV *OperandExtendedAdd = 1618 getAddExpr(WideStart, 1619 getMulExpr(WideMaxBECount, 1620 getZeroExtendExpr(Step, WideTy, Depth + 1), 1621 SCEV::FlagAnyWrap, Depth + 1), 1622 SCEV::FlagAnyWrap, Depth + 1); 1623 if (ZAdd == OperandExtendedAdd) { 1624 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1625 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1626 // Return the expression with the addrec on the outside. 1627 return getAddRecExpr( 1628 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1629 Depth + 1), 1630 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1631 AR->getNoWrapFlags()); 1632 } 1633 // Similar to above, only this time treat the step value as signed. 1634 // This covers loops that count down. 1635 OperandExtendedAdd = 1636 getAddExpr(WideStart, 1637 getMulExpr(WideMaxBECount, 1638 getSignExtendExpr(Step, WideTy, Depth + 1), 1639 SCEV::FlagAnyWrap, Depth + 1), 1640 SCEV::FlagAnyWrap, Depth + 1); 1641 if (ZAdd == OperandExtendedAdd) { 1642 // Cache knowledge of AR NW, which is propagated to this AddRec. 1643 // Negative step causes unsigned wrap, but it still can't self-wrap. 1644 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1645 // Return the expression with the addrec on the outside. 1646 return getAddRecExpr( 1647 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1648 Depth + 1), 1649 getSignExtendExpr(Step, Ty, Depth + 1), L, 1650 AR->getNoWrapFlags()); 1651 } 1652 } 1653 } 1654 1655 // Normally, in the cases we can prove no-overflow via a 1656 // backedge guarding condition, we can also compute a backedge 1657 // taken count for the loop. The exceptions are assumptions and 1658 // guards present in the loop -- SCEV is not great at exploiting 1659 // these to compute max backedge taken counts, but can still use 1660 // these to prove lack of overflow. Use this fact to avoid 1661 // doing extra work that may not pay off. 1662 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1663 !AC.assumptions().empty()) { 1664 // If the backedge is guarded by a comparison with the pre-inc 1665 // value the addrec is safe. Also, if the entry is guarded by 1666 // a comparison with the start value and the backedge is 1667 // guarded by a comparison with the post-inc value, the addrec 1668 // is safe. 1669 if (isKnownPositive(Step)) { 1670 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1671 getUnsignedRangeMax(Step)); 1672 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1673 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1674 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1675 AR->getPostIncExpr(*this), N))) { 1676 // Cache knowledge of AR NUW, which is propagated to this 1677 // AddRec. 1678 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1679 // Return the expression with the addrec on the outside. 1680 return getAddRecExpr( 1681 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1682 Depth + 1), 1683 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1684 AR->getNoWrapFlags()); 1685 } 1686 } else if (isKnownNegative(Step)) { 1687 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1688 getSignedRangeMin(Step)); 1689 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1690 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1691 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1692 AR->getPostIncExpr(*this), N))) { 1693 // Cache knowledge of AR NW, which is propagated to this 1694 // AddRec. Negative step causes unsigned wrap, but it 1695 // still can't self-wrap. 1696 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1697 // Return the expression with the addrec on the outside. 1698 return getAddRecExpr( 1699 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1700 Depth + 1), 1701 getSignExtendExpr(Step, Ty, Depth + 1), L, 1702 AR->getNoWrapFlags()); 1703 } 1704 } 1705 } 1706 1707 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1708 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1709 return getAddRecExpr( 1710 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1711 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1712 } 1713 } 1714 1715 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1716 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1717 if (SA->hasNoUnsignedWrap()) { 1718 // If the addition does not unsign overflow then we can, by definition, 1719 // commute the zero extension with the addition operation. 1720 SmallVector<const SCEV *, 4> Ops; 1721 for (const auto *Op : SA->operands()) 1722 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1723 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1724 } 1725 } 1726 1727 // The cast wasn't folded; create an explicit cast node. 1728 // Recompute the insert position, as it may have been invalidated. 1729 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1730 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1731 Op, Ty); 1732 UniqueSCEVs.InsertNode(S, IP); 1733 return S; 1734 } 1735 1736 const SCEV * 1737 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1738 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1739 "This is not an extending conversion!"); 1740 assert(isSCEVable(Ty) && 1741 "This is not a conversion to a SCEVable type!"); 1742 Ty = getEffectiveSCEVType(Ty); 1743 1744 // Fold if the operand is constant. 1745 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1746 return getConstant( 1747 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1748 1749 // sext(sext(x)) --> sext(x) 1750 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1751 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1752 1753 // sext(zext(x)) --> zext(x) 1754 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1755 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1756 1757 // Before doing any expensive analysis, check to see if we've already 1758 // computed a SCEV for this Op and Ty. 1759 FoldingSetNodeID ID; 1760 ID.AddInteger(scSignExtend); 1761 ID.AddPointer(Op); 1762 ID.AddPointer(Ty); 1763 void *IP = nullptr; 1764 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1765 // Limit recursion depth. 1766 if (Depth > MaxExtDepth) { 1767 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1768 Op, Ty); 1769 UniqueSCEVs.InsertNode(S, IP); 1770 return S; 1771 } 1772 1773 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1774 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1775 // It's possible the bits taken off by the truncate were all sign bits. If 1776 // so, we should be able to simplify this further. 1777 const SCEV *X = ST->getOperand(); 1778 ConstantRange CR = getSignedRange(X); 1779 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1780 unsigned NewBits = getTypeSizeInBits(Ty); 1781 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1782 CR.sextOrTrunc(NewBits))) 1783 return getTruncateOrSignExtend(X, Ty); 1784 } 1785 1786 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1787 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1788 if (SA->getNumOperands() == 2) { 1789 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1790 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1791 if (SMul && SC1) { 1792 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1793 const APInt &C1 = SC1->getAPInt(); 1794 const APInt &C2 = SC2->getAPInt(); 1795 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1796 C2.ugt(C1) && C2.isPowerOf2()) 1797 return getAddExpr(getSignExtendExpr(SC1, Ty, Depth + 1), 1798 getSignExtendExpr(SMul, Ty, Depth + 1), 1799 SCEV::FlagAnyWrap, Depth + 1); 1800 } 1801 } 1802 } 1803 1804 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1805 if (SA->hasNoSignedWrap()) { 1806 // If the addition does not sign overflow then we can, by definition, 1807 // commute the sign extension with the addition operation. 1808 SmallVector<const SCEV *, 4> Ops; 1809 for (const auto *Op : SA->operands()) 1810 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1811 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1812 } 1813 } 1814 // If the input value is a chrec scev, and we can prove that the value 1815 // did not overflow the old, smaller, value, we can sign extend all of the 1816 // operands (often constants). This allows analysis of something like 1817 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1818 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1819 if (AR->isAffine()) { 1820 const SCEV *Start = AR->getStart(); 1821 const SCEV *Step = AR->getStepRecurrence(*this); 1822 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1823 const Loop *L = AR->getLoop(); 1824 1825 if (!AR->hasNoSignedWrap()) { 1826 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1827 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1828 } 1829 1830 // If we have special knowledge that this addrec won't overflow, 1831 // we don't need to do any further analysis. 1832 if (AR->hasNoSignedWrap()) 1833 return getAddRecExpr( 1834 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1835 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1836 1837 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1838 // Note that this serves two purposes: It filters out loops that are 1839 // simply not analyzable, and it covers the case where this code is 1840 // being called from within backedge-taken count analysis, such that 1841 // attempting to ask for the backedge-taken count would likely result 1842 // in infinite recursion. In the later case, the analysis code will 1843 // cope with a conservative value, and it will take care to purge 1844 // that value once it has finished. 1845 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1846 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1847 // Manually compute the final value for AR, checking for 1848 // overflow. 1849 1850 // Check whether the backedge-taken count can be losslessly casted to 1851 // the addrec's type. The count is always unsigned. 1852 const SCEV *CastedMaxBECount = 1853 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1854 const SCEV *RecastedMaxBECount = 1855 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1856 if (MaxBECount == RecastedMaxBECount) { 1857 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1858 // Check whether Start+Step*MaxBECount has no signed overflow. 1859 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1860 SCEV::FlagAnyWrap, Depth + 1); 1861 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1862 SCEV::FlagAnyWrap, 1863 Depth + 1), 1864 WideTy, Depth + 1); 1865 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1866 const SCEV *WideMaxBECount = 1867 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1868 const SCEV *OperandExtendedAdd = 1869 getAddExpr(WideStart, 1870 getMulExpr(WideMaxBECount, 1871 getSignExtendExpr(Step, WideTy, Depth + 1), 1872 SCEV::FlagAnyWrap, Depth + 1), 1873 SCEV::FlagAnyWrap, Depth + 1); 1874 if (SAdd == OperandExtendedAdd) { 1875 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1876 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1877 // Return the expression with the addrec on the outside. 1878 return getAddRecExpr( 1879 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1880 Depth + 1), 1881 getSignExtendExpr(Step, Ty, Depth + 1), L, 1882 AR->getNoWrapFlags()); 1883 } 1884 // Similar to above, only this time treat the step value as unsigned. 1885 // This covers loops that count up with an unsigned step. 1886 OperandExtendedAdd = 1887 getAddExpr(WideStart, 1888 getMulExpr(WideMaxBECount, 1889 getZeroExtendExpr(Step, WideTy, Depth + 1), 1890 SCEV::FlagAnyWrap, Depth + 1), 1891 SCEV::FlagAnyWrap, Depth + 1); 1892 if (SAdd == OperandExtendedAdd) { 1893 // If AR wraps around then 1894 // 1895 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1896 // => SAdd != OperandExtendedAdd 1897 // 1898 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1899 // (SAdd == OperandExtendedAdd => AR is NW) 1900 1901 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1902 1903 // Return the expression with the addrec on the outside. 1904 return getAddRecExpr( 1905 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1906 Depth + 1), 1907 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1908 AR->getNoWrapFlags()); 1909 } 1910 } 1911 } 1912 1913 // Normally, in the cases we can prove no-overflow via a 1914 // backedge guarding condition, we can also compute a backedge 1915 // taken count for the loop. The exceptions are assumptions and 1916 // guards present in the loop -- SCEV is not great at exploiting 1917 // these to compute max backedge taken counts, but can still use 1918 // these to prove lack of overflow. Use this fact to avoid 1919 // doing extra work that may not pay off. 1920 1921 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1922 !AC.assumptions().empty()) { 1923 // If the backedge is guarded by a comparison with the pre-inc 1924 // value the addrec is safe. Also, if the entry is guarded by 1925 // a comparison with the start value and the backedge is 1926 // guarded by a comparison with the post-inc value, the addrec 1927 // is safe. 1928 ICmpInst::Predicate Pred; 1929 const SCEV *OverflowLimit = 1930 getSignedOverflowLimitForStep(Step, &Pred, this); 1931 if (OverflowLimit && 1932 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1933 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1934 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1935 OverflowLimit)))) { 1936 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1937 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1938 return getAddRecExpr( 1939 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1940 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1941 } 1942 } 1943 1944 // If Start and Step are constants, check if we can apply this 1945 // transformation: 1946 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1947 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1948 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1949 if (SC1 && SC2) { 1950 const APInt &C1 = SC1->getAPInt(); 1951 const APInt &C2 = SC2->getAPInt(); 1952 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1953 C2.isPowerOf2()) { 1954 Start = getSignExtendExpr(Start, Ty, Depth + 1); 1955 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1956 AR->getNoWrapFlags()); 1957 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty, Depth + 1), 1958 SCEV::FlagAnyWrap, Depth + 1); 1959 } 1960 } 1961 1962 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1963 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1964 return getAddRecExpr( 1965 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1966 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1967 } 1968 } 1969 1970 // If the input value is provably positive and we could not simplify 1971 // away the sext build a zext instead. 1972 if (isKnownNonNegative(Op)) 1973 return getZeroExtendExpr(Op, Ty, Depth + 1); 1974 1975 // The cast wasn't folded; create an explicit cast node. 1976 // Recompute the insert position, as it may have been invalidated. 1977 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1978 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1979 Op, Ty); 1980 UniqueSCEVs.InsertNode(S, IP); 1981 return S; 1982 } 1983 1984 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1985 /// unspecified bits out to the given type. 1986 /// 1987 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1988 Type *Ty) { 1989 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1990 "This is not an extending conversion!"); 1991 assert(isSCEVable(Ty) && 1992 "This is not a conversion to a SCEVable type!"); 1993 Ty = getEffectiveSCEVType(Ty); 1994 1995 // Sign-extend negative constants. 1996 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1997 if (SC->getAPInt().isNegative()) 1998 return getSignExtendExpr(Op, Ty); 1999 2000 // Peel off a truncate cast. 2001 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2002 const SCEV *NewOp = T->getOperand(); 2003 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2004 return getAnyExtendExpr(NewOp, Ty); 2005 return getTruncateOrNoop(NewOp, Ty); 2006 } 2007 2008 // Next try a zext cast. If the cast is folded, use it. 2009 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2010 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2011 return ZExt; 2012 2013 // Next try a sext cast. If the cast is folded, use it. 2014 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2015 if (!isa<SCEVSignExtendExpr>(SExt)) 2016 return SExt; 2017 2018 // Force the cast to be folded into the operands of an addrec. 2019 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2020 SmallVector<const SCEV *, 4> Ops; 2021 for (const SCEV *Op : AR->operands()) 2022 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2023 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2024 } 2025 2026 // If the expression is obviously signed, use the sext cast value. 2027 if (isa<SCEVSMaxExpr>(Op)) 2028 return SExt; 2029 2030 // Absent any other information, use the zext cast value. 2031 return ZExt; 2032 } 2033 2034 /// Process the given Ops list, which is a list of operands to be added under 2035 /// the given scale, update the given map. This is a helper function for 2036 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2037 /// that would form an add expression like this: 2038 /// 2039 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2040 /// 2041 /// where A and B are constants, update the map with these values: 2042 /// 2043 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2044 /// 2045 /// and add 13 + A*B*29 to AccumulatedConstant. 2046 /// This will allow getAddRecExpr to produce this: 2047 /// 2048 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2049 /// 2050 /// This form often exposes folding opportunities that are hidden in 2051 /// the original operand list. 2052 /// 2053 /// Return true iff it appears that any interesting folding opportunities 2054 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2055 /// the common case where no interesting opportunities are present, and 2056 /// is also used as a check to avoid infinite recursion. 2057 /// 2058 static bool 2059 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2060 SmallVectorImpl<const SCEV *> &NewOps, 2061 APInt &AccumulatedConstant, 2062 const SCEV *const *Ops, size_t NumOperands, 2063 const APInt &Scale, 2064 ScalarEvolution &SE) { 2065 bool Interesting = false; 2066 2067 // Iterate over the add operands. They are sorted, with constants first. 2068 unsigned i = 0; 2069 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2070 ++i; 2071 // Pull a buried constant out to the outside. 2072 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2073 Interesting = true; 2074 AccumulatedConstant += Scale * C->getAPInt(); 2075 } 2076 2077 // Next comes everything else. We're especially interested in multiplies 2078 // here, but they're in the middle, so just visit the rest with one loop. 2079 for (; i != NumOperands; ++i) { 2080 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2081 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2082 APInt NewScale = 2083 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2084 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2085 // A multiplication of a constant with another add; recurse. 2086 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2087 Interesting |= 2088 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2089 Add->op_begin(), Add->getNumOperands(), 2090 NewScale, SE); 2091 } else { 2092 // A multiplication of a constant with some other value. Update 2093 // the map. 2094 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2095 const SCEV *Key = SE.getMulExpr(MulOps); 2096 auto Pair = M.insert({Key, NewScale}); 2097 if (Pair.second) { 2098 NewOps.push_back(Pair.first->first); 2099 } else { 2100 Pair.first->second += NewScale; 2101 // The map already had an entry for this value, which may indicate 2102 // a folding opportunity. 2103 Interesting = true; 2104 } 2105 } 2106 } else { 2107 // An ordinary operand. Update the map. 2108 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2109 M.insert({Ops[i], Scale}); 2110 if (Pair.second) { 2111 NewOps.push_back(Pair.first->first); 2112 } else { 2113 Pair.first->second += Scale; 2114 // The map already had an entry for this value, which may indicate 2115 // a folding opportunity. 2116 Interesting = true; 2117 } 2118 } 2119 } 2120 2121 return Interesting; 2122 } 2123 2124 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2125 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2126 // can't-overflow flags for the operation if possible. 2127 static SCEV::NoWrapFlags 2128 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2129 const SmallVectorImpl<const SCEV *> &Ops, 2130 SCEV::NoWrapFlags Flags) { 2131 using namespace std::placeholders; 2132 typedef OverflowingBinaryOperator OBO; 2133 2134 bool CanAnalyze = 2135 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2136 (void)CanAnalyze; 2137 assert(CanAnalyze && "don't call from other places!"); 2138 2139 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2140 SCEV::NoWrapFlags SignOrUnsignWrap = 2141 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2142 2143 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2144 auto IsKnownNonNegative = [&](const SCEV *S) { 2145 return SE->isKnownNonNegative(S); 2146 }; 2147 2148 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2149 Flags = 2150 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2151 2152 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2153 2154 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 2155 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 2156 2157 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 2158 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2159 2160 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2161 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2162 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2163 Instruction::Add, C, OBO::NoSignedWrap); 2164 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2165 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2166 } 2167 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2168 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2169 Instruction::Add, C, OBO::NoUnsignedWrap); 2170 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2171 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2172 } 2173 } 2174 2175 return Flags; 2176 } 2177 2178 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2179 if (!isLoopInvariant(S, L)) 2180 return false; 2181 // If a value depends on a SCEVUnknown which is defined after the loop, we 2182 // conservatively assume that we cannot calculate it at the loop's entry. 2183 struct FindDominatedSCEVUnknown { 2184 bool Found = false; 2185 const Loop *L; 2186 DominatorTree &DT; 2187 LoopInfo &LI; 2188 2189 FindDominatedSCEVUnknown(const Loop *L, DominatorTree &DT, LoopInfo &LI) 2190 : L(L), DT(DT), LI(LI) {} 2191 2192 bool checkSCEVUnknown(const SCEVUnknown *SU) { 2193 if (auto *I = dyn_cast<Instruction>(SU->getValue())) { 2194 if (DT.dominates(L->getHeader(), I->getParent())) 2195 Found = true; 2196 else 2197 assert(DT.dominates(I->getParent(), L->getHeader()) && 2198 "No dominance relationship between SCEV and loop?"); 2199 } 2200 return false; 2201 } 2202 2203 bool follow(const SCEV *S) { 2204 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 2205 case scConstant: 2206 return false; 2207 case scAddRecExpr: 2208 case scTruncate: 2209 case scZeroExtend: 2210 case scSignExtend: 2211 case scAddExpr: 2212 case scMulExpr: 2213 case scUMaxExpr: 2214 case scSMaxExpr: 2215 case scUDivExpr: 2216 return true; 2217 case scUnknown: 2218 return checkSCEVUnknown(cast<SCEVUnknown>(S)); 2219 case scCouldNotCompute: 2220 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2221 } 2222 return false; 2223 } 2224 2225 bool isDone() { return Found; } 2226 }; 2227 2228 FindDominatedSCEVUnknown FSU(L, DT, LI); 2229 SCEVTraversal<FindDominatedSCEVUnknown> ST(FSU); 2230 ST.visitAll(S); 2231 return !FSU.Found; 2232 } 2233 2234 /// Get a canonical add expression, or something simpler if possible. 2235 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2236 SCEV::NoWrapFlags Flags, 2237 unsigned Depth) { 2238 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2239 "only nuw or nsw allowed"); 2240 assert(!Ops.empty() && "Cannot get empty add!"); 2241 if (Ops.size() == 1) return Ops[0]; 2242 #ifndef NDEBUG 2243 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2244 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2245 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2246 "SCEVAddExpr operand types don't match!"); 2247 #endif 2248 2249 // Sort by complexity, this groups all similar expression types together. 2250 GroupByComplexity(Ops, &LI, DT); 2251 2252 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2253 2254 // If there are any constants, fold them together. 2255 unsigned Idx = 0; 2256 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2257 ++Idx; 2258 assert(Idx < Ops.size()); 2259 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2260 // We found two constants, fold them together! 2261 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2262 if (Ops.size() == 2) return Ops[0]; 2263 Ops.erase(Ops.begin()+1); // Erase the folded element 2264 LHSC = cast<SCEVConstant>(Ops[0]); 2265 } 2266 2267 // If we are left with a constant zero being added, strip it off. 2268 if (LHSC->getValue()->isZero()) { 2269 Ops.erase(Ops.begin()); 2270 --Idx; 2271 } 2272 2273 if (Ops.size() == 1) return Ops[0]; 2274 } 2275 2276 // Limit recursion calls depth. 2277 if (Depth > MaxArithDepth) 2278 return getOrCreateAddExpr(Ops, Flags); 2279 2280 // Okay, check to see if the same value occurs in the operand list more than 2281 // once. If so, merge them together into an multiply expression. Since we 2282 // sorted the list, these values are required to be adjacent. 2283 Type *Ty = Ops[0]->getType(); 2284 bool FoundMatch = false; 2285 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2286 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2287 // Scan ahead to count how many equal operands there are. 2288 unsigned Count = 2; 2289 while (i+Count != e && Ops[i+Count] == Ops[i]) 2290 ++Count; 2291 // Merge the values into a multiply. 2292 const SCEV *Scale = getConstant(Ty, Count); 2293 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2294 if (Ops.size() == Count) 2295 return Mul; 2296 Ops[i] = Mul; 2297 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2298 --i; e -= Count - 1; 2299 FoundMatch = true; 2300 } 2301 if (FoundMatch) 2302 return getAddExpr(Ops, Flags); 2303 2304 // Check for truncates. If all the operands are truncated from the same 2305 // type, see if factoring out the truncate would permit the result to be 2306 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2307 // if the contents of the resulting outer trunc fold to something simple. 2308 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2309 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2310 Type *DstType = Trunc->getType(); 2311 Type *SrcType = Trunc->getOperand()->getType(); 2312 SmallVector<const SCEV *, 8> LargeOps; 2313 bool Ok = true; 2314 // Check all the operands to see if they can be represented in the 2315 // source type of the truncate. 2316 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2317 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2318 if (T->getOperand()->getType() != SrcType) { 2319 Ok = false; 2320 break; 2321 } 2322 LargeOps.push_back(T->getOperand()); 2323 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2324 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2325 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2326 SmallVector<const SCEV *, 8> LargeMulOps; 2327 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2328 if (const SCEVTruncateExpr *T = 2329 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2330 if (T->getOperand()->getType() != SrcType) { 2331 Ok = false; 2332 break; 2333 } 2334 LargeMulOps.push_back(T->getOperand()); 2335 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2336 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2337 } else { 2338 Ok = false; 2339 break; 2340 } 2341 } 2342 if (Ok) 2343 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2344 } else { 2345 Ok = false; 2346 break; 2347 } 2348 } 2349 if (Ok) { 2350 // Evaluate the expression in the larger type. 2351 const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1); 2352 // If it folds to something simple, use it. Otherwise, don't. 2353 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2354 return getTruncateExpr(Fold, DstType); 2355 } 2356 } 2357 2358 // Skip past any other cast SCEVs. 2359 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2360 ++Idx; 2361 2362 // If there are add operands they would be next. 2363 if (Idx < Ops.size()) { 2364 bool DeletedAdd = false; 2365 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2366 if (Ops.size() > AddOpsInlineThreshold || 2367 Add->getNumOperands() > AddOpsInlineThreshold) 2368 break; 2369 // If we have an add, expand the add operands onto the end of the operands 2370 // list. 2371 Ops.erase(Ops.begin()+Idx); 2372 Ops.append(Add->op_begin(), Add->op_end()); 2373 DeletedAdd = true; 2374 } 2375 2376 // If we deleted at least one add, we added operands to the end of the list, 2377 // and they are not necessarily sorted. Recurse to resort and resimplify 2378 // any operands we just acquired. 2379 if (DeletedAdd) 2380 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2381 } 2382 2383 // Skip over the add expression until we get to a multiply. 2384 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2385 ++Idx; 2386 2387 // Check to see if there are any folding opportunities present with 2388 // operands multiplied by constant values. 2389 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2390 uint64_t BitWidth = getTypeSizeInBits(Ty); 2391 DenseMap<const SCEV *, APInt> M; 2392 SmallVector<const SCEV *, 8> NewOps; 2393 APInt AccumulatedConstant(BitWidth, 0); 2394 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2395 Ops.data(), Ops.size(), 2396 APInt(BitWidth, 1), *this)) { 2397 struct APIntCompare { 2398 bool operator()(const APInt &LHS, const APInt &RHS) const { 2399 return LHS.ult(RHS); 2400 } 2401 }; 2402 2403 // Some interesting folding opportunity is present, so its worthwhile to 2404 // re-generate the operands list. Group the operands by constant scale, 2405 // to avoid multiplying by the same constant scale multiple times. 2406 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2407 for (const SCEV *NewOp : NewOps) 2408 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2409 // Re-generate the operands list. 2410 Ops.clear(); 2411 if (AccumulatedConstant != 0) 2412 Ops.push_back(getConstant(AccumulatedConstant)); 2413 for (auto &MulOp : MulOpLists) 2414 if (MulOp.first != 0) 2415 Ops.push_back(getMulExpr( 2416 getConstant(MulOp.first), 2417 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2418 SCEV::FlagAnyWrap, Depth + 1)); 2419 if (Ops.empty()) 2420 return getZero(Ty); 2421 if (Ops.size() == 1) 2422 return Ops[0]; 2423 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2424 } 2425 } 2426 2427 // If we are adding something to a multiply expression, make sure the 2428 // something is not already an operand of the multiply. If so, merge it into 2429 // the multiply. 2430 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2431 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2432 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2433 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2434 if (isa<SCEVConstant>(MulOpSCEV)) 2435 continue; 2436 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2437 if (MulOpSCEV == Ops[AddOp]) { 2438 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2439 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2440 if (Mul->getNumOperands() != 2) { 2441 // If the multiply has more than two operands, we must get the 2442 // Y*Z term. 2443 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2444 Mul->op_begin()+MulOp); 2445 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2446 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2447 } 2448 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2449 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2450 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2451 SCEV::FlagAnyWrap, Depth + 1); 2452 if (Ops.size() == 2) return OuterMul; 2453 if (AddOp < Idx) { 2454 Ops.erase(Ops.begin()+AddOp); 2455 Ops.erase(Ops.begin()+Idx-1); 2456 } else { 2457 Ops.erase(Ops.begin()+Idx); 2458 Ops.erase(Ops.begin()+AddOp-1); 2459 } 2460 Ops.push_back(OuterMul); 2461 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2462 } 2463 2464 // Check this multiply against other multiplies being added together. 2465 for (unsigned OtherMulIdx = Idx+1; 2466 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2467 ++OtherMulIdx) { 2468 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2469 // If MulOp occurs in OtherMul, we can fold the two multiplies 2470 // together. 2471 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2472 OMulOp != e; ++OMulOp) 2473 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2474 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2475 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2476 if (Mul->getNumOperands() != 2) { 2477 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2478 Mul->op_begin()+MulOp); 2479 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2480 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2481 } 2482 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2483 if (OtherMul->getNumOperands() != 2) { 2484 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2485 OtherMul->op_begin()+OMulOp); 2486 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2487 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2488 } 2489 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2490 const SCEV *InnerMulSum = 2491 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2492 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2493 SCEV::FlagAnyWrap, Depth + 1); 2494 if (Ops.size() == 2) return OuterMul; 2495 Ops.erase(Ops.begin()+Idx); 2496 Ops.erase(Ops.begin()+OtherMulIdx-1); 2497 Ops.push_back(OuterMul); 2498 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2499 } 2500 } 2501 } 2502 } 2503 2504 // If there are any add recurrences in the operands list, see if any other 2505 // added values are loop invariant. If so, we can fold them into the 2506 // recurrence. 2507 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2508 ++Idx; 2509 2510 // Scan over all recurrences, trying to fold loop invariants into them. 2511 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2512 // Scan all of the other operands to this add and add them to the vector if 2513 // they are loop invariant w.r.t. the recurrence. 2514 SmallVector<const SCEV *, 8> LIOps; 2515 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2516 const Loop *AddRecLoop = AddRec->getLoop(); 2517 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2518 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2519 LIOps.push_back(Ops[i]); 2520 Ops.erase(Ops.begin()+i); 2521 --i; --e; 2522 } 2523 2524 // If we found some loop invariants, fold them into the recurrence. 2525 if (!LIOps.empty()) { 2526 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2527 LIOps.push_back(AddRec->getStart()); 2528 2529 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2530 AddRec->op_end()); 2531 // This follows from the fact that the no-wrap flags on the outer add 2532 // expression are applicable on the 0th iteration, when the add recurrence 2533 // will be equal to its start value. 2534 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2535 2536 // Build the new addrec. Propagate the NUW and NSW flags if both the 2537 // outer add and the inner addrec are guaranteed to have no overflow. 2538 // Always propagate NW. 2539 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2540 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2541 2542 // If all of the other operands were loop invariant, we are done. 2543 if (Ops.size() == 1) return NewRec; 2544 2545 // Otherwise, add the folded AddRec by the non-invariant parts. 2546 for (unsigned i = 0;; ++i) 2547 if (Ops[i] == AddRec) { 2548 Ops[i] = NewRec; 2549 break; 2550 } 2551 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2552 } 2553 2554 // Okay, if there weren't any loop invariants to be folded, check to see if 2555 // there are multiple AddRec's with the same loop induction variable being 2556 // added together. If so, we can fold them. 2557 for (unsigned OtherIdx = Idx+1; 2558 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2559 ++OtherIdx) { 2560 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2561 // so that the 1st found AddRecExpr is dominated by all others. 2562 assert(DT.dominates( 2563 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2564 AddRec->getLoop()->getHeader()) && 2565 "AddRecExprs are not sorted in reverse dominance order?"); 2566 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2567 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2568 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2569 AddRec->op_end()); 2570 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2571 ++OtherIdx) { 2572 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2573 if (OtherAddRec->getLoop() == AddRecLoop) { 2574 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2575 i != e; ++i) { 2576 if (i >= AddRecOps.size()) { 2577 AddRecOps.append(OtherAddRec->op_begin()+i, 2578 OtherAddRec->op_end()); 2579 break; 2580 } 2581 SmallVector<const SCEV *, 2> TwoOps = { 2582 AddRecOps[i], OtherAddRec->getOperand(i)}; 2583 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2584 } 2585 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2586 } 2587 } 2588 // Step size has changed, so we cannot guarantee no self-wraparound. 2589 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2590 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2591 } 2592 } 2593 2594 // Otherwise couldn't fold anything into this recurrence. Move onto the 2595 // next one. 2596 } 2597 2598 // Okay, it looks like we really DO need an add expr. Check to see if we 2599 // already have one, otherwise create a new one. 2600 return getOrCreateAddExpr(Ops, Flags); 2601 } 2602 2603 const SCEV * 2604 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2605 SCEV::NoWrapFlags Flags) { 2606 FoldingSetNodeID ID; 2607 ID.AddInteger(scAddExpr); 2608 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2609 ID.AddPointer(Ops[i]); 2610 void *IP = nullptr; 2611 SCEVAddExpr *S = 2612 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2613 if (!S) { 2614 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2615 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2616 S = new (SCEVAllocator) 2617 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2618 UniqueSCEVs.InsertNode(S, IP); 2619 } 2620 S->setNoWrapFlags(Flags); 2621 return S; 2622 } 2623 2624 const SCEV * 2625 ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2626 SCEV::NoWrapFlags Flags) { 2627 FoldingSetNodeID ID; 2628 ID.AddInteger(scMulExpr); 2629 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2630 ID.AddPointer(Ops[i]); 2631 void *IP = nullptr; 2632 SCEVMulExpr *S = 2633 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2634 if (!S) { 2635 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2636 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2637 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2638 O, Ops.size()); 2639 UniqueSCEVs.InsertNode(S, IP); 2640 } 2641 S->setNoWrapFlags(Flags); 2642 return S; 2643 } 2644 2645 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2646 uint64_t k = i*j; 2647 if (j > 1 && k / j != i) Overflow = true; 2648 return k; 2649 } 2650 2651 /// Compute the result of "n choose k", the binomial coefficient. If an 2652 /// intermediate computation overflows, Overflow will be set and the return will 2653 /// be garbage. Overflow is not cleared on absence of overflow. 2654 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2655 // We use the multiplicative formula: 2656 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2657 // At each iteration, we take the n-th term of the numeral and divide by the 2658 // (k-n)th term of the denominator. This division will always produce an 2659 // integral result, and helps reduce the chance of overflow in the 2660 // intermediate computations. However, we can still overflow even when the 2661 // final result would fit. 2662 2663 if (n == 0 || n == k) return 1; 2664 if (k > n) return 0; 2665 2666 if (k > n/2) 2667 k = n-k; 2668 2669 uint64_t r = 1; 2670 for (uint64_t i = 1; i <= k; ++i) { 2671 r = umul_ov(r, n-(i-1), Overflow); 2672 r /= i; 2673 } 2674 return r; 2675 } 2676 2677 /// Determine if any of the operands in this SCEV are a constant or if 2678 /// any of the add or multiply expressions in this SCEV contain a constant. 2679 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2680 struct FindConstantInAddMulChain { 2681 bool FoundConstant = false; 2682 2683 bool follow(const SCEV *S) { 2684 FoundConstant |= isa<SCEVConstant>(S); 2685 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2686 } 2687 bool isDone() const { 2688 return FoundConstant; 2689 } 2690 }; 2691 2692 FindConstantInAddMulChain F; 2693 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2694 ST.visitAll(StartExpr); 2695 return F.FoundConstant; 2696 } 2697 2698 /// Get a canonical multiply expression, or something simpler if possible. 2699 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2700 SCEV::NoWrapFlags Flags, 2701 unsigned Depth) { 2702 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2703 "only nuw or nsw allowed"); 2704 assert(!Ops.empty() && "Cannot get empty mul!"); 2705 if (Ops.size() == 1) return Ops[0]; 2706 #ifndef NDEBUG 2707 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2708 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2709 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2710 "SCEVMulExpr operand types don't match!"); 2711 #endif 2712 2713 // Sort by complexity, this groups all similar expression types together. 2714 GroupByComplexity(Ops, &LI, DT); 2715 2716 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2717 2718 // Limit recursion calls depth. 2719 if (Depth > MaxArithDepth) 2720 return getOrCreateMulExpr(Ops, Flags); 2721 2722 // If there are any constants, fold them together. 2723 unsigned Idx = 0; 2724 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2725 2726 // C1*(C2+V) -> C1*C2 + C1*V 2727 if (Ops.size() == 2) 2728 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2729 // If any of Add's ops are Adds or Muls with a constant, 2730 // apply this transformation as well. 2731 if (Add->getNumOperands() == 2) 2732 // TODO: There are some cases where this transformation is not 2733 // profitable, for example: 2734 // Add = (C0 + X) * Y + Z. 2735 // Maybe the scope of this transformation should be narrowed down. 2736 if (containsConstantInAddMulChain(Add)) 2737 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2738 SCEV::FlagAnyWrap, Depth + 1), 2739 getMulExpr(LHSC, Add->getOperand(1), 2740 SCEV::FlagAnyWrap, Depth + 1), 2741 SCEV::FlagAnyWrap, Depth + 1); 2742 2743 ++Idx; 2744 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2745 // We found two constants, fold them together! 2746 ConstantInt *Fold = 2747 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2748 Ops[0] = getConstant(Fold); 2749 Ops.erase(Ops.begin()+1); // Erase the folded element 2750 if (Ops.size() == 1) return Ops[0]; 2751 LHSC = cast<SCEVConstant>(Ops[0]); 2752 } 2753 2754 // If we are left with a constant one being multiplied, strip it off. 2755 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2756 Ops.erase(Ops.begin()); 2757 --Idx; 2758 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2759 // If we have a multiply of zero, it will always be zero. 2760 return Ops[0]; 2761 } else if (Ops[0]->isAllOnesValue()) { 2762 // If we have a mul by -1 of an add, try distributing the -1 among the 2763 // add operands. 2764 if (Ops.size() == 2) { 2765 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2766 SmallVector<const SCEV *, 4> NewOps; 2767 bool AnyFolded = false; 2768 for (const SCEV *AddOp : Add->operands()) { 2769 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2770 Depth + 1); 2771 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2772 NewOps.push_back(Mul); 2773 } 2774 if (AnyFolded) 2775 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2776 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2777 // Negation preserves a recurrence's no self-wrap property. 