1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/SaveAndRestore.h" 92 #include <algorithm> 93 using namespace llvm; 94 95 #define DEBUG_TYPE "scalar-evolution" 96 97 STATISTIC(NumArrayLenItCounts, 98 "Number of trip counts computed with array length"); 99 STATISTIC(NumTripCountsComputed, 100 "Number of loops with predictable loop counts"); 101 STATISTIC(NumTripCountsNotComputed, 102 "Number of loops without predictable loop counts"); 103 STATISTIC(NumBruteForceTripCountsComputed, 104 "Number of loops with trip counts computed by force"); 105 106 static cl::opt<unsigned> 107 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 108 cl::desc("Maximum number of iterations SCEV will " 109 "symbolically execute a constant " 110 "derived loop"), 111 cl::init(100)); 112 113 // FIXME: Enable this with XDEBUG when the test suite is clean. 114 static cl::opt<bool> 115 VerifySCEV("verify-scev", 116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 117 118 //===----------------------------------------------------------------------===// 119 // SCEV class definitions 120 //===----------------------------------------------------------------------===// 121 122 //===----------------------------------------------------------------------===// 123 // Implementation of the SCEV class. 124 // 125 126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 127 void SCEV::dump() const { 128 print(dbgs()); 129 dbgs() << '\n'; 130 } 131 #endif 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getValue()->getValue().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getValue()->getValue(); 537 const APInt &RA = RC->getValue()->getValue(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 namespace { 670 struct FindSCEVSize { 671 int Size; 672 FindSCEVSize() : Size(0) {} 673 674 bool follow(const SCEV *S) { 675 ++Size; 676 // Keep looking at all operands of S. 677 return true; 678 } 679 bool isDone() const { 680 return false; 681 } 682 }; 683 } 684 685 // Returns the size of the SCEV S. 686 static inline int sizeOfSCEV(const SCEV *S) { 687 FindSCEVSize F; 688 SCEVTraversal<FindSCEVSize> ST(F); 689 ST.visitAll(S); 690 return F.Size; 691 } 692 693 namespace { 694 695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 696 public: 697 // Computes the Quotient and Remainder of the division of Numerator by 698 // Denominator. 699 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 700 const SCEV *Denominator, const SCEV **Quotient, 701 const SCEV **Remainder) { 702 assert(Numerator && Denominator && "Uninitialized SCEV"); 703 704 SCEVDivision D(SE, Numerator, Denominator); 705 706 // Check for the trivial case here to avoid having to check for it in the 707 // rest of the code. 708 if (Numerator == Denominator) { 709 *Quotient = D.One; 710 *Remainder = D.Zero; 711 return; 712 } 713 714 if (Numerator->isZero()) { 715 *Quotient = D.Zero; 716 *Remainder = D.Zero; 717 return; 718 } 719 720 // A simple case when N/1. The quotient is N. 721 if (Denominator->isOne()) { 722 *Quotient = Numerator; 723 *Remainder = D.Zero; 724 return; 725 } 726 727 // Split the Denominator when it is a product. 728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 729 const SCEV *Q, *R; 730 *Quotient = Numerator; 731 for (const SCEV *Op : T->operands()) { 732 divide(SE, *Quotient, Op, &Q, &R); 733 *Quotient = Q; 734 735 // Bail out when the Numerator is not divisible by one of the terms of 736 // the Denominator. 737 if (!R->isZero()) { 738 *Quotient = D.Zero; 739 *Remainder = Numerator; 740 return; 741 } 742 } 743 *Remainder = D.Zero; 744 return; 745 } 746 747 D.visit(Numerator); 748 *Quotient = D.Quotient; 749 *Remainder = D.Remainder; 750 } 751 752 // Except in the trivial case described above, we do not know how to divide 753 // Expr by Denominator for the following functions with empty implementation. 754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 760 void visitUnknown(const SCEVUnknown *Numerator) {} 761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 762 763 void visitConstant(const SCEVConstant *Numerator) { 764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 765 APInt NumeratorVal = Numerator->getValue()->getValue(); 766 APInt DenominatorVal = D->getValue()->getValue(); 767 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 768 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 769 770 if (NumeratorBW > DenominatorBW) 771 DenominatorVal = DenominatorVal.sext(NumeratorBW); 772 else if (NumeratorBW < DenominatorBW) 773 NumeratorVal = NumeratorVal.sext(DenominatorBW); 774 775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 778 Quotient = SE.getConstant(QuotientVal); 779 Remainder = SE.getConstant(RemainderVal); 780 return; 781 } 782 } 783 784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 785 const SCEV *StartQ, *StartR, *StepQ, *StepR; 786 if (!Numerator->isAffine()) 787 return cannotDivide(Numerator); 788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 790 // Bail out if the types do not match. 791 Type *Ty = Denominator->getType(); 792 if (Ty != StartQ->getType() || Ty != StartR->getType() || 793 Ty != StepQ->getType() || Ty != StepR->getType()) 794 return cannotDivide(Numerator); 795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 } 800 801 void visitAddExpr(const SCEVAddExpr *Numerator) { 802 SmallVector<const SCEV *, 2> Qs, Rs; 803 Type *Ty = Denominator->getType(); 804 805 for (const SCEV *Op : Numerator->operands()) { 806 const SCEV *Q, *R; 807 divide(SE, Op, Denominator, &Q, &R); 808 809 // Bail out if types do not match. 810 if (Ty != Q->getType() || Ty != R->getType()) 811 return cannotDivide(Numerator); 812 813 Qs.push_back(Q); 814 Rs.push_back(R); 815 } 816 817 if (Qs.size() == 1) { 818 Quotient = Qs[0]; 819 Remainder = Rs[0]; 820 return; 821 } 822 823 Quotient = SE.getAddExpr(Qs); 824 Remainder = SE.getAddExpr(Rs); 825 } 826 827 void visitMulExpr(const SCEVMulExpr *Numerator) { 828 SmallVector<const SCEV *, 2> Qs; 829 Type *Ty = Denominator->getType(); 830 831 bool FoundDenominatorTerm = false; 832 for (const SCEV *Op : Numerator->operands()) { 833 // Bail out if types do not match. 834 if (Ty != Op->getType()) 835 return cannotDivide(Numerator); 836 837 if (FoundDenominatorTerm) { 838 Qs.push_back(Op); 839 continue; 840 } 841 842 // Check whether Denominator divides one of the product operands. 843 const SCEV *Q, *R; 844 divide(SE, Op, Denominator, &Q, &R); 845 if (!R->isZero()) { 846 Qs.push_back(Op); 847 continue; 848 } 849 850 // Bail out if types do not match. 851 if (Ty != Q->getType()) 852 return cannotDivide(Numerator); 853 854 FoundDenominatorTerm = true; 855 Qs.push_back(Q); 856 } 857 858 if (FoundDenominatorTerm) { 859 Remainder = Zero; 860 if (Qs.size() == 1) 861 Quotient = Qs[0]; 862 else 863 Quotient = SE.getMulExpr(Qs); 864 return; 865 } 866 867 if (!isa<SCEVUnknown>(Denominator)) 868 return cannotDivide(Numerator); 869 870 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 871 ValueToValueMap RewriteMap; 872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 873 cast<SCEVConstant>(Zero)->getValue(); 874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 875 876 if (Remainder->isZero()) { 877 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 879 cast<SCEVConstant>(One)->getValue(); 880 Quotient = 881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 882 return; 883 } 884 885 // Quotient is (Numerator - Remainder) divided by Denominator. 886 const SCEV *Q, *R; 887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 888 // This SCEV does not seem to simplify: fail the division here. 889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 890 return cannotDivide(Numerator); 891 divide(SE, Diff, Denominator, &Q, &R); 892 if (R != Zero) 893 return cannotDivide(Numerator); 894 Quotient = Q; 895 } 896 897 private: 898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 899 const SCEV *Denominator) 900 : SE(S), Denominator(Denominator) { 901 Zero = SE.getZero(Denominator->getType()); 902 One = SE.getOne(Denominator->getType()); 903 904 // We generally do not know how to divide Expr by Denominator. We 905 // initialize the division to a "cannot divide" state to simplify the rest 906 // of the code. 907 cannotDivide(Numerator); 908 } 909 910 // Convenience function for giving up on the division. We set the quotient to 911 // be equal to zero and the remainder to be equal to the numerator. 912 void cannotDivide(const SCEV *Numerator) { 913 Quotient = Zero; 914 Remainder = Numerator; 915 } 916 917 ScalarEvolution &SE; 918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 919 }; 920 921 } 922 923 //===----------------------------------------------------------------------===// 924 // Simple SCEV method implementations 925 //===----------------------------------------------------------------------===// 926 927 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 928 /// Assume, K > 0. 929 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 930 ScalarEvolution &SE, 931 Type *ResultTy) { 932 // Handle the simplest case efficiently. 933 if (K == 1) 934 return SE.getTruncateOrZeroExtend(It, ResultTy); 935 936 // We are using the following formula for BC(It, K): 937 // 938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 939 // 940 // Suppose, W is the bitwidth of the return value. We must be prepared for 941 // overflow. Hence, we must assure that the result of our computation is 942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 943 // safe in modular arithmetic. 944 // 945 // However, this code doesn't use exactly that formula; the formula it uses 946 // is something like the following, where T is the number of factors of 2 in 947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 948 // exponentiation: 949 // 950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 951 // 952 // This formula is trivially equivalent to the previous formula. However, 953 // this formula can be implemented much more efficiently. The trick is that 954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 955 // arithmetic. To do exact division in modular arithmetic, all we have 956 // to do is multiply by the inverse. Therefore, this step can be done at 957 // width W. 958 // 959 // The next issue is how to safely do the division by 2^T. The way this 960 // is done is by doing the multiplication step at a width of at least W + T 961 // bits. This way, the bottom W+T bits of the product are accurate. Then, 962 // when we perform the division by 2^T (which is equivalent to a right shift 963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 964 // truncated out after the division by 2^T. 965 // 966 // In comparison to just directly using the first formula, this technique 967 // is much more efficient; using the first formula requires W * K bits, 968 // but this formula less than W + K bits. Also, the first formula requires 969 // a division step, whereas this formula only requires multiplies and shifts. 970 // 971 // It doesn't matter whether the subtraction step is done in the calculation 972 // width or the input iteration count's width; if the subtraction overflows, 973 // the result must be zero anyway. We prefer here to do it in the width of 974 // the induction variable because it helps a lot for certain cases; CodeGen 975 // isn't smart enough to ignore the overflow, which leads to much less 976 // efficient code if the width of the subtraction is wider than the native 977 // register width. 978 // 979 // (It's possible to not widen at all by pulling out factors of 2 before 980 // the multiplication; for example, K=2 can be calculated as 981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 982 // extra arithmetic, so it's not an obvious win, and it gets 983 // much more complicated for K > 3.) 984 985 // Protection from insane SCEVs; this bound is conservative, 986 // but it probably doesn't matter. 987 if (K > 1000) 988 return SE.getCouldNotCompute(); 989 990 unsigned W = SE.getTypeSizeInBits(ResultTy); 991 992 // Calculate K! / 2^T and T; we divide out the factors of two before 993 // multiplying for calculating K! / 2^T to avoid overflow. 994 // Other overflow doesn't matter because we only care about the bottom 995 // W bits of the result. 996 APInt OddFactorial(W, 1); 997 unsigned T = 1; 998 for (unsigned i = 3; i <= K; ++i) { 999 APInt Mult(W, i); 1000 unsigned TwoFactors = Mult.countTrailingZeros(); 1001 T += TwoFactors; 1002 Mult = Mult.lshr(TwoFactors); 1003 OddFactorial *= Mult; 1004 } 1005 1006 // We need at least W + T bits for the multiplication step 1007 unsigned CalculationBits = W + T; 1008 1009 // Calculate 2^T, at width T+W. 1010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1011 1012 // Calculate the multiplicative inverse of K! / 2^T; 1013 // this multiplication factor will perform the exact division by 1014 // K! / 2^T. 1015 APInt Mod = APInt::getSignedMinValue(W+1); 1016 APInt MultiplyFactor = OddFactorial.zext(W+1); 1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1018 MultiplyFactor = MultiplyFactor.trunc(W); 1019 1020 // Calculate the product, at width T+W 1021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1022 CalculationBits); 1023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1024 for (unsigned i = 1; i != K; ++i) { 1025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1026 Dividend = SE.getMulExpr(Dividend, 1027 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1028 } 1029 1030 // Divide by 2^T 1031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1032 1033 // Truncate the result, and divide by K! / 2^T. 1034 1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1037 } 1038 1039 /// evaluateAtIteration - Return the value of this chain of recurrences at 1040 /// the specified iteration number. We can evaluate this recurrence by 1041 /// multiplying each element in the chain by the binomial coefficient 1042 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1043 /// 1044 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1045 /// 1046 /// where BC(It, k) stands for binomial coefficient. 1047 /// 1048 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1049 ScalarEvolution &SE) const { 1050 const SCEV *Result = getStart(); 1051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1052 // The computation is correct in the face of overflow provided that the 1053 // multiplication is performed _after_ the evaluation of the binomial 1054 // coefficient. 1055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1056 if (isa<SCEVCouldNotCompute>(Coeff)) 1057 return Coeff; 1058 1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1060 } 1061 return Result; 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // SCEV Expression folder implementations 1066 //===----------------------------------------------------------------------===// 1067 1068 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1069 Type *Ty) { 1070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1071 "This is not a truncating conversion!"); 1072 assert(isSCEVable(Ty) && 1073 "This is not a conversion to a SCEVable type!"); 1074 Ty = getEffectiveSCEVType(Ty); 1075 1076 FoldingSetNodeID ID; 1077 ID.AddInteger(scTruncate); 1078 ID.AddPointer(Op); 1079 ID.AddPointer(Ty); 1080 void *IP = nullptr; 1081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1082 1083 // Fold if the operand is constant. 1084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1085 return getConstant( 1086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1087 1088 // trunc(trunc(x)) --> trunc(x) 1089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1090 return getTruncateExpr(ST->getOperand(), Ty); 1091 1092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1094 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1095 1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1099 1100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1101 // eliminate all the truncates, or we replace other casts with truncates. 1102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1103 SmallVector<const SCEV *, 4> Operands; 1104 bool hasTrunc = false; 1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1107 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1108 hasTrunc = isa<SCEVTruncateExpr>(S); 1109 Operands.push_back(S); 1110 } 1111 if (!hasTrunc) 1112 return getAddExpr(Operands); 1113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1114 } 1115 1116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1117 // eliminate all the truncates, or we replace other casts with truncates. 1118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1119 SmallVector<const SCEV *, 4> Operands; 1120 bool hasTrunc = false; 1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1123 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1124 hasTrunc = isa<SCEVTruncateExpr>(S); 1125 Operands.push_back(S); 1126 } 1127 if (!hasTrunc) 1128 return getMulExpr(Operands); 1129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1130 } 1131 1132 // If the input value is a chrec scev, truncate the chrec's operands. 1133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1134 SmallVector<const SCEV *, 4> Operands; 1135 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1136 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 1137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1138 } 1139 1140 // The cast wasn't folded; create an explicit cast node. We can reuse 1141 // the existing insert position since if we get here, we won't have 1142 // made any changes which would invalidate it. 1143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1144 Op, Ty); 1145 UniqueSCEVs.InsertNode(S, IP); 1146 return S; 1147 } 1148 1149 // Get the limit of a recurrence such that incrementing by Step cannot cause 1150 // signed overflow as long as the value of the recurrence within the 1151 // loop does not exceed this limit before incrementing. 1152 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1153 ICmpInst::Predicate *Pred, 1154 ScalarEvolution *SE) { 1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1156 if (SE->isKnownPositive(Step)) { 1157 *Pred = ICmpInst::ICMP_SLT; 1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1159 SE->getSignedRange(Step).getSignedMax()); 1160 } 1161 if (SE->isKnownNegative(Step)) { 1162 *Pred = ICmpInst::ICMP_SGT; 1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1164 SE->getSignedRange(Step).getSignedMin()); 1165 } 1166 return nullptr; 1167 } 1168 1169 // Get the limit of a recurrence such that incrementing by Step cannot cause 1170 // unsigned overflow as long as the value of the recurrence within the loop does 1171 // not exceed this limit before incrementing. 1172 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1173 ICmpInst::Predicate *Pred, 1174 ScalarEvolution *SE) { 1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1176 *Pred = ICmpInst::ICMP_ULT; 1177 1178 return SE->getConstant(APInt::getMinValue(BitWidth) - 1179 SE->getUnsignedRange(Step).getUnsignedMax()); 1180 } 1181 1182 namespace { 1183 1184 struct ExtendOpTraitsBase { 1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1186 }; 1187 1188 // Used to make code generic over signed and unsigned overflow. 1189 template <typename ExtendOp> struct ExtendOpTraits { 1190 // Members present: 1191 // 1192 // static const SCEV::NoWrapFlags WrapType; 1193 // 1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1195 // 1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1197 // ICmpInst::Predicate *Pred, 1198 // ScalarEvolution *SE); 1199 }; 1200 1201 template <> 1202 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1204 1205 static const GetExtendExprTy GetExtendExpr; 1206 1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1208 ICmpInst::Predicate *Pred, 1209 ScalarEvolution *SE) { 1210 return getSignedOverflowLimitForStep(Step, Pred, SE); 1211 } 1212 }; 1213 1214 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1216 1217 template <> 1218 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1220 1221 static const GetExtendExprTy GetExtendExpr; 1222 1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1224 ICmpInst::Predicate *Pred, 1225 ScalarEvolution *SE) { 1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1227 } 1228 }; 1229 1230 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1232 } 1233 1234 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1235 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1236 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1237 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1238 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1239 // expression "Step + sext/zext(PreIncAR)" is congruent with 1240 // "sext/zext(PostIncAR)" 1241 template <typename ExtendOpTy> 1242 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1243 ScalarEvolution *SE) { 1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1246 1247 const Loop *L = AR->getLoop(); 1248 const SCEV *Start = AR->getStart(); 1249 const SCEV *Step = AR->getStepRecurrence(*SE); 1250 1251 // Check for a simple looking step prior to loop entry. 1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1253 if (!SA) 1254 return nullptr; 1255 1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1257 // subtraction is expensive. For this purpose, perform a quick and dirty 1258 // difference, by checking for Step in the operand list. 1259 SmallVector<const SCEV *, 4> DiffOps; 1260 for (const SCEV *Op : SA->operands()) 1261 if (Op != Step) 1262 DiffOps.push_back(Op); 1263 1264 if (DiffOps.size() == SA->getNumOperands()) 1265 return nullptr; 1266 1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1268 // `Step`: 1269 1270 // 1. NSW/NUW flags on the step increment. 1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1274 1275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1276 // "S+X does not sign/unsign-overflow". 1277 // 1278 1279 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1282 return PreStart; 1283 1284 // 2. Direct overflow check on the step operation's expression. 1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1287 const SCEV *OperandExtendedStart = 1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1289 (SE->*GetExtendExpr)(Step, WideTy)); 1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1291 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1296 } 1297 return PreStart; 1298 } 1299 1300 // 3. Loop precondition. 1301 ICmpInst::Predicate Pred; 1302 const SCEV *OverflowLimit = 1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1304 1305 if (OverflowLimit && 1306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1307 return PreStart; 1308 } 1309 return nullptr; 1310 } 1311 1312 // Get the normalized zero or sign extended expression for this AddRec's Start. 1313 template <typename ExtendOpTy> 1314 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1315 ScalarEvolution *SE) { 1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1317 1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1319 if (!PreStart) 1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1321 1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1323 (SE->*GetExtendExpr)(PreStart, Ty)); 1324 } 1325 1326 // Try to prove away overflow by looking at "nearby" add recurrences. A 1327 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1328 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1329 // 1330 // Formally: 1331 // 1332 // {S,+,X} == {S-T,+,X} + T 1333 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1334 // 1335 // If ({S-T,+,X} + T) does not overflow ... (1) 1336 // 1337 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1338 // 1339 // If {S-T,+,X} does not overflow ... (2) 1340 // 1341 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1342 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1343 // 1344 // If (S-T)+T does not overflow ... (3) 1345 // 1346 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1347 // == {Ext(S),+,Ext(X)} == LHS 1348 // 1349 // Thus, if (1), (2) and (3) are true for some T, then 1350 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1351 // 1352 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1353 // does not overflow" restricted to the 0th iteration. Therefore we only need 1354 // to check for (1) and (2). 1355 // 1356 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1357 // is `Delta` (defined below). 1358 // 1359 template <typename ExtendOpTy> 1360 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1361 const SCEV *Step, 1362 const Loop *L) { 1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1364 1365 // We restrict `Start` to a constant to prevent SCEV from spending too much 1366 // time here. It is correct (but more expensive) to continue with a 1367 // non-constant `Start` and do a general SCEV subtraction to compute 1368 // `PreStart` below. 1369 // 1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1371 if (!StartC) 1372 return false; 1373 1374 APInt StartAI = StartC->getValue()->getValue(); 1375 1376 for (unsigned Delta : {-2, -1, 1, 2}) { 1377 const SCEV *PreStart = getConstant(StartAI - Delta); 1378 1379 // Give up if we don't already have the add recurrence we need because 1380 // actually constructing an add recurrence is relatively expensive. 1381 const SCEVAddRecExpr *PreAR = [&]() { 1382 FoldingSetNodeID ID; 1383 ID.AddInteger(scAddRecExpr); 1384 ID.AddPointer(PreStart); 1385 ID.AddPointer(Step); 1386 ID.AddPointer(L); 1387 void *IP = nullptr; 1388 return static_cast<SCEVAddRecExpr *>( 1389 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1390 }(); 1391 1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1396 DeltaS, &Pred, this); 1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1398 return true; 1399 } 1400 } 1401 1402 return false; 1403 } 1404 1405 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1406 Type *Ty) { 1407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1408 "This is not an extending conversion!"); 1409 assert(isSCEVable(Ty) && 1410 "This is not a conversion to a SCEVable type!"); 1411 Ty = getEffectiveSCEVType(Ty); 1412 1413 // Fold if the operand is constant. 1414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1415 return getConstant( 1416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1417 1418 // zext(zext(x)) --> zext(x) 1419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1420 return getZeroExtendExpr(SZ->getOperand(), Ty); 1421 1422 // Before doing any expensive analysis, check to see if we've already 1423 // computed a SCEV for this Op and Ty. 1424 FoldingSetNodeID ID; 1425 ID.AddInteger(scZeroExtend); 1426 ID.AddPointer(Op); 1427 ID.AddPointer(Ty); 1428 void *IP = nullptr; 1429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1430 1431 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1433 // It's possible the bits taken off by the truncate were all zero bits. If 1434 // so, we should be able to simplify this further. 1435 const SCEV *X = ST->getOperand(); 1436 ConstantRange CR = getUnsignedRange(X); 1437 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1438 unsigned NewBits = getTypeSizeInBits(Ty); 1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1440 CR.zextOrTrunc(NewBits))) 1441 return getTruncateOrZeroExtend(X, Ty); 1442 } 1443 1444 // If the input value is a chrec scev, and we can prove that the value 1445 // did not overflow the old, smaller, value, we can zero extend all of the 1446 // operands (often constants). This allows analysis of something like 1447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1449 if (AR->isAffine()) { 1450 const SCEV *Start = AR->getStart(); 1451 const SCEV *Step = AR->getStepRecurrence(*this); 1452 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1453 const Loop *L = AR->getLoop(); 1454 1455 // If we have special knowledge that this addrec won't overflow, 1456 // we don't need to do any further analysis. 1457 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1458 return getAddRecExpr( 1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1461 1462 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1463 // Note that this serves two purposes: It filters out loops that are 1464 // simply not analyzable, and it covers the case where this code is 1465 // being called from within backedge-taken count analysis, such that 1466 // attempting to ask for the backedge-taken count would likely result 1467 // in infinite recursion. In the later case, the analysis code will 1468 // cope with a conservative value, and it will take care to purge 1469 // that value once it has finished. 1470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1472 // Manually compute the final value for AR, checking for 1473 // overflow. 1474 1475 // Check whether the backedge-taken count can be losslessly casted to 1476 // the addrec's type. The count is always unsigned. 1477 const SCEV *CastedMaxBECount = 1478 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1479 const SCEV *RecastedMaxBECount = 1480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1481 if (MaxBECount == RecastedMaxBECount) { 1482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1483 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1487 const SCEV *WideMaxBECount = 1488 getZeroExtendExpr(CastedMaxBECount, WideTy); 1489 const SCEV *OperandExtendedAdd = 1490 getAddExpr(WideStart, 1491 getMulExpr(WideMaxBECount, 1492 getZeroExtendExpr(Step, WideTy))); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1500 } 1501 // Similar to above, only this time treat the step value as signed. 