1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/SaveAndRestore.h" 92 #include <algorithm> 93 using namespace llvm; 94 95 #define DEBUG_TYPE "scalar-evolution" 96 97 STATISTIC(NumArrayLenItCounts, 98 "Number of trip counts computed with array length"); 99 STATISTIC(NumTripCountsComputed, 100 "Number of loops with predictable loop counts"); 101 STATISTIC(NumTripCountsNotComputed, 102 "Number of loops without predictable loop counts"); 103 STATISTIC(NumBruteForceTripCountsComputed, 104 "Number of loops with trip counts computed by force"); 105 106 static cl::opt<unsigned> 107 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 108 cl::desc("Maximum number of iterations SCEV will " 109 "symbolically execute a constant " 110 "derived loop"), 111 cl::init(100)); 112 113 // FIXME: Enable this with XDEBUG when the test suite is clean. 114 static cl::opt<bool> 115 VerifySCEV("verify-scev", 116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 117 118 //===----------------------------------------------------------------------===// 119 // SCEV class definitions 120 //===----------------------------------------------------------------------===// 121 122 //===----------------------------------------------------------------------===// 123 // Implementation of the SCEV class. 124 // 125 126 LLVM_DUMP_METHOD 127 void SCEV::dump() const { 128 print(dbgs()); 129 dbgs() << '\n'; 130 } 131 132 void SCEV::print(raw_ostream &OS) const { 133 switch (static_cast<SCEVTypes>(getSCEVType())) { 134 case scConstant: 135 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 136 return; 137 case scTruncate: { 138 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 139 const SCEV *Op = Trunc->getOperand(); 140 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 141 << *Trunc->getType() << ")"; 142 return; 143 } 144 case scZeroExtend: { 145 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 146 const SCEV *Op = ZExt->getOperand(); 147 OS << "(zext " << *Op->getType() << " " << *Op << " to " 148 << *ZExt->getType() << ")"; 149 return; 150 } 151 case scSignExtend: { 152 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 153 const SCEV *Op = SExt->getOperand(); 154 OS << "(sext " << *Op->getType() << " " << *Op << " to " 155 << *SExt->getType() << ")"; 156 return; 157 } 158 case scAddRecExpr: { 159 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 160 OS << "{" << *AR->getOperand(0); 161 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 162 OS << ",+," << *AR->getOperand(i); 163 OS << "}<"; 164 if (AR->getNoWrapFlags(FlagNUW)) 165 OS << "nuw><"; 166 if (AR->getNoWrapFlags(FlagNSW)) 167 OS << "nsw><"; 168 if (AR->getNoWrapFlags(FlagNW) && 169 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 170 OS << "nw><"; 171 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 172 OS << ">"; 173 return; 174 } 175 case scAddExpr: 176 case scMulExpr: 177 case scUMaxExpr: 178 case scSMaxExpr: { 179 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 180 const char *OpStr = nullptr; 181 switch (NAry->getSCEVType()) { 182 case scAddExpr: OpStr = " + "; break; 183 case scMulExpr: OpStr = " * "; break; 184 case scUMaxExpr: OpStr = " umax "; break; 185 case scSMaxExpr: OpStr = " smax "; break; 186 } 187 OS << "("; 188 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 189 I != E; ++I) { 190 OS << **I; 191 if (std::next(I) != E) 192 OS << OpStr; 193 } 194 OS << ")"; 195 switch (NAry->getSCEVType()) { 196 case scAddExpr: 197 case scMulExpr: 198 if (NAry->getNoWrapFlags(FlagNUW)) 199 OS << "<nuw>"; 200 if (NAry->getNoWrapFlags(FlagNSW)) 201 OS << "<nsw>"; 202 } 203 return; 204 } 205 case scUDivExpr: { 206 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 207 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 208 return; 209 } 210 case scUnknown: { 211 const SCEVUnknown *U = cast<SCEVUnknown>(this); 212 Type *AllocTy; 213 if (U->isSizeOf(AllocTy)) { 214 OS << "sizeof(" << *AllocTy << ")"; 215 return; 216 } 217 if (U->isAlignOf(AllocTy)) { 218 OS << "alignof(" << *AllocTy << ")"; 219 return; 220 } 221 222 Type *CTy; 223 Constant *FieldNo; 224 if (U->isOffsetOf(CTy, FieldNo)) { 225 OS << "offsetof(" << *CTy << ", "; 226 FieldNo->printAsOperand(OS, false); 227 OS << ")"; 228 return; 229 } 230 231 // Otherwise just print it normally. 232 U->getValue()->printAsOperand(OS, false); 233 return; 234 } 235 case scCouldNotCompute: 236 OS << "***COULDNOTCOMPUTE***"; 237 return; 238 } 239 llvm_unreachable("Unknown SCEV kind!"); 240 } 241 242 Type *SCEV::getType() const { 243 switch (static_cast<SCEVTypes>(getSCEVType())) { 244 case scConstant: 245 return cast<SCEVConstant>(this)->getType(); 246 case scTruncate: 247 case scZeroExtend: 248 case scSignExtend: 249 return cast<SCEVCastExpr>(this)->getType(); 250 case scAddRecExpr: 251 case scMulExpr: 252 case scUMaxExpr: 253 case scSMaxExpr: 254 return cast<SCEVNAryExpr>(this)->getType(); 255 case scAddExpr: 256 return cast<SCEVAddExpr>(this)->getType(); 257 case scUDivExpr: 258 return cast<SCEVUDivExpr>(this)->getType(); 259 case scUnknown: 260 return cast<SCEVUnknown>(this)->getType(); 261 case scCouldNotCompute: 262 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 263 } 264 llvm_unreachable("Unknown SCEV kind!"); 265 } 266 267 bool SCEV::isZero() const { 268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 269 return SC->getValue()->isZero(); 270 return false; 271 } 272 273 bool SCEV::isOne() const { 274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 275 return SC->getValue()->isOne(); 276 return false; 277 } 278 279 bool SCEV::isAllOnesValue() const { 280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 281 return SC->getValue()->isAllOnesValue(); 282 return false; 283 } 284 285 /// isNonConstantNegative - Return true if the specified scev is negated, but 286 /// not a constant. 287 bool SCEV::isNonConstantNegative() const { 288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 289 if (!Mul) return false; 290 291 // If there is a constant factor, it will be first. 292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 293 if (!SC) return false; 294 295 // Return true if the value is negative, this matches things like (-42 * V). 296 return SC->getValue()->getValue().isNegative(); 297 } 298 299 SCEVCouldNotCompute::SCEVCouldNotCompute() : 300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 301 302 bool SCEVCouldNotCompute::classof(const SCEV *S) { 303 return S->getSCEVType() == scCouldNotCompute; 304 } 305 306 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 307 FoldingSetNodeID ID; 308 ID.AddInteger(scConstant); 309 ID.AddPointer(V); 310 void *IP = nullptr; 311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 313 UniqueSCEVs.InsertNode(S, IP); 314 return S; 315 } 316 317 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 318 return getConstant(ConstantInt::get(getContext(), Val)); 319 } 320 321 const SCEV * 322 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 324 return getConstant(ConstantInt::get(ITy, V, isSigned)); 325 } 326 327 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 328 unsigned SCEVTy, const SCEV *op, Type *ty) 329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 330 331 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 332 const SCEV *op, Type *ty) 333 : SCEVCastExpr(ID, scTruncate, op, ty) { 334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 335 (Ty->isIntegerTy() || Ty->isPointerTy()) && 336 "Cannot truncate non-integer value!"); 337 } 338 339 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 340 const SCEV *op, Type *ty) 341 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 343 (Ty->isIntegerTy() || Ty->isPointerTy()) && 344 "Cannot zero extend non-integer value!"); 345 } 346 347 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 348 const SCEV *op, Type *ty) 349 : SCEVCastExpr(ID, scSignExtend, op, ty) { 350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 351 (Ty->isIntegerTy() || Ty->isPointerTy()) && 352 "Cannot sign extend non-integer value!"); 353 } 354 355 void SCEVUnknown::deleted() { 356 // Clear this SCEVUnknown from various maps. 357 SE->forgetMemoizedResults(this); 358 359 // Remove this SCEVUnknown from the uniquing map. 360 SE->UniqueSCEVs.RemoveNode(this); 361 362 // Release the value. 363 setValPtr(nullptr); 364 } 365 366 void SCEVUnknown::allUsesReplacedWith(Value *New) { 367 // Clear this SCEVUnknown from various maps. 368 SE->forgetMemoizedResults(this); 369 370 // Remove this SCEVUnknown from the uniquing map. 371 SE->UniqueSCEVs.RemoveNode(this); 372 373 // Update this SCEVUnknown to point to the new value. This is needed 374 // because there may still be outstanding SCEVs which still point to 375 // this SCEVUnknown. 376 setValPtr(New); 377 } 378 379 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 381 if (VCE->getOpcode() == Instruction::PtrToInt) 382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 383 if (CE->getOpcode() == Instruction::GetElementPtr && 384 CE->getOperand(0)->isNullValue() && 385 CE->getNumOperands() == 2) 386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 387 if (CI->isOne()) { 388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 389 ->getElementType(); 390 return true; 391 } 392 393 return false; 394 } 395 396 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 398 if (VCE->getOpcode() == Instruction::PtrToInt) 399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 400 if (CE->getOpcode() == Instruction::GetElementPtr && 401 CE->getOperand(0)->isNullValue()) { 402 Type *Ty = 403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 404 if (StructType *STy = dyn_cast<StructType>(Ty)) 405 if (!STy->isPacked() && 406 CE->getNumOperands() == 3 && 407 CE->getOperand(1)->isNullValue()) { 408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 409 if (CI->isOne() && 410 STy->getNumElements() == 2 && 411 STy->getElementType(0)->isIntegerTy(1)) { 412 AllocTy = STy->getElementType(1); 413 return true; 414 } 415 } 416 } 417 418 return false; 419 } 420 421 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 423 if (VCE->getOpcode() == Instruction::PtrToInt) 424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 425 if (CE->getOpcode() == Instruction::GetElementPtr && 426 CE->getNumOperands() == 3 && 427 CE->getOperand(0)->isNullValue() && 428 CE->getOperand(1)->isNullValue()) { 429 Type *Ty = 430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 431 // Ignore vector types here so that ScalarEvolutionExpander doesn't 432 // emit getelementptrs that index into vectors. 433 if (Ty->isStructTy() || Ty->isArrayTy()) { 434 CTy = Ty; 435 FieldNo = CE->getOperand(2); 436 return true; 437 } 438 } 439 440 return false; 441 } 442 443 //===----------------------------------------------------------------------===// 444 // SCEV Utilities 445 //===----------------------------------------------------------------------===// 446 447 namespace { 448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 449 /// than the complexity of the RHS. This comparator is used to canonicalize 450 /// expressions. 451 class SCEVComplexityCompare { 452 const LoopInfo *const LI; 453 public: 454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 455 456 // Return true or false if LHS is less than, or at least RHS, respectively. 457 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 458 return compare(LHS, RHS) < 0; 459 } 460 461 // Return negative, zero, or positive, if LHS is less than, equal to, or 462 // greater than RHS, respectively. A three-way result allows recursive 463 // comparisons to be more efficient. 464 int compare(const SCEV *LHS, const SCEV *RHS) const { 465 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 466 if (LHS == RHS) 467 return 0; 468 469 // Primarily, sort the SCEVs by their getSCEVType(). 470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 471 if (LType != RType) 472 return (int)LType - (int)RType; 473 474 // Aside from the getSCEVType() ordering, the particular ordering 475 // isn't very important except that it's beneficial to be consistent, 476 // so that (a + b) and (b + a) don't end up as different expressions. 477 switch (static_cast<SCEVTypes>(LType)) { 478 case scUnknown: { 479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 481 482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 483 // not as complete as it could be. 484 const Value *LV = LU->getValue(), *RV = RU->getValue(); 485 486 // Order pointer values after integer values. This helps SCEVExpander 487 // form GEPs. 488 bool LIsPointer = LV->getType()->isPointerTy(), 489 RIsPointer = RV->getType()->isPointerTy(); 490 if (LIsPointer != RIsPointer) 491 return (int)LIsPointer - (int)RIsPointer; 492 493 // Compare getValueID values. 494 unsigned LID = LV->getValueID(), 495 RID = RV->getValueID(); 496 if (LID != RID) 497 return (int)LID - (int)RID; 498 499 // Sort arguments by their position. 500 if (const Argument *LA = dyn_cast<Argument>(LV)) { 501 const Argument *RA = cast<Argument>(RV); 502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 503 return (int)LArgNo - (int)RArgNo; 504 } 505 506 // For instructions, compare their loop depth, and their operand 507 // count. This is pretty loose. 508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 509 const Instruction *RInst = cast<Instruction>(RV); 510 511 // Compare loop depths. 512 const BasicBlock *LParent = LInst->getParent(), 513 *RParent = RInst->getParent(); 514 if (LParent != RParent) { 515 unsigned LDepth = LI->getLoopDepth(LParent), 516 RDepth = LI->getLoopDepth(RParent); 517 if (LDepth != RDepth) 518 return (int)LDepth - (int)RDepth; 519 } 520 521 // Compare the number of operands. 522 unsigned LNumOps = LInst->getNumOperands(), 523 RNumOps = RInst->getNumOperands(); 524 return (int)LNumOps - (int)RNumOps; 525 } 526 527 return 0; 528 } 529 530 case scConstant: { 531 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 532 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 533 534 // Compare constant values. 535 const APInt &LA = LC->getValue()->getValue(); 536 const APInt &RA = RC->getValue()->getValue(); 537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 538 if (LBitWidth != RBitWidth) 539 return (int)LBitWidth - (int)RBitWidth; 540 return LA.ult(RA) ? -1 : 1; 541 } 542 543 case scAddRecExpr: { 544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 546 547 // Compare addrec loop depths. 548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 549 if (LLoop != RLoop) { 550 unsigned LDepth = LLoop->getLoopDepth(), 551 RDepth = RLoop->getLoopDepth(); 552 if (LDepth != RDepth) 553 return (int)LDepth - (int)RDepth; 554 } 555 556 // Addrec complexity grows with operand count. 557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 558 if (LNumOps != RNumOps) 559 return (int)LNumOps - (int)RNumOps; 560 561 // Lexicographically compare. 562 for (unsigned i = 0; i != LNumOps; ++i) { 563 long X = compare(LA->getOperand(i), RA->getOperand(i)); 564 if (X != 0) 565 return X; 566 } 567 568 return 0; 569 } 570 571 case scAddExpr: 572 case scMulExpr: 573 case scSMaxExpr: 574 case scUMaxExpr: { 575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 577 578 // Lexicographically compare n-ary expressions. 579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 580 if (LNumOps != RNumOps) 581 return (int)LNumOps - (int)RNumOps; 582 583 for (unsigned i = 0; i != LNumOps; ++i) { 584 if (i >= RNumOps) 585 return 1; 586 long X = compare(LC->getOperand(i), RC->getOperand(i)); 587 if (X != 0) 588 return X; 589 } 590 return (int)LNumOps - (int)RNumOps; 591 } 592 593 case scUDivExpr: { 594 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 595 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 596 597 // Lexicographically compare udiv expressions. 598 long X = compare(LC->getLHS(), RC->getLHS()); 599 if (X != 0) 600 return X; 601 return compare(LC->getRHS(), RC->getRHS()); 602 } 603 604 case scTruncate: 605 case scZeroExtend: 606 case scSignExtend: { 607 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 608 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 609 610 // Compare cast expressions by operand. 611 return compare(LC->getOperand(), RC->getOperand()); 612 } 613 614 case scCouldNotCompute: 615 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 616 } 617 llvm_unreachable("Unknown SCEV kind!"); 618 } 619 }; 620 } 621 622 /// GroupByComplexity - Given a list of SCEV objects, order them by their 623 /// complexity, and group objects of the same complexity together by value. 624 /// When this routine is finished, we know that any duplicates in the vector are 625 /// consecutive and that complexity is monotonically increasing. 626 /// 627 /// Note that we go take special precautions to ensure that we get deterministic 628 /// results from this routine. In other words, we don't want the results of 629 /// this to depend on where the addresses of various SCEV objects happened to 630 /// land in memory. 631 /// 632 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 633 LoopInfo *LI) { 634 if (Ops.size() < 2) return; // Noop 635 if (Ops.size() == 2) { 636 // This is the common case, which also happens to be trivially simple. 637 // Special case it. 638 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 639 if (SCEVComplexityCompare(LI)(RHS, LHS)) 640 std::swap(LHS, RHS); 641 return; 642 } 643 644 // Do the rough sort by complexity. 645 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 646 647 // Now that we are sorted by complexity, group elements of the same 648 // complexity. Note that this is, at worst, N^2, but the vector is likely to 649 // be extremely short in practice. Note that we take this approach because we 650 // do not want to depend on the addresses of the objects we are grouping. 651 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 652 const SCEV *S = Ops[i]; 653 unsigned Complexity = S->getSCEVType(); 654 655 // If there are any objects of the same complexity and same value as this 656 // one, group them. 657 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 658 if (Ops[j] == S) { // Found a duplicate. 659 // Move it to immediately after i'th element. 660 std::swap(Ops[i+1], Ops[j]); 661 ++i; // no need to rescan it. 662 if (i == e-2) return; // Done! 663 } 664 } 665 } 666 } 667 668 namespace { 669 struct FindSCEVSize { 670 int Size; 671 FindSCEVSize() : Size(0) {} 672 673 bool follow(const SCEV *S) { 674 ++Size; 675 // Keep looking at all operands of S. 676 return true; 677 } 678 bool isDone() const { 679 return false; 680 } 681 }; 682 } 683 684 // Returns the size of the SCEV S. 685 static inline int sizeOfSCEV(const SCEV *S) { 686 FindSCEVSize F; 687 SCEVTraversal<FindSCEVSize> ST(F); 688 ST.visitAll(S); 689 return F.Size; 690 } 691 692 namespace { 693 694 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 695 public: 696 // Computes the Quotient and Remainder of the division of Numerator by 697 // Denominator. 698 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 699 const SCEV *Denominator, const SCEV **Quotient, 700 const SCEV **Remainder) { 701 assert(Numerator && Denominator && "Uninitialized SCEV"); 702 703 SCEVDivision D(SE, Numerator, Denominator); 704 705 // Check for the trivial case here to avoid having to check for it in the 706 // rest of the code. 707 if (Numerator == Denominator) { 708 *Quotient = D.One; 709 *Remainder = D.Zero; 710 return; 711 } 712 713 if (Numerator->isZero()) { 714 *Quotient = D.Zero; 715 *Remainder = D.Zero; 716 return; 717 } 718 719 // A simple case when N/1. The quotient is N. 720 if (Denominator->isOne()) { 721 *Quotient = Numerator; 722 *Remainder = D.Zero; 723 return; 724 } 725 726 // Split the Denominator when it is a product. 727 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 728 const SCEV *Q, *R; 729 *Quotient = Numerator; 730 for (const SCEV *Op : T->operands()) { 731 divide(SE, *Quotient, Op, &Q, &R); 732 *Quotient = Q; 733 734 // Bail out when the Numerator is not divisible by one of the terms of 735 // the Denominator. 736 if (!R->isZero()) { 737 *Quotient = D.Zero; 738 *Remainder = Numerator; 739 return; 740 } 741 } 742 *Remainder = D.Zero; 743 return; 744 } 745 746 D.visit(Numerator); 747 *Quotient = D.Quotient; 748 *Remainder = D.Remainder; 749 } 750 751 // Except in the trivial case described above, we do not know how to divide 752 // Expr by Denominator for the following functions with empty implementation. 753 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 754 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 755 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 756 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 757 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 758 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 759 void visitUnknown(const SCEVUnknown *Numerator) {} 760 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 761 762 void visitConstant(const SCEVConstant *Numerator) { 763 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 764 APInt NumeratorVal = Numerator->getValue()->getValue(); 765 APInt DenominatorVal = D->getValue()->getValue(); 766 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 767 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 768 769 if (NumeratorBW > DenominatorBW) 770 DenominatorVal = DenominatorVal.sext(NumeratorBW); 771 else if (NumeratorBW < DenominatorBW) 772 NumeratorVal = NumeratorVal.sext(DenominatorBW); 773 774 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 775 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 776 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 777 Quotient = SE.getConstant(QuotientVal); 778 Remainder = SE.getConstant(RemainderVal); 779 return; 780 } 781 } 782 783 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 784 const SCEV *StartQ, *StartR, *StepQ, *StepR; 785 if (!Numerator->isAffine()) 786 return cannotDivide(Numerator); 787 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 788 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 789 // Bail out if the types do not match. 790 Type *Ty = Denominator->getType(); 791 if (Ty != StartQ->getType() || Ty != StartR->getType() || 792 Ty != StepQ->getType() || Ty != StepR->getType()) 793 return cannotDivide(Numerator); 794 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 795 Numerator->getNoWrapFlags()); 796 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 797 Numerator->getNoWrapFlags()); 798 } 799 800 void visitAddExpr(const SCEVAddExpr *Numerator) { 801 SmallVector<const SCEV *, 2> Qs, Rs; 802 Type *Ty = Denominator->getType(); 803 804 for (const SCEV *Op : Numerator->operands()) { 805 const SCEV *Q, *R; 806 divide(SE, Op, Denominator, &Q, &R); 807 808 // Bail out if types do not match. 809 if (Ty != Q->getType() || Ty != R->getType()) 810 return cannotDivide(Numerator); 811 812 Qs.push_back(Q); 813 Rs.push_back(R); 814 } 815 816 if (Qs.size() == 1) { 817 Quotient = Qs[0]; 818 Remainder = Rs[0]; 819 return; 820 } 821 822 Quotient = SE.getAddExpr(Qs); 823 Remainder = SE.getAddExpr(Rs); 824 } 825 826 void visitMulExpr(const SCEVMulExpr *Numerator) { 827 SmallVector<const SCEV *, 2> Qs; 828 Type *Ty = Denominator->getType(); 829 830 bool FoundDenominatorTerm = false; 831 for (const SCEV *Op : Numerator->operands()) { 832 // Bail out if types do not match. 833 if (Ty != Op->getType()) 834 return cannotDivide(Numerator); 835 836 if (FoundDenominatorTerm) { 837 Qs.push_back(Op); 838 continue; 839 } 840 841 // Check whether Denominator divides one of the product operands. 842 const SCEV *Q, *R; 843 divide(SE, Op, Denominator, &Q, &R); 844 if (!R->isZero()) { 845 Qs.push_back(Op); 846 continue; 847 } 848 849 // Bail out if types do not match. 850 if (Ty != Q->getType()) 851 return cannotDivide(Numerator); 852 853 FoundDenominatorTerm = true; 854 Qs.push_back(Q); 855 } 856 857 if (FoundDenominatorTerm) { 858 Remainder = Zero; 859 if (Qs.size() == 1) 860 Quotient = Qs[0]; 861 else 862 Quotient = SE.getMulExpr(Qs); 863 return; 864 } 865 866 if (!isa<SCEVUnknown>(Denominator)) 867 return cannotDivide(Numerator); 868 869 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 870 ValueToValueMap RewriteMap; 871 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 872 cast<SCEVConstant>(Zero)->getValue(); 873 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 874 875 if (Remainder->isZero()) { 876 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 877 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 878 cast<SCEVConstant>(One)->getValue(); 879 Quotient = 880 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 881 return; 882 } 883 884 // Quotient is (Numerator - Remainder) divided by Denominator. 885 const SCEV *Q, *R; 886 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 887 // This SCEV does not seem to simplify: fail the division here. 888 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 889 return cannotDivide(Numerator); 890 divide(SE, Diff, Denominator, &Q, &R); 891 if (R != Zero) 892 return cannotDivide(Numerator); 893 Quotient = Q; 894 } 895 896 private: 897 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 898 const SCEV *Denominator) 899 : SE(S), Denominator(Denominator) { 900 Zero = SE.getZero(Denominator->getType()); 901 One = SE.getOne(Denominator->getType()); 902 903 // We generally do not know how to divide Expr by Denominator. We 904 // initialize the division to a "cannot divide" state to simplify the rest 905 // of the code. 906 cannotDivide(Numerator); 907 } 908 909 // Convenience function for giving up on the division. We set the quotient to 910 // be equal to zero and the remainder to be equal to the numerator. 911 void cannotDivide(const SCEV *Numerator) { 912 Quotient = Zero; 913 Remainder = Numerator; 914 } 915 916 ScalarEvolution &SE; 917 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 918 }; 919 920 } 921 922 //===----------------------------------------------------------------------===// 923 // Simple SCEV method implementations 924 //===----------------------------------------------------------------------===// 925 926 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 927 /// Assume, K > 0. 928 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 929 ScalarEvolution &SE, 930 Type *ResultTy) { 931 // Handle the simplest case efficiently. 932 if (K == 1) 933 return SE.getTruncateOrZeroExtend(It, ResultTy); 934 935 // We are using the following formula for BC(It, K): 936 // 937 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 938 // 939 // Suppose, W is the bitwidth of the return value. We must be prepared for 940 // overflow. Hence, we must assure that the result of our computation is 941 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 942 // safe in modular arithmetic. 943 // 944 // However, this code doesn't use exactly that formula; the formula it uses 945 // is something like the following, where T is the number of factors of 2 in 946 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 947 // exponentiation: 948 // 949 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 950 // 951 // This formula is trivially equivalent to the previous formula. However, 952 // this formula can be implemented much more efficiently. The trick is that 953 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 954 // arithmetic. To do exact division in modular arithmetic, all we have 955 // to do is multiply by the inverse. Therefore, this step can be done at 956 // width W. 957 // 958 // The next issue is how to safely do the division by 2^T. The way this 959 // is done is by doing the multiplication step at a width of at least W + T 960 // bits. This way, the bottom W+T bits of the product are accurate. Then, 961 // when we perform the division by 2^T (which is equivalent to a right shift 962 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 963 // truncated out after the division by 2^T. 964 // 965 // In comparison to just directly using the first formula, this technique 966 // is much more efficient; using the first formula requires W * K bits, 967 // but this formula less than W + K bits. Also, the first formula requires 968 // a division step, whereas this formula only requires multiplies and shifts. 969 // 970 // It doesn't matter whether the subtraction step is done in the calculation 971 // width or the input iteration count's width; if the subtraction overflows, 972 // the result must be zero anyway. We prefer here to do it in the width of 973 // the induction variable because it helps a lot for certain cases; CodeGen 974 // isn't smart enough to ignore the overflow, which leads to much less 975 // efficient code if the width of the subtraction is wider than the native 976 // register width. 977 // 978 // (It's possible to not widen at all by pulling out factors of 2 before 979 // the multiplication; for example, K=2 can be calculated as 980 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 981 // extra arithmetic, so it's not an obvious win, and it gets 982 // much more complicated for K > 3.) 983 984 // Protection from insane SCEVs; this bound is conservative, 985 // but it probably doesn't matter. 986 if (K > 1000) 987 return SE.getCouldNotCompute(); 988 989 unsigned W = SE.getTypeSizeInBits(ResultTy); 990 991 // Calculate K! / 2^T and T; we divide out the factors of two before 992 // multiplying for calculating K! / 2^T to avoid overflow. 993 // Other overflow doesn't matter because we only care about the bottom 994 // W bits of the result. 995 APInt OddFactorial(W, 1); 996 unsigned T = 1; 997 for (unsigned i = 3; i <= K; ++i) { 998 APInt Mult(W, i); 999 unsigned TwoFactors = Mult.countTrailingZeros(); 1000 T += TwoFactors; 1001 Mult = Mult.lshr(TwoFactors); 1002 OddFactorial *= Mult; 1003 } 1004 1005 // We need at least W + T bits for the multiplication step 1006 unsigned CalculationBits = W + T; 1007 1008 // Calculate 2^T, at width T+W. 1009 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1010 1011 // Calculate the multiplicative inverse of K! / 2^T; 1012 // this multiplication factor will perform the exact division by 1013 // K! / 2^T. 1014 APInt Mod = APInt::getSignedMinValue(W+1); 1015 APInt MultiplyFactor = OddFactorial.zext(W+1); 1016 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1017 MultiplyFactor = MultiplyFactor.trunc(W); 1018 1019 // Calculate the product, at width T+W 1020 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1021 CalculationBits); 1022 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1023 for (unsigned i = 1; i != K; ++i) { 1024 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1025 Dividend = SE.getMulExpr(Dividend, 1026 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1027 } 1028 1029 // Divide by 2^T 1030 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1031 1032 // Truncate the result, and divide by K! / 2^T. 1033 1034 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1035 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1036 } 1037 1038 /// evaluateAtIteration - Return the value of this chain of recurrences at 1039 /// the specified iteration number. We can evaluate this recurrence by 1040 /// multiplying each element in the chain by the binomial coefficient 1041 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1042 /// 1043 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1044 /// 1045 /// where BC(It, k) stands for binomial coefficient. 1046 /// 1047 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1048 ScalarEvolution &SE) const { 1049 const SCEV *Result = getStart(); 1050 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1051 // The computation is correct in the face of overflow provided that the 1052 // multiplication is performed _after_ the evaluation of the binomial 1053 // coefficient. 1054 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1055 if (isa<SCEVCouldNotCompute>(Coeff)) 1056 return Coeff; 1057 1058 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1059 } 1060 return Result; 1061 } 1062 1063 //===----------------------------------------------------------------------===// 1064 // SCEV Expression folder implementations 1065 //===----------------------------------------------------------------------===// 1066 1067 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1068 Type *Ty) { 1069 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1070 "This is not a truncating conversion!"); 1071 assert(isSCEVable(Ty) && 1072 "This is not a conversion to a SCEVable type!"); 1073 Ty = getEffectiveSCEVType(Ty); 1074 1075 FoldingSetNodeID ID; 1076 ID.AddInteger(scTruncate); 1077 ID.AddPointer(Op); 1078 ID.AddPointer(Ty); 1079 void *IP = nullptr; 1080 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1081 1082 // Fold if the operand is constant. 1083 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1084 return getConstant( 1085 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1086 1087 // trunc(trunc(x)) --> trunc(x) 1088 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1089 return getTruncateExpr(ST->getOperand(), Ty); 1090 1091 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1092 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1093 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1094 1095 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1096 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1097 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1098 1099 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1100 // eliminate all the truncates, or we replace other casts with truncates. 1101 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1102 SmallVector<const SCEV *, 4> Operands; 1103 bool hasTrunc = false; 1104 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1105 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1106 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1107 hasTrunc = isa<SCEVTruncateExpr>(S); 1108 Operands.push_back(S); 1109 } 1110 if (!hasTrunc) 1111 return getAddExpr(Operands); 1112 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1113 } 1114 1115 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1116 // eliminate all the truncates, or we replace other casts with truncates. 1117 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1118 SmallVector<const SCEV *, 4> Operands; 1119 bool hasTrunc = false; 1120 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1121 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1122 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1123 hasTrunc = isa<SCEVTruncateExpr>(S); 1124 Operands.push_back(S); 1125 } 1126 if (!hasTrunc) 1127 return getMulExpr(Operands); 1128 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1129 } 1130 1131 // If the input value is a chrec scev, truncate the chrec's operands. 1132 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1133 SmallVector<const SCEV *, 4> Operands; 1134 for (const SCEV *Op : AddRec->operands()) 1135 Operands.push_back(getTruncateExpr(Op, Ty)); 1136 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1137 } 1138 1139 // The cast wasn't folded; create an explicit cast node. We can reuse 1140 // the existing insert position since if we get here, we won't have 1141 // made any changes which would invalidate it. 1142 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1143 Op, Ty); 1144 UniqueSCEVs.InsertNode(S, IP); 1145 return S; 1146 } 1147 1148 // Get the limit of a recurrence such that incrementing by Step cannot cause 1149 // signed overflow as long as the value of the recurrence within the 1150 // loop does not exceed this limit before incrementing. 1151 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1152 ICmpInst::Predicate *Pred, 1153 ScalarEvolution *SE) { 1154 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1155 if (SE->isKnownPositive(Step)) { 1156 *Pred = ICmpInst::ICMP_SLT; 1157 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1158 SE->getSignedRange(Step).getSignedMax()); 1159 } 1160 if (SE->isKnownNegative(Step)) { 1161 *Pred = ICmpInst::ICMP_SGT; 1162 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1163 SE->getSignedRange(Step).getSignedMin()); 1164 } 1165 return nullptr; 1166 } 1167 1168 // Get the limit of a recurrence such that incrementing by Step cannot cause 1169 // unsigned overflow as long as the value of the recurrence within the loop does 1170 // not exceed this limit before incrementing. 1171 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1172 ICmpInst::Predicate *Pred, 1173 ScalarEvolution *SE) { 1174 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1175 *Pred = ICmpInst::ICMP_ULT; 1176 1177 return SE->getConstant(APInt::getMinValue(BitWidth) - 1178 SE->getUnsignedRange(Step).getUnsignedMax()); 1179 } 1180 1181 namespace { 1182 1183 struct ExtendOpTraitsBase { 1184 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1185 }; 1186 1187 // Used to make code generic over signed and unsigned overflow. 1188 template <typename ExtendOp> struct ExtendOpTraits { 1189 // Members present: 1190 // 1191 // static const SCEV::NoWrapFlags WrapType; 1192 // 1193 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1194 // 1195 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1196 // ICmpInst::Predicate *Pred, 1197 // ScalarEvolution *SE); 1198 }; 1199 1200 template <> 1201 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1202 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1203 1204 static const GetExtendExprTy GetExtendExpr; 1205 1206 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1207 ICmpInst::Predicate *Pred, 1208 ScalarEvolution *SE) { 1209 return getSignedOverflowLimitForStep(Step, Pred, SE); 1210 } 1211 }; 1212 1213 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1214 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1215 1216 template <> 1217 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1218 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1219 1220 static const GetExtendExprTy GetExtendExpr; 1221 1222 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1223 ICmpInst::Predicate *Pred, 1224 ScalarEvolution *SE) { 1225 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1226 } 1227 }; 1228 1229 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1230 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1231 } 1232 1233 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1234 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1235 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1236 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1237 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1238 // expression "Step + sext/zext(PreIncAR)" is congruent with 1239 // "sext/zext(PostIncAR)" 1240 template <typename ExtendOpTy> 1241 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1242 ScalarEvolution *SE) { 1243 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1244 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1245 1246 const Loop *L = AR->getLoop(); 1247 const SCEV *Start = AR->getStart(); 1248 const SCEV *Step = AR->getStepRecurrence(*SE); 1249 1250 // Check for a simple looking step prior to loop entry. 1251 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1252 if (!SA) 1253 return nullptr; 1254 1255 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1256 // subtraction is expensive. For this purpose, perform a quick and dirty 1257 // difference, by checking for Step in the operand list. 1258 SmallVector<const SCEV *, 4> DiffOps; 1259 for (const SCEV *Op : SA->operands()) 1260 if (Op != Step) 1261 DiffOps.push_back(Op); 1262 1263 if (DiffOps.size() == SA->getNumOperands()) 1264 return nullptr; 1265 1266 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1267 // `Step`: 1268 1269 // 1. NSW/NUW flags on the step increment. 1270 auto PreStartFlags = 1271 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1272 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1273 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1274 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1275 1276 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1277 // "S+X does not sign/unsign-overflow". 1278 // 1279 1280 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1281 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1282 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1283 return PreStart; 1284 1285 // 2. Direct overflow check on the step operation's expression. 1286 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1287 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1288 const SCEV *OperandExtendedStart = 1289 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1290 (SE->*GetExtendExpr)(Step, WideTy)); 1291 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1292 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1293 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1294 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1295 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1296 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1297 } 1298 return PreStart; 1299 } 1300 1301 // 3. Loop precondition. 1302 ICmpInst::Predicate Pred; 1303 const SCEV *OverflowLimit = 1304 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1305 1306 if (OverflowLimit && 1307 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1308 return PreStart; 1309 1310 return nullptr; 1311 } 1312 1313 // Get the normalized zero or sign extended expression for this AddRec's Start. 1314 template <typename ExtendOpTy> 1315 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1316 ScalarEvolution *SE) { 1317 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1318 1319 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1320 if (!PreStart) 1321 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1322 1323 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1324 (SE->*GetExtendExpr)(PreStart, Ty)); 1325 } 1326 1327 // Try to prove away overflow by looking at "nearby" add recurrences. A 1328 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1329 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1330 // 1331 // Formally: 1332 // 1333 // {S,+,X} == {S-T,+,X} + T 1334 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1335 // 1336 // If ({S-T,+,X} + T) does not overflow ... (1) 1337 // 1338 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1339 // 1340 // If {S-T,+,X} does not overflow ... (2) 1341 // 1342 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1343 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1344 // 1345 // If (S-T)+T does not overflow ... (3) 1346 // 1347 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1348 // == {Ext(S),+,Ext(X)} == LHS 1349 // 1350 // Thus, if (1), (2) and (3) are true for some T, then 1351 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1352 // 1353 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1354 // does not overflow" restricted to the 0th iteration. Therefore we only need 1355 // to check for (1) and (2). 