2778 SmallVector<const SCEV *, 4> Operands; 2779 for (const SCEV *AddRecOp : AddRec->operands()) 2780 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2781 Depth + 1)); 2782 2783 return getAddRecExpr(Operands, AddRec->getLoop(), 2784 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2785 } 2786 } 2787 } 2788 2789 if (Ops.size() == 1) 2790 return Ops[0]; 2791 } 2792 2793 // Skip over the add expression until we get to a multiply. 2794 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2795 ++Idx; 2796 2797 // If there are mul operands inline them all into this expression. 2798 if (Idx < Ops.size()) { 2799 bool DeletedMul = false; 2800 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2801 if (Ops.size() > MulOpsInlineThreshold) 2802 break; 2803 // If we have an mul, expand the mul operands onto the end of the 2804 // operands list. 2805 Ops.erase(Ops.begin()+Idx); 2806 Ops.append(Mul->op_begin(), Mul->op_end()); 2807 DeletedMul = true; 2808 } 2809 2810 // If we deleted at least one mul, we added operands to the end of the 2811 // list, and they are not necessarily sorted. Recurse to resort and 2812 // resimplify any operands we just acquired. 2813 if (DeletedMul) 2814 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2815 } 2816 2817 // If there are any add recurrences in the operands list, see if any other 2818 // added values are loop invariant. If so, we can fold them into the 2819 // recurrence. 2820 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2821 ++Idx; 2822 2823 // Scan over all recurrences, trying to fold loop invariants into them. 2824 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2825 // Scan all of the other operands to this mul and add them to the vector 2826 // if they are loop invariant w.r.t. the recurrence. 2827 SmallVector<const SCEV *, 8> LIOps; 2828 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2829 const Loop *AddRecLoop = AddRec->getLoop(); 2830 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2831 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2832 LIOps.push_back(Ops[i]); 2833 Ops.erase(Ops.begin()+i); 2834 --i; --e; 2835 } 2836 2837 // If we found some loop invariants, fold them into the recurrence. 2838 if (!LIOps.empty()) { 2839 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2840 SmallVector<const SCEV *, 4> NewOps; 2841 NewOps.reserve(AddRec->getNumOperands()); 2842 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2843 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2844 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2845 SCEV::FlagAnyWrap, Depth + 1)); 2846 2847 // Build the new addrec. Propagate the NUW and NSW flags if both the 2848 // outer mul and the inner addrec are guaranteed to have no overflow. 2849 // 2850 // No self-wrap cannot be guaranteed after changing the step size, but 2851 // will be inferred if either NUW or NSW is true. 2852 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2853 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2854 2855 // If all of the other operands were loop invariant, we are done. 2856 if (Ops.size() == 1) return NewRec; 2857 2858 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2859 for (unsigned i = 0;; ++i) 2860 if (Ops[i] == AddRec) { 2861 Ops[i] = NewRec; 2862 break; 2863 } 2864 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2865 } 2866 2867 // Okay, if there weren't any loop invariants to be folded, check to see 2868 // if there are multiple AddRec's with the same loop induction variable 2869 // being multiplied together. If so, we can fold them. 2870 2871 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2872 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2873 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2874 // ]]],+,...up to x=2n}. 2875 // Note that the arguments to choose() are always integers with values 2876 // known at compile time, never SCEV objects. 2877 // 2878 // The implementation avoids pointless extra computations when the two 2879 // addrec's are of different length (mathematically, it's equivalent to 2880 // an infinite stream of zeros on the right). 2881 bool OpsModified = false; 2882 for (unsigned OtherIdx = Idx+1; 2883 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2884 ++OtherIdx) { 2885 const SCEVAddRecExpr *OtherAddRec = 2886 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2887 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2888 continue; 2889 2890 // Limit max number of arguments to avoid creation of unreasonably big 2891 // SCEVAddRecs with very complex operands. 2892 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 2893 MaxAddRecSize) 2894 continue; 2895 2896 bool Overflow = false; 2897 Type *Ty = AddRec->getType(); 2898 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2899 SmallVector<const SCEV*, 7> AddRecOps; 2900 for (int x = 0, xe = AddRec->getNumOperands() + 2901 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2902 const SCEV *Term = getZero(Ty); 2903 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2904 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2905 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2906 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2907 z < ze && !Overflow; ++z) { 2908 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2909 uint64_t Coeff; 2910 if (LargerThan64Bits) 2911 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2912 else 2913 Coeff = Coeff1*Coeff2; 2914 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2915 const SCEV *Term1 = AddRec->getOperand(y-z); 2916 const SCEV *Term2 = OtherAddRec->getOperand(z); 2917 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1, Term2, 2918 SCEV::FlagAnyWrap, Depth + 1), 2919 SCEV::FlagAnyWrap, Depth + 1); 2920 } 2921 } 2922 AddRecOps.push_back(Term); 2923 } 2924 if (!Overflow) { 2925 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2926 SCEV::FlagAnyWrap); 2927 if (Ops.size() == 2) return NewAddRec; 2928 Ops[Idx] = NewAddRec; 2929 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2930 OpsModified = true; 2931 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2932 if (!AddRec) 2933 break; 2934 } 2935 } 2936 if (OpsModified) 2937 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2938 2939 // Otherwise couldn't fold anything into this recurrence. Move onto the 2940 // next one. 2941 } 2942 2943 // Okay, it looks like we really DO need an mul expr. Check to see if we 2944 // already have one, otherwise create a new one. 2945 return getOrCreateMulExpr(Ops, Flags); 2946 } 2947 2948 /// Get a canonical unsigned division expression, or something simpler if 2949 /// possible. 2950 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2951 const SCEV *RHS) { 2952 assert(getEffectiveSCEVType(LHS->getType()) == 2953 getEffectiveSCEVType(RHS->getType()) && 2954 "SCEVUDivExpr operand types don't match!"); 2955 2956 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2957 if (RHSC->getValue()->isOne()) 2958 return LHS; // X udiv 1 --> x 2959 // If the denominator is zero, the result of the udiv is undefined. Don't 2960 // try to analyze it, because the resolution chosen here may differ from 2961 // the resolution chosen in other parts of the compiler. 2962 if (!RHSC->getValue()->isZero()) { 2963 // Determine if the division can be folded into the operands of 2964 // its operands. 2965 // TODO: Generalize this to non-constants by using known-bits information. 2966 Type *Ty = LHS->getType(); 2967 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2968 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2969 // For non-power-of-two values, effectively round the value up to the 2970 // nearest power of two. 2971 if (!RHSC->getAPInt().isPowerOf2()) 2972 ++MaxShiftAmt; 2973 IntegerType *ExtTy = 2974 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2975 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2976 if (const SCEVConstant *Step = 2977 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2978 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2979 const APInt &StepInt = Step->getAPInt(); 2980 const APInt &DivInt = RHSC->getAPInt(); 2981 if (!StepInt.urem(DivInt) && 2982 getZeroExtendExpr(AR, ExtTy) == 2983 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2984 getZeroExtendExpr(Step, ExtTy), 2985 AR->getLoop(), SCEV::FlagAnyWrap)) { 2986 SmallVector<const SCEV *, 4> Operands; 2987 for (const SCEV *Op : AR->operands()) 2988 Operands.push_back(getUDivExpr(Op, RHS)); 2989 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2990 } 2991 /// Get a canonical UDivExpr for a recurrence. 2992 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2993 // We can currently only fold X%N if X is constant. 2994 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2995 if (StartC && !DivInt.urem(StepInt) && 2996 getZeroExtendExpr(AR, ExtTy) == 2997 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2998 getZeroExtendExpr(Step, ExtTy), 2999 AR->getLoop(), SCEV::FlagAnyWrap)) { 3000 const APInt &StartInt = StartC->getAPInt(); 3001 const APInt &StartRem = StartInt.urem(StepInt); 3002 if (StartRem != 0) 3003 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 3004 AR->getLoop(), SCEV::FlagNW); 3005 } 3006 } 3007 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3008 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3009 SmallVector<const SCEV *, 4> Operands; 3010 for (const SCEV *Op : M->operands()) 3011 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3012 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3013 // Find an operand that's safely divisible. 3014 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3015 const SCEV *Op = M->getOperand(i); 3016 const SCEV *Div = getUDivExpr(Op, RHSC); 3017 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3018 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3019 M->op_end()); 3020 Operands[i] = Div; 3021 return getMulExpr(Operands); 3022 } 3023 } 3024 } 3025 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3026 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3027 SmallVector<const SCEV *, 4> Operands; 3028 for (const SCEV *Op : A->operands()) 3029 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3030 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3031 Operands.clear(); 3032 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3033 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3034 if (isa<SCEVUDivExpr>(Op) || 3035 getMulExpr(Op, RHS) != A->getOperand(i)) 3036 break; 3037 Operands.push_back(Op); 3038 } 3039 if (Operands.size() == A->getNumOperands()) 3040 return getAddExpr(Operands); 3041 } 3042 } 3043 3044 // Fold if both operands are constant. 3045 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3046 Constant *LHSCV = LHSC->getValue(); 3047 Constant *RHSCV = RHSC->getValue(); 3048 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3049 RHSCV))); 3050 } 3051 } 3052 } 3053 3054 FoldingSetNodeID ID; 3055 ID.AddInteger(scUDivExpr); 3056 ID.AddPointer(LHS); 3057 ID.AddPointer(RHS); 3058 void *IP = nullptr; 3059 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3060 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3061 LHS, RHS); 3062 UniqueSCEVs.InsertNode(S, IP); 3063 return S; 3064 } 3065 3066 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3067 APInt A = C1->getAPInt().abs(); 3068 APInt B = C2->getAPInt().abs(); 3069 uint32_t ABW = A.getBitWidth(); 3070 uint32_t BBW = B.getBitWidth(); 3071 3072 if (ABW > BBW) 3073 B = B.zext(ABW); 3074 else if (ABW < BBW) 3075 A = A.zext(BBW); 3076 3077 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3078 } 3079 3080 /// Get a canonical unsigned division expression, or something simpler if 3081 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3082 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3083 /// it's not exact because the udiv may be clearing bits. 3084 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3085 const SCEV *RHS) { 3086 // TODO: we could try to find factors in all sorts of things, but for now we 3087 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3088 // end of this file for inspiration. 3089 3090 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3091 if (!Mul || !Mul->hasNoUnsignedWrap()) 3092 return getUDivExpr(LHS, RHS); 3093 3094 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3095 // If the mulexpr multiplies by a constant, then that constant must be the 3096 // first element of the mulexpr. 3097 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3098 if (LHSCst == RHSCst) { 3099 SmallVector<const SCEV *, 2> Operands; 3100 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3101 return getMulExpr(Operands); 3102 } 3103 3104 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3105 // that there's a factor provided by one of the other terms. We need to 3106 // check. 3107 APInt Factor = gcd(LHSCst, RHSCst); 3108 if (!Factor.isIntN(1)) { 3109 LHSCst = 3110 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3111 RHSCst = 3112 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3113 SmallVector<const SCEV *, 2> Operands; 3114 Operands.push_back(LHSCst); 3115 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3116 LHS = getMulExpr(Operands); 3117 RHS = RHSCst; 3118 Mul = dyn_cast<SCEVMulExpr>(LHS); 3119 if (!Mul) 3120 return getUDivExactExpr(LHS, RHS); 3121 } 3122 } 3123 } 3124 3125 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3126 if (Mul->getOperand(i) == RHS) { 3127 SmallVector<const SCEV *, 2> Operands; 3128 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3129 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3130 return getMulExpr(Operands); 3131 } 3132 } 3133 3134 return getUDivExpr(LHS, RHS); 3135 } 3136 3137 /// Get an add recurrence expression for the specified loop. Simplify the 3138 /// expression as much as possible. 3139 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3140 const Loop *L, 3141 SCEV::NoWrapFlags Flags) { 3142 SmallVector<const SCEV *, 4> Operands; 3143 Operands.push_back(Start); 3144 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3145 if (StepChrec->getLoop() == L) { 3146 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3147 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3148 } 3149 3150 Operands.push_back(Step); 3151 return getAddRecExpr(Operands, L, Flags); 3152 } 3153 3154 /// Get an add recurrence expression for the specified loop. Simplify the 3155 /// expression as much as possible. 3156 const SCEV * 3157 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3158 const Loop *L, SCEV::NoWrapFlags Flags) { 3159 if (Operands.size() == 1) return Operands[0]; 3160 #ifndef NDEBUG 3161 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3162 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3163 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3164 "SCEVAddRecExpr operand types don't match!"); 3165 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3166 assert(isLoopInvariant(Operands[i], L) && 3167 "SCEVAddRecExpr operand is not loop-invariant!"); 3168 #endif 3169 3170 if (Operands.back()->isZero()) { 3171 Operands.pop_back(); 3172 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3173 } 3174 3175 // It's tempting to want to call getMaxBackedgeTakenCount count here and 3176 // use that information to infer NUW and NSW flags. However, computing a 3177 // BE count requires calling getAddRecExpr, so we may not yet have a 3178 // meaningful BE count at this point (and if we don't, we'd be stuck 3179 // with a SCEVCouldNotCompute as the cached BE count). 3180 3181 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3182 3183 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3184 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3185 const Loop *NestedLoop = NestedAR->getLoop(); 3186 if (L->contains(NestedLoop) 3187 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3188 : (!NestedLoop->contains(L) && 3189 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3190 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3191 NestedAR->op_end()); 3192 Operands[0] = NestedAR->getStart(); 3193 // AddRecs require their operands be loop-invariant with respect to their 3194 // loops. Don't perform this transformation if it would break this 3195 // requirement. 3196 bool AllInvariant = all_of( 3197 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3198 3199 if (AllInvariant) { 3200 // Create a recurrence for the outer loop with the same step size. 3201 // 3202 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3203 // inner recurrence has the same property. 3204 SCEV::NoWrapFlags OuterFlags = 3205 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3206 3207 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3208 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3209 return isLoopInvariant(Op, NestedLoop); 3210 }); 3211 3212 if (AllInvariant) { 3213 // Ok, both add recurrences are valid after the transformation. 3214 // 3215 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3216 // the outer recurrence has the same property. 3217 SCEV::NoWrapFlags InnerFlags = 3218 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3219 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3220 } 3221 } 3222 // Reset Operands to its original state. 3223 Operands[0] = NestedAR; 3224 } 3225 } 3226 3227 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3228 // already have one, otherwise create a new one. 3229 FoldingSetNodeID ID; 3230 ID.AddInteger(scAddRecExpr); 3231 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3232 ID.AddPointer(Operands[i]); 3233 ID.AddPointer(L); 3234 void *IP = nullptr; 3235 SCEVAddRecExpr *S = 3236 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3237 if (!S) { 3238 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 3239 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 3240 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 3241 O, Operands.size(), L); 3242 UniqueSCEVs.InsertNode(S, IP); 3243 } 3244 S->setNoWrapFlags(Flags); 3245 return S; 3246 } 3247 3248 const SCEV * 3249 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3250 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3251 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3252 // getSCEV(Base)->getType() has the same address space as Base->getType() 3253 // because SCEV::getType() preserves the address space. 3254 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3255 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3256 // instruction to its SCEV, because the Instruction may be guarded by control 3257 // flow and the no-overflow bits may not be valid for the expression in any 3258 // context. This can be fixed similarly to how these flags are handled for 3259 // adds. 3260 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3261 : SCEV::FlagAnyWrap; 3262 3263 const SCEV *TotalOffset = getZero(IntPtrTy); 3264 // The array size is unimportant. The first thing we do on CurTy is getting 3265 // its element type. 3266 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3267 for (const SCEV *IndexExpr : IndexExprs) { 3268 // Compute the (potentially symbolic) offset in bytes for this index. 3269 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3270 // For a struct, add the member offset. 3271 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3272 unsigned FieldNo = Index->getZExtValue(); 3273 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3274 3275 // Add the field offset to the running total offset. 3276 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3277 3278 // Update CurTy to the type of the field at Index. 3279 CurTy = STy->getTypeAtIndex(Index); 3280 } else { 3281 // Update CurTy to its element type. 3282 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3283 // For an array, add the element offset, explicitly scaled. 3284 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3285 // Getelementptr indices are signed. 3286 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3287 3288 // Multiply the index by the element size to compute the element offset. 3289 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3290 3291 // Add the element offset to the running total offset. 3292 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3293 } 3294 } 3295 3296 // Add the total offset from all the GEP indices to the base. 3297 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3298 } 3299 3300 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3301 const SCEV *RHS) { 3302 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3303 return getSMaxExpr(Ops); 3304 } 3305 3306 const SCEV * 3307 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3308 assert(!Ops.empty() && "Cannot get empty smax!"); 3309 if (Ops.size() == 1) return Ops[0]; 3310 #ifndef NDEBUG 3311 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3312 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3313 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3314 "SCEVSMaxExpr operand types don't match!"); 3315 #endif 3316 3317 // Sort by complexity, this groups all similar expression types together. 3318 GroupByComplexity(Ops, &LI, DT); 3319 3320 // If there are any constants, fold them together. 3321 unsigned Idx = 0; 3322 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3323 ++Idx; 3324 assert(Idx < Ops.size()); 3325 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3326 // We found two constants, fold them together! 3327 ConstantInt *Fold = ConstantInt::get( 3328 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3329 Ops[0] = getConstant(Fold); 3330 Ops.erase(Ops.begin()+1); // Erase the folded element 3331 if (Ops.size() == 1) return Ops[0]; 3332 LHSC = cast<SCEVConstant>(Ops[0]); 3333 } 3334 3335 // If we are left with a constant minimum-int, strip it off. 3336 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3337 Ops.erase(Ops.begin()); 3338 --Idx; 3339 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3340 // If we have an smax with a constant maximum-int, it will always be 3341 // maximum-int. 3342 return Ops[0]; 3343 } 3344 3345 if (Ops.size() == 1) return Ops[0]; 3346 } 3347 3348 // Find the first SMax 3349 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3350 ++Idx; 3351 3352 // Check to see if one of the operands is an SMax. If so, expand its operands 3353 // onto our operand list, and recurse to simplify. 3354 if (Idx < Ops.size()) { 3355 bool DeletedSMax = false; 3356 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3357 Ops.erase(Ops.begin()+Idx); 3358 Ops.append(SMax->op_begin(), SMax->op_end()); 3359 DeletedSMax = true; 3360 } 3361 3362 if (DeletedSMax) 3363 return getSMaxExpr(Ops); 3364 } 3365 3366 // Okay, check to see if the same value occurs in the operand list twice. If 3367 // so, delete one. Since we sorted the list, these values are required to 3368 // be adjacent. 3369 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3370 // X smax Y smax Y --> X smax Y 3371 // X smax Y --> X, if X is always greater than Y 3372 if (Ops[i] == Ops[i+1] || 3373 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3374 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3375 --i; --e; 3376 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3377 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3378 --i; --e; 3379 } 3380 3381 if (Ops.size() == 1) return Ops[0]; 3382 3383 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3384 3385 // Okay, it looks like we really DO need an smax expr. Check to see if we 3386 // already have one, otherwise create a new one. 3387 FoldingSetNodeID ID; 3388 ID.AddInteger(scSMaxExpr); 3389 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3390 ID.AddPointer(Ops[i]); 3391 void *IP = nullptr; 3392 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3393 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3394 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3395 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3396 O, Ops.size()); 3397 UniqueSCEVs.InsertNode(S, IP); 3398 return S; 3399 } 3400 3401 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3402 const SCEV *RHS) { 3403 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3404 return getUMaxExpr(Ops); 3405 } 3406 3407 const SCEV * 3408 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3409 assert(!Ops.empty() && "Cannot get empty umax!"); 3410 if (Ops.size() == 1) return Ops[0]; 3411 #ifndef NDEBUG 3412 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3413 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3414 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3415 "SCEVUMaxExpr operand types don't match!"); 3416 #endif 3417 3418 // Sort by complexity, this groups all similar expression types together. 3419 GroupByComplexity(Ops, &LI, DT); 3420 3421 // If there are any constants, fold them together. 3422 unsigned Idx = 0; 3423 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3424 ++Idx; 3425 assert(Idx < Ops.size()); 3426 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3427 // We found two constants, fold them together! 3428 ConstantInt *Fold = ConstantInt::get( 3429 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3430 Ops[0] = getConstant(Fold); 3431 Ops.erase(Ops.begin()+1); // Erase the folded element 3432 if (Ops.size() == 1) return Ops[0]; 3433 LHSC = cast<SCEVConstant>(Ops[0]); 3434 } 3435 3436 // If we are left with a constant minimum-int, strip it off. 3437 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3438 Ops.erase(Ops.begin()); 3439 --Idx; 3440 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3441 // If we have an umax with a constant maximum-int, it will always be 3442 // maximum-int. 3443 return Ops[0]; 3444 } 3445 3446 if (Ops.size() == 1) return Ops[0]; 3447 } 3448 3449 // Find the first UMax 3450 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3451 ++Idx; 3452 3453 // Check to see if one of the operands is a UMax. If so, expand its operands 3454 // onto our operand list, and recurse to simplify. 3455 if (Idx < Ops.size()) { 3456 bool DeletedUMax = false; 3457 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3458 Ops.erase(Ops.begin()+Idx); 3459 Ops.append(UMax->op_begin(), UMax->op_end()); 3460 DeletedUMax = true; 3461 } 3462 3463 if (DeletedUMax) 3464 return getUMaxExpr(Ops); 3465 } 3466 3467 // Okay, check to see if the same value occurs in the operand list twice. If 3468 // so, delete one. Since we sorted the list, these values are required to 3469 // be adjacent. 3470 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3471 // X umax Y umax Y --> X umax Y 3472 // X umax Y --> X, if X is always greater than Y 3473 if (Ops[i] == Ops[i+1] || 3474 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3475 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3476 --i; --e; 3477 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3478 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3479 --i; --e; 3480 } 3481 3482 if (Ops.size() == 1) return Ops[0]; 3483 3484 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3485 3486 // Okay, it looks like we really DO need a umax expr. Check to see if we 3487 // already have one, otherwise create a new one. 3488 FoldingSetNodeID ID; 3489 ID.AddInteger(scUMaxExpr); 3490 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3491 ID.AddPointer(Ops[i]); 3492 void *IP = nullptr; 3493 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3494 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3495 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3496 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3497 O, Ops.size()); 3498 UniqueSCEVs.InsertNode(S, IP); 3499 return S; 3500 } 3501 3502 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3503 const SCEV *RHS) { 3504 // ~smax(~x, ~y) == smin(x, y). 3505 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3506 } 3507 3508 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3509 const SCEV *RHS) { 3510 // ~umax(~x, ~y) == umin(x, y) 3511 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3512 } 3513 3514 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3515 // We can bypass creating a target-independent 3516 // constant expression and then folding it back into a ConstantInt. 3517 // This is just a compile-time optimization. 3518 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3519 } 3520 3521 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3522 StructType *STy, 3523 unsigned FieldNo) { 3524 // We can bypass creating a target-independent 3525 // constant expression and then folding it back into a ConstantInt. 3526 // This is just a compile-time optimization. 3527 return getConstant( 3528 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3529 } 3530 3531 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3532 // Don't attempt to do anything other than create a SCEVUnknown object 3533 // here. createSCEV only calls getUnknown after checking for all other 3534 // interesting possibilities, and any other code that calls getUnknown 3535 // is doing so in order to hide a value from SCEV canonicalization. 3536 3537 FoldingSetNodeID ID; 3538 ID.AddInteger(scUnknown); 3539 ID.AddPointer(V); 3540 void *IP = nullptr; 3541 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3542 assert(cast<SCEVUnknown>(S)->getValue() == V && 3543 "Stale SCEVUnknown in uniquing map!"); 3544 return S; 3545 } 3546 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3547 FirstUnknown); 3548 FirstUnknown = cast<SCEVUnknown>(S); 3549 UniqueSCEVs.InsertNode(S, IP); 3550 return S; 3551 } 3552 3553 //===----------------------------------------------------------------------===// 3554 // Basic SCEV Analysis and PHI Idiom Recognition Code 3555 // 3556 3557 /// Test if values of the given type are analyzable within the SCEV 3558 /// framework. This primarily includes integer types, and it can optionally 3559 /// include pointer types if the ScalarEvolution class has access to 3560 /// target-specific information. 3561 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3562 // Integers and pointers are always SCEVable. 3563 return Ty->isIntegerTy() || Ty->isPointerTy(); 3564 } 3565 3566 /// Return the size in bits of the specified type, for which isSCEVable must 3567 /// return true. 3568 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3569 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3570 return getDataLayout().getTypeSizeInBits(Ty); 3571 } 3572 3573 /// Return a type with the same bitwidth as the given type and which represents 3574 /// how SCEV will treat the given type, for which isSCEVable must return 3575 /// true. For pointer types, this is the pointer-sized integer type. 3576 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3577 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3578 3579 if (Ty->isIntegerTy()) 3580 return Ty; 3581 3582 // The only other support type is pointer. 3583 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3584 return getDataLayout().getIntPtrType(Ty); 3585 } 3586 3587 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3588 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3589 } 3590 3591 const SCEV *ScalarEvolution::getCouldNotCompute() { 3592 return CouldNotCompute.get(); 3593 } 3594 3595 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3596 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3597 auto *SU = dyn_cast<SCEVUnknown>(S); 3598 return SU && SU->getValue() == nullptr; 3599 }); 3600 3601 return !ContainsNulls; 3602 } 3603 3604 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3605 HasRecMapType::iterator I = HasRecMap.find(S); 3606 if (I != HasRecMap.end()) 3607 return I->second; 3608 3609 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3610 HasRecMap.insert({S, FoundAddRec}); 3611 return FoundAddRec; 3612 } 3613 3614 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3615 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3616 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3617 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3618 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3619 if (!Add) 3620 return {S, nullptr}; 3621 3622 if (Add->getNumOperands() != 2) 3623 return {S, nullptr}; 3624 3625 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3626 if (!ConstOp) 3627 return {S, nullptr}; 3628 3629 return {Add->getOperand(1), ConstOp->getValue()}; 3630 } 3631 3632 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3633 /// by the value and offset from any ValueOffsetPair in the set. 3634 SetVector<ScalarEvolution::ValueOffsetPair> * 3635 ScalarEvolution::getSCEVValues(const SCEV *S) { 3636 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3637 if (SI == ExprValueMap.end()) 3638 return nullptr; 3639 #ifndef NDEBUG 3640 if (VerifySCEVMap) { 3641 // Check there is no dangling Value in the set returned. 3642 for (const auto &VE : SI->second) 3643 assert(ValueExprMap.count(VE.first)); 3644 } 3645 #endif 3646 return &SI->second; 3647 } 3648 3649 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3650 /// cannot be used separately. eraseValueFromMap should be used to remove 3651 /// V from ValueExprMap and ExprValueMap at the same time. 3652 void ScalarEvolution::eraseValueFromMap(Value *V) { 3653 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3654 if (I != ValueExprMap.end()) { 3655 const SCEV *S = I->second; 3656 // Remove {V, 0} from the set of ExprValueMap[S] 3657 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3658 SV->remove({V, nullptr}); 3659 3660 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3661 const SCEV *Stripped; 3662 ConstantInt *Offset; 3663 std::tie(Stripped, Offset) = splitAddExpr(S); 3664 if (Offset != nullptr) { 3665 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3666 SV->remove({V, Offset}); 3667 } 3668 ValueExprMap.erase(V); 3669 } 3670 } 3671 3672 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3673 /// create a new one. 3674 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3675 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3676 3677 const SCEV *S = getExistingSCEV(V); 3678 if (S == nullptr) { 3679 S = createSCEV(V); 3680 // During PHI resolution, it is possible to create two SCEVs for the same 3681 // V, so it is needed to double check whether V->S is inserted into 3682 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3683 std::pair<ValueExprMapType::iterator, bool> Pair = 3684 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3685 if (Pair.second) { 3686 ExprValueMap[S].insert({V, nullptr}); 3687 3688 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3689 // ExprValueMap. 3690 const SCEV *Stripped = S; 3691 ConstantInt *Offset = nullptr; 3692 std::tie(Stripped, Offset) = splitAddExpr(S); 3693 // If stripped is SCEVUnknown, don't bother to save 3694 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3695 // increase the complexity of the expansion code. 3696 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3697 // because it may generate add/sub instead of GEP in SCEV expansion. 3698 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3699 !isa<GetElementPtrInst>(V)) 3700 ExprValueMap[Stripped].insert({V, Offset}); 3701 } 3702 } 3703 return S; 3704 } 3705 3706 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3707 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3708 3709 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3710 if (I != ValueExprMap.end()) { 3711 const SCEV *S = I->second; 3712 if (checkValidity(S)) 3713 return S; 3714 eraseValueFromMap(V); 3715 forgetMemoizedResults(S); 3716 } 3717 return nullptr; 3718 } 3719 3720 /// Return a SCEV corresponding to -V = -1*V 3721 /// 3722 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3723 SCEV::NoWrapFlags Flags) { 3724 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3725 return getConstant( 3726 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3727 3728 Type *Ty = V->getType(); 3729 Ty = getEffectiveSCEVType(Ty); 3730 return getMulExpr( 3731 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3732 } 3733 3734 /// Return a SCEV corresponding to ~V = -1-V 3735 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3736 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3737 return getConstant( 3738 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3739 3740 Type *Ty = V->getType(); 3741 Ty = getEffectiveSCEVType(Ty); 3742 const SCEV *AllOnes = 3743 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3744 return getMinusSCEV(AllOnes, V); 3745 } 3746 3747 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3748 SCEV::NoWrapFlags Flags, 3749 unsigned Depth) { 3750 // Fast path: X - X --> 0. 3751 if (LHS == RHS) 3752 return getZero(LHS->getType()); 3753 3754 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3755 // makes it so that we cannot make much use of NUW. 3756 auto AddFlags = SCEV::FlagAnyWrap; 3757 const bool RHSIsNotMinSigned = 3758 !getSignedRangeMin(RHS).isMinSignedValue(); 3759 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3760 // Let M be the minimum representable signed value. Then (-1)*RHS 3761 // signed-wraps if and only if RHS is M. That can happen even for 3762 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3763 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3764 // (-1)*RHS, we need to prove that RHS != M. 3765 // 3766 // If LHS is non-negative and we know that LHS - RHS does not 3767 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3768 // either by proving that RHS > M or that LHS >= 0. 3769 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3770 AddFlags = SCEV::FlagNSW; 3771 } 3772 } 3773 3774 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3775 // RHS is NSW and LHS >= 0. 3776 // 3777 // The difficulty here is that the NSW flag may have been proven 3778 // relative to a loop that is to be found in a recurrence in LHS and 3779 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3780 // larger scope than intended. 3781 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3782 3783 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 3784 } 3785 3786 const SCEV * 3787 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3788 Type *SrcTy = V->getType(); 3789 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3790 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3791 "Cannot truncate or zero extend with non-integer arguments!"); 3792 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3793 return V; // No conversion 3794 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3795 return getTruncateExpr(V, Ty); 3796 return getZeroExtendExpr(V, Ty); 3797 } 3798 3799 const SCEV * 3800 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3801 Type *Ty) { 3802 Type *SrcTy = V->getType(); 3803 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3804 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3805 "Cannot truncate or zero extend with non-integer arguments!"); 3806 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3807 return V; // No conversion 3808 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3809 return getTruncateExpr(V, Ty); 3810 return getSignExtendExpr(V, Ty); 3811 } 3812 3813 const SCEV * 3814 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3815 Type *SrcTy = V->getType(); 3816 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3817 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3818 "Cannot noop or zero extend with non-integer arguments!"); 3819 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3820 "getNoopOrZeroExtend cannot truncate!"); 3821 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3822 return V; // No conversion 3823 return getZeroExtendExpr(V, Ty); 3824 } 3825 3826 const SCEV * 3827 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3828 Type *SrcTy = V->getType(); 3829 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3830 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3831 "Cannot noop or sign extend with non-integer arguments!"); 3832 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3833 "getNoopOrSignExtend cannot truncate!"); 3834 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3835 return V; // No conversion 3836 return getSignExtendExpr(V, Ty); 3837 } 3838 3839 const SCEV * 3840 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3841 Type *SrcTy = V->getType(); 3842 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3843 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3844 "Cannot noop or any extend with non-integer arguments!"); 3845 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3846 "getNoopOrAnyExtend cannot truncate!"); 3847 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3848 return V; // No conversion 3849 return getAnyExtendExpr(V, Ty); 3850 } 3851 3852 const SCEV * 3853 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3854 Type *SrcTy = V->getType(); 3855 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3856 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3857 "Cannot truncate or noop with non-integer arguments!"); 3858 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3859 "getTruncateOrNoop cannot extend!"); 3860 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3861 return V; // No conversion 3862 return getTruncateExpr(V, Ty); 3863 } 3864 3865 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3866 const SCEV *RHS) { 3867 const SCEV *PromotedLHS = LHS; 3868 const SCEV *PromotedRHS = RHS; 3869 3870 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3871 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3872 else 3873 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3874 3875 return getUMaxExpr(PromotedLHS, PromotedRHS); 3876 } 3877 3878 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3879 const SCEV *RHS) { 3880 const SCEV *PromotedLHS = LHS; 3881 const SCEV *PromotedRHS = RHS; 3882 3883 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3884 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3885 else 3886 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3887 3888 return getUMinExpr(PromotedLHS, PromotedRHS); 3889 } 3890 3891 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3892 // A pointer operand may evaluate to a nonpointer expression, such as null. 3893 if (!V->getType()->isPointerTy()) 3894 return V; 3895 3896 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3897 return getPointerBase(Cast->getOperand()); 3898 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3899 const SCEV *PtrOp = nullptr; 3900 for (const SCEV *NAryOp : NAry->operands()) { 3901 if (NAryOp->getType()->isPointerTy()) { 3902 // Cannot find the base of an expression with multiple pointer operands. 3903 if (PtrOp) 3904 return V; 3905 PtrOp = NAryOp; 3906 } 3907 } 3908 if (!PtrOp) 3909 return V; 3910 return getPointerBase(PtrOp); 3911 } 3912 return V; 3913 } 3914 3915 /// Push users of the given Instruction onto the given Worklist. 3916 static void 3917 PushDefUseChildren(Instruction *I, 3918 SmallVectorImpl<Instruction *> &Worklist) { 3919 // Push the def-use children onto the Worklist stack. 3920 for (User *U : I->users()) 3921 Worklist.push_back(cast<Instruction>(U)); 3922 } 3923 3924 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3925 SmallVector<Instruction *, 16> Worklist; 3926 PushDefUseChildren(PN, Worklist); 3927 3928 SmallPtrSet<Instruction *, 8> Visited; 3929 Visited.insert(PN); 3930 while (!Worklist.empty()) { 3931 Instruction *I = Worklist.pop_back_val(); 3932 if (!Visited.insert(I).second) 3933 continue; 3934 3935 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3936 if (It != ValueExprMap.end()) { 3937 const SCEV *Old = It->second; 3938 3939 // Short-circuit the def-use traversal if the symbolic name 3940 // ceases to appear in expressions. 3941 if (Old != SymName && !hasOperand(Old, SymName)) 3942 continue; 3943 3944 // SCEVUnknown for a PHI either means that it has an unrecognized 3945 // structure, it's a PHI that's in the progress of being computed 3946 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3947 // additional loop trip count information isn't going to change anything. 3948 // In the second case, createNodeForPHI will perform the necessary 3949 // updates on its own when it gets to that point. In the third, we do 3950 // want to forget the SCEVUnknown. 