1502 // This covers loops that count down. 1503 OperandExtendedAdd = 1504 getAddExpr(WideStart, 1505 getMulExpr(WideMaxBECount, 1506 getSignExtendExpr(Step, WideTy))); 1507 if (ZAdd == OperandExtendedAdd) { 1508 // Cache knowledge of AR NW, which is propagated to this AddRec. 1509 // Negative step causes unsigned wrap, but it still can't self-wrap. 1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1511 // Return the expression with the addrec on the outside. 1512 return getAddRecExpr( 1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1515 } 1516 } 1517 1518 // If the backedge is guarded by a comparison with the pre-inc value 1519 // the addrec is safe. Also, if the entry is guarded by a comparison 1520 // with the start value and the backedge is guarded by a comparison 1521 // with the post-inc value, the addrec is safe. 1522 if (isKnownPositive(Step)) { 1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1524 getUnsignedRange(Step).getUnsignedMax()); 1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1528 AR->getPostIncExpr(*this), N))) { 1529 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1531 // Return the expression with the addrec on the outside. 1532 return getAddRecExpr( 1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1535 } 1536 } else if (isKnownNegative(Step)) { 1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1538 getSignedRange(Step).getSignedMin()); 1539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1542 AR->getPostIncExpr(*this), N))) { 1543 // Cache knowledge of AR NW, which is propagated to this AddRec. 1544 // Negative step causes unsigned wrap, but it still can't self-wrap. 1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1546 // Return the expression with the addrec on the outside. 1547 return getAddRecExpr( 1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1550 } 1551 } 1552 } 1553 1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1556 return getAddRecExpr( 1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1559 } 1560 } 1561 1562 // The cast wasn't folded; create an explicit cast node. 1563 // Recompute the insert position, as it may have been invalidated. 1564 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1565 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1566 Op, Ty); 1567 UniqueSCEVs.InsertNode(S, IP); 1568 return S; 1569 } 1570 1571 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1572 Type *Ty) { 1573 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1574 "This is not an extending conversion!"); 1575 assert(isSCEVable(Ty) && 1576 "This is not a conversion to a SCEVable type!"); 1577 Ty = getEffectiveSCEVType(Ty); 1578 1579 // Fold if the operand is constant. 1580 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1581 return getConstant( 1582 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1583 1584 // sext(sext(x)) --> sext(x) 1585 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1586 return getSignExtendExpr(SS->getOperand(), Ty); 1587 1588 // sext(zext(x)) --> zext(x) 1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1590 return getZeroExtendExpr(SZ->getOperand(), Ty); 1591 1592 // Before doing any expensive analysis, check to see if we've already 1593 // computed a SCEV for this Op and Ty. 1594 FoldingSetNodeID ID; 1595 ID.AddInteger(scSignExtend); 1596 ID.AddPointer(Op); 1597 ID.AddPointer(Ty); 1598 void *IP = nullptr; 1599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1600 1601 // If the input value is provably positive, build a zext instead. 1602 if (isKnownNonNegative(Op)) 1603 return getZeroExtendExpr(Op, Ty); 1604 1605 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1606 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1607 // It's possible the bits taken off by the truncate were all sign bits. If 1608 // so, we should be able to simplify this further. 1609 const SCEV *X = ST->getOperand(); 1610 ConstantRange CR = getSignedRange(X); 1611 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1612 unsigned NewBits = getTypeSizeInBits(Ty); 1613 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1614 CR.sextOrTrunc(NewBits))) 1615 return getTruncateOrSignExtend(X, Ty); 1616 } 1617 1618 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1619 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 1620 if (SA->getNumOperands() == 2) { 1621 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1622 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1623 if (SMul && SC1) { 1624 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1625 const APInt &C1 = SC1->getValue()->getValue(); 1626 const APInt &C2 = SC2->getValue()->getValue(); 1627 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1628 C2.ugt(C1) && C2.isPowerOf2()) 1629 return getAddExpr(getSignExtendExpr(SC1, Ty), 1630 getSignExtendExpr(SMul, Ty)); 1631 } 1632 } 1633 } 1634 } 1635 // If the input value is a chrec scev, and we can prove that the value 1636 // did not overflow the old, smaller, value, we can sign extend all of the 1637 // operands (often constants). This allows analysis of something like 1638 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1639 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1640 if (AR->isAffine()) { 1641 const SCEV *Start = AR->getStart(); 1642 const SCEV *Step = AR->getStepRecurrence(*this); 1643 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1644 const Loop *L = AR->getLoop(); 1645 1646 // If we have special knowledge that this addrec won't overflow, 1647 // we don't need to do any further analysis. 1648 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1649 return getAddRecExpr( 1650 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1651 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1652 1653 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1654 // Note that this serves two purposes: It filters out loops that are 1655 // simply not analyzable, and it covers the case where this code is 1656 // being called from within backedge-taken count analysis, such that 1657 // attempting to ask for the backedge-taken count would likely result 1658 // in infinite recursion. In the later case, the analysis code will 1659 // cope with a conservative value, and it will take care to purge 1660 // that value once it has finished. 1661 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1662 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1663 // Manually compute the final value for AR, checking for 1664 // overflow. 1665 1666 // Check whether the backedge-taken count can be losslessly casted to 1667 // the addrec's type. The count is always unsigned. 1668 const SCEV *CastedMaxBECount = 1669 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1670 const SCEV *RecastedMaxBECount = 1671 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1672 if (MaxBECount == RecastedMaxBECount) { 1673 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1674 // Check whether Start+Step*MaxBECount has no signed overflow. 1675 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1676 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1677 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1678 const SCEV *WideMaxBECount = 1679 getZeroExtendExpr(CastedMaxBECount, WideTy); 1680 const SCEV *OperandExtendedAdd = 1681 getAddExpr(WideStart, 1682 getMulExpr(WideMaxBECount, 1683 getSignExtendExpr(Step, WideTy))); 1684 if (SAdd == OperandExtendedAdd) { 1685 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1686 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1687 // Return the expression with the addrec on the outside. 1688 return getAddRecExpr( 1689 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1690 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1691 } 1692 // Similar to above, only this time treat the step value as unsigned. 1693 // This covers loops that count up with an unsigned step. 1694 OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getZeroExtendExpr(Step, WideTy))); 1698 if (SAdd == OperandExtendedAdd) { 1699 // If AR wraps around then 1700 // 1701 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1702 // => SAdd != OperandExtendedAdd 1703 // 1704 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1705 // (SAdd == OperandExtendedAdd => AR is NW) 1706 1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1708 1709 // Return the expression with the addrec on the outside. 1710 return getAddRecExpr( 1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1712 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1713 } 1714 } 1715 1716 // If the backedge is guarded by a comparison with the pre-inc value 1717 // the addrec is safe. Also, if the entry is guarded by a comparison 1718 // with the start value and the backedge is guarded by a comparison 1719 // with the post-inc value, the addrec is safe. 1720 ICmpInst::Predicate Pred; 1721 const SCEV *OverflowLimit = 1722 getSignedOverflowLimitForStep(Step, &Pred, this); 1723 if (OverflowLimit && 1724 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1725 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1726 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1727 OverflowLimit)))) { 1728 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1730 return getAddRecExpr( 1731 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1732 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1733 } 1734 } 1735 // If Start and Step are constants, check if we can apply this 1736 // transformation: 1737 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1738 auto SC1 = dyn_cast<SCEVConstant>(Start); 1739 auto SC2 = dyn_cast<SCEVConstant>(Step); 1740 if (SC1 && SC2) { 1741 const APInt &C1 = SC1->getValue()->getValue(); 1742 const APInt &C2 = SC2->getValue()->getValue(); 1743 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1744 C2.isPowerOf2()) { 1745 Start = getSignExtendExpr(Start, Ty); 1746 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1747 AR->getNoWrapFlags()); 1748 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1749 } 1750 } 1751 1752 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1753 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1754 return getAddRecExpr( 1755 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1756 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1757 } 1758 } 1759 1760 // The cast wasn't folded; create an explicit cast node. 1761 // Recompute the insert position, as it may have been invalidated. 1762 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1763 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1764 Op, Ty); 1765 UniqueSCEVs.InsertNode(S, IP); 1766 return S; 1767 } 1768 1769 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1770 /// unspecified bits out to the given type. 1771 /// 1772 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1773 Type *Ty) { 1774 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1775 "This is not an extending conversion!"); 1776 assert(isSCEVable(Ty) && 1777 "This is not a conversion to a SCEVable type!"); 1778 Ty = getEffectiveSCEVType(Ty); 1779 1780 // Sign-extend negative constants. 1781 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1782 if (SC->getValue()->getValue().isNegative()) 1783 return getSignExtendExpr(Op, Ty); 1784 1785 // Peel off a truncate cast. 1786 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1787 const SCEV *NewOp = T->getOperand(); 1788 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1789 return getAnyExtendExpr(NewOp, Ty); 1790 return getTruncateOrNoop(NewOp, Ty); 1791 } 1792 1793 // Next try a zext cast. If the cast is folded, use it. 1794 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1795 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1796 return ZExt; 1797 1798 // Next try a sext cast. If the cast is folded, use it. 1799 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1800 if (!isa<SCEVSignExtendExpr>(SExt)) 1801 return SExt; 1802 1803 // Force the cast to be folded into the operands of an addrec. 1804 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1805 SmallVector<const SCEV *, 4> Ops; 1806 for (const SCEV *Op : AR->operands()) 1807 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1808 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1809 } 1810 1811 // If the expression is obviously signed, use the sext cast value. 1812 if (isa<SCEVSMaxExpr>(Op)) 1813 return SExt; 1814 1815 // Absent any other information, use the zext cast value. 1816 return ZExt; 1817 } 1818 1819 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1820 /// a list of operands to be added under the given scale, update the given 1821 /// map. This is a helper function for getAddRecExpr. As an example of 1822 /// what it does, given a sequence of operands that would form an add 1823 /// expression like this: 1824 /// 1825 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1826 /// 1827 /// where A and B are constants, update the map with these values: 1828 /// 1829 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1830 /// 1831 /// and add 13 + A*B*29 to AccumulatedConstant. 1832 /// This will allow getAddRecExpr to produce this: 1833 /// 1834 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1835 /// 1836 /// This form often exposes folding opportunities that are hidden in 1837 /// the original operand list. 1838 /// 1839 /// Return true iff it appears that any interesting folding opportunities 1840 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1841 /// the common case where no interesting opportunities are present, and 1842 /// is also used as a check to avoid infinite recursion. 1843 /// 1844 static bool 1845 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1846 SmallVectorImpl<const SCEV *> &NewOps, 1847 APInt &AccumulatedConstant, 1848 const SCEV *const *Ops, size_t NumOperands, 1849 const APInt &Scale, 1850 ScalarEvolution &SE) { 1851 bool Interesting = false; 1852 1853 // Iterate over the add operands. They are sorted, with constants first. 1854 unsigned i = 0; 1855 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1856 ++i; 1857 // Pull a buried constant out to the outside. 1858 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1859 Interesting = true; 1860 AccumulatedConstant += Scale * C->getValue()->getValue(); 1861 } 1862 1863 // Next comes everything else. We're especially interested in multiplies 1864 // here, but they're in the middle, so just visit the rest with one loop. 1865 for (; i != NumOperands; ++i) { 1866 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1867 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1868 APInt NewScale = 1869 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1870 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1871 // A multiplication of a constant with another add; recurse. 1872 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1873 Interesting |= 1874 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1875 Add->op_begin(), Add->getNumOperands(), 1876 NewScale, SE); 1877 } else { 1878 // A multiplication of a constant with some other value. Update 1879 // the map. 1880 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1881 const SCEV *Key = SE.getMulExpr(MulOps); 1882 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1883 if (Pair.second) { 1884 NewOps.push_back(Pair.first->first); 1885 } else { 1886 Pair.first->second += NewScale; 1887 // The map already had an entry for this value, which may indicate 1888 // a folding opportunity. 1889 Interesting = true; 1890 } 1891 } 1892 } else { 1893 // An ordinary operand. Update the map. 1894 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1895 M.insert(std::make_pair(Ops[i], Scale)); 1896 if (Pair.second) { 1897 NewOps.push_back(Pair.first->first); 1898 } else { 1899 Pair.first->second += Scale; 1900 // The map already had an entry for this value, which may indicate 1901 // a folding opportunity. 1902 Interesting = true; 1903 } 1904 } 1905 } 1906 1907 return Interesting; 1908 } 1909 1910 namespace { 1911 struct APIntCompare { 1912 bool operator()(const APInt &LHS, const APInt &RHS) const { 1913 return LHS.ult(RHS); 1914 } 1915 }; 1916 } 1917 1918 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1919 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1920 // can't-overflow flags for the operation if possible. 1921 static SCEV::NoWrapFlags 1922 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1923 const SmallVectorImpl<const SCEV *> &Ops, 1924 SCEV::NoWrapFlags OldFlags) { 1925 using namespace std::placeholders; 1926 1927 bool CanAnalyze = 1928 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1929 (void)CanAnalyze; 1930 assert(CanAnalyze && "don't call from other places!"); 1931 1932 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1933 SCEV::NoWrapFlags SignOrUnsignWrap = 1934 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); 1935 1936 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1937 auto IsKnownNonNegative = 1938 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1939 1940 if (SignOrUnsignWrap == SCEV::FlagNSW && 1941 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1942 return ScalarEvolution::setFlags(OldFlags, 1943 (SCEV::NoWrapFlags)SignOrUnsignMask); 1944 1945 return OldFlags; 1946 } 1947 1948 /// getAddExpr - Get a canonical add expression, or something simpler if 1949 /// possible. 1950 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1951 SCEV::NoWrapFlags Flags) { 1952 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1953 "only nuw or nsw allowed"); 1954 assert(!Ops.empty() && "Cannot get empty add!"); 1955 if (Ops.size() == 1) return Ops[0]; 1956 #ifndef NDEBUG 1957 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1958 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1959 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1960 "SCEVAddExpr operand types don't match!"); 1961 #endif 1962 1963 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 1964 1965 // Sort by complexity, this groups all similar expression types together. 1966 GroupByComplexity(Ops, &LI); 1967 1968 // If there are any constants, fold them together. 1969 unsigned Idx = 0; 1970 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1971 ++Idx; 1972 assert(Idx < Ops.size()); 1973 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1974 // We found two constants, fold them together! 1975 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1976 RHSC->getValue()->getValue()); 1977 if (Ops.size() == 2) return Ops[0]; 1978 Ops.erase(Ops.begin()+1); // Erase the folded element 1979 LHSC = cast<SCEVConstant>(Ops[0]); 1980 } 1981 1982 // If we are left with a constant zero being added, strip it off. 1983 if (LHSC->getValue()->isZero()) { 1984 Ops.erase(Ops.begin()); 1985 --Idx; 1986 } 1987 1988 if (Ops.size() == 1) return Ops[0]; 1989 } 1990 1991 // Okay, check to see if the same value occurs in the operand list more than 1992 // once. If so, merge them together into an multiply expression. Since we 1993 // sorted the list, these values are required to be adjacent. 1994 Type *Ty = Ops[0]->getType(); 1995 bool FoundMatch = false; 1996 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1997 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1998 // Scan ahead to count how many equal operands there are. 1999 unsigned Count = 2; 2000 while (i+Count != e && Ops[i+Count] == Ops[i]) 2001 ++Count; 2002 // Merge the values into a multiply. 2003 const SCEV *Scale = getConstant(Ty, Count); 2004 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2005 if (Ops.size() == Count) 2006 return Mul; 2007 Ops[i] = Mul; 2008 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2009 --i; e -= Count - 1; 2010 FoundMatch = true; 2011 } 2012 if (FoundMatch) 2013 return getAddExpr(Ops, Flags); 2014 2015 // Check for truncates. If all the operands are truncated from the same 2016 // type, see if factoring out the truncate would permit the result to be 2017 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2018 // if the contents of the resulting outer trunc fold to something simple. 2019 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2020 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2021 Type *DstType = Trunc->getType(); 2022 Type *SrcType = Trunc->getOperand()->getType(); 2023 SmallVector<const SCEV *, 8> LargeOps; 2024 bool Ok = true; 2025 // Check all the operands to see if they can be represented in the 2026 // source type of the truncate. 2027 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2028 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2029 if (T->getOperand()->getType() != SrcType) { 2030 Ok = false; 2031 break; 2032 } 2033 LargeOps.push_back(T->getOperand()); 2034 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2035 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2036 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2037 SmallVector<const SCEV *, 8> LargeMulOps; 2038 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2039 if (const SCEVTruncateExpr *T = 2040 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2041 if (T->getOperand()->getType() != SrcType) { 2042 Ok = false; 2043 break; 2044 } 2045 LargeMulOps.push_back(T->getOperand()); 2046 } else if (const SCEVConstant *C = 2047 dyn_cast<SCEVConstant>(M->getOperand(j))) { 2048 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2049 } else { 2050 Ok = false; 2051 break; 2052 } 2053 } 2054 if (Ok) 2055 LargeOps.push_back(getMulExpr(LargeMulOps)); 2056 } else { 2057 Ok = false; 2058 break; 2059 } 2060 } 2061 if (Ok) { 2062 // Evaluate the expression in the larger type. 2063 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2064 // If it folds to something simple, use it. Otherwise, don't. 2065 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2066 return getTruncateExpr(Fold, DstType); 2067 } 2068 } 2069 2070 // Skip past any other cast SCEVs. 2071 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2072 ++Idx; 2073 2074 // If there are add operands they would be next. 2075 if (Idx < Ops.size()) { 2076 bool DeletedAdd = false; 2077 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2078 // If we have an add, expand the add operands onto the end of the operands 2079 // list. 2080 Ops.erase(Ops.begin()+Idx); 2081 Ops.append(Add->op_begin(), Add->op_end()); 2082 DeletedAdd = true; 2083 } 2084 2085 // If we deleted at least one add, we added operands to the end of the list, 2086 // and they are not necessarily sorted. Recurse to resort and resimplify 2087 // any operands we just acquired. 2088 if (DeletedAdd) 2089 return getAddExpr(Ops); 2090 } 2091 2092 // Skip over the add expression until we get to a multiply. 2093 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2094 ++Idx; 2095 2096 // Check to see if there are any folding opportunities present with 2097 // operands multiplied by constant values. 2098 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2099 uint64_t BitWidth = getTypeSizeInBits(Ty); 2100 DenseMap<const SCEV *, APInt> M; 2101 SmallVector<const SCEV *, 8> NewOps; 2102 APInt AccumulatedConstant(BitWidth, 0); 2103 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2104 Ops.data(), Ops.size(), 2105 APInt(BitWidth, 1), *this)) { 2106 // Some interesting folding opportunity is present, so its worthwhile to 2107 // re-generate the operands list. Group the operands by constant scale, 2108 // to avoid multiplying by the same constant scale multiple times. 2109 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2110 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2111 E = NewOps.end(); I != E; ++I) 2112 MulOpLists[M.find(*I)->second].push_back(*I); 2113 // Re-generate the operands list. 2114 Ops.clear(); 2115 if (AccumulatedConstant != 0) 2116 Ops.push_back(getConstant(AccumulatedConstant)); 2117 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2118 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2119 if (I->first != 0) 2120 Ops.push_back(getMulExpr(getConstant(I->first), 2121 getAddExpr(I->second))); 2122 if (Ops.empty()) 2123 return getZero(Ty); 2124 if (Ops.size() == 1) 2125 return Ops[0]; 2126 return getAddExpr(Ops); 2127 } 2128 } 2129 2130 // If we are adding something to a multiply expression, make sure the 2131 // something is not already an operand of the multiply. If so, merge it into 2132 // the multiply. 2133 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2134 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2135 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2136 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2137 if (isa<SCEVConstant>(MulOpSCEV)) 2138 continue; 2139 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2140 if (MulOpSCEV == Ops[AddOp]) { 2141 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2142 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2143 if (Mul->getNumOperands() != 2) { 2144 // If the multiply has more than two operands, we must get the 2145 // Y*Z term. 2146 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2147 Mul->op_begin()+MulOp); 2148 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2149 InnerMul = getMulExpr(MulOps); 2150 } 2151 const SCEV *One = getOne(Ty); 2152 const SCEV *AddOne = getAddExpr(One, InnerMul); 2153 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2154 if (Ops.size() == 2) return OuterMul; 2155 if (AddOp < Idx) { 2156 Ops.erase(Ops.begin()+AddOp); 2157 Ops.erase(Ops.begin()+Idx-1); 2158 } else { 2159 Ops.erase(Ops.begin()+Idx); 2160 Ops.erase(Ops.begin()+AddOp-1); 2161 } 2162 Ops.push_back(OuterMul); 2163 return getAddExpr(Ops); 2164 } 2165 2166 // Check this multiply against other multiplies being added together. 2167 for (unsigned OtherMulIdx = Idx+1; 2168 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2169 ++OtherMulIdx) { 2170 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2171 // If MulOp occurs in OtherMul, we can fold the two multiplies 2172 // together. 2173 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2174 OMulOp != e; ++OMulOp) 2175 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2176 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2177 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2178 if (Mul->getNumOperands() != 2) { 2179 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2180 Mul->op_begin()+MulOp); 2181 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2182 InnerMul1 = getMulExpr(MulOps); 2183 } 2184 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2185 if (OtherMul->getNumOperands() != 2) { 2186 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2187 OtherMul->op_begin()+OMulOp); 2188 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2189 InnerMul2 = getMulExpr(MulOps); 2190 } 2191 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2192 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2193 if (Ops.size() == 2) return OuterMul; 2194 Ops.erase(Ops.begin()+Idx); 2195 Ops.erase(Ops.begin()+OtherMulIdx-1); 2196 Ops.push_back(OuterMul); 2197 return getAddExpr(Ops); 2198 } 2199 } 2200 } 2201 } 2202 2203 // If there are any add recurrences in the operands list, see if any other 2204 // added values are loop invariant. If so, we can fold them into the 2205 // recurrence. 2206 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2207 ++Idx; 2208 2209 // Scan over all recurrences, trying to fold loop invariants into them. 2210 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2211 // Scan all of the other operands to this add and add them to the vector if 2212 // they are loop invariant w.r.t. the recurrence. 2213 SmallVector<const SCEV *, 8> LIOps; 2214 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2215 const Loop *AddRecLoop = AddRec->getLoop(); 2216 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2217 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2218 LIOps.push_back(Ops[i]); 2219 Ops.erase(Ops.begin()+i); 2220 --i; --e; 2221 } 2222 2223 // If we found some loop invariants, fold them into the recurrence. 2224 if (!LIOps.empty()) { 2225 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2226 LIOps.push_back(AddRec->getStart()); 2227 2228 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2229 AddRec->op_end()); 2230 AddRecOps[0] = getAddExpr(LIOps); 2231 2232 // Build the new addrec. Propagate the NUW and NSW flags if both the 2233 // outer add and the inner addrec are guaranteed to have no overflow. 2234 // Always propagate NW. 2235 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2236 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2237 2238 // If all of the other operands were loop invariant, we are done. 2239 if (Ops.size() == 1) return NewRec; 2240 2241 // Otherwise, add the folded AddRec by the non-invariant parts. 