1356 // 1357 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1358 // is `Delta` (defined below). 1359 // 1360 template <typename ExtendOpTy> 1361 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1362 const SCEV *Step, 1363 const Loop *L) { 1364 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1365 1366 // We restrict `Start` to a constant to prevent SCEV from spending too much 1367 // time here. It is correct (but more expensive) to continue with a 1368 // non-constant `Start` and do a general SCEV subtraction to compute 1369 // `PreStart` below. 1370 // 1371 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1372 if (!StartC) 1373 return false; 1374 1375 APInt StartAI = StartC->getValue()->getValue(); 1376 1377 for (unsigned Delta : {-2, -1, 1, 2}) { 1378 const SCEV *PreStart = getConstant(StartAI - Delta); 1379 1380 FoldingSetNodeID ID; 1381 ID.AddInteger(scAddRecExpr); 1382 ID.AddPointer(PreStart); 1383 ID.AddPointer(Step); 1384 ID.AddPointer(L); 1385 void *IP = nullptr; 1386 const auto *PreAR = 1387 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1388 1389 // Give up if we don't already have the add recurrence we need because 1390 // actually constructing an add recurrence is relatively expensive. 1391 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1392 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1393 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1394 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1395 DeltaS, &Pred, this); 1396 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1397 return true; 1398 } 1399 } 1400 1401 return false; 1402 } 1403 1404 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1405 Type *Ty) { 1406 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1407 "This is not an extending conversion!"); 1408 assert(isSCEVable(Ty) && 1409 "This is not a conversion to a SCEVable type!"); 1410 Ty = getEffectiveSCEVType(Ty); 1411 1412 // Fold if the operand is constant. 1413 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1414 return getConstant( 1415 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1416 1417 // zext(zext(x)) --> zext(x) 1418 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1419 return getZeroExtendExpr(SZ->getOperand(), Ty); 1420 1421 // Before doing any expensive analysis, check to see if we've already 1422 // computed a SCEV for this Op and Ty. 1423 FoldingSetNodeID ID; 1424 ID.AddInteger(scZeroExtend); 1425 ID.AddPointer(Op); 1426 ID.AddPointer(Ty); 1427 void *IP = nullptr; 1428 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1429 1430 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1431 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1432 // It's possible the bits taken off by the truncate were all zero bits. If 1433 // so, we should be able to simplify this further. 1434 const SCEV *X = ST->getOperand(); 1435 ConstantRange CR = getUnsignedRange(X); 1436 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1437 unsigned NewBits = getTypeSizeInBits(Ty); 1438 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1439 CR.zextOrTrunc(NewBits))) 1440 return getTruncateOrZeroExtend(X, Ty); 1441 } 1442 1443 // If the input value is a chrec scev, and we can prove that the value 1444 // did not overflow the old, smaller, value, we can zero extend all of the 1445 // operands (often constants). This allows analysis of something like 1446 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1447 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1448 if (AR->isAffine()) { 1449 const SCEV *Start = AR->getStart(); 1450 const SCEV *Step = AR->getStepRecurrence(*this); 1451 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1452 const Loop *L = AR->getLoop(); 1453 1454 // If we have special knowledge that this addrec won't overflow, 1455 // we don't need to do any further analysis. 1456 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1457 return getAddRecExpr( 1458 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1459 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1460 1461 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1462 // Note that this serves two purposes: It filters out loops that are 1463 // simply not analyzable, and it covers the case where this code is 1464 // being called from within backedge-taken count analysis, such that 1465 // attempting to ask for the backedge-taken count would likely result 1466 // in infinite recursion. In the later case, the analysis code will 1467 // cope with a conservative value, and it will take care to purge 1468 // that value once it has finished. 1469 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1470 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1471 // Manually compute the final value for AR, checking for 1472 // overflow. 1473 1474 // Check whether the backedge-taken count can be losslessly casted to 1475 // the addrec's type. The count is always unsigned. 1476 const SCEV *CastedMaxBECount = 1477 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1478 const SCEV *RecastedMaxBECount = 1479 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1480 if (MaxBECount == RecastedMaxBECount) { 1481 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1482 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1483 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1484 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1485 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1486 const SCEV *WideMaxBECount = 1487 getZeroExtendExpr(CastedMaxBECount, WideTy); 1488 const SCEV *OperandExtendedAdd = 1489 getAddExpr(WideStart, 1490 getMulExpr(WideMaxBECount, 1491 getZeroExtendExpr(Step, WideTy))); 1492 if (ZAdd == OperandExtendedAdd) { 1493 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1494 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1495 // Return the expression with the addrec on the outside. 1496 return getAddRecExpr( 1497 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1498 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1499 } 1500 // Similar to above, only this time treat the step value as signed. 1501 // This covers loops that count down. 1502 OperandExtendedAdd = 1503 getAddExpr(WideStart, 1504 getMulExpr(WideMaxBECount, 1505 getSignExtendExpr(Step, WideTy))); 1506 if (ZAdd == OperandExtendedAdd) { 1507 // Cache knowledge of AR NW, which is propagated to this AddRec. 1508 // Negative step causes unsigned wrap, but it still can't self-wrap. 1509 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1510 // Return the expression with the addrec on the outside. 1511 return getAddRecExpr( 1512 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1513 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1514 } 1515 } 1516 1517 // If the backedge is guarded by a comparison with the pre-inc value 1518 // the addrec is safe. Also, if the entry is guarded by a comparison 1519 // with the start value and the backedge is guarded by a comparison 1520 // with the post-inc value, the addrec is safe. 1521 if (isKnownPositive(Step)) { 1522 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1523 getUnsignedRange(Step).getUnsignedMax()); 1524 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1525 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1526 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1527 AR->getPostIncExpr(*this), N))) { 1528 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1529 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1530 // Return the expression with the addrec on the outside. 1531 return getAddRecExpr( 1532 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1533 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1534 } 1535 } else if (isKnownNegative(Step)) { 1536 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1537 getSignedRange(Step).getSignedMin()); 1538 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1539 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1540 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1541 AR->getPostIncExpr(*this), N))) { 1542 // Cache knowledge of AR NW, which is propagated to this AddRec. 1543 // Negative step causes unsigned wrap, but it still can't self-wrap. 1544 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1545 // Return the expression with the addrec on the outside. 1546 return getAddRecExpr( 1547 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1548 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1549 } 1550 } 1551 } 1552 1553 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1554 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1555 return getAddRecExpr( 1556 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1557 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1558 } 1559 } 1560 1561 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1562 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1563 if (SA->getNoWrapFlags(SCEV::FlagNUW)) { 1564 // If the addition does not unsign overflow then we can, by definition, 1565 // commute the zero extension with the addition operation. 1566 SmallVector<const SCEV *, 4> Ops; 1567 for (const auto *Op : SA->operands()) 1568 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1569 return getAddExpr(Ops, SCEV::FlagNUW); 1570 } 1571 } 1572 1573 // The cast wasn't folded; create an explicit cast node. 1574 // Recompute the insert position, as it may have been invalidated. 1575 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1576 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1577 Op, Ty); 1578 UniqueSCEVs.InsertNode(S, IP); 1579 return S; 1580 } 1581 1582 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1583 Type *Ty) { 1584 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1585 "This is not an extending conversion!"); 1586 assert(isSCEVable(Ty) && 1587 "This is not a conversion to a SCEVable type!"); 1588 Ty = getEffectiveSCEVType(Ty); 1589 1590 // Fold if the operand is constant. 1591 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1592 return getConstant( 1593 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1594 1595 // sext(sext(x)) --> sext(x) 1596 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1597 return getSignExtendExpr(SS->getOperand(), Ty); 1598 1599 // sext(zext(x)) --> zext(x) 1600 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1601 return getZeroExtendExpr(SZ->getOperand(), Ty); 1602 1603 // Before doing any expensive analysis, check to see if we've already 1604 // computed a SCEV for this Op and Ty. 1605 FoldingSetNodeID ID; 1606 ID.AddInteger(scSignExtend); 1607 ID.AddPointer(Op); 1608 ID.AddPointer(Ty); 1609 void *IP = nullptr; 1610 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1611 1612 // If the input value is provably positive, build a zext instead. 1613 if (isKnownNonNegative(Op)) 1614 return getZeroExtendExpr(Op, Ty); 1615 1616 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1617 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1618 // It's possible the bits taken off by the truncate were all sign bits. If 1619 // so, we should be able to simplify this further. 1620 const SCEV *X = ST->getOperand(); 1621 ConstantRange CR = getSignedRange(X); 1622 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1623 unsigned NewBits = getTypeSizeInBits(Ty); 1624 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1625 CR.sextOrTrunc(NewBits))) 1626 return getTruncateOrSignExtend(X, Ty); 1627 } 1628 1629 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1630 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1631 if (SA->getNumOperands() == 2) { 1632 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1633 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1634 if (SMul && SC1) { 1635 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1636 const APInt &C1 = SC1->getValue()->getValue(); 1637 const APInt &C2 = SC2->getValue()->getValue(); 1638 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1639 C2.ugt(C1) && C2.isPowerOf2()) 1640 return getAddExpr(getSignExtendExpr(SC1, Ty), 1641 getSignExtendExpr(SMul, Ty)); 1642 } 1643 } 1644 } 1645 1646 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1647 if (SA->getNoWrapFlags(SCEV::FlagNSW)) { 1648 // If the addition does not sign overflow then we can, by definition, 1649 // commute the sign extension with the addition operation. 1650 SmallVector<const SCEV *, 4> Ops; 1651 for (const auto *Op : SA->operands()) 1652 Ops.push_back(getSignExtendExpr(Op, Ty)); 1653 return getAddExpr(Ops, SCEV::FlagNSW); 1654 } 1655 } 1656 // If the input value is a chrec scev, and we can prove that the value 1657 // did not overflow the old, smaller, value, we can sign extend all of the 1658 // operands (often constants). This allows analysis of something like 1659 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1660 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1661 if (AR->isAffine()) { 1662 const SCEV *Start = AR->getStart(); 1663 const SCEV *Step = AR->getStepRecurrence(*this); 1664 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1665 const Loop *L = AR->getLoop(); 1666 1667 // If we have special knowledge that this addrec won't overflow, 1668 // we don't need to do any further analysis. 1669 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1670 return getAddRecExpr( 1671 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1672 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1673 1674 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1675 // Note that this serves two purposes: It filters out loops that are 1676 // simply not analyzable, and it covers the case where this code is 1677 // being called from within backedge-taken count analysis, such that 1678 // attempting to ask for the backedge-taken count would likely result 1679 // in infinite recursion. In the later case, the analysis code will 1680 // cope with a conservative value, and it will take care to purge 1681 // that value once it has finished. 1682 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1683 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1684 // Manually compute the final value for AR, checking for 1685 // overflow. 1686 1687 // Check whether the backedge-taken count can be losslessly casted to 1688 // the addrec's type. The count is always unsigned. 1689 const SCEV *CastedMaxBECount = 1690 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1691 const SCEV *RecastedMaxBECount = 1692 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1693 if (MaxBECount == RecastedMaxBECount) { 1694 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1695 // Check whether Start+Step*MaxBECount has no signed overflow. 1696 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1697 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1698 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1699 const SCEV *WideMaxBECount = 1700 getZeroExtendExpr(CastedMaxBECount, WideTy); 1701 const SCEV *OperandExtendedAdd = 1702 getAddExpr(WideStart, 1703 getMulExpr(WideMaxBECount, 1704 getSignExtendExpr(Step, WideTy))); 1705 if (SAdd == OperandExtendedAdd) { 1706 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1708 // Return the expression with the addrec on the outside. 1709 return getAddRecExpr( 1710 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1711 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1712 } 1713 // Similar to above, only this time treat the step value as unsigned. 1714 // This covers loops that count up with an unsigned step. 1715 OperandExtendedAdd = 1716 getAddExpr(WideStart, 1717 getMulExpr(WideMaxBECount, 1718 getZeroExtendExpr(Step, WideTy))); 1719 if (SAdd == OperandExtendedAdd) { 1720 // If AR wraps around then 1721 // 1722 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1723 // => SAdd != OperandExtendedAdd 1724 // 1725 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1726 // (SAdd == OperandExtendedAdd => AR is NW) 1727 1728 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1729 1730 // Return the expression with the addrec on the outside. 1731 return getAddRecExpr( 1732 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1733 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1734 } 1735 } 1736 1737 // If the backedge is guarded by a comparison with the pre-inc value 1738 // the addrec is safe. Also, if the entry is guarded by a comparison 1739 // with the start value and the backedge is guarded by a comparison 1740 // with the post-inc value, the addrec is safe. 1741 ICmpInst::Predicate Pred; 1742 const SCEV *OverflowLimit = 1743 getSignedOverflowLimitForStep(Step, &Pred, this); 1744 if (OverflowLimit && 1745 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1746 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1747 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1748 OverflowLimit)))) { 1749 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1750 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1751 return getAddRecExpr( 1752 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1753 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1754 } 1755 } 1756 // If Start and Step are constants, check if we can apply this 1757 // transformation: 1758 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1759 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1760 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1761 if (SC1 && SC2) { 1762 const APInt &C1 = SC1->getValue()->getValue(); 1763 const APInt &C2 = SC2->getValue()->getValue(); 1764 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1765 C2.isPowerOf2()) { 1766 Start = getSignExtendExpr(Start, Ty); 1767 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1768 AR->getNoWrapFlags()); 1769 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1770 } 1771 } 1772 1773 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1774 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1775 return getAddRecExpr( 1776 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1777 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1778 } 1779 } 1780 1781 // The cast wasn't folded; create an explicit cast node. 1782 // Recompute the insert position, as it may have been invalidated. 1783 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1784 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1785 Op, Ty); 1786 UniqueSCEVs.InsertNode(S, IP); 1787 return S; 1788 } 1789 1790 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1791 /// unspecified bits out to the given type. 1792 /// 1793 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1794 Type *Ty) { 1795 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1796 "This is not an extending conversion!"); 1797 assert(isSCEVable(Ty) && 1798 "This is not a conversion to a SCEVable type!"); 1799 Ty = getEffectiveSCEVType(Ty); 1800 1801 // Sign-extend negative constants. 1802 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1803 if (SC->getValue()->getValue().isNegative()) 1804 return getSignExtendExpr(Op, Ty); 1805 1806 // Peel off a truncate cast. 1807 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1808 const SCEV *NewOp = T->getOperand(); 1809 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1810 return getAnyExtendExpr(NewOp, Ty); 1811 return getTruncateOrNoop(NewOp, Ty); 1812 } 1813 1814 // Next try a zext cast. If the cast is folded, use it. 1815 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1816 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1817 return ZExt; 1818 1819 // Next try a sext cast. If the cast is folded, use it. 1820 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1821 if (!isa<SCEVSignExtendExpr>(SExt)) 1822 return SExt; 1823 1824 // Force the cast to be folded into the operands of an addrec. 1825 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1826 SmallVector<const SCEV *, 4> Ops; 1827 for (const SCEV *Op : AR->operands()) 1828 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1829 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1830 } 1831 1832 // If the expression is obviously signed, use the sext cast value. 1833 if (isa<SCEVSMaxExpr>(Op)) 1834 return SExt; 1835 1836 // Absent any other information, use the zext cast value. 1837 return ZExt; 1838 } 1839 1840 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1841 /// a list of operands to be added under the given scale, update the given 1842 /// map. This is a helper function for getAddRecExpr. As an example of 1843 /// what it does, given a sequence of operands that would form an add 1844 /// expression like this: 1845 /// 1846 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1847 /// 1848 /// where A and B are constants, update the map with these values: 1849 /// 1850 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1851 /// 1852 /// and add 13 + A*B*29 to AccumulatedConstant. 1853 /// This will allow getAddRecExpr to produce this: 1854 /// 1855 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1856 /// 1857 /// This form often exposes folding opportunities that are hidden in 1858 /// the original operand list. 1859 /// 1860 /// Return true iff it appears that any interesting folding opportunities 1861 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1862 /// the common case where no interesting opportunities are present, and 1863 /// is also used as a check to avoid infinite recursion. 1864 /// 1865 static bool 1866 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1867 SmallVectorImpl<const SCEV *> &NewOps, 1868 APInt &AccumulatedConstant, 1869 const SCEV *const *Ops, size_t NumOperands, 1870 const APInt &Scale, 1871 ScalarEvolution &SE) { 1872 bool Interesting = false; 1873 1874 // Iterate over the add operands. They are sorted, with constants first. 1875 unsigned i = 0; 1876 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1877 ++i; 1878 // Pull a buried constant out to the outside. 1879 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1880 Interesting = true; 1881 AccumulatedConstant += Scale * C->getValue()->getValue(); 1882 } 1883 1884 // Next comes everything else. We're especially interested in multiplies 1885 // here, but they're in the middle, so just visit the rest with one loop. 1886 for (; i != NumOperands; ++i) { 1887 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1888 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1889 APInt NewScale = 1890 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1891 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1892 // A multiplication of a constant with another add; recurse. 1893 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1894 Interesting |= 1895 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1896 Add->op_begin(), Add->getNumOperands(), 1897 NewScale, SE); 1898 } else { 1899 // A multiplication of a constant with some other value. Update 1900 // the map. 1901 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1902 const SCEV *Key = SE.getMulExpr(MulOps); 1903 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1904 if (Pair.second) { 1905 NewOps.push_back(Pair.first->first); 1906 } else { 1907 Pair.first->second += NewScale; 1908 // The map already had an entry for this value, which may indicate 1909 // a folding opportunity. 1910 Interesting = true; 1911 } 1912 } 1913 } else { 1914 // An ordinary operand. Update the map. 1915 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1916 M.insert(std::make_pair(Ops[i], Scale)); 1917 if (Pair.second) { 1918 NewOps.push_back(Pair.first->first); 1919 } else { 1920 Pair.first->second += Scale; 1921 // The map already had an entry for this value, which may indicate 1922 // a folding opportunity. 1923 Interesting = true; 1924 } 1925 } 1926 } 1927 1928 return Interesting; 1929 } 1930 1931 namespace { 1932 struct APIntCompare { 1933 bool operator()(const APInt &LHS, const APInt &RHS) const { 1934 return LHS.ult(RHS); 1935 } 1936 }; 1937 } 1938 1939 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1940 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1941 // can't-overflow flags for the operation if possible. 1942 static SCEV::NoWrapFlags 1943 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1944 const SmallVectorImpl<const SCEV *> &Ops, 1945 SCEV::NoWrapFlags Flags) { 1946 using namespace std::placeholders; 1947 typedef OverflowingBinaryOperator OBO; 1948 1949 bool CanAnalyze = 1950 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1951 (void)CanAnalyze; 1952 assert(CanAnalyze && "don't call from other places!"); 1953 1954 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1955 SCEV::NoWrapFlags SignOrUnsignWrap = 1956 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1957 1958 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1959 auto IsKnownNonNegative = 1960 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1961 1962 if (SignOrUnsignWrap == SCEV::FlagNSW && 1963 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1964 Flags = 1965 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1966 1967 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1968 1969 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1970 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1971 1972 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1973 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1974 1975 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue(); 1976 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1977 auto NSWRegion = 1978 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap); 1979 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1980 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1981 } 1982 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1983 auto NUWRegion = 1984 ConstantRange::makeNoWrapRegion(Instruction::Add, C, 1985 OBO::NoUnsignedWrap); 1986 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1987 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1988 } 1989 } 1990 1991 return Flags; 1992 } 1993 1994 /// getAddExpr - Get a canonical add expression, or something simpler if 1995 /// possible. 1996 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1997 SCEV::NoWrapFlags Flags) { 1998 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1999 "only nuw or nsw allowed"); 2000 assert(!Ops.empty() && "Cannot get empty add!"); 2001 if (Ops.size() == 1) return Ops[0]; 2002 #ifndef NDEBUG 2003 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2004 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2005 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2006 "SCEVAddExpr operand types don't match!"); 2007 #endif 2008 2009 // Sort by complexity, this groups all similar expression types together. 2010 GroupByComplexity(Ops, &LI); 2011 2012 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2013 2014 // If there are any constants, fold them together. 2015 unsigned Idx = 0; 2016 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2017 ++Idx; 2018 assert(Idx < Ops.size()); 2019 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2020 // We found two constants, fold them together! 2021 Ops[0] = getConstant(LHSC->getValue()->getValue() + 2022 RHSC->getValue()->getValue()); 2023 if (Ops.size() == 2) return Ops[0]; 2024 Ops.erase(Ops.begin()+1); // Erase the folded element 2025 LHSC = cast<SCEVConstant>(Ops[0]); 2026 } 2027 2028 // If we are left with a constant zero being added, strip it off. 2029 if (LHSC->getValue()->isZero()) { 2030 Ops.erase(Ops.begin()); 2031 --Idx; 2032 } 2033 2034 if (Ops.size() == 1) return Ops[0]; 2035 } 2036 2037 // Okay, check to see if the same value occurs in the operand list more than 2038 // once. If so, merge them together into an multiply expression. Since we 2039 // sorted the list, these values are required to be adjacent. 2040 Type *Ty = Ops[0]->getType(); 2041 bool FoundMatch = false; 2042 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2043 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2044 // Scan ahead to count how many equal operands there are. 2045 unsigned Count = 2; 2046 while (i+Count != e && Ops[i+Count] == Ops[i]) 2047 ++Count; 2048 // Merge the values into a multiply. 2049 const SCEV *Scale = getConstant(Ty, Count); 2050 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2051 if (Ops.size() == Count) 2052 return Mul; 2053 Ops[i] = Mul; 2054 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2055 --i; e -= Count - 1; 2056 FoundMatch = true; 2057 } 2058 if (FoundMatch) 2059 return getAddExpr(Ops, Flags); 2060 2061 // Check for truncates. If all the operands are truncated from the same 2062 // type, see if factoring out the truncate would permit the result to be 2063 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2064 // if the contents of the resulting outer trunc fold to something simple. 2065 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2066 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2067 Type *DstType = Trunc->getType(); 2068 Type *SrcType = Trunc->getOperand()->getType(); 2069 SmallVector<const SCEV *, 8> LargeOps; 2070 bool Ok = true; 2071 // Check all the operands to see if they can be represented in the 2072 // source type of the truncate. 2073 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2074 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2075 if (T->getOperand()->getType() != SrcType) { 2076 Ok = false; 2077 break; 2078 } 2079 LargeOps.push_back(T->getOperand()); 2080 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2081 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2082 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2083 SmallVector<const SCEV *, 8> LargeMulOps; 2084 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2085 if (const SCEVTruncateExpr *T = 2086 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2087 if (T->getOperand()->getType() != SrcType) { 2088 Ok = false; 2089 break; 2090 } 2091 LargeMulOps.push_back(T->getOperand()); 2092 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2093 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2094 } else { 2095 Ok = false; 2096 break; 2097 } 2098 } 2099 if (Ok) 2100 LargeOps.push_back(getMulExpr(LargeMulOps)); 2101 } else { 2102 Ok = false; 2103 break; 2104 } 2105 } 2106 if (Ok) { 2107 // Evaluate the expression in the larger type. 2108 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2109 // If it folds to something simple, use it. Otherwise, don't. 2110 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2111 return getTruncateExpr(Fold, DstType); 2112 } 2113 } 2114 2115 // Skip past any other cast SCEVs. 2116 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2117 ++Idx; 2118 2119 // If there are add operands they would be next. 2120 if (Idx < Ops.size()) { 2121 bool DeletedAdd = false; 2122 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2123 // If we have an add, expand the add operands onto the end of the operands 2124 // list. 2125 Ops.erase(Ops.begin()+Idx); 2126 Ops.append(Add->op_begin(), Add->op_end()); 2127 DeletedAdd = true; 2128 } 2129 2130 // If we deleted at least one add, we added operands to the end of the list, 2131 // and they are not necessarily sorted. Recurse to resort and resimplify 2132 // any operands we just acquired. 2133 if (DeletedAdd) 2134 return getAddExpr(Ops); 2135 } 2136 2137 // Skip over the add expression until we get to a multiply. 2138 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2139 ++Idx; 2140 2141 // Check to see if there are any folding opportunities present with 2142 // operands multiplied by constant values. 2143 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2144 uint64_t BitWidth = getTypeSizeInBits(Ty); 2145 DenseMap<const SCEV *, APInt> M; 2146 SmallVector<const SCEV *, 8> NewOps; 2147 APInt AccumulatedConstant(BitWidth, 0); 2148 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2149 Ops.data(), Ops.size(), 2150 APInt(BitWidth, 1), *this)) { 2151 // Some interesting folding opportunity is present, so its worthwhile to 2152 // re-generate the operands list. Group the operands by constant scale, 2153 // to avoid multiplying by the same constant scale multiple times. 2154 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2155 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2156 E = NewOps.end(); I != E; ++I) 2157 MulOpLists[M.find(*I)->second].push_back(*I); 2158 // Re-generate the operands list. 2159 Ops.clear(); 2160 if (AccumulatedConstant != 0) 2161 Ops.push_back(getConstant(AccumulatedConstant)); 2162 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2163 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2164 if (I->first != 0) 2165 Ops.push_back(getMulExpr(getConstant(I->first), 2166 getAddExpr(I->second))); 2167 if (Ops.empty()) 2168 return getZero(Ty); 2169 if (Ops.size() == 1) 2170 return Ops[0]; 2171 return getAddExpr(Ops); 2172 } 2173 } 2174 2175 // If we are adding something to a multiply expression, make sure the 2176 // something is not already an operand of the multiply. If so, merge it into 2177 // the multiply. 2178 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2179 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2180 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2181 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2182 if (isa<SCEVConstant>(MulOpSCEV)) 2183 continue; 2184 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2185 if (MulOpSCEV == Ops[AddOp]) { 2186 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2187 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2188 if (Mul->getNumOperands() != 2) { 2189 // If the multiply has more than two operands, we must get the 2190 // Y*Z term. 2191 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2192 Mul->op_begin()+MulOp); 2193 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2194 InnerMul = getMulExpr(MulOps); 2195 } 2196 const SCEV *One = getOne(Ty); 2197 const SCEV *AddOne = getAddExpr(One, InnerMul); 2198 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2199 if (Ops.size() == 2) return OuterMul; 2200 if (AddOp < Idx) { 2201 Ops.erase(Ops.begin()+AddOp); 2202 Ops.erase(Ops.begin()+Idx-1); 2203 } else { 2204 Ops.erase(Ops.begin()+Idx); 2205 Ops.erase(Ops.begin()+AddOp-1); 2206 } 2207 Ops.push_back(OuterMul); 2208 return getAddExpr(Ops); 2209 } 2210 2211 // Check this multiply against other multiplies being added together. 2212 for (unsigned OtherMulIdx = Idx+1; 2213 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2214 ++OtherMulIdx) { 2215 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2216 // If MulOp occurs in OtherMul, we can fold the two multiplies 2217 // together. 2218 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2219 OMulOp != e; ++OMulOp) 2220 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2221 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2222 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2223 if (Mul->getNumOperands() != 2) { 2224 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2225 Mul->op_begin()+MulOp); 2226 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2227 InnerMul1 = getMulExpr(MulOps); 2228 } 2229 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2230 if (OtherMul->getNumOperands() != 2) { 2231 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2232 OtherMul->op_begin()+OMulOp); 2233 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2234 InnerMul2 = getMulExpr(MulOps); 2235 } 2236 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2237 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2238 if (Ops.size() == 2) return OuterMul; 2239 Ops.erase(Ops.begin()+Idx); 2240 Ops.erase(Ops.begin()+OtherMulIdx-1); 2241 Ops.push_back(OuterMul); 2242 return getAddExpr(Ops); 2243 } 2244 } 2245 } 2246 } 2247 2248 // If there are any add recurrences in the operands list, see if any other 2249 // added values are loop invariant. If so, we can fold them into the 2250 // recurrence. 2251 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2252 ++Idx; 2253 2254 // Scan over all recurrences, trying to fold loop invariants into them. 2255 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2256 // Scan all of the other operands to this add and add them to the vector if 2257 // they are loop invariant w.r.t. the recurrence. 2258 SmallVector<const SCEV *, 8> LIOps; 2259 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2260 const Loop *AddRecLoop = AddRec->getLoop(); 2261 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2262 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2263 LIOps.push_back(Ops[i]); 2264 Ops.erase(Ops.begin()+i); 2265 --i; --e; 2266 } 2267 2268 // If we found some loop invariants, fold them into the recurrence. 2269 if (!LIOps.empty()) { 2270 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2271 LIOps.push_back(AddRec->getStart()); 2272 2273 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2274 AddRec->op_end()); 2275 AddRecOps[0] = getAddExpr(LIOps); 2276 2277 // Build the new addrec. Propagate the NUW and NSW flags if both the 2278 // outer add and the inner addrec are guaranteed to have no overflow. 2279 // Always propagate NW. 2280 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2281 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2282 2283 // If all of the other operands were loop invariant, we are done. 2284 if (Ops.size() == 1) return NewRec; 2285 2286 // Otherwise, add the folded AddRec by the non-invariant parts. 2287 for (unsigned i = 0;; ++i) 2288 if (Ops[i] == AddRec) { 2289 Ops[i] = NewRec; 2290 break; 2291 } 2292 return getAddExpr(Ops); 2293 } 2294 2295 // Okay, if there weren't any loop invariants to be folded, check to see if 2296 // there are multiple AddRec's with the same loop induction variable being 2297 // added together. If so, we can fold them. 2298 for (unsigned OtherIdx = Idx+1; 2299 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2300 ++OtherIdx) 2301 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2302 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2303 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2304 AddRec->op_end()); 2305 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2306 ++OtherIdx) 2307 if (const SCEVAddRecExpr *OtherAddRec = 2308 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2309 if (OtherAddRec->getLoop() == AddRecLoop) { 2310 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2311 i != e; ++i) { 2312 if (i >= AddRecOps.size()) { 2313 AddRecOps.append(OtherAddRec->op_begin()+i, 2314 OtherAddRec->op_end()); 2315 break; 2316 } 2317 AddRecOps[i] = getAddExpr(AddRecOps[i], 2318 OtherAddRec->getOperand(i)); 2319 } 2320 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2321 } 2322 // Step size has changed, so we cannot guarantee no self-wraparound. 2323 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2324 return getAddExpr(Ops); 2325 } 2326 2327 // Otherwise couldn't fold anything into this recurrence. Move onto the 2328 // next one. 2329 } 2330 2331 // Okay, it looks like we really DO need an add expr. Check to see if we 2332 // already have one, otherwise create a new one. 2333 FoldingSetNodeID ID; 2334 ID.AddInteger(scAddExpr); 2335 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2336 ID.AddPointer(Ops[i]); 2337 void *IP = nullptr; 2338 SCEVAddExpr *S = 2339 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2340 if (!S) { 2341 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2342 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2343 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2344 O, Ops.size()); 2345 UniqueSCEVs.InsertNode(S, IP); 2346 } 2347 S->setNoWrapFlags(Flags); 2348 return S; 2349 } 2350 2351 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2352 uint64_t k = i*j; 2353 if (j > 1 && k / j != i) Overflow = true; 2354 return k; 2355 } 2356 2357 /// Compute the result of "n choose k", the binomial coefficient. If an 2358 /// intermediate computation overflows, Overflow will be set and the return will 2359 /// be garbage. Overflow is not cleared on absence of overflow. 2360 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2361 // We use the multiplicative formula: 2362 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2363 // At each iteration, we take the n-th term of the numeral and divide by the 2364 // (k-n)th term of the denominator. This division will always produce an 2365 // integral result, and helps reduce the chance of overflow in the 2366 // intermediate computations. However, we can still overflow even when the 2367 // final result would fit. 2368 2369 if (n == 0 || n == k) return 1; 2370 if (k > n) return 0; 2371 2372 if (k > n/2) 2373 k = n-k; 2374 2375 uint64_t r = 1; 2376 for (uint64_t i = 1; i <= k; ++i) { 2377 r = umul_ov(r, n-(i-1), Overflow); 2378 r /= i; 2379 } 2380 return r; 2381 } 2382 2383 /// Determine if any of the operands in this SCEV are a constant or if 2384 /// any of the add or multiply expressions in this SCEV contain a constant. 2385 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2386 SmallVector<const SCEV *, 4> Ops; 2387 Ops.push_back(StartExpr); 2388 while (!Ops.empty()) { 2389 const SCEV *CurrentExpr = Ops.pop_back_val(); 2390 if (isa<SCEVConstant>(*CurrentExpr)) 2391 return true; 2392 2393 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2394 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2395 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2396 } 2397 } 2398 return false; 2399 } 2400 2401 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2402 /// possible. 