3951 if (!isa<PHINode>(I) || 3952 !isa<SCEVUnknown>(Old) || 3953 (I != PN && Old == SymName)) { 3954 eraseValueFromMap(It->first); 3955 forgetMemoizedResults(Old); 3956 } 3957 } 3958 3959 PushDefUseChildren(I, Worklist); 3960 } 3961 } 3962 3963 namespace { 3964 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3965 public: 3966 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3967 ScalarEvolution &SE) { 3968 SCEVInitRewriter Rewriter(L, SE); 3969 const SCEV *Result = Rewriter.visit(S); 3970 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3971 } 3972 3973 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3974 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3975 3976 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3977 if (!SE.isLoopInvariant(Expr, L)) 3978 Valid = false; 3979 return Expr; 3980 } 3981 3982 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3983 // Only allow AddRecExprs for this loop. 3984 if (Expr->getLoop() == L) 3985 return Expr->getStart(); 3986 Valid = false; 3987 return Expr; 3988 } 3989 3990 bool isValid() { return Valid; } 3991 3992 private: 3993 const Loop *L; 3994 bool Valid; 3995 }; 3996 3997 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3998 public: 3999 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4000 ScalarEvolution &SE) { 4001 SCEVShiftRewriter Rewriter(L, SE); 4002 const SCEV *Result = Rewriter.visit(S); 4003 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4004 } 4005 4006 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4007 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 4008 4009 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4010 // Only allow AddRecExprs for this loop. 4011 if (!SE.isLoopInvariant(Expr, L)) 4012 Valid = false; 4013 return Expr; 4014 } 4015 4016 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4017 if (Expr->getLoop() == L && Expr->isAffine()) 4018 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4019 Valid = false; 4020 return Expr; 4021 } 4022 bool isValid() { return Valid; } 4023 4024 private: 4025 const Loop *L; 4026 bool Valid; 4027 }; 4028 } // end anonymous namespace 4029 4030 SCEV::NoWrapFlags 4031 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4032 if (!AR->isAffine()) 4033 return SCEV::FlagAnyWrap; 4034 4035 typedef OverflowingBinaryOperator OBO; 4036 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4037 4038 if (!AR->hasNoSignedWrap()) { 4039 ConstantRange AddRecRange = getSignedRange(AR); 4040 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4041 4042 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4043 Instruction::Add, IncRange, OBO::NoSignedWrap); 4044 if (NSWRegion.contains(AddRecRange)) 4045 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4046 } 4047 4048 if (!AR->hasNoUnsignedWrap()) { 4049 ConstantRange AddRecRange = getUnsignedRange(AR); 4050 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4051 4052 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4053 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4054 if (NUWRegion.contains(AddRecRange)) 4055 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4056 } 4057 4058 return Result; 4059 } 4060 4061 namespace { 4062 /// Represents an abstract binary operation. This may exist as a 4063 /// normal instruction or constant expression, or may have been 4064 /// derived from an expression tree. 4065 struct BinaryOp { 4066 unsigned Opcode; 4067 Value *LHS; 4068 Value *RHS; 4069 bool IsNSW; 4070 bool IsNUW; 4071 4072 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4073 /// constant expression. 4074 Operator *Op; 4075 4076 explicit BinaryOp(Operator *Op) 4077 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4078 IsNSW(false), IsNUW(false), Op(Op) { 4079 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4080 IsNSW = OBO->hasNoSignedWrap(); 4081 IsNUW = OBO->hasNoUnsignedWrap(); 4082 } 4083 } 4084 4085 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4086 bool IsNUW = false) 4087 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 4088 Op(nullptr) {} 4089 }; 4090 } 4091 4092 4093 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4094 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4095 auto *Op = dyn_cast<Operator>(V); 4096 if (!Op) 4097 return None; 4098 4099 // Implementation detail: all the cleverness here should happen without 4100 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4101 // SCEV expressions when possible, and we should not break that. 4102 4103 switch (Op->getOpcode()) { 4104 case Instruction::Add: 4105 case Instruction::Sub: 4106 case Instruction::Mul: 4107 case Instruction::UDiv: 4108 case Instruction::And: 4109 case Instruction::Or: 4110 case Instruction::AShr: 4111 case Instruction::Shl: 4112 return BinaryOp(Op); 4113 4114 case Instruction::Xor: 4115 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4116 // If the RHS of the xor is a signmask, then this is just an add. 4117 // Instcombine turns add of signmask into xor as a strength reduction step. 4118 if (RHSC->getValue().isSignMask()) 4119 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4120 return BinaryOp(Op); 4121 4122 case Instruction::LShr: 4123 // Turn logical shift right of a constant into a unsigned divide. 4124 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4125 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4126 4127 // If the shift count is not less than the bitwidth, the result of 4128 // the shift is undefined. Don't try to analyze it, because the 4129 // resolution chosen here may differ from the resolution chosen in 4130 // other parts of the compiler. 4131 if (SA->getValue().ult(BitWidth)) { 4132 Constant *X = 4133 ConstantInt::get(SA->getContext(), 4134 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4135 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4136 } 4137 } 4138 return BinaryOp(Op); 4139 4140 case Instruction::ExtractValue: { 4141 auto *EVI = cast<ExtractValueInst>(Op); 4142 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4143 break; 4144 4145 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 4146 if (!CI) 4147 break; 4148 4149 if (auto *F = CI->getCalledFunction()) 4150 switch (F->getIntrinsicID()) { 4151 case Intrinsic::sadd_with_overflow: 4152 case Intrinsic::uadd_with_overflow: { 4153 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4154 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4155 CI->getArgOperand(1)); 4156 4157 // Now that we know that all uses of the arithmetic-result component of 4158 // CI are guarded by the overflow check, we can go ahead and pretend 4159 // that the arithmetic is non-overflowing. 4160 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 4161 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4162 CI->getArgOperand(1), /* IsNSW = */ true, 4163 /* IsNUW = */ false); 4164 else 4165 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4166 CI->getArgOperand(1), /* IsNSW = */ false, 4167 /* IsNUW*/ true); 4168 } 4169 4170 case Intrinsic::ssub_with_overflow: 4171 case Intrinsic::usub_with_overflow: 4172 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4173 CI->getArgOperand(1)); 4174 4175 case Intrinsic::smul_with_overflow: 4176 case Intrinsic::umul_with_overflow: 4177 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 4178 CI->getArgOperand(1)); 4179 default: 4180 break; 4181 } 4182 } 4183 4184 default: 4185 break; 4186 } 4187 4188 return None; 4189 } 4190 4191 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4192 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4193 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4194 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4195 /// follows one of the following patterns: 4196 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4197 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4198 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4199 /// we return the type of the truncation operation, and indicate whether the 4200 /// truncated type should be treated as signed/unsigned by setting 4201 /// \p Signed to true/false, respectively. 4202 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4203 bool &Signed, ScalarEvolution &SE) { 4204 4205 // The case where Op == SymbolicPHI (that is, with no type conversions on 4206 // the way) is handled by the regular add recurrence creating logic and 4207 // would have already been triggered in createAddRecForPHI. Reaching it here 4208 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4209 // because one of the other operands of the SCEVAddExpr updating this PHI is 4210 // not invariant). 4211 // 4212 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4213 // this case predicates that allow us to prove that Op == SymbolicPHI will 4214 // be added. 4215 if (Op == SymbolicPHI) 4216 return nullptr; 4217 4218 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4219 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4220 if (SourceBits != NewBits) 4221 return nullptr; 4222 4223 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4224 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4225 if (!SExt && !ZExt) 4226 return nullptr; 4227 const SCEVTruncateExpr *Trunc = 4228 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4229 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4230 if (!Trunc) 4231 return nullptr; 4232 const SCEV *X = Trunc->getOperand(); 4233 if (X != SymbolicPHI) 4234 return nullptr; 4235 Signed = SExt ? true : false; 4236 return Trunc->getType(); 4237 } 4238 4239 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4240 if (!PN->getType()->isIntegerTy()) 4241 return nullptr; 4242 const Loop *L = LI.getLoopFor(PN->getParent()); 4243 if (!L || L->getHeader() != PN->getParent()) 4244 return nullptr; 4245 return L; 4246 } 4247 4248 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4249 // computation that updates the phi follows the following pattern: 4250 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4251 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4252 // If so, try to see if it can be rewritten as an AddRecExpr under some 4253 // Predicates. If successful, return them as a pair. Also cache the results 4254 // of the analysis. 4255 // 4256 // Example usage scenario: 4257 // Say the Rewriter is called for the following SCEV: 4258 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4259 // where: 4260 // %X = phi i64 (%Start, %BEValue) 4261 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4262 // and call this function with %SymbolicPHI = %X. 4263 // 4264 // The analysis will find that the value coming around the backedge has 4265 // the following SCEV: 4266 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4267 // Upon concluding that this matches the desired pattern, the function 4268 // will return the pair {NewAddRec, SmallPredsVec} where: 4269 // NewAddRec = {%Start,+,%Step} 4270 // SmallPredsVec = {P1, P2, P3} as follows: 4271 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4272 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4273 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4274 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4275 // under the predicates {P1,P2,P3}. 4276 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4277 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4278 // 4279 // TODO's: 4280 // 4281 // 1) Extend the Induction descriptor to also support inductions that involve 4282 // casts: When needed (namely, when we are called in the context of the 4283 // vectorizer induction analysis), a Set of cast instructions will be 4284 // populated by this method, and provided back to isInductionPHI. This is 4285 // needed to allow the vectorizer to properly record them to be ignored by 4286 // the cost model and to avoid vectorizing them (otherwise these casts, 4287 // which are redundant under the runtime overflow checks, will be 4288 // vectorized, which can be costly). 4289 // 4290 // 2) Support additional induction/PHISCEV patterns: We also want to support 4291 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4292 // after the induction update operation (the induction increment): 4293 // 4294 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4295 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4296 // 4297 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4298 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4299 // 4300 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4301 // 4302 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4303 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4304 SmallVector<const SCEVPredicate *, 3> Predicates; 4305 4306 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4307 // return an AddRec expression under some predicate. 4308 4309 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4310 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4311 assert (L && "Expecting an integer loop header phi"); 4312 4313 // The loop may have multiple entrances or multiple exits; we can analyze 4314 // this phi as an addrec if it has a unique entry value and a unique 4315 // backedge value. 4316 Value *BEValueV = nullptr, *StartValueV = nullptr; 4317 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4318 Value *V = PN->getIncomingValue(i); 4319 if (L->contains(PN->getIncomingBlock(i))) { 4320 if (!BEValueV) { 4321 BEValueV = V; 4322 } else if (BEValueV != V) { 4323 BEValueV = nullptr; 4324 break; 4325 } 4326 } else if (!StartValueV) { 4327 StartValueV = V; 4328 } else if (StartValueV != V) { 4329 StartValueV = nullptr; 4330 break; 4331 } 4332 } 4333 if (!BEValueV || !StartValueV) 4334 return None; 4335 4336 const SCEV *BEValue = getSCEV(BEValueV); 4337 4338 // If the value coming around the backedge is an add with the symbolic 4339 // value we just inserted, possibly with casts that we can ignore under 4340 // an appropriate runtime guard, then we found a simple induction variable! 4341 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4342 if (!Add) 4343 return None; 4344 4345 // If there is a single occurrence of the symbolic value, possibly 4346 // casted, replace it with a recurrence. 4347 unsigned FoundIndex = Add->getNumOperands(); 4348 Type *TruncTy = nullptr; 4349 bool Signed; 4350 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4351 if ((TruncTy = 4352 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4353 if (FoundIndex == e) { 4354 FoundIndex = i; 4355 break; 4356 } 4357 4358 if (FoundIndex == Add->getNumOperands()) 4359 return None; 4360 4361 // Create an add with everything but the specified operand. 4362 SmallVector<const SCEV *, 8> Ops; 4363 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4364 if (i != FoundIndex) 4365 Ops.push_back(Add->getOperand(i)); 4366 const SCEV *Accum = getAddExpr(Ops); 4367 4368 // The runtime checks will not be valid if the step amount is 4369 // varying inside the loop. 4370 if (!isLoopInvariant(Accum, L)) 4371 return None; 4372 4373 4374 // *** Part2: Create the predicates 4375 4376 // Analysis was successful: we have a phi-with-cast pattern for which we 4377 // can return an AddRec expression under the following predicates: 4378 // 4379 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4380 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4381 // P2: An Equal predicate that guarantees that 4382 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4383 // P3: An Equal predicate that guarantees that 4384 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4385 // 4386 // As we next prove, the above predicates guarantee that: 4387 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4388 // 4389 // 4390 // More formally, we want to prove that: 4391 // Expr(i+1) = Start + (i+1) * Accum 4392 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4393 // 4394 // Given that: 4395 // 1) Expr(0) = Start 4396 // 2) Expr(1) = Start + Accum 4397 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4398 // 3) Induction hypothesis (step i): 4399 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4400 // 4401 // Proof: 4402 // Expr(i+1) = 4403 // = Start + (i+1)*Accum 4404 // = (Start + i*Accum) + Accum 4405 // = Expr(i) + Accum 4406 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4407 // :: from step i 4408 // 4409 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4410 // 4411 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4412 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4413 // + Accum :: from P3 4414 // 4415 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4416 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4417 // 4418 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4419 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4420 // 4421 // By induction, the same applies to all iterations 1<=i<n: 4422 // 4423 4424 // Create a truncated addrec for which we will add a no overflow check (P1). 4425 const SCEV *StartVal = getSCEV(StartValueV); 4426 const SCEV *PHISCEV = 4427 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4428 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4429 const auto *AR = cast<SCEVAddRecExpr>(PHISCEV); 4430 4431 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4432 Signed ? SCEVWrapPredicate::IncrementNSSW 4433 : SCEVWrapPredicate::IncrementNUSW; 4434 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4435 Predicates.push_back(AddRecPred); 4436 4437 // Create the Equal Predicates P2,P3: 4438 auto AppendPredicate = [&](const SCEV *Expr) -> void { 4439 assert (isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4440 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4441 const SCEV *ExtendedExpr = 4442 Signed ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4443 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4444 if (Expr != ExtendedExpr && 4445 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4446 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4447 DEBUG (dbgs() << "Added Predicate: " << *Pred); 4448 Predicates.push_back(Pred); 4449 } 4450 }; 4451 4452 AppendPredicate(StartVal); 4453 AppendPredicate(Accum); 4454 4455 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4456 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4457 // into NewAR if it will also add the runtime overflow checks specified in 4458 // Predicates. 4459 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4460 4461 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4462 std::make_pair(NewAR, Predicates); 4463 // Remember the result of the analysis for this SCEV at this locayyytion. 4464 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4465 return PredRewrite; 4466 } 4467 4468 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4469 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4470 4471 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4472 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4473 if (!L) 4474 return None; 4475 4476 // Check to see if we already analyzed this PHI. 4477 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4478 if (I != PredicatedSCEVRewrites.end()) { 4479 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4480 I->second; 4481 // Analysis was done before and failed to create an AddRec: 4482 if (Rewrite.first == SymbolicPHI) 4483 return None; 4484 // Analysis was done before and succeeded to create an AddRec under 4485 // a predicate: 4486 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4487 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4488 return Rewrite; 4489 } 4490 4491 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4492 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4493 4494 // Record in the cache that the analysis failed 4495 if (!Rewrite) { 4496 SmallVector<const SCEVPredicate *, 3> Predicates; 4497 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4498 return None; 4499 } 4500 4501 return Rewrite; 4502 } 4503 4504 /// A helper function for createAddRecFromPHI to handle simple cases. 4505 /// 4506 /// This function tries to find an AddRec expression for the simplest (yet most 4507 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4508 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4509 /// technique for finding the AddRec expression. 4510 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4511 Value *BEValueV, 4512 Value *StartValueV) { 4513 const Loop *L = LI.getLoopFor(PN->getParent()); 4514 assert(L && L->getHeader() == PN->getParent()); 4515 assert(BEValueV && StartValueV); 4516 4517 auto BO = MatchBinaryOp(BEValueV, DT); 4518 if (!BO) 4519 return nullptr; 4520 4521 if (BO->Opcode != Instruction::Add) 4522 return nullptr; 4523 4524 const SCEV *Accum = nullptr; 4525 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4526 Accum = getSCEV(BO->RHS); 4527 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4528 Accum = getSCEV(BO->LHS); 4529 4530 if (!Accum) 4531 return nullptr; 4532 4533 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4534 if (BO->IsNUW) 4535 Flags = setFlags(Flags, SCEV::FlagNUW); 4536 if (BO->IsNSW) 4537 Flags = setFlags(Flags, SCEV::FlagNSW); 4538 4539 const SCEV *StartVal = getSCEV(StartValueV); 4540 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4541 4542 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4543 4544 // We can add Flags to the post-inc expression only if we 4545 // know that it is *undefined behavior* for BEValueV to 4546 // overflow. 4547 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4548 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4549 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4550 4551 return PHISCEV; 4552 } 4553 4554 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4555 const Loop *L = LI.getLoopFor(PN->getParent()); 4556 if (!L || L->getHeader() != PN->getParent()) 4557 return nullptr; 4558 4559 // The loop may have multiple entrances or multiple exits; we can analyze 4560 // this phi as an addrec if it has a unique entry value and a unique 4561 // backedge value. 4562 Value *BEValueV = nullptr, *StartValueV = nullptr; 4563 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4564 Value *V = PN->getIncomingValue(i); 4565 if (L->contains(PN->getIncomingBlock(i))) { 4566 if (!BEValueV) { 4567 BEValueV = V; 4568 } else if (BEValueV != V) { 4569 BEValueV = nullptr; 4570 break; 4571 } 4572 } else if (!StartValueV) { 4573 StartValueV = V; 4574 } else if (StartValueV != V) { 4575 StartValueV = nullptr; 4576 break; 4577 } 4578 } 4579 if (!BEValueV || !StartValueV) 4580 return nullptr; 4581 4582 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4583 "PHI node already processed?"); 4584 4585 // First, try to find AddRec expression without creating a fictituos symbolic 4586 // value for PN. 4587 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4588 return S; 4589 4590 // Handle PHI node value symbolically. 4591 const SCEV *SymbolicName = getUnknown(PN); 4592 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4593 4594 // Using this symbolic name for the PHI, analyze the value coming around 4595 // the back-edge. 4596 const SCEV *BEValue = getSCEV(BEValueV); 4597 4598 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4599 // has a special value for the first iteration of the loop. 4600 4601 // If the value coming around the backedge is an add with the symbolic 4602 // value we just inserted, then we found a simple induction variable! 4603 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4604 // If there is a single occurrence of the symbolic value, replace it 4605 // with a recurrence. 4606 unsigned FoundIndex = Add->getNumOperands(); 4607 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4608 if (Add->getOperand(i) == SymbolicName) 4609 if (FoundIndex == e) { 4610 FoundIndex = i; 4611 break; 4612 } 4613 4614 if (FoundIndex != Add->getNumOperands()) { 4615 // Create an add with everything but the specified operand. 4616 SmallVector<const SCEV *, 8> Ops; 4617 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4618 if (i != FoundIndex) 4619 Ops.push_back(Add->getOperand(i)); 4620 const SCEV *Accum = getAddExpr(Ops); 4621 4622 // This is not a valid addrec if the step amount is varying each 4623 // loop iteration, but is not itself an addrec in this loop. 4624 if (isLoopInvariant(Accum, L) || 4625 (isa<SCEVAddRecExpr>(Accum) && 4626 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4627 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4628 4629 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4630 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4631 if (BO->IsNUW) 4632 Flags = setFlags(Flags, SCEV::FlagNUW); 4633 if (BO->IsNSW) 4634 Flags = setFlags(Flags, SCEV::FlagNSW); 4635 } 4636 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4637 // If the increment is an inbounds GEP, then we know the address 4638 // space cannot be wrapped around. We cannot make any guarantee 4639 // about signed or unsigned overflow because pointers are 4640 // unsigned but we may have a negative index from the base 4641 // pointer. We can guarantee that no unsigned wrap occurs if the 4642 // indices form a positive value. 4643 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4644 Flags = setFlags(Flags, SCEV::FlagNW); 4645 4646 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4647 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4648 Flags = setFlags(Flags, SCEV::FlagNUW); 4649 } 4650 4651 // We cannot transfer nuw and nsw flags from subtraction 4652 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4653 // for instance. 4654 } 4655 4656 const SCEV *StartVal = getSCEV(StartValueV); 4657 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4658 4659 // Okay, for the entire analysis of this edge we assumed the PHI 4660 // to be symbolic. We now need to go back and purge all of the 4661 // entries for the scalars that use the symbolic expression. 4662 forgetSymbolicName(PN, SymbolicName); 4663 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4664 4665 // We can add Flags to the post-inc expression only if we 4666 // know that it is *undefined behavior* for BEValueV to 4667 // overflow. 4668 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4669 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4670 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4671 4672 return PHISCEV; 4673 } 4674 } 4675 } else { 4676 // Otherwise, this could be a loop like this: 4677 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4678 // In this case, j = {1,+,1} and BEValue is j. 4679 // Because the other in-value of i (0) fits the evolution of BEValue 4680 // i really is an addrec evolution. 4681 // 4682 // We can generalize this saying that i is the shifted value of BEValue 4683 // by one iteration: 4684 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4685 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4686 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 4687 if (Shifted != getCouldNotCompute() && 4688 Start != getCouldNotCompute()) { 4689 const SCEV *StartVal = getSCEV(StartValueV); 4690 if (Start == StartVal) { 4691 // Okay, for the entire analysis of this edge we assumed the PHI 4692 // to be symbolic. We now need to go back and purge all of the 4693 // entries for the scalars that use the symbolic expression. 4694 forgetSymbolicName(PN, SymbolicName); 4695 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4696 return Shifted; 4697 } 4698 } 4699 } 4700 4701 // Remove the temporary PHI node SCEV that has been inserted while intending 4702 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4703 // as it will prevent later (possibly simpler) SCEV expressions to be added 4704 // to the ValueExprMap. 4705 eraseValueFromMap(PN); 4706 4707 return nullptr; 4708 } 4709 4710 // Checks if the SCEV S is available at BB. S is considered available at BB 4711 // if S can be materialized at BB without introducing a fault. 4712 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4713 BasicBlock *BB) { 4714 struct CheckAvailable { 4715 bool TraversalDone = false; 4716 bool Available = true; 4717 4718 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4719 BasicBlock *BB = nullptr; 4720 DominatorTree &DT; 4721 4722 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4723 : L(L), BB(BB), DT(DT) {} 4724 4725 bool setUnavailable() { 4726 TraversalDone = true; 4727 Available = false; 4728 return false; 4729 } 4730 4731 bool follow(const SCEV *S) { 4732 switch (S->getSCEVType()) { 4733 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4734 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4735 // These expressions are available if their operand(s) is/are. 4736 return true; 4737 4738 case scAddRecExpr: { 4739 // We allow add recurrences that are on the loop BB is in, or some 4740 // outer loop. This guarantees availability because the value of the 4741 // add recurrence at BB is simply the "current" value of the induction 4742 // variable. We can relax this in the future; for instance an add 4743 // recurrence on a sibling dominating loop is also available at BB. 4744 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 4745 if (L && (ARLoop == L || ARLoop->contains(L))) 4746 return true; 4747 4748 return setUnavailable(); 4749 } 4750 4751 case scUnknown: { 4752 // For SCEVUnknown, we check for simple dominance. 4753 const auto *SU = cast<SCEVUnknown>(S); 4754 Value *V = SU->getValue(); 4755 4756 if (isa<Argument>(V)) 4757 return false; 4758 4759 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 4760 return false; 4761 4762 return setUnavailable(); 4763 } 4764 4765 case scUDivExpr: 4766 case scCouldNotCompute: 4767 // We do not try to smart about these at all. 4768 return setUnavailable(); 4769 } 4770 llvm_unreachable("switch should be fully covered!"); 4771 } 4772 4773 bool isDone() { return TraversalDone; } 4774 }; 4775 4776 CheckAvailable CA(L, BB, DT); 4777 SCEVTraversal<CheckAvailable> ST(CA); 4778 4779 ST.visitAll(S); 4780 return CA.Available; 4781 } 4782 4783 // Try to match a control flow sequence that branches out at BI and merges back 4784 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 4785 // match. 4786 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 4787 Value *&C, Value *&LHS, Value *&RHS) { 4788 C = BI->getCondition(); 4789 4790 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 4791 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 4792 4793 if (!LeftEdge.isSingleEdge()) 4794 return false; 4795 4796 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 4797 4798 Use &LeftUse = Merge->getOperandUse(0); 4799 Use &RightUse = Merge->getOperandUse(1); 4800 4801 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 4802 LHS = LeftUse; 4803 RHS = RightUse; 4804 return true; 4805 } 4806 4807 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4808 LHS = RightUse; 4809 RHS = LeftUse; 4810 return true; 4811 } 4812 4813 return false; 4814 } 4815 4816 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4817 auto IsReachable = 4818 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 4819 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 4820 const Loop *L = LI.getLoopFor(PN->getParent()); 4821 4822 // We don't want to break LCSSA, even in a SCEV expression tree. 4823 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4824 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4825 return nullptr; 4826 4827 // Try to match 4828 // 4829 // br %cond, label %left, label %right 4830 // left: 4831 // br label %merge 4832 // right: 4833 // br label %merge 4834 // merge: 4835 // V = phi [ %x, %left ], [ %y, %right ] 4836 // 4837 // as "select %cond, %x, %y" 4838 4839 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4840 assert(IDom && "At least the entry block should dominate PN"); 4841 4842 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4843 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4844 4845 if (BI && BI->isConditional() && 4846 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4847 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4848 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4849 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4850 } 4851 4852 return nullptr; 4853 } 4854 4855 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4856 if (const SCEV *S = createAddRecFromPHI(PN)) 4857 return S; 4858 4859 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4860 return S; 4861 4862 // If the PHI has a single incoming value, follow that value, unless the 4863 // PHI's incoming blocks are in a different loop, in which case doing so 4864 // risks breaking LCSSA form. Instcombine would normally zap these, but 4865 // it doesn't have DominatorTree information, so it may miss cases. 4866 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 4867 if (LI.replacementPreservesLCSSAForm(PN, V)) 4868 return getSCEV(V); 4869 4870 // If it's not a loop phi, we can't handle it yet. 4871 return getUnknown(PN); 4872 } 4873 4874 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4875 Value *Cond, 4876 Value *TrueVal, 4877 Value *FalseVal) { 4878 // Handle "constant" branch or select. This can occur for instance when a 4879 // loop pass transforms an inner loop and moves on to process the outer loop. 4880 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4881 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4882 4883 // Try to match some simple smax or umax patterns. 4884 auto *ICI = dyn_cast<ICmpInst>(Cond); 4885 if (!ICI) 4886 return getUnknown(I); 4887 4888 Value *LHS = ICI->getOperand(0); 4889 Value *RHS = ICI->getOperand(1); 4890 4891 switch (ICI->getPredicate()) { 4892 case ICmpInst::ICMP_SLT: 4893 case ICmpInst::ICMP_SLE: 4894 std::swap(LHS, RHS); 4895 LLVM_FALLTHROUGH; 4896 case ICmpInst::ICMP_SGT: 4897 case ICmpInst::ICMP_SGE: 4898 // a >s b ? a+x : b+x -> smax(a, b)+x 4899 // a >s b ? b+x : a+x -> smin(a, b)+x 4900 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4901 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4902 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4903 const SCEV *LA = getSCEV(TrueVal); 4904 const SCEV *RA = getSCEV(FalseVal); 4905 const SCEV *LDiff = getMinusSCEV(LA, LS); 4906 const SCEV *RDiff = getMinusSCEV(RA, RS); 4907 if (LDiff == RDiff) 4908 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4909 LDiff = getMinusSCEV(LA, RS); 4910 RDiff = getMinusSCEV(RA, LS); 4911 if (LDiff == RDiff) 4912 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4913 } 4914 break; 4915 case ICmpInst::ICMP_ULT: 4916 case ICmpInst::ICMP_ULE: 4917 std::swap(LHS, RHS); 4918 LLVM_FALLTHROUGH; 4919 case ICmpInst::ICMP_UGT: 4920 case ICmpInst::ICMP_UGE: 4921 // a >u b ? a+x : b+x -> umax(a, b)+x 4922 // a >u b ? b+x : a+x -> umin(a, b)+x 4923 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4924 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4925 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4926 const SCEV *LA = getSCEV(TrueVal); 4927 const SCEV *RA = getSCEV(FalseVal); 4928 const SCEV *LDiff = getMinusSCEV(LA, LS); 4929 const SCEV *RDiff = getMinusSCEV(RA, RS); 4930 if (LDiff == RDiff) 4931 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4932 LDiff = getMinusSCEV(LA, RS); 4933 RDiff = getMinusSCEV(RA, LS); 4934 if (LDiff == RDiff) 4935 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4936 } 4937 break; 4938 case ICmpInst::ICMP_NE: 4939 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4940 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4941 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4942 const SCEV *One = getOne(I->getType()); 4943 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4944 const SCEV *LA = getSCEV(TrueVal); 4945 const SCEV *RA = getSCEV(FalseVal); 4946 const SCEV *LDiff = getMinusSCEV(LA, LS); 4947 const SCEV *RDiff = getMinusSCEV(RA, One); 4948 if (LDiff == RDiff) 4949 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4950 } 4951 break; 4952 case ICmpInst::ICMP_EQ: 4953 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4954 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4955 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4956 const SCEV *One = getOne(I->getType()); 4957 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4958 const SCEV *LA = getSCEV(TrueVal); 4959 const SCEV *RA = getSCEV(FalseVal); 4960 const SCEV *LDiff = getMinusSCEV(LA, One); 4961 const SCEV *RDiff = getMinusSCEV(RA, LS); 4962 if (LDiff == RDiff) 4963 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4964 } 4965 break; 4966 default: 4967 break; 4968 } 4969 4970 return getUnknown(I); 4971 } 4972 4973 /// Expand GEP instructions into add and multiply operations. This allows them 4974 /// to be analyzed by regular SCEV code. 4975 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4976 // Don't attempt to analyze GEPs over unsized objects. 4977 if (!GEP->getSourceElementType()->isSized()) 4978 return getUnknown(GEP); 4979 4980 SmallVector<const SCEV *, 4> IndexExprs; 4981 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4982 IndexExprs.push_back(getSCEV(*Index)); 4983 return getGEPExpr(GEP, IndexExprs); 4984 } 4985 4986 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 4987 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4988 return C->getAPInt().countTrailingZeros(); 4989 4990 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4991 return std::min(GetMinTrailingZeros(T->getOperand()), 4992 (uint32_t)getTypeSizeInBits(T->getType())); 4993 4994 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4995 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4996 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 4997 ? getTypeSizeInBits(E->getType()) 4998 : OpRes; 4999 } 5000 5001 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5002 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5003 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5004 ? getTypeSizeInBits(E->getType()) 5005 : OpRes; 5006 } 5007 5008 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5009 // The result is the min of all operands results. 5010 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5011 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5012 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5013 return MinOpRes; 5014 } 5015 5016 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5017 // The result is the sum of all operands results. 5018 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5019 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5020 for (unsigned i = 1, e = M->getNumOperands(); 5021 SumOpRes != BitWidth && i != e; ++i) 5022 SumOpRes = 5023 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5024 return SumOpRes; 5025 } 5026 5027 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5028 // The result is the min of all operands results. 5029 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5030 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5031 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5032 return MinOpRes; 5033 } 5034 5035 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5036 // The result is the min of all operands results. 5037 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5038 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5039 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5040 return MinOpRes; 5041 } 5042 5043 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5044 // The result is the min of all operands results. 5045 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5046 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5047 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5048 return MinOpRes; 5049 } 5050 5051 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5052 // For a SCEVUnknown, ask ValueTracking. 5053 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5054 return Known.countMinTrailingZeros(); 5055 } 5056 5057 // SCEVUDivExpr 5058 return 0; 5059 } 5060 5061 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5062 auto I = MinTrailingZerosCache.find(S); 5063 if (I != MinTrailingZerosCache.end()) 5064 return I->second; 5065 5066 uint32_t Result = GetMinTrailingZerosImpl(S); 5067 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5068 assert(InsertPair.second && "Should insert a new key"); 5069 return InsertPair.first->second; 5070 } 5071 5072 /// Helper method to assign a range to V from metadata present in the IR. 5073 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5074 if (Instruction *I = dyn_cast<Instruction>(V)) 5075 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5076 return getConstantRangeFromMetadata(*MD); 5077 5078 return None; 5079 } 5080 5081 /// Determine the range for a particular SCEV. If SignHint is 5082 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5083 /// with a "cleaner" unsigned (resp. signed) representation. 5084 const ConstantRange & 5085 ScalarEvolution::getRangeRef(const SCEV *S, 5086 ScalarEvolution::RangeSignHint SignHint) { 5087 DenseMap<const SCEV *, ConstantRange> &Cache = 5088 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5089 : SignedRanges; 5090 5091 // See if we've computed this range already. 5092 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5093 if (I != Cache.end()) 5094 return I->second; 5095 5096 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5097 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5098 5099 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5100 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5101 5102 // If the value has known zeros, the maximum value will have those known zeros 5103 // as well. 5104 uint32_t TZ = GetMinTrailingZeros(S); 5105 if (TZ != 0) { 5106 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5107 ConservativeResult = 5108 ConstantRange(APInt::getMinValue(BitWidth), 5109 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5110 else 5111 ConservativeResult = ConstantRange( 5112 APInt::getSignedMinValue(BitWidth), 5113 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5114 } 5115 5116 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5117 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5118 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5119 X = X.add(getRangeRef(Add->getOperand(i), SignHint)); 5120 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 5121 } 5122 5123 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5124 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5125 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5126 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5127 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 5128 } 5129 5130 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5131 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5132 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5133 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5134 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 5135 } 5136 5137 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5138 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5139 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5140 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5141 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 5142 } 5143 5144 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5145 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5146 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5147 return setRange(UDiv, SignHint, 5148 ConservativeResult.intersectWith(X.udiv(Y))); 5149 } 5150 5151 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5152 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5153 return setRange(ZExt, SignHint, 5154 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 5155 } 5156 5157 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5158 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5159 return setRange(SExt, SignHint, 5160 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 5161 } 5162 5163 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5164 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5165 return setRange(Trunc, SignHint, 5166 ConservativeResult.intersectWith(X.truncate(BitWidth))); 5167 } 5168 5169 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5170 // If there's no unsigned wrap, the value will never be less than its 5171 // initial value. 5172 if (AddRec->hasNoUnsignedWrap()) 5173 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 5174 if (!C->getValue()->isZero()) 5175 ConservativeResult = ConservativeResult.intersectWith( 5176 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 5177 5178 // If there's no signed wrap, and all the operands have the same sign or 5179 // zero, the value won't ever change sign. 5180 if (AddRec->hasNoSignedWrap()) { 5181 bool AllNonNeg = true; 5182 bool AllNonPos = true; 5183 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5184 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 5185 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 5186 } 5187 if (AllNonNeg) 5188 ConservativeResult = ConservativeResult.intersectWith( 5189 ConstantRange(APInt(BitWidth, 0), 5190 APInt::getSignedMinValue(BitWidth))); 5191 else if (AllNonPos) 5192 ConservativeResult = ConservativeResult.intersectWith( 5193 ConstantRange(APInt::getSignedMinValue(BitWidth), 5194 APInt(BitWidth, 1))); 5195 } 5196 5197 // TODO: non-affine addrec 5198 if (AddRec->isAffine()) { 5199 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 5200 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5201 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5202 auto RangeFromAffine = getRangeForAffineAR( 5203 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5204 BitWidth); 5205 if (!RangeFromAffine.isFullSet()) 5206 ConservativeResult = 5207 ConservativeResult.intersectWith(RangeFromAffine); 5208 5209 auto RangeFromFactoring = getRangeViaFactoring( 5210 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5211 BitWidth); 5212 if (!RangeFromFactoring.isFullSet()) 5213 ConservativeResult = 5214 ConservativeResult.intersectWith(RangeFromFactoring); 5215 } 5216 } 5217 5218 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5219 } 5220 5221 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5222 // Check if the IR explicitly contains !range metadata. 