2242 for (unsigned i = 0;; ++i) 2243 if (Ops[i] == AddRec) { 2244 Ops[i] = NewRec; 2245 break; 2246 } 2247 return getAddExpr(Ops); 2248 } 2249 2250 // Okay, if there weren't any loop invariants to be folded, check to see if 2251 // there are multiple AddRec's with the same loop induction variable being 2252 // added together. If so, we can fold them. 2253 for (unsigned OtherIdx = Idx+1; 2254 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2255 ++OtherIdx) 2256 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2257 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2258 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2259 AddRec->op_end()); 2260 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2261 ++OtherIdx) 2262 if (const SCEVAddRecExpr *OtherAddRec = 2263 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2264 if (OtherAddRec->getLoop() == AddRecLoop) { 2265 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2266 i != e; ++i) { 2267 if (i >= AddRecOps.size()) { 2268 AddRecOps.append(OtherAddRec->op_begin()+i, 2269 OtherAddRec->op_end()); 2270 break; 2271 } 2272 AddRecOps[i] = getAddExpr(AddRecOps[i], 2273 OtherAddRec->getOperand(i)); 2274 } 2275 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2276 } 2277 // Step size has changed, so we cannot guarantee no self-wraparound. 2278 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2279 return getAddExpr(Ops); 2280 } 2281 2282 // Otherwise couldn't fold anything into this recurrence. Move onto the 2283 // next one. 2284 } 2285 2286 // Okay, it looks like we really DO need an add expr. Check to see if we 2287 // already have one, otherwise create a new one. 2288 FoldingSetNodeID ID; 2289 ID.AddInteger(scAddExpr); 2290 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2291 ID.AddPointer(Ops[i]); 2292 void *IP = nullptr; 2293 SCEVAddExpr *S = 2294 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2295 if (!S) { 2296 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2297 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2298 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2299 O, Ops.size()); 2300 UniqueSCEVs.InsertNode(S, IP); 2301 } 2302 S->setNoWrapFlags(Flags); 2303 return S; 2304 } 2305 2306 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2307 uint64_t k = i*j; 2308 if (j > 1 && k / j != i) Overflow = true; 2309 return k; 2310 } 2311 2312 /// Compute the result of "n choose k", the binomial coefficient. If an 2313 /// intermediate computation overflows, Overflow will be set and the return will 2314 /// be garbage. Overflow is not cleared on absence of overflow. 2315 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2316 // We use the multiplicative formula: 2317 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2318 // At each iteration, we take the n-th term of the numeral and divide by the 2319 // (k-n)th term of the denominator. This division will always produce an 2320 // integral result, and helps reduce the chance of overflow in the 2321 // intermediate computations. However, we can still overflow even when the 2322 // final result would fit. 2323 2324 if (n == 0 || n == k) return 1; 2325 if (k > n) return 0; 2326 2327 if (k > n/2) 2328 k = n-k; 2329 2330 uint64_t r = 1; 2331 for (uint64_t i = 1; i <= k; ++i) { 2332 r = umul_ov(r, n-(i-1), Overflow); 2333 r /= i; 2334 } 2335 return r; 2336 } 2337 2338 /// Determine if any of the operands in this SCEV are a constant or if 2339 /// any of the add or multiply expressions in this SCEV contain a constant. 2340 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2341 SmallVector<const SCEV *, 4> Ops; 2342 Ops.push_back(StartExpr); 2343 while (!Ops.empty()) { 2344 const SCEV *CurrentExpr = Ops.pop_back_val(); 2345 if (isa<SCEVConstant>(*CurrentExpr)) 2346 return true; 2347 2348 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2349 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2350 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2351 } 2352 } 2353 return false; 2354 } 2355 2356 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2357 /// possible. 2358 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2359 SCEV::NoWrapFlags Flags) { 2360 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2361 "only nuw or nsw allowed"); 2362 assert(!Ops.empty() && "Cannot get empty mul!"); 2363 if (Ops.size() == 1) return Ops[0]; 2364 #ifndef NDEBUG 2365 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2366 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2367 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2368 "SCEVMulExpr operand types don't match!"); 2369 #endif 2370 2371 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2372 2373 // Sort by complexity, this groups all similar expression types together. 2374 GroupByComplexity(Ops, &LI); 2375 2376 // If there are any constants, fold them together. 2377 unsigned Idx = 0; 2378 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2379 2380 // C1*(C2+V) -> C1*C2 + C1*V 2381 if (Ops.size() == 2) 2382 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2383 // If any of Add's ops are Adds or Muls with a constant, 2384 // apply this transformation as well. 2385 if (Add->getNumOperands() == 2) 2386 if (containsConstantSomewhere(Add)) 2387 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2388 getMulExpr(LHSC, Add->getOperand(1))); 2389 2390 ++Idx; 2391 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2392 // We found two constants, fold them together! 2393 ConstantInt *Fold = ConstantInt::get(getContext(), 2394 LHSC->getValue()->getValue() * 2395 RHSC->getValue()->getValue()); 2396 Ops[0] = getConstant(Fold); 2397 Ops.erase(Ops.begin()+1); // Erase the folded element 2398 if (Ops.size() == 1) return Ops[0]; 2399 LHSC = cast<SCEVConstant>(Ops[0]); 2400 } 2401 2402 // If we are left with a constant one being multiplied, strip it off. 2403 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2404 Ops.erase(Ops.begin()); 2405 --Idx; 2406 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2407 // If we have a multiply of zero, it will always be zero. 2408 return Ops[0]; 2409 } else if (Ops[0]->isAllOnesValue()) { 2410 // If we have a mul by -1 of an add, try distributing the -1 among the 2411 // add operands. 2412 if (Ops.size() == 2) { 2413 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2414 SmallVector<const SCEV *, 4> NewOps; 2415 bool AnyFolded = false; 2416 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2417 E = Add->op_end(); I != E; ++I) { 2418 const SCEV *Mul = getMulExpr(Ops[0], *I); 2419 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2420 NewOps.push_back(Mul); 2421 } 2422 if (AnyFolded) 2423 return getAddExpr(NewOps); 2424 } 2425 else if (const SCEVAddRecExpr * 2426 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2427 // Negation preserves a recurrence's no self-wrap property. 2428 SmallVector<const SCEV *, 4> Operands; 2429 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2430 E = AddRec->op_end(); I != E; ++I) { 2431 Operands.push_back(getMulExpr(Ops[0], *I)); 2432 } 2433 return getAddRecExpr(Operands, AddRec->getLoop(), 2434 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2435 } 2436 } 2437 } 2438 2439 if (Ops.size() == 1) 2440 return Ops[0]; 2441 } 2442 2443 // Skip over the add expression until we get to a multiply. 2444 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2445 ++Idx; 2446 2447 // If there are mul operands inline them all into this expression. 2448 if (Idx < Ops.size()) { 2449 bool DeletedMul = false; 2450 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2451 // If we have an mul, expand the mul operands onto the end of the operands 2452 // list. 2453 Ops.erase(Ops.begin()+Idx); 2454 Ops.append(Mul->op_begin(), Mul->op_end()); 2455 DeletedMul = true; 2456 } 2457 2458 // If we deleted at least one mul, we added operands to the end of the list, 2459 // and they are not necessarily sorted. Recurse to resort and resimplify 2460 // any operands we just acquired. 2461 if (DeletedMul) 2462 return getMulExpr(Ops); 2463 } 2464 2465 // If there are any add recurrences in the operands list, see if any other 2466 // added values are loop invariant. If so, we can fold them into the 2467 // recurrence. 2468 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2469 ++Idx; 2470 2471 // Scan over all recurrences, trying to fold loop invariants into them. 2472 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2473 // Scan all of the other operands to this mul and add them to the vector if 2474 // they are loop invariant w.r.t. the recurrence. 2475 SmallVector<const SCEV *, 8> LIOps; 2476 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2477 const Loop *AddRecLoop = AddRec->getLoop(); 2478 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2479 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2480 LIOps.push_back(Ops[i]); 2481 Ops.erase(Ops.begin()+i); 2482 --i; --e; 2483 } 2484 2485 // If we found some loop invariants, fold them into the recurrence. 2486 if (!LIOps.empty()) { 2487 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2488 SmallVector<const SCEV *, 4> NewOps; 2489 NewOps.reserve(AddRec->getNumOperands()); 2490 const SCEV *Scale = getMulExpr(LIOps); 2491 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2492 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2493 2494 // Build the new addrec. Propagate the NUW and NSW flags if both the 2495 // outer mul and the inner addrec are guaranteed to have no overflow. 2496 // 2497 // No self-wrap cannot be guaranteed after changing the step size, but 2498 // will be inferred if either NUW or NSW is true. 2499 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2500 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2501 2502 // If all of the other operands were loop invariant, we are done. 2503 if (Ops.size() == 1) return NewRec; 2504 2505 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2506 for (unsigned i = 0;; ++i) 2507 if (Ops[i] == AddRec) { 2508 Ops[i] = NewRec; 2509 break; 2510 } 2511 return getMulExpr(Ops); 2512 } 2513 2514 // Okay, if there weren't any loop invariants to be folded, check to see if 2515 // there are multiple AddRec's with the same loop induction variable being 2516 // multiplied together. If so, we can fold them. 2517 2518 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2519 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2520 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2521 // ]]],+,...up to x=2n}. 2522 // Note that the arguments to choose() are always integers with values 2523 // known at compile time, never SCEV objects. 2524 // 2525 // The implementation avoids pointless extra computations when the two 2526 // addrec's are of different length (mathematically, it's equivalent to 2527 // an infinite stream of zeros on the right). 2528 bool OpsModified = false; 2529 for (unsigned OtherIdx = Idx+1; 2530 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2531 ++OtherIdx) { 2532 const SCEVAddRecExpr *OtherAddRec = 2533 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2534 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2535 continue; 2536 2537 bool Overflow = false; 2538 Type *Ty = AddRec->getType(); 2539 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2540 SmallVector<const SCEV*, 7> AddRecOps; 2541 for (int x = 0, xe = AddRec->getNumOperands() + 2542 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2543 const SCEV *Term = getZero(Ty); 2544 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2545 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2546 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2547 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2548 z < ze && !Overflow; ++z) { 2549 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2550 uint64_t Coeff; 2551 if (LargerThan64Bits) 2552 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2553 else 2554 Coeff = Coeff1*Coeff2; 2555 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2556 const SCEV *Term1 = AddRec->getOperand(y-z); 2557 const SCEV *Term2 = OtherAddRec->getOperand(z); 2558 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2559 } 2560 } 2561 AddRecOps.push_back(Term); 2562 } 2563 if (!Overflow) { 2564 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2565 SCEV::FlagAnyWrap); 2566 if (Ops.size() == 2) return NewAddRec; 2567 Ops[Idx] = NewAddRec; 2568 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2569 OpsModified = true; 2570 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2571 if (!AddRec) 2572 break; 2573 } 2574 } 2575 if (OpsModified) 2576 return getMulExpr(Ops); 2577 2578 // Otherwise couldn't fold anything into this recurrence. Move onto the 2579 // next one. 2580 } 2581 2582 // Okay, it looks like we really DO need an mul expr. Check to see if we 2583 // already have one, otherwise create a new one. 2584 FoldingSetNodeID ID; 2585 ID.AddInteger(scMulExpr); 2586 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2587 ID.AddPointer(Ops[i]); 2588 void *IP = nullptr; 2589 SCEVMulExpr *S = 2590 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2591 if (!S) { 2592 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2593 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2594 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2595 O, Ops.size()); 2596 UniqueSCEVs.InsertNode(S, IP); 2597 } 2598 S->setNoWrapFlags(Flags); 2599 return S; 2600 } 2601 2602 /// getUDivExpr - Get a canonical unsigned division expression, or something 2603 /// simpler if possible. 2604 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2605 const SCEV *RHS) { 2606 assert(getEffectiveSCEVType(LHS->getType()) == 2607 getEffectiveSCEVType(RHS->getType()) && 2608 "SCEVUDivExpr operand types don't match!"); 2609 2610 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2611 if (RHSC->getValue()->equalsInt(1)) 2612 return LHS; // X udiv 1 --> x 2613 // If the denominator is zero, the result of the udiv is undefined. Don't 2614 // try to analyze it, because the resolution chosen here may differ from 2615 // the resolution chosen in other parts of the compiler. 2616 if (!RHSC->getValue()->isZero()) { 2617 // Determine if the division can be folded into the operands of 2618 // its operands. 2619 // TODO: Generalize this to non-constants by using known-bits information. 2620 Type *Ty = LHS->getType(); 2621 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2622 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2623 // For non-power-of-two values, effectively round the value up to the 2624 // nearest power of two. 2625 if (!RHSC->getValue()->getValue().isPowerOf2()) 2626 ++MaxShiftAmt; 2627 IntegerType *ExtTy = 2628 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2629 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2630 if (const SCEVConstant *Step = 2631 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2632 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2633 const APInt &StepInt = Step->getValue()->getValue(); 2634 const APInt &DivInt = RHSC->getValue()->getValue(); 2635 if (!StepInt.urem(DivInt) && 2636 getZeroExtendExpr(AR, ExtTy) == 2637 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2638 getZeroExtendExpr(Step, ExtTy), 2639 AR->getLoop(), SCEV::FlagAnyWrap)) { 2640 SmallVector<const SCEV *, 4> Operands; 2641 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2642 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2643 return getAddRecExpr(Operands, AR->getLoop(), 2644 SCEV::FlagNW); 2645 } 2646 /// Get a canonical UDivExpr for a recurrence. 2647 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2648 // We can currently only fold X%N if X is constant. 2649 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2650 if (StartC && !DivInt.urem(StepInt) && 2651 getZeroExtendExpr(AR, ExtTy) == 2652 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2653 getZeroExtendExpr(Step, ExtTy), 2654 AR->getLoop(), SCEV::FlagAnyWrap)) { 2655 const APInt &StartInt = StartC->getValue()->getValue(); 2656 const APInt &StartRem = StartInt.urem(StepInt); 2657 if (StartRem != 0) 2658 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2659 AR->getLoop(), SCEV::FlagNW); 2660 } 2661 } 2662 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2663 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2664 SmallVector<const SCEV *, 4> Operands; 2665 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2666 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2667 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2668 // Find an operand that's safely divisible. 2669 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2670 const SCEV *Op = M->getOperand(i); 2671 const SCEV *Div = getUDivExpr(Op, RHSC); 2672 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2673 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2674 M->op_end()); 2675 Operands[i] = Div; 2676 return getMulExpr(Operands); 2677 } 2678 } 2679 } 2680 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2681 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2682 SmallVector<const SCEV *, 4> Operands; 2683 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2684 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2685 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2686 Operands.clear(); 2687 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2688 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2689 if (isa<SCEVUDivExpr>(Op) || 2690 getMulExpr(Op, RHS) != A->getOperand(i)) 2691 break; 2692 Operands.push_back(Op); 2693 } 2694 if (Operands.size() == A->getNumOperands()) 2695 return getAddExpr(Operands); 2696 } 2697 } 2698 2699 // Fold if both operands are constant. 2700 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2701 Constant *LHSCV = LHSC->getValue(); 2702 Constant *RHSCV = RHSC->getValue(); 2703 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2704 RHSCV))); 2705 } 2706 } 2707 } 2708 2709 FoldingSetNodeID ID; 2710 ID.AddInteger(scUDivExpr); 2711 ID.AddPointer(LHS); 2712 ID.AddPointer(RHS); 2713 void *IP = nullptr; 2714 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2715 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2716 LHS, RHS); 2717 UniqueSCEVs.InsertNode(S, IP); 2718 return S; 2719 } 2720 2721 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2722 APInt A = C1->getValue()->getValue().abs(); 2723 APInt B = C2->getValue()->getValue().abs(); 2724 uint32_t ABW = A.getBitWidth(); 2725 uint32_t BBW = B.getBitWidth(); 2726 2727 if (ABW > BBW) 2728 B = B.zext(ABW); 2729 else if (ABW < BBW) 2730 A = A.zext(BBW); 2731 2732 return APIntOps::GreatestCommonDivisor(A, B); 2733 } 2734 2735 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2736 /// something simpler if possible. There is no representation for an exact udiv 2737 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2738 /// We can't do this when it's not exact because the udiv may be clearing bits. 2739 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2740 const SCEV *RHS) { 2741 // TODO: we could try to find factors in all sorts of things, but for now we 2742 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2743 // end of this file for inspiration. 2744 2745 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2746 if (!Mul) 2747 return getUDivExpr(LHS, RHS); 2748 2749 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2750 // If the mulexpr multiplies by a constant, then that constant must be the 2751 // first element of the mulexpr. 2752 if (const SCEVConstant *LHSCst = 2753 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2754 if (LHSCst == RHSCst) { 2755 SmallVector<const SCEV *, 2> Operands; 2756 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2757 return getMulExpr(Operands); 2758 } 2759 2760 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2761 // that there's a factor provided by one of the other terms. We need to 2762 // check. 2763 APInt Factor = gcd(LHSCst, RHSCst); 2764 if (!Factor.isIntN(1)) { 2765 LHSCst = cast<SCEVConstant>( 2766 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2767 RHSCst = cast<SCEVConstant>( 2768 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2769 SmallVector<const SCEV *, 2> Operands; 2770 Operands.push_back(LHSCst); 2771 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2772 LHS = getMulExpr(Operands); 2773 RHS = RHSCst; 2774 Mul = dyn_cast<SCEVMulExpr>(LHS); 2775 if (!Mul) 2776 return getUDivExactExpr(LHS, RHS); 2777 } 2778 } 2779 } 2780 2781 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2782 if (Mul->getOperand(i) == RHS) { 2783 SmallVector<const SCEV *, 2> Operands; 2784 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2785 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2786 return getMulExpr(Operands); 2787 } 2788 } 2789 2790 return getUDivExpr(LHS, RHS); 2791 } 2792 2793 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2794 /// Simplify the expression as much as possible. 2795 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2796 const Loop *L, 2797 SCEV::NoWrapFlags Flags) { 2798 SmallVector<const SCEV *, 4> Operands; 2799 Operands.push_back(Start); 2800 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2801 if (StepChrec->getLoop() == L) { 2802 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2803 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2804 } 2805 2806 Operands.push_back(Step); 2807 return getAddRecExpr(Operands, L, Flags); 2808 } 2809 2810 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2811 /// Simplify the expression as much as possible. 2812 const SCEV * 2813 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2814 const Loop *L, SCEV::NoWrapFlags Flags) { 2815 if (Operands.size() == 1) return Operands[0]; 2816 #ifndef NDEBUG 2817 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2818 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2819 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2820 "SCEVAddRecExpr operand types don't match!"); 2821 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2822 assert(isLoopInvariant(Operands[i], L) && 2823 "SCEVAddRecExpr operand is not loop-invariant!"); 2824 #endif 2825 2826 if (Operands.back()->isZero()) { 2827 Operands.pop_back(); 2828 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2829 } 2830 2831 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2832 // use that information to infer NUW and NSW flags. However, computing a 2833 // BE count requires calling getAddRecExpr, so we may not yet have a 2834 // meaningful BE count at this point (and if we don't, we'd be stuck 2835 // with a SCEVCouldNotCompute as the cached BE count). 2836 2837 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2838 2839 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2840 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2841 const Loop *NestedLoop = NestedAR->getLoop(); 2842 if (L->contains(NestedLoop) 2843 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2844 : (!NestedLoop->contains(L) && 2845 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2846 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2847 NestedAR->op_end()); 2848 Operands[0] = NestedAR->getStart(); 2849 // AddRecs require their operands be loop-invariant with respect to their 2850 // loops. Don't perform this transformation if it would break this 2851 // requirement. 2852 bool AllInvariant = true; 2853 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2854 if (!isLoopInvariant(Operands[i], L)) { 2855 AllInvariant = false; 2856 break; 2857 } 2858 if (AllInvariant) { 2859 // Create a recurrence for the outer loop with the same step size. 2860 // 2861 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2862 // inner recurrence has the same property. 2863 SCEV::NoWrapFlags OuterFlags = 2864 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2865 2866 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2867 AllInvariant = true; 2868 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2869 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2870 AllInvariant = false; 2871 break; 2872 } 2873 if (AllInvariant) { 2874 // Ok, both add recurrences are valid after the transformation. 2875 // 2876 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2877 // the outer recurrence has the same property. 2878 SCEV::NoWrapFlags InnerFlags = 2879 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2880 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2881 } 2882 } 2883 // Reset Operands to its original state. 2884 Operands[0] = NestedAR; 2885 } 2886 } 2887 2888 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2889 // already have one, otherwise create a new one. 2890 FoldingSetNodeID ID; 2891 ID.AddInteger(scAddRecExpr); 2892 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2893 ID.AddPointer(Operands[i]); 2894 ID.AddPointer(L); 2895 void *IP = nullptr; 2896 SCEVAddRecExpr *S = 2897 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2898 if (!S) { 2899 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2900 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2901 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2902 O, Operands.size(), L); 2903 UniqueSCEVs.InsertNode(S, IP); 2904 } 2905 S->setNoWrapFlags(Flags); 2906 return S; 2907 } 2908 2909 const SCEV * 2910 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2911 const SmallVectorImpl<const SCEV *> &IndexExprs, 2912 bool InBounds) { 2913 // getSCEV(Base)->getType() has the same address space as Base->getType() 2914 // because SCEV::getType() preserves the address space. 2915 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2916 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2917 // instruction to its SCEV, because the Instruction may be guarded by control 2918 // flow and the no-overflow bits may not be valid for the expression in any 2919 // context. This can be fixed similarly to how these flags are handled for 2920 // adds. 2921 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2922 2923 const SCEV *TotalOffset = getZero(IntPtrTy); 2924 // The address space is unimportant. The first thing we do on CurTy is getting 2925 // its element type. 2926 Type *CurTy = PointerType::getUnqual(PointeeType); 2927 for (const SCEV *IndexExpr : IndexExprs) { 2928 // Compute the (potentially symbolic) offset in bytes for this index. 2929 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2930 // For a struct, add the member offset. 2931 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2932 unsigned FieldNo = Index->getZExtValue(); 2933 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2934 2935 // Add the field offset to the running total offset. 2936 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2937 2938 // Update CurTy to the type of the field at Index. 2939 CurTy = STy->getTypeAtIndex(Index); 2940 } else { 2941 // Update CurTy to its element type. 2942 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2943 // For an array, add the element offset, explicitly scaled. 2944 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2945 // Getelementptr indices are signed. 2946 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2947 2948 // Multiply the index by the element size to compute the element offset. 2949 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2950 2951 // Add the element offset to the running total offset. 2952 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2953 } 2954 } 2955 2956 // Add the total offset from all the GEP indices to the base. 2957 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2958 } 2959 2960 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2961 const SCEV *RHS) { 2962 SmallVector<const SCEV *, 2> Ops; 2963 Ops.push_back(LHS); 2964 Ops.push_back(RHS); 2965 return getSMaxExpr(Ops); 2966 } 2967 2968 const SCEV * 2969 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2970 assert(!Ops.empty() && "Cannot get empty smax!"); 2971 if (Ops.size() == 1) return Ops[0]; 2972 #ifndef NDEBUG 2973 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2974 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2975 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2976 "SCEVSMaxExpr operand types don't match!"); 2977 #endif 2978 2979 // Sort by complexity, this groups all similar expression types together. 2980 GroupByComplexity(Ops, &LI); 2981 2982 // If there are any constants, fold them together. 2983 unsigned Idx = 0; 2984 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2985 ++Idx; 2986 assert(Idx < Ops.size()); 2987 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2988 // We found two constants, fold them together! 2989 ConstantInt *Fold = ConstantInt::get(getContext(), 2990 APIntOps::smax(LHSC->getValue()->getValue(), 2991 RHSC->getValue()->getValue())); 2992 Ops[0] = getConstant(Fold); 2993 Ops.erase(Ops.begin()+1); // Erase the folded element 2994 if (Ops.size() == 1) return Ops[0]; 2995 LHSC = cast<SCEVConstant>(Ops[0]); 2996 } 2997 2998 // If we are left with a constant minimum-int, strip it off. 2999 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3000 Ops.erase(Ops.begin()); 3001 --Idx; 3002 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3003 // If we have an smax with a constant maximum-int, it will always be 3004 // maximum-int. 3005 return Ops[0]; 3006 } 3007 3008 if (Ops.size() == 1) return Ops[0]; 3009 } 3010 3011 // Find the first SMax 3012 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3013 ++Idx; 3014 3015 // Check to see if one of the operands is an SMax. If so, expand its operands 3016 // onto our operand list, and recurse to simplify. 3017 if (Idx < Ops.size()) { 3018 bool DeletedSMax = false; 3019 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3020 Ops.erase(Ops.begin()+Idx); 3021 Ops.append(SMax->op_begin(), SMax->op_end()); 3022 DeletedSMax = true; 3023 } 3024 3025 if (DeletedSMax) 3026 return getSMaxExpr(Ops); 3027 } 3028 3029 // Okay, check to see if the same value occurs in the operand list twice. If 3030 // so, delete one. Since we sorted the list, these values are required to 3031 // be adjacent. 