2403 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2404 SCEV::NoWrapFlags Flags) { 2405 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2406 "only nuw or nsw allowed"); 2407 assert(!Ops.empty() && "Cannot get empty mul!"); 2408 if (Ops.size() == 1) return Ops[0]; 2409 #ifndef NDEBUG 2410 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2411 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2412 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2413 "SCEVMulExpr operand types don't match!"); 2414 #endif 2415 2416 // Sort by complexity, this groups all similar expression types together. 2417 GroupByComplexity(Ops, &LI); 2418 2419 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2420 2421 // If there are any constants, fold them together. 2422 unsigned Idx = 0; 2423 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2424 2425 // C1*(C2+V) -> C1*C2 + C1*V 2426 if (Ops.size() == 2) 2427 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2428 // If any of Add's ops are Adds or Muls with a constant, 2429 // apply this transformation as well. 2430 if (Add->getNumOperands() == 2) 2431 if (containsConstantSomewhere(Add)) 2432 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2433 getMulExpr(LHSC, Add->getOperand(1))); 2434 2435 ++Idx; 2436 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2437 // We found two constants, fold them together! 2438 ConstantInt *Fold = ConstantInt::get(getContext(), 2439 LHSC->getValue()->getValue() * 2440 RHSC->getValue()->getValue()); 2441 Ops[0] = getConstant(Fold); 2442 Ops.erase(Ops.begin()+1); // Erase the folded element 2443 if (Ops.size() == 1) return Ops[0]; 2444 LHSC = cast<SCEVConstant>(Ops[0]); 2445 } 2446 2447 // If we are left with a constant one being multiplied, strip it off. 2448 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2449 Ops.erase(Ops.begin()); 2450 --Idx; 2451 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2452 // If we have a multiply of zero, it will always be zero. 2453 return Ops[0]; 2454 } else if (Ops[0]->isAllOnesValue()) { 2455 // If we have a mul by -1 of an add, try distributing the -1 among the 2456 // add operands. 2457 if (Ops.size() == 2) { 2458 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2459 SmallVector<const SCEV *, 4> NewOps; 2460 bool AnyFolded = false; 2461 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2462 E = Add->op_end(); I != E; ++I) { 2463 const SCEV *Mul = getMulExpr(Ops[0], *I); 2464 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2465 NewOps.push_back(Mul); 2466 } 2467 if (AnyFolded) 2468 return getAddExpr(NewOps); 2469 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2470 // Negation preserves a recurrence's no self-wrap property. 2471 SmallVector<const SCEV *, 4> Operands; 2472 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2473 E = AddRec->op_end(); I != E; ++I) { 2474 Operands.push_back(getMulExpr(Ops[0], *I)); 2475 } 2476 return getAddRecExpr(Operands, AddRec->getLoop(), 2477 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2478 } 2479 } 2480 } 2481 2482 if (Ops.size() == 1) 2483 return Ops[0]; 2484 } 2485 2486 // Skip over the add expression until we get to a multiply. 2487 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2488 ++Idx; 2489 2490 // If there are mul operands inline them all into this expression. 2491 if (Idx < Ops.size()) { 2492 bool DeletedMul = false; 2493 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2494 // If we have an mul, expand the mul operands onto the end of the operands 2495 // list. 2496 Ops.erase(Ops.begin()+Idx); 2497 Ops.append(Mul->op_begin(), Mul->op_end()); 2498 DeletedMul = true; 2499 } 2500 2501 // If we deleted at least one mul, we added operands to the end of the list, 2502 // and they are not necessarily sorted. Recurse to resort and resimplify 2503 // any operands we just acquired. 2504 if (DeletedMul) 2505 return getMulExpr(Ops); 2506 } 2507 2508 // If there are any add recurrences in the operands list, see if any other 2509 // added values are loop invariant. If so, we can fold them into the 2510 // recurrence. 2511 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2512 ++Idx; 2513 2514 // Scan over all recurrences, trying to fold loop invariants into them. 2515 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2516 // Scan all of the other operands to this mul and add them to the vector if 2517 // they are loop invariant w.r.t. the recurrence. 2518 SmallVector<const SCEV *, 8> LIOps; 2519 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2520 const Loop *AddRecLoop = AddRec->getLoop(); 2521 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2522 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2523 LIOps.push_back(Ops[i]); 2524 Ops.erase(Ops.begin()+i); 2525 --i; --e; 2526 } 2527 2528 // If we found some loop invariants, fold them into the recurrence. 2529 if (!LIOps.empty()) { 2530 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2531 SmallVector<const SCEV *, 4> NewOps; 2532 NewOps.reserve(AddRec->getNumOperands()); 2533 const SCEV *Scale = getMulExpr(LIOps); 2534 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2535 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2536 2537 // Build the new addrec. Propagate the NUW and NSW flags if both the 2538 // outer mul and the inner addrec are guaranteed to have no overflow. 2539 // 2540 // No self-wrap cannot be guaranteed after changing the step size, but 2541 // will be inferred if either NUW or NSW is true. 2542 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2543 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2544 2545 // If all of the other operands were loop invariant, we are done. 2546 if (Ops.size() == 1) return NewRec; 2547 2548 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2549 for (unsigned i = 0;; ++i) 2550 if (Ops[i] == AddRec) { 2551 Ops[i] = NewRec; 2552 break; 2553 } 2554 return getMulExpr(Ops); 2555 } 2556 2557 // Okay, if there weren't any loop invariants to be folded, check to see if 2558 // there are multiple AddRec's with the same loop induction variable being 2559 // multiplied together. If so, we can fold them. 2560 2561 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2562 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2563 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2564 // ]]],+,...up to x=2n}. 2565 // Note that the arguments to choose() are always integers with values 2566 // known at compile time, never SCEV objects. 2567 // 2568 // The implementation avoids pointless extra computations when the two 2569 // addrec's are of different length (mathematically, it's equivalent to 2570 // an infinite stream of zeros on the right). 2571 bool OpsModified = false; 2572 for (unsigned OtherIdx = Idx+1; 2573 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2574 ++OtherIdx) { 2575 const SCEVAddRecExpr *OtherAddRec = 2576 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2577 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2578 continue; 2579 2580 bool Overflow = false; 2581 Type *Ty = AddRec->getType(); 2582 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2583 SmallVector<const SCEV*, 7> AddRecOps; 2584 for (int x = 0, xe = AddRec->getNumOperands() + 2585 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2586 const SCEV *Term = getZero(Ty); 2587 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2588 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2589 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2590 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2591 z < ze && !Overflow; ++z) { 2592 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2593 uint64_t Coeff; 2594 if (LargerThan64Bits) 2595 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2596 else 2597 Coeff = Coeff1*Coeff2; 2598 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2599 const SCEV *Term1 = AddRec->getOperand(y-z); 2600 const SCEV *Term2 = OtherAddRec->getOperand(z); 2601 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2602 } 2603 } 2604 AddRecOps.push_back(Term); 2605 } 2606 if (!Overflow) { 2607 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2608 SCEV::FlagAnyWrap); 2609 if (Ops.size() == 2) return NewAddRec; 2610 Ops[Idx] = NewAddRec; 2611 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2612 OpsModified = true; 2613 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2614 if (!AddRec) 2615 break; 2616 } 2617 } 2618 if (OpsModified) 2619 return getMulExpr(Ops); 2620 2621 // Otherwise couldn't fold anything into this recurrence. Move onto the 2622 // next one. 2623 } 2624 2625 // Okay, it looks like we really DO need an mul expr. Check to see if we 2626 // already have one, otherwise create a new one. 2627 FoldingSetNodeID ID; 2628 ID.AddInteger(scMulExpr); 2629 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2630 ID.AddPointer(Ops[i]); 2631 void *IP = nullptr; 2632 SCEVMulExpr *S = 2633 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2634 if (!S) { 2635 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2636 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2637 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2638 O, Ops.size()); 2639 UniqueSCEVs.InsertNode(S, IP); 2640 } 2641 S->setNoWrapFlags(Flags); 2642 return S; 2643 } 2644 2645 /// getUDivExpr - Get a canonical unsigned division expression, or something 2646 /// simpler if possible. 2647 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2648 const SCEV *RHS) { 2649 assert(getEffectiveSCEVType(LHS->getType()) == 2650 getEffectiveSCEVType(RHS->getType()) && 2651 "SCEVUDivExpr operand types don't match!"); 2652 2653 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2654 if (RHSC->getValue()->equalsInt(1)) 2655 return LHS; // X udiv 1 --> x 2656 // If the denominator is zero, the result of the udiv is undefined. Don't 2657 // try to analyze it, because the resolution chosen here may differ from 2658 // the resolution chosen in other parts of the compiler. 2659 if (!RHSC->getValue()->isZero()) { 2660 // Determine if the division can be folded into the operands of 2661 // its operands. 2662 // TODO: Generalize this to non-constants by using known-bits information. 2663 Type *Ty = LHS->getType(); 2664 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2665 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2666 // For non-power-of-two values, effectively round the value up to the 2667 // nearest power of two. 2668 if (!RHSC->getValue()->getValue().isPowerOf2()) 2669 ++MaxShiftAmt; 2670 IntegerType *ExtTy = 2671 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2672 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2673 if (const SCEVConstant *Step = 2674 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2675 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2676 const APInt &StepInt = Step->getValue()->getValue(); 2677 const APInt &DivInt = RHSC->getValue()->getValue(); 2678 if (!StepInt.urem(DivInt) && 2679 getZeroExtendExpr(AR, ExtTy) == 2680 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2681 getZeroExtendExpr(Step, ExtTy), 2682 AR->getLoop(), SCEV::FlagAnyWrap)) { 2683 SmallVector<const SCEV *, 4> Operands; 2684 for (const SCEV *Op : AR->operands()) 2685 Operands.push_back(getUDivExpr(Op, RHS)); 2686 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2687 } 2688 /// Get a canonical UDivExpr for a recurrence. 2689 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2690 // We can currently only fold X%N if X is constant. 2691 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2692 if (StartC && !DivInt.urem(StepInt) && 2693 getZeroExtendExpr(AR, ExtTy) == 2694 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2695 getZeroExtendExpr(Step, ExtTy), 2696 AR->getLoop(), SCEV::FlagAnyWrap)) { 2697 const APInt &StartInt = StartC->getValue()->getValue(); 2698 const APInt &StartRem = StartInt.urem(StepInt); 2699 if (StartRem != 0) 2700 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2701 AR->getLoop(), SCEV::FlagNW); 2702 } 2703 } 2704 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2705 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2706 SmallVector<const SCEV *, 4> Operands; 2707 for (const SCEV *Op : M->operands()) 2708 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2709 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2710 // Find an operand that's safely divisible. 2711 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2712 const SCEV *Op = M->getOperand(i); 2713 const SCEV *Div = getUDivExpr(Op, RHSC); 2714 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2715 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2716 M->op_end()); 2717 Operands[i] = Div; 2718 return getMulExpr(Operands); 2719 } 2720 } 2721 } 2722 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2723 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2724 SmallVector<const SCEV *, 4> Operands; 2725 for (const SCEV *Op : A->operands()) 2726 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2727 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2728 Operands.clear(); 2729 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2730 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2731 if (isa<SCEVUDivExpr>(Op) || 2732 getMulExpr(Op, RHS) != A->getOperand(i)) 2733 break; 2734 Operands.push_back(Op); 2735 } 2736 if (Operands.size() == A->getNumOperands()) 2737 return getAddExpr(Operands); 2738 } 2739 } 2740 2741 // Fold if both operands are constant. 2742 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2743 Constant *LHSCV = LHSC->getValue(); 2744 Constant *RHSCV = RHSC->getValue(); 2745 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2746 RHSCV))); 2747 } 2748 } 2749 } 2750 2751 FoldingSetNodeID ID; 2752 ID.AddInteger(scUDivExpr); 2753 ID.AddPointer(LHS); 2754 ID.AddPointer(RHS); 2755 void *IP = nullptr; 2756 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2757 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2758 LHS, RHS); 2759 UniqueSCEVs.InsertNode(S, IP); 2760 return S; 2761 } 2762 2763 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2764 APInt A = C1->getValue()->getValue().abs(); 2765 APInt B = C2->getValue()->getValue().abs(); 2766 uint32_t ABW = A.getBitWidth(); 2767 uint32_t BBW = B.getBitWidth(); 2768 2769 if (ABW > BBW) 2770 B = B.zext(ABW); 2771 else if (ABW < BBW) 2772 A = A.zext(BBW); 2773 2774 return APIntOps::GreatestCommonDivisor(A, B); 2775 } 2776 2777 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2778 /// something simpler if possible. There is no representation for an exact udiv 2779 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2780 /// We can't do this when it's not exact because the udiv may be clearing bits. 2781 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2782 const SCEV *RHS) { 2783 // TODO: we could try to find factors in all sorts of things, but for now we 2784 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2785 // end of this file for inspiration. 2786 2787 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2788 if (!Mul) 2789 return getUDivExpr(LHS, RHS); 2790 2791 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2792 // If the mulexpr multiplies by a constant, then that constant must be the 2793 // first element of the mulexpr. 2794 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2795 if (LHSCst == RHSCst) { 2796 SmallVector<const SCEV *, 2> Operands; 2797 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2798 return getMulExpr(Operands); 2799 } 2800 2801 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2802 // that there's a factor provided by one of the other terms. We need to 2803 // check. 2804 APInt Factor = gcd(LHSCst, RHSCst); 2805 if (!Factor.isIntN(1)) { 2806 LHSCst = cast<SCEVConstant>( 2807 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2808 RHSCst = cast<SCEVConstant>( 2809 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2810 SmallVector<const SCEV *, 2> Operands; 2811 Operands.push_back(LHSCst); 2812 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2813 LHS = getMulExpr(Operands); 2814 RHS = RHSCst; 2815 Mul = dyn_cast<SCEVMulExpr>(LHS); 2816 if (!Mul) 2817 return getUDivExactExpr(LHS, RHS); 2818 } 2819 } 2820 } 2821 2822 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2823 if (Mul->getOperand(i) == RHS) { 2824 SmallVector<const SCEV *, 2> Operands; 2825 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2826 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2827 return getMulExpr(Operands); 2828 } 2829 } 2830 2831 return getUDivExpr(LHS, RHS); 2832 } 2833 2834 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2835 /// Simplify the expression as much as possible. 2836 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2837 const Loop *L, 2838 SCEV::NoWrapFlags Flags) { 2839 SmallVector<const SCEV *, 4> Operands; 2840 Operands.push_back(Start); 2841 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2842 if (StepChrec->getLoop() == L) { 2843 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2844 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2845 } 2846 2847 Operands.push_back(Step); 2848 return getAddRecExpr(Operands, L, Flags); 2849 } 2850 2851 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2852 /// Simplify the expression as much as possible. 2853 const SCEV * 2854 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2855 const Loop *L, SCEV::NoWrapFlags Flags) { 2856 if (Operands.size() == 1) return Operands[0]; 2857 #ifndef NDEBUG 2858 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2859 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2860 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2861 "SCEVAddRecExpr operand types don't match!"); 2862 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2863 assert(isLoopInvariant(Operands[i], L) && 2864 "SCEVAddRecExpr operand is not loop-invariant!"); 2865 #endif 2866 2867 if (Operands.back()->isZero()) { 2868 Operands.pop_back(); 2869 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2870 } 2871 2872 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2873 // use that information to infer NUW and NSW flags. However, computing a 2874 // BE count requires calling getAddRecExpr, so we may not yet have a 2875 // meaningful BE count at this point (and if we don't, we'd be stuck 2876 // with a SCEVCouldNotCompute as the cached BE count). 2877 2878 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2879 2880 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2881 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2882 const Loop *NestedLoop = NestedAR->getLoop(); 2883 if (L->contains(NestedLoop) 2884 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2885 : (!NestedLoop->contains(L) && 2886 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2887 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2888 NestedAR->op_end()); 2889 Operands[0] = NestedAR->getStart(); 2890 // AddRecs require their operands be loop-invariant with respect to their 2891 // loops. Don't perform this transformation if it would break this 2892 // requirement. 2893 bool AllInvariant = 2894 std::all_of(Operands.begin(), Operands.end(), 2895 [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2896 2897 if (AllInvariant) { 2898 // Create a recurrence for the outer loop with the same step size. 2899 // 2900 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2901 // inner recurrence has the same property. 2902 SCEV::NoWrapFlags OuterFlags = 2903 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2904 2905 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2906 AllInvariant = std::all_of( 2907 NestedOperands.begin(), NestedOperands.end(), 2908 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); }); 2909 2910 if (AllInvariant) { 2911 // Ok, both add recurrences are valid after the transformation. 2912 // 2913 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2914 // the outer recurrence has the same property. 2915 SCEV::NoWrapFlags InnerFlags = 2916 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2917 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2918 } 2919 } 2920 // Reset Operands to its original state. 2921 Operands[0] = NestedAR; 2922 } 2923 } 2924 2925 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2926 // already have one, otherwise create a new one. 2927 FoldingSetNodeID ID; 2928 ID.AddInteger(scAddRecExpr); 2929 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2930 ID.AddPointer(Operands[i]); 2931 ID.AddPointer(L); 2932 void *IP = nullptr; 2933 SCEVAddRecExpr *S = 2934 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2935 if (!S) { 2936 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2937 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2938 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2939 O, Operands.size(), L); 2940 UniqueSCEVs.InsertNode(S, IP); 2941 } 2942 S->setNoWrapFlags(Flags); 2943 return S; 2944 } 2945 2946 const SCEV * 2947 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2948 const SmallVectorImpl<const SCEV *> &IndexExprs, 2949 bool InBounds) { 2950 // getSCEV(Base)->getType() has the same address space as Base->getType() 2951 // because SCEV::getType() preserves the address space. 2952 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2953 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2954 // instruction to its SCEV, because the Instruction may be guarded by control 2955 // flow and the no-overflow bits may not be valid for the expression in any 2956 // context. This can be fixed similarly to how these flags are handled for 2957 // adds. 2958 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2959 2960 const SCEV *TotalOffset = getZero(IntPtrTy); 2961 // The address space is unimportant. The first thing we do on CurTy is getting 2962 // its element type. 2963 Type *CurTy = PointerType::getUnqual(PointeeType); 2964 for (const SCEV *IndexExpr : IndexExprs) { 2965 // Compute the (potentially symbolic) offset in bytes for this index. 2966 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2967 // For a struct, add the member offset. 2968 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2969 unsigned FieldNo = Index->getZExtValue(); 2970 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2971 2972 // Add the field offset to the running total offset. 2973 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2974 2975 // Update CurTy to the type of the field at Index. 2976 CurTy = STy->getTypeAtIndex(Index); 2977 } else { 2978 // Update CurTy to its element type. 2979 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2980 // For an array, add the element offset, explicitly scaled. 2981 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2982 // Getelementptr indices are signed. 2983 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2984 2985 // Multiply the index by the element size to compute the element offset. 2986 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2987 2988 // Add the element offset to the running total offset. 2989 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2990 } 2991 } 2992 2993 // Add the total offset from all the GEP indices to the base. 2994 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2995 } 2996 2997 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2998 const SCEV *RHS) { 2999 SmallVector<const SCEV *, 2> Ops; 3000 Ops.push_back(LHS); 3001 Ops.push_back(RHS); 3002 return getSMaxExpr(Ops); 3003 } 3004 3005 const SCEV * 3006 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3007 assert(!Ops.empty() && "Cannot get empty smax!"); 3008 if (Ops.size() == 1) return Ops[0]; 3009 #ifndef NDEBUG 3010 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3011 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3012 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3013 "SCEVSMaxExpr operand types don't match!"); 3014 #endif 3015 3016 // Sort by complexity, this groups all similar expression types together. 3017 GroupByComplexity(Ops, &LI); 3018 3019 // If there are any constants, fold them together. 3020 unsigned Idx = 0; 3021 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3022 ++Idx; 3023 assert(Idx < Ops.size()); 3024 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3025 // We found two constants, fold them together! 3026 ConstantInt *Fold = ConstantInt::get(getContext(), 3027 APIntOps::smax(LHSC->getValue()->getValue(), 3028 RHSC->getValue()->getValue())); 3029 Ops[0] = getConstant(Fold); 3030 Ops.erase(Ops.begin()+1); // Erase the folded element 3031 if (Ops.size() == 1) return Ops[0]; 3032 LHSC = cast<SCEVConstant>(Ops[0]); 3033 } 3034 3035 // If we are left with a constant minimum-int, strip it off. 3036 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3037 Ops.erase(Ops.begin()); 3038 --Idx; 3039 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3040 // If we have an smax with a constant maximum-int, it will always be 3041 // maximum-int. 3042 return Ops[0]; 3043 } 3044 3045 if (Ops.size() == 1) return Ops[0]; 3046 } 3047 3048 // Find the first SMax 3049 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3050 ++Idx; 3051 3052 // Check to see if one of the operands is an SMax. If so, expand its operands 3053 // onto our operand list, and recurse to simplify. 3054 if (Idx < Ops.size()) { 3055 bool DeletedSMax = false; 3056 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3057 Ops.erase(Ops.begin()+Idx); 3058 Ops.append(SMax->op_begin(), SMax->op_end()); 3059 DeletedSMax = true; 3060 } 3061 3062 if (DeletedSMax) 3063 return getSMaxExpr(Ops); 3064 } 3065 3066 // Okay, check to see if the same value occurs in the operand list twice. If 3067 // so, delete one. Since we sorted the list, these values are required to 3068 // be adjacent. 3069 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3070 // X smax Y smax Y --> X smax Y 3071 // X smax Y --> X, if X is always greater than Y 3072 if (Ops[i] == Ops[i+1] || 3073 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3074 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3075 --i; --e; 3076 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3077 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3078 --i; --e; 3079 } 3080 3081 if (Ops.size() == 1) return Ops[0]; 3082 3083 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3084 3085 // Okay, it looks like we really DO need an smax expr. Check to see if we 3086 // already have one, otherwise create a new one. 3087 FoldingSetNodeID ID; 3088 ID.AddInteger(scSMaxExpr); 3089 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3090 ID.AddPointer(Ops[i]); 3091 void *IP = nullptr; 3092 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3093 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3094 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3095 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3096 O, Ops.size()); 3097 UniqueSCEVs.InsertNode(S, IP); 3098 return S; 3099 } 3100 3101 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3102 const SCEV *RHS) { 3103 SmallVector<const SCEV *, 2> Ops; 3104 Ops.push_back(LHS); 3105 Ops.push_back(RHS); 3106 return getUMaxExpr(Ops); 3107 } 3108 3109 const SCEV * 3110 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3111 assert(!Ops.empty() && "Cannot get empty umax!"); 3112 if (Ops.size() == 1) return Ops[0]; 3113 #ifndef NDEBUG 3114 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3115 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3116 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3117 "SCEVUMaxExpr operand types don't match!"); 3118 #endif 3119 3120 // Sort by complexity, this groups all similar expression types together. 3121 GroupByComplexity(Ops, &LI); 3122 3123 // If there are any constants, fold them together. 3124 unsigned Idx = 0; 3125 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3126 ++Idx; 3127 assert(Idx < Ops.size()); 3128 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3129 // We found two constants, fold them together! 3130 ConstantInt *Fold = ConstantInt::get(getContext(), 3131 APIntOps::umax(LHSC->getValue()->getValue(), 3132 RHSC->getValue()->getValue())); 3133 Ops[0] = getConstant(Fold); 3134 Ops.erase(Ops.begin()+1); // Erase the folded element 3135 if (Ops.size() == 1) return Ops[0]; 3136 LHSC = cast<SCEVConstant>(Ops[0]); 3137 } 3138 3139 // If we are left with a constant minimum-int, strip it off. 3140 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3141 Ops.erase(Ops.begin()); 3142 --Idx; 3143 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3144 // If we have an umax with a constant maximum-int, it will always be 3145 // maximum-int. 3146 return Ops[0]; 3147 } 3148 3149 if (Ops.size() == 1) return Ops[0]; 3150 } 3151 3152 // Find the first UMax 3153 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3154 ++Idx; 3155 3156 // Check to see if one of the operands is a UMax. If so, expand its operands 3157 // onto our operand list, and recurse to simplify. 3158 if (Idx < Ops.size()) { 3159 bool DeletedUMax = false; 3160 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3161 Ops.erase(Ops.begin()+Idx); 3162 Ops.append(UMax->op_begin(), UMax->op_end()); 3163 DeletedUMax = true; 3164 } 3165 3166 if (DeletedUMax) 3167 return getUMaxExpr(Ops); 3168 } 3169 3170 // Okay, check to see if the same value occurs in the operand list twice. If 3171 // so, delete one. Since we sorted the list, these values are required to 3172 // be adjacent. 3173 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3174 // X umax Y umax Y --> X umax Y 3175 // X umax Y --> X, if X is always greater than Y 3176 if (Ops[i] == Ops[i+1] || 3177 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3178 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3179 --i; --e; 3180 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3181 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3182 --i; --e; 3183 } 3184 3185 if (Ops.size() == 1) return Ops[0]; 3186 3187 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3188 3189 // Okay, it looks like we really DO need a umax expr. Check to see if we 3190 // already have one, otherwise create a new one. 3191 FoldingSetNodeID ID; 3192 ID.AddInteger(scUMaxExpr); 3193 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3194 ID.AddPointer(Ops[i]); 3195 void *IP = nullptr; 3196 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3197 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3198 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3199 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3200 O, Ops.size()); 3201 UniqueSCEVs.InsertNode(S, IP); 3202 return S; 3203 } 3204 3205 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3206 const SCEV *RHS) { 3207 // ~smax(~x, ~y) == smin(x, y). 3208 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3209 } 3210 3211 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3212 const SCEV *RHS) { 3213 // ~umax(~x, ~y) == umin(x, y) 3214 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3215 } 3216 3217 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3218 // We can bypass creating a target-independent 3219 // constant expression and then folding it back into a ConstantInt. 3220 // This is just a compile-time optimization. 3221 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3222 } 3223 3224 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3225 StructType *STy, 3226 unsigned FieldNo) { 3227 // We can bypass creating a target-independent 3228 // constant expression and then folding it back into a ConstantInt. 3229 // This is just a compile-time optimization. 3230 return getConstant( 3231 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3232 } 3233 3234 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3235 // Don't attempt to do anything other than create a SCEVUnknown object 3236 // here. createSCEV only calls getUnknown after checking for all other 3237 // interesting possibilities, and any other code that calls getUnknown 3238 // is doing so in order to hide a value from SCEV canonicalization. 3239 3240 FoldingSetNodeID ID; 3241 ID.AddInteger(scUnknown); 3242 ID.AddPointer(V); 3243 void *IP = nullptr; 3244 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3245 assert(cast<SCEVUnknown>(S)->getValue() == V && 3246 "Stale SCEVUnknown in uniquing map!"); 3247 return S; 3248 } 3249 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3250 FirstUnknown); 3251 FirstUnknown = cast<SCEVUnknown>(S); 3252 UniqueSCEVs.InsertNode(S, IP); 3253 return S; 3254 } 3255 3256 //===----------------------------------------------------------------------===// 3257 // Basic SCEV Analysis and PHI Idiom Recognition Code 3258 // 3259 3260 /// isSCEVable - Test if values of the given type are analyzable within 3261 /// the SCEV framework. This primarily includes integer types, and it 3262 /// can optionally include pointer types if the ScalarEvolution class 3263 /// has access to target-specific information. 3264 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3265 // Integers and pointers are always SCEVable. 3266 return Ty->isIntegerTy() || Ty->isPointerTy(); 3267 } 3268 3269 /// getTypeSizeInBits - Return the size in bits of the specified type, 3270 /// for which isSCEVable must return true. 3271 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3272 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3273 return getDataLayout().getTypeSizeInBits(Ty); 3274 } 3275 3276 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3277 /// the given type and which represents how SCEV will treat the given 3278 /// type, for which isSCEVable must return true. For pointer types, 3279 /// this is the pointer-sized integer type. 3280 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3281 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3282 3283 if (Ty->isIntegerTy()) 3284 return Ty; 3285 3286 // The only other support type is pointer. 3287 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3288 return getDataLayout().getIntPtrType(Ty); 3289 } 3290 3291 const SCEV *ScalarEvolution::getCouldNotCompute() { 3292 return CouldNotCompute.get(); 3293 } 3294 3295 namespace { 3296 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3297 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3298 // is set iff if find such SCEVUnknown. 3299 // 3300 struct FindInvalidSCEVUnknown { 3301 bool FindOne; 3302 FindInvalidSCEVUnknown() { FindOne = false; } 3303 bool follow(const SCEV *S) { 3304 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3305 case scConstant: 3306 return false; 3307 case scUnknown: 3308 if (!cast<SCEVUnknown>(S)->getValue()) 3309 FindOne = true; 3310 return false; 3311 default: 3312 return true; 3313 } 3314 } 3315 bool isDone() const { return FindOne; } 3316 }; 3317 } 3318 3319 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3320 FindInvalidSCEVUnknown F; 3321 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3322 ST.visitAll(S); 3323 3324 return !F.FindOne; 3325 } 3326 3327 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3328 /// expression and create a new one. 3329 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3330 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3331 3332 const SCEV *S = getExistingSCEV(V); 3333 if (S == nullptr) { 3334 S = createSCEV(V); 3335 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3336 } 3337 return S; 3338 } 3339 3340 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3341 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3342 3343 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3344 if (I != ValueExprMap.end()) { 3345 const SCEV *S = I->second; 3346 if (checkValidity(S)) 3347 return S; 3348 ValueExprMap.erase(I); 3349 } 3350 return nullptr; 3351 } 3352 3353 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3354 /// 3355 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3356 SCEV::NoWrapFlags Flags) { 3357 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3358 return getConstant( 3359 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3360 3361 Type *Ty = V->getType(); 3362 Ty = getEffectiveSCEVType(Ty); 3363 return getMulExpr( 3364 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3365 } 3366 3367 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3368 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3369 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3370 return getConstant( 3371 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3372 3373 Type *Ty = V->getType(); 3374 Ty = getEffectiveSCEVType(Ty); 3375 const SCEV *AllOnes = 3376 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3377 return getMinusSCEV(AllOnes, V); 3378 } 3379 3380 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3381 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3382 SCEV::NoWrapFlags Flags) { 3383 // Fast path: X - X --> 0. 3384 if (LHS == RHS) 3385 return getZero(LHS->getType()); 3386 3387 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3388 // makes it so that we cannot make much use of NUW. 3389 auto AddFlags = SCEV::FlagAnyWrap; 3390 const bool RHSIsNotMinSigned = 3391 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3392 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3393 // Let M be the minimum representable signed value. Then (-1)*RHS 3394 // signed-wraps if and only if RHS is M. That can happen even for 3395 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3396 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3397 // (-1)*RHS, we need to prove that RHS != M. 3398 // 3399 // If LHS is non-negative and we know that LHS - RHS does not 3400 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3401 // either by proving that RHS > M or that LHS >= 0. 3402 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3403 AddFlags = SCEV::FlagNSW; 3404 } 3405 } 3406 3407 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3408 // RHS is NSW and LHS >= 0. 3409 // 3410 // The difficulty here is that the NSW flag may have been proven 3411 // relative to a loop that is to be found in a recurrence in LHS and 3412 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3413 // larger scope than intended. 3414 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3415 3416 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3417 } 3418 3419 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3420 /// input value to the specified type. If the type must be extended, it is zero 3421 /// extended. 3422 const SCEV * 3423 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3424 Type *SrcTy = V->getType(); 3425 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3426 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3427 "Cannot truncate or zero extend with non-integer arguments!"); 3428 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3429 return V; // No conversion 3430 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3431 return getTruncateExpr(V, Ty); 3432 return getZeroExtendExpr(V, Ty); 3433 } 3434 3435 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3436 /// input value to the specified type. If the type must be extended, it is sign 3437 /// extended. 3438 const SCEV * 3439 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3440 Type *Ty) { 3441 Type *SrcTy = V->getType(); 3442 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3443 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3444 "Cannot truncate or zero extend with non-integer arguments!"); 3445 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3446 return V; // No conversion 3447 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3448 return getTruncateExpr(V, Ty); 3449 return getSignExtendExpr(V, Ty); 3450 } 3451 3452 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3453 /// input value to the specified type. If the type must be extended, it is zero 3454 /// extended. The conversion must not be narrowing. 3455 const SCEV * 3456 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3457 Type *SrcTy = V->getType(); 3458 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3459 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3460 "Cannot noop or zero extend with non-integer arguments!"); 3461 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3462 "getNoopOrZeroExtend cannot truncate!"); 3463 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3464 return V; // No conversion 3465 return getZeroExtendExpr(V, Ty); 3466 } 3467 3468 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3469 /// input value to the specified type. If the type must be extended, it is sign 3470 /// extended. The conversion must not be narrowing. 3471 const SCEV * 3472 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3473 Type *SrcTy = V->getType(); 3474 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3475 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3476 "Cannot noop or sign extend with non-integer arguments!"); 3477 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3478 "getNoopOrSignExtend cannot truncate!"); 3479 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3480 return V; // No conversion 3481 return getSignExtendExpr(V, Ty); 3482 } 3483 3484 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3485 /// the input value to the specified type. If the type must be extended, 3486 /// it is extended with unspecified bits. The conversion must not be 3487 /// narrowing. 3488 const SCEV * 3489 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3490 Type *SrcTy = V->getType(); 3491 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3492 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3493 "Cannot noop or any extend with non-integer arguments!"); 3494 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3495 "getNoopOrAnyExtend cannot truncate!"); 3496 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3497 return V; // No conversion 3498 return getAnyExtendExpr(V, Ty); 3499 } 3500 3501 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3502 /// input value to the specified type. The conversion must not be widening. 