5223 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5224 if (MDRange.hasValue()) 5225 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 5226 5227 // Split here to avoid paying the compile-time cost of calling both 5228 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5229 // if needed. 5230 const DataLayout &DL = getDataLayout(); 5231 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5232 // For a SCEVUnknown, ask ValueTracking. 5233 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5234 if (Known.One != ~Known.Zero + 1) 5235 ConservativeResult = 5236 ConservativeResult.intersectWith(ConstantRange(Known.One, 5237 ~Known.Zero + 1)); 5238 } else { 5239 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5240 "generalize as needed!"); 5241 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5242 if (NS > 1) 5243 ConservativeResult = ConservativeResult.intersectWith( 5244 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5245 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 5246 } 5247 5248 return setRange(U, SignHint, std::move(ConservativeResult)); 5249 } 5250 5251 return setRange(S, SignHint, std::move(ConservativeResult)); 5252 } 5253 5254 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5255 // values that the expression can take. Initially, the expression has a value 5256 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5257 // argument defines if we treat Step as signed or unsigned. 5258 static ConstantRange getRangeForAffineARHelper(APInt Step, 5259 const ConstantRange &StartRange, 5260 const APInt &MaxBECount, 5261 unsigned BitWidth, bool Signed) { 5262 // If either Step or MaxBECount is 0, then the expression won't change, and we 5263 // just need to return the initial range. 5264 if (Step == 0 || MaxBECount == 0) 5265 return StartRange; 5266 5267 // If we don't know anything about the initial value (i.e. StartRange is 5268 // FullRange), then we don't know anything about the final range either. 5269 // Return FullRange. 5270 if (StartRange.isFullSet()) 5271 return ConstantRange(BitWidth, /* isFullSet = */ true); 5272 5273 // If Step is signed and negative, then we use its absolute value, but we also 5274 // note that we're moving in the opposite direction. 5275 bool Descending = Signed && Step.isNegative(); 5276 5277 if (Signed) 5278 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5279 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5280 // This equations hold true due to the well-defined wrap-around behavior of 5281 // APInt. 5282 Step = Step.abs(); 5283 5284 // Check if Offset is more than full span of BitWidth. If it is, the 5285 // expression is guaranteed to overflow. 5286 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5287 return ConstantRange(BitWidth, /* isFullSet = */ true); 5288 5289 // Offset is by how much the expression can change. Checks above guarantee no 5290 // overflow here. 5291 APInt Offset = Step * MaxBECount; 5292 5293 // Minimum value of the final range will match the minimal value of StartRange 5294 // if the expression is increasing and will be decreased by Offset otherwise. 5295 // Maximum value of the final range will match the maximal value of StartRange 5296 // if the expression is decreasing and will be increased by Offset otherwise. 5297 APInt StartLower = StartRange.getLower(); 5298 APInt StartUpper = StartRange.getUpper() - 1; 5299 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5300 : (StartUpper + std::move(Offset)); 5301 5302 // It's possible that the new minimum/maximum value will fall into the initial 5303 // range (due to wrap around). This means that the expression can take any 5304 // value in this bitwidth, and we have to return full range. 5305 if (StartRange.contains(MovedBoundary)) 5306 return ConstantRange(BitWidth, /* isFullSet = */ true); 5307 5308 APInt NewLower = 5309 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5310 APInt NewUpper = 5311 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5312 NewUpper += 1; 5313 5314 // If we end up with full range, return a proper full range. 5315 if (NewLower == NewUpper) 5316 return ConstantRange(BitWidth, /* isFullSet = */ true); 5317 5318 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5319 return ConstantRange(std::move(NewLower), std::move(NewUpper)); 5320 } 5321 5322 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5323 const SCEV *Step, 5324 const SCEV *MaxBECount, 5325 unsigned BitWidth) { 5326 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5327 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5328 "Precondition!"); 5329 5330 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5331 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5332 5333 // First, consider step signed. 5334 ConstantRange StartSRange = getSignedRange(Start); 5335 ConstantRange StepSRange = getSignedRange(Step); 5336 5337 // If Step can be both positive and negative, we need to find ranges for the 5338 // maximum absolute step values in both directions and union them. 5339 ConstantRange SR = 5340 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5341 MaxBECountValue, BitWidth, /* Signed = */ true); 5342 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5343 StartSRange, MaxBECountValue, 5344 BitWidth, /* Signed = */ true)); 5345 5346 // Next, consider step unsigned. 5347 ConstantRange UR = getRangeForAffineARHelper( 5348 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5349 MaxBECountValue, BitWidth, /* Signed = */ false); 5350 5351 // Finally, intersect signed and unsigned ranges. 5352 return SR.intersectWith(UR); 5353 } 5354 5355 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5356 const SCEV *Step, 5357 const SCEV *MaxBECount, 5358 unsigned BitWidth) { 5359 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5360 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5361 5362 struct SelectPattern { 5363 Value *Condition = nullptr; 5364 APInt TrueValue; 5365 APInt FalseValue; 5366 5367 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5368 const SCEV *S) { 5369 Optional<unsigned> CastOp; 5370 APInt Offset(BitWidth, 0); 5371 5372 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5373 "Should be!"); 5374 5375 // Peel off a constant offset: 5376 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5377 // In the future we could consider being smarter here and handle 5378 // {Start+Step,+,Step} too. 5379 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5380 return; 5381 5382 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5383 S = SA->getOperand(1); 5384 } 5385 5386 // Peel off a cast operation 5387 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5388 CastOp = SCast->getSCEVType(); 5389 S = SCast->getOperand(); 5390 } 5391 5392 using namespace llvm::PatternMatch; 5393 5394 auto *SU = dyn_cast<SCEVUnknown>(S); 5395 const APInt *TrueVal, *FalseVal; 5396 if (!SU || 5397 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5398 m_APInt(FalseVal)))) { 5399 Condition = nullptr; 5400 return; 5401 } 5402 5403 TrueValue = *TrueVal; 5404 FalseValue = *FalseVal; 5405 5406 // Re-apply the cast we peeled off earlier 5407 if (CastOp.hasValue()) 5408 switch (*CastOp) { 5409 default: 5410 llvm_unreachable("Unknown SCEV cast type!"); 5411 5412 case scTruncate: 5413 TrueValue = TrueValue.trunc(BitWidth); 5414 FalseValue = FalseValue.trunc(BitWidth); 5415 break; 5416 case scZeroExtend: 5417 TrueValue = TrueValue.zext(BitWidth); 5418 FalseValue = FalseValue.zext(BitWidth); 5419 break; 5420 case scSignExtend: 5421 TrueValue = TrueValue.sext(BitWidth); 5422 FalseValue = FalseValue.sext(BitWidth); 5423 break; 5424 } 5425 5426 // Re-apply the constant offset we peeled off earlier 5427 TrueValue += Offset; 5428 FalseValue += Offset; 5429 } 5430 5431 bool isRecognized() { return Condition != nullptr; } 5432 }; 5433 5434 SelectPattern StartPattern(*this, BitWidth, Start); 5435 if (!StartPattern.isRecognized()) 5436 return ConstantRange(BitWidth, /* isFullSet = */ true); 5437 5438 SelectPattern StepPattern(*this, BitWidth, Step); 5439 if (!StepPattern.isRecognized()) 5440 return ConstantRange(BitWidth, /* isFullSet = */ true); 5441 5442 if (StartPattern.Condition != StepPattern.Condition) { 5443 // We don't handle this case today; but we could, by considering four 5444 // possibilities below instead of two. I'm not sure if there are cases where 5445 // that will help over what getRange already does, though. 5446 return ConstantRange(BitWidth, /* isFullSet = */ true); 5447 } 5448 5449 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5450 // construct arbitrary general SCEV expressions here. This function is called 5451 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5452 // say) can end up caching a suboptimal value. 5453 5454 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5455 // C2352 and C2512 (otherwise it isn't needed). 5456 5457 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5458 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5459 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5460 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5461 5462 ConstantRange TrueRange = 5463 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5464 ConstantRange FalseRange = 5465 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5466 5467 return TrueRange.unionWith(FalseRange); 5468 } 5469 5470 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5471 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5472 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5473 5474 // Return early if there are no flags to propagate to the SCEV. 5475 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5476 if (BinOp->hasNoUnsignedWrap()) 5477 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5478 if (BinOp->hasNoSignedWrap()) 5479 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5480 if (Flags == SCEV::FlagAnyWrap) 5481 return SCEV::FlagAnyWrap; 5482 5483 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5484 } 5485 5486 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5487 // Here we check that I is in the header of the innermost loop containing I, 5488 // since we only deal with instructions in the loop header. The actual loop we 5489 // need to check later will come from an add recurrence, but getting that 5490 // requires computing the SCEV of the operands, which can be expensive. This 5491 // check we can do cheaply to rule out some cases early. 5492 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5493 if (InnermostContainingLoop == nullptr || 5494 InnermostContainingLoop->getHeader() != I->getParent()) 5495 return false; 5496 5497 // Only proceed if we can prove that I does not yield poison. 5498 if (!programUndefinedIfFullPoison(I)) 5499 return false; 5500 5501 // At this point we know that if I is executed, then it does not wrap 5502 // according to at least one of NSW or NUW. If I is not executed, then we do 5503 // not know if the calculation that I represents would wrap. Multiple 5504 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5505 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5506 // derived from other instructions that map to the same SCEV. We cannot make 5507 // that guarantee for cases where I is not executed. So we need to find the 5508 // loop that I is considered in relation to and prove that I is executed for 5509 // every iteration of that loop. That implies that the value that I 5510 // calculates does not wrap anywhere in the loop, so then we can apply the 5511 // flags to the SCEV. 5512 // 5513 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5514 // from different loops, so that we know which loop to prove that I is 5515 // executed in. 5516 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5517 // I could be an extractvalue from a call to an overflow intrinsic. 5518 // TODO: We can do better here in some cases. 5519 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5520 return false; 5521 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5522 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5523 bool AllOtherOpsLoopInvariant = true; 5524 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5525 ++OtherOpIndex) { 5526 if (OtherOpIndex != OpIndex) { 5527 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5528 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5529 AllOtherOpsLoopInvariant = false; 5530 break; 5531 } 5532 } 5533 } 5534 if (AllOtherOpsLoopInvariant && 5535 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5536 return true; 5537 } 5538 } 5539 return false; 5540 } 5541 5542 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5543 // If we know that \c I can never be poison period, then that's enough. 5544 if (isSCEVExprNeverPoison(I)) 5545 return true; 5546 5547 // For an add recurrence specifically, we assume that infinite loops without 5548 // side effects are undefined behavior, and then reason as follows: 5549 // 5550 // If the add recurrence is poison in any iteration, it is poison on all 5551 // future iterations (since incrementing poison yields poison). If the result 5552 // of the add recurrence is fed into the loop latch condition and the loop 5553 // does not contain any throws or exiting blocks other than the latch, we now 5554 // have the ability to "choose" whether the backedge is taken or not (by 5555 // choosing a sufficiently evil value for the poison feeding into the branch) 5556 // for every iteration including and after the one in which \p I first became 5557 // poison. There are two possibilities (let's call the iteration in which \p 5558 // I first became poison as K): 5559 // 5560 // 1. In the set of iterations including and after K, the loop body executes 5561 // no side effects. In this case executing the backege an infinte number 5562 // of times will yield undefined behavior. 5563 // 5564 // 2. In the set of iterations including and after K, the loop body executes 5565 // at least one side effect. In this case, that specific instance of side 5566 // effect is control dependent on poison, which also yields undefined 5567 // behavior. 5568 5569 auto *ExitingBB = L->getExitingBlock(); 5570 auto *LatchBB = L->getLoopLatch(); 5571 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5572 return false; 5573 5574 SmallPtrSet<const Instruction *, 16> Pushed; 5575 SmallVector<const Instruction *, 8> PoisonStack; 5576 5577 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5578 // things that are known to be fully poison under that assumption go on the 5579 // PoisonStack. 5580 Pushed.insert(I); 5581 PoisonStack.push_back(I); 5582 5583 bool LatchControlDependentOnPoison = false; 5584 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5585 const Instruction *Poison = PoisonStack.pop_back_val(); 5586 5587 for (auto *PoisonUser : Poison->users()) { 5588 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 5589 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5590 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5591 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5592 assert(BI->isConditional() && "Only possibility!"); 5593 if (BI->getParent() == LatchBB) { 5594 LatchControlDependentOnPoison = true; 5595 break; 5596 } 5597 } 5598 } 5599 } 5600 5601 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5602 } 5603 5604 ScalarEvolution::LoopProperties 5605 ScalarEvolution::getLoopProperties(const Loop *L) { 5606 typedef ScalarEvolution::LoopProperties LoopProperties; 5607 5608 auto Itr = LoopPropertiesCache.find(L); 5609 if (Itr == LoopPropertiesCache.end()) { 5610 auto HasSideEffects = [](Instruction *I) { 5611 if (auto *SI = dyn_cast<StoreInst>(I)) 5612 return !SI->isSimple(); 5613 5614 return I->mayHaveSideEffects(); 5615 }; 5616 5617 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5618 /*HasNoSideEffects*/ true}; 5619 5620 for (auto *BB : L->getBlocks()) 5621 for (auto &I : *BB) { 5622 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5623 LP.HasNoAbnormalExits = false; 5624 if (HasSideEffects(&I)) 5625 LP.HasNoSideEffects = false; 5626 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5627 break; // We're already as pessimistic as we can get. 5628 } 5629 5630 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5631 assert(InsertPair.second && "We just checked!"); 5632 Itr = InsertPair.first; 5633 } 5634 5635 return Itr->second; 5636 } 5637 5638 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5639 if (!isSCEVable(V->getType())) 5640 return getUnknown(V); 5641 5642 if (Instruction *I = dyn_cast<Instruction>(V)) { 5643 // Don't attempt to analyze instructions in blocks that aren't 5644 // reachable. Such instructions don't matter, and they aren't required 5645 // to obey basic rules for definitions dominating uses which this 5646 // analysis depends on. 5647 if (!DT.isReachableFromEntry(I->getParent())) 5648 return getUnknown(V); 5649 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5650 return getConstant(CI); 5651 else if (isa<ConstantPointerNull>(V)) 5652 return getZero(V->getType()); 5653 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5654 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5655 else if (!isa<ConstantExpr>(V)) 5656 return getUnknown(V); 5657 5658 Operator *U = cast<Operator>(V); 5659 if (auto BO = MatchBinaryOp(U, DT)) { 5660 switch (BO->Opcode) { 5661 case Instruction::Add: { 5662 // The simple thing to do would be to just call getSCEV on both operands 5663 // and call getAddExpr with the result. However if we're looking at a 5664 // bunch of things all added together, this can be quite inefficient, 5665 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5666 // Instead, gather up all the operands and make a single getAddExpr call. 5667 // LLVM IR canonical form means we need only traverse the left operands. 5668 SmallVector<const SCEV *, 4> AddOps; 5669 do { 5670 if (BO->Op) { 5671 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5672 AddOps.push_back(OpSCEV); 5673 break; 5674 } 5675 5676 // If a NUW or NSW flag can be applied to the SCEV for this 5677 // addition, then compute the SCEV for this addition by itself 5678 // with a separate call to getAddExpr. We need to do that 5679 // instead of pushing the operands of the addition onto AddOps, 5680 // since the flags are only known to apply to this particular 5681 // addition - they may not apply to other additions that can be 5682 // formed with operands from AddOps. 5683 const SCEV *RHS = getSCEV(BO->RHS); 5684 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5685 if (Flags != SCEV::FlagAnyWrap) { 5686 const SCEV *LHS = getSCEV(BO->LHS); 5687 if (BO->Opcode == Instruction::Sub) 5688 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 5689 else 5690 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 5691 break; 5692 } 5693 } 5694 5695 if (BO->Opcode == Instruction::Sub) 5696 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 5697 else 5698 AddOps.push_back(getSCEV(BO->RHS)); 5699 5700 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5701 if (!NewBO || (NewBO->Opcode != Instruction::Add && 5702 NewBO->Opcode != Instruction::Sub)) { 5703 AddOps.push_back(getSCEV(BO->LHS)); 5704 break; 5705 } 5706 BO = NewBO; 5707 } while (true); 5708 5709 return getAddExpr(AddOps); 5710 } 5711 5712 case Instruction::Mul: { 5713 SmallVector<const SCEV *, 4> MulOps; 5714 do { 5715 if (BO->Op) { 5716 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5717 MulOps.push_back(OpSCEV); 5718 break; 5719 } 5720 5721 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5722 if (Flags != SCEV::FlagAnyWrap) { 5723 MulOps.push_back( 5724 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 5725 break; 5726 } 5727 } 5728 5729 MulOps.push_back(getSCEV(BO->RHS)); 5730 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5731 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 5732 MulOps.push_back(getSCEV(BO->LHS)); 5733 break; 5734 } 5735 BO = NewBO; 5736 } while (true); 5737 5738 return getMulExpr(MulOps); 5739 } 5740 case Instruction::UDiv: 5741 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 5742 case Instruction::Sub: { 5743 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5744 if (BO->Op) 5745 Flags = getNoWrapFlagsFromUB(BO->Op); 5746 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 5747 } 5748 case Instruction::And: 5749 // For an expression like x&255 that merely masks off the high bits, 5750 // use zext(trunc(x)) as the SCEV expression. 5751 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5752 if (CI->isZero()) 5753 return getSCEV(BO->RHS); 5754 if (CI->isMinusOne()) 5755 return getSCEV(BO->LHS); 5756 const APInt &A = CI->getValue(); 5757 5758 // Instcombine's ShrinkDemandedConstant may strip bits out of 5759 // constants, obscuring what would otherwise be a low-bits mask. 5760 // Use computeKnownBits to compute what ShrinkDemandedConstant 5761 // knew about to reconstruct a low-bits mask value. 5762 unsigned LZ = A.countLeadingZeros(); 5763 unsigned TZ = A.countTrailingZeros(); 5764 unsigned BitWidth = A.getBitWidth(); 5765 KnownBits Known(BitWidth); 5766 computeKnownBits(BO->LHS, Known, getDataLayout(), 5767 0, &AC, nullptr, &DT); 5768 5769 APInt EffectiveMask = 5770 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 5771 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 5772 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 5773 const SCEV *LHS = getSCEV(BO->LHS); 5774 const SCEV *ShiftedLHS = nullptr; 5775 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 5776 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 5777 // For an expression like (x * 8) & 8, simplify the multiply. 5778 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 5779 unsigned GCD = std::min(MulZeros, TZ); 5780 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 5781 SmallVector<const SCEV*, 4> MulOps; 5782 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 5783 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 5784 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 5785 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 5786 } 5787 } 5788 if (!ShiftedLHS) 5789 ShiftedLHS = getUDivExpr(LHS, MulCount); 5790 return getMulExpr( 5791 getZeroExtendExpr( 5792 getTruncateExpr(ShiftedLHS, 5793 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 5794 BO->LHS->getType()), 5795 MulCount); 5796 } 5797 } 5798 break; 5799 5800 case Instruction::Or: 5801 // If the RHS of the Or is a constant, we may have something like: 5802 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 5803 // optimizations will transparently handle this case. 5804 // 5805 // In order for this transformation to be safe, the LHS must be of the 5806 // form X*(2^n) and the Or constant must be less than 2^n. 5807 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5808 const SCEV *LHS = getSCEV(BO->LHS); 5809 const APInt &CIVal = CI->getValue(); 5810 if (GetMinTrailingZeros(LHS) >= 5811 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 5812 // Build a plain add SCEV. 5813 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 5814 // If the LHS of the add was an addrec and it has no-wrap flags, 5815 // transfer the no-wrap flags, since an or won't introduce a wrap. 5816 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 5817 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 5818 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 5819 OldAR->getNoWrapFlags()); 5820 } 5821 return S; 5822 } 5823 } 5824 break; 5825 5826 case Instruction::Xor: 5827 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5828 // If the RHS of xor is -1, then this is a not operation. 5829 if (CI->isMinusOne()) 5830 return getNotSCEV(getSCEV(BO->LHS)); 5831 5832 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 5833 // This is a variant of the check for xor with -1, and it handles 5834 // the case where instcombine has trimmed non-demanded bits out 5835 // of an xor with -1. 5836 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 5837 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 5838 if (LBO->getOpcode() == Instruction::And && 5839 LCI->getValue() == CI->getValue()) 5840 if (const SCEVZeroExtendExpr *Z = 5841 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 5842 Type *UTy = BO->LHS->getType(); 5843 const SCEV *Z0 = Z->getOperand(); 5844 Type *Z0Ty = Z0->getType(); 5845 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 5846 5847 // If C is a low-bits mask, the zero extend is serving to 5848 // mask off the high bits. Complement the operand and 5849 // re-apply the zext. 5850 if (CI->getValue().isMask(Z0TySize)) 5851 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 5852 5853 // If C is a single bit, it may be in the sign-bit position 5854 // before the zero-extend. In this case, represent the xor 5855 // using an add, which is equivalent, and re-apply the zext. 5856 APInt Trunc = CI->getValue().trunc(Z0TySize); 5857 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 5858 Trunc.isSignMask()) 5859 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 5860 UTy); 5861 } 5862 } 5863 break; 5864 5865 case Instruction::Shl: 5866 // Turn shift left of a constant amount into a multiply. 5867 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 5868 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 5869 5870 // If the shift count is not less than the bitwidth, the result of 5871 // the shift is undefined. Don't try to analyze it, because the 5872 // resolution chosen here may differ from the resolution chosen in 5873 // other parts of the compiler. 5874 if (SA->getValue().uge(BitWidth)) 5875 break; 5876 5877 // It is currently not resolved how to interpret NSW for left 5878 // shift by BitWidth - 1, so we avoid applying flags in that 5879 // case. Remove this check (or this comment) once the situation 5880 // is resolved. See 5881 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 5882 // and http://reviews.llvm.org/D8890 . 5883 auto Flags = SCEV::FlagAnyWrap; 5884 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 5885 Flags = getNoWrapFlagsFromUB(BO->Op); 5886 5887 Constant *X = ConstantInt::get(getContext(), 5888 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5889 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 5890 } 5891 break; 5892 5893 case Instruction::AShr: 5894 // AShr X, C, where C is a constant. 5895 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 5896 if (!CI) 5897 break; 5898 5899 Type *OuterTy = BO->LHS->getType(); 5900 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 5901 // If the shift count is not less than the bitwidth, the result of 5902 // the shift is undefined. Don't try to analyze it, because the 5903 // resolution chosen here may differ from the resolution chosen in 5904 // other parts of the compiler. 5905 if (CI->getValue().uge(BitWidth)) 5906 break; 5907 5908 if (CI->isZero()) 5909 return getSCEV(BO->LHS); // shift by zero --> noop 5910 5911 uint64_t AShrAmt = CI->getZExtValue(); 5912 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 5913 5914 Operator *L = dyn_cast<Operator>(BO->LHS); 5915 if (L && L->getOpcode() == Instruction::Shl) { 5916 // X = Shl A, n 5917 // Y = AShr X, m 5918 // Both n and m are constant. 5919 5920 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 5921 if (L->getOperand(1) == BO->RHS) 5922 // For a two-shift sext-inreg, i.e. n = m, 5923 // use sext(trunc(x)) as the SCEV expression. 5924 return getSignExtendExpr( 5925 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 5926 5927 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 5928 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 5929 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 5930 if (ShlAmt > AShrAmt) { 5931 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 5932 // expression. We already checked that ShlAmt < BitWidth, so 5933 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 5934 // ShlAmt - AShrAmt < Amt. 5935 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 5936 ShlAmt - AShrAmt); 5937 return getSignExtendExpr( 5938 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 5939 getConstant(Mul)), OuterTy); 5940 } 5941 } 5942 } 5943 break; 5944 } 5945 } 5946 5947 switch (U->getOpcode()) { 5948 case Instruction::Trunc: 5949 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 5950 5951 case Instruction::ZExt: 5952 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5953 5954 case Instruction::SExt: 5955 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5956 5957 case Instruction::BitCast: 5958 // BitCasts are no-op casts so we just eliminate the cast. 5959 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 5960 return getSCEV(U->getOperand(0)); 5961 break; 5962 5963 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 5964 // lead to pointer expressions which cannot safely be expanded to GEPs, 5965 // because ScalarEvolution doesn't respect the GEP aliasing rules when 5966 // simplifying integer expressions. 5967 5968 case Instruction::GetElementPtr: 5969 return createNodeForGEP(cast<GEPOperator>(U)); 5970 5971 case Instruction::PHI: 5972 return createNodeForPHI(cast<PHINode>(U)); 5973 5974 case Instruction::Select: 5975 // U can also be a select constant expr, which let fall through. Since 5976 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 5977 // constant expressions cannot have instructions as operands, we'd have 5978 // returned getUnknown for a select constant expressions anyway. 5979 if (isa<Instruction>(U)) 5980 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 5981 U->getOperand(1), U->getOperand(2)); 5982 break; 5983 5984 case Instruction::Call: 5985 case Instruction::Invoke: 5986 if (Value *RV = CallSite(U).getReturnedArgOperand()) 5987 return getSCEV(RV); 5988 break; 5989 } 5990 5991 return getUnknown(V); 5992 } 5993 5994 5995 5996 //===----------------------------------------------------------------------===// 5997 // Iteration Count Computation Code 5998 // 5999 6000 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6001 if (!ExitCount) 6002 return 0; 6003 6004 ConstantInt *ExitConst = ExitCount->getValue(); 6005 6006 // Guard against huge trip counts. 6007 if (ExitConst->getValue().getActiveBits() > 32) 6008 return 0; 6009 6010 // In case of integer overflow, this returns 0, which is correct. 6011 return ((unsigned)ExitConst->getZExtValue()) + 1; 6012 } 6013 6014 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6015 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6016 return getSmallConstantTripCount(L, ExitingBB); 6017 6018 // No trip count information for multiple exits. 6019 return 0; 6020 } 6021 6022 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6023 BasicBlock *ExitingBlock) { 6024 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6025 assert(L->isLoopExiting(ExitingBlock) && 6026 "Exiting block must actually branch out of the loop!"); 6027 const SCEVConstant *ExitCount = 6028 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6029 return getConstantTripCount(ExitCount); 6030 } 6031 6032 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6033 const auto *MaxExitCount = 6034 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 6035 return getConstantTripCount(MaxExitCount); 6036 } 6037 6038 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6039 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6040 return getSmallConstantTripMultiple(L, ExitingBB); 6041 6042 // No trip multiple information for multiple exits. 6043 return 0; 6044 } 6045 6046 /// Returns the largest constant divisor of the trip count of this loop as a 6047 /// normal unsigned value, if possible. This means that the actual trip count is 6048 /// always a multiple of the returned value (don't forget the trip count could 6049 /// very well be zero as well!). 6050 /// 6051 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6052 /// multiple of a constant (which is also the case if the trip count is simply 6053 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6054 /// if the trip count is very large (>= 2^32). 6055 /// 6056 /// As explained in the comments for getSmallConstantTripCount, this assumes 6057 /// that control exits the loop via ExitingBlock. 6058 unsigned 6059 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6060 BasicBlock *ExitingBlock) { 6061 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6062 assert(L->isLoopExiting(ExitingBlock) && 6063 "Exiting block must actually branch out of the loop!"); 6064 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6065 if (ExitCount == getCouldNotCompute()) 6066 return 1; 6067 6068 // Get the trip count from the BE count by adding 1. 6069 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6070 6071 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6072 if (!TC) 6073 // Attempt to factor more general cases. Returns the greatest power of 6074 // two divisor. If overflow happens, the trip count expression is still 6075 // divisible by the greatest power of 2 divisor returned. 6076 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6077 6078 ConstantInt *Result = TC->getValue(); 6079 6080 // Guard against huge trip counts (this requires checking 6081 // for zero to handle the case where the trip count == -1 and the 6082 // addition wraps). 6083 if (!Result || Result->getValue().getActiveBits() > 32 || 6084 Result->getValue().getActiveBits() == 0) 6085 return 1; 6086 6087 return (unsigned)Result->getZExtValue(); 6088 } 6089 6090 /// Get the expression for the number of loop iterations for which this loop is 6091 /// guaranteed not to exit via ExitingBlock. Otherwise return 6092 /// SCEVCouldNotCompute. 6093 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6094 BasicBlock *ExitingBlock) { 6095 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6096 } 6097 6098 const SCEV * 6099 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6100 SCEVUnionPredicate &Preds) { 6101 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds); 6102 } 6103 6104 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 6105 return getBackedgeTakenInfo(L).getExact(this); 6106 } 6107 6108 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 6109 /// known never to be less than the actual backedge taken count. 6110 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 6111 return getBackedgeTakenInfo(L).getMax(this); 6112 } 6113 6114 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6115 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6116 } 6117 6118 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6119 static void 6120 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6121 BasicBlock *Header = L->getHeader(); 6122 6123 // Push all Loop-header PHIs onto the Worklist stack. 6124 for (BasicBlock::iterator I = Header->begin(); 6125 PHINode *PN = dyn_cast<PHINode>(I); ++I) 6126 Worklist.push_back(PN); 6127 } 6128 6129 const ScalarEvolution::BackedgeTakenInfo & 6130 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6131 auto &BTI = getBackedgeTakenInfo(L); 6132 if (BTI.hasFullInfo()) 6133 return BTI; 6134 6135 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6136 6137 if (!Pair.second) 6138 return Pair.first->second; 6139 6140 BackedgeTakenInfo Result = 6141 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6142 6143 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6144 } 6145 6146 const ScalarEvolution::BackedgeTakenInfo & 6147 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6148 // Initially insert an invalid entry for this loop. If the insertion 6149 // succeeds, proceed to actually compute a backedge-taken count and 6150 // update the value. The temporary CouldNotCompute value tells SCEV 6151 // code elsewhere that it shouldn't attempt to request a new 6152 // backedge-taken count, which could result in infinite recursion. 6153 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6154 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6155 if (!Pair.second) 6156 return Pair.first->second; 6157 6158 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6159 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6160 // must be cleared in this scope. 6161 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6162 6163 if (Result.getExact(this) != getCouldNotCompute()) { 6164 assert(isLoopInvariant(Result.getExact(this), L) && 6165 isLoopInvariant(Result.getMax(this), L) && 6166 "Computed backedge-taken count isn't loop invariant for loop!"); 6167 ++NumTripCountsComputed; 6168 } 6169 else if (Result.getMax(this) == getCouldNotCompute() && 6170 isa<PHINode>(L->getHeader()->begin())) { 6171 // Only count loops that have phi nodes as not being computable. 6172 ++NumTripCountsNotComputed; 6173 } 6174 6175 // Now that we know more about the trip count for this loop, forget any 6176 // existing SCEV values for PHI nodes in this loop since they are only 6177 // conservative estimates made without the benefit of trip count 6178 // information. This is similar to the code in forgetLoop, except that 6179 // it handles SCEVUnknown PHI nodes specially. 6180 if (Result.hasAnyInfo()) { 6181 SmallVector<Instruction *, 16> Worklist; 6182 PushLoopPHIs(L, Worklist); 6183 6184 SmallPtrSet<Instruction *, 8> Visited; 6185 while (!Worklist.empty()) { 6186 Instruction *I = Worklist.pop_back_val(); 6187 if (!Visited.insert(I).second) 6188 continue; 6189 6190 ValueExprMapType::iterator It = 6191 ValueExprMap.find_as(static_cast<Value *>(I)); 6192 if (It != ValueExprMap.end()) { 6193 const SCEV *Old = It->second; 6194 6195 // SCEVUnknown for a PHI either means that it has an unrecognized 6196 // structure, or it's a PHI that's in the progress of being computed 6197 // by createNodeForPHI. In the former case, additional loop trip 6198 // count information isn't going to change anything. In the later 6199 // case, createNodeForPHI will perform the necessary updates on its 6200 // own when it gets to that point. 6201 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6202 eraseValueFromMap(It->first); 6203 forgetMemoizedResults(Old); 6204 } 6205 if (PHINode *PN = dyn_cast<PHINode>(I)) 6206 ConstantEvolutionLoopExitValue.erase(PN); 6207 } 6208 6209 PushDefUseChildren(I, Worklist); 6210 } 6211 } 6212 6213 // Re-lookup the insert position, since the call to 6214 // computeBackedgeTakenCount above could result in a 6215 // recusive call to getBackedgeTakenInfo (on a different 6216 // loop), which would invalidate the iterator computed 6217 // earlier. 6218 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6219 } 6220 6221 void ScalarEvolution::forgetLoop(const Loop *L) { 6222 // Drop any stored trip count value. 6223 auto RemoveLoopFromBackedgeMap = 6224 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 6225 auto BTCPos = Map.find(L); 6226 if (BTCPos != Map.end()) { 6227 BTCPos->second.clear(); 6228 Map.erase(BTCPos); 6229 } 6230 }; 6231 6232 RemoveLoopFromBackedgeMap(BackedgeTakenCounts); 6233 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts); 6234 6235 // Drop information about predicated SCEV rewrites for this loop. 6236 for (auto I = PredicatedSCEVRewrites.begin(); 6237 I != PredicatedSCEVRewrites.end();) { 6238 std::pair<const SCEV *, const Loop *> Entry = I->first; 6239 if (Entry.second == L) 6240 PredicatedSCEVRewrites.erase(I++); 6241 else 6242 ++I; 6243 } 6244 6245 // Drop information about expressions based on loop-header PHIs. 6246 SmallVector<Instruction *, 16> Worklist; 6247 PushLoopPHIs(L, Worklist); 6248 6249 SmallPtrSet<Instruction *, 8> Visited; 6250 while (!Worklist.empty()) { 6251 Instruction *I = Worklist.pop_back_val(); 6252 if (!Visited.insert(I).second) 6253 continue; 6254 6255 ValueExprMapType::iterator It = 6256 ValueExprMap.find_as(static_cast<Value *>(I)); 6257 if (It != ValueExprMap.end()) { 6258 eraseValueFromMap(It->first); 6259 forgetMemoizedResults(It->second); 6260 if (PHINode *PN = dyn_cast<PHINode>(I)) 6261 ConstantEvolutionLoopExitValue.erase(PN); 6262 } 6263 6264 PushDefUseChildren(I, Worklist); 6265 } 6266 6267 // Forget all contained loops too, to avoid dangling entries in the 6268 // ValuesAtScopes map. 6269 for (Loop *I : *L) 6270 forgetLoop(I); 6271 6272 LoopPropertiesCache.erase(L); 6273 } 6274 6275 void ScalarEvolution::forgetValue(Value *V) { 6276 Instruction *I = dyn_cast<Instruction>(V); 6277 if (!I) return; 6278 6279 // Drop information about expressions based on loop-header PHIs. 6280 SmallVector<Instruction *, 16> Worklist; 6281 Worklist.push_back(I); 6282 6283 SmallPtrSet<Instruction *, 8> Visited; 6284 while (!Worklist.empty()) { 6285 I = Worklist.pop_back_val(); 6286 if (!Visited.insert(I).second) 6287 continue; 6288 6289 ValueExprMapType::iterator It = 6290 ValueExprMap.find_as(static_cast<Value *>(I)); 6291 if (It != ValueExprMap.end()) { 6292 eraseValueFromMap(It->first); 6293 forgetMemoizedResults(It->second); 6294 if (PHINode *PN = dyn_cast<PHINode>(I)) 6295 ConstantEvolutionLoopExitValue.erase(PN); 6296 } 6297 6298 PushDefUseChildren(I, Worklist); 6299 } 6300 } 6301 6302 /// Get the exact loop backedge taken count considering all loop exits. A 6303 /// computable result can only be returned for loops with a single exit. 6304 /// Returning the minimum taken count among all exits is incorrect because one 6305 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that 6306 /// the limit of each loop test is never skipped. This is a valid assumption as 6307 /// long as the loop exits via that test. For precise results, it is the 6308 /// caller's responsibility to specify the relevant loop exit using 6309 /// getExact(ExitingBlock, SE). 6310 const SCEV * 6311 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE, 6312 SCEVUnionPredicate *Preds) const { 6313 // If any exits were not computable, the loop is not computable. 6314 if (!isComplete() || ExitNotTaken.empty()) 6315 return SE->getCouldNotCompute(); 6316 6317 const SCEV *BECount = nullptr; 6318 for (auto &ENT : ExitNotTaken) { 6319 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 6320 6321 if (!BECount) 6322 BECount = ENT.ExactNotTaken; 6323 else if (BECount != ENT.ExactNotTaken) 6324 return SE->getCouldNotCompute(); 6325 if (Preds && !ENT.hasAlwaysTruePredicate()) 6326 Preds->add(ENT.Predicate.get()); 6327 6328 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6329 "Predicate should be always true!"); 6330 } 6331 6332 assert(BECount && "Invalid not taken count for loop exit"); 6333 return BECount; 6334 } 6335 6336 /// Get the exact not taken count for this loop exit. 6337 const SCEV * 6338 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 6339 ScalarEvolution *SE) const { 6340 for (auto &ENT : ExitNotTaken) 6341 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6342 return ENT.ExactNotTaken; 6343 6344 return SE->getCouldNotCompute(); 6345 } 6346 6347 /// getMax - Get the max backedge taken count for the loop. 6348 const SCEV * 6349 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6350 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6351 return !ENT.hasAlwaysTruePredicate(); 6352 }; 6353 6354 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6355 return SE->getCouldNotCompute(); 6356 6357 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6358 "No point in having a non-constant max backedge taken count!"); 6359 return getMax(); 6360 } 6361 6362 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6363 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6364 return !ENT.hasAlwaysTruePredicate(); 6365 }; 6366 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6367 } 6368 6369 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6370 ScalarEvolution *SE) const { 6371 if (getMax() && getMax() != SE->getCouldNotCompute() && 6372 SE->hasOperand(getMax(), S)) 6373 return true; 6374 6375 for (auto &ENT : ExitNotTaken) 6376 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6377 SE->hasOperand(ENT.ExactNotTaken, S)) 6378 return true; 6379 6380 return false; 6381 } 6382 6383 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6384 : ExactNotTaken(E), MaxNotTaken(E), MaxOrZero(false) { 6385 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6386 isa<SCEVConstant>(MaxNotTaken)) && 6387 "No point in having a non-constant max backedge taken count!"); 6388 } 6389 6390 ScalarEvolution::ExitLimit::ExitLimit( 6391 const SCEV *E, const SCEV *M, bool MaxOrZero, 6392 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6393 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6394 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6395 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6396 "Exact is not allowed to be less precise than Max"); 6397 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6398 isa<SCEVConstant>(MaxNotTaken)) && 6399 "No point in having a non-constant max backedge taken count!"); 6400 for (auto *PredSet : PredSetList) 6401 for (auto *P : *PredSet) 6402 addPredicate(P); 6403 } 6404 6405 ScalarEvolution::ExitLimit::ExitLimit( 6406 const SCEV *E, const SCEV *M, bool MaxOrZero, 6407 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6408 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6409 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6410 isa<SCEVConstant>(MaxNotTaken)) && 6411 "No point in having a non-constant max backedge taken count!"); 6412 } 6413 6414 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6415 bool MaxOrZero) 6416 : ExitLimit(E, M, MaxOrZero, None) { 6417 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6418 isa<SCEVConstant>(MaxNotTaken)) && 6419 "No point in having a non-constant max backedge taken count!"); 6420 } 6421 6422 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6423 /// computable exit into a persistent ExitNotTakenInfo array. 