3032 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3033 // X smax Y smax Y --> X smax Y 3034 // X smax Y --> X, if X is always greater than Y 3035 if (Ops[i] == Ops[i+1] || 3036 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3037 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3038 --i; --e; 3039 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3040 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3041 --i; --e; 3042 } 3043 3044 if (Ops.size() == 1) return Ops[0]; 3045 3046 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3047 3048 // Okay, it looks like we really DO need an smax expr. Check to see if we 3049 // already have one, otherwise create a new one. 3050 FoldingSetNodeID ID; 3051 ID.AddInteger(scSMaxExpr); 3052 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3053 ID.AddPointer(Ops[i]); 3054 void *IP = nullptr; 3055 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3056 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3057 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3058 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3059 O, Ops.size()); 3060 UniqueSCEVs.InsertNode(S, IP); 3061 return S; 3062 } 3063 3064 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3065 const SCEV *RHS) { 3066 SmallVector<const SCEV *, 2> Ops; 3067 Ops.push_back(LHS); 3068 Ops.push_back(RHS); 3069 return getUMaxExpr(Ops); 3070 } 3071 3072 const SCEV * 3073 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3074 assert(!Ops.empty() && "Cannot get empty umax!"); 3075 if (Ops.size() == 1) return Ops[0]; 3076 #ifndef NDEBUG 3077 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3078 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3079 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3080 "SCEVUMaxExpr operand types don't match!"); 3081 #endif 3082 3083 // Sort by complexity, this groups all similar expression types together. 3084 GroupByComplexity(Ops, &LI); 3085 3086 // If there are any constants, fold them together. 3087 unsigned Idx = 0; 3088 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3089 ++Idx; 3090 assert(Idx < Ops.size()); 3091 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3092 // We found two constants, fold them together! 3093 ConstantInt *Fold = ConstantInt::get(getContext(), 3094 APIntOps::umax(LHSC->getValue()->getValue(), 3095 RHSC->getValue()->getValue())); 3096 Ops[0] = getConstant(Fold); 3097 Ops.erase(Ops.begin()+1); // Erase the folded element 3098 if (Ops.size() == 1) return Ops[0]; 3099 LHSC = cast<SCEVConstant>(Ops[0]); 3100 } 3101 3102 // If we are left with a constant minimum-int, strip it off. 3103 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3104 Ops.erase(Ops.begin()); 3105 --Idx; 3106 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3107 // If we have an umax with a constant maximum-int, it will always be 3108 // maximum-int. 3109 return Ops[0]; 3110 } 3111 3112 if (Ops.size() == 1) return Ops[0]; 3113 } 3114 3115 // Find the first UMax 3116 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3117 ++Idx; 3118 3119 // Check to see if one of the operands is a UMax. If so, expand its operands 3120 // onto our operand list, and recurse to simplify. 3121 if (Idx < Ops.size()) { 3122 bool DeletedUMax = false; 3123 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3124 Ops.erase(Ops.begin()+Idx); 3125 Ops.append(UMax->op_begin(), UMax->op_end()); 3126 DeletedUMax = true; 3127 } 3128 3129 if (DeletedUMax) 3130 return getUMaxExpr(Ops); 3131 } 3132 3133 // Okay, check to see if the same value occurs in the operand list twice. If 3134 // so, delete one. Since we sorted the list, these values are required to 3135 // be adjacent. 3136 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3137 // X umax Y umax Y --> X umax Y 3138 // X umax Y --> X, if X is always greater than Y 3139 if (Ops[i] == Ops[i+1] || 3140 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3141 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3142 --i; --e; 3143 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3144 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3145 --i; --e; 3146 } 3147 3148 if (Ops.size() == 1) return Ops[0]; 3149 3150 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3151 3152 // Okay, it looks like we really DO need a umax expr. Check to see if we 3153 // already have one, otherwise create a new one. 3154 FoldingSetNodeID ID; 3155 ID.AddInteger(scUMaxExpr); 3156 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3157 ID.AddPointer(Ops[i]); 3158 void *IP = nullptr; 3159 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3160 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3161 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3162 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3163 O, Ops.size()); 3164 UniqueSCEVs.InsertNode(S, IP); 3165 return S; 3166 } 3167 3168 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3169 const SCEV *RHS) { 3170 // ~smax(~x, ~y) == smin(x, y). 3171 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3172 } 3173 3174 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3175 const SCEV *RHS) { 3176 // ~umax(~x, ~y) == umin(x, y) 3177 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3178 } 3179 3180 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3181 // We can bypass creating a target-independent 3182 // constant expression and then folding it back into a ConstantInt. 3183 // This is just a compile-time optimization. 3184 return getConstant(IntTy, 3185 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3186 } 3187 3188 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3189 StructType *STy, 3190 unsigned FieldNo) { 3191 // We can bypass creating a target-independent 3192 // constant expression and then folding it back into a ConstantInt. 3193 // This is just a compile-time optimization. 3194 return getConstant( 3195 IntTy, 3196 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3197 FieldNo)); 3198 } 3199 3200 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3201 // Don't attempt to do anything other than create a SCEVUnknown object 3202 // here. createSCEV only calls getUnknown after checking for all other 3203 // interesting possibilities, and any other code that calls getUnknown 3204 // is doing so in order to hide a value from SCEV canonicalization. 3205 3206 FoldingSetNodeID ID; 3207 ID.AddInteger(scUnknown); 3208 ID.AddPointer(V); 3209 void *IP = nullptr; 3210 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3211 assert(cast<SCEVUnknown>(S)->getValue() == V && 3212 "Stale SCEVUnknown in uniquing map!"); 3213 return S; 3214 } 3215 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3216 FirstUnknown); 3217 FirstUnknown = cast<SCEVUnknown>(S); 3218 UniqueSCEVs.InsertNode(S, IP); 3219 return S; 3220 } 3221 3222 //===----------------------------------------------------------------------===// 3223 // Basic SCEV Analysis and PHI Idiom Recognition Code 3224 // 3225 3226 /// isSCEVable - Test if values of the given type are analyzable within 3227 /// the SCEV framework. This primarily includes integer types, and it 3228 /// can optionally include pointer types if the ScalarEvolution class 3229 /// has access to target-specific information. 3230 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3231 // Integers and pointers are always SCEVable. 3232 return Ty->isIntegerTy() || Ty->isPointerTy(); 3233 } 3234 3235 /// getTypeSizeInBits - Return the size in bits of the specified type, 3236 /// for which isSCEVable must return true. 3237 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3238 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3239 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty); 3240 } 3241 3242 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3243 /// the given type and which represents how SCEV will treat the given 3244 /// type, for which isSCEVable must return true. For pointer types, 3245 /// this is the pointer-sized integer type. 3246 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3247 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3248 3249 if (Ty->isIntegerTy()) { 3250 return Ty; 3251 } 3252 3253 // The only other support type is pointer. 3254 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3255 return F.getParent()->getDataLayout().getIntPtrType(Ty); 3256 } 3257 3258 const SCEV *ScalarEvolution::getCouldNotCompute() { 3259 return CouldNotCompute.get(); 3260 } 3261 3262 namespace { 3263 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3264 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3265 // is set iff if find such SCEVUnknown. 3266 // 3267 struct FindInvalidSCEVUnknown { 3268 bool FindOne; 3269 FindInvalidSCEVUnknown() { FindOne = false; } 3270 bool follow(const SCEV *S) { 3271 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3272 case scConstant: 3273 return false; 3274 case scUnknown: 3275 if (!cast<SCEVUnknown>(S)->getValue()) 3276 FindOne = true; 3277 return false; 3278 default: 3279 return true; 3280 } 3281 } 3282 bool isDone() const { return FindOne; } 3283 }; 3284 } 3285 3286 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3287 FindInvalidSCEVUnknown F; 3288 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3289 ST.visitAll(S); 3290 3291 return !F.FindOne; 3292 } 3293 3294 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3295 /// expression and create a new one. 3296 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3297 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3298 3299 const SCEV *S = getExistingSCEV(V); 3300 if (S == nullptr) { 3301 S = createSCEV(V); 3302 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3303 } 3304 return S; 3305 } 3306 3307 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3308 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3309 3310 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3311 if (I != ValueExprMap.end()) { 3312 const SCEV *S = I->second; 3313 if (checkValidity(S)) 3314 return S; 3315 ValueExprMap.erase(I); 3316 } 3317 return nullptr; 3318 } 3319 3320 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3321 /// 3322 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3323 SCEV::NoWrapFlags Flags) { 3324 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3325 return getConstant( 3326 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3327 3328 Type *Ty = V->getType(); 3329 Ty = getEffectiveSCEVType(Ty); 3330 return getMulExpr( 3331 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3332 } 3333 3334 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3335 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3336 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3337 return getConstant( 3338 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3339 3340 Type *Ty = V->getType(); 3341 Ty = getEffectiveSCEVType(Ty); 3342 const SCEV *AllOnes = 3343 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3344 return getMinusSCEV(AllOnes, V); 3345 } 3346 3347 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3348 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3349 SCEV::NoWrapFlags Flags) { 3350 // Fast path: X - X --> 0. 3351 if (LHS == RHS) 3352 return getZero(LHS->getType()); 3353 3354 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3355 // makes it so that we cannot make much use of NUW. 3356 auto AddFlags = SCEV::FlagAnyWrap; 3357 const bool RHSIsNotMinSigned = 3358 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3359 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3360 // Let M be the minimum representable signed value. Then (-1)*RHS 3361 // signed-wraps if and only if RHS is M. That can happen even for 3362 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3363 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3364 // (-1)*RHS, we need to prove that RHS != M. 3365 // 3366 // If LHS is non-negative and we know that LHS - RHS does not 3367 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3368 // either by proving that RHS > M or that LHS >= 0. 3369 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3370 AddFlags = SCEV::FlagNSW; 3371 } 3372 } 3373 3374 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3375 // RHS is NSW and LHS >= 0. 3376 // 3377 // The difficulty here is that the NSW flag may have been proven 3378 // relative to a loop that is to be found in a recurrence in LHS and 3379 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3380 // larger scope than intended. 3381 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3382 3383 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3384 } 3385 3386 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3387 /// input value to the specified type. If the type must be extended, it is zero 3388 /// extended. 3389 const SCEV * 3390 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3391 Type *SrcTy = V->getType(); 3392 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3393 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3394 "Cannot truncate or zero extend with non-integer arguments!"); 3395 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3396 return V; // No conversion 3397 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3398 return getTruncateExpr(V, Ty); 3399 return getZeroExtendExpr(V, Ty); 3400 } 3401 3402 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3403 /// input value to the specified type. If the type must be extended, it is sign 3404 /// extended. 3405 const SCEV * 3406 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3407 Type *Ty) { 3408 Type *SrcTy = V->getType(); 3409 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3410 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3411 "Cannot truncate or zero extend with non-integer arguments!"); 3412 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3413 return V; // No conversion 3414 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3415 return getTruncateExpr(V, Ty); 3416 return getSignExtendExpr(V, Ty); 3417 } 3418 3419 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3420 /// input value to the specified type. If the type must be extended, it is zero 3421 /// extended. The conversion must not be narrowing. 3422 const SCEV * 3423 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3424 Type *SrcTy = V->getType(); 3425 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3426 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3427 "Cannot noop or zero extend with non-integer arguments!"); 3428 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3429 "getNoopOrZeroExtend cannot truncate!"); 3430 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3431 return V; // No conversion 3432 return getZeroExtendExpr(V, Ty); 3433 } 3434 3435 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3436 /// input value to the specified type. If the type must be extended, it is sign 3437 /// extended. The conversion must not be narrowing. 3438 const SCEV * 3439 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3440 Type *SrcTy = V->getType(); 3441 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3442 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3443 "Cannot noop or sign extend with non-integer arguments!"); 3444 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3445 "getNoopOrSignExtend cannot truncate!"); 3446 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3447 return V; // No conversion 3448 return getSignExtendExpr(V, Ty); 3449 } 3450 3451 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3452 /// the input value to the specified type. If the type must be extended, 3453 /// it is extended with unspecified bits. The conversion must not be 3454 /// narrowing. 3455 const SCEV * 3456 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3457 Type *SrcTy = V->getType(); 3458 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3459 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3460 "Cannot noop or any extend with non-integer arguments!"); 3461 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3462 "getNoopOrAnyExtend cannot truncate!"); 3463 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3464 return V; // No conversion 3465 return getAnyExtendExpr(V, Ty); 3466 } 3467 3468 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3469 /// input value to the specified type. The conversion must not be widening. 3470 const SCEV * 3471 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3472 Type *SrcTy = V->getType(); 3473 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3474 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3475 "Cannot truncate or noop with non-integer arguments!"); 3476 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3477 "getTruncateOrNoop cannot extend!"); 3478 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3479 return V; // No conversion 3480 return getTruncateExpr(V, Ty); 3481 } 3482 3483 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3484 /// the types using zero-extension, and then perform a umax operation 3485 /// with them. 3486 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3487 const SCEV *RHS) { 3488 const SCEV *PromotedLHS = LHS; 3489 const SCEV *PromotedRHS = RHS; 3490 3491 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3492 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3493 else 3494 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3495 3496 return getUMaxExpr(PromotedLHS, PromotedRHS); 3497 } 3498 3499 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3500 /// the types using zero-extension, and then perform a umin operation 3501 /// with them. 3502 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3503 const SCEV *RHS) { 3504 const SCEV *PromotedLHS = LHS; 3505 const SCEV *PromotedRHS = RHS; 3506 3507 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3508 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3509 else 3510 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3511 3512 return getUMinExpr(PromotedLHS, PromotedRHS); 3513 } 3514 3515 /// getPointerBase - Transitively follow the chain of pointer-type operands 3516 /// until reaching a SCEV that does not have a single pointer operand. This 3517 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3518 /// but corner cases do exist. 3519 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3520 // A pointer operand may evaluate to a nonpointer expression, such as null. 3521 if (!V->getType()->isPointerTy()) 3522 return V; 3523 3524 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3525 return getPointerBase(Cast->getOperand()); 3526 } 3527 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3528 const SCEV *PtrOp = nullptr; 3529 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3530 I != E; ++I) { 3531 if ((*I)->getType()->isPointerTy()) { 3532 // Cannot find the base of an expression with multiple pointer operands. 3533 if (PtrOp) 3534 return V; 3535 PtrOp = *I; 3536 } 3537 } 3538 if (!PtrOp) 3539 return V; 3540 return getPointerBase(PtrOp); 3541 } 3542 return V; 3543 } 3544 3545 /// PushDefUseChildren - Push users of the given Instruction 3546 /// onto the given Worklist. 3547 static void 3548 PushDefUseChildren(Instruction *I, 3549 SmallVectorImpl<Instruction *> &Worklist) { 3550 // Push the def-use children onto the Worklist stack. 3551 for (User *U : I->users()) 3552 Worklist.push_back(cast<Instruction>(U)); 3553 } 3554 3555 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3556 /// instructions that depend on the given instruction and removes them from 3557 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3558 /// resolution. 3559 void 3560 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3561 SmallVector<Instruction *, 16> Worklist; 3562 PushDefUseChildren(PN, Worklist); 3563 3564 SmallPtrSet<Instruction *, 8> Visited; 3565 Visited.insert(PN); 3566 while (!Worklist.empty()) { 3567 Instruction *I = Worklist.pop_back_val(); 3568 if (!Visited.insert(I).second) 3569 continue; 3570 3571 ValueExprMapType::iterator It = 3572 ValueExprMap.find_as(static_cast<Value *>(I)); 3573 if (It != ValueExprMap.end()) { 3574 const SCEV *Old = It->second; 3575 3576 // Short-circuit the def-use traversal if the symbolic name 3577 // ceases to appear in expressions. 3578 if (Old != SymName && !hasOperand(Old, SymName)) 3579 continue; 3580 3581 // SCEVUnknown for a PHI either means that it has an unrecognized 3582 // structure, it's a PHI that's in the progress of being computed 3583 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3584 // additional loop trip count information isn't going to change anything. 3585 // In the second case, createNodeForPHI will perform the necessary 3586 // updates on its own when it gets to that point. In the third, we do 3587 // want to forget the SCEVUnknown. 3588 if (!isa<PHINode>(I) || 3589 !isa<SCEVUnknown>(Old) || 3590 (I != PN && Old == SymName)) { 3591 forgetMemoizedResults(Old); 3592 ValueExprMap.erase(It); 3593 } 3594 } 3595 3596 PushDefUseChildren(I, Worklist); 3597 } 3598 } 3599 3600 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3601 const Loop *L = LI.getLoopFor(PN->getParent()); 3602 if (!L || L->getHeader() != PN->getParent()) 3603 return nullptr; 3604 3605 // The loop may have multiple entrances or multiple exits; we can analyze 3606 // this phi as an addrec if it has a unique entry value and a unique 3607 // backedge value. 3608 Value *BEValueV = nullptr, *StartValueV = nullptr; 3609 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3610 Value *V = PN->getIncomingValue(i); 3611 if (L->contains(PN->getIncomingBlock(i))) { 3612 if (!BEValueV) { 3613 BEValueV = V; 3614 } else if (BEValueV != V) { 3615 BEValueV = nullptr; 3616 break; 3617 } 3618 } else if (!StartValueV) { 3619 StartValueV = V; 3620 } else if (StartValueV != V) { 3621 StartValueV = nullptr; 3622 break; 3623 } 3624 } 3625 if (BEValueV && StartValueV) { 3626 // While we are analyzing this PHI node, handle its value symbolically. 3627 const SCEV *SymbolicName = getUnknown(PN); 3628 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3629 "PHI node already processed?"); 3630 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3631 3632 // Using this symbolic name for the PHI, analyze the value coming around 3633 // the back-edge. 3634 const SCEV *BEValue = getSCEV(BEValueV); 3635 3636 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3637 // has a special value for the first iteration of the loop. 3638 3639 // If the value coming around the backedge is an add with the symbolic 3640 // value we just inserted, then we found a simple induction variable! 3641 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3642 // If there is a single occurrence of the symbolic value, replace it 3643 // with a recurrence. 3644 unsigned FoundIndex = Add->getNumOperands(); 3645 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3646 if (Add->getOperand(i) == SymbolicName) 3647 if (FoundIndex == e) { 3648 FoundIndex = i; 3649 break; 3650 } 3651 3652 if (FoundIndex != Add->getNumOperands()) { 3653 // Create an add with everything but the specified operand. 3654 SmallVector<const SCEV *, 8> Ops; 3655 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3656 if (i != FoundIndex) 3657 Ops.push_back(Add->getOperand(i)); 3658 const SCEV *Accum = getAddExpr(Ops); 3659 3660 // This is not a valid addrec if the step amount is varying each 3661 // loop iteration, but is not itself an addrec in this loop. 3662 if (isLoopInvariant(Accum, L) || 3663 (isa<SCEVAddRecExpr>(Accum) && 3664 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3665 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3666 3667 // If the increment doesn't overflow, then neither the addrec nor 3668 // the post-increment will overflow. 3669 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3670 if (OBO->getOperand(0) == PN) { 3671 if (OBO->hasNoUnsignedWrap()) 3672 Flags = setFlags(Flags, SCEV::FlagNUW); 3673 if (OBO->hasNoSignedWrap()) 3674 Flags = setFlags(Flags, SCEV::FlagNSW); 3675 } 3676 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3677 // If the increment is an inbounds GEP, then we know the address 3678 // space cannot be wrapped around. We cannot make any guarantee 3679 // about signed or unsigned overflow because pointers are 3680 // unsigned but we may have a negative index from the base 3681 // pointer. We can guarantee that no unsigned wrap occurs if the 3682 // indices form a positive value. 3683 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3684 Flags = setFlags(Flags, SCEV::FlagNW); 3685 3686 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3687 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3688 Flags = setFlags(Flags, SCEV::FlagNUW); 3689 } 3690 3691 // We cannot transfer nuw and nsw flags from subtraction 3692 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3693 // for instance. 3694 } 3695 3696 const SCEV *StartVal = getSCEV(StartValueV); 3697 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3698 3699 // Since the no-wrap flags are on the increment, they apply to the 3700 // post-incremented value as well. 3701 if (isLoopInvariant(Accum, L)) 3702 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3703 3704 // Okay, for the entire analysis of this edge we assumed the PHI 3705 // to be symbolic. We now need to go back and purge all of the 3706 // entries for the scalars that use the symbolic expression. 3707 ForgetSymbolicName(PN, SymbolicName); 3708 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3709 return PHISCEV; 3710 } 3711 } 3712 } else if (const SCEVAddRecExpr *AddRec = 3713 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3714 // Otherwise, this could be a loop like this: 3715 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3716 // In this case, j = {1,+,1} and BEValue is j. 3717 // Because the other in-value of i (0) fits the evolution of BEValue 3718 // i really is an addrec evolution. 3719 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3720 const SCEV *StartVal = getSCEV(StartValueV); 3721 3722 // If StartVal = j.start - j.stride, we can use StartVal as the 3723 // initial step of the addrec evolution. 3724 if (StartVal == 3725 getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) { 3726 // FIXME: For constant StartVal, we should be able to infer 3727 // no-wrap flags. 3728 const SCEV *PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1), 3729 L, SCEV::FlagAnyWrap); 3730 3731 // Okay, for the entire analysis of this edge we assumed the PHI 3732 // to be symbolic. We now need to go back and purge all of the 3733 // entries for the scalars that use the symbolic expression. 3734 ForgetSymbolicName(PN, SymbolicName); 3735 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3736 return PHISCEV; 3737 } 3738 } 3739 } 3740 } 3741 3742 return nullptr; 3743 } 3744 3745 // Checks if the SCEV S is available at BB. S is considered available at BB 3746 // if S can be materialized at BB without introducing a fault. 3747 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3748 BasicBlock *BB) { 3749 struct CheckAvailable { 3750 bool TraversalDone = false; 3751 bool Available = true; 3752 3753 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3754 BasicBlock *BB = nullptr; 3755 DominatorTree &DT; 3756 3757 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3758 : L(L), BB(BB), DT(DT) {} 3759 3760 bool setUnavailable() { 3761 TraversalDone = true; 3762 Available = false; 3763 return false; 3764 } 3765 3766 bool follow(const SCEV *S) { 3767 switch (S->getSCEVType()) { 3768 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3769 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3770 // These expressions are available if their operand(s) is/are. 3771 return true; 3772 3773 case scAddRecExpr: { 3774 // We allow add recurrences that are on the loop BB is in, or some 3775 // outer loop. This guarantees availability because the value of the 3776 // add recurrence at BB is simply the "current" value of the induction 3777 // variable. We can relax this in the future; for instance an add 3778 // recurrence on a sibling dominating loop is also available at BB. 3779 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3780 if (L && (ARLoop == L || ARLoop->contains(L))) 3781 return true; 3782 3783 return setUnavailable(); 3784 } 3785 3786 case scUnknown: { 3787 // For SCEVUnknown, we check for simple dominance. 3788 const auto *SU = cast<SCEVUnknown>(S); 3789 Value *V = SU->getValue(); 3790 3791 if (isa<Argument>(V)) 3792 return false; 3793 3794 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3795 return false; 3796 3797 return setUnavailable(); 3798 } 3799 3800 case scUDivExpr: 3801 case scCouldNotCompute: 3802 // We do not try to smart about these at all. 3803 return setUnavailable(); 3804 } 3805 llvm_unreachable("switch should be fully covered!"); 3806 } 3807 3808 bool isDone() { return TraversalDone; } 3809 }; 3810 3811 CheckAvailable CA(L, BB, DT); 3812 SCEVTraversal<CheckAvailable> ST(CA); 3813 3814 ST.visitAll(S); 3815 return CA.Available; 3816 } 3817 3818 // Try to match a control flow sequence that branches out at BI and merges back 3819 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3820 // match. 