3503 const SCEV * 3504 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3505 Type *SrcTy = V->getType(); 3506 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3507 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3508 "Cannot truncate or noop with non-integer arguments!"); 3509 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3510 "getTruncateOrNoop cannot extend!"); 3511 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3512 return V; // No conversion 3513 return getTruncateExpr(V, Ty); 3514 } 3515 3516 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3517 /// the types using zero-extension, and then perform a umax operation 3518 /// with them. 3519 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3520 const SCEV *RHS) { 3521 const SCEV *PromotedLHS = LHS; 3522 const SCEV *PromotedRHS = RHS; 3523 3524 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3525 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3526 else 3527 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3528 3529 return getUMaxExpr(PromotedLHS, PromotedRHS); 3530 } 3531 3532 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3533 /// the types using zero-extension, and then perform a umin operation 3534 /// with them. 3535 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3536 const SCEV *RHS) { 3537 const SCEV *PromotedLHS = LHS; 3538 const SCEV *PromotedRHS = RHS; 3539 3540 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3541 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3542 else 3543 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3544 3545 return getUMinExpr(PromotedLHS, PromotedRHS); 3546 } 3547 3548 /// getPointerBase - Transitively follow the chain of pointer-type operands 3549 /// until reaching a SCEV that does not have a single pointer operand. This 3550 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3551 /// but corner cases do exist. 3552 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3553 // A pointer operand may evaluate to a nonpointer expression, such as null. 3554 if (!V->getType()->isPointerTy()) 3555 return V; 3556 3557 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3558 return getPointerBase(Cast->getOperand()); 3559 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3560 const SCEV *PtrOp = nullptr; 3561 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3562 I != E; ++I) { 3563 if ((*I)->getType()->isPointerTy()) { 3564 // Cannot find the base of an expression with multiple pointer operands. 3565 if (PtrOp) 3566 return V; 3567 PtrOp = *I; 3568 } 3569 } 3570 if (!PtrOp) 3571 return V; 3572 return getPointerBase(PtrOp); 3573 } 3574 return V; 3575 } 3576 3577 /// PushDefUseChildren - Push users of the given Instruction 3578 /// onto the given Worklist. 3579 static void 3580 PushDefUseChildren(Instruction *I, 3581 SmallVectorImpl<Instruction *> &Worklist) { 3582 // Push the def-use children onto the Worklist stack. 3583 for (User *U : I->users()) 3584 Worklist.push_back(cast<Instruction>(U)); 3585 } 3586 3587 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3588 /// instructions that depend on the given instruction and removes them from 3589 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3590 /// resolution. 3591 void 3592 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3593 SmallVector<Instruction *, 16> Worklist; 3594 PushDefUseChildren(PN, Worklist); 3595 3596 SmallPtrSet<Instruction *, 8> Visited; 3597 Visited.insert(PN); 3598 while (!Worklist.empty()) { 3599 Instruction *I = Worklist.pop_back_val(); 3600 if (!Visited.insert(I).second) 3601 continue; 3602 3603 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3604 if (It != ValueExprMap.end()) { 3605 const SCEV *Old = It->second; 3606 3607 // Short-circuit the def-use traversal if the symbolic name 3608 // ceases to appear in expressions. 3609 if (Old != SymName && !hasOperand(Old, SymName)) 3610 continue; 3611 3612 // SCEVUnknown for a PHI either means that it has an unrecognized 3613 // structure, it's a PHI that's in the progress of being computed 3614 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3615 // additional loop trip count information isn't going to change anything. 3616 // In the second case, createNodeForPHI will perform the necessary 3617 // updates on its own when it gets to that point. In the third, we do 3618 // want to forget the SCEVUnknown. 3619 if (!isa<PHINode>(I) || 3620 !isa<SCEVUnknown>(Old) || 3621 (I != PN && Old == SymName)) { 3622 forgetMemoizedResults(Old); 3623 ValueExprMap.erase(It); 3624 } 3625 } 3626 3627 PushDefUseChildren(I, Worklist); 3628 } 3629 } 3630 3631 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3632 const Loop *L = LI.getLoopFor(PN->getParent()); 3633 if (!L || L->getHeader() != PN->getParent()) 3634 return nullptr; 3635 3636 // The loop may have multiple entrances or multiple exits; we can analyze 3637 // this phi as an addrec if it has a unique entry value and a unique 3638 // backedge value. 3639 Value *BEValueV = nullptr, *StartValueV = nullptr; 3640 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3641 Value *V = PN->getIncomingValue(i); 3642 if (L->contains(PN->getIncomingBlock(i))) { 3643 if (!BEValueV) { 3644 BEValueV = V; 3645 } else if (BEValueV != V) { 3646 BEValueV = nullptr; 3647 break; 3648 } 3649 } else if (!StartValueV) { 3650 StartValueV = V; 3651 } else if (StartValueV != V) { 3652 StartValueV = nullptr; 3653 break; 3654 } 3655 } 3656 if (BEValueV && StartValueV) { 3657 // While we are analyzing this PHI node, handle its value symbolically. 3658 const SCEV *SymbolicName = getUnknown(PN); 3659 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3660 "PHI node already processed?"); 3661 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3662 3663 // Using this symbolic name for the PHI, analyze the value coming around 3664 // the back-edge. 3665 const SCEV *BEValue = getSCEV(BEValueV); 3666 3667 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3668 // has a special value for the first iteration of the loop. 3669 3670 // If the value coming around the backedge is an add with the symbolic 3671 // value we just inserted, then we found a simple induction variable! 3672 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3673 // If there is a single occurrence of the symbolic value, replace it 3674 // with a recurrence. 3675 unsigned FoundIndex = Add->getNumOperands(); 3676 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3677 if (Add->getOperand(i) == SymbolicName) 3678 if (FoundIndex == e) { 3679 FoundIndex = i; 3680 break; 3681 } 3682 3683 if (FoundIndex != Add->getNumOperands()) { 3684 // Create an add with everything but the specified operand. 3685 SmallVector<const SCEV *, 8> Ops; 3686 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3687 if (i != FoundIndex) 3688 Ops.push_back(Add->getOperand(i)); 3689 const SCEV *Accum = getAddExpr(Ops); 3690 3691 // This is not a valid addrec if the step amount is varying each 3692 // loop iteration, but is not itself an addrec in this loop. 3693 if (isLoopInvariant(Accum, L) || 3694 (isa<SCEVAddRecExpr>(Accum) && 3695 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3696 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3697 3698 // If the increment doesn't overflow, then neither the addrec nor 3699 // the post-increment will overflow. 3700 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3701 if (OBO->getOperand(0) == PN) { 3702 if (OBO->hasNoUnsignedWrap()) 3703 Flags = setFlags(Flags, SCEV::FlagNUW); 3704 if (OBO->hasNoSignedWrap()) 3705 Flags = setFlags(Flags, SCEV::FlagNSW); 3706 } 3707 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3708 // If the increment is an inbounds GEP, then we know the address 3709 // space cannot be wrapped around. We cannot make any guarantee 3710 // about signed or unsigned overflow because pointers are 3711 // unsigned but we may have a negative index from the base 3712 // pointer. We can guarantee that no unsigned wrap occurs if the 3713 // indices form a positive value. 3714 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3715 Flags = setFlags(Flags, SCEV::FlagNW); 3716 3717 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3718 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3719 Flags = setFlags(Flags, SCEV::FlagNUW); 3720 } 3721 3722 // We cannot transfer nuw and nsw flags from subtraction 3723 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3724 // for instance. 3725 } 3726 3727 const SCEV *StartVal = getSCEV(StartValueV); 3728 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3729 3730 // Since the no-wrap flags are on the increment, they apply to the 3731 // post-incremented value as well. 3732 if (isLoopInvariant(Accum, L)) 3733 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3734 3735 // Okay, for the entire analysis of this edge we assumed the PHI 3736 // to be symbolic. We now need to go back and purge all of the 3737 // entries for the scalars that use the symbolic expression. 3738 ForgetSymbolicName(PN, SymbolicName); 3739 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3740 return PHISCEV; 3741 } 3742 } 3743 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 3744 // Otherwise, this could be a loop like this: 3745 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3746 // In this case, j = {1,+,1} and BEValue is j. 3747 // Because the other in-value of i (0) fits the evolution of BEValue 3748 // i really is an addrec evolution. 3749 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3750 const SCEV *StartVal = getSCEV(StartValueV); 3751 3752 // If StartVal = j.start - j.stride, we can use StartVal as the 3753 // initial step of the addrec evolution. 3754 if (StartVal == 3755 getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) { 3756 // FIXME: For constant StartVal, we should be able to infer 3757 // no-wrap flags. 3758 const SCEV *PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1), 3759 L, SCEV::FlagAnyWrap); 3760 3761 // Okay, for the entire analysis of this edge we assumed the PHI 3762 // to be symbolic. We now need to go back and purge all of the 3763 // entries for the scalars that use the symbolic expression. 3764 ForgetSymbolicName(PN, SymbolicName); 3765 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3766 return PHISCEV; 3767 } 3768 } 3769 } 3770 } 3771 3772 return nullptr; 3773 } 3774 3775 // Checks if the SCEV S is available at BB. S is considered available at BB 3776 // if S can be materialized at BB without introducing a fault. 3777 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3778 BasicBlock *BB) { 3779 struct CheckAvailable { 3780 bool TraversalDone = false; 3781 bool Available = true; 3782 3783 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3784 BasicBlock *BB = nullptr; 3785 DominatorTree &DT; 3786 3787 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3788 : L(L), BB(BB), DT(DT) {} 3789 3790 bool setUnavailable() { 3791 TraversalDone = true; 3792 Available = false; 3793 return false; 3794 } 3795 3796 bool follow(const SCEV *S) { 3797 switch (S->getSCEVType()) { 3798 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3799 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3800 // These expressions are available if their operand(s) is/are. 3801 return true; 3802 3803 case scAddRecExpr: { 3804 // We allow add recurrences that are on the loop BB is in, or some 3805 // outer loop. This guarantees availability because the value of the 3806 // add recurrence at BB is simply the "current" value of the induction 3807 // variable. We can relax this in the future; for instance an add 3808 // recurrence on a sibling dominating loop is also available at BB. 3809 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3810 if (L && (ARLoop == L || ARLoop->contains(L))) 3811 return true; 3812 3813 return setUnavailable(); 3814 } 3815 3816 case scUnknown: { 3817 // For SCEVUnknown, we check for simple dominance. 3818 const auto *SU = cast<SCEVUnknown>(S); 3819 Value *V = SU->getValue(); 3820 3821 if (isa<Argument>(V)) 3822 return false; 3823 3824 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3825 return false; 3826 3827 return setUnavailable(); 3828 } 3829 3830 case scUDivExpr: 3831 case scCouldNotCompute: 3832 // We do not try to smart about these at all. 3833 return setUnavailable(); 3834 } 3835 llvm_unreachable("switch should be fully covered!"); 3836 } 3837 3838 bool isDone() { return TraversalDone; } 3839 }; 3840 3841 CheckAvailable CA(L, BB, DT); 3842 SCEVTraversal<CheckAvailable> ST(CA); 3843 3844 ST.visitAll(S); 3845 return CA.Available; 3846 } 3847 3848 // Try to match a control flow sequence that branches out at BI and merges back 3849 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3850 // match. 3851 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3852 Value *&C, Value *&LHS, Value *&RHS) { 3853 C = BI->getCondition(); 3854 3855 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3856 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3857 3858 if (!LeftEdge.isSingleEdge()) 3859 return false; 3860 3861 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3862 3863 Use &LeftUse = Merge->getOperandUse(0); 3864 Use &RightUse = Merge->getOperandUse(1); 3865 3866 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3867 LHS = LeftUse; 3868 RHS = RightUse; 3869 return true; 3870 } 3871 3872 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3873 LHS = RightUse; 3874 RHS = LeftUse; 3875 return true; 3876 } 3877 3878 return false; 3879 } 3880 3881 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3882 if (PN->getNumIncomingValues() == 2) { 3883 const Loop *L = LI.getLoopFor(PN->getParent()); 3884 3885 // Try to match 3886 // 3887 // br %cond, label %left, label %right 3888 // left: 3889 // br label %merge 3890 // right: 3891 // br label %merge 3892 // merge: 3893 // V = phi [ %x, %left ], [ %y, %right ] 3894 // 3895 // as "select %cond, %x, %y" 3896 3897 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3898 assert(IDom && "At least the entry block should dominate PN"); 3899 3900 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3901 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3902 3903 if (BI && BI->isConditional() && 3904 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3905 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3906 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3907 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3908 } 3909 3910 return nullptr; 3911 } 3912 3913 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3914 if (const SCEV *S = createAddRecFromPHI(PN)) 3915 return S; 3916 3917 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3918 return S; 3919 3920 // If the PHI has a single incoming value, follow that value, unless the 3921 // PHI's incoming blocks are in a different loop, in which case doing so 3922 // risks breaking LCSSA form. Instcombine would normally zap these, but 3923 // it doesn't have DominatorTree information, so it may miss cases. 3924 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 3925 if (LI.replacementPreservesLCSSAForm(PN, V)) 3926 return getSCEV(V); 3927 3928 // If it's not a loop phi, we can't handle it yet. 3929 return getUnknown(PN); 3930 } 3931 3932 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3933 Value *Cond, 3934 Value *TrueVal, 3935 Value *FalseVal) { 3936 // Handle "constant" branch or select. This can occur for instance when a 3937 // loop pass transforms an inner loop and moves on to process the outer loop. 3938 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 3939 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 3940 3941 // Try to match some simple smax or umax patterns. 3942 auto *ICI = dyn_cast<ICmpInst>(Cond); 3943 if (!ICI) 3944 return getUnknown(I); 3945 3946 Value *LHS = ICI->getOperand(0); 3947 Value *RHS = ICI->getOperand(1); 3948 3949 switch (ICI->getPredicate()) { 3950 case ICmpInst::ICMP_SLT: 3951 case ICmpInst::ICMP_SLE: 3952 std::swap(LHS, RHS); 3953 // fall through 3954 case ICmpInst::ICMP_SGT: 3955 case ICmpInst::ICMP_SGE: 3956 // a >s b ? a+x : b+x -> smax(a, b)+x 3957 // a >s b ? b+x : a+x -> smin(a, b)+x 3958 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3959 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 3960 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 3961 const SCEV *LA = getSCEV(TrueVal); 3962 const SCEV *RA = getSCEV(FalseVal); 3963 const SCEV *LDiff = getMinusSCEV(LA, LS); 3964 const SCEV *RDiff = getMinusSCEV(RA, RS); 3965 if (LDiff == RDiff) 3966 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3967 LDiff = getMinusSCEV(LA, RS); 3968 RDiff = getMinusSCEV(RA, LS); 3969 if (LDiff == RDiff) 3970 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3971 } 3972 break; 3973 case ICmpInst::ICMP_ULT: 3974 case ICmpInst::ICMP_ULE: 3975 std::swap(LHS, RHS); 3976 // fall through 3977 case ICmpInst::ICMP_UGT: 3978 case ICmpInst::ICMP_UGE: 3979 // a >u b ? a+x : b+x -> umax(a, b)+x 3980 // a >u b ? b+x : a+x -> umin(a, b)+x 3981 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3982 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3983 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 3984 const SCEV *LA = getSCEV(TrueVal); 3985 const SCEV *RA = getSCEV(FalseVal); 3986 const SCEV *LDiff = getMinusSCEV(LA, LS); 3987 const SCEV *RDiff = getMinusSCEV(RA, RS); 3988 if (LDiff == RDiff) 3989 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3990 LDiff = getMinusSCEV(LA, RS); 3991 RDiff = getMinusSCEV(RA, LS); 3992 if (LDiff == RDiff) 3993 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3994 } 3995 break; 3996 case ICmpInst::ICMP_NE: 3997 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3998 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 3999 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4000 const SCEV *One = getOne(I->getType()); 4001 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4002 const SCEV *LA = getSCEV(TrueVal); 4003 const SCEV *RA = getSCEV(FalseVal); 4004 const SCEV *LDiff = getMinusSCEV(LA, LS); 4005 const SCEV *RDiff = getMinusSCEV(RA, One); 4006 if (LDiff == RDiff) 4007 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4008 } 4009 break; 4010 case ICmpInst::ICMP_EQ: 4011 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4012 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4013 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4014 const SCEV *One = getOne(I->getType()); 4015 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4016 const SCEV *LA = getSCEV(TrueVal); 4017 const SCEV *RA = getSCEV(FalseVal); 4018 const SCEV *LDiff = getMinusSCEV(LA, One); 4019 const SCEV *RDiff = getMinusSCEV(RA, LS); 4020 if (LDiff == RDiff) 4021 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4022 } 4023 break; 4024 default: 4025 break; 4026 } 4027 4028 return getUnknown(I); 4029 } 4030 4031 /// createNodeForGEP - Expand GEP instructions into add and multiply 4032 /// operations. This allows them to be analyzed by regular SCEV code. 4033 /// 4034 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4035 Value *Base = GEP->getOperand(0); 4036 // Don't attempt to analyze GEPs over unsized objects. 4037 if (!Base->getType()->getPointerElementType()->isSized()) 4038 return getUnknown(GEP); 4039 4040 SmallVector<const SCEV *, 4> IndexExprs; 4041 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4042 IndexExprs.push_back(getSCEV(*Index)); 4043 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 4044 GEP->isInBounds()); 4045 } 4046 4047 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4048 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4049 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4050 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4051 uint32_t 4052 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4053 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4054 return C->getValue()->getValue().countTrailingZeros(); 4055 4056 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4057 return std::min(GetMinTrailingZeros(T->getOperand()), 4058 (uint32_t)getTypeSizeInBits(T->getType())); 4059 4060 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4061 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4062 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4063 getTypeSizeInBits(E->getType()) : OpRes; 4064 } 4065 4066 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4067 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4068 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4069 getTypeSizeInBits(E->getType()) : OpRes; 4070 } 4071 4072 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4073 // The result is the min of all operands results. 4074 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4075 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4076 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4077 return MinOpRes; 4078 } 4079 4080 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4081 // The result is the sum of all operands results. 4082 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4083 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4084 for (unsigned i = 1, e = M->getNumOperands(); 4085 SumOpRes != BitWidth && i != e; ++i) 4086 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4087 BitWidth); 4088 return SumOpRes; 4089 } 4090 4091 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4092 // The result is the min of all operands results. 4093 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4094 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4095 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4096 return MinOpRes; 4097 } 4098 4099 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4100 // The result is the min of all operands results. 4101 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4102 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4103 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4104 return MinOpRes; 4105 } 4106 4107 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4108 // The result is the min of all operands results. 4109 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4110 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4111 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4112 return MinOpRes; 4113 } 4114 4115 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4116 // For a SCEVUnknown, ask ValueTracking. 4117 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4118 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4119 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4120 nullptr, &DT); 4121 return Zeros.countTrailingOnes(); 4122 } 4123 4124 // SCEVUDivExpr 4125 return 0; 4126 } 4127 4128 /// GetRangeFromMetadata - Helper method to assign a range to V from 4129 /// metadata present in the IR. 4130 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4131 if (Instruction *I = dyn_cast<Instruction>(V)) 4132 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4133 return getConstantRangeFromMetadata(*MD); 4134 4135 return None; 4136 } 4137 4138 /// getRange - Determine the range for a particular SCEV. If SignHint is 4139 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4140 /// with a "cleaner" unsigned (resp. signed) representation. 4141 /// 4142 ConstantRange 4143 ScalarEvolution::getRange(const SCEV *S, 4144 ScalarEvolution::RangeSignHint SignHint) { 4145 DenseMap<const SCEV *, ConstantRange> &Cache = 4146 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4147 : SignedRanges; 4148 4149 // See if we've computed this range already. 4150 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4151 if (I != Cache.end()) 4152 return I->second; 4153 4154 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4155 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 4156 4157 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4158 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4159 4160 // If the value has known zeros, the maximum value will have those known zeros 4161 // as well. 4162 uint32_t TZ = GetMinTrailingZeros(S); 4163 if (TZ != 0) { 4164 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4165 ConservativeResult = 4166 ConstantRange(APInt::getMinValue(BitWidth), 4167 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4168 else 4169 ConservativeResult = ConstantRange( 4170 APInt::getSignedMinValue(BitWidth), 4171 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4172 } 4173 4174 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4175 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4176 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4177 X = X.add(getRange(Add->getOperand(i), SignHint)); 4178 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4179 } 4180 4181 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4182 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4183 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4184 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4185 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4186 } 4187 4188 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4189 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4190 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4191 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4192 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4193 } 4194 4195 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4196 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4197 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4198 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4199 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4200 } 4201 4202 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4203 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4204 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4205 return setRange(UDiv, SignHint, 4206 ConservativeResult.intersectWith(X.udiv(Y))); 4207 } 4208 4209 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4210 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4211 return setRange(ZExt, SignHint, 4212 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4213 } 4214 4215 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4216 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4217 return setRange(SExt, SignHint, 4218 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4219 } 4220 4221 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4222 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4223 return setRange(Trunc, SignHint, 4224 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4225 } 4226 4227 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4228 // If there's no unsigned wrap, the value will never be less than its 4229 // initial value. 4230 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4231 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4232 if (!C->getValue()->isZero()) 4233 ConservativeResult = 4234 ConservativeResult.intersectWith( 4235 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 4236 4237 // If there's no signed wrap, and all the operands have the same sign or 4238 // zero, the value won't ever change sign. 4239 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4240 bool AllNonNeg = true; 4241 bool AllNonPos = true; 4242 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4243 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4244 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4245 } 4246 if (AllNonNeg) 4247 ConservativeResult = ConservativeResult.intersectWith( 4248 ConstantRange(APInt(BitWidth, 0), 4249 APInt::getSignedMinValue(BitWidth))); 4250 else if (AllNonPos) 4251 ConservativeResult = ConservativeResult.intersectWith( 4252 ConstantRange(APInt::getSignedMinValue(BitWidth), 4253 APInt(BitWidth, 1))); 4254 } 4255 4256 // TODO: non-affine addrec 4257 if (AddRec->isAffine()) { 4258 Type *Ty = AddRec->getType(); 4259 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4260 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4261 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4262 4263 // Check for overflow. This must be done with ConstantRange arithmetic 4264 // because we could be called from within the ScalarEvolution overflow 4265 // checking code. 4266 4267 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4268 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4269 ConstantRange ZExtMaxBECountRange = 4270 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4271 4272 const SCEV *Start = AddRec->getStart(); 4273 const SCEV *Step = AddRec->getStepRecurrence(*this); 4274 ConstantRange StepSRange = getSignedRange(Step); 4275 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4276 4277 ConstantRange StartURange = getUnsignedRange(Start); 4278 ConstantRange EndURange = 4279 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4280 4281 // Check for unsigned overflow. 4282 ConstantRange ZExtStartURange = 4283 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4284 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4285 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4286 ZExtEndURange) { 4287 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4288 EndURange.getUnsignedMin()); 4289 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4290 EndURange.getUnsignedMax()); 4291 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4292 if (!IsFullRange) 4293 ConservativeResult = 4294 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4295 } 4296 4297 ConstantRange StartSRange = getSignedRange(Start); 4298 ConstantRange EndSRange = 4299 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4300 4301 // Check for signed overflow. This must be done with ConstantRange 4302 // arithmetic because we could be called from within the ScalarEvolution 4303 // overflow checking code. 4304 ConstantRange SExtStartSRange = 4305 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4306 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4307 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4308 SExtEndSRange) { 4309 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4310 EndSRange.getSignedMin()); 4311 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4312 EndSRange.getSignedMax()); 4313 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4314 if (!IsFullRange) 4315 ConservativeResult = 4316 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4317 } 4318 } 4319 } 4320 4321 return setRange(AddRec, SignHint, ConservativeResult); 4322 } 4323 4324 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4325 // Check if the IR explicitly contains !range metadata. 4326 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4327 if (MDRange.hasValue()) 4328 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4329 4330 // Split here to avoid paying the compile-time cost of calling both 4331 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4332 // if needed. 4333 const DataLayout &DL = getDataLayout(); 4334 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4335 // For a SCEVUnknown, ask ValueTracking. 4336 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4337 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4338 if (Ones != ~Zeros + 1) 4339 ConservativeResult = 4340 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4341 } else { 4342 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4343 "generalize as needed!"); 4344 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4345 if (NS > 1) 4346 ConservativeResult = ConservativeResult.intersectWith( 4347 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4348 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4349 } 4350 4351 return setRange(U, SignHint, ConservativeResult); 4352 } 4353 4354 return setRange(S, SignHint, ConservativeResult); 4355 } 4356 4357 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4358 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4359 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4360 4361 // Return early if there are no flags to propagate to the SCEV. 4362 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4363 if (BinOp->hasNoUnsignedWrap()) 4364 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4365 if (BinOp->hasNoSignedWrap()) 4366 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4367 if (Flags == SCEV::FlagAnyWrap) { 4368 return SCEV::FlagAnyWrap; 4369 } 4370 4371 // Here we check that BinOp is in the header of the innermost loop 4372 // containing BinOp, since we only deal with instructions in the loop 4373 // header. The actual loop we need to check later will come from an add 4374 // recurrence, but getting that requires computing the SCEV of the operands, 4375 // which can be expensive. This check we can do cheaply to rule out some 4376 // cases early. 4377 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4378 if (innermostContainingLoop == nullptr || 4379 innermostContainingLoop->getHeader() != BinOp->getParent()) 4380 return SCEV::FlagAnyWrap; 4381 4382 // Only proceed if we can prove that BinOp does not yield poison. 4383 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4384 4385 // At this point we know that if V is executed, then it does not wrap 4386 // according to at least one of NSW or NUW. If V is not executed, then we do 4387 // not know if the calculation that V represents would wrap. Multiple 4388 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4389 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4390 // derived from other instructions that map to the same SCEV. We cannot make 4391 // that guarantee for cases where V is not executed. So we need to find the 4392 // loop that V is considered in relation to and prove that V is executed for 4393 // every iteration of that loop. That implies that the value that V 4394 // calculates does not wrap anywhere in the loop, so then we can apply the 4395 // flags to the SCEV. 4396 // 4397 // We check isLoopInvariant to disambiguate in case we are adding two 4398 // recurrences from different loops, so that we know which loop to prove 4399 // that V is executed in. 4400 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4401 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4402 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4403 const int OtherOpIndex = 1 - OpIndex; 4404 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4405 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4406 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4407 return Flags; 4408 } 4409 } 4410 return SCEV::FlagAnyWrap; 4411 } 4412 4413 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4414 /// the expression. 4415 /// 4416 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4417 if (!isSCEVable(V->getType())) 4418 return getUnknown(V); 4419 4420 unsigned Opcode = Instruction::UserOp1; 4421 if (Instruction *I = dyn_cast<Instruction>(V)) { 4422 Opcode = I->getOpcode(); 4423 4424 // Don't attempt to analyze instructions in blocks that aren't 4425 // reachable. Such instructions don't matter, and they aren't required 4426 // to obey basic rules for definitions dominating uses which this 4427 // analysis depends on. 4428 if (!DT.isReachableFromEntry(I->getParent())) 4429 return getUnknown(V); 4430 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4431 Opcode = CE->getOpcode(); 4432 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4433 return getConstant(CI); 4434 else if (isa<ConstantPointerNull>(V)) 4435 return getZero(V->getType()); 4436 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4437 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4438 else 4439 return getUnknown(V); 4440 4441 Operator *U = cast<Operator>(V); 4442 switch (Opcode) { 4443 case Instruction::Add: { 4444 // The simple thing to do would be to just call getSCEV on both operands 4445 // and call getAddExpr with the result. However if we're looking at a 4446 // bunch of things all added together, this can be quite inefficient, 4447 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4448 // Instead, gather up all the operands and make a single getAddExpr call. 4449 // LLVM IR canonical form means we need only traverse the left operands. 4450 SmallVector<const SCEV *, 4> AddOps; 4451 for (Value *Op = U;; Op = U->getOperand(0)) { 4452 U = dyn_cast<Operator>(Op); 4453 unsigned Opcode = U ? U->getOpcode() : 0; 4454 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4455 assert(Op != V && "V should be an add"); 4456 AddOps.push_back(getSCEV(Op)); 4457 break; 4458 } 4459 4460 if (auto *OpSCEV = getExistingSCEV(U)) { 4461 AddOps.push_back(OpSCEV); 4462 break; 4463 } 4464 4465 // If a NUW or NSW flag can be applied to the SCEV for this 4466 // addition, then compute the SCEV for this addition by itself 4467 // with a separate call to getAddExpr. We need to do that 4468 // instead of pushing the operands of the addition onto AddOps, 4469 // since the flags are only known to apply to this particular 4470 // addition - they may not apply to other additions that can be 4471 // formed with operands from AddOps. 4472 const SCEV *RHS = getSCEV(U->getOperand(1)); 4473 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4474 if (Flags != SCEV::FlagAnyWrap) { 4475 const SCEV *LHS = getSCEV(U->getOperand(0)); 4476 if (Opcode == Instruction::Sub) 4477 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4478 else 4479 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4480 break; 4481 } 4482 4483 if (Opcode == Instruction::Sub) 4484 AddOps.push_back(getNegativeSCEV(RHS)); 4485 else 4486 AddOps.push_back(RHS); 4487 } 4488 return getAddExpr(AddOps); 4489 } 4490 4491 case Instruction::Mul: { 4492 SmallVector<const SCEV *, 4> MulOps; 4493 for (Value *Op = U;; Op = U->getOperand(0)) { 4494 U = dyn_cast<Operator>(Op); 4495 if (!U || U->getOpcode() != Instruction::Mul) { 4496 assert(Op != V && "V should be a mul"); 4497 MulOps.push_back(getSCEV(Op)); 4498 break; 4499 } 4500 4501 if (auto *OpSCEV = getExistingSCEV(U)) { 4502 MulOps.push_back(OpSCEV); 4503 break; 4504 } 4505 4506 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4507 if (Flags != SCEV::FlagAnyWrap) { 4508 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4509 getSCEV(U->getOperand(1)), Flags)); 4510 break; 4511 } 4512 4513 MulOps.push_back(getSCEV(U->getOperand(1))); 4514 } 4515 return getMulExpr(MulOps); 4516 } 4517 case Instruction::UDiv: 4518 return getUDivExpr(getSCEV(U->getOperand(0)), 4519 getSCEV(U->getOperand(1))); 4520 case Instruction::Sub: 4521 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4522 getNoWrapFlagsFromUB(U)); 4523 case Instruction::And: 4524 // For an expression like x&255 that merely masks off the high bits, 4525 // use zext(trunc(x)) as the SCEV expression. 4526 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4527 if (CI->isNullValue()) 4528 return getSCEV(U->getOperand(1)); 4529 if (CI->isAllOnesValue()) 4530 return getSCEV(U->getOperand(0)); 4531 const APInt &A = CI->getValue(); 4532 4533 // Instcombine's ShrinkDemandedConstant may strip bits out of 4534 // constants, obscuring what would otherwise be a low-bits mask. 4535 // Use computeKnownBits to compute what ShrinkDemandedConstant 4536 // knew about to reconstruct a low-bits mask value. 4537 unsigned LZ = A.countLeadingZeros(); 4538 unsigned TZ = A.countTrailingZeros(); 4539 unsigned BitWidth = A.getBitWidth(); 4540 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4541 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(), 4542 0, &AC, nullptr, &DT); 4543 4544 APInt EffectiveMask = 4545 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4546 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4547 const SCEV *MulCount = getConstant( 4548 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4549 return getMulExpr( 4550 getZeroExtendExpr( 4551 getTruncateExpr( 4552 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4553 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4554 U->getType()), 4555 MulCount); 4556 } 4557 } 4558 break; 4559 4560 case Instruction::Or: 4561 // If the RHS of the Or is a constant, we may have something like: 4562 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4563 // optimizations will transparently handle this case. 4564 // 4565 // In order for this transformation to be safe, the LHS must be of the 4566 // form X*(2^n) and the Or constant must be less than 2^n. 4567 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4568 const SCEV *LHS = getSCEV(U->getOperand(0)); 4569 const APInt &CIVal = CI->getValue(); 4570 if (GetMinTrailingZeros(LHS) >= 4571 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4572 // Build a plain add SCEV. 4573 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4574 // If the LHS of the add was an addrec and it has no-wrap flags, 4575 // transfer the no-wrap flags, since an or won't introduce a wrap. 4576 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4577 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4578 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4579 OldAR->getNoWrapFlags()); 4580 } 4581 return S; 4582 } 4583 } 4584 break; 4585 case Instruction::Xor: 4586 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4587 // If the RHS of the xor is a signbit, then this is just an add. 4588 // Instcombine turns add of signbit into xor as a strength reduction step. 4589 if (CI->getValue().isSignBit()) 4590 return getAddExpr(getSCEV(U->getOperand(0)), 4591 getSCEV(U->getOperand(1))); 4592 4593 // If the RHS of xor is -1, then this is a not operation. 4594 if (CI->isAllOnesValue()) 4595 return getNotSCEV(getSCEV(U->getOperand(0))); 4596 4597 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4598 // This is a variant of the check for xor with -1, and it handles 4599 // the case where instcombine has trimmed non-demanded bits out 4600 // of an xor with -1. 4601 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4602 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4603 if (BO->getOpcode() == Instruction::And && 4604 LCI->getValue() == CI->getValue()) 4605 if (const SCEVZeroExtendExpr *Z = 4606 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4607 Type *UTy = U->getType(); 4608 const SCEV *Z0 = Z->getOperand(); 4609 Type *Z0Ty = Z0->getType(); 4610 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4611 4612 // If C is a low-bits mask, the zero extend is serving to 4613 // mask off the high bits. Complement the operand and 4614 // re-apply the zext. 4615 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4616 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4617 4618 // If C is a single bit, it may be in the sign-bit position 4619 // before the zero-extend. In this case, represent the xor 4620 // using an add, which is equivalent, and re-apply the zext. 4621 APInt Trunc = CI->getValue().trunc(Z0TySize); 4622 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4623 Trunc.isSignBit()) 4624 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4625 UTy); 4626 } 4627 } 4628 break; 4629 4630 case Instruction::Shl: 4631 // Turn shift left of a constant amount into a multiply. 