6424 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6425 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6426 &&ExitCounts, 6427 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6428 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6429 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 6430 ExitNotTaken.reserve(ExitCounts.size()); 6431 std::transform( 6432 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6433 [&](const EdgeExitInfo &EEI) { 6434 BasicBlock *ExitBB = EEI.first; 6435 const ExitLimit &EL = EEI.second; 6436 if (EL.Predicates.empty()) 6437 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 6438 6439 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 6440 for (auto *Pred : EL.Predicates) 6441 Predicate->add(Pred); 6442 6443 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 6444 }); 6445 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 6446 "No point in having a non-constant max backedge taken count!"); 6447 } 6448 6449 /// Invalidate this result and free the ExitNotTakenInfo array. 6450 void ScalarEvolution::BackedgeTakenInfo::clear() { 6451 ExitNotTaken.clear(); 6452 } 6453 6454 /// Compute the number of times the backedge of the specified loop will execute. 6455 ScalarEvolution::BackedgeTakenInfo 6456 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 6457 bool AllowPredicates) { 6458 SmallVector<BasicBlock *, 8> ExitingBlocks; 6459 L->getExitingBlocks(ExitingBlocks); 6460 6461 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 6462 6463 SmallVector<EdgeExitInfo, 4> ExitCounts; 6464 bool CouldComputeBECount = true; 6465 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 6466 const SCEV *MustExitMaxBECount = nullptr; 6467 const SCEV *MayExitMaxBECount = nullptr; 6468 bool MustExitMaxOrZero = false; 6469 6470 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 6471 // and compute maxBECount. 6472 // Do a union of all the predicates here. 6473 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 6474 BasicBlock *ExitBB = ExitingBlocks[i]; 6475 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 6476 6477 assert((AllowPredicates || EL.Predicates.empty()) && 6478 "Predicated exit limit when predicates are not allowed!"); 6479 6480 // 1. For each exit that can be computed, add an entry to ExitCounts. 6481 // CouldComputeBECount is true only if all exits can be computed. 6482 if (EL.ExactNotTaken == getCouldNotCompute()) 6483 // We couldn't compute an exact value for this exit, so 6484 // we won't be able to compute an exact value for the loop. 6485 CouldComputeBECount = false; 6486 else 6487 ExitCounts.emplace_back(ExitBB, EL); 6488 6489 // 2. Derive the loop's MaxBECount from each exit's max number of 6490 // non-exiting iterations. Partition the loop exits into two kinds: 6491 // LoopMustExits and LoopMayExits. 6492 // 6493 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 6494 // is a LoopMayExit. If any computable LoopMustExit is found, then 6495 // MaxBECount is the minimum EL.MaxNotTaken of computable 6496 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 6497 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 6498 // computable EL.MaxNotTaken. 6499 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 6500 DT.dominates(ExitBB, Latch)) { 6501 if (!MustExitMaxBECount) { 6502 MustExitMaxBECount = EL.MaxNotTaken; 6503 MustExitMaxOrZero = EL.MaxOrZero; 6504 } else { 6505 MustExitMaxBECount = 6506 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 6507 } 6508 } else if (MayExitMaxBECount != getCouldNotCompute()) { 6509 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 6510 MayExitMaxBECount = EL.MaxNotTaken; 6511 else { 6512 MayExitMaxBECount = 6513 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 6514 } 6515 } 6516 } 6517 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 6518 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 6519 // The loop backedge will be taken the maximum or zero times if there's 6520 // a single exit that must be taken the maximum or zero times. 6521 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 6522 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 6523 MaxBECount, MaxOrZero); 6524 } 6525 6526 ScalarEvolution::ExitLimit 6527 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 6528 bool AllowPredicates) { 6529 6530 // Okay, we've chosen an exiting block. See what condition causes us to exit 6531 // at this block and remember the exit block and whether all other targets 6532 // lead to the loop header. 6533 bool MustExecuteLoopHeader = true; 6534 BasicBlock *Exit = nullptr; 6535 for (auto *SBB : successors(ExitingBlock)) 6536 if (!L->contains(SBB)) { 6537 if (Exit) // Multiple exit successors. 6538 return getCouldNotCompute(); 6539 Exit = SBB; 6540 } else if (SBB != L->getHeader()) { 6541 MustExecuteLoopHeader = false; 6542 } 6543 6544 // At this point, we know we have a conditional branch that determines whether 6545 // the loop is exited. However, we don't know if the branch is executed each 6546 // time through the loop. If not, then the execution count of the branch will 6547 // not be equal to the trip count of the loop. 6548 // 6549 // Currently we check for this by checking to see if the Exit branch goes to 6550 // the loop header. If so, we know it will always execute the same number of 6551 // times as the loop. We also handle the case where the exit block *is* the 6552 // loop header. This is common for un-rotated loops. 6553 // 6554 // If both of those tests fail, walk up the unique predecessor chain to the 6555 // header, stopping if there is an edge that doesn't exit the loop. If the 6556 // header is reached, the execution count of the branch will be equal to the 6557 // trip count of the loop. 6558 // 6559 // More extensive analysis could be done to handle more cases here. 6560 // 6561 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 6562 // The simple checks failed, try climbing the unique predecessor chain 6563 // up to the header. 6564 bool Ok = false; 6565 for (BasicBlock *BB = ExitingBlock; BB; ) { 6566 BasicBlock *Pred = BB->getUniquePredecessor(); 6567 if (!Pred) 6568 return getCouldNotCompute(); 6569 TerminatorInst *PredTerm = Pred->getTerminator(); 6570 for (const BasicBlock *PredSucc : PredTerm->successors()) { 6571 if (PredSucc == BB) 6572 continue; 6573 // If the predecessor has a successor that isn't BB and isn't 6574 // outside the loop, assume the worst. 6575 if (L->contains(PredSucc)) 6576 return getCouldNotCompute(); 6577 } 6578 if (Pred == L->getHeader()) { 6579 Ok = true; 6580 break; 6581 } 6582 BB = Pred; 6583 } 6584 if (!Ok) 6585 return getCouldNotCompute(); 6586 } 6587 6588 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 6589 TerminatorInst *Term = ExitingBlock->getTerminator(); 6590 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 6591 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 6592 // Proceed to the next level to examine the exit condition expression. 6593 return computeExitLimitFromCond( 6594 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1), 6595 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 6596 } 6597 6598 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 6599 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 6600 /*ControlsExit=*/IsOnlyExit); 6601 6602 return getCouldNotCompute(); 6603 } 6604 6605 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 6606 const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB, 6607 bool ControlsExit, bool AllowPredicates) { 6608 ScalarEvolution::ExitLimitCacheTy Cache(L, TBB, FBB, AllowPredicates); 6609 return computeExitLimitFromCondCached(Cache, L, ExitCond, TBB, FBB, 6610 ControlsExit, AllowPredicates); 6611 } 6612 6613 Optional<ScalarEvolution::ExitLimit> 6614 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 6615 BasicBlock *TBB, BasicBlock *FBB, 6616 bool ControlsExit, bool AllowPredicates) { 6617 (void)this->L; 6618 (void)this->TBB; 6619 (void)this->FBB; 6620 (void)this->AllowPredicates; 6621 6622 assert(this->L == L && this->TBB == TBB && this->FBB == FBB && 6623 this->AllowPredicates == AllowPredicates && 6624 "Variance in assumed invariant key components!"); 6625 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 6626 if (Itr == TripCountMap.end()) 6627 return None; 6628 return Itr->second; 6629 } 6630 6631 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 6632 BasicBlock *TBB, BasicBlock *FBB, 6633 bool ControlsExit, 6634 bool AllowPredicates, 6635 const ExitLimit &EL) { 6636 assert(this->L == L && this->TBB == TBB && this->FBB == FBB && 6637 this->AllowPredicates == AllowPredicates && 6638 "Variance in assumed invariant key components!"); 6639 6640 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 6641 assert(InsertResult.second && "Expected successful insertion!"); 6642 (void)InsertResult; 6643 } 6644 6645 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 6646 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB, 6647 BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) { 6648 6649 if (auto MaybeEL = 6650 Cache.find(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates)) 6651 return *MaybeEL; 6652 6653 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, TBB, FBB, 6654 ControlsExit, AllowPredicates); 6655 Cache.insert(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates, EL); 6656 return EL; 6657 } 6658 6659 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 6660 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB, 6661 BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) { 6662 // Check if the controlling expression for this loop is an And or Or. 6663 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 6664 if (BO->getOpcode() == Instruction::And) { 6665 // Recurse on the operands of the and. 6666 bool EitherMayExit = L->contains(TBB); 6667 ExitLimit EL0 = computeExitLimitFromCondCached( 6668 Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit, 6669 AllowPredicates); 6670 ExitLimit EL1 = computeExitLimitFromCondCached( 6671 Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit, 6672 AllowPredicates); 6673 const SCEV *BECount = getCouldNotCompute(); 6674 const SCEV *MaxBECount = getCouldNotCompute(); 6675 if (EitherMayExit) { 6676 // Both conditions must be true for the loop to continue executing. 6677 // Choose the less conservative count. 6678 if (EL0.ExactNotTaken == getCouldNotCompute() || 6679 EL1.ExactNotTaken == getCouldNotCompute()) 6680 BECount = getCouldNotCompute(); 6681 else 6682 BECount = 6683 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 6684 if (EL0.MaxNotTaken == getCouldNotCompute()) 6685 MaxBECount = EL1.MaxNotTaken; 6686 else if (EL1.MaxNotTaken == getCouldNotCompute()) 6687 MaxBECount = EL0.MaxNotTaken; 6688 else 6689 MaxBECount = 6690 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 6691 } else { 6692 // Both conditions must be true at the same time for the loop to exit. 6693 // For now, be conservative. 6694 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 6695 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 6696 MaxBECount = EL0.MaxNotTaken; 6697 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 6698 BECount = EL0.ExactNotTaken; 6699 } 6700 6701 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 6702 // to be more aggressive when computing BECount than when computing 6703 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 6704 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 6705 // to not. 6706 if (isa<SCEVCouldNotCompute>(MaxBECount) && 6707 !isa<SCEVCouldNotCompute>(BECount)) 6708 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 6709 6710 return ExitLimit(BECount, MaxBECount, false, 6711 {&EL0.Predicates, &EL1.Predicates}); 6712 } 6713 if (BO->getOpcode() == Instruction::Or) { 6714 // Recurse on the operands of the or. 6715 bool EitherMayExit = L->contains(FBB); 6716 ExitLimit EL0 = computeExitLimitFromCondCached( 6717 Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit, 6718 AllowPredicates); 6719 ExitLimit EL1 = computeExitLimitFromCondCached( 6720 Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit, 6721 AllowPredicates); 6722 const SCEV *BECount = getCouldNotCompute(); 6723 const SCEV *MaxBECount = getCouldNotCompute(); 6724 if (EitherMayExit) { 6725 // Both conditions must be false for the loop to continue executing. 6726 // Choose the less conservative count. 6727 if (EL0.ExactNotTaken == getCouldNotCompute() || 6728 EL1.ExactNotTaken == getCouldNotCompute()) 6729 BECount = getCouldNotCompute(); 6730 else 6731 BECount = 6732 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 6733 if (EL0.MaxNotTaken == getCouldNotCompute()) 6734 MaxBECount = EL1.MaxNotTaken; 6735 else if (EL1.MaxNotTaken == getCouldNotCompute()) 6736 MaxBECount = EL0.MaxNotTaken; 6737 else 6738 MaxBECount = 6739 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 6740 } else { 6741 // Both conditions must be false at the same time for the loop to exit. 6742 // For now, be conservative. 6743 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 6744 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 6745 MaxBECount = EL0.MaxNotTaken; 6746 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 6747 BECount = EL0.ExactNotTaken; 6748 } 6749 6750 return ExitLimit(BECount, MaxBECount, false, 6751 {&EL0.Predicates, &EL1.Predicates}); 6752 } 6753 } 6754 6755 // With an icmp, it may be feasible to compute an exact backedge-taken count. 6756 // Proceed to the next level to examine the icmp. 6757 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 6758 ExitLimit EL = 6759 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 6760 if (EL.hasFullInfo() || !AllowPredicates) 6761 return EL; 6762 6763 // Try again, but use SCEV predicates this time. 6764 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit, 6765 /*AllowPredicates=*/true); 6766 } 6767 6768 // Check for a constant condition. These are normally stripped out by 6769 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 6770 // preserve the CFG and is temporarily leaving constant conditions 6771 // in place. 6772 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 6773 if (L->contains(FBB) == !CI->getZExtValue()) 6774 // The backedge is always taken. 6775 return getCouldNotCompute(); 6776 else 6777 // The backedge is never taken. 6778 return getZero(CI->getType()); 6779 } 6780 6781 // If it's not an integer or pointer comparison then compute it the hard way. 6782 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6783 } 6784 6785 ScalarEvolution::ExitLimit 6786 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 6787 ICmpInst *ExitCond, 6788 BasicBlock *TBB, 6789 BasicBlock *FBB, 6790 bool ControlsExit, 6791 bool AllowPredicates) { 6792 6793 // If the condition was exit on true, convert the condition to exit on false 6794 ICmpInst::Predicate Cond; 6795 if (!L->contains(FBB)) 6796 Cond = ExitCond->getPredicate(); 6797 else 6798 Cond = ExitCond->getInversePredicate(); 6799 6800 // Handle common loops like: for (X = "string"; *X; ++X) 6801 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 6802 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 6803 ExitLimit ItCnt = 6804 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 6805 if (ItCnt.hasAnyInfo()) 6806 return ItCnt; 6807 } 6808 6809 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 6810 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 6811 6812 // Try to evaluate any dependencies out of the loop. 6813 LHS = getSCEVAtScope(LHS, L); 6814 RHS = getSCEVAtScope(RHS, L); 6815 6816 // At this point, we would like to compute how many iterations of the 6817 // loop the predicate will return true for these inputs. 6818 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 6819 // If there is a loop-invariant, force it into the RHS. 6820 std::swap(LHS, RHS); 6821 Cond = ICmpInst::getSwappedPredicate(Cond); 6822 } 6823 6824 // Simplify the operands before analyzing them. 6825 (void)SimplifyICmpOperands(Cond, LHS, RHS); 6826 6827 // If we have a comparison of a chrec against a constant, try to use value 6828 // ranges to answer this query. 6829 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 6830 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 6831 if (AddRec->getLoop() == L) { 6832 // Form the constant range. 6833 ConstantRange CompRange = 6834 ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt()); 6835 6836 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 6837 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 6838 } 6839 6840 switch (Cond) { 6841 case ICmpInst::ICMP_NE: { // while (X != Y) 6842 // Convert to: while (X-Y != 0) 6843 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 6844 AllowPredicates); 6845 if (EL.hasAnyInfo()) return EL; 6846 break; 6847 } 6848 case ICmpInst::ICMP_EQ: { // while (X == Y) 6849 // Convert to: while (X-Y == 0) 6850 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 6851 if (EL.hasAnyInfo()) return EL; 6852 break; 6853 } 6854 case ICmpInst::ICMP_SLT: 6855 case ICmpInst::ICMP_ULT: { // while (X < Y) 6856 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 6857 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 6858 AllowPredicates); 6859 if (EL.hasAnyInfo()) return EL; 6860 break; 6861 } 6862 case ICmpInst::ICMP_SGT: 6863 case ICmpInst::ICMP_UGT: { // while (X > Y) 6864 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 6865 ExitLimit EL = 6866 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 6867 AllowPredicates); 6868 if (EL.hasAnyInfo()) return EL; 6869 break; 6870 } 6871 default: 6872 break; 6873 } 6874 6875 auto *ExhaustiveCount = 6876 computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6877 6878 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 6879 return ExhaustiveCount; 6880 6881 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 6882 ExitCond->getOperand(1), L, Cond); 6883 } 6884 6885 ScalarEvolution::ExitLimit 6886 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 6887 SwitchInst *Switch, 6888 BasicBlock *ExitingBlock, 6889 bool ControlsExit) { 6890 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 6891 6892 // Give up if the exit is the default dest of a switch. 6893 if (Switch->getDefaultDest() == ExitingBlock) 6894 return getCouldNotCompute(); 6895 6896 assert(L->contains(Switch->getDefaultDest()) && 6897 "Default case must not exit the loop!"); 6898 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 6899 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 6900 6901 // while (X != Y) --> while (X-Y != 0) 6902 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 6903 if (EL.hasAnyInfo()) 6904 return EL; 6905 6906 return getCouldNotCompute(); 6907 } 6908 6909 static ConstantInt * 6910 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 6911 ScalarEvolution &SE) { 6912 const SCEV *InVal = SE.getConstant(C); 6913 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 6914 assert(isa<SCEVConstant>(Val) && 6915 "Evaluation of SCEV at constant didn't fold correctly?"); 6916 return cast<SCEVConstant>(Val)->getValue(); 6917 } 6918 6919 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 6920 /// compute the backedge execution count. 6921 ScalarEvolution::ExitLimit 6922 ScalarEvolution::computeLoadConstantCompareExitLimit( 6923 LoadInst *LI, 6924 Constant *RHS, 6925 const Loop *L, 6926 ICmpInst::Predicate predicate) { 6927 6928 if (LI->isVolatile()) return getCouldNotCompute(); 6929 6930 // Check to see if the loaded pointer is a getelementptr of a global. 6931 // TODO: Use SCEV instead of manually grubbing with GEPs. 6932 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 6933 if (!GEP) return getCouldNotCompute(); 6934 6935 // Make sure that it is really a constant global we are gepping, with an 6936 // initializer, and make sure the first IDX is really 0. 6937 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 6938 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 6939 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 6940 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 6941 return getCouldNotCompute(); 6942 6943 // Okay, we allow one non-constant index into the GEP instruction. 6944 Value *VarIdx = nullptr; 6945 std::vector<Constant*> Indexes; 6946 unsigned VarIdxNum = 0; 6947 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 6948 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 6949 Indexes.push_back(CI); 6950 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 6951 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 6952 VarIdx = GEP->getOperand(i); 6953 VarIdxNum = i-2; 6954 Indexes.push_back(nullptr); 6955 } 6956 6957 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 6958 if (!VarIdx) 6959 return getCouldNotCompute(); 6960 6961 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 6962 // Check to see if X is a loop variant variable value now. 6963 const SCEV *Idx = getSCEV(VarIdx); 6964 Idx = getSCEVAtScope(Idx, L); 6965 6966 // We can only recognize very limited forms of loop index expressions, in 6967 // particular, only affine AddRec's like {C1,+,C2}. 6968 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 6969 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 6970 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 6971 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 6972 return getCouldNotCompute(); 6973 6974 unsigned MaxSteps = MaxBruteForceIterations; 6975 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 6976 ConstantInt *ItCst = ConstantInt::get( 6977 cast<IntegerType>(IdxExpr->getType()), IterationNum); 6978 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 6979 6980 // Form the GEP offset. 6981 Indexes[VarIdxNum] = Val; 6982 6983 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 6984 Indexes); 6985 if (!Result) break; // Cannot compute! 6986 6987 // Evaluate the condition for this iteration. 6988 Result = ConstantExpr::getICmp(predicate, Result, RHS); 6989 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 6990 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 6991 ++NumArrayLenItCounts; 6992 return getConstant(ItCst); // Found terminating iteration! 6993 } 6994 } 6995 return getCouldNotCompute(); 6996 } 6997 6998 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 6999 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7000 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7001 if (!RHS) 7002 return getCouldNotCompute(); 7003 7004 const BasicBlock *Latch = L->getLoopLatch(); 7005 if (!Latch) 7006 return getCouldNotCompute(); 7007 7008 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7009 if (!Predecessor) 7010 return getCouldNotCompute(); 7011 7012 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7013 // Return LHS in OutLHS and shift_opt in OutOpCode. 7014 auto MatchPositiveShift = 7015 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7016 7017 using namespace PatternMatch; 7018 7019 ConstantInt *ShiftAmt; 7020 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7021 OutOpCode = Instruction::LShr; 7022 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7023 OutOpCode = Instruction::AShr; 7024 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7025 OutOpCode = Instruction::Shl; 7026 else 7027 return false; 7028 7029 return ShiftAmt->getValue().isStrictlyPositive(); 7030 }; 7031 7032 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7033 // 7034 // loop: 7035 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7036 // %iv.shifted = lshr i32 %iv, <positive constant> 7037 // 7038 // Return true on a successful match. Return the corresponding PHI node (%iv 7039 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7040 auto MatchShiftRecurrence = 7041 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7042 Optional<Instruction::BinaryOps> PostShiftOpCode; 7043 7044 { 7045 Instruction::BinaryOps OpC; 7046 Value *V; 7047 7048 // If we encounter a shift instruction, "peel off" the shift operation, 7049 // and remember that we did so. Later when we inspect %iv's backedge 7050 // value, we will make sure that the backedge value uses the same 7051 // operation. 7052 // 7053 // Note: the peeled shift operation does not have to be the same 7054 // instruction as the one feeding into the PHI's backedge value. We only 7055 // really care about it being the same *kind* of shift instruction -- 7056 // that's all that is required for our later inferences to hold. 7057 if (MatchPositiveShift(LHS, V, OpC)) { 7058 PostShiftOpCode = OpC; 7059 LHS = V; 7060 } 7061 } 7062 7063 PNOut = dyn_cast<PHINode>(LHS); 7064 if (!PNOut || PNOut->getParent() != L->getHeader()) 7065 return false; 7066 7067 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7068 Value *OpLHS; 7069 7070 return 7071 // The backedge value for the PHI node must be a shift by a positive 7072 // amount 7073 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7074 7075 // of the PHI node itself 7076 OpLHS == PNOut && 7077 7078 // and the kind of shift should be match the kind of shift we peeled 7079 // off, if any. 7080 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7081 }; 7082 7083 PHINode *PN; 7084 Instruction::BinaryOps OpCode; 7085 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7086 return getCouldNotCompute(); 7087 7088 const DataLayout &DL = getDataLayout(); 7089 7090 // The key rationale for this optimization is that for some kinds of shift 7091 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7092 // within a finite number of iterations. If the condition guarding the 7093 // backedge (in the sense that the backedge is taken if the condition is true) 7094 // is false for the value the shift recurrence stabilizes to, then we know 7095 // that the backedge is taken only a finite number of times. 7096 7097 ConstantInt *StableValue = nullptr; 7098 switch (OpCode) { 7099 default: 7100 llvm_unreachable("Impossible case!"); 7101 7102 case Instruction::AShr: { 7103 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7104 // bitwidth(K) iterations. 7105 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7106 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7107 Predecessor->getTerminator(), &DT); 7108 auto *Ty = cast<IntegerType>(RHS->getType()); 7109 if (Known.isNonNegative()) 7110 StableValue = ConstantInt::get(Ty, 0); 7111 else if (Known.isNegative()) 7112 StableValue = ConstantInt::get(Ty, -1, true); 7113 else 7114 return getCouldNotCompute(); 7115 7116 break; 7117 } 7118 case Instruction::LShr: 7119 case Instruction::Shl: 7120 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7121 // stabilize to 0 in at most bitwidth(K) iterations. 7122 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7123 break; 7124 } 7125 7126 auto *Result = 7127 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7128 assert(Result->getType()->isIntegerTy(1) && 7129 "Otherwise cannot be an operand to a branch instruction"); 7130 7131 if (Result->isZeroValue()) { 7132 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7133 const SCEV *UpperBound = 7134 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7135 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7136 } 7137 7138 return getCouldNotCompute(); 7139 } 7140 7141 /// Return true if we can constant fold an instruction of the specified type, 7142 /// assuming that all operands were constants. 7143 static bool CanConstantFold(const Instruction *I) { 7144 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7145 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7146 isa<LoadInst>(I)) 7147 return true; 7148 7149 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7150 if (const Function *F = CI->getCalledFunction()) 7151 return canConstantFoldCallTo(CI, F); 7152 return false; 7153 } 7154 7155 /// Determine whether this instruction can constant evolve within this loop 7156 /// assuming its operands can all constant evolve. 7157 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7158 // An instruction outside of the loop can't be derived from a loop PHI. 7159 if (!L->contains(I)) return false; 7160 7161 if (isa<PHINode>(I)) { 7162 // We don't currently keep track of the control flow needed to evaluate 7163 // PHIs, so we cannot handle PHIs inside of loops. 7164 return L->getHeader() == I->getParent(); 7165 } 7166 7167 // If we won't be able to constant fold this expression even if the operands 7168 // are constants, bail early. 7169 return CanConstantFold(I); 7170 } 7171 7172 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7173 /// recursing through each instruction operand until reaching a loop header phi. 7174 static PHINode * 7175 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7176 DenseMap<Instruction *, PHINode *> &PHIMap, 7177 unsigned Depth) { 7178 if (Depth > MaxConstantEvolvingDepth) 7179 return nullptr; 7180 7181 // Otherwise, we can evaluate this instruction if all of its operands are 7182 // constant or derived from a PHI node themselves. 7183 PHINode *PHI = nullptr; 7184 for (Value *Op : UseInst->operands()) { 7185 if (isa<Constant>(Op)) continue; 7186 7187 Instruction *OpInst = dyn_cast<Instruction>(Op); 7188 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7189 7190 PHINode *P = dyn_cast<PHINode>(OpInst); 7191 if (!P) 7192 // If this operand is already visited, reuse the prior result. 7193 // We may have P != PHI if this is the deepest point at which the 7194 // inconsistent paths meet. 7195 P = PHIMap.lookup(OpInst); 7196 if (!P) { 7197 // Recurse and memoize the results, whether a phi is found or not. 7198 // This recursive call invalidates pointers into PHIMap. 7199 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7200 PHIMap[OpInst] = P; 7201 } 7202 if (!P) 7203 return nullptr; // Not evolving from PHI 7204 if (PHI && PHI != P) 7205 return nullptr; // Evolving from multiple different PHIs. 7206 PHI = P; 7207 } 7208 // This is a expression evolving from a constant PHI! 7209 return PHI; 7210 } 7211 7212 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7213 /// in the loop that V is derived from. We allow arbitrary operations along the 7214 /// way, but the operands of an operation must either be constants or a value 7215 /// derived from a constant PHI. If this expression does not fit with these 7216 /// constraints, return null. 7217 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7218 Instruction *I = dyn_cast<Instruction>(V); 7219 if (!I || !canConstantEvolve(I, L)) return nullptr; 7220 7221 if (PHINode *PN = dyn_cast<PHINode>(I)) 7222 return PN; 7223 7224 // Record non-constant instructions contained by the loop. 7225 DenseMap<Instruction *, PHINode *> PHIMap; 7226 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7227 } 7228 7229 /// EvaluateExpression - Given an expression that passes the 7230 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7231 /// in the loop has the value PHIVal. If we can't fold this expression for some 7232 /// reason, return null. 7233 static Constant *EvaluateExpression(Value *V, const Loop *L, 7234 DenseMap<Instruction *, Constant *> &Vals, 7235 const DataLayout &DL, 7236 const TargetLibraryInfo *TLI) { 7237 // Convenient constant check, but redundant for recursive calls. 7238 if (Constant *C = dyn_cast<Constant>(V)) return C; 7239 Instruction *I = dyn_cast<Instruction>(V); 7240 if (!I) return nullptr; 7241 7242 if (Constant *C = Vals.lookup(I)) return C; 7243 7244 // An instruction inside the loop depends on a value outside the loop that we 7245 // weren't given a mapping for, or a value such as a call inside the loop. 7246 if (!canConstantEvolve(I, L)) return nullptr; 7247 7248 // An unmapped PHI can be due to a branch or another loop inside this loop, 7249 // or due to this not being the initial iteration through a loop where we 7250 // couldn't compute the evolution of this particular PHI last time. 7251 if (isa<PHINode>(I)) return nullptr; 7252 7253 std::vector<Constant*> Operands(I->getNumOperands()); 7254 7255 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7256 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7257 if (!Operand) { 7258 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7259 if (!Operands[i]) return nullptr; 7260 continue; 7261 } 7262 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7263 Vals[Operand] = C; 7264 if (!C) return nullptr; 7265 Operands[i] = C; 7266 } 7267 7268 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7269 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7270 Operands[1], DL, TLI); 7271 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7272 if (!LI->isVolatile()) 7273 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7274 } 7275 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7276 } 7277 7278 7279 // If every incoming value to PN except the one for BB is a specific Constant, 7280 // return that, else return nullptr. 7281 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7282 Constant *IncomingVal = nullptr; 7283 7284 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7285 if (PN->getIncomingBlock(i) == BB) 7286 continue; 7287 7288 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7289 if (!CurrentVal) 7290 return nullptr; 7291 7292 if (IncomingVal != CurrentVal) { 7293 if (IncomingVal) 7294 return nullptr; 7295 IncomingVal = CurrentVal; 7296 } 7297 } 7298 7299 return IncomingVal; 7300 } 7301 7302 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7303 /// in the header of its containing loop, we know the loop executes a 7304 /// constant number of times, and the PHI node is just a recurrence 7305 /// involving constants, fold it. 7306 Constant * 7307 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7308 const APInt &BEs, 7309 const Loop *L) { 7310 auto I = ConstantEvolutionLoopExitValue.find(PN); 7311 if (I != ConstantEvolutionLoopExitValue.end()) 7312 return I->second; 7313 7314 if (BEs.ugt(MaxBruteForceIterations)) 7315 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7316 7317 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7318 7319 DenseMap<Instruction *, Constant *> CurrentIterVals; 7320 BasicBlock *Header = L->getHeader(); 7321 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7322 7323 BasicBlock *Latch = L->getLoopLatch(); 7324 if (!Latch) 7325 return nullptr; 7326 7327 for (auto &I : *Header) { 7328 PHINode *PHI = dyn_cast<PHINode>(&I); 7329 if (!PHI) break; 7330 auto *StartCST = getOtherIncomingValue(PHI, Latch); 7331 if (!StartCST) continue; 7332 CurrentIterVals[PHI] = StartCST; 7333 } 7334 if (!CurrentIterVals.count(PN)) 7335 return RetVal = nullptr; 7336 7337 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7338 7339 // Execute the loop symbolically to determine the exit value. 7340 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7341 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7342 7343 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7344 unsigned IterationNum = 0; 7345 const DataLayout &DL = getDataLayout(); 7346 for (; ; ++IterationNum) { 7347 if (IterationNum == NumIterations) 7348 return RetVal = CurrentIterVals[PN]; // Got exit value! 7349 7350 // Compute the value of the PHIs for the next iteration. 7351 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7352 DenseMap<Instruction *, Constant *> NextIterVals; 7353 Constant *NextPHI = 7354 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7355 if (!NextPHI) 7356 return nullptr; // Couldn't evaluate! 7357 NextIterVals[PN] = NextPHI; 7358 7359 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7360 7361 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7362 // cease to be able to evaluate one of them or if they stop evolving, 7363 // because that doesn't necessarily prevent us from computing PN. 7364 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7365 for (const auto &I : CurrentIterVals) { 7366 PHINode *PHI = dyn_cast<PHINode>(I.first); 7367 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7368 PHIsToCompute.emplace_back(PHI, I.second); 7369 } 7370 // We use two distinct loops because EvaluateExpression may invalidate any 7371 // iterators into CurrentIterVals. 7372 for (const auto &I : PHIsToCompute) { 7373 PHINode *PHI = I.first; 7374 Constant *&NextPHI = NextIterVals[PHI]; 7375 if (!NextPHI) { // Not already computed. 7376 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7377 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7378 } 7379 if (NextPHI != I.second) 7380 StoppedEvolving = false; 7381 } 7382 7383 // If all entries in CurrentIterVals == NextIterVals then we can stop 7384 // iterating, the loop can't continue to change. 7385 if (StoppedEvolving) 7386 return RetVal = CurrentIterVals[PN]; 7387 7388 CurrentIterVals.swap(NextIterVals); 7389 } 7390 } 7391 7392 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7393 Value *Cond, 7394 bool ExitWhen) { 7395 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7396 if (!PN) return getCouldNotCompute(); 7397 7398 // If the loop is canonicalized, the PHI will have exactly two entries. 7399 // That's the only form we support here. 7400 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7401 7402 DenseMap<Instruction *, Constant *> CurrentIterVals; 7403 BasicBlock *Header = L->getHeader(); 7404 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7405 7406 BasicBlock *Latch = L->getLoopLatch(); 7407 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7408 7409 for (auto &I : *Header) { 7410 PHINode *PHI = dyn_cast<PHINode>(&I); 7411 if (!PHI) 7412 break; 7413 auto *StartCST = getOtherIncomingValue(PHI, Latch); 7414 if (!StartCST) continue; 7415 CurrentIterVals[PHI] = StartCST; 7416 } 7417 if (!CurrentIterVals.count(PN)) 7418 return getCouldNotCompute(); 7419 7420 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7421 // the loop symbolically to determine when the condition gets a value of 7422 // "ExitWhen". 7423 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7424 const DataLayout &DL = getDataLayout(); 7425 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7426 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7427 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7428 7429 // Couldn't symbolically evaluate. 7430 if (!CondVal) return getCouldNotCompute(); 7431 7432 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7433 ++NumBruteForceTripCountsComputed; 7434 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7435 } 7436 7437 // Update all the PHI nodes for the next iteration. 7438 DenseMap<Instruction *, Constant *> NextIterVals; 7439 7440 // Create a list of which PHIs we need to compute. We want to do this before 7441 // calling EvaluateExpression on them because that may invalidate iterators 7442 // into CurrentIterVals. 7443 SmallVector<PHINode *, 8> PHIsToCompute; 7444 for (const auto &I : CurrentIterVals) { 7445 PHINode *PHI = dyn_cast<PHINode>(I.first); 7446 if (!PHI || PHI->getParent() != Header) continue; 7447 PHIsToCompute.push_back(PHI); 7448 } 7449 for (PHINode *PHI : PHIsToCompute) { 7450 Constant *&NextPHI = NextIterVals[PHI]; 7451 if (NextPHI) continue; // Already computed! 7452 7453 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7454 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7455 } 7456 CurrentIterVals.swap(NextIterVals); 7457 } 7458 7459 // Too many iterations were needed to evaluate. 7460 return getCouldNotCompute(); 7461 } 7462 7463 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7464 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7465 ValuesAtScopes[V]; 7466 // Check to see if we've folded this expression at this loop before. 7467 for (auto &LS : Values) 7468 if (LS.first == L) 7469 return LS.second ? LS.second : V; 7470 7471 Values.emplace_back(L, nullptr); 7472 7473 // Otherwise compute it. 7474 const SCEV *C = computeSCEVAtScope(V, L); 7475 for (auto &LS : reverse(ValuesAtScopes[V])) 7476 if (LS.first == L) { 7477 LS.second = C; 7478 break; 7479 } 7480 return C; 7481 } 7482 7483 /// This builds up a Constant using the ConstantExpr interface. That way, we 7484 /// will return Constants for objects which aren't represented by a 7485 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 7486 /// Returns NULL if the SCEV isn't representable as a Constant. 7487 static Constant *BuildConstantFromSCEV(const SCEV *V) { 7488 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 7489 case scCouldNotCompute: 7490 case scAddRecExpr: 7491 break; 7492 case scConstant: 7493 return cast<SCEVConstant>(V)->getValue(); 7494 case scUnknown: 7495 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 7496 case scSignExtend: { 7497 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 7498 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 7499 return ConstantExpr::getSExt(CastOp, SS->getType()); 7500 break; 7501 } 7502 case scZeroExtend: { 7503 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 7504 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 7505 return ConstantExpr::getZExt(CastOp, SZ->getType()); 7506 break; 7507 } 7508 case scTruncate: { 7509 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 7510 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 7511 return ConstantExpr::getTrunc(CastOp, ST->getType()); 7512 break; 7513 } 7514 case scAddExpr: { 7515 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 7516 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 7517 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7518 unsigned AS = PTy->getAddressSpace(); 7519 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7520 C = ConstantExpr::getBitCast(C, DestPtrTy); 7521 } 7522 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 7523 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 7524 if (!C2) return nullptr; 7525 7526 // First pointer! 7527 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 7528 unsigned AS = C2->getType()->getPointerAddressSpace(); 7529 std::swap(C, C2); 7530 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7531 // The offsets have been converted to bytes. We can add bytes to an 7532 // i8* by GEP with the byte count in the first index. 7533 C = ConstantExpr::getBitCast(C, DestPtrTy); 7534 } 7535 7536 // Don't bother trying to sum two pointers. We probably can't 7537 // statically compute a load that results from it anyway. 7538 if (C2->getType()->isPointerTy()) 7539 return nullptr; 7540 7541 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7542 if (PTy->getElementType()->isStructTy()) 7543 C2 = ConstantExpr::getIntegerCast( 7544 C2, Type::getInt32Ty(C->getContext()), true); 7545 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 7546 } else 7547 C = ConstantExpr::getAdd(C, C2); 7548 } 7549 return C; 7550 } 7551 break; 7552 } 7553 case scMulExpr: { 7554 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 7555 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 7556 // Don't bother with pointers at all. 7557 if (C->getType()->isPointerTy()) return nullptr; 7558 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 7559 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 7560 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 7561 C = ConstantExpr::getMul(C, C2); 7562 } 7563 return C; 7564 } 7565 break; 7566 } 7567 case scUDivExpr: { 7568 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 7569 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 7570 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 7571 if (LHS->getType() == RHS->getType()) 7572 return ConstantExpr::getUDiv(LHS, RHS); 7573 break; 7574 } 7575 case scSMaxExpr: 7576 case scUMaxExpr: 7577 break; // TODO: smax, umax. 7578 } 7579 return nullptr; 7580 } 7581 7582 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 7583 if (isa<SCEVConstant>(V)) return V; 7584 7585 // If this instruction is evolved from a constant-evolving PHI, compute the 7586 // exit value from the loop without using SCEVs. 7587 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 7588 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 7589 const Loop *LI = this->LI[I->getParent()]; 7590 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 7591 if (PHINode *PN = dyn_cast<PHINode>(I)) 7592 if (PN->getParent() == LI->getHeader()) { 7593 // Okay, there is no closed form solution for the PHI node. Check 7594 // to see if the loop that contains it has a known backedge-taken 7595 // count. If so, we may be able to force computation of the exit 7596 // value. 7597 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 7598 if (const SCEVConstant *BTCC = 7599 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 7600 7601 // This trivial case can show up in some degenerate cases where 7602 // the incoming IR has not yet been fully simplified. 