3821 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3822 Value *&C, Value *&LHS, Value *&RHS) { 3823 C = BI->getCondition(); 3824 3825 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3826 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3827 3828 if (!LeftEdge.isSingleEdge()) 3829 return false; 3830 3831 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3832 3833 Use &LeftUse = Merge->getOperandUse(0); 3834 Use &RightUse = Merge->getOperandUse(1); 3835 3836 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3837 LHS = LeftUse; 3838 RHS = RightUse; 3839 return true; 3840 } 3841 3842 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3843 LHS = RightUse; 3844 RHS = LeftUse; 3845 return true; 3846 } 3847 3848 return false; 3849 } 3850 3851 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3852 if (PN->getNumIncomingValues() == 2) { 3853 const Loop *L = LI.getLoopFor(PN->getParent()); 3854 3855 // Try to match 3856 // 3857 // br %cond, label %left, label %right 3858 // left: 3859 // br label %merge 3860 // right: 3861 // br label %merge 3862 // merge: 3863 // V = phi [ %x, %left ], [ %y, %right ] 3864 // 3865 // as "select %cond, %x, %y" 3866 3867 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3868 assert(IDom && "At least the entry block should dominate PN"); 3869 3870 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3871 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3872 3873 if (BI && BI->isConditional() && 3874 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3875 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3876 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3877 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3878 } 3879 3880 return nullptr; 3881 } 3882 3883 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3884 if (const SCEV *S = createAddRecFromPHI(PN)) 3885 return S; 3886 3887 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3888 return S; 3889 3890 // If the PHI has a single incoming value, follow that value, unless the 3891 // PHI's incoming blocks are in a different loop, in which case doing so 3892 // risks breaking LCSSA form. Instcombine would normally zap these, but 3893 // it doesn't have DominatorTree information, so it may miss cases. 3894 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI, 3895 &DT, &AC)) 3896 if (LI.replacementPreservesLCSSAForm(PN, V)) 3897 return getSCEV(V); 3898 3899 // If it's not a loop phi, we can't handle it yet. 3900 return getUnknown(PN); 3901 } 3902 3903 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3904 Value *Cond, 3905 Value *TrueVal, 3906 Value *FalseVal) { 3907 // Try to match some simple smax or umax patterns. 3908 auto *ICI = dyn_cast<ICmpInst>(Cond); 3909 if (!ICI) 3910 return getUnknown(I); 3911 3912 Value *LHS = ICI->getOperand(0); 3913 Value *RHS = ICI->getOperand(1); 3914 3915 switch (ICI->getPredicate()) { 3916 case ICmpInst::ICMP_SLT: 3917 case ICmpInst::ICMP_SLE: 3918 std::swap(LHS, RHS); 3919 // fall through 3920 case ICmpInst::ICMP_SGT: 3921 case ICmpInst::ICMP_SGE: 3922 // a >s b ? a+x : b+x -> smax(a, b)+x 3923 // a >s b ? b+x : a+x -> smin(a, b)+x 3924 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3925 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 3926 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 3927 const SCEV *LA = getSCEV(TrueVal); 3928 const SCEV *RA = getSCEV(FalseVal); 3929 const SCEV *LDiff = getMinusSCEV(LA, LS); 3930 const SCEV *RDiff = getMinusSCEV(RA, RS); 3931 if (LDiff == RDiff) 3932 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3933 LDiff = getMinusSCEV(LA, RS); 3934 RDiff = getMinusSCEV(RA, LS); 3935 if (LDiff == RDiff) 3936 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3937 } 3938 break; 3939 case ICmpInst::ICMP_ULT: 3940 case ICmpInst::ICMP_ULE: 3941 std::swap(LHS, RHS); 3942 // fall through 3943 case ICmpInst::ICMP_UGT: 3944 case ICmpInst::ICMP_UGE: 3945 // a >u b ? a+x : b+x -> umax(a, b)+x 3946 // a >u b ? b+x : a+x -> umin(a, b)+x 3947 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3948 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3949 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 3950 const SCEV *LA = getSCEV(TrueVal); 3951 const SCEV *RA = getSCEV(FalseVal); 3952 const SCEV *LDiff = getMinusSCEV(LA, LS); 3953 const SCEV *RDiff = getMinusSCEV(RA, RS); 3954 if (LDiff == RDiff) 3955 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3956 LDiff = getMinusSCEV(LA, RS); 3957 RDiff = getMinusSCEV(RA, LS); 3958 if (LDiff == RDiff) 3959 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3960 } 3961 break; 3962 case ICmpInst::ICMP_NE: 3963 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3964 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 3965 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 3966 const SCEV *One = getOne(I->getType()); 3967 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3968 const SCEV *LA = getSCEV(TrueVal); 3969 const SCEV *RA = getSCEV(FalseVal); 3970 const SCEV *LDiff = getMinusSCEV(LA, LS); 3971 const SCEV *RDiff = getMinusSCEV(RA, One); 3972 if (LDiff == RDiff) 3973 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3974 } 3975 break; 3976 case ICmpInst::ICMP_EQ: 3977 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3978 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 3979 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 3980 const SCEV *One = getOne(I->getType()); 3981 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3982 const SCEV *LA = getSCEV(TrueVal); 3983 const SCEV *RA = getSCEV(FalseVal); 3984 const SCEV *LDiff = getMinusSCEV(LA, One); 3985 const SCEV *RDiff = getMinusSCEV(RA, LS); 3986 if (LDiff == RDiff) 3987 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3988 } 3989 break; 3990 default: 3991 break; 3992 } 3993 3994 return getUnknown(I); 3995 } 3996 3997 /// createNodeForGEP - Expand GEP instructions into add and multiply 3998 /// operations. This allows them to be analyzed by regular SCEV code. 3999 /// 4000 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4001 Value *Base = GEP->getOperand(0); 4002 // Don't attempt to analyze GEPs over unsized objects. 4003 if (!Base->getType()->getPointerElementType()->isSized()) 4004 return getUnknown(GEP); 4005 4006 SmallVector<const SCEV *, 4> IndexExprs; 4007 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4008 IndexExprs.push_back(getSCEV(*Index)); 4009 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 4010 GEP->isInBounds()); 4011 } 4012 4013 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4014 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4015 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4016 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4017 uint32_t 4018 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4019 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4020 return C->getValue()->getValue().countTrailingZeros(); 4021 4022 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4023 return std::min(GetMinTrailingZeros(T->getOperand()), 4024 (uint32_t)getTypeSizeInBits(T->getType())); 4025 4026 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4027 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4028 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4029 getTypeSizeInBits(E->getType()) : OpRes; 4030 } 4031 4032 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4033 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4034 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4035 getTypeSizeInBits(E->getType()) : OpRes; 4036 } 4037 4038 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4039 // The result is the min of all operands results. 4040 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4041 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4042 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4043 return MinOpRes; 4044 } 4045 4046 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4047 // The result is the sum of all operands results. 4048 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4049 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4050 for (unsigned i = 1, e = M->getNumOperands(); 4051 SumOpRes != BitWidth && i != e; ++i) 4052 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4053 BitWidth); 4054 return SumOpRes; 4055 } 4056 4057 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4058 // The result is the min of all operands results. 4059 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4060 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4061 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4062 return MinOpRes; 4063 } 4064 4065 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4066 // The result is the min of all operands results. 4067 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4068 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4069 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4070 return MinOpRes; 4071 } 4072 4073 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4074 // The result is the min of all operands results. 4075 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4076 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4077 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4078 return MinOpRes; 4079 } 4080 4081 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4082 // For a SCEVUnknown, ask ValueTracking. 4083 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4084 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4085 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(), 4086 0, &AC, nullptr, &DT); 4087 return Zeros.countTrailingOnes(); 4088 } 4089 4090 // SCEVUDivExpr 4091 return 0; 4092 } 4093 4094 /// GetRangeFromMetadata - Helper method to assign a range to V from 4095 /// metadata present in the IR. 4096 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4097 if (Instruction *I = dyn_cast<Instruction>(V)) { 4098 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 4099 ConstantRange TotalRange( 4100 cast<IntegerType>(I->getType())->getBitWidth(), false); 4101 4102 unsigned NumRanges = MD->getNumOperands() / 2; 4103 assert(NumRanges >= 1); 4104 4105 for (unsigned i = 0; i < NumRanges; ++i) { 4106 ConstantInt *Lower = 4107 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 4108 ConstantInt *Upper = 4109 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 4110 ConstantRange Range(Lower->getValue(), Upper->getValue()); 4111 TotalRange = TotalRange.unionWith(Range); 4112 } 4113 4114 return TotalRange; 4115 } 4116 } 4117 4118 return None; 4119 } 4120 4121 /// getRange - Determine the range for a particular SCEV. If SignHint is 4122 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4123 /// with a "cleaner" unsigned (resp. signed) representation. 4124 /// 4125 ConstantRange 4126 ScalarEvolution::getRange(const SCEV *S, 4127 ScalarEvolution::RangeSignHint SignHint) { 4128 DenseMap<const SCEV *, ConstantRange> &Cache = 4129 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4130 : SignedRanges; 4131 4132 // See if we've computed this range already. 4133 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4134 if (I != Cache.end()) 4135 return I->second; 4136 4137 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4138 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 4139 4140 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4141 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4142 4143 // If the value has known zeros, the maximum value will have those known zeros 4144 // as well. 4145 uint32_t TZ = GetMinTrailingZeros(S); 4146 if (TZ != 0) { 4147 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4148 ConservativeResult = 4149 ConstantRange(APInt::getMinValue(BitWidth), 4150 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4151 else 4152 ConservativeResult = ConstantRange( 4153 APInt::getSignedMinValue(BitWidth), 4154 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4155 } 4156 4157 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4158 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4159 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4160 X = X.add(getRange(Add->getOperand(i), SignHint)); 4161 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4162 } 4163 4164 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4165 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4166 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4167 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4168 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4169 } 4170 4171 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4172 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4173 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4174 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4175 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4176 } 4177 4178 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4179 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4180 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4181 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4182 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4183 } 4184 4185 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4186 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4187 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4188 return setRange(UDiv, SignHint, 4189 ConservativeResult.intersectWith(X.udiv(Y))); 4190 } 4191 4192 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4193 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4194 return setRange(ZExt, SignHint, 4195 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4196 } 4197 4198 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4199 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4200 return setRange(SExt, SignHint, 4201 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4202 } 4203 4204 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4205 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4206 return setRange(Trunc, SignHint, 4207 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4208 } 4209 4210 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4211 // If there's no unsigned wrap, the value will never be less than its 4212 // initial value. 4213 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4214 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4215 if (!C->getValue()->isZero()) 4216 ConservativeResult = 4217 ConservativeResult.intersectWith( 4218 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 4219 4220 // If there's no signed wrap, and all the operands have the same sign or 4221 // zero, the value won't ever change sign. 4222 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4223 bool AllNonNeg = true; 4224 bool AllNonPos = true; 4225 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4226 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4227 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4228 } 4229 if (AllNonNeg) 4230 ConservativeResult = ConservativeResult.intersectWith( 4231 ConstantRange(APInt(BitWidth, 0), 4232 APInt::getSignedMinValue(BitWidth))); 4233 else if (AllNonPos) 4234 ConservativeResult = ConservativeResult.intersectWith( 4235 ConstantRange(APInt::getSignedMinValue(BitWidth), 4236 APInt(BitWidth, 1))); 4237 } 4238 4239 // TODO: non-affine addrec 4240 if (AddRec->isAffine()) { 4241 Type *Ty = AddRec->getType(); 4242 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4243 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4244 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4245 4246 // Check for overflow. This must be done with ConstantRange arithmetic 4247 // because we could be called from within the ScalarEvolution overflow 4248 // checking code. 4249 4250 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4251 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4252 ConstantRange ZExtMaxBECountRange = 4253 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4254 4255 const SCEV *Start = AddRec->getStart(); 4256 const SCEV *Step = AddRec->getStepRecurrence(*this); 4257 ConstantRange StepSRange = getSignedRange(Step); 4258 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4259 4260 ConstantRange StartURange = getUnsignedRange(Start); 4261 ConstantRange EndURange = 4262 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4263 4264 // Check for unsigned overflow. 4265 ConstantRange ZExtStartURange = 4266 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4267 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4268 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4269 ZExtEndURange) { 4270 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4271 EndURange.getUnsignedMin()); 4272 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4273 EndURange.getUnsignedMax()); 4274 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4275 if (!IsFullRange) 4276 ConservativeResult = 4277 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4278 } 4279 4280 ConstantRange StartSRange = getSignedRange(Start); 4281 ConstantRange EndSRange = 4282 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4283 4284 // Check for signed overflow. This must be done with ConstantRange 4285 // arithmetic because we could be called from within the ScalarEvolution 4286 // overflow checking code. 4287 ConstantRange SExtStartSRange = 4288 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4289 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4290 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4291 SExtEndSRange) { 4292 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4293 EndSRange.getSignedMin()); 4294 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4295 EndSRange.getSignedMax()); 4296 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4297 if (!IsFullRange) 4298 ConservativeResult = 4299 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4300 } 4301 } 4302 } 4303 4304 return setRange(AddRec, SignHint, ConservativeResult); 4305 } 4306 4307 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4308 // Check if the IR explicitly contains !range metadata. 4309 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4310 if (MDRange.hasValue()) 4311 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4312 4313 // Split here to avoid paying the compile-time cost of calling both 4314 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4315 // if needed. 4316 const DataLayout &DL = F.getParent()->getDataLayout(); 4317 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4318 // For a SCEVUnknown, ask ValueTracking. 4319 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4320 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4321 if (Ones != ~Zeros + 1) 4322 ConservativeResult = 4323 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4324 } else { 4325 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4326 "generalize as needed!"); 4327 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4328 if (NS > 1) 4329 ConservativeResult = ConservativeResult.intersectWith( 4330 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4331 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4332 } 4333 4334 return setRange(U, SignHint, ConservativeResult); 4335 } 4336 4337 return setRange(S, SignHint, ConservativeResult); 4338 } 4339 4340 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4341 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4342 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4343 4344 // Return early if there are no flags to propagate to the SCEV. 4345 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4346 if (BinOp->hasNoUnsignedWrap()) 4347 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4348 if (BinOp->hasNoSignedWrap()) 4349 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4350 if (Flags == SCEV::FlagAnyWrap) { 4351 return SCEV::FlagAnyWrap; 4352 } 4353 4354 // Here we check that BinOp is in the header of the innermost loop 4355 // containing BinOp, since we only deal with instructions in the loop 4356 // header. The actual loop we need to check later will come from an add 4357 // recurrence, but getting that requires computing the SCEV of the operands, 4358 // which can be expensive. This check we can do cheaply to rule out some 4359 // cases early. 4360 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4361 if (innermostContainingLoop == nullptr || 4362 innermostContainingLoop->getHeader() != BinOp->getParent()) 4363 return SCEV::FlagAnyWrap; 4364 4365 // Only proceed if we can prove that BinOp does not yield poison. 4366 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4367 4368 // At this point we know that if V is executed, then it does not wrap 4369 // according to at least one of NSW or NUW. If V is not executed, then we do 4370 // not know if the calculation that V represents would wrap. Multiple 4371 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4372 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4373 // derived from other instructions that map to the same SCEV. We cannot make 4374 // that guarantee for cases where V is not executed. So we need to find the 4375 // loop that V is considered in relation to and prove that V is executed for 4376 // every iteration of that loop. That implies that the value that V 4377 // calculates does not wrap anywhere in the loop, so then we can apply the 4378 // flags to the SCEV. 4379 // 4380 // We check isLoopInvariant to disambiguate in case we are adding two 4381 // recurrences from different loops, so that we know which loop to prove 4382 // that V is executed in. 4383 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4384 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4385 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4386 const int OtherOpIndex = 1 - OpIndex; 4387 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4388 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4389 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4390 return Flags; 4391 } 4392 } 4393 return SCEV::FlagAnyWrap; 4394 } 4395 4396 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4397 /// the expression. 4398 /// 4399 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4400 if (!isSCEVable(V->getType())) 4401 return getUnknown(V); 4402 4403 unsigned Opcode = Instruction::UserOp1; 4404 if (Instruction *I = dyn_cast<Instruction>(V)) { 4405 Opcode = I->getOpcode(); 4406 4407 // Don't attempt to analyze instructions in blocks that aren't 4408 // reachable. Such instructions don't matter, and they aren't required 4409 // to obey basic rules for definitions dominating uses which this 4410 // analysis depends on. 4411 if (!DT.isReachableFromEntry(I->getParent())) 4412 return getUnknown(V); 4413 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4414 Opcode = CE->getOpcode(); 4415 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4416 return getConstant(CI); 4417 else if (isa<ConstantPointerNull>(V)) 4418 return getZero(V->getType()); 4419 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4420 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4421 else 4422 return getUnknown(V); 4423 4424 Operator *U = cast<Operator>(V); 4425 switch (Opcode) { 4426 case Instruction::Add: { 4427 // The simple thing to do would be to just call getSCEV on both operands 4428 // and call getAddExpr with the result. However if we're looking at a 4429 // bunch of things all added together, this can be quite inefficient, 4430 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4431 // Instead, gather up all the operands and make a single getAddExpr call. 4432 // LLVM IR canonical form means we need only traverse the left operands. 4433 SmallVector<const SCEV *, 4> AddOps; 4434 for (Value *Op = U;; Op = U->getOperand(0)) { 4435 U = dyn_cast<Operator>(Op); 4436 unsigned Opcode = U ? U->getOpcode() : 0; 4437 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4438 assert(Op != V && "V should be an add"); 4439 AddOps.push_back(getSCEV(Op)); 4440 break; 4441 } 4442 4443 if (auto *OpSCEV = getExistingSCEV(U)) { 4444 AddOps.push_back(OpSCEV); 4445 break; 4446 } 4447 4448 // If a NUW or NSW flag can be applied to the SCEV for this 4449 // addition, then compute the SCEV for this addition by itself 4450 // with a separate call to getAddExpr. We need to do that 4451 // instead of pushing the operands of the addition onto AddOps, 4452 // since the flags are only known to apply to this particular 4453 // addition - they may not apply to other additions that can be 4454 // formed with operands from AddOps. 4455 const SCEV *RHS = getSCEV(U->getOperand(1)); 4456 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4457 if (Flags != SCEV::FlagAnyWrap) { 4458 const SCEV *LHS = getSCEV(U->getOperand(0)); 4459 if (Opcode == Instruction::Sub) 4460 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4461 else 4462 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4463 break; 4464 } 4465 4466 if (Opcode == Instruction::Sub) 4467 AddOps.push_back(getNegativeSCEV(RHS)); 4468 else 4469 AddOps.push_back(RHS); 4470 } 4471 return getAddExpr(AddOps); 4472 } 4473 4474 case Instruction::Mul: { 4475 SmallVector<const SCEV *, 4> MulOps; 4476 for (Value *Op = U;; Op = U->getOperand(0)) { 4477 U = dyn_cast<Operator>(Op); 4478 if (!U || U->getOpcode() != Instruction::Mul) { 4479 assert(Op != V && "V should be a mul"); 4480 MulOps.push_back(getSCEV(Op)); 4481 break; 4482 } 4483 4484 if (auto *OpSCEV = getExistingSCEV(U)) { 4485 MulOps.push_back(OpSCEV); 4486 break; 4487 } 4488 4489 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4490 if (Flags != SCEV::FlagAnyWrap) { 4491 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4492 getSCEV(U->getOperand(1)), Flags)); 4493 break; 4494 } 4495 4496 MulOps.push_back(getSCEV(U->getOperand(1))); 4497 } 4498 return getMulExpr(MulOps); 4499 } 4500 case Instruction::UDiv: 4501 return getUDivExpr(getSCEV(U->getOperand(0)), 4502 getSCEV(U->getOperand(1))); 4503 case Instruction::Sub: 4504 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4505 getNoWrapFlagsFromUB(U)); 4506 case Instruction::And: 4507 // For an expression like x&255 that merely masks off the high bits, 4508 // use zext(trunc(x)) as the SCEV expression. 4509 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4510 if (CI->isNullValue()) 4511 return getSCEV(U->getOperand(1)); 4512 if (CI->isAllOnesValue()) 4513 return getSCEV(U->getOperand(0)); 4514 const APInt &A = CI->getValue(); 4515 4516 // Instcombine's ShrinkDemandedConstant may strip bits out of 4517 // constants, obscuring what would otherwise be a low-bits mask. 4518 // Use computeKnownBits to compute what ShrinkDemandedConstant 4519 // knew about to reconstruct a low-bits mask value. 4520 unsigned LZ = A.countLeadingZeros(); 4521 unsigned TZ = A.countTrailingZeros(); 4522 unsigned BitWidth = A.getBitWidth(); 4523 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4524 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4525 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT); 4526 4527 APInt EffectiveMask = 4528 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4529 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4530 const SCEV *MulCount = getConstant( 4531 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4532 return getMulExpr( 4533 getZeroExtendExpr( 4534 getTruncateExpr( 4535 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4536 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4537 U->getType()), 4538 MulCount); 4539 } 4540 } 4541 break; 4542 4543 case Instruction::Or: 4544 // If the RHS of the Or is a constant, we may have something like: 4545 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4546 // optimizations will transparently handle this case. 4547 // 4548 // In order for this transformation to be safe, the LHS must be of the 4549 // form X*(2^n) and the Or constant must be less than 2^n. 4550 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4551 const SCEV *LHS = getSCEV(U->getOperand(0)); 4552 const APInt &CIVal = CI->getValue(); 4553 if (GetMinTrailingZeros(LHS) >= 4554 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4555 // Build a plain add SCEV. 4556 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4557 // If the LHS of the add was an addrec and it has no-wrap flags, 4558 // transfer the no-wrap flags, since an or won't introduce a wrap. 4559 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4560 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4561 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4562 OldAR->getNoWrapFlags()); 4563 } 4564 return S; 4565 } 4566 } 4567 break; 4568 case Instruction::Xor: 4569 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4570 // If the RHS of the xor is a signbit, then this is just an add. 4571 // Instcombine turns add of signbit into xor as a strength reduction step. 4572 if (CI->getValue().isSignBit()) 4573 return getAddExpr(getSCEV(U->getOperand(0)), 4574 getSCEV(U->getOperand(1))); 4575 4576 // If the RHS of xor is -1, then this is a not operation. 4577 if (CI->isAllOnesValue()) 4578 return getNotSCEV(getSCEV(U->getOperand(0))); 4579 4580 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4581 // This is a variant of the check for xor with -1, and it handles 4582 // the case where instcombine has trimmed non-demanded bits out 4583 // of an xor with -1. 