4632 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4633 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4634 4635 // If the shift count is not less than the bitwidth, the result of 4636 // the shift is undefined. Don't try to analyze it, because the 4637 // resolution chosen here may differ from the resolution chosen in 4638 // other parts of the compiler. 4639 if (SA->getValue().uge(BitWidth)) 4640 break; 4641 4642 // It is currently not resolved how to interpret NSW for left 4643 // shift by BitWidth - 1, so we avoid applying flags in that 4644 // case. Remove this check (or this comment) once the situation 4645 // is resolved. See 4646 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4647 // and http://reviews.llvm.org/D8890 . 4648 auto Flags = SCEV::FlagAnyWrap; 4649 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4650 4651 Constant *X = ConstantInt::get(getContext(), 4652 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4653 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4654 } 4655 break; 4656 4657 case Instruction::LShr: 4658 // Turn logical shift right of a constant into a unsigned divide. 4659 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4660 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4661 4662 // If the shift count is not less than the bitwidth, the result of 4663 // the shift is undefined. Don't try to analyze it, because the 4664 // resolution chosen here may differ from the resolution chosen in 4665 // other parts of the compiler. 4666 if (SA->getValue().uge(BitWidth)) 4667 break; 4668 4669 Constant *X = ConstantInt::get(getContext(), 4670 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4671 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4672 } 4673 break; 4674 4675 case Instruction::AShr: 4676 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4677 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4678 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4679 if (L->getOpcode() == Instruction::Shl && 4680 L->getOperand(1) == U->getOperand(1)) { 4681 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4682 4683 // If the shift count is not less than the bitwidth, the result of 4684 // the shift is undefined. Don't try to analyze it, because the 4685 // resolution chosen here may differ from the resolution chosen in 4686 // other parts of the compiler. 4687 if (CI->getValue().uge(BitWidth)) 4688 break; 4689 4690 uint64_t Amt = BitWidth - CI->getZExtValue(); 4691 if (Amt == BitWidth) 4692 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4693 return 4694 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4695 IntegerType::get(getContext(), 4696 Amt)), 4697 U->getType()); 4698 } 4699 break; 4700 4701 case Instruction::Trunc: 4702 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4703 4704 case Instruction::ZExt: 4705 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4706 4707 case Instruction::SExt: 4708 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4709 4710 case Instruction::BitCast: 4711 // BitCasts are no-op casts so we just eliminate the cast. 4712 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4713 return getSCEV(U->getOperand(0)); 4714 break; 4715 4716 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4717 // lead to pointer expressions which cannot safely be expanded to GEPs, 4718 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4719 // simplifying integer expressions. 4720 4721 case Instruction::GetElementPtr: 4722 return createNodeForGEP(cast<GEPOperator>(U)); 4723 4724 case Instruction::PHI: 4725 return createNodeForPHI(cast<PHINode>(U)); 4726 4727 case Instruction::Select: 4728 // U can also be a select constant expr, which let fall through. Since 4729 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4730 // constant expressions cannot have instructions as operands, we'd have 4731 // returned getUnknown for a select constant expressions anyway. 4732 if (isa<Instruction>(U)) 4733 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4734 U->getOperand(1), U->getOperand(2)); 4735 4736 default: // We cannot analyze this expression. 4737 break; 4738 } 4739 4740 return getUnknown(V); 4741 } 4742 4743 4744 4745 //===----------------------------------------------------------------------===// 4746 // Iteration Count Computation Code 4747 // 4748 4749 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4750 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4751 return getSmallConstantTripCount(L, ExitingBB); 4752 4753 // No trip count information for multiple exits. 4754 return 0; 4755 } 4756 4757 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4758 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4759 /// constant. Will also return 0 if the maximum trip count is very large (>= 4760 /// 2^32). 4761 /// 4762 /// This "trip count" assumes that control exits via ExitingBlock. More 4763 /// precisely, it is the number of times that control may reach ExitingBlock 4764 /// before taking the branch. For loops with multiple exits, it may not be the 4765 /// number times that the loop header executes because the loop may exit 4766 /// prematurely via another branch. 4767 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4768 BasicBlock *ExitingBlock) { 4769 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4770 assert(L->isLoopExiting(ExitingBlock) && 4771 "Exiting block must actually branch out of the loop!"); 4772 const SCEVConstant *ExitCount = 4773 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4774 if (!ExitCount) 4775 return 0; 4776 4777 ConstantInt *ExitConst = ExitCount->getValue(); 4778 4779 // Guard against huge trip counts. 4780 if (ExitConst->getValue().getActiveBits() > 32) 4781 return 0; 4782 4783 // In case of integer overflow, this returns 0, which is correct. 4784 return ((unsigned)ExitConst->getZExtValue()) + 1; 4785 } 4786 4787 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4788 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4789 return getSmallConstantTripMultiple(L, ExitingBB); 4790 4791 // No trip multiple information for multiple exits. 4792 return 0; 4793 } 4794 4795 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4796 /// trip count of this loop as a normal unsigned value, if possible. This 4797 /// means that the actual trip count is always a multiple of the returned 4798 /// value (don't forget the trip count could very well be zero as well!). 4799 /// 4800 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4801 /// multiple of a constant (which is also the case if the trip count is simply 4802 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4803 /// if the trip count is very large (>= 2^32). 4804 /// 4805 /// As explained in the comments for getSmallConstantTripCount, this assumes 4806 /// that control exits the loop via ExitingBlock. 4807 unsigned 4808 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4809 BasicBlock *ExitingBlock) { 4810 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4811 assert(L->isLoopExiting(ExitingBlock) && 4812 "Exiting block must actually branch out of the loop!"); 4813 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4814 if (ExitCount == getCouldNotCompute()) 4815 return 1; 4816 4817 // Get the trip count from the BE count by adding 1. 4818 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4819 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4820 // to factor simple cases. 4821 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4822 TCMul = Mul->getOperand(0); 4823 4824 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4825 if (!MulC) 4826 return 1; 4827 4828 ConstantInt *Result = MulC->getValue(); 4829 4830 // Guard against huge trip counts (this requires checking 4831 // for zero to handle the case where the trip count == -1 and the 4832 // addition wraps). 4833 if (!Result || Result->getValue().getActiveBits() > 32 || 4834 Result->getValue().getActiveBits() == 0) 4835 return 1; 4836 4837 return (unsigned)Result->getZExtValue(); 4838 } 4839 4840 // getExitCount - Get the expression for the number of loop iterations for which 4841 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4842 // SCEVCouldNotCompute. 4843 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4844 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4845 } 4846 4847 /// getBackedgeTakenCount - If the specified loop has a predictable 4848 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4849 /// object. The backedge-taken count is the number of times the loop header 4850 /// will be branched to from within the loop. This is one less than the 4851 /// trip count of the loop, since it doesn't count the first iteration, 4852 /// when the header is branched to from outside the loop. 4853 /// 4854 /// Note that it is not valid to call this method on a loop without a 4855 /// loop-invariant backedge-taken count (see 4856 /// hasLoopInvariantBackedgeTakenCount). 4857 /// 4858 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4859 return getBackedgeTakenInfo(L).getExact(this); 4860 } 4861 4862 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4863 /// return the least SCEV value that is known never to be less than the 4864 /// actual backedge taken count. 4865 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4866 return getBackedgeTakenInfo(L).getMax(this); 4867 } 4868 4869 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4870 /// onto the given Worklist. 4871 static void 4872 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4873 BasicBlock *Header = L->getHeader(); 4874 4875 // Push all Loop-header PHIs onto the Worklist stack. 4876 for (BasicBlock::iterator I = Header->begin(); 4877 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4878 Worklist.push_back(PN); 4879 } 4880 4881 const ScalarEvolution::BackedgeTakenInfo & 4882 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4883 // Initially insert an invalid entry for this loop. If the insertion 4884 // succeeds, proceed to actually compute a backedge-taken count and 4885 // update the value. The temporary CouldNotCompute value tells SCEV 4886 // code elsewhere that it shouldn't attempt to request a new 4887 // backedge-taken count, which could result in infinite recursion. 4888 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4889 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4890 if (!Pair.second) 4891 return Pair.first->second; 4892 4893 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 4894 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4895 // must be cleared in this scope. 4896 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 4897 4898 if (Result.getExact(this) != getCouldNotCompute()) { 4899 assert(isLoopInvariant(Result.getExact(this), L) && 4900 isLoopInvariant(Result.getMax(this), L) && 4901 "Computed backedge-taken count isn't loop invariant for loop!"); 4902 ++NumTripCountsComputed; 4903 } 4904 else if (Result.getMax(this) == getCouldNotCompute() && 4905 isa<PHINode>(L->getHeader()->begin())) { 4906 // Only count loops that have phi nodes as not being computable. 4907 ++NumTripCountsNotComputed; 4908 } 4909 4910 // Now that we know more about the trip count for this loop, forget any 4911 // existing SCEV values for PHI nodes in this loop since they are only 4912 // conservative estimates made without the benefit of trip count 4913 // information. This is similar to the code in forgetLoop, except that 4914 // it handles SCEVUnknown PHI nodes specially. 4915 if (Result.hasAnyInfo()) { 4916 SmallVector<Instruction *, 16> Worklist; 4917 PushLoopPHIs(L, Worklist); 4918 4919 SmallPtrSet<Instruction *, 8> Visited; 4920 while (!Worklist.empty()) { 4921 Instruction *I = Worklist.pop_back_val(); 4922 if (!Visited.insert(I).second) 4923 continue; 4924 4925 ValueExprMapType::iterator It = 4926 ValueExprMap.find_as(static_cast<Value *>(I)); 4927 if (It != ValueExprMap.end()) { 4928 const SCEV *Old = It->second; 4929 4930 // SCEVUnknown for a PHI either means that it has an unrecognized 4931 // structure, or it's a PHI that's in the progress of being computed 4932 // by createNodeForPHI. In the former case, additional loop trip 4933 // count information isn't going to change anything. In the later 4934 // case, createNodeForPHI will perform the necessary updates on its 4935 // own when it gets to that point. 4936 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4937 forgetMemoizedResults(Old); 4938 ValueExprMap.erase(It); 4939 } 4940 if (PHINode *PN = dyn_cast<PHINode>(I)) 4941 ConstantEvolutionLoopExitValue.erase(PN); 4942 } 4943 4944 PushDefUseChildren(I, Worklist); 4945 } 4946 } 4947 4948 // Re-lookup the insert position, since the call to 4949 // computeBackedgeTakenCount above could result in a 4950 // recusive call to getBackedgeTakenInfo (on a different 4951 // loop), which would invalidate the iterator computed 4952 // earlier. 4953 return BackedgeTakenCounts.find(L)->second = Result; 4954 } 4955 4956 /// forgetLoop - This method should be called by the client when it has 4957 /// changed a loop in a way that may effect ScalarEvolution's ability to 4958 /// compute a trip count, or if the loop is deleted. 4959 void ScalarEvolution::forgetLoop(const Loop *L) { 4960 // Drop any stored trip count value. 4961 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4962 BackedgeTakenCounts.find(L); 4963 if (BTCPos != BackedgeTakenCounts.end()) { 4964 BTCPos->second.clear(); 4965 BackedgeTakenCounts.erase(BTCPos); 4966 } 4967 4968 // Drop information about expressions based on loop-header PHIs. 4969 SmallVector<Instruction *, 16> Worklist; 4970 PushLoopPHIs(L, Worklist); 4971 4972 SmallPtrSet<Instruction *, 8> Visited; 4973 while (!Worklist.empty()) { 4974 Instruction *I = Worklist.pop_back_val(); 4975 if (!Visited.insert(I).second) 4976 continue; 4977 4978 ValueExprMapType::iterator It = 4979 ValueExprMap.find_as(static_cast<Value *>(I)); 4980 if (It != ValueExprMap.end()) { 4981 forgetMemoizedResults(It->second); 4982 ValueExprMap.erase(It); 4983 if (PHINode *PN = dyn_cast<PHINode>(I)) 4984 ConstantEvolutionLoopExitValue.erase(PN); 4985 } 4986 4987 PushDefUseChildren(I, Worklist); 4988 } 4989 4990 // Forget all contained loops too, to avoid dangling entries in the 4991 // ValuesAtScopes map. 4992 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4993 forgetLoop(*I); 4994 } 4995 4996 /// forgetValue - This method should be called by the client when it has 4997 /// changed a value in a way that may effect its value, or which may 4998 /// disconnect it from a def-use chain linking it to a loop. 4999 void ScalarEvolution::forgetValue(Value *V) { 5000 Instruction *I = dyn_cast<Instruction>(V); 5001 if (!I) return; 5002 5003 // Drop information about expressions based on loop-header PHIs. 5004 SmallVector<Instruction *, 16> Worklist; 5005 Worklist.push_back(I); 5006 5007 SmallPtrSet<Instruction *, 8> Visited; 5008 while (!Worklist.empty()) { 5009 I = Worklist.pop_back_val(); 5010 if (!Visited.insert(I).second) 5011 continue; 5012 5013 ValueExprMapType::iterator It = 5014 ValueExprMap.find_as(static_cast<Value *>(I)); 5015 if (It != ValueExprMap.end()) { 5016 forgetMemoizedResults(It->second); 5017 ValueExprMap.erase(It); 5018 if (PHINode *PN = dyn_cast<PHINode>(I)) 5019 ConstantEvolutionLoopExitValue.erase(PN); 5020 } 5021 5022 PushDefUseChildren(I, Worklist); 5023 } 5024 } 5025 5026 /// getExact - Get the exact loop backedge taken count considering all loop 5027 /// exits. A computable result can only be returned for loops with a single 5028 /// exit. Returning the minimum taken count among all exits is incorrect 5029 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5030 /// assumes that the limit of each loop test is never skipped. This is a valid 5031 /// assumption as long as the loop exits via that test. For precise results, it 5032 /// is the caller's responsibility to specify the relevant loop exit using 5033 /// getExact(ExitingBlock, SE). 5034 const SCEV * 5035 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5036 // If any exits were not computable, the loop is not computable. 5037 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5038 5039 // We need exactly one computable exit. 5040 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5041 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5042 5043 const SCEV *BECount = nullptr; 5044 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5045 ENT != nullptr; ENT = ENT->getNextExit()) { 5046 5047 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5048 5049 if (!BECount) 5050 BECount = ENT->ExactNotTaken; 5051 else if (BECount != ENT->ExactNotTaken) 5052 return SE->getCouldNotCompute(); 5053 } 5054 assert(BECount && "Invalid not taken count for loop exit"); 5055 return BECount; 5056 } 5057 5058 /// getExact - Get the exact not taken count for this loop exit. 5059 const SCEV * 5060 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5061 ScalarEvolution *SE) const { 5062 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5063 ENT != nullptr; ENT = ENT->getNextExit()) { 5064 5065 if (ENT->ExitingBlock == ExitingBlock) 5066 return ENT->ExactNotTaken; 5067 } 5068 return SE->getCouldNotCompute(); 5069 } 5070 5071 /// getMax - Get the max backedge taken count for the loop. 5072 const SCEV * 5073 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5074 return Max ? Max : SE->getCouldNotCompute(); 5075 } 5076 5077 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5078 ScalarEvolution *SE) const { 5079 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5080 return true; 5081 5082 if (!ExitNotTaken.ExitingBlock) 5083 return false; 5084 5085 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5086 ENT != nullptr; ENT = ENT->getNextExit()) { 5087 5088 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5089 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5090 return true; 5091 } 5092 } 5093 return false; 5094 } 5095 5096 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5097 /// computable exit into a persistent ExitNotTakenInfo array. 5098 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5099 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5100 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5101 5102 if (!Complete) 5103 ExitNotTaken.setIncomplete(); 5104 5105 unsigned NumExits = ExitCounts.size(); 5106 if (NumExits == 0) return; 5107 5108 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5109 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5110 if (NumExits == 1) return; 5111 5112 // Handle the rare case of multiple computable exits. 5113 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5114 5115 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5116 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5117 PrevENT->setNextExit(ENT); 5118 ENT->ExitingBlock = ExitCounts[i].first; 5119 ENT->ExactNotTaken = ExitCounts[i].second; 5120 } 5121 } 5122 5123 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5124 void ScalarEvolution::BackedgeTakenInfo::clear() { 5125 ExitNotTaken.ExitingBlock = nullptr; 5126 ExitNotTaken.ExactNotTaken = nullptr; 5127 delete[] ExitNotTaken.getNextExit(); 5128 } 5129 5130 /// computeBackedgeTakenCount - Compute the number of times the backedge 5131 /// of the specified loop will execute. 5132 ScalarEvolution::BackedgeTakenInfo 5133 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5134 SmallVector<BasicBlock *, 8> ExitingBlocks; 5135 L->getExitingBlocks(ExitingBlocks); 5136 5137 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5138 bool CouldComputeBECount = true; 5139 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5140 const SCEV *MustExitMaxBECount = nullptr; 5141 const SCEV *MayExitMaxBECount = nullptr; 5142 5143 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5144 // and compute maxBECount. 5145 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5146 BasicBlock *ExitBB = ExitingBlocks[i]; 5147 ExitLimit EL = computeExitLimit(L, ExitBB); 5148 5149 // 1. For each exit that can be computed, add an entry to ExitCounts. 5150 // CouldComputeBECount is true only if all exits can be computed. 5151 if (EL.Exact == getCouldNotCompute()) 5152 // We couldn't compute an exact value for this exit, so 5153 // we won't be able to compute an exact value for the loop. 5154 CouldComputeBECount = false; 5155 else 5156 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5157 5158 // 2. Derive the loop's MaxBECount from each exit's max number of 5159 // non-exiting iterations. Partition the loop exits into two kinds: 5160 // LoopMustExits and LoopMayExits. 5161 // 5162 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5163 // is a LoopMayExit. If any computable LoopMustExit is found, then 5164 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5165 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5166 // considered greater than any computable EL.Max. 5167 if (EL.Max != getCouldNotCompute() && Latch && 5168 DT.dominates(ExitBB, Latch)) { 5169 if (!MustExitMaxBECount) 5170 MustExitMaxBECount = EL.Max; 5171 else { 5172 MustExitMaxBECount = 5173 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5174 } 5175 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5176 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5177 MayExitMaxBECount = EL.Max; 5178 else { 5179 MayExitMaxBECount = 5180 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5181 } 5182 } 5183 } 5184 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5185 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5186 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5187 } 5188 5189 ScalarEvolution::ExitLimit 5190 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5191 5192 // Okay, we've chosen an exiting block. See what condition causes us to exit 5193 // at this block and remember the exit block and whether all other targets 5194 // lead to the loop header. 5195 bool MustExecuteLoopHeader = true; 5196 BasicBlock *Exit = nullptr; 5197 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5198 SI != SE; ++SI) 5199 if (!L->contains(*SI)) { 5200 if (Exit) // Multiple exit successors. 5201 return getCouldNotCompute(); 5202 Exit = *SI; 5203 } else if (*SI != L->getHeader()) { 5204 MustExecuteLoopHeader = false; 5205 } 5206 5207 // At this point, we know we have a conditional branch that determines whether 5208 // the loop is exited. However, we don't know if the branch is executed each 5209 // time through the loop. If not, then the execution count of the branch will 5210 // not be equal to the trip count of the loop. 5211 // 5212 // Currently we check for this by checking to see if the Exit branch goes to 5213 // the loop header. If so, we know it will always execute the same number of 5214 // times as the loop. We also handle the case where the exit block *is* the 5215 // loop header. This is common for un-rotated loops. 5216 // 5217 // If both of those tests fail, walk up the unique predecessor chain to the 5218 // header, stopping if there is an edge that doesn't exit the loop. If the 5219 // header is reached, the execution count of the branch will be equal to the 5220 // trip count of the loop. 5221 // 5222 // More extensive analysis could be done to handle more cases here. 5223 // 5224 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5225 // The simple checks failed, try climbing the unique predecessor chain 5226 // up to the header. 5227 bool Ok = false; 5228 for (BasicBlock *BB = ExitingBlock; BB; ) { 5229 BasicBlock *Pred = BB->getUniquePredecessor(); 5230 if (!Pred) 5231 return getCouldNotCompute(); 5232 TerminatorInst *PredTerm = Pred->getTerminator(); 5233 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5234 if (PredSucc == BB) 5235 continue; 5236 // If the predecessor has a successor that isn't BB and isn't 5237 // outside the loop, assume the worst. 5238 if (L->contains(PredSucc)) 5239 return getCouldNotCompute(); 5240 } 5241 if (Pred == L->getHeader()) { 5242 Ok = true; 5243 break; 5244 } 5245 BB = Pred; 5246 } 5247 if (!Ok) 5248 return getCouldNotCompute(); 5249 } 5250 5251 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5252 TerminatorInst *Term = ExitingBlock->getTerminator(); 5253 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5254 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5255 // Proceed to the next level to examine the exit condition expression. 5256 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5257 BI->getSuccessor(1), 5258 /*ControlsExit=*/IsOnlyExit); 5259 } 5260 5261 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5262 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5263 /*ControlsExit=*/IsOnlyExit); 5264 5265 return getCouldNotCompute(); 5266 } 5267 5268 /// computeExitLimitFromCond - Compute the number of times the 5269 /// backedge of the specified loop will execute if its exit condition 5270 /// were a conditional branch of ExitCond, TBB, and FBB. 5271 /// 5272 /// @param ControlsExit is true if ExitCond directly controls the exit 5273 /// branch. In this case, we can assume that the loop exits only if the 5274 /// condition is true and can infer that failing to meet the condition prior to 5275 /// integer wraparound results in undefined behavior. 5276 ScalarEvolution::ExitLimit 5277 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5278 Value *ExitCond, 5279 BasicBlock *TBB, 5280 BasicBlock *FBB, 5281 bool ControlsExit) { 5282 // Check if the controlling expression for this loop is an And or Or. 5283 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5284 if (BO->getOpcode() == Instruction::And) { 5285 // Recurse on the operands of the and. 5286 bool EitherMayExit = L->contains(TBB); 5287 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5288 ControlsExit && !EitherMayExit); 5289 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5290 ControlsExit && !EitherMayExit); 5291 const SCEV *BECount = getCouldNotCompute(); 5292 const SCEV *MaxBECount = getCouldNotCompute(); 5293 if (EitherMayExit) { 5294 // Both conditions must be true for the loop to continue executing. 5295 // Choose the less conservative count. 5296 if (EL0.Exact == getCouldNotCompute() || 5297 EL1.Exact == getCouldNotCompute()) 5298 BECount = getCouldNotCompute(); 5299 else 5300 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5301 if (EL0.Max == getCouldNotCompute()) 5302 MaxBECount = EL1.Max; 5303 else if (EL1.Max == getCouldNotCompute()) 5304 MaxBECount = EL0.Max; 5305 else 5306 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5307 } else { 5308 // Both conditions must be true at the same time for the loop to exit. 5309 // For now, be conservative. 5310 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5311 if (EL0.Max == EL1.Max) 5312 MaxBECount = EL0.Max; 5313 if (EL0.Exact == EL1.Exact) 5314 BECount = EL0.Exact; 5315 } 5316 5317 return ExitLimit(BECount, MaxBECount); 5318 } 5319 if (BO->getOpcode() == Instruction::Or) { 5320 // Recurse on the operands of the or. 5321 bool EitherMayExit = L->contains(FBB); 5322 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5323 ControlsExit && !EitherMayExit); 5324 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5325 ControlsExit && !EitherMayExit); 5326 const SCEV *BECount = getCouldNotCompute(); 5327 const SCEV *MaxBECount = getCouldNotCompute(); 5328 if (EitherMayExit) { 5329 // Both conditions must be false for the loop to continue executing. 5330 // Choose the less conservative count. 5331 if (EL0.Exact == getCouldNotCompute() || 5332 EL1.Exact == getCouldNotCompute()) 5333 BECount = getCouldNotCompute(); 5334 else 5335 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5336 if (EL0.Max == getCouldNotCompute()) 5337 MaxBECount = EL1.Max; 5338 else if (EL1.Max == getCouldNotCompute()) 5339 MaxBECount = EL0.Max; 5340 else 5341 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5342 } else { 5343 // Both conditions must be false at the same time for the loop to exit. 5344 // For now, be conservative. 5345 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5346 if (EL0.Max == EL1.Max) 5347 MaxBECount = EL0.Max; 5348 if (EL0.Exact == EL1.Exact) 5349 BECount = EL0.Exact; 5350 } 5351 5352 return ExitLimit(BECount, MaxBECount); 5353 } 5354 } 5355 5356 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5357 // Proceed to the next level to examine the icmp. 5358 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5359 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5360 5361 // Check for a constant condition. These are normally stripped out by 5362 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5363 // preserve the CFG and is temporarily leaving constant conditions 5364 // in place. 5365 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5366 if (L->contains(FBB) == !CI->getZExtValue()) 5367 // The backedge is always taken. 5368 return getCouldNotCompute(); 5369 else 5370 // The backedge is never taken. 5371 return getZero(CI->getType()); 5372 } 5373 5374 // If it's not an integer or pointer comparison then compute it the hard way. 5375 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5376 } 5377 5378 ScalarEvolution::ExitLimit 5379 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5380 ICmpInst *ExitCond, 5381 BasicBlock *TBB, 5382 BasicBlock *FBB, 5383 bool ControlsExit) { 5384 5385 // If the condition was exit on true, convert the condition to exit on false 5386 ICmpInst::Predicate Cond; 5387 if (!L->contains(FBB)) 5388 Cond = ExitCond->getPredicate(); 5389 else 5390 Cond = ExitCond->getInversePredicate(); 5391 5392 // Handle common loops like: for (X = "string"; *X; ++X) 5393 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5394 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5395 ExitLimit ItCnt = 5396 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5397 if (ItCnt.hasAnyInfo()) 5398 return ItCnt; 5399 } 5400 5401 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5402 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5403 5404 // Try to evaluate any dependencies out of the loop. 5405 LHS = getSCEVAtScope(LHS, L); 5406 RHS = getSCEVAtScope(RHS, L); 5407 5408 // At this point, we would like to compute how many iterations of the 5409 // loop the predicate will return true for these inputs. 5410 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5411 // If there is a loop-invariant, force it into the RHS. 5412 std::swap(LHS, RHS); 5413 Cond = ICmpInst::getSwappedPredicate(Cond); 5414 } 5415 5416 // Simplify the operands before analyzing them. 5417 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5418 5419 // If we have a comparison of a chrec against a constant, try to use value 5420 // ranges to answer this query. 5421 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5422 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5423 if (AddRec->getLoop() == L) { 5424 // Form the constant range. 5425 ConstantRange CompRange( 5426 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5427 5428 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5429 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5430 } 5431 5432 switch (Cond) { 5433 case ICmpInst::ICMP_NE: { // while (X != Y) 5434 // Convert to: while (X-Y != 0) 5435 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5436 if (EL.hasAnyInfo()) return EL; 5437 break; 5438 } 5439 case ICmpInst::ICMP_EQ: { // while (X == Y) 5440 // Convert to: while (X-Y == 0) 5441 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5442 if (EL.hasAnyInfo()) return EL; 5443 break; 5444 } 5445 case ICmpInst::ICMP_SLT: 5446 case ICmpInst::ICMP_ULT: { // while (X < Y) 5447 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5448 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5449 if (EL.hasAnyInfo()) return EL; 5450 break; 5451 } 5452 case ICmpInst::ICMP_SGT: 5453 case ICmpInst::ICMP_UGT: { // while (X > Y) 5454 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5455 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5456 if (EL.hasAnyInfo()) return EL; 5457 break; 5458 } 5459 default: 5460 break; 5461 } 5462 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5463 } 5464 5465 ScalarEvolution::ExitLimit 5466 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5467 SwitchInst *Switch, 5468 BasicBlock *ExitingBlock, 5469 bool ControlsExit) { 5470 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5471 5472 // Give up if the exit is the default dest of a switch. 5473 if (Switch->getDefaultDest() == ExitingBlock) 5474 return getCouldNotCompute(); 5475 5476 assert(L->contains(Switch->getDefaultDest()) && 5477 "Default case must not exit the loop!"); 5478 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5479 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5480 5481 // while (X != Y) --> while (X-Y != 0) 5482 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5483 if (EL.hasAnyInfo()) 5484 return EL; 5485 5486 return getCouldNotCompute(); 5487 } 5488 5489 static ConstantInt * 5490 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5491 ScalarEvolution &SE) { 5492 const SCEV *InVal = SE.getConstant(C); 5493 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5494 assert(isa<SCEVConstant>(Val) && 5495 "Evaluation of SCEV at constant didn't fold correctly?"); 5496 return cast<SCEVConstant>(Val)->getValue(); 5497 } 5498 5499 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5500 /// 'icmp op load X, cst', try to see if we can compute the backedge 5501 /// execution count. 5502 ScalarEvolution::ExitLimit 5503 ScalarEvolution::computeLoadConstantCompareExitLimit( 5504 LoadInst *LI, 5505 Constant *RHS, 5506 const Loop *L, 5507 ICmpInst::Predicate predicate) { 5508 5509 if (LI->isVolatile()) return getCouldNotCompute(); 5510 5511 // Check to see if the loaded pointer is a getelementptr of a global. 5512 // TODO: Use SCEV instead of manually grubbing with GEPs. 5513 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5514 if (!GEP) return getCouldNotCompute(); 5515 5516 // Make sure that it is really a constant global we are gepping, with an 5517 // initializer, and make sure the first IDX is really 0. 5518 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5519 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5520 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5521 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5522 return getCouldNotCompute(); 5523 5524 // Okay, we allow one non-constant index into the GEP instruction. 5525 Value *VarIdx = nullptr; 5526 std::vector<Constant*> Indexes; 5527 unsigned VarIdxNum = 0; 5528 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5529 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5530 Indexes.push_back(CI); 5531 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5532 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5533 VarIdx = GEP->getOperand(i); 5534 VarIdxNum = i-2; 5535 Indexes.push_back(nullptr); 5536 } 5537 5538 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5539 if (!VarIdx) 5540 return getCouldNotCompute(); 5541 5542 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5543 // Check to see if X is a loop variant variable value now. 5544 const SCEV *Idx = getSCEV(VarIdx); 5545 Idx = getSCEVAtScope(Idx, L); 5546 5547 // We can only recognize very limited forms of loop index expressions, in 5548 // particular, only affine AddRec's like {C1,+,C2}. 5549 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5550 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5551 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5552 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5553 return getCouldNotCompute(); 5554 5555 unsigned MaxSteps = MaxBruteForceIterations; 5556 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5557 ConstantInt *ItCst = ConstantInt::get( 5558 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5559 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5560 5561 // Form the GEP offset. 5562 Indexes[VarIdxNum] = Val; 5563 5564 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5565 Indexes); 5566 if (!Result) break; // Cannot compute! 5567 5568 // Evaluate the condition for this iteration. 5569 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5570 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5571 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5572 ++NumArrayLenItCounts; 5573 return getConstant(ItCst); // Found terminating iteration! 5574 } 5575 } 5576 return getCouldNotCompute(); 5577 } 5578 5579 5580 /// CanConstantFold - Return true if we can constant fold an instruction of the 5581 /// specified type, assuming that all operands were constants. 5582 static bool CanConstantFold(const Instruction *I) { 5583 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5584 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5585 isa<LoadInst>(I)) 5586 return true; 5587 5588 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5589 if (const Function *F = CI->getCalledFunction()) 5590 return canConstantFoldCallTo(F); 5591 return false; 5592 } 5593 5594 /// Determine whether this instruction can constant evolve within this loop 5595 /// assuming its operands can all constant evolve. 5596 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5597 // An instruction outside of the loop can't be derived from a loop PHI. 5598 if (!L->contains(I)) return false; 5599 5600 if (isa<PHINode>(I)) { 5601 // We don't currently keep track of the control flow needed to evaluate 5602 // PHIs, so we cannot handle PHIs inside of loops. 5603 return L->getHeader() == I->getParent(); 5604 } 5605 5606 // If we won't be able to constant fold this expression even if the operands 5607 // are constants, bail early. 5608 return CanConstantFold(I); 5609 } 5610 5611 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5612 /// recursing through each instruction operand until reaching a loop header phi. 5613 static PHINode * 5614 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5615 DenseMap<Instruction *, PHINode *> &PHIMap) { 5616 5617 // Otherwise, we can evaluate this instruction if all of its operands are 5618 // constant or derived from a PHI node themselves. 5619 PHINode *PHI = nullptr; 5620 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5621 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5622 5623 if (isa<Constant>(*OpI)) continue; 5624 5625 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5626 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5627 5628 PHINode *P = dyn_cast<PHINode>(OpInst); 5629 if (!P) 5630 // If this operand is already visited, reuse the prior result. 5631 // We may have P != PHI if this is the deepest point at which the 5632 // inconsistent paths meet. 5633 P = PHIMap.lookup(OpInst); 5634 if (!P) { 5635 // Recurse and memoize the results, whether a phi is found or not. 5636 // This recursive call invalidates pointers into PHIMap. 5637 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5638 PHIMap[OpInst] = P; 5639 } 5640 if (!P) 5641 return nullptr; // Not evolving from PHI 5642 if (PHI && PHI != P) 5643 return nullptr; // Evolving from multiple different PHIs. 5644 PHI = P; 5645 } 5646 // This is a expression evolving from a constant PHI! 5647 return PHI; 5648 } 5649 5650 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5651 /// in the loop that V is derived from. We allow arbitrary operations along the 5652 /// way, but the operands of an operation must either be constants or a value 5653 /// derived from a constant PHI. If this expression does not fit with these 5654 /// constraints, return null. 5655 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5656 Instruction *I = dyn_cast<Instruction>(V); 5657 if (!I || !canConstantEvolve(I, L)) return nullptr; 5658 5659 if (PHINode *PN = dyn_cast<PHINode>(I)) 5660 return PN; 5661 5662 // Record non-constant instructions contained by the loop. 5663 DenseMap<Instruction *, PHINode *> PHIMap; 5664 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5665 } 5666 5667 /// EvaluateExpression - Given an expression that passes the 5668 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5669 /// in the loop has the value PHIVal. If we can't fold this expression for some 5670 /// reason, return null. 5671 static Constant *EvaluateExpression(Value *V, const Loop *L, 5672 DenseMap<Instruction *, Constant *> &Vals, 5673 const DataLayout &DL, 5674 const TargetLibraryInfo *TLI) { 5675 // Convenient constant check, but redundant for recursive calls. 5676 if (Constant *C = dyn_cast<Constant>(V)) return C; 5677 Instruction *I = dyn_cast<Instruction>(V); 5678 if (!I) return nullptr; 5679 5680 if (Constant *C = Vals.lookup(I)) return C; 5681 5682 // An instruction inside the loop depends on a value outside the loop that we 5683 // weren't given a mapping for, or a value such as a call inside the loop. 5684 if (!canConstantEvolve(I, L)) return nullptr; 5685 5686 // An unmapped PHI can be due to a branch or another loop inside this loop, 5687 // or due to this not being the initial iteration through a loop where we 5688 // couldn't compute the evolution of this particular PHI last time. 5689 if (isa<PHINode>(I)) return nullptr; 5690 5691 std::vector<Constant*> Operands(I->getNumOperands()); 5692 5693 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5694 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5695 if (!Operand) { 5696 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5697 if (!Operands[i]) return nullptr; 5698 continue; 5699 } 5700 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5701 Vals[Operand] = C; 5702 if (!C) return nullptr; 5703 Operands[i] = C; 5704 } 5705 5706 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5707 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5708 Operands[1], DL, TLI); 5709 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5710 if (!LI->isVolatile()) 5711 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5712 } 5713 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5714 TLI); 5715 } 5716 5717 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5718 /// in the header of its containing loop, we know the loop executes a 5719 /// constant number of times, and the PHI node is just a recurrence 5720 /// involving constants, fold it. 5721 Constant * 5722 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5723 const APInt &BEs, 5724 const Loop *L) { 5725 auto I = ConstantEvolutionLoopExitValue.find(PN); 5726 if (I != ConstantEvolutionLoopExitValue.end()) 5727 return I->second; 5728 5729 if (BEs.ugt(MaxBruteForceIterations)) 5730 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5731 5732 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5733 5734 DenseMap<Instruction *, Constant *> CurrentIterVals; 5735 BasicBlock *Header = L->getHeader(); 5736 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5737 5738 BasicBlock *Latch = L->getLoopLatch(); 5739 if (!Latch) 5740 return nullptr; 5741 5742 // Since the loop has one latch, the PHI node must have two entries. One 5743 // entry must be a constant (coming in from outside of the loop), and the 5744 // second must be derived from the same PHI. 5745 5746 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5747 ? PN->getIncomingBlock(1) 5748 : PN->getIncomingBlock(0); 5749 5750 assert(PN->getNumIncomingValues() == 2 && "Follows from having one latch!"); 5751 5752 // Note: not all PHI nodes in the same block have to have their incoming 5753 // values in the same order, so we use the basic block to look up the incoming 5754 // value, not an index. 