7603 if (BTCC->getValue()->isZero()) { 7604 Value *InitValue = nullptr; 7605 bool MultipleInitValues = false; 7606 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 7607 if (!LI->contains(PN->getIncomingBlock(i))) { 7608 if (!InitValue) 7609 InitValue = PN->getIncomingValue(i); 7610 else if (InitValue != PN->getIncomingValue(i)) { 7611 MultipleInitValues = true; 7612 break; 7613 } 7614 } 7615 if (!MultipleInitValues && InitValue) 7616 return getSCEV(InitValue); 7617 } 7618 } 7619 // Okay, we know how many times the containing loop executes. If 7620 // this is a constant evolving PHI node, get the final value at 7621 // the specified iteration number. 7622 Constant *RV = 7623 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 7624 if (RV) return getSCEV(RV); 7625 } 7626 } 7627 7628 // Okay, this is an expression that we cannot symbolically evaluate 7629 // into a SCEV. Check to see if it's possible to symbolically evaluate 7630 // the arguments into constants, and if so, try to constant propagate the 7631 // result. This is particularly useful for computing loop exit values. 7632 if (CanConstantFold(I)) { 7633 SmallVector<Constant *, 4> Operands; 7634 bool MadeImprovement = false; 7635 for (Value *Op : I->operands()) { 7636 if (Constant *C = dyn_cast<Constant>(Op)) { 7637 Operands.push_back(C); 7638 continue; 7639 } 7640 7641 // If any of the operands is non-constant and if they are 7642 // non-integer and non-pointer, don't even try to analyze them 7643 // with scev techniques. 7644 if (!isSCEVable(Op->getType())) 7645 return V; 7646 7647 const SCEV *OrigV = getSCEV(Op); 7648 const SCEV *OpV = getSCEVAtScope(OrigV, L); 7649 MadeImprovement |= OrigV != OpV; 7650 7651 Constant *C = BuildConstantFromSCEV(OpV); 7652 if (!C) return V; 7653 if (C->getType() != Op->getType()) 7654 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 7655 Op->getType(), 7656 false), 7657 C, Op->getType()); 7658 Operands.push_back(C); 7659 } 7660 7661 // Check to see if getSCEVAtScope actually made an improvement. 7662 if (MadeImprovement) { 7663 Constant *C = nullptr; 7664 const DataLayout &DL = getDataLayout(); 7665 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 7666 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7667 Operands[1], DL, &TLI); 7668 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 7669 if (!LI->isVolatile()) 7670 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7671 } else 7672 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 7673 if (!C) return V; 7674 return getSCEV(C); 7675 } 7676 } 7677 } 7678 7679 // This is some other type of SCEVUnknown, just return it. 7680 return V; 7681 } 7682 7683 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 7684 // Avoid performing the look-up in the common case where the specified 7685 // expression has no loop-variant portions. 7686 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 7687 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 7688 if (OpAtScope != Comm->getOperand(i)) { 7689 // Okay, at least one of these operands is loop variant but might be 7690 // foldable. Build a new instance of the folded commutative expression. 7691 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 7692 Comm->op_begin()+i); 7693 NewOps.push_back(OpAtScope); 7694 7695 for (++i; i != e; ++i) { 7696 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 7697 NewOps.push_back(OpAtScope); 7698 } 7699 if (isa<SCEVAddExpr>(Comm)) 7700 return getAddExpr(NewOps); 7701 if (isa<SCEVMulExpr>(Comm)) 7702 return getMulExpr(NewOps); 7703 if (isa<SCEVSMaxExpr>(Comm)) 7704 return getSMaxExpr(NewOps); 7705 if (isa<SCEVUMaxExpr>(Comm)) 7706 return getUMaxExpr(NewOps); 7707 llvm_unreachable("Unknown commutative SCEV type!"); 7708 } 7709 } 7710 // If we got here, all operands are loop invariant. 7711 return Comm; 7712 } 7713 7714 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 7715 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 7716 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 7717 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 7718 return Div; // must be loop invariant 7719 return getUDivExpr(LHS, RHS); 7720 } 7721 7722 // If this is a loop recurrence for a loop that does not contain L, then we 7723 // are dealing with the final value computed by the loop. 7724 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 7725 // First, attempt to evaluate each operand. 7726 // Avoid performing the look-up in the common case where the specified 7727 // expression has no loop-variant portions. 7728 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 7729 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 7730 if (OpAtScope == AddRec->getOperand(i)) 7731 continue; 7732 7733 // Okay, at least one of these operands is loop variant but might be 7734 // foldable. Build a new instance of the folded commutative expression. 7735 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 7736 AddRec->op_begin()+i); 7737 NewOps.push_back(OpAtScope); 7738 for (++i; i != e; ++i) 7739 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 7740 7741 const SCEV *FoldedRec = 7742 getAddRecExpr(NewOps, AddRec->getLoop(), 7743 AddRec->getNoWrapFlags(SCEV::FlagNW)); 7744 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 7745 // The addrec may be folded to a nonrecurrence, for example, if the 7746 // induction variable is multiplied by zero after constant folding. Go 7747 // ahead and return the folded value. 7748 if (!AddRec) 7749 return FoldedRec; 7750 break; 7751 } 7752 7753 // If the scope is outside the addrec's loop, evaluate it by using the 7754 // loop exit value of the addrec. 7755 if (!AddRec->getLoop()->contains(L)) { 7756 // To evaluate this recurrence, we need to know how many times the AddRec 7757 // loop iterates. Compute this now. 7758 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 7759 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 7760 7761 // Then, evaluate the AddRec. 7762 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 7763 } 7764 7765 return AddRec; 7766 } 7767 7768 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 7769 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7770 if (Op == Cast->getOperand()) 7771 return Cast; // must be loop invariant 7772 return getZeroExtendExpr(Op, Cast->getType()); 7773 } 7774 7775 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 7776 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7777 if (Op == Cast->getOperand()) 7778 return Cast; // must be loop invariant 7779 return getSignExtendExpr(Op, Cast->getType()); 7780 } 7781 7782 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 7783 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7784 if (Op == Cast->getOperand()) 7785 return Cast; // must be loop invariant 7786 return getTruncateExpr(Op, Cast->getType()); 7787 } 7788 7789 llvm_unreachable("Unknown SCEV type!"); 7790 } 7791 7792 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 7793 return getSCEVAtScope(getSCEV(V), L); 7794 } 7795 7796 /// Finds the minimum unsigned root of the following equation: 7797 /// 7798 /// A * X = B (mod N) 7799 /// 7800 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 7801 /// A and B isn't important. 7802 /// 7803 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 7804 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 7805 ScalarEvolution &SE) { 7806 uint32_t BW = A.getBitWidth(); 7807 assert(BW == SE.getTypeSizeInBits(B->getType())); 7808 assert(A != 0 && "A must be non-zero."); 7809 7810 // 1. D = gcd(A, N) 7811 // 7812 // The gcd of A and N may have only one prime factor: 2. The number of 7813 // trailing zeros in A is its multiplicity 7814 uint32_t Mult2 = A.countTrailingZeros(); 7815 // D = 2^Mult2 7816 7817 // 2. Check if B is divisible by D. 7818 // 7819 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 7820 // is not less than multiplicity of this prime factor for D. 7821 if (SE.GetMinTrailingZeros(B) < Mult2) 7822 return SE.getCouldNotCompute(); 7823 7824 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 7825 // modulo (N / D). 7826 // 7827 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 7828 // (N / D) in general. The inverse itself always fits into BW bits, though, 7829 // so we immediately truncate it. 7830 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 7831 APInt Mod(BW + 1, 0); 7832 Mod.setBit(BW - Mult2); // Mod = N / D 7833 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 7834 7835 // 4. Compute the minimum unsigned root of the equation: 7836 // I * (B / D) mod (N / D) 7837 // To simplify the computation, we factor out the divide by D: 7838 // (I * B mod N) / D 7839 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 7840 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 7841 } 7842 7843 /// Find the roots of the quadratic equation for the given quadratic chrec 7844 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 7845 /// two SCEVCouldNotCompute objects. 7846 /// 7847 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 7848 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 7849 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 7850 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 7851 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 7852 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 7853 7854 // We currently can only solve this if the coefficients are constants. 7855 if (!LC || !MC || !NC) 7856 return None; 7857 7858 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 7859 const APInt &L = LC->getAPInt(); 7860 const APInt &M = MC->getAPInt(); 7861 const APInt &N = NC->getAPInt(); 7862 APInt Two(BitWidth, 2); 7863 7864 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 7865 7866 // The A coefficient is N/2 7867 APInt A = N.sdiv(Two); 7868 7869 // The B coefficient is M-N/2 7870 APInt B = M; 7871 B -= A; // A is the same as N/2. 7872 7873 // The C coefficient is L. 7874 const APInt& C = L; 7875 7876 // Compute the B^2-4ac term. 7877 APInt SqrtTerm = B; 7878 SqrtTerm *= B; 7879 SqrtTerm -= 4 * (A * C); 7880 7881 if (SqrtTerm.isNegative()) { 7882 // The loop is provably infinite. 7883 return None; 7884 } 7885 7886 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 7887 // integer value or else APInt::sqrt() will assert. 7888 APInt SqrtVal = SqrtTerm.sqrt(); 7889 7890 // Compute the two solutions for the quadratic formula. 7891 // The divisions must be performed as signed divisions. 7892 APInt NegB = -std::move(B); 7893 APInt TwoA = std::move(A); 7894 TwoA <<= 1; 7895 if (TwoA.isNullValue()) 7896 return None; 7897 7898 LLVMContext &Context = SE.getContext(); 7899 7900 ConstantInt *Solution1 = 7901 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 7902 ConstantInt *Solution2 = 7903 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 7904 7905 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 7906 cast<SCEVConstant>(SE.getConstant(Solution2))); 7907 } 7908 7909 ScalarEvolution::ExitLimit 7910 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 7911 bool AllowPredicates) { 7912 7913 // This is only used for loops with a "x != y" exit test. The exit condition 7914 // is now expressed as a single expression, V = x-y. So the exit test is 7915 // effectively V != 0. We know and take advantage of the fact that this 7916 // expression only being used in a comparison by zero context. 7917 7918 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 7919 // If the value is a constant 7920 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7921 // If the value is already zero, the branch will execute zero times. 7922 if (C->getValue()->isZero()) return C; 7923 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7924 } 7925 7926 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 7927 if (!AddRec && AllowPredicates) 7928 // Try to make this an AddRec using runtime tests, in the first X 7929 // iterations of this loop, where X is the SCEV expression found by the 7930 // algorithm below. 7931 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 7932 7933 if (!AddRec || AddRec->getLoop() != L) 7934 return getCouldNotCompute(); 7935 7936 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 7937 // the quadratic equation to solve it. 7938 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 7939 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 7940 const SCEVConstant *R1 = Roots->first; 7941 const SCEVConstant *R2 = Roots->second; 7942 // Pick the smallest positive root value. 7943 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 7944 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 7945 if (!CB->getZExtValue()) 7946 std::swap(R1, R2); // R1 is the minimum root now. 7947 7948 // We can only use this value if the chrec ends up with an exact zero 7949 // value at this index. When solving for "X*X != 5", for example, we 7950 // should not accept a root of 2. 7951 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 7952 if (Val->isZero()) 7953 // We found a quadratic root! 7954 return ExitLimit(R1, R1, false, Predicates); 7955 } 7956 } 7957 return getCouldNotCompute(); 7958 } 7959 7960 // Otherwise we can only handle this if it is affine. 7961 if (!AddRec->isAffine()) 7962 return getCouldNotCompute(); 7963 7964 // If this is an affine expression, the execution count of this branch is 7965 // the minimum unsigned root of the following equation: 7966 // 7967 // Start + Step*N = 0 (mod 2^BW) 7968 // 7969 // equivalent to: 7970 // 7971 // Step*N = -Start (mod 2^BW) 7972 // 7973 // where BW is the common bit width of Start and Step. 7974 7975 // Get the initial value for the loop. 7976 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 7977 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 7978 7979 // For now we handle only constant steps. 7980 // 7981 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 7982 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 7983 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 7984 // We have not yet seen any such cases. 7985 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 7986 if (!StepC || StepC->getValue()->isZero()) 7987 return getCouldNotCompute(); 7988 7989 // For positive steps (counting up until unsigned overflow): 7990 // N = -Start/Step (as unsigned) 7991 // For negative steps (counting down to zero): 7992 // N = Start/-Step 7993 // First compute the unsigned distance from zero in the direction of Step. 7994 bool CountDown = StepC->getAPInt().isNegative(); 7995 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 7996 7997 // Handle unitary steps, which cannot wraparound. 7998 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 7999 // N = Distance (as unsigned) 8000 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8001 APInt MaxBECount = getUnsignedRangeMax(Distance); 8002 8003 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8004 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8005 // case, and see if we can improve the bound. 8006 // 8007 // Explicitly handling this here is necessary because getUnsignedRange 8008 // isn't context-sensitive; it doesn't know that we only care about the 8009 // range inside the loop. 8010 const SCEV *Zero = getZero(Distance->getType()); 8011 const SCEV *One = getOne(Distance->getType()); 8012 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8013 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8014 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8015 // as "unsigned_max(Distance + 1) - 1". 8016 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8017 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8018 } 8019 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8020 } 8021 8022 // If the condition controls loop exit (the loop exits only if the expression 8023 // is true) and the addition is no-wrap we can use unsigned divide to 8024 // compute the backedge count. In this case, the step may not divide the 8025 // distance, but we don't care because if the condition is "missed" the loop 8026 // will have undefined behavior due to wrapping. 8027 if (ControlsExit && AddRec->hasNoSelfWrap() && 8028 loopHasNoAbnormalExits(AddRec->getLoop())) { 8029 const SCEV *Exact = 8030 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8031 const SCEV *Max = 8032 Exact == getCouldNotCompute() 8033 ? Exact 8034 : getConstant(getUnsignedRangeMax(Exact)); 8035 return ExitLimit(Exact, Max, false, Predicates); 8036 } 8037 8038 // Solve the general equation. 8039 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8040 getNegativeSCEV(Start), *this); 8041 const SCEV *M = E == getCouldNotCompute() 8042 ? E 8043 : getConstant(getUnsignedRangeMax(E)); 8044 return ExitLimit(E, M, false, Predicates); 8045 } 8046 8047 ScalarEvolution::ExitLimit 8048 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8049 // Loops that look like: while (X == 0) are very strange indeed. We don't 8050 // handle them yet except for the trivial case. This could be expanded in the 8051 // future as needed. 8052 8053 // If the value is a constant, check to see if it is known to be non-zero 8054 // already. If so, the backedge will execute zero times. 8055 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8056 if (!C->getValue()->isZero()) 8057 return getZero(C->getType()); 8058 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8059 } 8060 8061 // We could implement others, but I really doubt anyone writes loops like 8062 // this, and if they did, they would already be constant folded. 8063 return getCouldNotCompute(); 8064 } 8065 8066 std::pair<BasicBlock *, BasicBlock *> 8067 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 8068 // If the block has a unique predecessor, then there is no path from the 8069 // predecessor to the block that does not go through the direct edge 8070 // from the predecessor to the block. 8071 if (BasicBlock *Pred = BB->getSinglePredecessor()) 8072 return {Pred, BB}; 8073 8074 // A loop's header is defined to be a block that dominates the loop. 8075 // If the header has a unique predecessor outside the loop, it must be 8076 // a block that has exactly one successor that can reach the loop. 8077 if (Loop *L = LI.getLoopFor(BB)) 8078 return {L->getLoopPredecessor(), L->getHeader()}; 8079 8080 return {nullptr, nullptr}; 8081 } 8082 8083 /// SCEV structural equivalence is usually sufficient for testing whether two 8084 /// expressions are equal, however for the purposes of looking for a condition 8085 /// guarding a loop, it can be useful to be a little more general, since a 8086 /// front-end may have replicated the controlling expression. 8087 /// 8088 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8089 // Quick check to see if they are the same SCEV. 8090 if (A == B) return true; 8091 8092 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8093 // Not all instructions that are "identical" compute the same value. For 8094 // instance, two distinct alloca instructions allocating the same type are 8095 // identical and do not read memory; but compute distinct values. 8096 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8097 }; 8098 8099 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8100 // two different instructions with the same value. Check for this case. 8101 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8102 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8103 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8104 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8105 if (ComputesEqualValues(AI, BI)) 8106 return true; 8107 8108 // Otherwise assume they may have a different value. 8109 return false; 8110 } 8111 8112 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8113 const SCEV *&LHS, const SCEV *&RHS, 8114 unsigned Depth) { 8115 bool Changed = false; 8116 8117 // If we hit the max recursion limit bail out. 8118 if (Depth >= 3) 8119 return false; 8120 8121 // Canonicalize a constant to the right side. 8122 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8123 // Check for both operands constant. 8124 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8125 if (ConstantExpr::getICmp(Pred, 8126 LHSC->getValue(), 8127 RHSC->getValue())->isNullValue()) 8128 goto trivially_false; 8129 else 8130 goto trivially_true; 8131 } 8132 // Otherwise swap the operands to put the constant on the right. 8133 std::swap(LHS, RHS); 8134 Pred = ICmpInst::getSwappedPredicate(Pred); 8135 Changed = true; 8136 } 8137 8138 // If we're comparing an addrec with a value which is loop-invariant in the 8139 // addrec's loop, put the addrec on the left. Also make a dominance check, 8140 // as both operands could be addrecs loop-invariant in each other's loop. 8141 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8142 const Loop *L = AR->getLoop(); 8143 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8144 std::swap(LHS, RHS); 8145 Pred = ICmpInst::getSwappedPredicate(Pred); 8146 Changed = true; 8147 } 8148 } 8149 8150 // If there's a constant operand, canonicalize comparisons with boundary 8151 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8152 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8153 const APInt &RA = RC->getAPInt(); 8154 8155 bool SimplifiedByConstantRange = false; 8156 8157 if (!ICmpInst::isEquality(Pred)) { 8158 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8159 if (ExactCR.isFullSet()) 8160 goto trivially_true; 8161 else if (ExactCR.isEmptySet()) 8162 goto trivially_false; 8163 8164 APInt NewRHS; 8165 CmpInst::Predicate NewPred; 8166 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8167 ICmpInst::isEquality(NewPred)) { 8168 // We were able to convert an inequality to an equality. 8169 Pred = NewPred; 8170 RHS = getConstant(NewRHS); 8171 Changed = SimplifiedByConstantRange = true; 8172 } 8173 } 8174 8175 if (!SimplifiedByConstantRange) { 8176 switch (Pred) { 8177 default: 8178 break; 8179 case ICmpInst::ICMP_EQ: 8180 case ICmpInst::ICMP_NE: 8181 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8182 if (!RA) 8183 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8184 if (const SCEVMulExpr *ME = 8185 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8186 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8187 ME->getOperand(0)->isAllOnesValue()) { 8188 RHS = AE->getOperand(1); 8189 LHS = ME->getOperand(1); 8190 Changed = true; 8191 } 8192 break; 8193 8194 8195 // The "Should have been caught earlier!" messages refer to the fact 8196 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8197 // should have fired on the corresponding cases, and canonicalized the 8198 // check to trivially_true or trivially_false. 8199 8200 case ICmpInst::ICMP_UGE: 8201 assert(!RA.isMinValue() && "Should have been caught earlier!"); 8202 Pred = ICmpInst::ICMP_UGT; 8203 RHS = getConstant(RA - 1); 8204 Changed = true; 8205 break; 8206 case ICmpInst::ICMP_ULE: 8207 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 8208 Pred = ICmpInst::ICMP_ULT; 8209 RHS = getConstant(RA + 1); 8210 Changed = true; 8211 break; 8212 case ICmpInst::ICMP_SGE: 8213 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 8214 Pred = ICmpInst::ICMP_SGT; 8215 RHS = getConstant(RA - 1); 8216 Changed = true; 8217 break; 8218 case ICmpInst::ICMP_SLE: 8219 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 8220 Pred = ICmpInst::ICMP_SLT; 8221 RHS = getConstant(RA + 1); 8222 Changed = true; 8223 break; 8224 } 8225 } 8226 } 8227 8228 // Check for obvious equality. 8229 if (HasSameValue(LHS, RHS)) { 8230 if (ICmpInst::isTrueWhenEqual(Pred)) 8231 goto trivially_true; 8232 if (ICmpInst::isFalseWhenEqual(Pred)) 8233 goto trivially_false; 8234 } 8235 8236 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 8237 // adding or subtracting 1 from one of the operands. 8238 switch (Pred) { 8239 case ICmpInst::ICMP_SLE: 8240 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 8241 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8242 SCEV::FlagNSW); 8243 Pred = ICmpInst::ICMP_SLT; 8244 Changed = true; 8245 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 8246 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 8247 SCEV::FlagNSW); 8248 Pred = ICmpInst::ICMP_SLT; 8249 Changed = true; 8250 } 8251 break; 8252 case ICmpInst::ICMP_SGE: 8253 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 8254 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 8255 SCEV::FlagNSW); 8256 Pred = ICmpInst::ICMP_SGT; 8257 Changed = true; 8258 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 8259 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8260 SCEV::FlagNSW); 8261 Pred = ICmpInst::ICMP_SGT; 8262 Changed = true; 8263 } 8264 break; 8265 case ICmpInst::ICMP_ULE: 8266 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 8267 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8268 SCEV::FlagNUW); 8269 Pred = ICmpInst::ICMP_ULT; 8270 Changed = true; 8271 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 8272 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 8273 Pred = ICmpInst::ICMP_ULT; 8274 Changed = true; 8275 } 8276 break; 8277 case ICmpInst::ICMP_UGE: 8278 if (!getUnsignedRangeMin(RHS).isMinValue()) { 8279 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 8280 Pred = ICmpInst::ICMP_UGT; 8281 Changed = true; 8282 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 8283 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8284 SCEV::FlagNUW); 8285 Pred = ICmpInst::ICMP_UGT; 8286 Changed = true; 8287 } 8288 break; 8289 default: 8290 break; 8291 } 8292 8293 // TODO: More simplifications are possible here. 8294 8295 // Recursively simplify until we either hit a recursion limit or nothing 8296 // changes. 8297 if (Changed) 8298 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 8299 8300 return Changed; 8301 8302 trivially_true: 8303 // Return 0 == 0. 8304 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8305 Pred = ICmpInst::ICMP_EQ; 8306 return true; 8307 8308 trivially_false: 8309 // Return 0 != 0. 8310 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8311 Pred = ICmpInst::ICMP_NE; 8312 return true; 8313 } 8314 8315 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 8316 return getSignedRangeMax(S).isNegative(); 8317 } 8318 8319 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 8320 return getSignedRangeMin(S).isStrictlyPositive(); 8321 } 8322 8323 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 8324 return !getSignedRangeMin(S).isNegative(); 8325 } 8326 8327 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 8328 return !getSignedRangeMax(S).isStrictlyPositive(); 8329 } 8330 8331 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 8332 return isKnownNegative(S) || isKnownPositive(S); 8333 } 8334 8335 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 8336 const SCEV *LHS, const SCEV *RHS) { 8337 // Canonicalize the inputs first. 8338 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8339 8340 // If LHS or RHS is an addrec, check to see if the condition is true in 8341 // every iteration of the loop. 8342 // If LHS and RHS are both addrec, both conditions must be true in 8343 // every iteration of the loop. 8344 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8345 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8346 bool LeftGuarded = false; 8347 bool RightGuarded = false; 8348 if (LAR) { 8349 const Loop *L = LAR->getLoop(); 8350 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 8351 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 8352 if (!RAR) return true; 8353 LeftGuarded = true; 8354 } 8355 } 8356 if (RAR) { 8357 const Loop *L = RAR->getLoop(); 8358 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 8359 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 8360 if (!LAR) return true; 8361 RightGuarded = true; 8362 } 8363 } 8364 if (LeftGuarded && RightGuarded) 8365 return true; 8366 8367 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 8368 return true; 8369 8370 // Otherwise see what can be done with known constant ranges. 8371 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 8372 } 8373 8374 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 8375 ICmpInst::Predicate Pred, 8376 bool &Increasing) { 8377 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 8378 8379 #ifndef NDEBUG 8380 // Verify an invariant: inverting the predicate should turn a monotonically 8381 // increasing change to a monotonically decreasing one, and vice versa. 8382 bool IncreasingSwapped; 8383 bool ResultSwapped = isMonotonicPredicateImpl( 8384 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 8385 8386 assert(Result == ResultSwapped && "should be able to analyze both!"); 8387 if (ResultSwapped) 8388 assert(Increasing == !IncreasingSwapped && 8389 "monotonicity should flip as we flip the predicate"); 8390 #endif 8391 8392 return Result; 8393 } 8394 8395 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 8396 ICmpInst::Predicate Pred, 8397 bool &Increasing) { 8398 8399 // A zero step value for LHS means the induction variable is essentially a 8400 // loop invariant value. We don't really depend on the predicate actually 8401 // flipping from false to true (for increasing predicates, and the other way 8402 // around for decreasing predicates), all we care about is that *if* the 8403 // predicate changes then it only changes from false to true. 8404 // 8405 // A zero step value in itself is not very useful, but there may be places 8406 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 8407 // as general as possible. 8408 8409 switch (Pred) { 8410 default: 8411 return false; // Conservative answer 8412 8413 case ICmpInst::ICMP_UGT: 8414 case ICmpInst::ICMP_UGE: 8415 case ICmpInst::ICMP_ULT: 8416 case ICmpInst::ICMP_ULE: 8417 if (!LHS->hasNoUnsignedWrap()) 8418 return false; 8419 8420 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 8421 return true; 8422 8423 case ICmpInst::ICMP_SGT: 8424 case ICmpInst::ICMP_SGE: 8425 case ICmpInst::ICMP_SLT: 8426 case ICmpInst::ICMP_SLE: { 8427 if (!LHS->hasNoSignedWrap()) 8428 return false; 8429 8430 const SCEV *Step = LHS->getStepRecurrence(*this); 8431 8432 if (isKnownNonNegative(Step)) { 8433 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 8434 return true; 8435 } 8436 8437 if (isKnownNonPositive(Step)) { 8438 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 8439 return true; 8440 } 8441 8442 return false; 8443 } 8444 8445 } 8446 8447 llvm_unreachable("switch has default clause!"); 8448 } 8449 8450 bool ScalarEvolution::isLoopInvariantPredicate( 8451 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 8452 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 8453 const SCEV *&InvariantRHS) { 8454 8455 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 8456 if (!isLoopInvariant(RHS, L)) { 8457 if (!isLoopInvariant(LHS, L)) 8458 return false; 8459 8460 std::swap(LHS, RHS); 8461 Pred = ICmpInst::getSwappedPredicate(Pred); 8462 } 8463 8464 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8465 if (!ArLHS || ArLHS->getLoop() != L) 8466 return false; 8467 8468 bool Increasing; 8469 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 8470 return false; 8471 8472 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 8473 // true as the loop iterates, and the backedge is control dependent on 8474 // "ArLHS `Pred` RHS" == true then we can reason as follows: 8475 // 8476 // * if the predicate was false in the first iteration then the predicate 8477 // is never evaluated again, since the loop exits without taking the 8478 // backedge. 8479 // * if the predicate was true in the first iteration then it will 8480 // continue to be true for all future iterations since it is 8481 // monotonically increasing. 8482 // 8483 // For both the above possibilities, we can replace the loop varying 8484 // predicate with its value on the first iteration of the loop (which is 8485 // loop invariant). 8486 // 8487 // A similar reasoning applies for a monotonically decreasing predicate, by 8488 // replacing true with false and false with true in the above two bullets. 8489 8490 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 8491 8492 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 8493 return false; 8494 8495 InvariantPred = Pred; 8496 InvariantLHS = ArLHS->getStart(); 8497 InvariantRHS = RHS; 8498 return true; 8499 } 8500 8501 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 8502 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8503 if (HasSameValue(LHS, RHS)) 8504 return ICmpInst::isTrueWhenEqual(Pred); 8505 8506 // This code is split out from isKnownPredicate because it is called from 8507 // within isLoopEntryGuardedByCond. 8508 8509 auto CheckRanges = 8510 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 8511 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 8512 .contains(RangeLHS); 8513 }; 8514 8515 // The check at the top of the function catches the case where the values are 8516 // known to be equal. 8517 if (Pred == CmpInst::ICMP_EQ) 8518 return false; 8519 8520 if (Pred == CmpInst::ICMP_NE) 8521 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 8522 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 8523 isKnownNonZero(getMinusSCEV(LHS, RHS)); 8524 8525 if (CmpInst::isSigned(Pred)) 8526 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 8527 8528 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 8529 } 8530 8531 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 8532 const SCEV *LHS, 8533 const SCEV *RHS) { 8534 8535 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 8536 // Return Y via OutY. 8537 auto MatchBinaryAddToConst = 8538 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 8539 SCEV::NoWrapFlags ExpectedFlags) { 8540 const SCEV *NonConstOp, *ConstOp; 8541 SCEV::NoWrapFlags FlagsPresent; 8542 8543 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 8544 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 8545 return false; 8546 8547 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 8548 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 8549 }; 8550 8551 APInt C; 8552 8553 switch (Pred) { 8554 default: 8555 break; 8556 8557 case ICmpInst::ICMP_SGE: 8558 std::swap(LHS, RHS); 8559 LLVM_FALLTHROUGH; 8560 case ICmpInst::ICMP_SLE: 8561 // X s<= (X + C)<nsw> if C >= 0 8562 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 8563 return true; 8564 8565 // (X + C)<nsw> s<= X if C <= 0 8566 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 8567 !C.isStrictlyPositive()) 8568 return true; 8569 break; 8570 8571 case ICmpInst::ICMP_SGT: 8572 std::swap(LHS, RHS); 8573 LLVM_FALLTHROUGH; 8574 case ICmpInst::ICMP_SLT: 8575 // X s< (X + C)<nsw> if C > 0 8576 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 8577 C.isStrictlyPositive()) 8578 return true; 8579 8580 // (X + C)<nsw> s< X if C < 0 8581 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 8582 return true; 8583 break; 8584 } 8585 8586 return false; 8587 } 8588 8589 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 8590 const SCEV *LHS, 8591 const SCEV *RHS) { 8592 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 8593 return false; 8594 8595 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 8596 // the stack can result in exponential time complexity. 8597 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 8598 8599 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 8600 // 8601 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 8602 // isKnownPredicate. isKnownPredicate is more powerful, but also more 8603 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 8604 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 8605 // use isKnownPredicate later if needed. 8606 return isKnownNonNegative(RHS) && 8607 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 8608 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 8609 } 8610 8611 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 8612 ICmpInst::Predicate Pred, 8613 const SCEV *LHS, const SCEV *RHS) { 8614 // No need to even try if we know the module has no guards. 8615 if (!HasGuards) 8616 return false; 8617 8618 return any_of(*BB, [&](Instruction &I) { 8619 using namespace llvm::PatternMatch; 8620 8621 Value *Condition; 8622 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 8623 m_Value(Condition))) && 8624 isImpliedCond(Pred, LHS, RHS, Condition, false); 8625 }); 8626 } 8627 8628 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 8629 /// protected by a conditional between LHS and RHS. This is used to 8630 /// to eliminate casts. 8631 bool 8632 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 8633 ICmpInst::Predicate Pred, 8634 const SCEV *LHS, const SCEV *RHS) { 8635 // Interpret a null as meaning no loop, where there is obviously no guard 8636 // (interprocedural conditions notwithstanding). 8637 if (!L) return true; 8638 8639 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8640 return true; 8641 8642 BasicBlock *Latch = L->getLoopLatch(); 8643 if (!Latch) 8644 return false; 8645 8646 BranchInst *LoopContinuePredicate = 8647 dyn_cast<BranchInst>(Latch->getTerminator()); 8648 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 8649 isImpliedCond(Pred, LHS, RHS, 8650 LoopContinuePredicate->getCondition(), 8651 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 8652 return true; 8653 8654 // We don't want more than one activation of the following loops on the stack 8655 // -- that can lead to O(n!) time complexity. 8656 if (WalkingBEDominatingConds) 8657 return false; 8658 8659 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 8660 8661 // See if we can exploit a trip count to prove the predicate. 8662 const auto &BETakenInfo = getBackedgeTakenInfo(L); 8663 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 8664 if (LatchBECount != getCouldNotCompute()) { 8665 // We know that Latch branches back to the loop header exactly 8666 // LatchBECount times. This means the backdege condition at Latch is 8667 // equivalent to "{0,+,1} u< LatchBECount". 8668 Type *Ty = LatchBECount->getType(); 8669 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 8670 const SCEV *LoopCounter = 8671 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 8672 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 8673 LatchBECount)) 8674 return true; 8675 } 8676 8677 // Check conditions due to any @llvm.assume intrinsics. 8678 for (auto &AssumeVH : AC.assumptions()) { 8679 if (!AssumeVH) 8680 continue; 8681 auto *CI = cast<CallInst>(AssumeVH); 8682 if (!DT.dominates(CI, Latch->getTerminator())) 8683 continue; 8684 8685 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8686 return true; 8687 } 8688 8689 // If the loop is not reachable from the entry block, we risk running into an 8690 // infinite loop as we walk up into the dom tree. These loops do not matter 8691 // anyway, so we just return a conservative answer when we see them. 8692 if (!DT.isReachableFromEntry(L->getHeader())) 8693 return false; 8694 8695 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 8696 return true; 8697 8698 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 8699 DTN != HeaderDTN; DTN = DTN->getIDom()) { 8700 8701 assert(DTN && "should reach the loop header before reaching the root!"); 8702 8703 BasicBlock *BB = DTN->getBlock(); 8704 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 8705 return true; 8706 8707 BasicBlock *PBB = BB->getSinglePredecessor(); 8708 if (!PBB) 8709 continue; 8710 8711 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 8712 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 8713 continue; 8714 8715 Value *Condition = ContinuePredicate->getCondition(); 8716 8717 // If we have an edge `E` within the loop body that dominates the only 8718 // latch, the condition guarding `E` also guards the backedge. This 8719 // reasoning works only for loops with a single latch. 8720 8721 BasicBlockEdge DominatingEdge(PBB, BB); 8722 if (DominatingEdge.isSingleEdge()) { 8723 // We're constructively (and conservatively) enumerating edges within the 8724 // loop body that dominate the latch. The dominator tree better agree 8725 // with us on this: 8726 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 8727 8728 if (isImpliedCond(Pred, LHS, RHS, Condition, 8729 BB != ContinuePredicate->getSuccessor(0))) 8730 return true; 8731 } 8732 } 8733 8734 return false; 8735 } 8736 8737 bool 8738 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 8739 ICmpInst::Predicate Pred, 8740 const SCEV *LHS, const SCEV *RHS) { 8741 // Interpret a null as meaning no loop, where there is obviously no guard 8742 // (interprocedural conditions notwithstanding). 8743 if (!L) return false; 8744 8745 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8746 return true; 8747 8748 // Starting at the loop predecessor, climb up the predecessor chain, as long 8749 // as there are predecessors that can be found that have unique successors 8750 // leading to the original header. 8751 for (std::pair<BasicBlock *, BasicBlock *> 8752 Pair(L->getLoopPredecessor(), L->getHeader()); 8753 Pair.first; 8754 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 8755 8756 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS)) 8757 return true; 8758 8759 BranchInst *LoopEntryPredicate = 8760 dyn_cast<BranchInst>(Pair.first->getTerminator()); 8761 if (!LoopEntryPredicate || 8762 LoopEntryPredicate->isUnconditional()) 8763 continue; 8764 8765 if (isImpliedCond(Pred, LHS, RHS, 8766 LoopEntryPredicate->getCondition(), 8767 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 8768 return true; 8769 } 8770 8771 // Check conditions due to any @llvm.assume intrinsics. 8772 for (auto &AssumeVH : AC.assumptions()) { 8773 if (!AssumeVH) 8774 continue; 8775 auto *CI = cast<CallInst>(AssumeVH); 8776 if (!DT.dominates(CI, L->getHeader())) 8777 continue; 8778 8779 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8780 return true; 8781 } 8782 8783 return false; 8784 } 8785 8786 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 8787 const SCEV *LHS, const SCEV *RHS, 8788 Value *FoundCondValue, 8789 bool Inverse) { 8790 if (!PendingLoopPredicates.insert(FoundCondValue).second) 8791 return false; 8792 8793 auto ClearOnExit = 8794 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 8795 8796 // Recursively handle And and Or conditions. 8797 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 8798 if (BO->getOpcode() == Instruction::And) { 8799 if (!Inverse) 8800 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8801 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8802 } else if (BO->getOpcode() == Instruction::Or) { 8803 if (Inverse) 8804 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8805 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8806 } 8807 } 8808 8809 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 8810 if (!ICI) return false; 8811 8812 // Now that we found a conditional branch that dominates the loop or controls 8813 // the loop latch. Check to see if it is the comparison we are looking for. 8814 ICmpInst::Predicate FoundPred; 8815 if (Inverse) 8816 FoundPred = ICI->getInversePredicate(); 8817 else 8818 FoundPred = ICI->getPredicate(); 8819 8820 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 8821 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 8822 8823 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 8824 } 8825 8826 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 8827 const SCEV *RHS, 8828 ICmpInst::Predicate FoundPred, 8829 const SCEV *FoundLHS, 8830 const SCEV *FoundRHS) { 8831 // Balance the types. 8832 if (getTypeSizeInBits(LHS->getType()) < 8833 getTypeSizeInBits(FoundLHS->getType())) { 8834 if (CmpInst::isSigned(Pred)) { 8835 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 8836 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 8837 } else { 8838 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 8839 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 8840 } 8841 } else if (getTypeSizeInBits(LHS->getType()) > 8842 getTypeSizeInBits(FoundLHS->getType())) { 8843 if (CmpInst::isSigned(FoundPred)) { 8844 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 8845 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 8846 } else { 8847 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 8848 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 8849 } 8850 } 8851 8852 // Canonicalize the query to match the way instcombine will have 8853 // canonicalized the comparison. 8854 if (SimplifyICmpOperands(Pred, LHS, RHS)) 8855 if (LHS == RHS) 8856 return CmpInst::isTrueWhenEqual(Pred); 8857 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 8858 if (FoundLHS == FoundRHS) 8859 return CmpInst::isFalseWhenEqual(FoundPred); 8860 8861 // Check to see if we can make the LHS or RHS match. 8862 if (LHS == FoundRHS || RHS == FoundLHS) { 8863 if (isa<SCEVConstant>(RHS)) { 8864 std::swap(FoundLHS, FoundRHS); 8865 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 8866 } else { 8867 std::swap(LHS, RHS); 8868 Pred = ICmpInst::getSwappedPredicate(Pred); 8869 } 8870 } 8871 8872 // Check whether the found predicate is the same as the desired predicate. 