4584 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4585 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4586 if (BO->getOpcode() == Instruction::And && 4587 LCI->getValue() == CI->getValue()) 4588 if (const SCEVZeroExtendExpr *Z = 4589 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4590 Type *UTy = U->getType(); 4591 const SCEV *Z0 = Z->getOperand(); 4592 Type *Z0Ty = Z0->getType(); 4593 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4594 4595 // If C is a low-bits mask, the zero extend is serving to 4596 // mask off the high bits. Complement the operand and 4597 // re-apply the zext. 4598 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4599 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4600 4601 // If C is a single bit, it may be in the sign-bit position 4602 // before the zero-extend. In this case, represent the xor 4603 // using an add, which is equivalent, and re-apply the zext. 4604 APInt Trunc = CI->getValue().trunc(Z0TySize); 4605 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4606 Trunc.isSignBit()) 4607 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4608 UTy); 4609 } 4610 } 4611 break; 4612 4613 case Instruction::Shl: 4614 // Turn shift left of a constant amount into a multiply. 4615 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4616 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4617 4618 // If the shift count is not less than the bitwidth, the result of 4619 // the shift is undefined. Don't try to analyze it, because the 4620 // resolution chosen here may differ from the resolution chosen in 4621 // other parts of the compiler. 4622 if (SA->getValue().uge(BitWidth)) 4623 break; 4624 4625 // It is currently not resolved how to interpret NSW for left 4626 // shift by BitWidth - 1, so we avoid applying flags in that 4627 // case. Remove this check (or this comment) once the situation 4628 // is resolved. See 4629 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4630 // and http://reviews.llvm.org/D8890 . 4631 auto Flags = SCEV::FlagAnyWrap; 4632 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4633 4634 Constant *X = ConstantInt::get(getContext(), 4635 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4636 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4637 } 4638 break; 4639 4640 case Instruction::LShr: 4641 // Turn logical shift right of a constant into a unsigned divide. 4642 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4643 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4644 4645 // If the shift count is not less than the bitwidth, the result of 4646 // the shift is undefined. Don't try to analyze it, because the 4647 // resolution chosen here may differ from the resolution chosen in 4648 // other parts of the compiler. 4649 if (SA->getValue().uge(BitWidth)) 4650 break; 4651 4652 Constant *X = ConstantInt::get(getContext(), 4653 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4654 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4655 } 4656 break; 4657 4658 case Instruction::AShr: 4659 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4660 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4661 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4662 if (L->getOpcode() == Instruction::Shl && 4663 L->getOperand(1) == U->getOperand(1)) { 4664 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4665 4666 // If the shift count is not less than the bitwidth, the result of 4667 // the shift is undefined. Don't try to analyze it, because the 4668 // resolution chosen here may differ from the resolution chosen in 4669 // other parts of the compiler. 4670 if (CI->getValue().uge(BitWidth)) 4671 break; 4672 4673 uint64_t Amt = BitWidth - CI->getZExtValue(); 4674 if (Amt == BitWidth) 4675 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4676 return 4677 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4678 IntegerType::get(getContext(), 4679 Amt)), 4680 U->getType()); 4681 } 4682 break; 4683 4684 case Instruction::Trunc: 4685 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4686 4687 case Instruction::ZExt: 4688 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4689 4690 case Instruction::SExt: 4691 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4692 4693 case Instruction::BitCast: 4694 // BitCasts are no-op casts so we just eliminate the cast. 4695 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4696 return getSCEV(U->getOperand(0)); 4697 break; 4698 4699 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4700 // lead to pointer expressions which cannot safely be expanded to GEPs, 4701 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4702 // simplifying integer expressions. 4703 4704 case Instruction::GetElementPtr: 4705 return createNodeForGEP(cast<GEPOperator>(U)); 4706 4707 case Instruction::PHI: 4708 return createNodeForPHI(cast<PHINode>(U)); 4709 4710 case Instruction::Select: 4711 // U can also be a select constant expr, which let fall through. Since 4712 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4713 // constant expressions cannot have instructions as operands, we'd have 4714 // returned getUnknown for a select constant expressions anyway. 4715 if (isa<Instruction>(U)) 4716 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4717 U->getOperand(1), U->getOperand(2)); 4718 4719 default: // We cannot analyze this expression. 4720 break; 4721 } 4722 4723 return getUnknown(V); 4724 } 4725 4726 4727 4728 //===----------------------------------------------------------------------===// 4729 // Iteration Count Computation Code 4730 // 4731 4732 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4733 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4734 return getSmallConstantTripCount(L, ExitingBB); 4735 4736 // No trip count information for multiple exits. 4737 return 0; 4738 } 4739 4740 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4741 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4742 /// constant. Will also return 0 if the maximum trip count is very large (>= 4743 /// 2^32). 4744 /// 4745 /// This "trip count" assumes that control exits via ExitingBlock. More 4746 /// precisely, it is the number of times that control may reach ExitingBlock 4747 /// before taking the branch. For loops with multiple exits, it may not be the 4748 /// number times that the loop header executes because the loop may exit 4749 /// prematurely via another branch. 4750 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4751 BasicBlock *ExitingBlock) { 4752 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4753 assert(L->isLoopExiting(ExitingBlock) && 4754 "Exiting block must actually branch out of the loop!"); 4755 const SCEVConstant *ExitCount = 4756 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4757 if (!ExitCount) 4758 return 0; 4759 4760 ConstantInt *ExitConst = ExitCount->getValue(); 4761 4762 // Guard against huge trip counts. 4763 if (ExitConst->getValue().getActiveBits() > 32) 4764 return 0; 4765 4766 // In case of integer overflow, this returns 0, which is correct. 4767 return ((unsigned)ExitConst->getZExtValue()) + 1; 4768 } 4769 4770 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4771 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4772 return getSmallConstantTripMultiple(L, ExitingBB); 4773 4774 // No trip multiple information for multiple exits. 4775 return 0; 4776 } 4777 4778 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4779 /// trip count of this loop as a normal unsigned value, if possible. This 4780 /// means that the actual trip count is always a multiple of the returned 4781 /// value (don't forget the trip count could very well be zero as well!). 4782 /// 4783 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4784 /// multiple of a constant (which is also the case if the trip count is simply 4785 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4786 /// if the trip count is very large (>= 2^32). 4787 /// 4788 /// As explained in the comments for getSmallConstantTripCount, this assumes 4789 /// that control exits the loop via ExitingBlock. 4790 unsigned 4791 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4792 BasicBlock *ExitingBlock) { 4793 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4794 assert(L->isLoopExiting(ExitingBlock) && 4795 "Exiting block must actually branch out of the loop!"); 4796 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4797 if (ExitCount == getCouldNotCompute()) 4798 return 1; 4799 4800 // Get the trip count from the BE count by adding 1. 4801 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4802 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4803 // to factor simple cases. 4804 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4805 TCMul = Mul->getOperand(0); 4806 4807 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4808 if (!MulC) 4809 return 1; 4810 4811 ConstantInt *Result = MulC->getValue(); 4812 4813 // Guard against huge trip counts (this requires checking 4814 // for zero to handle the case where the trip count == -1 and the 4815 // addition wraps). 4816 if (!Result || Result->getValue().getActiveBits() > 32 || 4817 Result->getValue().getActiveBits() == 0) 4818 return 1; 4819 4820 return (unsigned)Result->getZExtValue(); 4821 } 4822 4823 // getExitCount - Get the expression for the number of loop iterations for which 4824 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4825 // SCEVCouldNotCompute. 4826 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4827 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4828 } 4829 4830 /// getBackedgeTakenCount - If the specified loop has a predictable 4831 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4832 /// object. The backedge-taken count is the number of times the loop header 4833 /// will be branched to from within the loop. This is one less than the 4834 /// trip count of the loop, since it doesn't count the first iteration, 4835 /// when the header is branched to from outside the loop. 4836 /// 4837 /// Note that it is not valid to call this method on a loop without a 4838 /// loop-invariant backedge-taken count (see 4839 /// hasLoopInvariantBackedgeTakenCount). 4840 /// 4841 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4842 return getBackedgeTakenInfo(L).getExact(this); 4843 } 4844 4845 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4846 /// return the least SCEV value that is known never to be less than the 4847 /// actual backedge taken count. 4848 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4849 return getBackedgeTakenInfo(L).getMax(this); 4850 } 4851 4852 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4853 /// onto the given Worklist. 4854 static void 4855 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4856 BasicBlock *Header = L->getHeader(); 4857 4858 // Push all Loop-header PHIs onto the Worklist stack. 4859 for (BasicBlock::iterator I = Header->begin(); 4860 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4861 Worklist.push_back(PN); 4862 } 4863 4864 const ScalarEvolution::BackedgeTakenInfo & 4865 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4866 // Initially insert an invalid entry for this loop. If the insertion 4867 // succeeds, proceed to actually compute a backedge-taken count and 4868 // update the value. The temporary CouldNotCompute value tells SCEV 4869 // code elsewhere that it shouldn't attempt to request a new 4870 // backedge-taken count, which could result in infinite recursion. 4871 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4872 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4873 if (!Pair.second) 4874 return Pair.first->second; 4875 4876 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4877 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4878 // must be cleared in this scope. 4879 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4880 4881 if (Result.getExact(this) != getCouldNotCompute()) { 4882 assert(isLoopInvariant(Result.getExact(this), L) && 4883 isLoopInvariant(Result.getMax(this), L) && 4884 "Computed backedge-taken count isn't loop invariant for loop!"); 4885 ++NumTripCountsComputed; 4886 } 4887 else if (Result.getMax(this) == getCouldNotCompute() && 4888 isa<PHINode>(L->getHeader()->begin())) { 4889 // Only count loops that have phi nodes as not being computable. 4890 ++NumTripCountsNotComputed; 4891 } 4892 4893 // Now that we know more about the trip count for this loop, forget any 4894 // existing SCEV values for PHI nodes in this loop since they are only 4895 // conservative estimates made without the benefit of trip count 4896 // information. This is similar to the code in forgetLoop, except that 4897 // it handles SCEVUnknown PHI nodes specially. 4898 if (Result.hasAnyInfo()) { 4899 SmallVector<Instruction *, 16> Worklist; 4900 PushLoopPHIs(L, Worklist); 4901 4902 SmallPtrSet<Instruction *, 8> Visited; 4903 while (!Worklist.empty()) { 4904 Instruction *I = Worklist.pop_back_val(); 4905 if (!Visited.insert(I).second) 4906 continue; 4907 4908 ValueExprMapType::iterator It = 4909 ValueExprMap.find_as(static_cast<Value *>(I)); 4910 if (It != ValueExprMap.end()) { 4911 const SCEV *Old = It->second; 4912 4913 // SCEVUnknown for a PHI either means that it has an unrecognized 4914 // structure, or it's a PHI that's in the progress of being computed 4915 // by createNodeForPHI. In the former case, additional loop trip 4916 // count information isn't going to change anything. In the later 4917 // case, createNodeForPHI will perform the necessary updates on its 4918 // own when it gets to that point. 4919 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4920 forgetMemoizedResults(Old); 4921 ValueExprMap.erase(It); 4922 } 4923 if (PHINode *PN = dyn_cast<PHINode>(I)) 4924 ConstantEvolutionLoopExitValue.erase(PN); 4925 } 4926 4927 PushDefUseChildren(I, Worklist); 4928 } 4929 } 4930 4931 // Re-lookup the insert position, since the call to 4932 // ComputeBackedgeTakenCount above could result in a 4933 // recusive call to getBackedgeTakenInfo (on a different 4934 // loop), which would invalidate the iterator computed 4935 // earlier. 4936 return BackedgeTakenCounts.find(L)->second = Result; 4937 } 4938 4939 /// forgetLoop - This method should be called by the client when it has 4940 /// changed a loop in a way that may effect ScalarEvolution's ability to 4941 /// compute a trip count, or if the loop is deleted. 4942 void ScalarEvolution::forgetLoop(const Loop *L) { 4943 // Drop any stored trip count value. 4944 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4945 BackedgeTakenCounts.find(L); 4946 if (BTCPos != BackedgeTakenCounts.end()) { 4947 BTCPos->second.clear(); 4948 BackedgeTakenCounts.erase(BTCPos); 4949 } 4950 4951 // Drop information about expressions based on loop-header PHIs. 4952 SmallVector<Instruction *, 16> Worklist; 4953 PushLoopPHIs(L, Worklist); 4954 4955 SmallPtrSet<Instruction *, 8> Visited; 4956 while (!Worklist.empty()) { 4957 Instruction *I = Worklist.pop_back_val(); 4958 if (!Visited.insert(I).second) 4959 continue; 4960 4961 ValueExprMapType::iterator It = 4962 ValueExprMap.find_as(static_cast<Value *>(I)); 4963 if (It != ValueExprMap.end()) { 4964 forgetMemoizedResults(It->second); 4965 ValueExprMap.erase(It); 4966 if (PHINode *PN = dyn_cast<PHINode>(I)) 4967 ConstantEvolutionLoopExitValue.erase(PN); 4968 } 4969 4970 PushDefUseChildren(I, Worklist); 4971 } 4972 4973 // Forget all contained loops too, to avoid dangling entries in the 4974 // ValuesAtScopes map. 4975 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4976 forgetLoop(*I); 4977 } 4978 4979 /// forgetValue - This method should be called by the client when it has 4980 /// changed a value in a way that may effect its value, or which may 4981 /// disconnect it from a def-use chain linking it to a loop. 4982 void ScalarEvolution::forgetValue(Value *V) { 4983 Instruction *I = dyn_cast<Instruction>(V); 4984 if (!I) return; 4985 4986 // Drop information about expressions based on loop-header PHIs. 4987 SmallVector<Instruction *, 16> Worklist; 4988 Worklist.push_back(I); 4989 4990 SmallPtrSet<Instruction *, 8> Visited; 4991 while (!Worklist.empty()) { 4992 I = Worklist.pop_back_val(); 4993 if (!Visited.insert(I).second) 4994 continue; 4995 4996 ValueExprMapType::iterator It = 4997 ValueExprMap.find_as(static_cast<Value *>(I)); 4998 if (It != ValueExprMap.end()) { 4999 forgetMemoizedResults(It->second); 5000 ValueExprMap.erase(It); 5001 if (PHINode *PN = dyn_cast<PHINode>(I)) 5002 ConstantEvolutionLoopExitValue.erase(PN); 5003 } 5004 5005 PushDefUseChildren(I, Worklist); 5006 } 5007 } 5008 5009 /// getExact - Get the exact loop backedge taken count considering all loop 5010 /// exits. A computable result can only be returned for loops with a single 5011 /// exit. Returning the minimum taken count among all exits is incorrect 5012 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5013 /// assumes that the limit of each loop test is never skipped. This is a valid 5014 /// assumption as long as the loop exits via that test. For precise results, it 5015 /// is the caller's responsibility to specify the relevant loop exit using 5016 /// getExact(ExitingBlock, SE). 5017 const SCEV * 5018 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5019 // If any exits were not computable, the loop is not computable. 5020 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5021 5022 // We need exactly one computable exit. 5023 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5024 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5025 5026 const SCEV *BECount = nullptr; 5027 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5028 ENT != nullptr; ENT = ENT->getNextExit()) { 5029 5030 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5031 5032 if (!BECount) 5033 BECount = ENT->ExactNotTaken; 5034 else if (BECount != ENT->ExactNotTaken) 5035 return SE->getCouldNotCompute(); 5036 } 5037 assert(BECount && "Invalid not taken count for loop exit"); 5038 return BECount; 5039 } 5040 5041 /// getExact - Get the exact not taken count for this loop exit. 5042 const SCEV * 5043 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5044 ScalarEvolution *SE) const { 5045 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5046 ENT != nullptr; ENT = ENT->getNextExit()) { 5047 5048 if (ENT->ExitingBlock == ExitingBlock) 5049 return ENT->ExactNotTaken; 5050 } 5051 return SE->getCouldNotCompute(); 5052 } 5053 5054 /// getMax - Get the max backedge taken count for the loop. 5055 const SCEV * 5056 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5057 return Max ? Max : SE->getCouldNotCompute(); 5058 } 5059 5060 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5061 ScalarEvolution *SE) const { 5062 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5063 return true; 5064 5065 if (!ExitNotTaken.ExitingBlock) 5066 return false; 5067 5068 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5069 ENT != nullptr; ENT = ENT->getNextExit()) { 5070 5071 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5072 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5073 return true; 5074 } 5075 } 5076 return false; 5077 } 5078 5079 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5080 /// computable exit into a persistent ExitNotTakenInfo array. 5081 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5082 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5083 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5084 5085 if (!Complete) 5086 ExitNotTaken.setIncomplete(); 5087 5088 unsigned NumExits = ExitCounts.size(); 5089 if (NumExits == 0) return; 5090 5091 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5092 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5093 if (NumExits == 1) return; 5094 5095 // Handle the rare case of multiple computable exits. 5096 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5097 5098 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5099 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5100 PrevENT->setNextExit(ENT); 5101 ENT->ExitingBlock = ExitCounts[i].first; 5102 ENT->ExactNotTaken = ExitCounts[i].second; 5103 } 5104 } 5105 5106 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5107 void ScalarEvolution::BackedgeTakenInfo::clear() { 5108 ExitNotTaken.ExitingBlock = nullptr; 5109 ExitNotTaken.ExactNotTaken = nullptr; 5110 delete[] ExitNotTaken.getNextExit(); 5111 } 5112 5113 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 5114 /// of the specified loop will execute. 5115 ScalarEvolution::BackedgeTakenInfo 5116 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 5117 SmallVector<BasicBlock *, 8> ExitingBlocks; 5118 L->getExitingBlocks(ExitingBlocks); 5119 5120 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5121 bool CouldComputeBECount = true; 5122 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5123 const SCEV *MustExitMaxBECount = nullptr; 5124 const SCEV *MayExitMaxBECount = nullptr; 5125 5126 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5127 // and compute maxBECount. 5128 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5129 BasicBlock *ExitBB = ExitingBlocks[i]; 5130 ExitLimit EL = ComputeExitLimit(L, ExitBB); 5131 5132 // 1. For each exit that can be computed, add an entry to ExitCounts. 5133 // CouldComputeBECount is true only if all exits can be computed. 5134 if (EL.Exact == getCouldNotCompute()) 5135 // We couldn't compute an exact value for this exit, so 5136 // we won't be able to compute an exact value for the loop. 5137 CouldComputeBECount = false; 5138 else 5139 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5140 5141 // 2. Derive the loop's MaxBECount from each exit's max number of 5142 // non-exiting iterations. Partition the loop exits into two kinds: 5143 // LoopMustExits and LoopMayExits. 5144 // 5145 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5146 // is a LoopMayExit. If any computable LoopMustExit is found, then 5147 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5148 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5149 // considered greater than any computable EL.Max. 5150 if (EL.Max != getCouldNotCompute() && Latch && 5151 DT.dominates(ExitBB, Latch)) { 5152 if (!MustExitMaxBECount) 5153 MustExitMaxBECount = EL.Max; 5154 else { 5155 MustExitMaxBECount = 5156 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5157 } 5158 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5159 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5160 MayExitMaxBECount = EL.Max; 5161 else { 5162 MayExitMaxBECount = 5163 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5164 } 5165 } 5166 } 5167 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5168 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5169 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5170 } 5171 5172 /// ComputeExitLimit - Compute the number of times the backedge of the specified 5173 /// loop will execute if it exits via the specified block. 5174 ScalarEvolution::ExitLimit 5175 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5176 5177 // Okay, we've chosen an exiting block. See what condition causes us to 5178 // exit at this block and remember the exit block and whether all other targets 5179 // lead to the loop header. 5180 bool MustExecuteLoopHeader = true; 5181 BasicBlock *Exit = nullptr; 5182 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5183 SI != SE; ++SI) 5184 if (!L->contains(*SI)) { 5185 if (Exit) // Multiple exit successors. 5186 return getCouldNotCompute(); 5187 Exit = *SI; 5188 } else if (*SI != L->getHeader()) { 5189 MustExecuteLoopHeader = false; 5190 } 5191 5192 // At this point, we know we have a conditional branch that determines whether 5193 // the loop is exited. However, we don't know if the branch is executed each 5194 // time through the loop. If not, then the execution count of the branch will 5195 // not be equal to the trip count of the loop. 5196 // 5197 // Currently we check for this by checking to see if the Exit branch goes to 5198 // the loop header. If so, we know it will always execute the same number of 5199 // times as the loop. We also handle the case where the exit block *is* the 5200 // loop header. This is common for un-rotated loops. 5201 // 5202 // If both of those tests fail, walk up the unique predecessor chain to the 5203 // header, stopping if there is an edge that doesn't exit the loop. If the 5204 // header is reached, the execution count of the branch will be equal to the 5205 // trip count of the loop. 5206 // 5207 // More extensive analysis could be done to handle more cases here. 5208 // 5209 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5210 // The simple checks failed, try climbing the unique predecessor chain 5211 // up to the header. 5212 bool Ok = false; 5213 for (BasicBlock *BB = ExitingBlock; BB; ) { 5214 BasicBlock *Pred = BB->getUniquePredecessor(); 5215 if (!Pred) 5216 return getCouldNotCompute(); 5217 TerminatorInst *PredTerm = Pred->getTerminator(); 5218 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5219 if (PredSucc == BB) 5220 continue; 5221 // If the predecessor has a successor that isn't BB and isn't 5222 // outside the loop, assume the worst. 5223 if (L->contains(PredSucc)) 5224 return getCouldNotCompute(); 5225 } 5226 if (Pred == L->getHeader()) { 5227 Ok = true; 5228 break; 5229 } 5230 BB = Pred; 5231 } 5232 if (!Ok) 5233 return getCouldNotCompute(); 5234 } 5235 5236 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5237 TerminatorInst *Term = ExitingBlock->getTerminator(); 5238 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5239 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5240 // Proceed to the next level to examine the exit condition expression. 5241 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5242 BI->getSuccessor(1), 5243 /*ControlsExit=*/IsOnlyExit); 5244 } 5245 5246 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5247 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 5248 /*ControlsExit=*/IsOnlyExit); 5249 5250 return getCouldNotCompute(); 5251 } 5252 5253 /// ComputeExitLimitFromCond - Compute the number of times the 5254 /// backedge of the specified loop will execute if its exit condition 5255 /// were a conditional branch of ExitCond, TBB, and FBB. 5256 /// 5257 /// @param ControlsExit is true if ExitCond directly controls the exit 5258 /// branch. In this case, we can assume that the loop exits only if the 5259 /// condition is true and can infer that failing to meet the condition prior to 5260 /// integer wraparound results in undefined behavior. 5261 ScalarEvolution::ExitLimit 5262 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 5263 Value *ExitCond, 5264 BasicBlock *TBB, 5265 BasicBlock *FBB, 5266 bool ControlsExit) { 5267 // Check if the controlling expression for this loop is an And or Or. 5268 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5269 if (BO->getOpcode() == Instruction::And) { 5270 // Recurse on the operands of the and. 5271 bool EitherMayExit = L->contains(TBB); 5272 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5273 ControlsExit && !EitherMayExit); 5274 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5275 ControlsExit && !EitherMayExit); 5276 const SCEV *BECount = getCouldNotCompute(); 5277 const SCEV *MaxBECount = getCouldNotCompute(); 5278 if (EitherMayExit) { 5279 // Both conditions must be true for the loop to continue executing. 5280 // Choose the less conservative count. 5281 if (EL0.Exact == getCouldNotCompute() || 5282 EL1.Exact == getCouldNotCompute()) 5283 BECount = getCouldNotCompute(); 5284 else 5285 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5286 if (EL0.Max == getCouldNotCompute()) 5287 MaxBECount = EL1.Max; 5288 else if (EL1.Max == getCouldNotCompute()) 5289 MaxBECount = EL0.Max; 5290 else 5291 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5292 } else { 5293 // Both conditions must be true at the same time for the loop to exit. 5294 // For now, be conservative. 5295 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5296 if (EL0.Max == EL1.Max) 5297 MaxBECount = EL0.Max; 5298 if (EL0.Exact == EL1.Exact) 5299 BECount = EL0.Exact; 5300 } 5301 5302 return ExitLimit(BECount, MaxBECount); 5303 } 5304 if (BO->getOpcode() == Instruction::Or) { 5305 // Recurse on the operands of the or. 5306 bool EitherMayExit = L->contains(FBB); 5307 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5308 ControlsExit && !EitherMayExit); 5309 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5310 ControlsExit && !EitherMayExit); 5311 const SCEV *BECount = getCouldNotCompute(); 5312 const SCEV *MaxBECount = getCouldNotCompute(); 5313 if (EitherMayExit) { 5314 // Both conditions must be false for the loop to continue executing. 5315 // Choose the less conservative count. 5316 if (EL0.Exact == getCouldNotCompute() || 5317 EL1.Exact == getCouldNotCompute()) 5318 BECount = getCouldNotCompute(); 5319 else 5320 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5321 if (EL0.Max == getCouldNotCompute()) 5322 MaxBECount = EL1.Max; 5323 else if (EL1.Max == getCouldNotCompute()) 5324 MaxBECount = EL0.Max; 5325 else 5326 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5327 } else { 5328 // Both conditions must be false at the same time for the loop to exit. 5329 // For now, be conservative. 