5755 5756 for (auto &I : *Header) { 5757 PHINode *PHI = dyn_cast<PHINode>(&I); 5758 if (!PHI) break; 5759 auto *StartCST = 5760 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5761 if (!StartCST) continue; 5762 CurrentIterVals[PHI] = StartCST; 5763 } 5764 if (!CurrentIterVals.count(PN)) 5765 return RetVal = nullptr; 5766 5767 Value *BEValue = PN->getIncomingValueForBlock(Latch); 5768 5769 // Execute the loop symbolically to determine the exit value. 5770 if (BEs.getActiveBits() >= 32) 5771 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5772 5773 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5774 unsigned IterationNum = 0; 5775 const DataLayout &DL = getDataLayout(); 5776 for (; ; ++IterationNum) { 5777 if (IterationNum == NumIterations) 5778 return RetVal = CurrentIterVals[PN]; // Got exit value! 5779 5780 // Compute the value of the PHIs for the next iteration. 5781 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5782 DenseMap<Instruction *, Constant *> NextIterVals; 5783 Constant *NextPHI = 5784 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5785 if (!NextPHI) 5786 return nullptr; // Couldn't evaluate! 5787 NextIterVals[PN] = NextPHI; 5788 5789 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5790 5791 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5792 // cease to be able to evaluate one of them or if they stop evolving, 5793 // because that doesn't necessarily prevent us from computing PN. 5794 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5795 for (const auto &I : CurrentIterVals) { 5796 PHINode *PHI = dyn_cast<PHINode>(I.first); 5797 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5798 PHIsToCompute.emplace_back(PHI, I.second); 5799 } 5800 // We use two distinct loops because EvaluateExpression may invalidate any 5801 // iterators into CurrentIterVals. 5802 for (const auto &I : PHIsToCompute) { 5803 PHINode *PHI = I.first; 5804 Constant *&NextPHI = NextIterVals[PHI]; 5805 if (!NextPHI) { // Not already computed. 5806 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5807 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5808 } 5809 if (NextPHI != I.second) 5810 StoppedEvolving = false; 5811 } 5812 5813 // If all entries in CurrentIterVals == NextIterVals then we can stop 5814 // iterating, the loop can't continue to change. 5815 if (StoppedEvolving) 5816 return RetVal = CurrentIterVals[PN]; 5817 5818 CurrentIterVals.swap(NextIterVals); 5819 } 5820 } 5821 5822 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 5823 Value *Cond, 5824 bool ExitWhen) { 5825 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5826 if (!PN) return getCouldNotCompute(); 5827 5828 // If the loop is canonicalized, the PHI will have exactly two entries. 5829 // That's the only form we support here. 5830 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5831 5832 DenseMap<Instruction *, Constant *> CurrentIterVals; 5833 BasicBlock *Header = L->getHeader(); 5834 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5835 5836 BasicBlock *Latch = L->getLoopLatch(); 5837 assert(Latch && "Should follow from NumIncomingValues == 2!"); 5838 5839 // NonLatch is the preheader, or something equivalent. 5840 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5841 ? PN->getIncomingBlock(1) 5842 : PN->getIncomingBlock(0); 5843 5844 // Note: not all PHI nodes in the same block have to have their incoming 5845 // values in the same order, so we use the basic block to look up the incoming 5846 // value, not an index. 5847 5848 for (auto &I : *Header) { 5849 PHINode *PHI = dyn_cast<PHINode>(&I); 5850 if (!PHI) 5851 break; 5852 auto *StartCST = 5853 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5854 if (!StartCST) continue; 5855 CurrentIterVals[PHI] = StartCST; 5856 } 5857 if (!CurrentIterVals.count(PN)) 5858 return getCouldNotCompute(); 5859 5860 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5861 // the loop symbolically to determine when the condition gets a value of 5862 // "ExitWhen". 5863 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5864 const DataLayout &DL = getDataLayout(); 5865 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5866 auto *CondVal = dyn_cast_or_null<ConstantInt>( 5867 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 5868 5869 // Couldn't symbolically evaluate. 5870 if (!CondVal) return getCouldNotCompute(); 5871 5872 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5873 ++NumBruteForceTripCountsComputed; 5874 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5875 } 5876 5877 // Update all the PHI nodes for the next iteration. 5878 DenseMap<Instruction *, Constant *> NextIterVals; 5879 5880 // Create a list of which PHIs we need to compute. We want to do this before 5881 // calling EvaluateExpression on them because that may invalidate iterators 5882 // into CurrentIterVals. 5883 SmallVector<PHINode *, 8> PHIsToCompute; 5884 for (const auto &I : CurrentIterVals) { 5885 PHINode *PHI = dyn_cast<PHINode>(I.first); 5886 if (!PHI || PHI->getParent() != Header) continue; 5887 PHIsToCompute.push_back(PHI); 5888 } 5889 for (PHINode *PHI : PHIsToCompute) { 5890 Constant *&NextPHI = NextIterVals[PHI]; 5891 if (NextPHI) continue; // Already computed! 5892 5893 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5894 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5895 } 5896 CurrentIterVals.swap(NextIterVals); 5897 } 5898 5899 // Too many iterations were needed to evaluate. 5900 return getCouldNotCompute(); 5901 } 5902 5903 /// getSCEVAtScope - Return a SCEV expression for the specified value 5904 /// at the specified scope in the program. The L value specifies a loop 5905 /// nest to evaluate the expression at, where null is the top-level or a 5906 /// specified loop is immediately inside of the loop. 5907 /// 5908 /// This method can be used to compute the exit value for a variable defined 5909 /// in a loop by querying what the value will hold in the parent loop. 5910 /// 5911 /// In the case that a relevant loop exit value cannot be computed, the 5912 /// original value V is returned. 5913 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5914 // Check to see if we've folded this expression at this loop before. 5915 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5916 for (unsigned u = 0; u < Values.size(); u++) { 5917 if (Values[u].first == L) 5918 return Values[u].second ? Values[u].second : V; 5919 } 5920 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5921 // Otherwise compute it. 5922 const SCEV *C = computeSCEVAtScope(V, L); 5923 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5924 for (unsigned u = Values2.size(); u > 0; u--) { 5925 if (Values2[u - 1].first == L) { 5926 Values2[u - 1].second = C; 5927 break; 5928 } 5929 } 5930 return C; 5931 } 5932 5933 /// This builds up a Constant using the ConstantExpr interface. That way, we 5934 /// will return Constants for objects which aren't represented by a 5935 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5936 /// Returns NULL if the SCEV isn't representable as a Constant. 5937 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5938 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5939 case scCouldNotCompute: 5940 case scAddRecExpr: 5941 break; 5942 case scConstant: 5943 return cast<SCEVConstant>(V)->getValue(); 5944 case scUnknown: 5945 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5946 case scSignExtend: { 5947 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5948 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5949 return ConstantExpr::getSExt(CastOp, SS->getType()); 5950 break; 5951 } 5952 case scZeroExtend: { 5953 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5954 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5955 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5956 break; 5957 } 5958 case scTruncate: { 5959 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5960 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5961 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5962 break; 5963 } 5964 case scAddExpr: { 5965 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5966 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5967 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5968 unsigned AS = PTy->getAddressSpace(); 5969 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5970 C = ConstantExpr::getBitCast(C, DestPtrTy); 5971 } 5972 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5973 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5974 if (!C2) return nullptr; 5975 5976 // First pointer! 5977 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5978 unsigned AS = C2->getType()->getPointerAddressSpace(); 5979 std::swap(C, C2); 5980 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5981 // The offsets have been converted to bytes. We can add bytes to an 5982 // i8* by GEP with the byte count in the first index. 5983 C = ConstantExpr::getBitCast(C, DestPtrTy); 5984 } 5985 5986 // Don't bother trying to sum two pointers. We probably can't 5987 // statically compute a load that results from it anyway. 5988 if (C2->getType()->isPointerTy()) 5989 return nullptr; 5990 5991 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5992 if (PTy->getElementType()->isStructTy()) 5993 C2 = ConstantExpr::getIntegerCast( 5994 C2, Type::getInt32Ty(C->getContext()), true); 5995 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 5996 } else 5997 C = ConstantExpr::getAdd(C, C2); 5998 } 5999 return C; 6000 } 6001 break; 6002 } 6003 case scMulExpr: { 6004 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6005 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6006 // Don't bother with pointers at all. 6007 if (C->getType()->isPointerTy()) return nullptr; 6008 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6009 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6010 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6011 C = ConstantExpr::getMul(C, C2); 6012 } 6013 return C; 6014 } 6015 break; 6016 } 6017 case scUDivExpr: { 6018 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6019 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6020 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6021 if (LHS->getType() == RHS->getType()) 6022 return ConstantExpr::getUDiv(LHS, RHS); 6023 break; 6024 } 6025 case scSMaxExpr: 6026 case scUMaxExpr: 6027 break; // TODO: smax, umax. 6028 } 6029 return nullptr; 6030 } 6031 6032 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6033 if (isa<SCEVConstant>(V)) return V; 6034 6035 // If this instruction is evolved from a constant-evolving PHI, compute the 6036 // exit value from the loop without using SCEVs. 6037 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6038 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6039 const Loop *LI = this->LI[I->getParent()]; 6040 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6041 if (PHINode *PN = dyn_cast<PHINode>(I)) 6042 if (PN->getParent() == LI->getHeader()) { 6043 // Okay, there is no closed form solution for the PHI node. Check 6044 // to see if the loop that contains it has a known backedge-taken 6045 // count. If so, we may be able to force computation of the exit 6046 // value. 6047 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6048 if (const SCEVConstant *BTCC = 6049 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6050 // Okay, we know how many times the containing loop executes. If 6051 // this is a constant evolving PHI node, get the final value at 6052 // the specified iteration number. 6053 Constant *RV = getConstantEvolutionLoopExitValue(PN, 6054 BTCC->getValue()->getValue(), 6055 LI); 6056 if (RV) return getSCEV(RV); 6057 } 6058 } 6059 6060 // Okay, this is an expression that we cannot symbolically evaluate 6061 // into a SCEV. Check to see if it's possible to symbolically evaluate 6062 // the arguments into constants, and if so, try to constant propagate the 6063 // result. This is particularly useful for computing loop exit values. 6064 if (CanConstantFold(I)) { 6065 SmallVector<Constant *, 4> Operands; 6066 bool MadeImprovement = false; 6067 for (Value *Op : I->operands()) { 6068 if (Constant *C = dyn_cast<Constant>(Op)) { 6069 Operands.push_back(C); 6070 continue; 6071 } 6072 6073 // If any of the operands is non-constant and if they are 6074 // non-integer and non-pointer, don't even try to analyze them 6075 // with scev techniques. 6076 if (!isSCEVable(Op->getType())) 6077 return V; 6078 6079 const SCEV *OrigV = getSCEV(Op); 6080 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6081 MadeImprovement |= OrigV != OpV; 6082 6083 Constant *C = BuildConstantFromSCEV(OpV); 6084 if (!C) return V; 6085 if (C->getType() != Op->getType()) 6086 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6087 Op->getType(), 6088 false), 6089 C, Op->getType()); 6090 Operands.push_back(C); 6091 } 6092 6093 // Check to see if getSCEVAtScope actually made an improvement. 6094 if (MadeImprovement) { 6095 Constant *C = nullptr; 6096 const DataLayout &DL = getDataLayout(); 6097 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6098 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6099 Operands[1], DL, &TLI); 6100 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6101 if (!LI->isVolatile()) 6102 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 6103 } else 6104 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 6105 DL, &TLI); 6106 if (!C) return V; 6107 return getSCEV(C); 6108 } 6109 } 6110 } 6111 6112 // This is some other type of SCEVUnknown, just return it. 6113 return V; 6114 } 6115 6116 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6117 // Avoid performing the look-up in the common case where the specified 6118 // expression has no loop-variant portions. 6119 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6120 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6121 if (OpAtScope != Comm->getOperand(i)) { 6122 // Okay, at least one of these operands is loop variant but might be 6123 // foldable. Build a new instance of the folded commutative expression. 6124 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6125 Comm->op_begin()+i); 6126 NewOps.push_back(OpAtScope); 6127 6128 for (++i; i != e; ++i) { 6129 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6130 NewOps.push_back(OpAtScope); 6131 } 6132 if (isa<SCEVAddExpr>(Comm)) 6133 return getAddExpr(NewOps); 6134 if (isa<SCEVMulExpr>(Comm)) 6135 return getMulExpr(NewOps); 6136 if (isa<SCEVSMaxExpr>(Comm)) 6137 return getSMaxExpr(NewOps); 6138 if (isa<SCEVUMaxExpr>(Comm)) 6139 return getUMaxExpr(NewOps); 6140 llvm_unreachable("Unknown commutative SCEV type!"); 6141 } 6142 } 6143 // If we got here, all operands are loop invariant. 6144 return Comm; 6145 } 6146 6147 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6148 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6149 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6150 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6151 return Div; // must be loop invariant 6152 return getUDivExpr(LHS, RHS); 6153 } 6154 6155 // If this is a loop recurrence for a loop that does not contain L, then we 6156 // are dealing with the final value computed by the loop. 6157 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6158 // First, attempt to evaluate each operand. 6159 // Avoid performing the look-up in the common case where the specified 6160 // expression has no loop-variant portions. 6161 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6162 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6163 if (OpAtScope == AddRec->getOperand(i)) 6164 continue; 6165 6166 // Okay, at least one of these operands is loop variant but might be 6167 // foldable. Build a new instance of the folded commutative expression. 6168 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6169 AddRec->op_begin()+i); 6170 NewOps.push_back(OpAtScope); 6171 for (++i; i != e; ++i) 6172 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6173 6174 const SCEV *FoldedRec = 6175 getAddRecExpr(NewOps, AddRec->getLoop(), 6176 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6177 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6178 // The addrec may be folded to a nonrecurrence, for example, if the 6179 // induction variable is multiplied by zero after constant folding. Go 6180 // ahead and return the folded value. 6181 if (!AddRec) 6182 return FoldedRec; 6183 break; 6184 } 6185 6186 // If the scope is outside the addrec's loop, evaluate it by using the 6187 // loop exit value of the addrec. 6188 if (!AddRec->getLoop()->contains(L)) { 6189 // To evaluate this recurrence, we need to know how many times the AddRec 6190 // loop iterates. Compute this now. 6191 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6192 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6193 6194 // Then, evaluate the AddRec. 6195 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6196 } 6197 6198 return AddRec; 6199 } 6200 6201 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6202 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6203 if (Op == Cast->getOperand()) 6204 return Cast; // must be loop invariant 6205 return getZeroExtendExpr(Op, Cast->getType()); 6206 } 6207 6208 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6209 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6210 if (Op == Cast->getOperand()) 6211 return Cast; // must be loop invariant 6212 return getSignExtendExpr(Op, Cast->getType()); 6213 } 6214 6215 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6216 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6217 if (Op == Cast->getOperand()) 6218 return Cast; // must be loop invariant 6219 return getTruncateExpr(Op, Cast->getType()); 6220 } 6221 6222 llvm_unreachable("Unknown SCEV type!"); 6223 } 6224 6225 /// getSCEVAtScope - This is a convenience function which does 6226 /// getSCEVAtScope(getSCEV(V), L). 6227 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6228 return getSCEVAtScope(getSCEV(V), L); 6229 } 6230 6231 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6232 /// following equation: 6233 /// 6234 /// A * X = B (mod N) 6235 /// 6236 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6237 /// A and B isn't important. 6238 /// 6239 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6240 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6241 ScalarEvolution &SE) { 6242 uint32_t BW = A.getBitWidth(); 6243 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6244 assert(A != 0 && "A must be non-zero."); 6245 6246 // 1. D = gcd(A, N) 6247 // 6248 // The gcd of A and N may have only one prime factor: 2. The number of 6249 // trailing zeros in A is its multiplicity 6250 uint32_t Mult2 = A.countTrailingZeros(); 6251 // D = 2^Mult2 6252 6253 // 2. Check if B is divisible by D. 6254 // 6255 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6256 // is not less than multiplicity of this prime factor for D. 6257 if (B.countTrailingZeros() < Mult2) 6258 return SE.getCouldNotCompute(); 6259 6260 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6261 // modulo (N / D). 6262 // 6263 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6264 // bit width during computations. 6265 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6266 APInt Mod(BW + 1, 0); 6267 Mod.setBit(BW - Mult2); // Mod = N / D 6268 APInt I = AD.multiplicativeInverse(Mod); 6269 6270 // 4. Compute the minimum unsigned root of the equation: 6271 // I * (B / D) mod (N / D) 6272 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6273 6274 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6275 // bits. 6276 return SE.getConstant(Result.trunc(BW)); 6277 } 6278 6279 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6280 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6281 /// might be the same) or two SCEVCouldNotCompute objects. 6282 /// 6283 static std::pair<const SCEV *,const SCEV *> 6284 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6285 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6286 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6287 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6288 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6289 6290 // We currently can only solve this if the coefficients are constants. 6291 if (!LC || !MC || !NC) { 6292 const SCEV *CNC = SE.getCouldNotCompute(); 6293 return std::make_pair(CNC, CNC); 6294 } 6295 6296 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6297 const APInt &L = LC->getValue()->getValue(); 6298 const APInt &M = MC->getValue()->getValue(); 6299 const APInt &N = NC->getValue()->getValue(); 6300 APInt Two(BitWidth, 2); 6301 APInt Four(BitWidth, 4); 6302 6303 { 6304 using namespace APIntOps; 6305 const APInt& C = L; 6306 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6307 // The B coefficient is M-N/2 6308 APInt B(M); 6309 B -= sdiv(N,Two); 6310 6311 // The A coefficient is N/2 6312 APInt A(N.sdiv(Two)); 6313 6314 // Compute the B^2-4ac term. 6315 APInt SqrtTerm(B); 6316 SqrtTerm *= B; 6317 SqrtTerm -= Four * (A * C); 6318 6319 if (SqrtTerm.isNegative()) { 6320 // The loop is provably infinite. 6321 const SCEV *CNC = SE.getCouldNotCompute(); 6322 return std::make_pair(CNC, CNC); 6323 } 6324 6325 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6326 // integer value or else APInt::sqrt() will assert. 6327 APInt SqrtVal(SqrtTerm.sqrt()); 6328 6329 // Compute the two solutions for the quadratic formula. 6330 // The divisions must be performed as signed divisions. 6331 APInt NegB(-B); 6332 APInt TwoA(A << 1); 6333 if (TwoA.isMinValue()) { 6334 const SCEV *CNC = SE.getCouldNotCompute(); 6335 return std::make_pair(CNC, CNC); 6336 } 6337 6338 LLVMContext &Context = SE.getContext(); 6339 6340 ConstantInt *Solution1 = 6341 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6342 ConstantInt *Solution2 = 6343 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6344 6345 return std::make_pair(SE.getConstant(Solution1), 6346 SE.getConstant(Solution2)); 6347 } // end APIntOps namespace 6348 } 6349 6350 /// HowFarToZero - Return the number of times a backedge comparing the specified 6351 /// value to zero will execute. If not computable, return CouldNotCompute. 6352 /// 6353 /// This is only used for loops with a "x != y" exit test. The exit condition is 6354 /// now expressed as a single expression, V = x-y. So the exit test is 6355 /// effectively V != 0. We know and take advantage of the fact that this 6356 /// expression only being used in a comparison by zero context. 6357 ScalarEvolution::ExitLimit 6358 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6359 // If the value is a constant 6360 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6361 // If the value is already zero, the branch will execute zero times. 6362 if (C->getValue()->isZero()) return C; 6363 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6364 } 6365 6366 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6367 if (!AddRec || AddRec->getLoop() != L) 6368 return getCouldNotCompute(); 6369 6370 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6371 // the quadratic equation to solve it. 6372 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6373 std::pair<const SCEV *,const SCEV *> Roots = 6374 SolveQuadraticEquation(AddRec, *this); 6375 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6376 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6377 if (R1 && R2) { 6378 // Pick the smallest positive root value. 6379 if (ConstantInt *CB = 6380 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6381 R1->getValue(), 6382 R2->getValue()))) { 6383 if (!CB->getZExtValue()) 6384 std::swap(R1, R2); // R1 is the minimum root now. 6385 6386 // We can only use this value if the chrec ends up with an exact zero 6387 // value at this index. When solving for "X*X != 5", for example, we 6388 // should not accept a root of 2. 6389 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6390 if (Val->isZero()) 6391 return R1; // We found a quadratic root! 6392 } 6393 } 6394 return getCouldNotCompute(); 6395 } 6396 6397 // Otherwise we can only handle this if it is affine. 6398 if (!AddRec->isAffine()) 6399 return getCouldNotCompute(); 6400 6401 // If this is an affine expression, the execution count of this branch is 6402 // the minimum unsigned root of the following equation: 6403 // 6404 // Start + Step*N = 0 (mod 2^BW) 6405 // 6406 // equivalent to: 6407 // 6408 // Step*N = -Start (mod 2^BW) 6409 // 6410 // where BW is the common bit width of Start and Step. 6411 6412 // Get the initial value for the loop. 6413 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6414 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6415 6416 // For now we handle only constant steps. 6417 // 6418 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6419 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6420 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6421 // We have not yet seen any such cases. 6422 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6423 if (!StepC || StepC->getValue()->equalsInt(0)) 6424 return getCouldNotCompute(); 6425 6426 // For positive steps (counting up until unsigned overflow): 6427 // N = -Start/Step (as unsigned) 6428 // For negative steps (counting down to zero): 6429 // N = Start/-Step 6430 // First compute the unsigned distance from zero in the direction of Step. 6431 bool CountDown = StepC->getValue()->getValue().isNegative(); 6432 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6433 6434 // Handle unitary steps, which cannot wraparound. 6435 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6436 // N = Distance (as unsigned) 6437 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6438 ConstantRange CR = getUnsignedRange(Start); 6439 const SCEV *MaxBECount; 6440 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6441 // When counting up, the worst starting value is 1, not 0. 6442 MaxBECount = CR.getUnsignedMax().isMinValue() 6443 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6444 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6445 else 6446 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6447 : -CR.getUnsignedMin()); 6448 return ExitLimit(Distance, MaxBECount); 6449 } 6450 6451 // As a special case, handle the instance where Step is a positive power of 6452 // two. In this case, determining whether Step divides Distance evenly can be 6453 // done by counting and comparing the number of trailing zeros of Step and 6454 // Distance. 6455 if (!CountDown) { 6456 const APInt &StepV = StepC->getValue()->getValue(); 6457 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6458 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6459 // case is not handled as this code is guarded by !CountDown. 6460 if (StepV.isPowerOf2() && 6461 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6462 // Here we've constrained the equation to be of the form 6463 // 6464 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6465 // 6466 // where we're operating on a W bit wide integer domain and k is 6467 // non-negative. The smallest unsigned solution for X is the trip count. 6468 // 6469 // (0) is equivalent to: 6470 // 6471 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6472 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6473 // <=> 2^k * Distance' - X = L * 2^(W - N) 6474 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6475 // 6476 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6477 // by 2^(W - N). 6478 // 6479 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6480 // 6481 // E.g. say we're solving 6482 // 6483 // 2 * Val = 2 * X (in i8) ... (3) 6484 // 6485 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6486 // 6487 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6488 // necessarily the smallest unsigned value of X that satisfies (3). 6489 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6490 // is i8 1, not i8 -127 6491 6492 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6493 6494 // Since SCEV does not have a URem node, we construct one using a truncate 6495 // and a zero extend. 6496 6497 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6498 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6499 auto *WideTy = Distance->getType(); 6500 6501 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6502 } 6503 } 6504 6505 // If the condition controls loop exit (the loop exits only if the expression 6506 // is true) and the addition is no-wrap we can use unsigned divide to 6507 // compute the backedge count. In this case, the step may not divide the 6508 // distance, but we don't care because if the condition is "missed" the loop 6509 // will have undefined behavior due to wrapping. 6510 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6511 const SCEV *Exact = 6512 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6513 return ExitLimit(Exact, Exact); 6514 } 6515 6516 // Then, try to solve the above equation provided that Start is constant. 6517 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6518 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6519 -StartC->getValue()->getValue(), 6520 *this); 6521 return getCouldNotCompute(); 6522 } 6523 6524 /// HowFarToNonZero - Return the number of times a backedge checking the 6525 /// specified value for nonzero will execute. If not computable, return 6526 /// CouldNotCompute 6527 ScalarEvolution::ExitLimit 6528 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6529 // Loops that look like: while (X == 0) are very strange indeed. We don't 6530 // handle them yet except for the trivial case. This could be expanded in the 6531 // future as needed. 6532 6533 // If the value is a constant, check to see if it is known to be non-zero 6534 // already. If so, the backedge will execute zero times. 6535 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6536 if (!C->getValue()->isNullValue()) 6537 return getZero(C->getType()); 6538 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6539 } 6540 6541 // We could implement others, but I really doubt anyone writes loops like 6542 // this, and if they did, they would already be constant folded. 6543 return getCouldNotCompute(); 6544 } 6545 6546 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6547 /// (which may not be an immediate predecessor) which has exactly one 6548 /// successor from which BB is reachable, or null if no such block is 6549 /// found. 6550 /// 6551 std::pair<BasicBlock *, BasicBlock *> 6552 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6553 // If the block has a unique predecessor, then there is no path from the 6554 // predecessor to the block that does not go through the direct edge 6555 // from the predecessor to the block. 6556 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6557 return std::make_pair(Pred, BB); 6558 6559 // A loop's header is defined to be a block that dominates the loop. 6560 // If the header has a unique predecessor outside the loop, it must be 6561 // a block that has exactly one successor that can reach the loop. 6562 if (Loop *L = LI.getLoopFor(BB)) 6563 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6564 6565 return std::pair<BasicBlock *, BasicBlock *>(); 6566 } 6567 6568 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6569 /// testing whether two expressions are equal, however for the purposes of 6570 /// looking for a condition guarding a loop, it can be useful to be a little 6571 /// more general, since a front-end may have replicated the controlling 6572 /// expression. 6573 /// 6574 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6575 // Quick check to see if they are the same SCEV. 6576 if (A == B) return true; 6577 6578 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6579 // Not all instructions that are "identical" compute the same value. For 6580 // instance, two distinct alloca instructions allocating the same type are 6581 // identical and do not read memory; but compute distinct values. 6582 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6583 }; 6584 6585 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6586 // two different instructions with the same value. Check for this case. 6587 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6588 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6589 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6590 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6591 if (ComputesEqualValues(AI, BI)) 6592 return true; 6593 6594 // Otherwise assume they may have a different value. 6595 return false; 6596 } 6597 6598 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6599 /// predicate Pred. Return true iff any changes were made. 6600 /// 6601 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6602 const SCEV *&LHS, const SCEV *&RHS, 6603 unsigned Depth) { 6604 bool Changed = false; 6605 6606 // If we hit the max recursion limit bail out. 6607 if (Depth >= 3) 6608 return false; 6609 6610 // Canonicalize a constant to the right side. 6611 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6612 // Check for both operands constant. 6613 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6614 if (ConstantExpr::getICmp(Pred, 6615 LHSC->getValue(), 6616 RHSC->getValue())->isNullValue()) 6617 goto trivially_false; 6618 else 6619 goto trivially_true; 6620 } 6621 // Otherwise swap the operands to put the constant on the right. 6622 std::swap(LHS, RHS); 6623 Pred = ICmpInst::getSwappedPredicate(Pred); 6624 Changed = true; 6625 } 6626 6627 // If we're comparing an addrec with a value which is loop-invariant in the 6628 // addrec's loop, put the addrec on the left. Also make a dominance check, 6629 // as both operands could be addrecs loop-invariant in each other's loop. 6630 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6631 const Loop *L = AR->getLoop(); 6632 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6633 std::swap(LHS, RHS); 6634 Pred = ICmpInst::getSwappedPredicate(Pred); 6635 Changed = true; 6636 } 6637 } 6638 6639 // If there's a constant operand, canonicalize comparisons with boundary 6640 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6641 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6642 const APInt &RA = RC->getValue()->getValue(); 6643 switch (Pred) { 6644 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6645 case ICmpInst::ICMP_EQ: 6646 case ICmpInst::ICMP_NE: 6647 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6648 if (!RA) 6649 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6650 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6651 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6652 ME->getOperand(0)->isAllOnesValue()) { 6653 RHS = AE->getOperand(1); 6654 LHS = ME->getOperand(1); 6655 Changed = true; 6656 } 6657 break; 6658 case ICmpInst::ICMP_UGE: 6659 if ((RA - 1).isMinValue()) { 6660 Pred = ICmpInst::ICMP_NE; 6661 RHS = getConstant(RA - 1); 6662 Changed = true; 6663 break; 6664 } 6665 if (RA.isMaxValue()) { 6666 Pred = ICmpInst::ICMP_EQ; 6667 Changed = true; 6668 break; 6669 } 6670 if (RA.isMinValue()) goto trivially_true; 6671 6672 Pred = ICmpInst::ICMP_UGT; 6673 RHS = getConstant(RA - 1); 6674 Changed = true; 6675 break; 6676 case ICmpInst::ICMP_ULE: 6677 if ((RA + 1).isMaxValue()) { 6678 Pred = ICmpInst::ICMP_NE; 6679 RHS = getConstant(RA + 1); 6680 Changed = true; 6681 break; 6682 } 6683 if (RA.isMinValue()) { 6684 Pred = ICmpInst::ICMP_EQ; 6685 Changed = true; 6686 break; 6687 } 6688 if (RA.isMaxValue()) goto trivially_true; 6689 6690 Pred = ICmpInst::ICMP_ULT; 6691 RHS = getConstant(RA + 1); 6692 Changed = true; 6693 break; 6694 case ICmpInst::ICMP_SGE: 6695 if ((RA - 1).isMinSignedValue()) { 6696 Pred = ICmpInst::ICMP_NE; 6697 RHS = getConstant(RA - 1); 6698 Changed = true; 6699 break; 6700 } 6701 if (RA.isMaxSignedValue()) { 6702 Pred = ICmpInst::ICMP_EQ; 6703 Changed = true; 6704 break; 6705 } 6706 if (RA.isMinSignedValue()) goto trivially_true; 6707 6708 Pred = ICmpInst::ICMP_SGT; 6709 RHS = getConstant(RA - 1); 6710 Changed = true; 6711 break; 6712 case ICmpInst::ICMP_SLE: 6713 if ((RA + 1).isMaxSignedValue()) { 6714 Pred = ICmpInst::ICMP_NE; 6715 RHS = getConstant(RA + 1); 6716 Changed = true; 6717 break; 6718 } 6719 if (RA.isMinSignedValue()) { 6720 Pred = ICmpInst::ICMP_EQ; 6721 Changed = true; 6722 break; 6723 } 6724 if (RA.isMaxSignedValue()) goto trivially_true; 6725 6726 Pred = ICmpInst::ICMP_SLT; 6727 RHS = getConstant(RA + 1); 6728 Changed = true; 6729 break; 6730 case ICmpInst::ICMP_UGT: 6731 if (RA.isMinValue()) { 6732 Pred = ICmpInst::ICMP_NE; 6733 Changed = true; 6734 break; 6735 } 6736 if ((RA + 1).isMaxValue()) { 6737 Pred = ICmpInst::ICMP_EQ; 6738 RHS = getConstant(RA + 1); 6739 Changed = true; 6740 break; 6741 } 6742 if (RA.isMaxValue()) goto trivially_false; 6743 break; 6744 case ICmpInst::ICMP_ULT: 6745 if (RA.isMaxValue()) { 6746 Pred = ICmpInst::ICMP_NE; 6747 Changed = true; 6748 break; 6749 } 6750 if ((RA - 1).isMinValue()) { 6751 Pred = ICmpInst::ICMP_EQ; 6752 RHS = getConstant(RA - 1); 6753 Changed = true; 6754 break; 6755 } 6756 if (RA.isMinValue()) goto trivially_false; 6757 break; 6758 case ICmpInst::ICMP_SGT: 6759 if (RA.isMinSignedValue()) { 6760 Pred = ICmpInst::ICMP_NE; 6761 Changed = true; 6762 break; 6763 } 6764 if ((RA + 1).isMaxSignedValue()) { 6765 Pred = ICmpInst::ICMP_EQ; 6766 RHS = getConstant(RA + 1); 6767 Changed = true; 6768 break; 6769 } 6770 if (RA.isMaxSignedValue()) goto trivially_false; 6771 break; 6772 case ICmpInst::ICMP_SLT: 6773 if (RA.isMaxSignedValue()) { 6774 Pred = ICmpInst::ICMP_NE; 6775 Changed = true; 6776 break; 6777 } 6778 if ((RA - 1).isMinSignedValue()) { 6779 Pred = ICmpInst::ICMP_EQ; 6780 RHS = getConstant(RA - 1); 6781 Changed = true; 6782 break; 6783 } 6784 if (RA.isMinSignedValue()) goto trivially_false; 6785 break; 6786 } 6787 } 6788 6789 // Check for obvious equality. 6790 if (HasSameValue(LHS, RHS)) { 6791 if (ICmpInst::isTrueWhenEqual(Pred)) 6792 goto trivially_true; 6793 if (ICmpInst::isFalseWhenEqual(Pred)) 6794 goto trivially_false; 6795 } 6796 6797 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6798 // adding or subtracting 1 from one of the operands. 6799 switch (Pred) { 6800 case ICmpInst::ICMP_SLE: 6801 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6802 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6803 SCEV::FlagNSW); 6804 Pred = ICmpInst::ICMP_SLT; 6805 Changed = true; 6806 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6807 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6808 SCEV::FlagNSW); 6809 Pred = ICmpInst::ICMP_SLT; 6810 Changed = true; 6811 } 6812 break; 6813 case ICmpInst::ICMP_SGE: 6814 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6815 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6816 SCEV::FlagNSW); 6817 Pred = ICmpInst::ICMP_SGT; 6818 Changed = true; 6819 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6820 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6821 SCEV::FlagNSW); 6822 Pred = ICmpInst::ICMP_SGT; 6823 Changed = true; 6824 } 6825 break; 6826 case ICmpInst::ICMP_ULE: 6827 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6828 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6829 SCEV::FlagNUW); 6830 Pred = ICmpInst::ICMP_ULT; 6831 Changed = true; 6832 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6833 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6834 SCEV::FlagNUW); 6835 Pred = ICmpInst::ICMP_ULT; 6836 Changed = true; 6837 } 6838 break; 6839 case ICmpInst::ICMP_UGE: 6840 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6841 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6842 SCEV::FlagNUW); 6843 Pred = ICmpInst::ICMP_UGT; 6844 Changed = true; 6845 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6846 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6847 SCEV::FlagNUW); 6848 Pred = ICmpInst::ICMP_UGT; 6849 Changed = true; 6850 } 6851 break; 6852 default: 6853 break; 6854 } 6855 6856 // TODO: More simplifications are possible here. 6857 6858 // Recursively simplify until we either hit a recursion limit or nothing 6859 // changes. 6860 if (Changed) 6861 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6862 6863 return Changed; 6864 6865 trivially_true: 6866 // Return 0 == 0. 6867 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6868 Pred = ICmpInst::ICMP_EQ; 6869 return true; 6870 6871 trivially_false: 6872 // Return 0 != 0. 6873 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6874 Pred = ICmpInst::ICMP_NE; 6875 return true; 6876 } 6877 6878 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6879 return getSignedRange(S).getSignedMax().isNegative(); 6880 } 6881 6882 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6883 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6884 } 6885 6886 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6887 return !getSignedRange(S).getSignedMin().isNegative(); 6888 } 6889 6890 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6891 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6892 } 6893 6894 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6895 return isKnownNegative(S) || isKnownPositive(S); 6896 } 6897 6898 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6899 const SCEV *LHS, const SCEV *RHS) { 6900 // Canonicalize the inputs first. 