8873 if (FoundPred == Pred) 8874 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8875 8876 // Check whether swapping the found predicate makes it the same as the 8877 // desired predicate. 8878 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 8879 if (isa<SCEVConstant>(RHS)) 8880 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 8881 else 8882 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 8883 RHS, LHS, FoundLHS, FoundRHS); 8884 } 8885 8886 // Unsigned comparison is the same as signed comparison when both the operands 8887 // are non-negative. 8888 if (CmpInst::isUnsigned(FoundPred) && 8889 CmpInst::getSignedPredicate(FoundPred) == Pred && 8890 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 8891 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8892 8893 // Check if we can make progress by sharpening ranges. 8894 if (FoundPred == ICmpInst::ICMP_NE && 8895 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 8896 8897 const SCEVConstant *C = nullptr; 8898 const SCEV *V = nullptr; 8899 8900 if (isa<SCEVConstant>(FoundLHS)) { 8901 C = cast<SCEVConstant>(FoundLHS); 8902 V = FoundRHS; 8903 } else { 8904 C = cast<SCEVConstant>(FoundRHS); 8905 V = FoundLHS; 8906 } 8907 8908 // The guarding predicate tells us that C != V. If the known range 8909 // of V is [C, t), we can sharpen the range to [C + 1, t). The 8910 // range we consider has to correspond to same signedness as the 8911 // predicate we're interested in folding. 8912 8913 APInt Min = ICmpInst::isSigned(Pred) ? 8914 getSignedRangeMin(V) : getUnsignedRangeMin(V); 8915 8916 if (Min == C->getAPInt()) { 8917 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 8918 // This is true even if (Min + 1) wraps around -- in case of 8919 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 8920 8921 APInt SharperMin = Min + 1; 8922 8923 switch (Pred) { 8924 case ICmpInst::ICMP_SGE: 8925 case ICmpInst::ICMP_UGE: 8926 // We know V `Pred` SharperMin. If this implies LHS `Pred` 8927 // RHS, we're done. 8928 if (isImpliedCondOperands(Pred, LHS, RHS, V, 8929 getConstant(SharperMin))) 8930 return true; 8931 LLVM_FALLTHROUGH; 8932 8933 case ICmpInst::ICMP_SGT: 8934 case ICmpInst::ICMP_UGT: 8935 // We know from the range information that (V `Pred` Min || 8936 // V == Min). We know from the guarding condition that !(V 8937 // == Min). This gives us 8938 // 8939 // V `Pred` Min || V == Min && !(V == Min) 8940 // => V `Pred` Min 8941 // 8942 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 8943 8944 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 8945 return true; 8946 LLVM_FALLTHROUGH; 8947 8948 default: 8949 // No change 8950 break; 8951 } 8952 } 8953 } 8954 8955 // Check whether the actual condition is beyond sufficient. 8956 if (FoundPred == ICmpInst::ICMP_EQ) 8957 if (ICmpInst::isTrueWhenEqual(Pred)) 8958 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8959 return true; 8960 if (Pred == ICmpInst::ICMP_NE) 8961 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 8962 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 8963 return true; 8964 8965 // Otherwise assume the worst. 8966 return false; 8967 } 8968 8969 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 8970 const SCEV *&L, const SCEV *&R, 8971 SCEV::NoWrapFlags &Flags) { 8972 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 8973 if (!AE || AE->getNumOperands() != 2) 8974 return false; 8975 8976 L = AE->getOperand(0); 8977 R = AE->getOperand(1); 8978 Flags = AE->getNoWrapFlags(); 8979 return true; 8980 } 8981 8982 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 8983 const SCEV *Less) { 8984 // We avoid subtracting expressions here because this function is usually 8985 // fairly deep in the call stack (i.e. is called many times). 8986 8987 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 8988 const auto *LAR = cast<SCEVAddRecExpr>(Less); 8989 const auto *MAR = cast<SCEVAddRecExpr>(More); 8990 8991 if (LAR->getLoop() != MAR->getLoop()) 8992 return None; 8993 8994 // We look at affine expressions only; not for correctness but to keep 8995 // getStepRecurrence cheap. 8996 if (!LAR->isAffine() || !MAR->isAffine()) 8997 return None; 8998 8999 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9000 return None; 9001 9002 Less = LAR->getStart(); 9003 More = MAR->getStart(); 9004 9005 // fall through 9006 } 9007 9008 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9009 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9010 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9011 return M - L; 9012 } 9013 9014 const SCEV *L, *R; 9015 SCEV::NoWrapFlags Flags; 9016 if (splitBinaryAdd(Less, L, R, Flags)) 9017 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 9018 if (R == More) 9019 return -(LC->getAPInt()); 9020 9021 if (splitBinaryAdd(More, L, R, Flags)) 9022 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 9023 if (R == Less) 9024 return LC->getAPInt(); 9025 9026 return None; 9027 } 9028 9029 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 9030 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9031 const SCEV *FoundLHS, const SCEV *FoundRHS) { 9032 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 9033 return false; 9034 9035 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9036 if (!AddRecLHS) 9037 return false; 9038 9039 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 9040 if (!AddRecFoundLHS) 9041 return false; 9042 9043 // We'd like to let SCEV reason about control dependencies, so we constrain 9044 // both the inequalities to be about add recurrences on the same loop. This 9045 // way we can use isLoopEntryGuardedByCond later. 9046 9047 const Loop *L = AddRecFoundLHS->getLoop(); 9048 if (L != AddRecLHS->getLoop()) 9049 return false; 9050 9051 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 9052 // 9053 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 9054 // ... (2) 9055 // 9056 // Informal proof for (2), assuming (1) [*]: 9057 // 9058 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 9059 // 9060 // Then 9061 // 9062 // FoundLHS s< FoundRHS s< INT_MIN - C 9063 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 9064 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 9065 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 9066 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 9067 // <=> FoundLHS + C s< FoundRHS + C 9068 // 9069 // [*]: (1) can be proved by ruling out overflow. 9070 // 9071 // [**]: This can be proved by analyzing all the four possibilities: 9072 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 9073 // (A s>= 0, B s>= 0). 9074 // 9075 // Note: 9076 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 9077 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 9078 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 9079 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 9080 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 9081 // C)". 9082 9083 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 9084 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 9085 if (!LDiff || !RDiff || *LDiff != *RDiff) 9086 return false; 9087 9088 if (LDiff->isMinValue()) 9089 return true; 9090 9091 APInt FoundRHSLimit; 9092 9093 if (Pred == CmpInst::ICMP_ULT) { 9094 FoundRHSLimit = -(*RDiff); 9095 } else { 9096 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 9097 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 9098 } 9099 9100 // Try to prove (1) or (2), as needed. 9101 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 9102 getConstant(FoundRHSLimit)); 9103 } 9104 9105 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 9106 const SCEV *LHS, const SCEV *RHS, 9107 const SCEV *FoundLHS, 9108 const SCEV *FoundRHS) { 9109 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9110 return true; 9111 9112 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9113 return true; 9114 9115 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 9116 FoundLHS, FoundRHS) || 9117 // ~x < ~y --> x > y 9118 isImpliedCondOperandsHelper(Pred, LHS, RHS, 9119 getNotSCEV(FoundRHS), 9120 getNotSCEV(FoundLHS)); 9121 } 9122 9123 9124 /// If Expr computes ~A, return A else return nullptr 9125 static const SCEV *MatchNotExpr(const SCEV *Expr) { 9126 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 9127 if (!Add || Add->getNumOperands() != 2 || 9128 !Add->getOperand(0)->isAllOnesValue()) 9129 return nullptr; 9130 9131 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 9132 if (!AddRHS || AddRHS->getNumOperands() != 2 || 9133 !AddRHS->getOperand(0)->isAllOnesValue()) 9134 return nullptr; 9135 9136 return AddRHS->getOperand(1); 9137 } 9138 9139 9140 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 9141 template<typename MaxExprType> 9142 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 9143 const SCEV *Candidate) { 9144 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 9145 if (!MaxExpr) return false; 9146 9147 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 9148 } 9149 9150 9151 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 9152 template<typename MaxExprType> 9153 static bool IsMinConsistingOf(ScalarEvolution &SE, 9154 const SCEV *MaybeMinExpr, 9155 const SCEV *Candidate) { 9156 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 9157 if (!MaybeMaxExpr) 9158 return false; 9159 9160 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 9161 } 9162 9163 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 9164 ICmpInst::Predicate Pred, 9165 const SCEV *LHS, const SCEV *RHS) { 9166 9167 // If both sides are affine addrecs for the same loop, with equal 9168 // steps, and we know the recurrences don't wrap, then we only 9169 // need to check the predicate on the starting values. 9170 9171 if (!ICmpInst::isRelational(Pred)) 9172 return false; 9173 9174 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 9175 if (!LAR) 9176 return false; 9177 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 9178 if (!RAR) 9179 return false; 9180 if (LAR->getLoop() != RAR->getLoop()) 9181 return false; 9182 if (!LAR->isAffine() || !RAR->isAffine()) 9183 return false; 9184 9185 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 9186 return false; 9187 9188 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 9189 SCEV::FlagNSW : SCEV::FlagNUW; 9190 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 9191 return false; 9192 9193 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 9194 } 9195 9196 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 9197 /// expression? 9198 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 9199 ICmpInst::Predicate Pred, 9200 const SCEV *LHS, const SCEV *RHS) { 9201 switch (Pred) { 9202 default: 9203 return false; 9204 9205 case ICmpInst::ICMP_SGE: 9206 std::swap(LHS, RHS); 9207 LLVM_FALLTHROUGH; 9208 case ICmpInst::ICMP_SLE: 9209 return 9210 // min(A, ...) <= A 9211 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 9212 // A <= max(A, ...) 9213 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 9214 9215 case ICmpInst::ICMP_UGE: 9216 std::swap(LHS, RHS); 9217 LLVM_FALLTHROUGH; 9218 case ICmpInst::ICMP_ULE: 9219 return 9220 // min(A, ...) <= A 9221 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 9222 // A <= max(A, ...) 9223 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 9224 } 9225 9226 llvm_unreachable("covered switch fell through?!"); 9227 } 9228 9229 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 9230 const SCEV *LHS, const SCEV *RHS, 9231 const SCEV *FoundLHS, 9232 const SCEV *FoundRHS, 9233 unsigned Depth) { 9234 assert(getTypeSizeInBits(LHS->getType()) == 9235 getTypeSizeInBits(RHS->getType()) && 9236 "LHS and RHS have different sizes?"); 9237 assert(getTypeSizeInBits(FoundLHS->getType()) == 9238 getTypeSizeInBits(FoundRHS->getType()) && 9239 "FoundLHS and FoundRHS have different sizes?"); 9240 // We want to avoid hurting the compile time with analysis of too big trees. 9241 if (Depth > MaxSCEVOperationsImplicationDepth) 9242 return false; 9243 // We only want to work with ICMP_SGT comparison so far. 9244 // TODO: Extend to ICMP_UGT? 9245 if (Pred == ICmpInst::ICMP_SLT) { 9246 Pred = ICmpInst::ICMP_SGT; 9247 std::swap(LHS, RHS); 9248 std::swap(FoundLHS, FoundRHS); 9249 } 9250 if (Pred != ICmpInst::ICMP_SGT) 9251 return false; 9252 9253 auto GetOpFromSExt = [&](const SCEV *S) { 9254 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 9255 return Ext->getOperand(); 9256 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 9257 // the constant in some cases. 9258 return S; 9259 }; 9260 9261 // Acquire values from extensions. 9262 auto *OrigFoundLHS = FoundLHS; 9263 LHS = GetOpFromSExt(LHS); 9264 FoundLHS = GetOpFromSExt(FoundLHS); 9265 9266 // Is the SGT predicate can be proved trivially or using the found context. 9267 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 9268 return isKnownViaSimpleReasoning(ICmpInst::ICMP_SGT, S1, S2) || 9269 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 9270 FoundRHS, Depth + 1); 9271 }; 9272 9273 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 9274 // We want to avoid creation of any new non-constant SCEV. Since we are 9275 // going to compare the operands to RHS, we should be certain that we don't 9276 // need any size extensions for this. So let's decline all cases when the 9277 // sizes of types of LHS and RHS do not match. 9278 // TODO: Maybe try to get RHS from sext to catch more cases? 9279 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 9280 return false; 9281 9282 // Should not overflow. 9283 if (!LHSAddExpr->hasNoSignedWrap()) 9284 return false; 9285 9286 auto *LL = LHSAddExpr->getOperand(0); 9287 auto *LR = LHSAddExpr->getOperand(1); 9288 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 9289 9290 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 9291 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 9292 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 9293 }; 9294 // Try to prove the following rule: 9295 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 9296 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 9297 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 9298 return true; 9299 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 9300 Value *LL, *LR; 9301 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 9302 using namespace llvm::PatternMatch; 9303 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 9304 // Rules for division. 9305 // We are going to perform some comparisons with Denominator and its 9306 // derivative expressions. In general case, creating a SCEV for it may 9307 // lead to a complex analysis of the entire graph, and in particular it 9308 // can request trip count recalculation for the same loop. This would 9309 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 9310 // this, we only want to create SCEVs that are constants in this section. 9311 // So we bail if Denominator is not a constant. 9312 if (!isa<ConstantInt>(LR)) 9313 return false; 9314 9315 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 9316 9317 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 9318 // then a SCEV for the numerator already exists and matches with FoundLHS. 9319 auto *Numerator = getExistingSCEV(LL); 9320 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 9321 return false; 9322 9323 // Make sure that the numerator matches with FoundLHS and the denominator 9324 // is positive. 9325 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 9326 return false; 9327 9328 auto *DTy = Denominator->getType(); 9329 auto *FRHSTy = FoundRHS->getType(); 9330 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 9331 // One of types is a pointer and another one is not. We cannot extend 9332 // them properly to a wider type, so let us just reject this case. 9333 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 9334 // to avoid this check. 9335 return false; 9336 9337 // Given that: 9338 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 9339 auto *WTy = getWiderType(DTy, FRHSTy); 9340 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 9341 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 9342 9343 // Try to prove the following rule: 9344 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 9345 // For example, given that FoundLHS > 2. It means that FoundLHS is at 9346 // least 3. If we divide it by Denominator < 4, we will have at least 1. 9347 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 9348 if (isKnownNonPositive(RHS) && 9349 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 9350 return true; 9351 9352 // Try to prove the following rule: 9353 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 9354 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 9355 // If we divide it by Denominator > 2, then: 9356 // 1. If FoundLHS is negative, then the result is 0. 9357 // 2. If FoundLHS is non-negative, then the result is non-negative. 9358 // Anyways, the result is non-negative. 9359 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 9360 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 9361 if (isKnownNegative(RHS) && 9362 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 9363 return true; 9364 } 9365 } 9366 9367 return false; 9368 } 9369 9370 bool 9371 ScalarEvolution::isKnownViaSimpleReasoning(ICmpInst::Predicate Pred, 9372 const SCEV *LHS, const SCEV *RHS) { 9373 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 9374 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 9375 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 9376 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 9377 } 9378 9379 bool 9380 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 9381 const SCEV *LHS, const SCEV *RHS, 9382 const SCEV *FoundLHS, 9383 const SCEV *FoundRHS) { 9384 switch (Pred) { 9385 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 9386 case ICmpInst::ICMP_EQ: 9387 case ICmpInst::ICMP_NE: 9388 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 9389 return true; 9390 break; 9391 case ICmpInst::ICMP_SLT: 9392 case ICmpInst::ICMP_SLE: 9393 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 9394 isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 9395 return true; 9396 break; 9397 case ICmpInst::ICMP_SGT: 9398 case ICmpInst::ICMP_SGE: 9399 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 9400 isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 9401 return true; 9402 break; 9403 case ICmpInst::ICMP_ULT: 9404 case ICmpInst::ICMP_ULE: 9405 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 9406 isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 9407 return true; 9408 break; 9409 case ICmpInst::ICMP_UGT: 9410 case ICmpInst::ICMP_UGE: 9411 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 9412 isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 9413 return true; 9414 break; 9415 } 9416 9417 // Maybe it can be proved via operations? 9418 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9419 return true; 9420 9421 return false; 9422 } 9423 9424 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 9425 const SCEV *LHS, 9426 const SCEV *RHS, 9427 const SCEV *FoundLHS, 9428 const SCEV *FoundRHS) { 9429 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 9430 // The restriction on `FoundRHS` be lifted easily -- it exists only to 9431 // reduce the compile time impact of this optimization. 9432 return false; 9433 9434 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 9435 if (!Addend) 9436 return false; 9437 9438 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 9439 9440 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 9441 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 9442 ConstantRange FoundLHSRange = 9443 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 9444 9445 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 9446 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 9447 9448 // We can also compute the range of values for `LHS` that satisfy the 9449 // consequent, "`LHS` `Pred` `RHS`": 9450 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 9451 ConstantRange SatisfyingLHSRange = 9452 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 9453 9454 // The antecedent implies the consequent if every value of `LHS` that 9455 // satisfies the antecedent also satisfies the consequent. 9456 return SatisfyingLHSRange.contains(LHSRange); 9457 } 9458 9459 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 9460 bool IsSigned, bool NoWrap) { 9461 assert(isKnownPositive(Stride) && "Positive stride expected!"); 9462 9463 if (NoWrap) return false; 9464 9465 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9466 const SCEV *One = getOne(Stride->getType()); 9467 9468 if (IsSigned) { 9469 APInt MaxRHS = getSignedRangeMax(RHS); 9470 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 9471 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 9472 9473 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 9474 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 9475 } 9476 9477 APInt MaxRHS = getUnsignedRangeMax(RHS); 9478 APInt MaxValue = APInt::getMaxValue(BitWidth); 9479 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 9480 9481 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 9482 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 9483 } 9484 9485 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 9486 bool IsSigned, bool NoWrap) { 9487 if (NoWrap) return false; 9488 9489 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9490 const SCEV *One = getOne(Stride->getType()); 9491 9492 if (IsSigned) { 9493 APInt MinRHS = getSignedRangeMin(RHS); 9494 APInt MinValue = APInt::getSignedMinValue(BitWidth); 9495 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 9496 9497 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 9498 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 9499 } 9500 9501 APInt MinRHS = getUnsignedRangeMin(RHS); 9502 APInt MinValue = APInt::getMinValue(BitWidth); 9503 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 9504 9505 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 9506 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 9507 } 9508 9509 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 9510 bool Equality) { 9511 const SCEV *One = getOne(Step->getType()); 9512 Delta = Equality ? getAddExpr(Delta, Step) 9513 : getAddExpr(Delta, getMinusSCEV(Step, One)); 9514 return getUDivExpr(Delta, Step); 9515 } 9516 9517 ScalarEvolution::ExitLimit 9518 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 9519 const Loop *L, bool IsSigned, 9520 bool ControlsExit, bool AllowPredicates) { 9521 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9522 // We handle only IV < Invariant 9523 if (!isLoopInvariant(RHS, L)) 9524 return getCouldNotCompute(); 9525 9526 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 9527 bool PredicatedIV = false; 9528 9529 if (!IV && AllowPredicates) { 9530 // Try to make this an AddRec using runtime tests, in the first X 9531 // iterations of this loop, where X is the SCEV expression found by the 9532 // algorithm below. 9533 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 9534 PredicatedIV = true; 9535 } 9536 9537 // Avoid weird loops 9538 if (!IV || IV->getLoop() != L || !IV->isAffine()) 9539 return getCouldNotCompute(); 9540 9541 bool NoWrap = ControlsExit && 9542 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 9543 9544 const SCEV *Stride = IV->getStepRecurrence(*this); 9545 9546 bool PositiveStride = isKnownPositive(Stride); 9547 9548 // Avoid negative or zero stride values. 9549 if (!PositiveStride) { 9550 // We can compute the correct backedge taken count for loops with unknown 9551 // strides if we can prove that the loop is not an infinite loop with side 9552 // effects. Here's the loop structure we are trying to handle - 9553 // 9554 // i = start 9555 // do { 9556 // A[i] = i; 9557 // i += s; 9558 // } while (i < end); 9559 // 9560 // The backedge taken count for such loops is evaluated as - 9561 // (max(end, start + stride) - start - 1) /u stride 9562 // 9563 // The additional preconditions that we need to check to prove correctness 9564 // of the above formula is as follows - 9565 // 9566 // a) IV is either nuw or nsw depending upon signedness (indicated by the 9567 // NoWrap flag). 9568 // b) loop is single exit with no side effects. 9569 // 9570 // 9571 // Precondition a) implies that if the stride is negative, this is a single 9572 // trip loop. The backedge taken count formula reduces to zero in this case. 9573 // 9574 // Precondition b) implies that the unknown stride cannot be zero otherwise 9575 // we have UB. 9576 // 9577 // The positive stride case is the same as isKnownPositive(Stride) returning 9578 // true (original behavior of the function). 9579 // 9580 // We want to make sure that the stride is truly unknown as there are edge 9581 // cases where ScalarEvolution propagates no wrap flags to the 9582 // post-increment/decrement IV even though the increment/decrement operation 9583 // itself is wrapping. The computed backedge taken count may be wrong in 9584 // such cases. This is prevented by checking that the stride is not known to 9585 // be either positive or non-positive. For example, no wrap flags are 9586 // propagated to the post-increment IV of this loop with a trip count of 2 - 9587 // 9588 // unsigned char i; 9589 // for(i=127; i<128; i+=129) 9590 // A[i] = i; 9591 // 9592 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 9593 !loopHasNoSideEffects(L)) 9594 return getCouldNotCompute(); 9595 9596 } else if (!Stride->isOne() && 9597 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 9598 // Avoid proven overflow cases: this will ensure that the backedge taken 9599 // count will not generate any unsigned overflow. Relaxed no-overflow 9600 // conditions exploit NoWrapFlags, allowing to optimize in presence of 9601 // undefined behaviors like the case of C language. 9602 return getCouldNotCompute(); 9603 9604 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 9605 : ICmpInst::ICMP_ULT; 9606 const SCEV *Start = IV->getStart(); 9607 const SCEV *End = RHS; 9608 // If the backedge is taken at least once, then it will be taken 9609 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 9610 // is the LHS value of the less-than comparison the first time it is evaluated 9611 // and End is the RHS. 9612 const SCEV *BECountIfBackedgeTaken = 9613 computeBECount(getMinusSCEV(End, Start), Stride, false); 9614 // If the loop entry is guarded by the result of the backedge test of the 9615 // first loop iteration, then we know the backedge will be taken at least 9616 // once and so the backedge taken count is as above. If not then we use the 9617 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 9618 // as if the backedge is taken at least once max(End,Start) is End and so the 9619 // result is as above, and if not max(End,Start) is Start so we get a backedge 9620 // count of zero. 9621 const SCEV *BECount; 9622 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 9623 BECount = BECountIfBackedgeTaken; 9624 else { 9625 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 9626 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 9627 } 9628 9629 const SCEV *MaxBECount; 9630 bool MaxOrZero = false; 9631 if (isa<SCEVConstant>(BECount)) 9632 MaxBECount = BECount; 9633 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 9634 // If we know exactly how many times the backedge will be taken if it's 9635 // taken at least once, then the backedge count will either be that or 9636 // zero. 9637 MaxBECount = BECountIfBackedgeTaken; 9638 MaxOrZero = true; 9639 } else { 9640 // Calculate the maximum backedge count based on the range of values 9641 // permitted by Start, End, and Stride. 9642 APInt MinStart = IsSigned ? getSignedRangeMin(Start) 9643 : getUnsignedRangeMin(Start); 9644 9645 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 9646 9647 APInt StrideForMaxBECount; 9648 9649 if (PositiveStride) 9650 StrideForMaxBECount = 9651 IsSigned ? getSignedRangeMin(Stride) 9652 : getUnsignedRangeMin(Stride); 9653 else 9654 // Using a stride of 1 is safe when computing max backedge taken count for 9655 // a loop with unknown stride. 9656 StrideForMaxBECount = APInt(BitWidth, 1, IsSigned); 9657 9658 APInt Limit = 9659 IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1) 9660 : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1); 9661 9662 // Although End can be a MAX expression we estimate MaxEnd considering only 9663 // the case End = RHS. This is safe because in the other case (End - Start) 9664 // is zero, leading to a zero maximum backedge taken count. 9665 APInt MaxEnd = 9666 IsSigned ? APIntOps::smin(getSignedRangeMax(RHS), Limit) 9667 : APIntOps::umin(getUnsignedRangeMax(RHS), Limit); 9668 9669 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 9670 getConstant(StrideForMaxBECount), false); 9671 } 9672 9673 if (isa<SCEVCouldNotCompute>(MaxBECount) && 9674 !isa<SCEVCouldNotCompute>(BECount)) 9675 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 9676 9677 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 9678 } 9679 9680 ScalarEvolution::ExitLimit 9681 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 9682 const Loop *L, bool IsSigned, 9683 bool ControlsExit, bool AllowPredicates) { 9684 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9685 // We handle only IV > Invariant 9686 if (!isLoopInvariant(RHS, L)) 9687 return getCouldNotCompute(); 9688 9689 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 9690 if (!IV && AllowPredicates) 9691 // Try to make this an AddRec using runtime tests, in the first X 9692 // iterations of this loop, where X is the SCEV expression found by the 9693 // algorithm below. 9694 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 9695 9696 // Avoid weird loops 9697 if (!IV || IV->getLoop() != L || !IV->isAffine()) 9698 return getCouldNotCompute(); 9699 9700 bool NoWrap = ControlsExit && 9701 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 9702 9703 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 9704 9705 // Avoid negative or zero stride values 9706 if (!isKnownPositive(Stride)) 9707 return getCouldNotCompute(); 9708 9709 // Avoid proven overflow cases: this will ensure that the backedge taken count 9710 // will not generate any unsigned overflow. Relaxed no-overflow conditions 9711 // exploit NoWrapFlags, allowing to optimize in presence of undefined 9712 // behaviors like the case of C language. 9713 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 9714 return getCouldNotCompute(); 9715 9716 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 9717 : ICmpInst::ICMP_UGT; 9718 9719 const SCEV *Start = IV->getStart(); 9720 const SCEV *End = RHS; 9721 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 9722 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 9723 9724 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 9725 9726 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 9727 : getUnsignedRangeMax(Start); 9728 9729 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 9730 : getUnsignedRangeMin(Stride); 9731 9732 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 9733 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 9734 : APInt::getMinValue(BitWidth) + (MinStride - 1); 9735 9736 // Although End can be a MIN expression we estimate MinEnd considering only 9737 // the case End = RHS. This is safe because in the other case (Start - End) 9738 // is zero, leading to a zero maximum backedge taken count. 9739 APInt MinEnd = 9740 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 9741 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 9742 9743 9744 const SCEV *MaxBECount = getCouldNotCompute(); 9745 if (isa<SCEVConstant>(BECount)) 9746 MaxBECount = BECount; 9747 else 9748 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 9749 getConstant(MinStride), false); 9750 9751 if (isa<SCEVCouldNotCompute>(MaxBECount)) 9752 MaxBECount = BECount; 9753 9754 return ExitLimit(BECount, MaxBECount, false, Predicates); 9755 } 9756 9757 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 9758 ScalarEvolution &SE) const { 9759 if (Range.isFullSet()) // Infinite loop. 9760 return SE.getCouldNotCompute(); 9761 9762 // If the start is a non-zero constant, shift the range to simplify things. 9763 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 9764 if (!SC->getValue()->isZero()) { 9765 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 9766 Operands[0] = SE.getZero(SC->getType()); 9767 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 9768 getNoWrapFlags(FlagNW)); 9769 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 9770 return ShiftedAddRec->getNumIterationsInRange( 9771 Range.subtract(SC->getAPInt()), SE); 9772 // This is strange and shouldn't happen. 9773 return SE.getCouldNotCompute(); 9774 } 9775 9776 // The only time we can solve this is when we have all constant indices. 9777 // Otherwise, we cannot determine the overflow conditions. 9778 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 9779 return SE.getCouldNotCompute(); 9780 9781 // Okay at this point we know that all elements of the chrec are constants and 9782 // that the start element is zero. 9783 9784 // First check to see if the range contains zero. If not, the first 9785 // iteration exits. 9786 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 9787 if (!Range.contains(APInt(BitWidth, 0))) 9788 return SE.getZero(getType()); 9789 9790 if (isAffine()) { 9791 // If this is an affine expression then we have this situation: 9792 // Solve {0,+,A} in Range === Ax in Range 9793 9794 // We know that zero is in the range. If A is positive then we know that 9795 // the upper value of the range must be the first possible exit value. 9796 // If A is negative then the lower of the range is the last possible loop 9797 // value. Also note that we already checked for a full range. 9798 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 9799 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 9800 9801 // The exit value should be (End+A)/A. 9802 APInt ExitVal = (End + A).udiv(A); 9803 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 9804 9805 // Evaluate at the exit value. If we really did fall out of the valid 9806 // range, then we computed our trip count, otherwise wrap around or other 9807 // things must have happened. 9808 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 9809 if (Range.contains(Val->getValue())) 9810 return SE.getCouldNotCompute(); // Something strange happened 9811 9812 // Ensure that the previous value is in the range. This is a sanity check. 9813 assert(Range.contains( 9814 EvaluateConstantChrecAtConstant(this, 9815 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 9816 "Linear scev computation is off in a bad way!"); 9817 return SE.getConstant(ExitValue); 9818 } else if (isQuadratic()) { 9819 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 9820 // quadratic equation to solve it. To do this, we must frame our problem in 9821 // terms of figuring out when zero is crossed, instead of when 9822 // Range.getUpper() is crossed. 9823 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 9824 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 9825 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); 9826 9827 // Next, solve the constructed addrec 9828 if (auto Roots = 9829 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 9830 const SCEVConstant *R1 = Roots->first; 9831 const SCEVConstant *R2 = Roots->second; 9832 // Pick the smallest positive root value. 9833 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 9834 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 9835 if (!CB->getZExtValue()) 9836 std::swap(R1, R2); // R1 is the minimum root now. 9837 9838 // Make sure the root is not off by one. The returned iteration should 9839 // not be in the range, but the previous one should be. When solving 9840 // for "X*X < 5", for example, we should not return a root of 2. 9841 ConstantInt *R1Val = 9842 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 9843 if (Range.contains(R1Val->getValue())) { 9844 // The next iteration must be out of the range... 9845 ConstantInt *NextVal = 9846 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 9847 9848 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 9849 if (!Range.contains(R1Val->getValue())) 9850 return SE.getConstant(NextVal); 9851 return SE.getCouldNotCompute(); // Something strange happened 9852 } 9853 9854 // If R1 was not in the range, then it is a good return value. Make 9855 // sure that R1-1 WAS in the range though, just in case. 9856 ConstantInt *NextVal = 9857 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 9858 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 9859 if (Range.contains(R1Val->getValue())) 9860 return R1; 9861 return SE.getCouldNotCompute(); // Something strange happened 9862 } 9863 } 9864 } 9865 9866 return SE.getCouldNotCompute(); 9867 } 9868 9869 // Return true when S contains at least an undef value. 9870 static inline bool containsUndefs(const SCEV *S) { 9871 return SCEVExprContains(S, [](const SCEV *S) { 9872 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 9873 return isa<UndefValue>(SU->getValue()); 9874 else if (const auto *SC = dyn_cast<SCEVConstant>(S)) 9875 return isa<UndefValue>(SC->getValue()); 9876 return false; 9877 }); 9878 } 9879 9880 namespace { 9881 // Collect all steps of SCEV expressions. 9882 struct SCEVCollectStrides { 9883 ScalarEvolution &SE; 9884 SmallVectorImpl<const SCEV *> &Strides; 9885 9886 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 9887 : SE(SE), Strides(S) {} 9888 9889 bool follow(const SCEV *S) { 9890 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 9891 Strides.push_back(AR->getStepRecurrence(SE)); 9892 return true; 9893 } 9894 bool isDone() const { return false; } 9895 }; 9896 9897 // Collect all SCEVUnknown and SCEVMulExpr expressions. 9898 struct SCEVCollectTerms { 9899 SmallVectorImpl<const SCEV *> &Terms; 9900 9901 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 9902 : Terms(T) {} 9903 9904 bool follow(const SCEV *S) { 9905 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 9906 isa<SCEVSignExtendExpr>(S)) { 9907 if (!containsUndefs(S)) 9908 Terms.push_back(S); 9909 9910 // Stop recursion: once we collected a term, do not walk its operands. 9911 return false; 9912 } 9913 9914 // Keep looking. 9915 return true; 9916 } 9917 bool isDone() const { return false; } 9918 }; 9919 9920 // Check if a SCEV contains an AddRecExpr. 9921 struct SCEVHasAddRec { 9922 bool &ContainsAddRec; 9923 9924 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 9925 ContainsAddRec = false; 9926 } 9927 9928 bool follow(const SCEV *S) { 9929 if (isa<SCEVAddRecExpr>(S)) { 9930 ContainsAddRec = true; 9931 9932 // Stop recursion: once we collected a term, do not walk its operands. 9933 return false; 9934 } 9935 9936 // Keep looking. 9937 return true; 9938 } 9939 bool isDone() const { return false; } 9940 }; 9941 9942 // Find factors that are multiplied with an expression that (possibly as a 9943 // subexpression) contains an AddRecExpr. In the expression: 9944 // 9945 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 9946 // 9947 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 9948 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 9949 // parameters as they form a product with an induction variable. 9950 // 9951 // This collector expects all array size parameters to be in the same MulExpr. 9952 // It might be necessary to later add support for collecting parameters that are 9953 // spread over different nested MulExpr. 9954 struct SCEVCollectAddRecMultiplies { 9955 SmallVectorImpl<const SCEV *> &Terms; 9956 ScalarEvolution &SE; 9957 9958 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 9959 : Terms(T), SE(SE) {} 9960 9961 bool follow(const SCEV *S) { 9962 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 9963 bool HasAddRec = false; 9964 SmallVector<const SCEV *, 0> Operands; 9965 for (auto Op : Mul->operands()) { 9966 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 9967 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 9968 Operands.push_back(Op); 9969 } else if (Unknown) { 9970 HasAddRec = true; 9971 } else { 9972 bool ContainsAddRec; 9973 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 9974 visitAll(Op, ContiansAddRec); 9975 HasAddRec |= ContainsAddRec; 9976 } 9977 } 9978 if (Operands.size() == 0) 9979 return true; 9980 9981 if (!HasAddRec) 9982 return false; 9983 9984 Terms.push_back(SE.getMulExpr(Operands)); 9985 // Stop recursion: once we collected a term, do not walk its operands. 9986 return false; 9987 } 9988 9989 // Keep looking. 9990 return true; 9991 } 9992 bool isDone() const { return false; } 9993 }; 9994 } 9995 9996 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 9997 /// two places: 9998 /// 1) The strides of AddRec expressions. 9999 /// 2) Unknowns that are multiplied with AddRec expressions. 10000 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 10001 SmallVectorImpl<const SCEV *> &Terms) { 10002 SmallVector<const SCEV *, 4> Strides; 10003 SCEVCollectStrides StrideCollector(*this, Strides); 10004 visitAll(Expr, StrideCollector); 10005 10006 DEBUG({ 10007 dbgs() << "Strides:\n"; 10008 for (const SCEV *S : Strides) 10009 dbgs() << *S << "\n"; 10010 }); 10011 10012 for (const SCEV *S : Strides) { 10013 SCEVCollectTerms TermCollector(Terms); 10014 visitAll(S, TermCollector); 10015 } 10016 10017 DEBUG({ 10018 dbgs() << "Terms:\n"; 10019 for (const SCEV *T : Terms) 10020 dbgs() << *T << "\n"; 10021 }); 10022 10023 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 10024 visitAll(Expr, MulCollector); 10025 } 10026 10027 static bool findArrayDimensionsRec(ScalarEvolution &SE, 10028 SmallVectorImpl<const SCEV *> &Terms, 10029 SmallVectorImpl<const SCEV *> &Sizes) { 10030 int Last = Terms.size() - 1; 10031 const SCEV *Step = Terms[Last]; 10032 10033 // End of recursion. 10034 if (Last == 0) { 10035 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 10036 SmallVector<const SCEV *, 2> Qs; 10037 for (const SCEV *Op : M->operands()) 10038 if (!isa<SCEVConstant>(Op)) 10039 Qs.push_back(Op); 10040 10041 Step = SE.getMulExpr(Qs); 10042 } 10043 10044 Sizes.push_back(Step); 10045 return true; 10046 } 10047 10048 for (const SCEV *&Term : Terms) { 10049 // Normalize the terms before the next call to findArrayDimensionsRec. 10050 const SCEV *Q, *R; 10051 SCEVDivision::divide(SE, Term, Step, &Q, &R); 10052 10053 // Bail out when GCD does not evenly divide one of the terms. 10054 if (!R->isZero()) 10055 return false; 10056 10057 Term = Q; 10058 } 10059 10060 // Remove all SCEVConstants. 10061 Terms.erase( 10062 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 10063 Terms.end()); 10064 10065 if (Terms.size() > 0) 10066 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 10067 return false; 10068 10069 Sizes.push_back(Step); 10070 return true; 10071 } 10072 10073 10074 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 10075 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 10076 for (const SCEV *T : Terms) 10077 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 10078 return true; 10079 return false; 10080 } 10081 10082 // Return the number of product terms in S. 10083 static inline int numberOfTerms(const SCEV *S) { 10084 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 10085 return Expr->getNumOperands(); 10086 return 1; 10087 } 10088 10089 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 10090 if (isa<SCEVConstant>(T)) 10091 return nullptr; 10092 10093 if (isa<SCEVUnknown>(T)) 10094 return T; 10095 10096 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 10097 SmallVector<const SCEV *, 2> Factors; 10098 for (const SCEV *Op : M->operands()) 10099 if (!isa<SCEVConstant>(Op)) 10100 Factors.push_back(Op); 10101 10102 return SE.getMulExpr(Factors); 10103 } 10104 10105 return T; 10106 } 10107 10108 /// Return the size of an element read or written by Inst. 10109 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 10110 Type *Ty; 10111 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 10112 Ty = Store->getValueOperand()->getType(); 10113 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 10114 Ty = Load->getType(); 10115 else 10116 return nullptr; 10117 10118 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 10119 return getSizeOfExpr(ETy, Ty); 10120 } 10121 10122 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 10123 SmallVectorImpl<const SCEV *> &Sizes, 10124 const SCEV *ElementSize) { 10125 if (Terms.size() < 1 || !ElementSize) 10126 return; 10127 10128 // Early return when Terms do not contain parameters: we do not delinearize 10129 // non parametric SCEVs. 10130 if (!containsParameters(Terms)) 10131 return; 10132 10133 DEBUG({ 10134 dbgs() << "Terms:\n"; 10135 for (const SCEV *T : Terms) 10136 dbgs() << *T << "\n"; 10137 }); 10138 10139 // Remove duplicates. 