5330 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5331 if (EL0.Max == EL1.Max) 5332 MaxBECount = EL0.Max; 5333 if (EL0.Exact == EL1.Exact) 5334 BECount = EL0.Exact; 5335 } 5336 5337 return ExitLimit(BECount, MaxBECount); 5338 } 5339 } 5340 5341 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5342 // Proceed to the next level to examine the icmp. 5343 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5344 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5345 5346 // Check for a constant condition. These are normally stripped out by 5347 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5348 // preserve the CFG and is temporarily leaving constant conditions 5349 // in place. 5350 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5351 if (L->contains(FBB) == !CI->getZExtValue()) 5352 // The backedge is always taken. 5353 return getCouldNotCompute(); 5354 else 5355 // The backedge is never taken. 5356 return getZero(CI->getType()); 5357 } 5358 5359 // If it's not an integer or pointer comparison then compute it the hard way. 5360 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5361 } 5362 5363 /// ComputeExitLimitFromICmp - Compute the number of times the 5364 /// backedge of the specified loop will execute if its exit condition 5365 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 5366 ScalarEvolution::ExitLimit 5367 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 5368 ICmpInst *ExitCond, 5369 BasicBlock *TBB, 5370 BasicBlock *FBB, 5371 bool ControlsExit) { 5372 5373 // If the condition was exit on true, convert the condition to exit on false 5374 ICmpInst::Predicate Cond; 5375 if (!L->contains(FBB)) 5376 Cond = ExitCond->getPredicate(); 5377 else 5378 Cond = ExitCond->getInversePredicate(); 5379 5380 // Handle common loops like: for (X = "string"; *X; ++X) 5381 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5382 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5383 ExitLimit ItCnt = 5384 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5385 if (ItCnt.hasAnyInfo()) 5386 return ItCnt; 5387 } 5388 5389 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5390 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5391 5392 // Try to evaluate any dependencies out of the loop. 5393 LHS = getSCEVAtScope(LHS, L); 5394 RHS = getSCEVAtScope(RHS, L); 5395 5396 // At this point, we would like to compute how many iterations of the 5397 // loop the predicate will return true for these inputs. 5398 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5399 // If there is a loop-invariant, force it into the RHS. 5400 std::swap(LHS, RHS); 5401 Cond = ICmpInst::getSwappedPredicate(Cond); 5402 } 5403 5404 // Simplify the operands before analyzing them. 5405 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5406 5407 // If we have a comparison of a chrec against a constant, try to use value 5408 // ranges to answer this query. 5409 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5410 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5411 if (AddRec->getLoop() == L) { 5412 // Form the constant range. 5413 ConstantRange CompRange( 5414 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5415 5416 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5417 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5418 } 5419 5420 switch (Cond) { 5421 case ICmpInst::ICMP_NE: { // while (X != Y) 5422 // Convert to: while (X-Y != 0) 5423 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5424 if (EL.hasAnyInfo()) return EL; 5425 break; 5426 } 5427 case ICmpInst::ICMP_EQ: { // while (X == Y) 5428 // Convert to: while (X-Y == 0) 5429 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5430 if (EL.hasAnyInfo()) return EL; 5431 break; 5432 } 5433 case ICmpInst::ICMP_SLT: 5434 case ICmpInst::ICMP_ULT: { // while (X < Y) 5435 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5436 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5437 if (EL.hasAnyInfo()) return EL; 5438 break; 5439 } 5440 case ICmpInst::ICMP_SGT: 5441 case ICmpInst::ICMP_UGT: { // while (X > Y) 5442 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5443 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5444 if (EL.hasAnyInfo()) return EL; 5445 break; 5446 } 5447 default: 5448 #if 0 5449 dbgs() << "ComputeBackedgeTakenCount "; 5450 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5451 dbgs() << "[unsigned] "; 5452 dbgs() << *LHS << " " 5453 << Instruction::getOpcodeName(Instruction::ICmp) 5454 << " " << *RHS << "\n"; 5455 #endif 5456 break; 5457 } 5458 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5459 } 5460 5461 ScalarEvolution::ExitLimit 5462 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 5463 SwitchInst *Switch, 5464 BasicBlock *ExitingBlock, 5465 bool ControlsExit) { 5466 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5467 5468 // Give up if the exit is the default dest of a switch. 5469 if (Switch->getDefaultDest() == ExitingBlock) 5470 return getCouldNotCompute(); 5471 5472 assert(L->contains(Switch->getDefaultDest()) && 5473 "Default case must not exit the loop!"); 5474 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5475 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5476 5477 // while (X != Y) --> while (X-Y != 0) 5478 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5479 if (EL.hasAnyInfo()) 5480 return EL; 5481 5482 return getCouldNotCompute(); 5483 } 5484 5485 static ConstantInt * 5486 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5487 ScalarEvolution &SE) { 5488 const SCEV *InVal = SE.getConstant(C); 5489 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5490 assert(isa<SCEVConstant>(Val) && 5491 "Evaluation of SCEV at constant didn't fold correctly?"); 5492 return cast<SCEVConstant>(Val)->getValue(); 5493 } 5494 5495 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 5496 /// 'icmp op load X, cst', try to see if we can compute the backedge 5497 /// execution count. 5498 ScalarEvolution::ExitLimit 5499 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 5500 LoadInst *LI, 5501 Constant *RHS, 5502 const Loop *L, 5503 ICmpInst::Predicate predicate) { 5504 5505 if (LI->isVolatile()) return getCouldNotCompute(); 5506 5507 // Check to see if the loaded pointer is a getelementptr of a global. 5508 // TODO: Use SCEV instead of manually grubbing with GEPs. 5509 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5510 if (!GEP) return getCouldNotCompute(); 5511 5512 // Make sure that it is really a constant global we are gepping, with an 5513 // initializer, and make sure the first IDX is really 0. 5514 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5515 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5516 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5517 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5518 return getCouldNotCompute(); 5519 5520 // Okay, we allow one non-constant index into the GEP instruction. 5521 Value *VarIdx = nullptr; 5522 std::vector<Constant*> Indexes; 5523 unsigned VarIdxNum = 0; 5524 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5525 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5526 Indexes.push_back(CI); 5527 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5528 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5529 VarIdx = GEP->getOperand(i); 5530 VarIdxNum = i-2; 5531 Indexes.push_back(nullptr); 5532 } 5533 5534 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5535 if (!VarIdx) 5536 return getCouldNotCompute(); 5537 5538 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5539 // Check to see if X is a loop variant variable value now. 5540 const SCEV *Idx = getSCEV(VarIdx); 5541 Idx = getSCEVAtScope(Idx, L); 5542 5543 // We can only recognize very limited forms of loop index expressions, in 5544 // particular, only affine AddRec's like {C1,+,C2}. 5545 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5546 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5547 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5548 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5549 return getCouldNotCompute(); 5550 5551 unsigned MaxSteps = MaxBruteForceIterations; 5552 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5553 ConstantInt *ItCst = ConstantInt::get( 5554 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5555 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5556 5557 // Form the GEP offset. 5558 Indexes[VarIdxNum] = Val; 5559 5560 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5561 Indexes); 5562 if (!Result) break; // Cannot compute! 5563 5564 // Evaluate the condition for this iteration. 5565 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5566 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5567 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5568 #if 0 5569 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5570 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5571 << "***\n"; 5572 #endif 5573 ++NumArrayLenItCounts; 5574 return getConstant(ItCst); // Found terminating iteration! 5575 } 5576 } 5577 return getCouldNotCompute(); 5578 } 5579 5580 5581 /// CanConstantFold - Return true if we can constant fold an instruction of the 5582 /// specified type, assuming that all operands were constants. 5583 static bool CanConstantFold(const Instruction *I) { 5584 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5585 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5586 isa<LoadInst>(I)) 5587 return true; 5588 5589 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5590 if (const Function *F = CI->getCalledFunction()) 5591 return canConstantFoldCallTo(F); 5592 return false; 5593 } 5594 5595 /// Determine whether this instruction can constant evolve within this loop 5596 /// assuming its operands can all constant evolve. 5597 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5598 // An instruction outside of the loop can't be derived from a loop PHI. 5599 if (!L->contains(I)) return false; 5600 5601 if (isa<PHINode>(I)) { 5602 // We don't currently keep track of the control flow needed to evaluate 5603 // PHIs, so we cannot handle PHIs inside of loops. 5604 return L->getHeader() == I->getParent(); 5605 } 5606 5607 // If we won't be able to constant fold this expression even if the operands 5608 // are constants, bail early. 5609 return CanConstantFold(I); 5610 } 5611 5612 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5613 /// recursing through each instruction operand until reaching a loop header phi. 5614 static PHINode * 5615 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5616 DenseMap<Instruction *, PHINode *> &PHIMap) { 5617 5618 // Otherwise, we can evaluate this instruction if all of its operands are 5619 // constant or derived from a PHI node themselves. 5620 PHINode *PHI = nullptr; 5621 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5622 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5623 5624 if (isa<Constant>(*OpI)) continue; 5625 5626 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5627 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5628 5629 PHINode *P = dyn_cast<PHINode>(OpInst); 5630 if (!P) 5631 // If this operand is already visited, reuse the prior result. 5632 // We may have P != PHI if this is the deepest point at which the 5633 // inconsistent paths meet. 5634 P = PHIMap.lookup(OpInst); 5635 if (!P) { 5636 // Recurse and memoize the results, whether a phi is found or not. 5637 // This recursive call invalidates pointers into PHIMap. 5638 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5639 PHIMap[OpInst] = P; 5640 } 5641 if (!P) 5642 return nullptr; // Not evolving from PHI 5643 if (PHI && PHI != P) 5644 return nullptr; // Evolving from multiple different PHIs. 5645 PHI = P; 5646 } 5647 // This is a expression evolving from a constant PHI! 5648 return PHI; 5649 } 5650 5651 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5652 /// in the loop that V is derived from. We allow arbitrary operations along the 5653 /// way, but the operands of an operation must either be constants or a value 5654 /// derived from a constant PHI. If this expression does not fit with these 5655 /// constraints, return null. 5656 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5657 Instruction *I = dyn_cast<Instruction>(V); 5658 if (!I || !canConstantEvolve(I, L)) return nullptr; 5659 5660 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5661 return PN; 5662 } 5663 5664 // Record non-constant instructions contained by the loop. 5665 DenseMap<Instruction *, PHINode *> PHIMap; 5666 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5667 } 5668 5669 /// EvaluateExpression - Given an expression that passes the 5670 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5671 /// in the loop has the value PHIVal. If we can't fold this expression for some 5672 /// reason, return null. 5673 static Constant *EvaluateExpression(Value *V, const Loop *L, 5674 DenseMap<Instruction *, Constant *> &Vals, 5675 const DataLayout &DL, 5676 const TargetLibraryInfo *TLI) { 5677 // Convenient constant check, but redundant for recursive calls. 5678 if (Constant *C = dyn_cast<Constant>(V)) return C; 5679 Instruction *I = dyn_cast<Instruction>(V); 5680 if (!I) return nullptr; 5681 5682 if (Constant *C = Vals.lookup(I)) return C; 5683 5684 // An instruction inside the loop depends on a value outside the loop that we 5685 // weren't given a mapping for, or a value such as a call inside the loop. 5686 if (!canConstantEvolve(I, L)) return nullptr; 5687 5688 // An unmapped PHI can be due to a branch or another loop inside this loop, 5689 // or due to this not being the initial iteration through a loop where we 5690 // couldn't compute the evolution of this particular PHI last time. 5691 if (isa<PHINode>(I)) return nullptr; 5692 5693 std::vector<Constant*> Operands(I->getNumOperands()); 5694 5695 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5696 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5697 if (!Operand) { 5698 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5699 if (!Operands[i]) return nullptr; 5700 continue; 5701 } 5702 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5703 Vals[Operand] = C; 5704 if (!C) return nullptr; 5705 Operands[i] = C; 5706 } 5707 5708 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5709 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5710 Operands[1], DL, TLI); 5711 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5712 if (!LI->isVolatile()) 5713 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5714 } 5715 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5716 TLI); 5717 } 5718 5719 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5720 /// in the header of its containing loop, we know the loop executes a 5721 /// constant number of times, and the PHI node is just a recurrence 5722 /// involving constants, fold it. 5723 Constant * 5724 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5725 const APInt &BEs, 5726 const Loop *L) { 5727 DenseMap<PHINode*, Constant*>::const_iterator I = 5728 ConstantEvolutionLoopExitValue.find(PN); 5729 if (I != ConstantEvolutionLoopExitValue.end()) 5730 return I->second; 5731 5732 if (BEs.ugt(MaxBruteForceIterations)) 5733 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5734 5735 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5736 5737 DenseMap<Instruction *, Constant *> CurrentIterVals; 5738 BasicBlock *Header = L->getHeader(); 5739 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5740 5741 // Since the loop is canonicalized, the PHI node must have two entries. One 5742 // entry must be a constant (coming in from outside of the loop), and the 5743 // second must be derived from the same PHI. 5744 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5745 PHINode *PHI = nullptr; 5746 for (BasicBlock::iterator I = Header->begin(); 5747 (PHI = dyn_cast<PHINode>(I)); ++I) { 5748 Constant *StartCST = 5749 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5750 if (!StartCST) continue; 5751 CurrentIterVals[PHI] = StartCST; 5752 } 5753 if (!CurrentIterVals.count(PN)) 5754 return RetVal = nullptr; 5755 5756 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5757 5758 // Execute the loop symbolically to determine the exit value. 5759 if (BEs.getActiveBits() >= 32) 5760 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5761 5762 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5763 unsigned IterationNum = 0; 5764 const DataLayout &DL = F.getParent()->getDataLayout(); 5765 for (; ; ++IterationNum) { 5766 if (IterationNum == NumIterations) 5767 return RetVal = CurrentIterVals[PN]; // Got exit value! 5768 5769 // Compute the value of the PHIs for the next iteration. 5770 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5771 DenseMap<Instruction *, Constant *> NextIterVals; 5772 Constant *NextPHI = 5773 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5774 if (!NextPHI) 5775 return nullptr; // Couldn't evaluate! 5776 NextIterVals[PN] = NextPHI; 5777 5778 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5779 5780 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5781 // cease to be able to evaluate one of them or if they stop evolving, 5782 // because that doesn't necessarily prevent us from computing PN. 5783 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5784 for (DenseMap<Instruction *, Constant *>::const_iterator 5785 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5786 PHINode *PHI = dyn_cast<PHINode>(I->first); 5787 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5788 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5789 } 5790 // We use two distinct loops because EvaluateExpression may invalidate any 5791 // iterators into CurrentIterVals. 5792 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5793 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5794 PHINode *PHI = I->first; 5795 Constant *&NextPHI = NextIterVals[PHI]; 5796 if (!NextPHI) { // Not already computed. 5797 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5798 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5799 } 5800 if (NextPHI != I->second) 5801 StoppedEvolving = false; 5802 } 5803 5804 // If all entries in CurrentIterVals == NextIterVals then we can stop 5805 // iterating, the loop can't continue to change. 5806 if (StoppedEvolving) 5807 return RetVal = CurrentIterVals[PN]; 5808 5809 CurrentIterVals.swap(NextIterVals); 5810 } 5811 } 5812 5813 /// ComputeExitCountExhaustively - If the loop is known to execute a 5814 /// constant number of times (the condition evolves only from constants), 5815 /// try to evaluate a few iterations of the loop until we get the exit 5816 /// condition gets a value of ExitWhen (true or false). If we cannot 5817 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5818 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5819 Value *Cond, 5820 bool ExitWhen) { 5821 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5822 if (!PN) return getCouldNotCompute(); 5823 5824 // If the loop is canonicalized, the PHI will have exactly two entries. 5825 // That's the only form we support here. 5826 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5827 5828 DenseMap<Instruction *, Constant *> CurrentIterVals; 5829 BasicBlock *Header = L->getHeader(); 5830 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5831 5832 // One entry must be a constant (coming in from outside of the loop), and the 5833 // second must be derived from the same PHI. 5834 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5835 PHINode *PHI = nullptr; 5836 for (BasicBlock::iterator I = Header->begin(); 5837 (PHI = dyn_cast<PHINode>(I)); ++I) { 5838 Constant *StartCST = 5839 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5840 if (!StartCST) continue; 5841 CurrentIterVals[PHI] = StartCST; 5842 } 5843 if (!CurrentIterVals.count(PN)) 5844 return getCouldNotCompute(); 5845 5846 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5847 // the loop symbolically to determine when the condition gets a value of 5848 // "ExitWhen". 5849 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5850 const DataLayout &DL = F.getParent()->getDataLayout(); 5851 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5852 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>( 5853 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 5854 5855 // Couldn't symbolically evaluate. 5856 if (!CondVal) return getCouldNotCompute(); 5857 5858 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5859 ++NumBruteForceTripCountsComputed; 5860 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5861 } 5862 5863 // Update all the PHI nodes for the next iteration. 5864 DenseMap<Instruction *, Constant *> NextIterVals; 5865 5866 // Create a list of which PHIs we need to compute. We want to do this before 5867 // calling EvaluateExpression on them because that may invalidate iterators 5868 // into CurrentIterVals. 5869 SmallVector<PHINode *, 8> PHIsToCompute; 5870 for (DenseMap<Instruction *, Constant *>::const_iterator 5871 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5872 PHINode *PHI = dyn_cast<PHINode>(I->first); 5873 if (!PHI || PHI->getParent() != Header) continue; 5874 PHIsToCompute.push_back(PHI); 5875 } 5876 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5877 E = PHIsToCompute.end(); I != E; ++I) { 5878 PHINode *PHI = *I; 5879 Constant *&NextPHI = NextIterVals[PHI]; 5880 if (NextPHI) continue; // Already computed! 5881 5882 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5883 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5884 } 5885 CurrentIterVals.swap(NextIterVals); 5886 } 5887 5888 // Too many iterations were needed to evaluate. 5889 return getCouldNotCompute(); 5890 } 5891 5892 /// getSCEVAtScope - Return a SCEV expression for the specified value 5893 /// at the specified scope in the program. The L value specifies a loop 5894 /// nest to evaluate the expression at, where null is the top-level or a 5895 /// specified loop is immediately inside of the loop. 5896 /// 5897 /// This method can be used to compute the exit value for a variable defined 5898 /// in a loop by querying what the value will hold in the parent loop. 5899 /// 5900 /// In the case that a relevant loop exit value cannot be computed, the 5901 /// original value V is returned. 5902 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5903 // Check to see if we've folded this expression at this loop before. 5904 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5905 for (unsigned u = 0; u < Values.size(); u++) { 5906 if (Values[u].first == L) 5907 return Values[u].second ? Values[u].second : V; 5908 } 5909 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5910 // Otherwise compute it. 5911 const SCEV *C = computeSCEVAtScope(V, L); 5912 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5913 for (unsigned u = Values2.size(); u > 0; u--) { 5914 if (Values2[u - 1].first == L) { 5915 Values2[u - 1].second = C; 5916 break; 5917 } 5918 } 5919 return C; 5920 } 5921 5922 /// This builds up a Constant using the ConstantExpr interface. That way, we 5923 /// will return Constants for objects which aren't represented by a 5924 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5925 /// Returns NULL if the SCEV isn't representable as a Constant. 5926 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5927 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5928 case scCouldNotCompute: 5929 case scAddRecExpr: 5930 break; 5931 case scConstant: 5932 return cast<SCEVConstant>(V)->getValue(); 5933 case scUnknown: 5934 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5935 case scSignExtend: { 5936 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5937 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5938 return ConstantExpr::getSExt(CastOp, SS->getType()); 5939 break; 5940 } 5941 case scZeroExtend: { 5942 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5943 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5944 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5945 break; 5946 } 5947 case scTruncate: { 5948 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5949 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5950 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5951 break; 5952 } 5953 case scAddExpr: { 5954 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5955 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5956 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5957 unsigned AS = PTy->getAddressSpace(); 5958 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5959 C = ConstantExpr::getBitCast(C, DestPtrTy); 5960 } 5961 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5962 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5963 if (!C2) return nullptr; 5964 5965 // First pointer! 5966 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5967 unsigned AS = C2->getType()->getPointerAddressSpace(); 5968 std::swap(C, C2); 5969 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5970 // The offsets have been converted to bytes. We can add bytes to an 5971 // i8* by GEP with the byte count in the first index. 5972 C = ConstantExpr::getBitCast(C, DestPtrTy); 5973 } 5974 5975 // Don't bother trying to sum two pointers. We probably can't 5976 // statically compute a load that results from it anyway. 5977 if (C2->getType()->isPointerTy()) 5978 return nullptr; 5979 5980 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5981 if (PTy->getElementType()->isStructTy()) 5982 C2 = ConstantExpr::getIntegerCast( 5983 C2, Type::getInt32Ty(C->getContext()), true); 5984 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 5985 } else 5986 C = ConstantExpr::getAdd(C, C2); 5987 } 5988 return C; 5989 } 5990 break; 5991 } 5992 case scMulExpr: { 5993 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5994 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5995 // Don't bother with pointers at all. 5996 if (C->getType()->isPointerTy()) return nullptr; 5997 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5998 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5999 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6000 C = ConstantExpr::getMul(C, C2); 6001 } 6002 return C; 6003 } 6004 break; 6005 } 6006 case scUDivExpr: { 6007 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6008 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6009 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6010 if (LHS->getType() == RHS->getType()) 6011 return ConstantExpr::getUDiv(LHS, RHS); 6012 break; 6013 } 6014 case scSMaxExpr: 6015 case scUMaxExpr: 6016 break; // TODO: smax, umax. 6017 } 6018 return nullptr; 6019 } 6020 6021 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6022 if (isa<SCEVConstant>(V)) return V; 6023 6024 // If this instruction is evolved from a constant-evolving PHI, compute the 6025 // exit value from the loop without using SCEVs. 6026 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6027 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6028 const Loop *LI = this->LI[I->getParent()]; 6029 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6030 if (PHINode *PN = dyn_cast<PHINode>(I)) 6031 if (PN->getParent() == LI->getHeader()) { 6032 // Okay, there is no closed form solution for the PHI node. Check 6033 // to see if the loop that contains it has a known backedge-taken 6034 // count. If so, we may be able to force computation of the exit 6035 // value. 6036 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6037 if (const SCEVConstant *BTCC = 6038 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6039 // Okay, we know how many times the containing loop executes. If 6040 // this is a constant evolving PHI node, get the final value at 6041 // the specified iteration number. 6042 Constant *RV = getConstantEvolutionLoopExitValue(PN, 6043 BTCC->getValue()->getValue(), 6044 LI); 6045 if (RV) return getSCEV(RV); 6046 } 6047 } 6048 6049 // Okay, this is an expression that we cannot symbolically evaluate 6050 // into a SCEV. Check to see if it's possible to symbolically evaluate 6051 // the arguments into constants, and if so, try to constant propagate the 6052 // result. This is particularly useful for computing loop exit values. 6053 if (CanConstantFold(I)) { 6054 SmallVector<Constant *, 4> Operands; 6055 bool MadeImprovement = false; 6056 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 6057 Value *Op = I->getOperand(i); 6058 if (Constant *C = dyn_cast<Constant>(Op)) { 6059 Operands.push_back(C); 6060 continue; 6061 } 6062 6063 // If any of the operands is non-constant and if they are 6064 // non-integer and non-pointer, don't even try to analyze them 6065 // with scev techniques. 6066 if (!isSCEVable(Op->getType())) 6067 return V; 6068 6069 const SCEV *OrigV = getSCEV(Op); 6070 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6071 MadeImprovement |= OrigV != OpV; 6072 6073 Constant *C = BuildConstantFromSCEV(OpV); 6074 if (!C) return V; 6075 if (C->getType() != Op->getType()) 6076 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6077 Op->getType(), 6078 false), 6079 C, Op->getType()); 6080 Operands.push_back(C); 6081 } 6082 6083 // Check to see if getSCEVAtScope actually made an improvement. 