6901 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6902 6903 // If LHS or RHS is an addrec, check to see if the condition is true in 6904 // every iteration of the loop. 6905 // If LHS and RHS are both addrec, both conditions must be true in 6906 // every iteration of the loop. 6907 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6908 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6909 bool LeftGuarded = false; 6910 bool RightGuarded = false; 6911 if (LAR) { 6912 const Loop *L = LAR->getLoop(); 6913 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6914 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6915 if (!RAR) return true; 6916 LeftGuarded = true; 6917 } 6918 } 6919 if (RAR) { 6920 const Loop *L = RAR->getLoop(); 6921 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6922 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6923 if (!LAR) return true; 6924 RightGuarded = true; 6925 } 6926 } 6927 if (LeftGuarded && RightGuarded) 6928 return true; 6929 6930 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 6931 return true; 6932 6933 // Otherwise see what can be done with known constant ranges. 6934 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6935 } 6936 6937 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6938 ICmpInst::Predicate Pred, 6939 bool &Increasing) { 6940 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6941 6942 #ifndef NDEBUG 6943 // Verify an invariant: inverting the predicate should turn a monotonically 6944 // increasing change to a monotonically decreasing one, and vice versa. 6945 bool IncreasingSwapped; 6946 bool ResultSwapped = isMonotonicPredicateImpl( 6947 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6948 6949 assert(Result == ResultSwapped && "should be able to analyze both!"); 6950 if (ResultSwapped) 6951 assert(Increasing == !IncreasingSwapped && 6952 "monotonicity should flip as we flip the predicate"); 6953 #endif 6954 6955 return Result; 6956 } 6957 6958 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6959 ICmpInst::Predicate Pred, 6960 bool &Increasing) { 6961 6962 // A zero step value for LHS means the induction variable is essentially a 6963 // loop invariant value. We don't really depend on the predicate actually 6964 // flipping from false to true (for increasing predicates, and the other way 6965 // around for decreasing predicates), all we care about is that *if* the 6966 // predicate changes then it only changes from false to true. 6967 // 6968 // A zero step value in itself is not very useful, but there may be places 6969 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 6970 // as general as possible. 6971 6972 switch (Pred) { 6973 default: 6974 return false; // Conservative answer 6975 6976 case ICmpInst::ICMP_UGT: 6977 case ICmpInst::ICMP_UGE: 6978 case ICmpInst::ICMP_ULT: 6979 case ICmpInst::ICMP_ULE: 6980 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 6981 return false; 6982 6983 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 6984 return true; 6985 6986 case ICmpInst::ICMP_SGT: 6987 case ICmpInst::ICMP_SGE: 6988 case ICmpInst::ICMP_SLT: 6989 case ICmpInst::ICMP_SLE: { 6990 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 6991 return false; 6992 6993 const SCEV *Step = LHS->getStepRecurrence(*this); 6994 6995 if (isKnownNonNegative(Step)) { 6996 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 6997 return true; 6998 } 6999 7000 if (isKnownNonPositive(Step)) { 7001 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7002 return true; 7003 } 7004 7005 return false; 7006 } 7007 7008 } 7009 7010 llvm_unreachable("switch has default clause!"); 7011 } 7012 7013 bool ScalarEvolution::isLoopInvariantPredicate( 7014 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7015 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7016 const SCEV *&InvariantRHS) { 7017 7018 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7019 if (!isLoopInvariant(RHS, L)) { 7020 if (!isLoopInvariant(LHS, L)) 7021 return false; 7022 7023 std::swap(LHS, RHS); 7024 Pred = ICmpInst::getSwappedPredicate(Pred); 7025 } 7026 7027 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7028 if (!ArLHS || ArLHS->getLoop() != L) 7029 return false; 7030 7031 bool Increasing; 7032 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7033 return false; 7034 7035 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7036 // true as the loop iterates, and the backedge is control dependent on 7037 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7038 // 7039 // * if the predicate was false in the first iteration then the predicate 7040 // is never evaluated again, since the loop exits without taking the 7041 // backedge. 7042 // * if the predicate was true in the first iteration then it will 7043 // continue to be true for all future iterations since it is 7044 // monotonically increasing. 7045 // 7046 // For both the above possibilities, we can replace the loop varying 7047 // predicate with its value on the first iteration of the loop (which is 7048 // loop invariant). 7049 // 7050 // A similar reasoning applies for a monotonically decreasing predicate, by 7051 // replacing true with false and false with true in the above two bullets. 7052 7053 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7054 7055 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7056 return false; 7057 7058 InvariantPred = Pred; 7059 InvariantLHS = ArLHS->getStart(); 7060 InvariantRHS = RHS; 7061 return true; 7062 } 7063 7064 bool 7065 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 7066 const SCEV *LHS, const SCEV *RHS) { 7067 if (HasSameValue(LHS, RHS)) 7068 return ICmpInst::isTrueWhenEqual(Pred); 7069 7070 // This code is split out from isKnownPredicate because it is called from 7071 // within isLoopEntryGuardedByCond. 7072 switch (Pred) { 7073 default: 7074 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7075 case ICmpInst::ICMP_SGT: 7076 std::swap(LHS, RHS); 7077 case ICmpInst::ICMP_SLT: { 7078 ConstantRange LHSRange = getSignedRange(LHS); 7079 ConstantRange RHSRange = getSignedRange(RHS); 7080 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7081 return true; 7082 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7083 return false; 7084 break; 7085 } 7086 case ICmpInst::ICMP_SGE: 7087 std::swap(LHS, RHS); 7088 case ICmpInst::ICMP_SLE: { 7089 ConstantRange LHSRange = getSignedRange(LHS); 7090 ConstantRange RHSRange = getSignedRange(RHS); 7091 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7092 return true; 7093 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7094 return false; 7095 break; 7096 } 7097 case ICmpInst::ICMP_UGT: 7098 std::swap(LHS, RHS); 7099 case ICmpInst::ICMP_ULT: { 7100 ConstantRange LHSRange = getUnsignedRange(LHS); 7101 ConstantRange RHSRange = getUnsignedRange(RHS); 7102 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7103 return true; 7104 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7105 return false; 7106 break; 7107 } 7108 case ICmpInst::ICMP_UGE: 7109 std::swap(LHS, RHS); 7110 case ICmpInst::ICMP_ULE: { 7111 ConstantRange LHSRange = getUnsignedRange(LHS); 7112 ConstantRange RHSRange = getUnsignedRange(RHS); 7113 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7114 return true; 7115 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7116 return false; 7117 break; 7118 } 7119 case ICmpInst::ICMP_NE: { 7120 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7121 return true; 7122 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7123 return true; 7124 7125 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7126 if (isKnownNonZero(Diff)) 7127 return true; 7128 break; 7129 } 7130 case ICmpInst::ICMP_EQ: 7131 // The check at the top of the function catches the case where 7132 // the values are known to be equal. 7133 break; 7134 } 7135 return false; 7136 } 7137 7138 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7139 const SCEV *LHS, 7140 const SCEV *RHS) { 7141 7142 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7143 // Return Y via OutY. 7144 auto MatchBinaryAddToConst = 7145 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7146 SCEV::NoWrapFlags ExpectedFlags) { 7147 const SCEV *NonConstOp, *ConstOp; 7148 SCEV::NoWrapFlags FlagsPresent; 7149 7150 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7151 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7152 return false; 7153 7154 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue(); 7155 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7156 }; 7157 7158 APInt C; 7159 7160 switch (Pred) { 7161 default: 7162 break; 7163 7164 case ICmpInst::ICMP_SGE: 7165 std::swap(LHS, RHS); 7166 case ICmpInst::ICMP_SLE: 7167 // X s<= (X + C)<nsw> if C >= 0 7168 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7169 return true; 7170 7171 // (X + C)<nsw> s<= X if C <= 0 7172 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7173 !C.isStrictlyPositive()) 7174 return true; 7175 7176 case ICmpInst::ICMP_SGT: 7177 std::swap(LHS, RHS); 7178 case ICmpInst::ICMP_SLT: 7179 // X s< (X + C)<nsw> if C > 0 7180 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7181 C.isStrictlyPositive()) 7182 return true; 7183 7184 // (X + C)<nsw> s< X if C < 0 7185 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7186 return true; 7187 } 7188 7189 return false; 7190 } 7191 7192 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7193 const SCEV *LHS, 7194 const SCEV *RHS) { 7195 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7196 return false; 7197 7198 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7199 // the stack can result in exponential time complexity. 7200 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7201 7202 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7203 // 7204 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7205 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7206 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7207 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7208 // use isKnownPredicate later if needed. 7209 if (isKnownNonNegative(RHS) && 7210 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7211 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS)) 7212 return true; 7213 7214 return false; 7215 } 7216 7217 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7218 /// protected by a conditional between LHS and RHS. This is used to 7219 /// to eliminate casts. 7220 bool 7221 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7222 ICmpInst::Predicate Pred, 7223 const SCEV *LHS, const SCEV *RHS) { 7224 // Interpret a null as meaning no loop, where there is obviously no guard 7225 // (interprocedural conditions notwithstanding). 7226 if (!L) return true; 7227 7228 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7229 7230 BasicBlock *Latch = L->getLoopLatch(); 7231 if (!Latch) 7232 return false; 7233 7234 BranchInst *LoopContinuePredicate = 7235 dyn_cast<BranchInst>(Latch->getTerminator()); 7236 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7237 isImpliedCond(Pred, LHS, RHS, 7238 LoopContinuePredicate->getCondition(), 7239 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7240 return true; 7241 7242 // We don't want more than one activation of the following loops on the stack 7243 // -- that can lead to O(n!) time complexity. 7244 if (WalkingBEDominatingConds) 7245 return false; 7246 7247 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7248 7249 // See if we can exploit a trip count to prove the predicate. 7250 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7251 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7252 if (LatchBECount != getCouldNotCompute()) { 7253 // We know that Latch branches back to the loop header exactly 7254 // LatchBECount times. This means the backdege condition at Latch is 7255 // equivalent to "{0,+,1} u< LatchBECount". 7256 Type *Ty = LatchBECount->getType(); 7257 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7258 const SCEV *LoopCounter = 7259 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7260 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7261 LatchBECount)) 7262 return true; 7263 } 7264 7265 // Check conditions due to any @llvm.assume intrinsics. 7266 for (auto &AssumeVH : AC.assumptions()) { 7267 if (!AssumeVH) 7268 continue; 7269 auto *CI = cast<CallInst>(AssumeVH); 7270 if (!DT.dominates(CI, Latch->getTerminator())) 7271 continue; 7272 7273 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7274 return true; 7275 } 7276 7277 // If the loop is not reachable from the entry block, we risk running into an 7278 // infinite loop as we walk up into the dom tree. These loops do not matter 7279 // anyway, so we just return a conservative answer when we see them. 7280 if (!DT.isReachableFromEntry(L->getHeader())) 7281 return false; 7282 7283 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7284 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7285 7286 assert(DTN && "should reach the loop header before reaching the root!"); 7287 7288 BasicBlock *BB = DTN->getBlock(); 7289 BasicBlock *PBB = BB->getSinglePredecessor(); 7290 if (!PBB) 7291 continue; 7292 7293 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7294 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7295 continue; 7296 7297 Value *Condition = ContinuePredicate->getCondition(); 7298 7299 // If we have an edge `E` within the loop body that dominates the only 7300 // latch, the condition guarding `E` also guards the backedge. This 7301 // reasoning works only for loops with a single latch. 7302 7303 BasicBlockEdge DominatingEdge(PBB, BB); 7304 if (DominatingEdge.isSingleEdge()) { 7305 // We're constructively (and conservatively) enumerating edges within the 7306 // loop body that dominate the latch. The dominator tree better agree 7307 // with us on this: 7308 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7309 7310 if (isImpliedCond(Pred, LHS, RHS, Condition, 7311 BB != ContinuePredicate->getSuccessor(0))) 7312 return true; 7313 } 7314 } 7315 7316 return false; 7317 } 7318 7319 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7320 /// by a conditional between LHS and RHS. This is used to help avoid max 7321 /// expressions in loop trip counts, and to eliminate casts. 7322 bool 7323 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7324 ICmpInst::Predicate Pred, 7325 const SCEV *LHS, const SCEV *RHS) { 7326 // Interpret a null as meaning no loop, where there is obviously no guard 7327 // (interprocedural conditions notwithstanding). 7328 if (!L) return false; 7329 7330 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7331 7332 // Starting at the loop predecessor, climb up the predecessor chain, as long 7333 // as there are predecessors that can be found that have unique successors 7334 // leading to the original header. 7335 for (std::pair<BasicBlock *, BasicBlock *> 7336 Pair(L->getLoopPredecessor(), L->getHeader()); 7337 Pair.first; 7338 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7339 7340 BranchInst *LoopEntryPredicate = 7341 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7342 if (!LoopEntryPredicate || 7343 LoopEntryPredicate->isUnconditional()) 7344 continue; 7345 7346 if (isImpliedCond(Pred, LHS, RHS, 7347 LoopEntryPredicate->getCondition(), 7348 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7349 return true; 7350 } 7351 7352 // Check conditions due to any @llvm.assume intrinsics. 7353 for (auto &AssumeVH : AC.assumptions()) { 7354 if (!AssumeVH) 7355 continue; 7356 auto *CI = cast<CallInst>(AssumeVH); 7357 if (!DT.dominates(CI, L->getHeader())) 7358 continue; 7359 7360 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7361 return true; 7362 } 7363 7364 return false; 7365 } 7366 7367 /// RAII wrapper to prevent recursive application of isImpliedCond. 7368 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7369 /// currently evaluating isImpliedCond. 7370 struct MarkPendingLoopPredicate { 7371 Value *Cond; 7372 DenseSet<Value*> &LoopPreds; 7373 bool Pending; 7374 7375 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7376 : Cond(C), LoopPreds(LP) { 7377 Pending = !LoopPreds.insert(Cond).second; 7378 } 7379 ~MarkPendingLoopPredicate() { 7380 if (!Pending) 7381 LoopPreds.erase(Cond); 7382 } 7383 }; 7384 7385 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7386 /// and RHS is true whenever the given Cond value evaluates to true. 7387 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7388 const SCEV *LHS, const SCEV *RHS, 7389 Value *FoundCondValue, 7390 bool Inverse) { 7391 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7392 if (Mark.Pending) 7393 return false; 7394 7395 // Recursively handle And and Or conditions. 7396 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7397 if (BO->getOpcode() == Instruction::And) { 7398 if (!Inverse) 7399 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7400 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7401 } else if (BO->getOpcode() == Instruction::Or) { 7402 if (Inverse) 7403 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7404 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7405 } 7406 } 7407 7408 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7409 if (!ICI) return false; 7410 7411 // Now that we found a conditional branch that dominates the loop or controls 7412 // the loop latch. Check to see if it is the comparison we are looking for. 7413 ICmpInst::Predicate FoundPred; 7414 if (Inverse) 7415 FoundPred = ICI->getInversePredicate(); 7416 else 7417 FoundPred = ICI->getPredicate(); 7418 7419 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7420 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7421 7422 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7423 } 7424 7425 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7426 const SCEV *RHS, 7427 ICmpInst::Predicate FoundPred, 7428 const SCEV *FoundLHS, 7429 const SCEV *FoundRHS) { 7430 // Balance the types. 7431 if (getTypeSizeInBits(LHS->getType()) < 7432 getTypeSizeInBits(FoundLHS->getType())) { 7433 if (CmpInst::isSigned(Pred)) { 7434 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7435 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7436 } else { 7437 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7438 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7439 } 7440 } else if (getTypeSizeInBits(LHS->getType()) > 7441 getTypeSizeInBits(FoundLHS->getType())) { 7442 if (CmpInst::isSigned(FoundPred)) { 7443 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7444 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7445 } else { 7446 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7447 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7448 } 7449 } 7450 7451 // Canonicalize the query to match the way instcombine will have 7452 // canonicalized the comparison. 7453 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7454 if (LHS == RHS) 7455 return CmpInst::isTrueWhenEqual(Pred); 7456 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7457 if (FoundLHS == FoundRHS) 7458 return CmpInst::isFalseWhenEqual(FoundPred); 7459 7460 // Check to see if we can make the LHS or RHS match. 7461 if (LHS == FoundRHS || RHS == FoundLHS) { 7462 if (isa<SCEVConstant>(RHS)) { 7463 std::swap(FoundLHS, FoundRHS); 7464 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7465 } else { 7466 std::swap(LHS, RHS); 7467 Pred = ICmpInst::getSwappedPredicate(Pred); 7468 } 7469 } 7470 7471 // Check whether the found predicate is the same as the desired predicate. 7472 if (FoundPred == Pred) 7473 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7474 7475 // Check whether swapping the found predicate makes it the same as the 7476 // desired predicate. 7477 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7478 if (isa<SCEVConstant>(RHS)) 7479 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7480 else 7481 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7482 RHS, LHS, FoundLHS, FoundRHS); 7483 } 7484 7485 // Unsigned comparison is the same as signed comparison when both the operands 7486 // are non-negative. 7487 if (CmpInst::isUnsigned(FoundPred) && 7488 CmpInst::getSignedPredicate(FoundPred) == Pred && 7489 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7490 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7491 7492 // Check if we can make progress by sharpening ranges. 7493 if (FoundPred == ICmpInst::ICMP_NE && 7494 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7495 7496 const SCEVConstant *C = nullptr; 7497 const SCEV *V = nullptr; 7498 7499 if (isa<SCEVConstant>(FoundLHS)) { 7500 C = cast<SCEVConstant>(FoundLHS); 7501 V = FoundRHS; 7502 } else { 7503 C = cast<SCEVConstant>(FoundRHS); 7504 V = FoundLHS; 7505 } 7506 7507 // The guarding predicate tells us that C != V. If the known range 7508 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7509 // range we consider has to correspond to same signedness as the 7510 // predicate we're interested in folding. 7511 7512 APInt Min = ICmpInst::isSigned(Pred) ? 7513 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7514 7515 if (Min == C->getValue()->getValue()) { 7516 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7517 // This is true even if (Min + 1) wraps around -- in case of 7518 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7519 7520 APInt SharperMin = Min + 1; 7521 7522 switch (Pred) { 7523 case ICmpInst::ICMP_SGE: 7524 case ICmpInst::ICMP_UGE: 7525 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7526 // RHS, we're done. 7527 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7528 getConstant(SharperMin))) 7529 return true; 7530 7531 case ICmpInst::ICMP_SGT: 7532 case ICmpInst::ICMP_UGT: 7533 // We know from the range information that (V `Pred` Min || 7534 // V == Min). We know from the guarding condition that !(V 7535 // == Min). This gives us 7536 // 7537 // V `Pred` Min || V == Min && !(V == Min) 7538 // => V `Pred` Min 7539 // 7540 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7541 7542 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7543 return true; 7544 7545 default: 7546 // No change 7547 break; 7548 } 7549 } 7550 } 7551 7552 // Check whether the actual condition is beyond sufficient. 7553 if (FoundPred == ICmpInst::ICMP_EQ) 7554 if (ICmpInst::isTrueWhenEqual(Pred)) 7555 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7556 return true; 7557 if (Pred == ICmpInst::ICMP_NE) 7558 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7559 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7560 return true; 7561 7562 // Otherwise assume the worst. 7563 return false; 7564 } 7565 7566 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7567 const SCEV *&L, const SCEV *&R, 7568 SCEV::NoWrapFlags &Flags) { 7569 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7570 if (!AE || AE->getNumOperands() != 2) 7571 return false; 7572 7573 L = AE->getOperand(0); 7574 R = AE->getOperand(1); 7575 Flags = AE->getNoWrapFlags(); 7576 return true; 7577 } 7578 7579 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7580 const SCEV *More, 7581 APInt &C) { 7582 // We avoid subtracting expressions here because this function is usually 7583 // fairly deep in the call stack (i.e. is called many times). 7584 7585 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7586 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7587 const auto *MAR = cast<SCEVAddRecExpr>(More); 7588 7589 if (LAR->getLoop() != MAR->getLoop()) 7590 return false; 7591 7592 // We look at affine expressions only; not for correctness but to keep 7593 // getStepRecurrence cheap. 7594 if (!LAR->isAffine() || !MAR->isAffine()) 7595 return false; 7596 7597 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7598 return false; 7599 7600 Less = LAR->getStart(); 7601 More = MAR->getStart(); 7602 7603 // fall through 7604 } 7605 7606 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7607 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7608 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7609 C = M - L; 7610 return true; 7611 } 7612 7613 const SCEV *L, *R; 7614 SCEV::NoWrapFlags Flags; 7615 if (splitBinaryAdd(Less, L, R, Flags)) 7616 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7617 if (R == More) { 7618 C = -(LC->getValue()->getValue()); 7619 return true; 7620 } 7621 7622 if (splitBinaryAdd(More, L, R, Flags)) 7623 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7624 if (R == Less) { 7625 C = LC->getValue()->getValue(); 7626 return true; 7627 } 7628 7629 return false; 7630 } 7631 7632 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7633 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7634 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7635 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7636 return false; 7637 7638 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7639 if (!AddRecLHS) 7640 return false; 7641 7642 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7643 if (!AddRecFoundLHS) 7644 return false; 7645 7646 // We'd like to let SCEV reason about control dependencies, so we constrain 7647 // both the inequalities to be about add recurrences on the same loop. This 7648 // way we can use isLoopEntryGuardedByCond later. 7649 7650 const Loop *L = AddRecFoundLHS->getLoop(); 7651 if (L != AddRecLHS->getLoop()) 7652 return false; 7653 7654 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7655 // 7656 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7657 // ... (2) 7658 // 7659 // Informal proof for (2), assuming (1) [*]: 7660 // 7661 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7662 // 7663 // Then 7664 // 7665 // FoundLHS s< FoundRHS s< INT_MIN - C 7666 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7667 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7668 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7669 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7670 // <=> FoundLHS + C s< FoundRHS + C 7671 // 7672 // [*]: (1) can be proved by ruling out overflow. 7673 // 7674 // [**]: This can be proved by analyzing all the four possibilities: 7675 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7676 // (A s>= 0, B s>= 0). 7677 // 7678 // Note: 7679 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7680 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7681 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7682 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7683 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7684 // C)". 7685 7686 APInt LDiff, RDiff; 7687 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7688 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7689 LDiff != RDiff) 7690 return false; 7691 7692 if (LDiff == 0) 7693 return true; 7694 7695 APInt FoundRHSLimit; 7696 7697 if (Pred == CmpInst::ICMP_ULT) { 7698 FoundRHSLimit = -RDiff; 7699 } else { 7700 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7701 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7702 } 7703 7704 // Try to prove (1) or (2), as needed. 7705 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7706 getConstant(FoundRHSLimit)); 7707 } 7708 7709 /// isImpliedCondOperands - Test whether the condition described by Pred, 7710 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7711 /// and FoundRHS is true. 7712 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7713 const SCEV *LHS, const SCEV *RHS, 7714 const SCEV *FoundLHS, 7715 const SCEV *FoundRHS) { 7716 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7717 return true; 7718 7719 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7720 return true; 7721 7722 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7723 FoundLHS, FoundRHS) || 7724 // ~x < ~y --> x > y 7725 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7726 getNotSCEV(FoundRHS), 7727 getNotSCEV(FoundLHS)); 7728 } 7729 7730 7731 /// If Expr computes ~A, return A else return nullptr 7732 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7733 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7734 if (!Add || Add->getNumOperands() != 2 || 7735 !Add->getOperand(0)->isAllOnesValue()) 7736 return nullptr; 7737 7738 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7739 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7740 !AddRHS->getOperand(0)->isAllOnesValue()) 7741 return nullptr; 7742 7743 return AddRHS->getOperand(1); 7744 } 7745 7746 7747 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7748 template<typename MaxExprType> 7749 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7750 const SCEV *Candidate) { 7751 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7752 if (!MaxExpr) return false; 7753 7754 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7755 return It != MaxExpr->op_end(); 7756 } 7757 7758 7759 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7760 template<typename MaxExprType> 7761 static bool IsMinConsistingOf(ScalarEvolution &SE, 7762 const SCEV *MaybeMinExpr, 7763 const SCEV *Candidate) { 7764 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7765 if (!MaybeMaxExpr) 7766 return false; 7767 7768 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7769 } 7770 7771 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7772 ICmpInst::Predicate Pred, 7773 const SCEV *LHS, const SCEV *RHS) { 7774 7775 // If both sides are affine addrecs for the same loop, with equal 7776 // steps, and we know the recurrences don't wrap, then we only 7777 // need to check the predicate on the starting values. 7778 7779 if (!ICmpInst::isRelational(Pred)) 7780 return false; 7781 7782 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7783 if (!LAR) 7784 return false; 7785 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7786 if (!RAR) 7787 return false; 7788 if (LAR->getLoop() != RAR->getLoop()) 7789 return false; 7790 if (!LAR->isAffine() || !RAR->isAffine()) 7791 return false; 7792 7793 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7794 return false; 7795 7796 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7797 SCEV::FlagNSW : SCEV::FlagNUW; 7798 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7799 return false; 7800 7801 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7802 } 7803 7804 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7805 /// expression? 7806 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7807 ICmpInst::Predicate Pred, 7808 const SCEV *LHS, const SCEV *RHS) { 7809 switch (Pred) { 7810 default: 7811 return false; 7812 7813 case ICmpInst::ICMP_SGE: 7814 std::swap(LHS, RHS); 7815 // fall through 7816 case ICmpInst::ICMP_SLE: 7817 return 7818 // min(A, ...) <= A 7819 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7820 // A <= max(A, ...) 7821 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7822 7823 case ICmpInst::ICMP_UGE: 7824 std::swap(LHS, RHS); 7825 // fall through 7826 case ICmpInst::ICMP_ULE: 7827 return 7828 // min(A, ...) <= A 7829 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7830 // A <= max(A, ...) 7831 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7832 } 7833 7834 llvm_unreachable("covered switch fell through?!"); 7835 } 7836 7837 /// isImpliedCondOperandsHelper - Test whether the condition described by 7838 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7839 /// FoundLHS, and FoundRHS is true. 7840 bool 7841 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7842 const SCEV *LHS, const SCEV *RHS, 7843 const SCEV *FoundLHS, 7844 const SCEV *FoundRHS) { 7845 auto IsKnownPredicateFull = 7846 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7847 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7848 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 7849 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 7850 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 7851 }; 7852 7853 switch (Pred) { 7854 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7855 case ICmpInst::ICMP_EQ: 7856 case ICmpInst::ICMP_NE: 7857 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7858 return true; 7859 break; 7860 case ICmpInst::ICMP_SLT: 7861 case ICmpInst::ICMP_SLE: 7862 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7863 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7864 return true; 7865 break; 7866 case ICmpInst::ICMP_SGT: 7867 case ICmpInst::ICMP_SGE: 7868 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7869 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7870 return true; 7871 break; 7872 case ICmpInst::ICMP_ULT: 7873 case ICmpInst::ICMP_ULE: 7874 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7875 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7876 return true; 7877 break; 7878 case ICmpInst::ICMP_UGT: 7879 case ICmpInst::ICMP_UGE: 7880 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7881 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7882 return true; 7883 break; 7884 } 7885 7886 return false; 7887 } 7888 7889 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7890 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7891 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7892 const SCEV *LHS, 7893 const SCEV *RHS, 7894 const SCEV *FoundLHS, 7895 const SCEV *FoundRHS) { 7896 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7897 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7898 // reduce the compile time impact of this optimization. 7899 return false; 7900 7901 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7902 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7903 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7904 return false; 7905 7906 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7907 7908 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7909 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7910 ConstantRange FoundLHSRange = 7911 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7912 7913 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7914 // for `LHS`: 7915 APInt Addend = 7916 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7917 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7918 7919 // We can also compute the range of values for `LHS` that satisfy the 7920 // consequent, "`LHS` `Pred` `RHS`": 7921 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7922 ConstantRange SatisfyingLHSRange = 7923 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7924 7925 // The antecedent implies the consequent if every value of `LHS` that 7926 // satisfies the antecedent also satisfies the consequent. 7927 return SatisfyingLHSRange.contains(LHSRange); 7928 } 7929 7930 // Verify if an linear IV with positive stride can overflow when in a 7931 // less-than comparison, knowing the invariant term of the comparison, the 7932 // stride and the knowledge of NSW/NUW flags on the recurrence. 7933 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7934 bool IsSigned, bool NoWrap) { 7935 if (NoWrap) return false; 7936 7937 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7938 const SCEV *One = getOne(Stride->getType()); 7939 7940 if (IsSigned) { 7941 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7942 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7943 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7944 .getSignedMax(); 7945 7946 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7947 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7948 } 7949 7950 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7951 APInt MaxValue = APInt::getMaxValue(BitWidth); 7952 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7953 .getUnsignedMax(); 7954 7955 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7956 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7957 } 7958 7959 // Verify if an linear IV with negative stride can overflow when in a 7960 // greater-than comparison, knowing the invariant term of the comparison, 7961 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7962 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7963 bool IsSigned, bool NoWrap) { 7964 if (NoWrap) return false; 7965 7966 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7967 const SCEV *One = getOne(Stride->getType()); 7968 7969 if (IsSigned) { 7970 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7971 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7972 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7973 .getSignedMax(); 7974 7975 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7976 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7977 } 7978 7979 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7980 APInt MinValue = APInt::getMinValue(BitWidth); 7981 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7982 .getUnsignedMax(); 7983 7984 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7985 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7986 } 7987 7988 // Compute the backedge taken count knowing the interval difference, the 7989 // stride and presence of the equality in the comparison. 7990 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7991 bool Equality) { 7992 const SCEV *One = getOne(Step->getType()); 7993 Delta = Equality ? getAddExpr(Delta, Step) 7994 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7995 return getUDivExpr(Delta, Step); 7996 } 7997 7998 /// HowManyLessThans - Return the number of times a backedge containing the 7999 /// specified less-than comparison will execute. If not computable, return 8000 /// CouldNotCompute. 8001 /// 8002 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8003 /// the branch (loops exits only if condition is true). In this case, we can use 8004 /// NoWrapFlags to skip overflow checks. 8005 ScalarEvolution::ExitLimit 8006 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8007 const Loop *L, bool IsSigned, 8008 bool ControlsExit) { 8009 // We handle only IV < Invariant 8010 if (!isLoopInvariant(RHS, L)) 8011 return getCouldNotCompute(); 8012 8013 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8014 8015 // Avoid weird loops 8016 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8017 return getCouldNotCompute(); 8018 8019 bool NoWrap = ControlsExit && 8020 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8021 8022 const SCEV *Stride = IV->getStepRecurrence(*this); 8023 8024 // Avoid negative or zero stride values 8025 if (!isKnownPositive(Stride)) 8026 return getCouldNotCompute(); 8027 8028 // Avoid proven overflow cases: this will ensure that the backedge taken count 8029 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8030 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8031 // behaviors like the case of C language. 8032 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8033 return getCouldNotCompute(); 8034 8035 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8036 : ICmpInst::ICMP_ULT; 8037 const SCEV *Start = IV->getStart(); 8038 const SCEV *End = RHS; 8039 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8040 const SCEV *Diff = getMinusSCEV(RHS, Start); 8041 // If we have NoWrap set, then we can assume that the increment won't 8042 // overflow, in which case if RHS - Start is a constant, we don't need to 8043 // do a max operation since we can just figure it out statically 8044 if (NoWrap && isa<SCEVConstant>(Diff)) { 8045 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8046 if (D.isNegative()) 8047 End = Start; 8048 } else 8049 End = IsSigned ? getSMaxExpr(RHS, Start) 8050 : getUMaxExpr(RHS, Start); 8051 } 8052 8053 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8054 8055 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8056 : getUnsignedRange(Start).getUnsignedMin(); 8057 8058 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8059 : getUnsignedRange(Stride).getUnsignedMin(); 8060 8061 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8062 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8063 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8064 8065 // Although End can be a MAX expression we estimate MaxEnd considering only 8066 // the case End = RHS. This is safe because in the other case (End - Start) 8067 // is zero, leading to a zero maximum backedge taken count. 8068 APInt MaxEnd = 8069 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8070 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8071 8072 const SCEV *MaxBECount; 8073 if (isa<SCEVConstant>(BECount)) 8074 MaxBECount = BECount; 8075 else 8076 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8077 getConstant(MinStride), false); 8078 8079 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8080 MaxBECount = BECount; 8081 8082 return ExitLimit(BECount, MaxBECount); 8083 } 8084 8085 ScalarEvolution::ExitLimit 8086 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8087 const Loop *L, bool IsSigned, 8088 bool ControlsExit) { 8089 // We handle only IV > Invariant 8090 if (!isLoopInvariant(RHS, L)) 8091 return getCouldNotCompute(); 8092 8093 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8094 8095 // Avoid weird loops 8096 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8097 return getCouldNotCompute(); 8098 8099 bool NoWrap = ControlsExit && 8100 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8101 8102 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8103 8104 // Avoid negative or zero stride values 8105 if (!isKnownPositive(Stride)) 8106 return getCouldNotCompute(); 8107 8108 // Avoid proven overflow cases: this will ensure that the backedge taken count 8109 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8110 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8111 // behaviors like the case of C language. 