10140 array_pod_sort(Terms.begin(), Terms.end()); 10141 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 10142 10143 // Put larger terms first. 10144 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 10145 return numberOfTerms(LHS) > numberOfTerms(RHS); 10146 }); 10147 10148 // Try to divide all terms by the element size. If term is not divisible by 10149 // element size, proceed with the original term. 10150 for (const SCEV *&Term : Terms) { 10151 const SCEV *Q, *R; 10152 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 10153 if (!Q->isZero()) 10154 Term = Q; 10155 } 10156 10157 SmallVector<const SCEV *, 4> NewTerms; 10158 10159 // Remove constant factors. 10160 for (const SCEV *T : Terms) 10161 if (const SCEV *NewT = removeConstantFactors(*this, T)) 10162 NewTerms.push_back(NewT); 10163 10164 DEBUG({ 10165 dbgs() << "Terms after sorting:\n"; 10166 for (const SCEV *T : NewTerms) 10167 dbgs() << *T << "\n"; 10168 }); 10169 10170 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 10171 Sizes.clear(); 10172 return; 10173 } 10174 10175 // The last element to be pushed into Sizes is the size of an element. 10176 Sizes.push_back(ElementSize); 10177 10178 DEBUG({ 10179 dbgs() << "Sizes:\n"; 10180 for (const SCEV *S : Sizes) 10181 dbgs() << *S << "\n"; 10182 }); 10183 } 10184 10185 void ScalarEvolution::computeAccessFunctions( 10186 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 10187 SmallVectorImpl<const SCEV *> &Sizes) { 10188 10189 // Early exit in case this SCEV is not an affine multivariate function. 10190 if (Sizes.empty()) 10191 return; 10192 10193 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 10194 if (!AR->isAffine()) 10195 return; 10196 10197 const SCEV *Res = Expr; 10198 int Last = Sizes.size() - 1; 10199 for (int i = Last; i >= 0; i--) { 10200 const SCEV *Q, *R; 10201 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 10202 10203 DEBUG({ 10204 dbgs() << "Res: " << *Res << "\n"; 10205 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 10206 dbgs() << "Res divided by Sizes[i]:\n"; 10207 dbgs() << "Quotient: " << *Q << "\n"; 10208 dbgs() << "Remainder: " << *R << "\n"; 10209 }); 10210 10211 Res = Q; 10212 10213 // Do not record the last subscript corresponding to the size of elements in 10214 // the array. 10215 if (i == Last) { 10216 10217 // Bail out if the remainder is too complex. 10218 if (isa<SCEVAddRecExpr>(R)) { 10219 Subscripts.clear(); 10220 Sizes.clear(); 10221 return; 10222 } 10223 10224 continue; 10225 } 10226 10227 // Record the access function for the current subscript. 10228 Subscripts.push_back(R); 10229 } 10230 10231 // Also push in last position the remainder of the last division: it will be 10232 // the access function of the innermost dimension. 10233 Subscripts.push_back(Res); 10234 10235 std::reverse(Subscripts.begin(), Subscripts.end()); 10236 10237 DEBUG({ 10238 dbgs() << "Subscripts:\n"; 10239 for (const SCEV *S : Subscripts) 10240 dbgs() << *S << "\n"; 10241 }); 10242 } 10243 10244 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 10245 /// sizes of an array access. Returns the remainder of the delinearization that 10246 /// is the offset start of the array. The SCEV->delinearize algorithm computes 10247 /// the multiples of SCEV coefficients: that is a pattern matching of sub 10248 /// expressions in the stride and base of a SCEV corresponding to the 10249 /// computation of a GCD (greatest common divisor) of base and stride. When 10250 /// SCEV->delinearize fails, it returns the SCEV unchanged. 10251 /// 10252 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 10253 /// 10254 /// void foo(long n, long m, long o, double A[n][m][o]) { 10255 /// 10256 /// for (long i = 0; i < n; i++) 10257 /// for (long j = 0; j < m; j++) 10258 /// for (long k = 0; k < o; k++) 10259 /// A[i][j][k] = 1.0; 10260 /// } 10261 /// 10262 /// the delinearization input is the following AddRec SCEV: 10263 /// 10264 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 10265 /// 10266 /// From this SCEV, we are able to say that the base offset of the access is %A 10267 /// because it appears as an offset that does not divide any of the strides in 10268 /// the loops: 10269 /// 10270 /// CHECK: Base offset: %A 10271 /// 10272 /// and then SCEV->delinearize determines the size of some of the dimensions of 10273 /// the array as these are the multiples by which the strides are happening: 10274 /// 10275 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 10276 /// 10277 /// Note that the outermost dimension remains of UnknownSize because there are 10278 /// no strides that would help identifying the size of the last dimension: when 10279 /// the array has been statically allocated, one could compute the size of that 10280 /// dimension by dividing the overall size of the array by the size of the known 10281 /// dimensions: %m * %o * 8. 10282 /// 10283 /// Finally delinearize provides the access functions for the array reference 10284 /// that does correspond to A[i][j][k] of the above C testcase: 10285 /// 10286 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 10287 /// 10288 /// The testcases are checking the output of a function pass: 10289 /// DelinearizationPass that walks through all loads and stores of a function 10290 /// asking for the SCEV of the memory access with respect to all enclosing 10291 /// loops, calling SCEV->delinearize on that and printing the results. 10292 10293 void ScalarEvolution::delinearize(const SCEV *Expr, 10294 SmallVectorImpl<const SCEV *> &Subscripts, 10295 SmallVectorImpl<const SCEV *> &Sizes, 10296 const SCEV *ElementSize) { 10297 // First step: collect parametric terms. 10298 SmallVector<const SCEV *, 4> Terms; 10299 collectParametricTerms(Expr, Terms); 10300 10301 if (Terms.empty()) 10302 return; 10303 10304 // Second step: find subscript sizes. 10305 findArrayDimensions(Terms, Sizes, ElementSize); 10306 10307 if (Sizes.empty()) 10308 return; 10309 10310 // Third step: compute the access functions for each subscript. 10311 computeAccessFunctions(Expr, Subscripts, Sizes); 10312 10313 if (Subscripts.empty()) 10314 return; 10315 10316 DEBUG({ 10317 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 10318 dbgs() << "ArrayDecl[UnknownSize]"; 10319 for (const SCEV *S : Sizes) 10320 dbgs() << "[" << *S << "]"; 10321 10322 dbgs() << "\nArrayRef"; 10323 for (const SCEV *S : Subscripts) 10324 dbgs() << "[" << *S << "]"; 10325 dbgs() << "\n"; 10326 }); 10327 } 10328 10329 //===----------------------------------------------------------------------===// 10330 // SCEVCallbackVH Class Implementation 10331 //===----------------------------------------------------------------------===// 10332 10333 void ScalarEvolution::SCEVCallbackVH::deleted() { 10334 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 10335 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 10336 SE->ConstantEvolutionLoopExitValue.erase(PN); 10337 SE->eraseValueFromMap(getValPtr()); 10338 // this now dangles! 10339 } 10340 10341 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 10342 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 10343 10344 // Forget all the expressions associated with users of the old value, 10345 // so that future queries will recompute the expressions using the new 10346 // value. 10347 Value *Old = getValPtr(); 10348 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 10349 SmallPtrSet<User *, 8> Visited; 10350 while (!Worklist.empty()) { 10351 User *U = Worklist.pop_back_val(); 10352 // Deleting the Old value will cause this to dangle. Postpone 10353 // that until everything else is done. 10354 if (U == Old) 10355 continue; 10356 if (!Visited.insert(U).second) 10357 continue; 10358 if (PHINode *PN = dyn_cast<PHINode>(U)) 10359 SE->ConstantEvolutionLoopExitValue.erase(PN); 10360 SE->eraseValueFromMap(U); 10361 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 10362 } 10363 // Delete the Old value. 10364 if (PHINode *PN = dyn_cast<PHINode>(Old)) 10365 SE->ConstantEvolutionLoopExitValue.erase(PN); 10366 SE->eraseValueFromMap(Old); 10367 // this now dangles! 10368 } 10369 10370 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 10371 : CallbackVH(V), SE(se) {} 10372 10373 //===----------------------------------------------------------------------===// 10374 // ScalarEvolution Class Implementation 10375 //===----------------------------------------------------------------------===// 10376 10377 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 10378 AssumptionCache &AC, DominatorTree &DT, 10379 LoopInfo &LI) 10380 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 10381 CouldNotCompute(new SCEVCouldNotCompute()), 10382 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 10383 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 10384 FirstUnknown(nullptr) { 10385 10386 // To use guards for proving predicates, we need to scan every instruction in 10387 // relevant basic blocks, and not just terminators. Doing this is a waste of 10388 // time if the IR does not actually contain any calls to 10389 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 10390 // 10391 // This pessimizes the case where a pass that preserves ScalarEvolution wants 10392 // to _add_ guards to the module when there weren't any before, and wants 10393 // ScalarEvolution to optimize based on those guards. For now we prefer to be 10394 // efficient in lieu of being smart in that rather obscure case. 10395 10396 auto *GuardDecl = F.getParent()->getFunction( 10397 Intrinsic::getName(Intrinsic::experimental_guard)); 10398 HasGuards = GuardDecl && !GuardDecl->use_empty(); 10399 } 10400 10401 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 10402 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 10403 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 10404 ValueExprMap(std::move(Arg.ValueExprMap)), 10405 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 10406 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 10407 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 10408 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 10409 PredicatedBackedgeTakenCounts( 10410 std::move(Arg.PredicatedBackedgeTakenCounts)), 10411 ConstantEvolutionLoopExitValue( 10412 std::move(Arg.ConstantEvolutionLoopExitValue)), 10413 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 10414 LoopDispositions(std::move(Arg.LoopDispositions)), 10415 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 10416 BlockDispositions(std::move(Arg.BlockDispositions)), 10417 UnsignedRanges(std::move(Arg.UnsignedRanges)), 10418 SignedRanges(std::move(Arg.SignedRanges)), 10419 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 10420 UniquePreds(std::move(Arg.UniquePreds)), 10421 SCEVAllocator(std::move(Arg.SCEVAllocator)), 10422 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 10423 FirstUnknown(Arg.FirstUnknown) { 10424 Arg.FirstUnknown = nullptr; 10425 } 10426 10427 ScalarEvolution::~ScalarEvolution() { 10428 // Iterate through all the SCEVUnknown instances and call their 10429 // destructors, so that they release their references to their values. 10430 for (SCEVUnknown *U = FirstUnknown; U;) { 10431 SCEVUnknown *Tmp = U; 10432 U = U->Next; 10433 Tmp->~SCEVUnknown(); 10434 } 10435 FirstUnknown = nullptr; 10436 10437 ExprValueMap.clear(); 10438 ValueExprMap.clear(); 10439 HasRecMap.clear(); 10440 10441 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 10442 // that a loop had multiple computable exits. 10443 for (auto &BTCI : BackedgeTakenCounts) 10444 BTCI.second.clear(); 10445 for (auto &BTCI : PredicatedBackedgeTakenCounts) 10446 BTCI.second.clear(); 10447 10448 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 10449 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 10450 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 10451 } 10452 10453 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 10454 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 10455 } 10456 10457 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 10458 const Loop *L) { 10459 // Print all inner loops first 10460 for (Loop *I : *L) 10461 PrintLoopInfo(OS, SE, I); 10462 10463 OS << "Loop "; 10464 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10465 OS << ": "; 10466 10467 SmallVector<BasicBlock *, 8> ExitBlocks; 10468 L->getExitBlocks(ExitBlocks); 10469 if (ExitBlocks.size() != 1) 10470 OS << "<multiple exits> "; 10471 10472 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 10473 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 10474 } else { 10475 OS << "Unpredictable backedge-taken count. "; 10476 } 10477 10478 OS << "\n" 10479 "Loop "; 10480 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10481 OS << ": "; 10482 10483 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 10484 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 10485 if (SE->isBackedgeTakenCountMaxOrZero(L)) 10486 OS << ", actual taken count either this or zero."; 10487 } else { 10488 OS << "Unpredictable max backedge-taken count. "; 10489 } 10490 10491 OS << "\n" 10492 "Loop "; 10493 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10494 OS << ": "; 10495 10496 SCEVUnionPredicate Pred; 10497 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 10498 if (!isa<SCEVCouldNotCompute>(PBT)) { 10499 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 10500 OS << " Predicates:\n"; 10501 Pred.print(OS, 4); 10502 } else { 10503 OS << "Unpredictable predicated backedge-taken count. "; 10504 } 10505 OS << "\n"; 10506 10507 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 10508 OS << "Loop "; 10509 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10510 OS << ": "; 10511 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 10512 } 10513 } 10514 10515 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 10516 switch (LD) { 10517 case ScalarEvolution::LoopVariant: 10518 return "Variant"; 10519 case ScalarEvolution::LoopInvariant: 10520 return "Invariant"; 10521 case ScalarEvolution::LoopComputable: 10522 return "Computable"; 10523 } 10524 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 10525 } 10526 10527 void ScalarEvolution::print(raw_ostream &OS) const { 10528 // ScalarEvolution's implementation of the print method is to print 10529 // out SCEV values of all instructions that are interesting. Doing 10530 // this potentially causes it to create new SCEV objects though, 10531 // which technically conflicts with the const qualifier. This isn't 10532 // observable from outside the class though, so casting away the 10533 // const isn't dangerous. 10534 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 10535 10536 OS << "Classifying expressions for: "; 10537 F.printAsOperand(OS, /*PrintType=*/false); 10538 OS << "\n"; 10539 for (Instruction &I : instructions(F)) 10540 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 10541 OS << I << '\n'; 10542 OS << " --> "; 10543 const SCEV *SV = SE.getSCEV(&I); 10544 SV->print(OS); 10545 if (!isa<SCEVCouldNotCompute>(SV)) { 10546 OS << " U: "; 10547 SE.getUnsignedRange(SV).print(OS); 10548 OS << " S: "; 10549 SE.getSignedRange(SV).print(OS); 10550 } 10551 10552 const Loop *L = LI.getLoopFor(I.getParent()); 10553 10554 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 10555 if (AtUse != SV) { 10556 OS << " --> "; 10557 AtUse->print(OS); 10558 if (!isa<SCEVCouldNotCompute>(AtUse)) { 10559 OS << " U: "; 10560 SE.getUnsignedRange(AtUse).print(OS); 10561 OS << " S: "; 10562 SE.getSignedRange(AtUse).print(OS); 10563 } 10564 } 10565 10566 if (L) { 10567 OS << "\t\t" "Exits: "; 10568 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 10569 if (!SE.isLoopInvariant(ExitValue, L)) { 10570 OS << "<<Unknown>>"; 10571 } else { 10572 OS << *ExitValue; 10573 } 10574 10575 bool First = true; 10576 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 10577 if (First) { 10578 OS << "\t\t" "LoopDispositions: { "; 10579 First = false; 10580 } else { 10581 OS << ", "; 10582 } 10583 10584 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10585 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 10586 } 10587 10588 for (auto *InnerL : depth_first(L)) { 10589 if (InnerL == L) 10590 continue; 10591 if (First) { 10592 OS << "\t\t" "LoopDispositions: { "; 10593 First = false; 10594 } else { 10595 OS << ", "; 10596 } 10597 10598 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10599 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 10600 } 10601 10602 OS << " }"; 10603 } 10604 10605 OS << "\n"; 10606 } 10607 10608 OS << "Determining loop execution counts for: "; 10609 F.printAsOperand(OS, /*PrintType=*/false); 10610 OS << "\n"; 10611 for (Loop *I : LI) 10612 PrintLoopInfo(OS, &SE, I); 10613 } 10614 10615 ScalarEvolution::LoopDisposition 10616 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 10617 auto &Values = LoopDispositions[S]; 10618 for (auto &V : Values) { 10619 if (V.getPointer() == L) 10620 return V.getInt(); 10621 } 10622 Values.emplace_back(L, LoopVariant); 10623 LoopDisposition D = computeLoopDisposition(S, L); 10624 auto &Values2 = LoopDispositions[S]; 10625 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 10626 if (V.getPointer() == L) { 10627 V.setInt(D); 10628 break; 10629 } 10630 } 10631 return D; 10632 } 10633 10634 ScalarEvolution::LoopDisposition 10635 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 10636 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 10637 case scConstant: 10638 return LoopInvariant; 10639 case scTruncate: 10640 case scZeroExtend: 10641 case scSignExtend: 10642 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 10643 case scAddRecExpr: { 10644 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 10645 10646 // If L is the addrec's loop, it's computable. 10647 if (AR->getLoop() == L) 10648 return LoopComputable; 10649 10650 // Add recurrences are never invariant in the function-body (null loop). 10651 if (!L) 10652 return LoopVariant; 10653 10654 // This recurrence is variant w.r.t. L if L contains AR's loop. 10655 if (L->contains(AR->getLoop())) 10656 return LoopVariant; 10657 10658 // This recurrence is invariant w.r.t. L if AR's loop contains L. 10659 if (AR->getLoop()->contains(L)) 10660 return LoopInvariant; 10661 10662 // This recurrence is variant w.r.t. L if any of its operands 10663 // are variant. 10664 for (auto *Op : AR->operands()) 10665 if (!isLoopInvariant(Op, L)) 10666 return LoopVariant; 10667 10668 // Otherwise it's loop-invariant. 10669 return LoopInvariant; 10670 } 10671 case scAddExpr: 10672 case scMulExpr: 10673 case scUMaxExpr: 10674 case scSMaxExpr: { 10675 bool HasVarying = false; 10676 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 10677 LoopDisposition D = getLoopDisposition(Op, L); 10678 if (D == LoopVariant) 10679 return LoopVariant; 10680 if (D == LoopComputable) 10681 HasVarying = true; 10682 } 10683 return HasVarying ? LoopComputable : LoopInvariant; 10684 } 10685 case scUDivExpr: { 10686 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 10687 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 10688 if (LD == LoopVariant) 10689 return LoopVariant; 10690 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 10691 if (RD == LoopVariant) 10692 return LoopVariant; 10693 return (LD == LoopInvariant && RD == LoopInvariant) ? 10694 LoopInvariant : LoopComputable; 10695 } 10696 case scUnknown: 10697 // All non-instruction values are loop invariant. All instructions are loop 10698 // invariant if they are not contained in the specified loop. 10699 // Instructions are never considered invariant in the function body 10700 // (null loop) because they are defined within the "loop". 10701 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 10702 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 10703 return LoopInvariant; 10704 case scCouldNotCompute: 10705 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10706 } 10707 llvm_unreachable("Unknown SCEV kind!"); 10708 } 10709 10710 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 10711 return getLoopDisposition(S, L) == LoopInvariant; 10712 } 10713 10714 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 10715 return getLoopDisposition(S, L) == LoopComputable; 10716 } 10717 10718 ScalarEvolution::BlockDisposition 10719 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 10720 auto &Values = BlockDispositions[S]; 10721 for (auto &V : Values) { 10722 if (V.getPointer() == BB) 10723 return V.getInt(); 10724 } 10725 Values.emplace_back(BB, DoesNotDominateBlock); 10726 BlockDisposition D = computeBlockDisposition(S, BB); 10727 auto &Values2 = BlockDispositions[S]; 10728 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 10729 if (V.getPointer() == BB) { 10730 V.setInt(D); 10731 break; 10732 } 10733 } 10734 return D; 10735 } 10736 10737 ScalarEvolution::BlockDisposition 10738 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 10739 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 10740 case scConstant: 10741 return ProperlyDominatesBlock; 10742 case scTruncate: 10743 case scZeroExtend: 10744 case scSignExtend: 10745 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 10746 case scAddRecExpr: { 10747 // This uses a "dominates" query instead of "properly dominates" query 10748 // to test for proper dominance too, because the instruction which 10749 // produces the addrec's value is a PHI, and a PHI effectively properly 10750 // dominates its entire containing block. 10751 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 10752 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 10753 return DoesNotDominateBlock; 10754 10755 // Fall through into SCEVNAryExpr handling. 10756 LLVM_FALLTHROUGH; 10757 } 10758 case scAddExpr: 10759 case scMulExpr: 10760 case scUMaxExpr: 10761 case scSMaxExpr: { 10762 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 10763 bool Proper = true; 10764 for (const SCEV *NAryOp : NAry->operands()) { 10765 BlockDisposition D = getBlockDisposition(NAryOp, BB); 10766 if (D == DoesNotDominateBlock) 10767 return DoesNotDominateBlock; 10768 if (D == DominatesBlock) 10769 Proper = false; 10770 } 10771 return Proper ? ProperlyDominatesBlock : DominatesBlock; 10772 } 10773 case scUDivExpr: { 10774 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 10775 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 10776 BlockDisposition LD = getBlockDisposition(LHS, BB); 10777 if (LD == DoesNotDominateBlock) 10778 return DoesNotDominateBlock; 10779 BlockDisposition RD = getBlockDisposition(RHS, BB); 10780 if (RD == DoesNotDominateBlock) 10781 return DoesNotDominateBlock; 10782 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 10783 ProperlyDominatesBlock : DominatesBlock; 10784 } 10785 case scUnknown: 10786 if (Instruction *I = 10787 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 10788 if (I->getParent() == BB) 10789 return DominatesBlock; 10790 if (DT.properlyDominates(I->getParent(), BB)) 10791 return ProperlyDominatesBlock; 10792 return DoesNotDominateBlock; 10793 } 10794 return ProperlyDominatesBlock; 10795 case scCouldNotCompute: 10796 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10797 } 10798 llvm_unreachable("Unknown SCEV kind!"); 10799 } 10800 10801 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 10802 return getBlockDisposition(S, BB) >= DominatesBlock; 10803 } 10804 10805 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 10806 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 10807 } 10808 10809 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 10810 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 10811 } 10812 10813 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 10814 ValuesAtScopes.erase(S); 10815 LoopDispositions.erase(S); 10816 BlockDispositions.erase(S); 10817 UnsignedRanges.erase(S); 10818 SignedRanges.erase(S); 10819 ExprValueMap.erase(S); 10820 HasRecMap.erase(S); 10821 MinTrailingZerosCache.erase(S); 10822 10823 for (auto I = PredicatedSCEVRewrites.begin(); 10824 I != PredicatedSCEVRewrites.end();) { 10825 std::pair<const SCEV *, const Loop *> Entry = I->first; 10826 if (Entry.first == S) 10827 PredicatedSCEVRewrites.erase(I++); 10828 else 10829 ++I; 10830 } 10831 10832 auto RemoveSCEVFromBackedgeMap = 10833 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 10834 for (auto I = Map.begin(), E = Map.end(); I != E;) { 10835 BackedgeTakenInfo &BEInfo = I->second; 10836 if (BEInfo.hasOperand(S, this)) { 10837 BEInfo.clear(); 10838 Map.erase(I++); 10839 } else 10840 ++I; 10841 } 10842 }; 10843 10844 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 10845 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 10846 } 10847 10848 void ScalarEvolution::verify() const { 10849 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 10850 ScalarEvolution SE2(F, TLI, AC, DT, LI); 10851 10852 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 10853 10854 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 10855 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 10856 const SCEV *visitConstant(const SCEVConstant *Constant) { 10857 return SE.getConstant(Constant->getAPInt()); 10858 } 10859 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 10860 return SE.getUnknown(Expr->getValue()); 10861 } 10862 10863 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 10864 return SE.getCouldNotCompute(); 10865 } 10866 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 10867 }; 10868 10869 SCEVMapper SCM(SE2); 10870 10871 while (!LoopStack.empty()) { 10872 auto *L = LoopStack.pop_back_val(); 10873 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 10874 10875 auto *CurBECount = SCM.visit( 10876 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 10877 auto *NewBECount = SE2.getBackedgeTakenCount(L); 10878 10879 if (CurBECount == SE2.getCouldNotCompute() || 10880 NewBECount == SE2.getCouldNotCompute()) { 10881 // NB! This situation is legal, but is very suspicious -- whatever pass 10882 // change the loop to make a trip count go from could not compute to 10883 // computable or vice-versa *should have* invalidated SCEV. However, we 10884 // choose not to assert here (for now) since we don't want false 10885 // positives. 10886 continue; 10887 } 10888 10889 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 10890 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 10891 // not propagate undef aggressively). This means we can (and do) fail 10892 // verification in cases where a transform makes the trip count of a loop 10893 // go from "undef" to "undef+1" (say). The transform is fine, since in 10894 // both cases the loop iterates "undef" times, but SCEV thinks we 10895 // increased the trip count of the loop by 1 incorrectly. 10896 continue; 10897 } 10898 10899 if (SE.getTypeSizeInBits(CurBECount->getType()) > 10900 SE.getTypeSizeInBits(NewBECount->getType())) 10901 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 10902 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 10903 SE.getTypeSizeInBits(NewBECount->getType())) 10904 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 10905 10906 auto *ConstantDelta = 10907 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount)); 10908 10909 if (ConstantDelta && ConstantDelta->getAPInt() != 0) { 10910 dbgs() << "Trip Count Changed!\n"; 10911 dbgs() << "Old: " << *CurBECount << "\n"; 10912 dbgs() << "New: " << *NewBECount << "\n"; 10913 dbgs() << "Delta: " << *ConstantDelta << "\n"; 10914 std::abort(); 10915 } 10916 } 10917 } 10918 10919 bool ScalarEvolution::invalidate( 10920 Function &F, const PreservedAnalyses &PA, 10921 FunctionAnalysisManager::Invalidator &Inv) { 10922 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 10923 // of its dependencies is invalidated. 10924 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 10925 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 10926 Inv.invalidate<AssumptionAnalysis>(F, PA) || 10927 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 10928 Inv.invalidate<LoopAnalysis>(F, PA); 10929 } 10930 10931 AnalysisKey ScalarEvolutionAnalysis::Key; 10932 10933 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 10934 FunctionAnalysisManager &AM) { 10935 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 10936 AM.getResult<AssumptionAnalysis>(F), 10937 AM.getResult<DominatorTreeAnalysis>(F), 10938 AM.getResult<LoopAnalysis>(F)); 10939 } 10940 10941 PreservedAnalyses 10942 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 10943 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 10944 return PreservedAnalyses::all(); 10945 } 10946 10947 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 10948 "Scalar Evolution Analysis", false, true) 10949 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10950 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 10951 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 10952 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 10953 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 10954 "Scalar Evolution Analysis", false, true) 10955 char ScalarEvolutionWrapperPass::ID = 0; 10956 10957 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 10958 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 10959 } 10960 10961 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 10962 SE.reset(new ScalarEvolution( 10963 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 10964 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 10965 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 10966 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 10967 return false; 10968 } 10969 10970 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 10971 10972 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 10973 SE->print(OS); 10974 } 10975 10976 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 10977 if (!VerifySCEV) 10978 return; 10979 10980 SE->verify(); 10981 } 10982 10983 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 10984 AU.setPreservesAll(); 10985 AU.addRequiredTransitive<AssumptionCacheTracker>(); 10986 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 10987 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 10988 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 10989 } 10990 10991 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 10992 const SCEV *RHS) { 10993 FoldingSetNodeID ID; 10994 assert(LHS->getType() == RHS->getType() && 10995 "Type mismatch between LHS and RHS"); 10996 // Unique this node based on the arguments 10997 ID.AddInteger(SCEVPredicate::P_Equal); 10998 ID.AddPointer(LHS); 10999 ID.AddPointer(RHS); 11000 void *IP = nullptr; 11001 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11002 return S; 11003 SCEVEqualPredicate *Eq = new (SCEVAllocator) 11004 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 11005 UniquePreds.InsertNode(Eq, IP); 11006 return Eq; 11007 } 11008 11009 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 11010 const SCEVAddRecExpr *AR, 11011 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 11012 FoldingSetNodeID ID; 11013 // Unique this node based on the arguments 11014 ID.AddInteger(SCEVPredicate::P_Wrap); 11015 ID.AddPointer(AR); 11016 ID.AddInteger(AddedFlags); 11017 void *IP = nullptr; 11018 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11019 return S; 11020 auto *OF = new (SCEVAllocator) 11021 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 11022 UniquePreds.InsertNode(OF, IP); 11023 return OF; 11024 } 11025 11026 namespace { 11027 11028 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 11029 public: 11030 /// Rewrites \p S in the context of a loop L and the SCEV predication 11031 /// infrastructure. 11032 /// 11033 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 11034 /// equivalences present in \p Pred. 11035 /// 11036 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 11037 /// \p NewPreds such that the result will be an AddRecExpr. 11038 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 11039 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 11040 SCEVUnionPredicate *Pred) { 11041 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 11042 return Rewriter.visit(S); 11043 } 11044 11045 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 11046 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 11047 SCEVUnionPredicate *Pred) 11048 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 11049 11050 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11051 if (Pred) { 11052 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 11053 for (auto *Pred : ExprPreds) 11054 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 11055 if (IPred->getLHS() == Expr) 11056 return IPred->getRHS(); 11057 } 11058 return convertToAddRecWithPreds(Expr); 11059 } 11060 11061 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 11062 const SCEV *Operand = visit(Expr->getOperand()); 11063 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 11064 if (AR && AR->getLoop() == L && AR->isAffine()) { 11065 // This couldn't be folded because the operand didn't have the nuw 11066 // flag. Add the nusw flag as an assumption that we could make. 11067 const SCEV *Step = AR->getStepRecurrence(SE); 11068 Type *Ty = Expr->getType(); 11069 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 11070 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 11071 SE.getSignExtendExpr(Step, Ty), L, 11072 AR->getNoWrapFlags()); 11073 } 11074 return SE.getZeroExtendExpr(Operand, Expr->getType()); 11075 } 11076 11077 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 11078 const SCEV *Operand = visit(Expr->getOperand()); 11079 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 11080 if (AR && AR->getLoop() == L && AR->isAffine()) { 11081 // This couldn't be folded because the operand didn't have the nsw 11082 // flag. Add the nssw flag as an assumption that we could make. 11083 const SCEV *Step = AR->getStepRecurrence(SE); 11084 Type *Ty = Expr->getType(); 11085 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 11086 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 11087 SE.getSignExtendExpr(Step, Ty), L, 11088 AR->getNoWrapFlags()); 11089 } 11090 return SE.getSignExtendExpr(Operand, Expr->getType()); 11091 } 11092 11093 private: 11094 bool addOverflowAssumption(const SCEVPredicate *P) { 11095 if (!NewPreds) { 11096 // Check if we've already made this assumption. 11097 return Pred && Pred->implies(P); 11098 } 11099 NewPreds->insert(P); 11100 return true; 11101 } 11102 11103 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 11104 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 11105 auto *A = SE.getWrapPredicate(AR, AddedFlags); 11106 return addOverflowAssumption(A); 11107 } 11108 11109 // If \p Expr represents a PHINode, we try to see if it can be represented 11110 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 11111 // to add this predicate as a runtime overflow check, we return the AddRec. 11112 // If \p Expr does not meet these conditions (is not a PHI node, or we 11113 // couldn't create an AddRec for it, or couldn't add the predicate), we just 11114 // return \p Expr. 11115 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 11116 if (!isa<PHINode>(Expr->getValue())) 11117 return Expr; 11118 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 11119 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 11120 if (!PredicatedRewrite) 11121 return Expr; 11122 for (auto *P : PredicatedRewrite->second){ 11123 if (!addOverflowAssumption(P)) 11124 return Expr; 11125 } 11126 return PredicatedRewrite->first; 11127 } 11128 11129 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 11130 SCEVUnionPredicate *Pred; 11131 const Loop *L; 11132 }; 11133 } // end anonymous namespace 11134 11135 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 11136 SCEVUnionPredicate &Preds) { 11137 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 11138 } 11139 11140 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 11141 const SCEV *S, const Loop *L, 11142 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 11143 11144 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 11145 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 11146 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 11147 11148 if (!AddRec) 11149 return nullptr; 11150 11151 // Since the transformation was successful, we can now transfer the SCEV 11152 // predicates. 11153 for (auto *P : TransformPreds) 11154 Preds.insert(P); 11155 11156 return AddRec; 11157 } 11158 11159 /// SCEV predicates 11160 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 11161 SCEVPredicateKind Kind) 11162 : FastID(ID), Kind(Kind) {} 11163 11164 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 11165 const SCEV *LHS, const SCEV *RHS) 11166 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 11167 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 11168 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 11169 } 11170 11171 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 11172 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 11173 11174 if (!Op) 11175 return false; 11176 11177 return Op->LHS == LHS && Op->RHS == RHS; 11178 } 11179 11180 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 11181 11182 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 11183 11184 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 11185 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 11186 } 11187 11188 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 11189 const SCEVAddRecExpr *AR, 11190 IncrementWrapFlags Flags) 11191 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 11192 11193 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 11194 11195 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 11196 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 11197 11198 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 11199 } 11200 11201 bool SCEVWrapPredicate::isAlwaysTrue() const { 11202 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 11203 IncrementWrapFlags IFlags = Flags; 11204 11205 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 11206 IFlags = clearFlags(IFlags, IncrementNSSW); 11207 11208 return IFlags == IncrementAnyWrap; 11209 } 11210 11211 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 11212 OS.indent(Depth) << *getExpr() << " Added Flags: "; 11213 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 11214 OS << "<nusw>"; 11215 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 11216 OS << "<nssw>"; 11217 OS << "\n"; 11218 } 11219 11220 SCEVWrapPredicate::IncrementWrapFlags 11221 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 11222 ScalarEvolution &SE) { 11223 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 11224 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 11225 11226 // We can safely transfer the NSW flag as NSSW. 11227 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 11228 ImpliedFlags = IncrementNSSW; 11229 11230 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 11231 // If the increment is positive, the SCEV NUW flag will also imply the 11232 // WrapPredicate NUSW flag. 11233 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 11234 if (Step->getValue()->getValue().isNonNegative()) 11235 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 11236 } 11237 11238 return ImpliedFlags; 11239 } 11240 11241 /// Union predicates don't get cached so create a dummy set ID for it. 11242 SCEVUnionPredicate::SCEVUnionPredicate() 11243 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 11244 11245 bool SCEVUnionPredicate::isAlwaysTrue() const { 11246 return all_of(Preds, 11247 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 11248 } 11249 11250 ArrayRef<const SCEVPredicate *> 11251 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 11252 auto I = SCEVToPreds.find(Expr); 11253 if (I == SCEVToPreds.end()) 11254 return ArrayRef<const SCEVPredicate *>(); 11255 return I->second; 11256 } 11257 11258 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 11259 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 11260 return all_of(Set->Preds, 11261 [this](const SCEVPredicate *I) { return this->implies(I); }); 11262 11263 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 11264 if (ScevPredsIt == SCEVToPreds.end()) 11265 return false; 11266 auto &SCEVPreds = ScevPredsIt->second; 11267 11268 return any_of(SCEVPreds, 11269 [N](const SCEVPredicate *I) { return I->implies(N); }); 11270 } 11271 11272 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 11273 11274 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 11275 for (auto Pred : Preds) 11276 Pred->print(OS, Depth); 11277 } 11278 11279 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 11280 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 11281 for (auto Pred : Set->Preds) 11282 add(Pred); 11283 return; 11284 } 11285 11286 if (implies(N)) 11287 return; 11288 11289 const SCEV *Key = N->getExpr(); 11290 assert(Key && "Only SCEVUnionPredicate doesn't have an " 11291 " associated expression!"); 11292 11293 SCEVToPreds[Key].push_back(N); 11294 Preds.push_back(N); 11295 } 11296 11297 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 11298 Loop &L) 11299 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {} 11300 11301 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 11302 const SCEV *Expr = SE.getSCEV(V); 11303 RewriteEntry &Entry = RewriteMap[Expr]; 11304 11305 // If we already have an entry and the version matches, return it. 11306 if (Entry.second && Generation == Entry.first) 11307 return Entry.second; 11308 11309 // We found an entry but it's stale. Rewrite the stale entry 11310 // according to the current predicate. 11311 if (Entry.second) 11312 Expr = Entry.second; 11313 11314 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 11315 Entry = {Generation, NewSCEV}; 11316 11317 return NewSCEV; 11318 } 11319 11320 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 11321 if (!BackedgeCount) { 11322 SCEVUnionPredicate BackedgePred; 11323 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 11324 addPredicate(BackedgePred); 11325 } 11326 return BackedgeCount; 11327 } 11328 11329 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 11330 if (Preds.implies(&Pred)) 11331 return; 11332 Preds.add(&Pred); 11333 updateGeneration(); 11334 } 11335 11336 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 11337 return Preds; 11338 } 11339 11340 void PredicatedScalarEvolution::updateGeneration() { 11341 // If the generation number wrapped recompute everything. 11342 if (++Generation == 0) { 11343 for (auto &II : RewriteMap) { 11344 const SCEV *Rewritten = II.second.second; 11345 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 11346 } 11347 } 11348 } 11349 11350 void PredicatedScalarEvolution::setNoOverflow( 11351 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 11352 const SCEV *Expr = getSCEV(V); 11353 const auto *AR = cast<SCEVAddRecExpr>(Expr); 11354 11355 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 11356 11357 // Clear the statically implied flags. 11358 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 11359 addPredicate(*SE.getWrapPredicate(AR, Flags)); 11360 11361 auto II = FlagsMap.insert({V, Flags}); 11362 if (!II.second) 11363 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 11364 } 11365 11366 bool PredicatedScalarEvolution::hasNoOverflow( 11367 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 11368 const SCEV *Expr = getSCEV(V); 11369 const auto *AR = cast<SCEVAddRecExpr>(Expr); 11370 11371 Flags = SCEVWrapPredicate::clearFlags( 11372 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 11373 11374 auto II = FlagsMap.find(V); 11375 11376 if (II != FlagsMap.end()) 11377 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 11378 11379 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 11380 } 11381 11382 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 11383 const SCEV *Expr = this->getSCEV(V); 11384 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 11385 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 11386 11387 if (!New) 11388 return nullptr; 11389 11390 for (auto *P : NewPreds) 11391 Preds.add(P); 11392 11393 updateGeneration(); 11394 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 11395 return New; 11396 } 11397 11398 PredicatedScalarEvolution::PredicatedScalarEvolution( 11399 const PredicatedScalarEvolution &Init) 11400 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 11401 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 11402 for (const auto &I : Init.FlagsMap) 11403 FlagsMap.insert(I); 11404 } 11405 11406 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 11407 // For each block. 11408 for (auto *BB : L.getBlocks()) 11409 for (auto &I : *BB) { 11410 if (!SE.isSCEVable(I.getType())) 11411 continue; 11412 11413 auto *Expr = SE.getSCEV(&I); 11414 auto II = RewriteMap.find(Expr); 11415 11416 if (II == RewriteMap.end()) 11417 continue; 11418 11419 // Don't print things that are not interesting. 11420 if (II->second.second == Expr) 11421 continue; 11422 11423 OS.indent(Depth) << "[PSE]" << I << ":\n"; 11424 OS.indent(Depth + 2) << *Expr << "\n"; 11425 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 11426 } 11427 } 11428