8112 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8113 return getCouldNotCompute(); 8114 8115 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8116 : ICmpInst::ICMP_UGT; 8117 8118 const SCEV *Start = IV->getStart(); 8119 const SCEV *End = RHS; 8120 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8121 const SCEV *Diff = getMinusSCEV(RHS, Start); 8122 // If we have NoWrap set, then we can assume that the increment won't 8123 // overflow, in which case if RHS - Start is a constant, we don't need to 8124 // do a max operation since we can just figure it out statically 8125 if (NoWrap && isa<SCEVConstant>(Diff)) { 8126 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8127 if (!D.isNegative()) 8128 End = Start; 8129 } else 8130 End = IsSigned ? getSMinExpr(RHS, Start) 8131 : getUMinExpr(RHS, Start); 8132 } 8133 8134 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8135 8136 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8137 : getUnsignedRange(Start).getUnsignedMax(); 8138 8139 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8140 : getUnsignedRange(Stride).getUnsignedMin(); 8141 8142 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8143 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8144 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8145 8146 // Although End can be a MIN expression we estimate MinEnd considering only 8147 // the case End = RHS. This is safe because in the other case (Start - End) 8148 // is zero, leading to a zero maximum backedge taken count. 8149 APInt MinEnd = 8150 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8151 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8152 8153 8154 const SCEV *MaxBECount = getCouldNotCompute(); 8155 if (isa<SCEVConstant>(BECount)) 8156 MaxBECount = BECount; 8157 else 8158 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8159 getConstant(MinStride), false); 8160 8161 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8162 MaxBECount = BECount; 8163 8164 return ExitLimit(BECount, MaxBECount); 8165 } 8166 8167 /// getNumIterationsInRange - Return the number of iterations of this loop that 8168 /// produce values in the specified constant range. Another way of looking at 8169 /// this is that it returns the first iteration number where the value is not in 8170 /// the condition, thus computing the exit count. If the iteration count can't 8171 /// be computed, an instance of SCEVCouldNotCompute is returned. 8172 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8173 ScalarEvolution &SE) const { 8174 if (Range.isFullSet()) // Infinite loop. 8175 return SE.getCouldNotCompute(); 8176 8177 // If the start is a non-zero constant, shift the range to simplify things. 8178 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8179 if (!SC->getValue()->isZero()) { 8180 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8181 Operands[0] = SE.getZero(SC->getType()); 8182 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8183 getNoWrapFlags(FlagNW)); 8184 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8185 return ShiftedAddRec->getNumIterationsInRange( 8186 Range.subtract(SC->getValue()->getValue()), SE); 8187 // This is strange and shouldn't happen. 8188 return SE.getCouldNotCompute(); 8189 } 8190 8191 // The only time we can solve this is when we have all constant indices. 8192 // Otherwise, we cannot determine the overflow conditions. 8193 if (std::any_of(op_begin(), op_end(), 8194 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);})) 8195 return SE.getCouldNotCompute(); 8196 8197 // Okay at this point we know that all elements of the chrec are constants and 8198 // that the start element is zero. 8199 8200 // First check to see if the range contains zero. If not, the first 8201 // iteration exits. 8202 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8203 if (!Range.contains(APInt(BitWidth, 0))) 8204 return SE.getZero(getType()); 8205 8206 if (isAffine()) { 8207 // If this is an affine expression then we have this situation: 8208 // Solve {0,+,A} in Range === Ax in Range 8209 8210 // We know that zero is in the range. If A is positive then we know that 8211 // the upper value of the range must be the first possible exit value. 8212 // If A is negative then the lower of the range is the last possible loop 8213 // value. Also note that we already checked for a full range. 8214 APInt One(BitWidth,1); 8215 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 8216 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8217 8218 // The exit value should be (End+A)/A. 8219 APInt ExitVal = (End + A).udiv(A); 8220 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8221 8222 // Evaluate at the exit value. If we really did fall out of the valid 8223 // range, then we computed our trip count, otherwise wrap around or other 8224 // things must have happened. 8225 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8226 if (Range.contains(Val->getValue())) 8227 return SE.getCouldNotCompute(); // Something strange happened 8228 8229 // Ensure that the previous value is in the range. This is a sanity check. 8230 assert(Range.contains( 8231 EvaluateConstantChrecAtConstant(this, 8232 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8233 "Linear scev computation is off in a bad way!"); 8234 return SE.getConstant(ExitValue); 8235 } else if (isQuadratic()) { 8236 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8237 // quadratic equation to solve it. To do this, we must frame our problem in 8238 // terms of figuring out when zero is crossed, instead of when 8239 // Range.getUpper() is crossed. 8240 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8241 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8242 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8243 // getNoWrapFlags(FlagNW) 8244 FlagAnyWrap); 8245 8246 // Next, solve the constructed addrec 8247 std::pair<const SCEV *,const SCEV *> Roots = 8248 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8249 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8250 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8251 if (R1) { 8252 // Pick the smallest positive root value. 8253 if (ConstantInt *CB = 8254 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 8255 R1->getValue(), R2->getValue()))) { 8256 if (!CB->getZExtValue()) 8257 std::swap(R1, R2); // R1 is the minimum root now. 8258 8259 // Make sure the root is not off by one. The returned iteration should 8260 // not be in the range, but the previous one should be. When solving 8261 // for "X*X < 5", for example, we should not return a root of 2. 8262 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8263 R1->getValue(), 8264 SE); 8265 if (Range.contains(R1Val->getValue())) { 8266 // The next iteration must be out of the range... 8267 ConstantInt *NextVal = 8268 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8269 8270 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8271 if (!Range.contains(R1Val->getValue())) 8272 return SE.getConstant(NextVal); 8273 return SE.getCouldNotCompute(); // Something strange happened 8274 } 8275 8276 // If R1 was not in the range, then it is a good return value. Make 8277 // sure that R1-1 WAS in the range though, just in case. 8278 ConstantInt *NextVal = 8279 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8280 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8281 if (Range.contains(R1Val->getValue())) 8282 return R1; 8283 return SE.getCouldNotCompute(); // Something strange happened 8284 } 8285 } 8286 } 8287 8288 return SE.getCouldNotCompute(); 8289 } 8290 8291 namespace { 8292 struct FindUndefs { 8293 bool Found; 8294 FindUndefs() : Found(false) {} 8295 8296 bool follow(const SCEV *S) { 8297 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8298 if (isa<UndefValue>(C->getValue())) 8299 Found = true; 8300 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8301 if (isa<UndefValue>(C->getValue())) 8302 Found = true; 8303 } 8304 8305 // Keep looking if we haven't found it yet. 8306 return !Found; 8307 } 8308 bool isDone() const { 8309 // Stop recursion if we have found an undef. 8310 return Found; 8311 } 8312 }; 8313 } 8314 8315 // Return true when S contains at least an undef value. 8316 static inline bool 8317 containsUndefs(const SCEV *S) { 8318 FindUndefs F; 8319 SCEVTraversal<FindUndefs> ST(F); 8320 ST.visitAll(S); 8321 8322 return F.Found; 8323 } 8324 8325 namespace { 8326 // Collect all steps of SCEV expressions. 8327 struct SCEVCollectStrides { 8328 ScalarEvolution &SE; 8329 SmallVectorImpl<const SCEV *> &Strides; 8330 8331 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8332 : SE(SE), Strides(S) {} 8333 8334 bool follow(const SCEV *S) { 8335 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8336 Strides.push_back(AR->getStepRecurrence(SE)); 8337 return true; 8338 } 8339 bool isDone() const { return false; } 8340 }; 8341 8342 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8343 struct SCEVCollectTerms { 8344 SmallVectorImpl<const SCEV *> &Terms; 8345 8346 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8347 : Terms(T) {} 8348 8349 bool follow(const SCEV *S) { 8350 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8351 if (!containsUndefs(S)) 8352 Terms.push_back(S); 8353 8354 // Stop recursion: once we collected a term, do not walk its operands. 8355 return false; 8356 } 8357 8358 // Keep looking. 8359 return true; 8360 } 8361 bool isDone() const { return false; } 8362 }; 8363 8364 // Check if a SCEV contains an AddRecExpr. 8365 struct SCEVHasAddRec { 8366 bool &ContainsAddRec; 8367 8368 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8369 ContainsAddRec = false; 8370 } 8371 8372 bool follow(const SCEV *S) { 8373 if (isa<SCEVAddRecExpr>(S)) { 8374 ContainsAddRec = true; 8375 8376 // Stop recursion: once we collected a term, do not walk its operands. 8377 return false; 8378 } 8379 8380 // Keep looking. 8381 return true; 8382 } 8383 bool isDone() const { return false; } 8384 }; 8385 8386 // Find factors that are multiplied with an expression that (possibly as a 8387 // subexpression) contains an AddRecExpr. In the expression: 8388 // 8389 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8390 // 8391 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8392 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8393 // parameters as they form a product with an induction variable. 8394 // 8395 // This collector expects all array size parameters to be in the same MulExpr. 8396 // It might be necessary to later add support for collecting parameters that are 8397 // spread over different nested MulExpr. 8398 struct SCEVCollectAddRecMultiplies { 8399 SmallVectorImpl<const SCEV *> &Terms; 8400 ScalarEvolution &SE; 8401 8402 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8403 : Terms(T), SE(SE) {} 8404 8405 bool follow(const SCEV *S) { 8406 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8407 bool HasAddRec = false; 8408 SmallVector<const SCEV *, 0> Operands; 8409 for (auto Op : Mul->operands()) { 8410 if (isa<SCEVUnknown>(Op)) { 8411 Operands.push_back(Op); 8412 } else { 8413 bool ContainsAddRec; 8414 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8415 visitAll(Op, ContiansAddRec); 8416 HasAddRec |= ContainsAddRec; 8417 } 8418 } 8419 if (Operands.size() == 0) 8420 return true; 8421 8422 if (!HasAddRec) 8423 return false; 8424 8425 Terms.push_back(SE.getMulExpr(Operands)); 8426 // Stop recursion: once we collected a term, do not walk its operands. 8427 return false; 8428 } 8429 8430 // Keep looking. 8431 return true; 8432 } 8433 bool isDone() const { return false; } 8434 }; 8435 } 8436 8437 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8438 /// two places: 8439 /// 1) The strides of AddRec expressions. 8440 /// 2) Unknowns that are multiplied with AddRec expressions. 8441 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8442 SmallVectorImpl<const SCEV *> &Terms) { 8443 SmallVector<const SCEV *, 4> Strides; 8444 SCEVCollectStrides StrideCollector(*this, Strides); 8445 visitAll(Expr, StrideCollector); 8446 8447 DEBUG({ 8448 dbgs() << "Strides:\n"; 8449 for (const SCEV *S : Strides) 8450 dbgs() << *S << "\n"; 8451 }); 8452 8453 for (const SCEV *S : Strides) { 8454 SCEVCollectTerms TermCollector(Terms); 8455 visitAll(S, TermCollector); 8456 } 8457 8458 DEBUG({ 8459 dbgs() << "Terms:\n"; 8460 for (const SCEV *T : Terms) 8461 dbgs() << *T << "\n"; 8462 }); 8463 8464 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8465 visitAll(Expr, MulCollector); 8466 } 8467 8468 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8469 SmallVectorImpl<const SCEV *> &Terms, 8470 SmallVectorImpl<const SCEV *> &Sizes) { 8471 int Last = Terms.size() - 1; 8472 const SCEV *Step = Terms[Last]; 8473 8474 // End of recursion. 8475 if (Last == 0) { 8476 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8477 SmallVector<const SCEV *, 2> Qs; 8478 for (const SCEV *Op : M->operands()) 8479 if (!isa<SCEVConstant>(Op)) 8480 Qs.push_back(Op); 8481 8482 Step = SE.getMulExpr(Qs); 8483 } 8484 8485 Sizes.push_back(Step); 8486 return true; 8487 } 8488 8489 for (const SCEV *&Term : Terms) { 8490 // Normalize the terms before the next call to findArrayDimensionsRec. 8491 const SCEV *Q, *R; 8492 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8493 8494 // Bail out when GCD does not evenly divide one of the terms. 8495 if (!R->isZero()) 8496 return false; 8497 8498 Term = Q; 8499 } 8500 8501 // Remove all SCEVConstants. 8502 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8503 return isa<SCEVConstant>(E); 8504 }), 8505 Terms.end()); 8506 8507 if (Terms.size() > 0) 8508 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8509 return false; 8510 8511 Sizes.push_back(Step); 8512 return true; 8513 } 8514 8515 namespace { 8516 struct FindParameter { 8517 bool FoundParameter; 8518 FindParameter() : FoundParameter(false) {} 8519 8520 bool follow(const SCEV *S) { 8521 if (isa<SCEVUnknown>(S)) { 8522 FoundParameter = true; 8523 // Stop recursion: we found a parameter. 8524 return false; 8525 } 8526 // Keep looking. 8527 return true; 8528 } 8529 bool isDone() const { 8530 // Stop recursion if we have found a parameter. 8531 return FoundParameter; 8532 } 8533 }; 8534 } 8535 8536 // Returns true when S contains at least a SCEVUnknown parameter. 8537 static inline bool 8538 containsParameters(const SCEV *S) { 8539 FindParameter F; 8540 SCEVTraversal<FindParameter> ST(F); 8541 ST.visitAll(S); 8542 8543 return F.FoundParameter; 8544 } 8545 8546 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8547 static inline bool 8548 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8549 for (const SCEV *T : Terms) 8550 if (containsParameters(T)) 8551 return true; 8552 return false; 8553 } 8554 8555 // Return the number of product terms in S. 8556 static inline int numberOfTerms(const SCEV *S) { 8557 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8558 return Expr->getNumOperands(); 8559 return 1; 8560 } 8561 8562 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8563 if (isa<SCEVConstant>(T)) 8564 return nullptr; 8565 8566 if (isa<SCEVUnknown>(T)) 8567 return T; 8568 8569 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8570 SmallVector<const SCEV *, 2> Factors; 8571 for (const SCEV *Op : M->operands()) 8572 if (!isa<SCEVConstant>(Op)) 8573 Factors.push_back(Op); 8574 8575 return SE.getMulExpr(Factors); 8576 } 8577 8578 return T; 8579 } 8580 8581 /// Return the size of an element read or written by Inst. 8582 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8583 Type *Ty; 8584 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8585 Ty = Store->getValueOperand()->getType(); 8586 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8587 Ty = Load->getType(); 8588 else 8589 return nullptr; 8590 8591 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8592 return getSizeOfExpr(ETy, Ty); 8593 } 8594 8595 /// Second step of delinearization: compute the array dimensions Sizes from the 8596 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8597 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8598 SmallVectorImpl<const SCEV *> &Sizes, 8599 const SCEV *ElementSize) const { 8600 8601 if (Terms.size() < 1 || !ElementSize) 8602 return; 8603 8604 // Early return when Terms do not contain parameters: we do not delinearize 8605 // non parametric SCEVs. 8606 if (!containsParameters(Terms)) 8607 return; 8608 8609 DEBUG({ 8610 dbgs() << "Terms:\n"; 8611 for (const SCEV *T : Terms) 8612 dbgs() << *T << "\n"; 8613 }); 8614 8615 // Remove duplicates. 8616 std::sort(Terms.begin(), Terms.end()); 8617 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8618 8619 // Put larger terms first. 8620 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8621 return numberOfTerms(LHS) > numberOfTerms(RHS); 8622 }); 8623 8624 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8625 8626 // Try to divide all terms by the element size. If term is not divisible by 8627 // element size, proceed with the original term. 8628 for (const SCEV *&Term : Terms) { 8629 const SCEV *Q, *R; 8630 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8631 if (!Q->isZero()) 8632 Term = Q; 8633 } 8634 8635 SmallVector<const SCEV *, 4> NewTerms; 8636 8637 // Remove constant factors. 8638 for (const SCEV *T : Terms) 8639 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8640 NewTerms.push_back(NewT); 8641 8642 DEBUG({ 8643 dbgs() << "Terms after sorting:\n"; 8644 for (const SCEV *T : NewTerms) 8645 dbgs() << *T << "\n"; 8646 }); 8647 8648 if (NewTerms.empty() || 8649 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8650 Sizes.clear(); 8651 return; 8652 } 8653 8654 // The last element to be pushed into Sizes is the size of an element. 8655 Sizes.push_back(ElementSize); 8656 8657 DEBUG({ 8658 dbgs() << "Sizes:\n"; 8659 for (const SCEV *S : Sizes) 8660 dbgs() << *S << "\n"; 8661 }); 8662 } 8663 8664 /// Third step of delinearization: compute the access functions for the 8665 /// Subscripts based on the dimensions in Sizes. 8666 void ScalarEvolution::computeAccessFunctions( 8667 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8668 SmallVectorImpl<const SCEV *> &Sizes) { 8669 8670 // Early exit in case this SCEV is not an affine multivariate function. 8671 if (Sizes.empty()) 8672 return; 8673 8674 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8675 if (!AR->isAffine()) 8676 return; 8677 8678 const SCEV *Res = Expr; 8679 int Last = Sizes.size() - 1; 8680 for (int i = Last; i >= 0; i--) { 8681 const SCEV *Q, *R; 8682 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8683 8684 DEBUG({ 8685 dbgs() << "Res: " << *Res << "\n"; 8686 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8687 dbgs() << "Res divided by Sizes[i]:\n"; 8688 dbgs() << "Quotient: " << *Q << "\n"; 8689 dbgs() << "Remainder: " << *R << "\n"; 8690 }); 8691 8692 Res = Q; 8693 8694 // Do not record the last subscript corresponding to the size of elements in 8695 // the array. 8696 if (i == Last) { 8697 8698 // Bail out if the remainder is too complex. 8699 if (isa<SCEVAddRecExpr>(R)) { 8700 Subscripts.clear(); 8701 Sizes.clear(); 8702 return; 8703 } 8704 8705 continue; 8706 } 8707 8708 // Record the access function for the current subscript. 8709 Subscripts.push_back(R); 8710 } 8711 8712 // Also push in last position the remainder of the last division: it will be 8713 // the access function of the innermost dimension. 8714 Subscripts.push_back(Res); 8715 8716 std::reverse(Subscripts.begin(), Subscripts.end()); 8717 8718 DEBUG({ 8719 dbgs() << "Subscripts:\n"; 8720 for (const SCEV *S : Subscripts) 8721 dbgs() << *S << "\n"; 8722 }); 8723 } 8724 8725 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8726 /// sizes of an array access. Returns the remainder of the delinearization that 8727 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8728 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8729 /// expressions in the stride and base of a SCEV corresponding to the 8730 /// computation of a GCD (greatest common divisor) of base and stride. When 8731 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8732 /// 8733 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8734 /// 8735 /// void foo(long n, long m, long o, double A[n][m][o]) { 8736 /// 8737 /// for (long i = 0; i < n; i++) 8738 /// for (long j = 0; j < m; j++) 8739 /// for (long k = 0; k < o; k++) 8740 /// A[i][j][k] = 1.0; 8741 /// } 8742 /// 8743 /// the delinearization input is the following AddRec SCEV: 8744 /// 8745 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8746 /// 8747 /// From this SCEV, we are able to say that the base offset of the access is %A 8748 /// because it appears as an offset that does not divide any of the strides in 8749 /// the loops: 8750 /// 8751 /// CHECK: Base offset: %A 8752 /// 8753 /// and then SCEV->delinearize determines the size of some of the dimensions of 8754 /// the array as these are the multiples by which the strides are happening: 8755 /// 8756 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8757 /// 8758 /// Note that the outermost dimension remains of UnknownSize because there are 8759 /// no strides that would help identifying the size of the last dimension: when 8760 /// the array has been statically allocated, one could compute the size of that 8761 /// dimension by dividing the overall size of the array by the size of the known 8762 /// dimensions: %m * %o * 8. 8763 /// 8764 /// Finally delinearize provides the access functions for the array reference 8765 /// that does correspond to A[i][j][k] of the above C testcase: 8766 /// 8767 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8768 /// 8769 /// The testcases are checking the output of a function pass: 8770 /// DelinearizationPass that walks through all loads and stores of a function 8771 /// asking for the SCEV of the memory access with respect to all enclosing 8772 /// loops, calling SCEV->delinearize on that and printing the results. 8773 8774 void ScalarEvolution::delinearize(const SCEV *Expr, 8775 SmallVectorImpl<const SCEV *> &Subscripts, 8776 SmallVectorImpl<const SCEV *> &Sizes, 8777 const SCEV *ElementSize) { 8778 // First step: collect parametric terms. 8779 SmallVector<const SCEV *, 4> Terms; 8780 collectParametricTerms(Expr, Terms); 8781 8782 if (Terms.empty()) 8783 return; 8784 8785 // Second step: find subscript sizes. 8786 findArrayDimensions(Terms, Sizes, ElementSize); 8787 8788 if (Sizes.empty()) 8789 return; 8790 8791 // Third step: compute the access functions for each subscript. 8792 computeAccessFunctions(Expr, Subscripts, Sizes); 8793 8794 if (Subscripts.empty()) 8795 return; 8796 8797 DEBUG({ 8798 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8799 dbgs() << "ArrayDecl[UnknownSize]"; 8800 for (const SCEV *S : Sizes) 8801 dbgs() << "[" << *S << "]"; 8802 8803 dbgs() << "\nArrayRef"; 8804 for (const SCEV *S : Subscripts) 8805 dbgs() << "[" << *S << "]"; 8806 dbgs() << "\n"; 8807 }); 8808 } 8809 8810 //===----------------------------------------------------------------------===// 8811 // SCEVCallbackVH Class Implementation 8812 //===----------------------------------------------------------------------===// 8813 8814 void ScalarEvolution::SCEVCallbackVH::deleted() { 8815 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8816 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8817 SE->ConstantEvolutionLoopExitValue.erase(PN); 8818 SE->ValueExprMap.erase(getValPtr()); 8819 // this now dangles! 8820 } 8821 8822 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8823 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8824 8825 // Forget all the expressions associated with users of the old value, 8826 // so that future queries will recompute the expressions using the new 8827 // value. 8828 Value *Old = getValPtr(); 8829 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8830 SmallPtrSet<User *, 8> Visited; 8831 while (!Worklist.empty()) { 8832 User *U = Worklist.pop_back_val(); 8833 // Deleting the Old value will cause this to dangle. Postpone 8834 // that until everything else is done. 8835 if (U == Old) 8836 continue; 8837 if (!Visited.insert(U).second) 8838 continue; 8839 if (PHINode *PN = dyn_cast<PHINode>(U)) 8840 SE->ConstantEvolutionLoopExitValue.erase(PN); 8841 SE->ValueExprMap.erase(U); 8842 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8843 } 8844 // Delete the Old value. 8845 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8846 SE->ConstantEvolutionLoopExitValue.erase(PN); 8847 SE->ValueExprMap.erase(Old); 8848 // this now dangles! 8849 } 8850 8851 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8852 : CallbackVH(V), SE(se) {} 8853 8854 //===----------------------------------------------------------------------===// 8855 // ScalarEvolution Class Implementation 8856 //===----------------------------------------------------------------------===// 8857 8858 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 8859 AssumptionCache &AC, DominatorTree &DT, 8860 LoopInfo &LI) 8861 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 8862 CouldNotCompute(new SCEVCouldNotCompute()), 8863 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8864 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 8865 FirstUnknown(nullptr) {} 8866 8867 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 8868 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 8869 CouldNotCompute(std::move(Arg.CouldNotCompute)), 8870 ValueExprMap(std::move(Arg.ValueExprMap)), 8871 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8872 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 8873 ConstantEvolutionLoopExitValue( 8874 std::move(Arg.ConstantEvolutionLoopExitValue)), 8875 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 8876 LoopDispositions(std::move(Arg.LoopDispositions)), 8877 BlockDispositions(std::move(Arg.BlockDispositions)), 8878 UnsignedRanges(std::move(Arg.UnsignedRanges)), 8879 SignedRanges(std::move(Arg.SignedRanges)), 8880 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 8881 SCEVAllocator(std::move(Arg.SCEVAllocator)), 8882 FirstUnknown(Arg.FirstUnknown) { 8883 Arg.FirstUnknown = nullptr; 8884 } 8885 8886 ScalarEvolution::~ScalarEvolution() { 8887 // Iterate through all the SCEVUnknown instances and call their 8888 // destructors, so that they release their references to their values. 8889 for (SCEVUnknown *U = FirstUnknown; U;) { 8890 SCEVUnknown *Tmp = U; 8891 U = U->Next; 8892 Tmp->~SCEVUnknown(); 8893 } 8894 FirstUnknown = nullptr; 8895 8896 ValueExprMap.clear(); 8897 8898 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8899 // that a loop had multiple computable exits. 8900 for (auto &BTCI : BackedgeTakenCounts) 8901 BTCI.second.clear(); 8902 8903 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8904 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8905 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 8906 } 8907 8908 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8909 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8910 } 8911 8912 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8913 const Loop *L) { 8914 // Print all inner loops first 8915 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8916 PrintLoopInfo(OS, SE, *I); 8917 8918 OS << "Loop "; 8919 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8920 OS << ": "; 8921 8922 SmallVector<BasicBlock *, 8> ExitBlocks; 8923 L->getExitBlocks(ExitBlocks); 8924 if (ExitBlocks.size() != 1) 8925 OS << "<multiple exits> "; 8926 8927 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8928 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8929 } else { 8930 OS << "Unpredictable backedge-taken count. "; 8931 } 8932 8933 OS << "\n" 8934 "Loop "; 8935 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8936 OS << ": "; 8937 8938 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8939 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8940 } else { 8941 OS << "Unpredictable max backedge-taken count. "; 8942 } 8943 8944 OS << "\n"; 8945 } 8946 8947 void ScalarEvolution::print(raw_ostream &OS) const { 8948 // ScalarEvolution's implementation of the print method is to print 8949 // out SCEV values of all instructions that are interesting. Doing 8950 // this potentially causes it to create new SCEV objects though, 8951 // which technically conflicts with the const qualifier. This isn't 8952 // observable from outside the class though, so casting away the 8953 // const isn't dangerous. 8954 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8955 8956 OS << "Classifying expressions for: "; 8957 F.printAsOperand(OS, /*PrintType=*/false); 8958 OS << "\n"; 8959 for (Instruction &I : instructions(F)) 8960 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 8961 OS << I << '\n'; 8962 OS << " --> "; 8963 const SCEV *SV = SE.getSCEV(&I); 8964 SV->print(OS); 8965 if (!isa<SCEVCouldNotCompute>(SV)) { 8966 OS << " U: "; 8967 SE.getUnsignedRange(SV).print(OS); 8968 OS << " S: "; 8969 SE.getSignedRange(SV).print(OS); 8970 } 8971 8972 const Loop *L = LI.getLoopFor(I.getParent()); 8973 8974 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8975 if (AtUse != SV) { 8976 OS << " --> "; 8977 AtUse->print(OS); 8978 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8979 OS << " U: "; 8980 SE.getUnsignedRange(AtUse).print(OS); 8981 OS << " S: "; 8982 SE.getSignedRange(AtUse).print(OS); 8983 } 8984 } 8985 8986 if (L) { 8987 OS << "\t\t" "Exits: "; 8988 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8989 if (!SE.isLoopInvariant(ExitValue, L)) { 8990 OS << "<<Unknown>>"; 8991 } else { 8992 OS << *ExitValue; 8993 } 8994 } 8995 8996 OS << "\n"; 8997 } 8998 8999 OS << "Determining loop execution counts for: "; 9000 F.printAsOperand(OS, /*PrintType=*/false); 9001 OS << "\n"; 9002 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9003 PrintLoopInfo(OS, &SE, *I); 9004 } 9005 9006 ScalarEvolution::LoopDisposition 9007 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9008 auto &Values = LoopDispositions[S]; 9009 for (auto &V : Values) { 9010 if (V.getPointer() == L) 9011 return V.getInt(); 9012 } 9013 Values.emplace_back(L, LoopVariant); 9014 LoopDisposition D = computeLoopDisposition(S, L); 9015 auto &Values2 = LoopDispositions[S]; 9016 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9017 if (V.getPointer() == L) { 9018 V.setInt(D); 9019 break; 9020 } 9021 } 9022 return D; 9023 } 9024 9025 ScalarEvolution::LoopDisposition 9026 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9027 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9028 case scConstant: 9029 return LoopInvariant; 9030 case scTruncate: 9031 case scZeroExtend: 9032 case scSignExtend: 9033 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9034 case scAddRecExpr: { 9035 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9036 9037 // If L is the addrec's loop, it's computable. 9038 if (AR->getLoop() == L) 9039 return LoopComputable; 9040 9041 // Add recurrences are never invariant in the function-body (null loop). 9042 if (!L) 9043 return LoopVariant; 9044 9045 // This recurrence is variant w.r.t. L if L contains AR's loop. 9046 if (L->contains(AR->getLoop())) 9047 return LoopVariant; 9048 9049 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9050 if (AR->getLoop()->contains(L)) 9051 return LoopInvariant; 9052 9053 // This recurrence is variant w.r.t. L if any of its operands 9054 // are variant. 9055 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 9056 I != E; ++I) 9057 if (!isLoopInvariant(*I, L)) 9058 return LoopVariant; 9059 9060 // Otherwise it's loop-invariant. 9061 return LoopInvariant; 9062 } 9063 case scAddExpr: 9064 case scMulExpr: 9065 case scUMaxExpr: 9066 case scSMaxExpr: { 9067 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9068 bool HasVarying = false; 9069 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9070 I != E; ++I) { 9071 LoopDisposition D = getLoopDisposition(*I, L); 9072 if (D == LoopVariant) 9073 return LoopVariant; 9074 if (D == LoopComputable) 9075 HasVarying = true; 9076 } 9077 return HasVarying ? LoopComputable : LoopInvariant; 9078 } 9079 case scUDivExpr: { 9080 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9081 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9082 if (LD == LoopVariant) 9083 return LoopVariant; 9084 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9085 if (RD == LoopVariant) 9086 return LoopVariant; 9087 return (LD == LoopInvariant && RD == LoopInvariant) ? 9088 LoopInvariant : LoopComputable; 9089 } 9090 case scUnknown: 9091 // All non-instruction values are loop invariant. All instructions are loop 9092 // invariant if they are not contained in the specified loop. 9093 // Instructions are never considered invariant in the function body 9094 // (null loop) because they are defined within the "loop". 9095 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9096 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9097 return LoopInvariant; 9098 case scCouldNotCompute: 9099 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9100 } 9101 llvm_unreachable("Unknown SCEV kind!"); 9102 } 9103 9104 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9105 return getLoopDisposition(S, L) == LoopInvariant; 9106 } 9107 9108 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9109 return getLoopDisposition(S, L) == LoopComputable; 9110 } 9111 9112 ScalarEvolution::BlockDisposition 9113 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9114 auto &Values = BlockDispositions[S]; 9115 for (auto &V : Values) { 9116 if (V.getPointer() == BB) 9117 return V.getInt(); 9118 } 9119 Values.emplace_back(BB, DoesNotDominateBlock); 9120 BlockDisposition D = computeBlockDisposition(S, BB); 9121 auto &Values2 = BlockDispositions[S]; 9122 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9123 if (V.getPointer() == BB) { 9124 V.setInt(D); 9125 break; 9126 } 9127 } 9128 return D; 9129 } 9130 9131 ScalarEvolution::BlockDisposition 9132 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9133 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9134 case scConstant: 9135 return ProperlyDominatesBlock; 9136 case scTruncate: 9137 case scZeroExtend: 9138 case scSignExtend: 9139 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9140 case scAddRecExpr: { 9141 // This uses a "dominates" query instead of "properly dominates" query 9142 // to test for proper dominance too, because the instruction which 9143 // produces the addrec's value is a PHI, and a PHI effectively properly 9144 // dominates its entire containing block. 9145 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9146 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9147 return DoesNotDominateBlock; 9148 } 9149 // FALL THROUGH into SCEVNAryExpr handling. 9150 case scAddExpr: 9151 case scMulExpr: 9152 case scUMaxExpr: 9153 case scSMaxExpr: { 9154 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9155 bool Proper = true; 9156 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9157 I != E; ++I) { 9158 BlockDisposition D = getBlockDisposition(*I, BB); 9159 if (D == DoesNotDominateBlock) 9160 return DoesNotDominateBlock; 9161 if (D == DominatesBlock) 9162 Proper = false; 9163 } 9164 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9165 } 9166 case scUDivExpr: { 9167 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9168 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9169 BlockDisposition LD = getBlockDisposition(LHS, BB); 9170 if (LD == DoesNotDominateBlock) 9171 return DoesNotDominateBlock; 9172 BlockDisposition RD = getBlockDisposition(RHS, BB); 9173 if (RD == DoesNotDominateBlock) 9174 return DoesNotDominateBlock; 9175 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9176 ProperlyDominatesBlock : DominatesBlock; 9177 } 9178 case scUnknown: 9179 if (Instruction *I = 9180 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9181 if (I->getParent() == BB) 9182 return DominatesBlock; 9183 if (DT.properlyDominates(I->getParent(), BB)) 9184 return ProperlyDominatesBlock; 9185 return DoesNotDominateBlock; 9186 } 9187 return ProperlyDominatesBlock; 9188 case scCouldNotCompute: 9189 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9190 } 9191 llvm_unreachable("Unknown SCEV kind!"); 9192 } 9193 9194 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9195 return getBlockDisposition(S, BB) >= DominatesBlock; 9196 } 9197 9198 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9199 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9200 } 9201 9202 namespace { 9203 // Search for a SCEV expression node within an expression tree. 9204 // Implements SCEVTraversal::Visitor. 9205 struct SCEVSearch { 9206 const SCEV *Node; 9207 bool IsFound; 9208 9209 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9210 9211 bool follow(const SCEV *S) { 9212 IsFound |= (S == Node); 9213 return !IsFound; 9214 } 9215 bool isDone() const { return IsFound; } 9216 }; 9217 } 9218 9219 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9220 SCEVSearch Search(Op); 9221 visitAll(S, Search); 9222 return Search.IsFound; 9223 } 9224 9225 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9226 ValuesAtScopes.erase(S); 9227 LoopDispositions.erase(S); 9228 BlockDispositions.erase(S); 9229 UnsignedRanges.erase(S); 9230 SignedRanges.erase(S); 9231 9232 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9233 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9234 BackedgeTakenInfo &BEInfo = I->second; 9235 if (BEInfo.hasOperand(S, this)) { 9236 BEInfo.clear(); 9237 BackedgeTakenCounts.erase(I++); 9238 } 9239 else 9240 ++I; 9241 } 9242 } 9243 9244 typedef DenseMap<const Loop *, std::string> VerifyMap; 9245 9246 /// replaceSubString - Replaces all occurrences of From in Str with To. 9247 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9248 size_t Pos = 0; 9249 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9250 Str.replace(Pos, From.size(), To.data(), To.size()); 9251 Pos += To.size(); 9252 } 9253 } 9254 9255 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9256 static void 9257 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9258 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 9259 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 9260 9261 std::string &S = Map[L]; 9262 if (S.empty()) { 9263 raw_string_ostream OS(S); 9264 SE.getBackedgeTakenCount(L)->print(OS); 9265 9266 // false and 0 are semantically equivalent. This can happen in dead loops. 9267 replaceSubString(OS.str(), "false", "0"); 9268 // Remove wrap flags, their use in SCEV is highly fragile. 9269 // FIXME: Remove this when SCEV gets smarter about them. 9270 replaceSubString(OS.str(), "<nw>", ""); 9271 replaceSubString(OS.str(), "<nsw>", ""); 9272 replaceSubString(OS.str(), "<nuw>", ""); 9273 } 9274 } 9275 } 9276 9277 void ScalarEvolution::verify() const { 9278 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9279 9280 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9281 // FIXME: It would be much better to store actual values instead of strings, 9282 // but SCEV pointers will change if we drop the caches. 9283 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9284 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9285 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9286 9287 // Gather stringified backedge taken counts for all loops using a fresh 9288 // ScalarEvolution object. 9289 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9290 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9291 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9292 9293 // Now compare whether they're the same with and without caches. This allows 9294 // verifying that no pass changed the cache. 9295 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9296 "New loops suddenly appeared!"); 9297 9298 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9299 OldE = BackedgeDumpsOld.end(), 9300 NewI = BackedgeDumpsNew.begin(); 9301 OldI != OldE; ++OldI, ++NewI) { 9302 assert(OldI->first == NewI->first && "Loop order changed!"); 9303 9304 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9305 // changes. 9306 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9307 // means that a pass is buggy or SCEV has to learn a new pattern but is 9308 // usually not harmful. 9309 if (OldI->second != NewI->second && 9310 OldI->second.find("undef") == std::string::npos && 9311 NewI->second.find("undef") == std::string::npos && 9312 OldI->second != "***COULDNOTCOMPUTE***" && 9313 NewI->second != "***COULDNOTCOMPUTE***") { 9314 dbgs() << "SCEVValidator: SCEV for loop '" 9315 << OldI->first->getHeader()->getName() 9316 << "' changed from '" << OldI->second 9317 << "' to '" << NewI->second << "'!\n"; 9318 std::abort(); 9319 } 9320 } 9321 9322 // TODO: Verify more things. 9323 } 9324 9325 char ScalarEvolutionAnalysis::PassID; 9326 9327 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9328 AnalysisManager<Function> *AM) { 9329 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9330 AM->getResult<AssumptionAnalysis>(F), 9331 AM->getResult<DominatorTreeAnalysis>(F), 9332 AM->getResult<LoopAnalysis>(F)); 9333 } 9334 9335 PreservedAnalyses 9336 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9337 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9338 return PreservedAnalyses::all(); 9339 } 9340 9341 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9342 "Scalar Evolution Analysis", false, true) 9343 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9344 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9345 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9346 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9347 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9348 "Scalar Evolution Analysis", false, true) 9349 char ScalarEvolutionWrapperPass::ID = 0; 9350 9351 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9352 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9353 } 9354 9355 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9356 SE.reset(new ScalarEvolution( 9357 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9358 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9359 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9360 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9361 return false; 9362 } 9363 9364 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9365 9366 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9367 SE->print(OS); 9368 } 9369 9370 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9371 if (!VerifySCEV) 9372 return; 9373 9374 SE->verify(); 9375 } 9376 9377 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9378 AU.setPreservesAll(); 9379 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9380 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9381 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9382 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9383 } 9384