6084 if (MadeImprovement) { 6085 Constant *C = nullptr; 6086 const DataLayout &DL = F.getParent()->getDataLayout(); 6087 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6088 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6089 Operands[1], DL, &TLI); 6090 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6091 if (!LI->isVolatile()) 6092 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 6093 } else 6094 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 6095 DL, &TLI); 6096 if (!C) return V; 6097 return getSCEV(C); 6098 } 6099 } 6100 } 6101 6102 // This is some other type of SCEVUnknown, just return it. 6103 return V; 6104 } 6105 6106 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6107 // Avoid performing the look-up in the common case where the specified 6108 // expression has no loop-variant portions. 6109 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6110 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6111 if (OpAtScope != Comm->getOperand(i)) { 6112 // Okay, at least one of these operands is loop variant but might be 6113 // foldable. Build a new instance of the folded commutative expression. 6114 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6115 Comm->op_begin()+i); 6116 NewOps.push_back(OpAtScope); 6117 6118 for (++i; i != e; ++i) { 6119 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6120 NewOps.push_back(OpAtScope); 6121 } 6122 if (isa<SCEVAddExpr>(Comm)) 6123 return getAddExpr(NewOps); 6124 if (isa<SCEVMulExpr>(Comm)) 6125 return getMulExpr(NewOps); 6126 if (isa<SCEVSMaxExpr>(Comm)) 6127 return getSMaxExpr(NewOps); 6128 if (isa<SCEVUMaxExpr>(Comm)) 6129 return getUMaxExpr(NewOps); 6130 llvm_unreachable("Unknown commutative SCEV type!"); 6131 } 6132 } 6133 // If we got here, all operands are loop invariant. 6134 return Comm; 6135 } 6136 6137 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6138 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6139 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6140 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6141 return Div; // must be loop invariant 6142 return getUDivExpr(LHS, RHS); 6143 } 6144 6145 // If this is a loop recurrence for a loop that does not contain L, then we 6146 // are dealing with the final value computed by the loop. 6147 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6148 // First, attempt to evaluate each operand. 6149 // Avoid performing the look-up in the common case where the specified 6150 // expression has no loop-variant portions. 6151 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6152 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6153 if (OpAtScope == AddRec->getOperand(i)) 6154 continue; 6155 6156 // Okay, at least one of these operands is loop variant but might be 6157 // foldable. Build a new instance of the folded commutative expression. 6158 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6159 AddRec->op_begin()+i); 6160 NewOps.push_back(OpAtScope); 6161 for (++i; i != e; ++i) 6162 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6163 6164 const SCEV *FoldedRec = 6165 getAddRecExpr(NewOps, AddRec->getLoop(), 6166 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6167 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6168 // The addrec may be folded to a nonrecurrence, for example, if the 6169 // induction variable is multiplied by zero after constant folding. Go 6170 // ahead and return the folded value. 6171 if (!AddRec) 6172 return FoldedRec; 6173 break; 6174 } 6175 6176 // If the scope is outside the addrec's loop, evaluate it by using the 6177 // loop exit value of the addrec. 6178 if (!AddRec->getLoop()->contains(L)) { 6179 // To evaluate this recurrence, we need to know how many times the AddRec 6180 // loop iterates. Compute this now. 6181 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6182 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6183 6184 // Then, evaluate the AddRec. 6185 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6186 } 6187 6188 return AddRec; 6189 } 6190 6191 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6192 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6193 if (Op == Cast->getOperand()) 6194 return Cast; // must be loop invariant 6195 return getZeroExtendExpr(Op, Cast->getType()); 6196 } 6197 6198 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6199 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6200 if (Op == Cast->getOperand()) 6201 return Cast; // must be loop invariant 6202 return getSignExtendExpr(Op, Cast->getType()); 6203 } 6204 6205 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6206 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6207 if (Op == Cast->getOperand()) 6208 return Cast; // must be loop invariant 6209 return getTruncateExpr(Op, Cast->getType()); 6210 } 6211 6212 llvm_unreachable("Unknown SCEV type!"); 6213 } 6214 6215 /// getSCEVAtScope - This is a convenience function which does 6216 /// getSCEVAtScope(getSCEV(V), L). 6217 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6218 return getSCEVAtScope(getSCEV(V), L); 6219 } 6220 6221 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6222 /// following equation: 6223 /// 6224 /// A * X = B (mod N) 6225 /// 6226 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6227 /// A and B isn't important. 6228 /// 6229 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6230 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6231 ScalarEvolution &SE) { 6232 uint32_t BW = A.getBitWidth(); 6233 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6234 assert(A != 0 && "A must be non-zero."); 6235 6236 // 1. D = gcd(A, N) 6237 // 6238 // The gcd of A and N may have only one prime factor: 2. The number of 6239 // trailing zeros in A is its multiplicity 6240 uint32_t Mult2 = A.countTrailingZeros(); 6241 // D = 2^Mult2 6242 6243 // 2. Check if B is divisible by D. 6244 // 6245 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6246 // is not less than multiplicity of this prime factor for D. 6247 if (B.countTrailingZeros() < Mult2) 6248 return SE.getCouldNotCompute(); 6249 6250 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6251 // modulo (N / D). 6252 // 6253 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6254 // bit width during computations. 6255 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6256 APInt Mod(BW + 1, 0); 6257 Mod.setBit(BW - Mult2); // Mod = N / D 6258 APInt I = AD.multiplicativeInverse(Mod); 6259 6260 // 4. Compute the minimum unsigned root of the equation: 6261 // I * (B / D) mod (N / D) 6262 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6263 6264 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6265 // bits. 6266 return SE.getConstant(Result.trunc(BW)); 6267 } 6268 6269 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6270 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6271 /// might be the same) or two SCEVCouldNotCompute objects. 6272 /// 6273 static std::pair<const SCEV *,const SCEV *> 6274 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6275 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6276 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6277 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6278 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6279 6280 // We currently can only solve this if the coefficients are constants. 6281 if (!LC || !MC || !NC) { 6282 const SCEV *CNC = SE.getCouldNotCompute(); 6283 return std::make_pair(CNC, CNC); 6284 } 6285 6286 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6287 const APInt &L = LC->getValue()->getValue(); 6288 const APInt &M = MC->getValue()->getValue(); 6289 const APInt &N = NC->getValue()->getValue(); 6290 APInt Two(BitWidth, 2); 6291 APInt Four(BitWidth, 4); 6292 6293 { 6294 using namespace APIntOps; 6295 const APInt& C = L; 6296 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6297 // The B coefficient is M-N/2 6298 APInt B(M); 6299 B -= sdiv(N,Two); 6300 6301 // The A coefficient is N/2 6302 APInt A(N.sdiv(Two)); 6303 6304 // Compute the B^2-4ac term. 6305 APInt SqrtTerm(B); 6306 SqrtTerm *= B; 6307 SqrtTerm -= Four * (A * C); 6308 6309 if (SqrtTerm.isNegative()) { 6310 // The loop is provably infinite. 6311 const SCEV *CNC = SE.getCouldNotCompute(); 6312 return std::make_pair(CNC, CNC); 6313 } 6314 6315 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6316 // integer value or else APInt::sqrt() will assert. 6317 APInt SqrtVal(SqrtTerm.sqrt()); 6318 6319 // Compute the two solutions for the quadratic formula. 6320 // The divisions must be performed as signed divisions. 6321 APInt NegB(-B); 6322 APInt TwoA(A << 1); 6323 if (TwoA.isMinValue()) { 6324 const SCEV *CNC = SE.getCouldNotCompute(); 6325 return std::make_pair(CNC, CNC); 6326 } 6327 6328 LLVMContext &Context = SE.getContext(); 6329 6330 ConstantInt *Solution1 = 6331 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6332 ConstantInt *Solution2 = 6333 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6334 6335 return std::make_pair(SE.getConstant(Solution1), 6336 SE.getConstant(Solution2)); 6337 } // end APIntOps namespace 6338 } 6339 6340 /// HowFarToZero - Return the number of times a backedge comparing the specified 6341 /// value to zero will execute. If not computable, return CouldNotCompute. 6342 /// 6343 /// This is only used for loops with a "x != y" exit test. The exit condition is 6344 /// now expressed as a single expression, V = x-y. So the exit test is 6345 /// effectively V != 0. We know and take advantage of the fact that this 6346 /// expression only being used in a comparison by zero context. 6347 ScalarEvolution::ExitLimit 6348 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6349 // If the value is a constant 6350 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6351 // If the value is already zero, the branch will execute zero times. 6352 if (C->getValue()->isZero()) return C; 6353 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6354 } 6355 6356 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6357 if (!AddRec || AddRec->getLoop() != L) 6358 return getCouldNotCompute(); 6359 6360 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6361 // the quadratic equation to solve it. 6362 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6363 std::pair<const SCEV *,const SCEV *> Roots = 6364 SolveQuadraticEquation(AddRec, *this); 6365 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6366 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6367 if (R1 && R2) { 6368 #if 0 6369 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6370 << " sol#2: " << *R2 << "\n"; 6371 #endif 6372 // Pick the smallest positive root value. 6373 if (ConstantInt *CB = 6374 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6375 R1->getValue(), 6376 R2->getValue()))) { 6377 if (!CB->getZExtValue()) 6378 std::swap(R1, R2); // R1 is the minimum root now. 6379 6380 // We can only use this value if the chrec ends up with an exact zero 6381 // value at this index. When solving for "X*X != 5", for example, we 6382 // should not accept a root of 2. 6383 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6384 if (Val->isZero()) 6385 return R1; // We found a quadratic root! 6386 } 6387 } 6388 return getCouldNotCompute(); 6389 } 6390 6391 // Otherwise we can only handle this if it is affine. 6392 if (!AddRec->isAffine()) 6393 return getCouldNotCompute(); 6394 6395 // If this is an affine expression, the execution count of this branch is 6396 // the minimum unsigned root of the following equation: 6397 // 6398 // Start + Step*N = 0 (mod 2^BW) 6399 // 6400 // equivalent to: 6401 // 6402 // Step*N = -Start (mod 2^BW) 6403 // 6404 // where BW is the common bit width of Start and Step. 6405 6406 // Get the initial value for the loop. 6407 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6408 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6409 6410 // For now we handle only constant steps. 6411 // 6412 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6413 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6414 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6415 // We have not yet seen any such cases. 6416 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6417 if (!StepC || StepC->getValue()->equalsInt(0)) 6418 return getCouldNotCompute(); 6419 6420 // For positive steps (counting up until unsigned overflow): 6421 // N = -Start/Step (as unsigned) 6422 // For negative steps (counting down to zero): 6423 // N = Start/-Step 6424 // First compute the unsigned distance from zero in the direction of Step. 6425 bool CountDown = StepC->getValue()->getValue().isNegative(); 6426 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6427 6428 // Handle unitary steps, which cannot wraparound. 6429 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6430 // N = Distance (as unsigned) 6431 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6432 ConstantRange CR = getUnsignedRange(Start); 6433 const SCEV *MaxBECount; 6434 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6435 // When counting up, the worst starting value is 1, not 0. 6436 MaxBECount = CR.getUnsignedMax().isMinValue() 6437 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6438 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6439 else 6440 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6441 : -CR.getUnsignedMin()); 6442 return ExitLimit(Distance, MaxBECount); 6443 } 6444 6445 // As a special case, handle the instance where Step is a positive power of 6446 // two. In this case, determining whether Step divides Distance evenly can be 6447 // done by counting and comparing the number of trailing zeros of Step and 6448 // Distance. 6449 if (!CountDown) { 6450 const APInt &StepV = StepC->getValue()->getValue(); 6451 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6452 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6453 // case is not handled as this code is guarded by !CountDown. 6454 if (StepV.isPowerOf2() && 6455 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6456 // Here we've constrained the equation to be of the form 6457 // 6458 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6459 // 6460 // where we're operating on a W bit wide integer domain and k is 6461 // non-negative. The smallest unsigned solution for X is the trip count. 6462 // 6463 // (0) is equivalent to: 6464 // 6465 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6466 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6467 // <=> 2^k * Distance' - X = L * 2^(W - N) 6468 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6469 // 6470 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6471 // by 2^(W - N). 6472 // 6473 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6474 // 6475 // E.g. say we're solving 6476 // 6477 // 2 * Val = 2 * X (in i8) ... (3) 6478 // 6479 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6480 // 6481 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6482 // necessarily the smallest unsigned value of X that satisfies (3). 6483 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6484 // is i8 1, not i8 -127 6485 6486 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6487 6488 // Since SCEV does not have a URem node, we construct one using a truncate 6489 // and a zero extend. 6490 6491 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6492 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6493 auto *WideTy = Distance->getType(); 6494 6495 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6496 } 6497 } 6498 6499 // If the condition controls loop exit (the loop exits only if the expression 6500 // is true) and the addition is no-wrap we can use unsigned divide to 6501 // compute the backedge count. In this case, the step may not divide the 6502 // distance, but we don't care because if the condition is "missed" the loop 6503 // will have undefined behavior due to wrapping. 6504 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6505 const SCEV *Exact = 6506 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6507 return ExitLimit(Exact, Exact); 6508 } 6509 6510 // Then, try to solve the above equation provided that Start is constant. 6511 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6512 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6513 -StartC->getValue()->getValue(), 6514 *this); 6515 return getCouldNotCompute(); 6516 } 6517 6518 /// HowFarToNonZero - Return the number of times a backedge checking the 6519 /// specified value for nonzero will execute. If not computable, return 6520 /// CouldNotCompute 6521 ScalarEvolution::ExitLimit 6522 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6523 // Loops that look like: while (X == 0) are very strange indeed. We don't 6524 // handle them yet except for the trivial case. This could be expanded in the 6525 // future as needed. 6526 6527 // If the value is a constant, check to see if it is known to be non-zero 6528 // already. If so, the backedge will execute zero times. 6529 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6530 if (!C->getValue()->isNullValue()) 6531 return getZero(C->getType()); 6532 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6533 } 6534 6535 // We could implement others, but I really doubt anyone writes loops like 6536 // this, and if they did, they would already be constant folded. 6537 return getCouldNotCompute(); 6538 } 6539 6540 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6541 /// (which may not be an immediate predecessor) which has exactly one 6542 /// successor from which BB is reachable, or null if no such block is 6543 /// found. 6544 /// 6545 std::pair<BasicBlock *, BasicBlock *> 6546 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6547 // If the block has a unique predecessor, then there is no path from the 6548 // predecessor to the block that does not go through the direct edge 6549 // from the predecessor to the block. 6550 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6551 return std::make_pair(Pred, BB); 6552 6553 // A loop's header is defined to be a block that dominates the loop. 6554 // If the header has a unique predecessor outside the loop, it must be 6555 // a block that has exactly one successor that can reach the loop. 6556 if (Loop *L = LI.getLoopFor(BB)) 6557 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6558 6559 return std::pair<BasicBlock *, BasicBlock *>(); 6560 } 6561 6562 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6563 /// testing whether two expressions are equal, however for the purposes of 6564 /// looking for a condition guarding a loop, it can be useful to be a little 6565 /// more general, since a front-end may have replicated the controlling 6566 /// expression. 6567 /// 6568 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6569 // Quick check to see if they are the same SCEV. 6570 if (A == B) return true; 6571 6572 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6573 // Not all instructions that are "identical" compute the same value. For 6574 // instance, two distinct alloca instructions allocating the same type are 6575 // identical and do not read memory; but compute distinct values. 6576 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6577 }; 6578 6579 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6580 // two different instructions with the same value. Check for this case. 6581 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6582 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6583 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6584 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6585 if (ComputesEqualValues(AI, BI)) 6586 return true; 6587 6588 // Otherwise assume they may have a different value. 6589 return false; 6590 } 6591 6592 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6593 /// predicate Pred. Return true iff any changes were made. 6594 /// 6595 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6596 const SCEV *&LHS, const SCEV *&RHS, 6597 unsigned Depth) { 6598 bool Changed = false; 6599 6600 // If we hit the max recursion limit bail out. 6601 if (Depth >= 3) 6602 return false; 6603 6604 // Canonicalize a constant to the right side. 6605 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6606 // Check for both operands constant. 6607 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6608 if (ConstantExpr::getICmp(Pred, 6609 LHSC->getValue(), 6610 RHSC->getValue())->isNullValue()) 6611 goto trivially_false; 6612 else 6613 goto trivially_true; 6614 } 6615 // Otherwise swap the operands to put the constant on the right. 6616 std::swap(LHS, RHS); 6617 Pred = ICmpInst::getSwappedPredicate(Pred); 6618 Changed = true; 6619 } 6620 6621 // If we're comparing an addrec with a value which is loop-invariant in the 6622 // addrec's loop, put the addrec on the left. Also make a dominance check, 6623 // as both operands could be addrecs loop-invariant in each other's loop. 6624 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6625 const Loop *L = AR->getLoop(); 6626 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6627 std::swap(LHS, RHS); 6628 Pred = ICmpInst::getSwappedPredicate(Pred); 6629 Changed = true; 6630 } 6631 } 6632 6633 // If there's a constant operand, canonicalize comparisons with boundary 6634 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6635 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6636 const APInt &RA = RC->getValue()->getValue(); 6637 switch (Pred) { 6638 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6639 case ICmpInst::ICMP_EQ: 6640 case ICmpInst::ICMP_NE: 6641 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6642 if (!RA) 6643 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6644 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6645 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6646 ME->getOperand(0)->isAllOnesValue()) { 6647 RHS = AE->getOperand(1); 6648 LHS = ME->getOperand(1); 6649 Changed = true; 6650 } 6651 break; 6652 case ICmpInst::ICMP_UGE: 6653 if ((RA - 1).isMinValue()) { 6654 Pred = ICmpInst::ICMP_NE; 6655 RHS = getConstant(RA - 1); 6656 Changed = true; 6657 break; 6658 } 6659 if (RA.isMaxValue()) { 6660 Pred = ICmpInst::ICMP_EQ; 6661 Changed = true; 6662 break; 6663 } 6664 if (RA.isMinValue()) goto trivially_true; 6665 6666 Pred = ICmpInst::ICMP_UGT; 6667 RHS = getConstant(RA - 1); 6668 Changed = true; 6669 break; 6670 case ICmpInst::ICMP_ULE: 6671 if ((RA + 1).isMaxValue()) { 6672 Pred = ICmpInst::ICMP_NE; 6673 RHS = getConstant(RA + 1); 6674 Changed = true; 6675 break; 6676 } 6677 if (RA.isMinValue()) { 6678 Pred = ICmpInst::ICMP_EQ; 6679 Changed = true; 6680 break; 6681 } 6682 if (RA.isMaxValue()) goto trivially_true; 6683 6684 Pred = ICmpInst::ICMP_ULT; 6685 RHS = getConstant(RA + 1); 6686 Changed = true; 6687 break; 6688 case ICmpInst::ICMP_SGE: 6689 if ((RA - 1).isMinSignedValue()) { 6690 Pred = ICmpInst::ICMP_NE; 6691 RHS = getConstant(RA - 1); 6692 Changed = true; 6693 break; 6694 } 6695 if (RA.isMaxSignedValue()) { 6696 Pred = ICmpInst::ICMP_EQ; 6697 Changed = true; 6698 break; 6699 } 6700 if (RA.isMinSignedValue()) goto trivially_true; 6701 6702 Pred = ICmpInst::ICMP_SGT; 6703 RHS = getConstant(RA - 1); 6704 Changed = true; 6705 break; 6706 case ICmpInst::ICMP_SLE: 6707 if ((RA + 1).isMaxSignedValue()) { 6708 Pred = ICmpInst::ICMP_NE; 6709 RHS = getConstant(RA + 1); 6710 Changed = true; 6711 break; 6712 } 6713 if (RA.isMinSignedValue()) { 6714 Pred = ICmpInst::ICMP_EQ; 6715 Changed = true; 6716 break; 6717 } 6718 if (RA.isMaxSignedValue()) goto trivially_true; 6719 6720 Pred = ICmpInst::ICMP_SLT; 6721 RHS = getConstant(RA + 1); 6722 Changed = true; 6723 break; 6724 case ICmpInst::ICMP_UGT: 6725 if (RA.isMinValue()) { 6726 Pred = ICmpInst::ICMP_NE; 6727 Changed = true; 6728 break; 6729 } 6730 if ((RA + 1).isMaxValue()) { 6731 Pred = ICmpInst::ICMP_EQ; 6732 RHS = getConstant(RA + 1); 6733 Changed = true; 6734 break; 6735 } 6736 if (RA.isMaxValue()) goto trivially_false; 6737 break; 6738 case ICmpInst::ICMP_ULT: 6739 if (RA.isMaxValue()) { 6740 Pred = ICmpInst::ICMP_NE; 6741 Changed = true; 6742 break; 6743 } 6744 if ((RA - 1).isMinValue()) { 6745 Pred = ICmpInst::ICMP_EQ; 6746 RHS = getConstant(RA - 1); 6747 Changed = true; 6748 break; 6749 } 6750 if (RA.isMinValue()) goto trivially_false; 6751 break; 6752 case ICmpInst::ICMP_SGT: 6753 if (RA.isMinSignedValue()) { 6754 Pred = ICmpInst::ICMP_NE; 6755 Changed = true; 6756 break; 6757 } 6758 if ((RA + 1).isMaxSignedValue()) { 6759 Pred = ICmpInst::ICMP_EQ; 6760 RHS = getConstant(RA + 1); 6761 Changed = true; 6762 break; 6763 } 6764 if (RA.isMaxSignedValue()) goto trivially_false; 6765 break; 6766 case ICmpInst::ICMP_SLT: 6767 if (RA.isMaxSignedValue()) { 6768 Pred = ICmpInst::ICMP_NE; 6769 Changed = true; 6770 break; 6771 } 6772 if ((RA - 1).isMinSignedValue()) { 6773 Pred = ICmpInst::ICMP_EQ; 6774 RHS = getConstant(RA - 1); 6775 Changed = true; 6776 break; 6777 } 6778 if (RA.isMinSignedValue()) goto trivially_false; 6779 break; 6780 } 6781 } 6782 6783 // Check for obvious equality. 6784 if (HasSameValue(LHS, RHS)) { 6785 if (ICmpInst::isTrueWhenEqual(Pred)) 6786 goto trivially_true; 6787 if (ICmpInst::isFalseWhenEqual(Pred)) 6788 goto trivially_false; 6789 } 6790 6791 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6792 // adding or subtracting 1 from one of the operands. 6793 switch (Pred) { 6794 case ICmpInst::ICMP_SLE: 6795 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6796 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6797 SCEV::FlagNSW); 6798 Pred = ICmpInst::ICMP_SLT; 6799 Changed = true; 6800 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6801 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6802 SCEV::FlagNSW); 6803 Pred = ICmpInst::ICMP_SLT; 6804 Changed = true; 6805 } 6806 break; 6807 case ICmpInst::ICMP_SGE: 6808 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6809 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6810 SCEV::FlagNSW); 6811 Pred = ICmpInst::ICMP_SGT; 6812 Changed = true; 6813 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6814 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6815 SCEV::FlagNSW); 6816 Pred = ICmpInst::ICMP_SGT; 6817 Changed = true; 6818 } 6819 break; 6820 case ICmpInst::ICMP_ULE: 6821 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6822 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6823 SCEV::FlagNUW); 6824 Pred = ICmpInst::ICMP_ULT; 6825 Changed = true; 6826 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6827 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6828 SCEV::FlagNUW); 6829 Pred = ICmpInst::ICMP_ULT; 6830 Changed = true; 6831 } 6832 break; 6833 case ICmpInst::ICMP_UGE: 6834 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6835 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6836 SCEV::FlagNUW); 6837 Pred = ICmpInst::ICMP_UGT; 6838 Changed = true; 6839 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6840 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6841 SCEV::FlagNUW); 6842 Pred = ICmpInst::ICMP_UGT; 6843 Changed = true; 6844 } 6845 break; 6846 default: 6847 break; 6848 } 6849 6850 // TODO: More simplifications are possible here. 6851 6852 // Recursively simplify until we either hit a recursion limit or nothing 6853 // changes. 6854 if (Changed) 6855 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6856 6857 return Changed; 6858 6859 trivially_true: 6860 // Return 0 == 0. 6861 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6862 Pred = ICmpInst::ICMP_EQ; 6863 return true; 6864 6865 trivially_false: 6866 // Return 0 != 0. 6867 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6868 Pred = ICmpInst::ICMP_NE; 6869 return true; 6870 } 6871 6872 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6873 return getSignedRange(S).getSignedMax().isNegative(); 6874 } 6875 6876 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6877 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6878 } 6879 6880 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6881 return !getSignedRange(S).getSignedMin().isNegative(); 6882 } 6883 6884 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6885 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6886 } 6887 6888 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6889 return isKnownNegative(S) || isKnownPositive(S); 6890 } 6891 6892 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6893 const SCEV *LHS, const SCEV *RHS) { 6894 // Canonicalize the inputs first. 6895 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6896 6897 // If LHS or RHS is an addrec, check to see if the condition is true in 6898 // every iteration of the loop. 6899 // If LHS and RHS are both addrec, both conditions must be true in 6900 // every iteration of the loop. 6901 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6902 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6903 bool LeftGuarded = false; 6904 bool RightGuarded = false; 6905 if (LAR) { 6906 const Loop *L = LAR->getLoop(); 6907 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6908 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6909 if (!RAR) return true; 6910 LeftGuarded = true; 6911 } 6912 } 6913 if (RAR) { 6914 const Loop *L = RAR->getLoop(); 6915 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6916 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6917 if (!LAR) return true; 6918 RightGuarded = true; 6919 } 6920 } 6921 if (LeftGuarded && RightGuarded) 6922 return true; 6923 6924 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 6925 return true; 6926 6927 // Otherwise see what can be done with known constant ranges. 6928 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6929 } 6930 6931 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6932 ICmpInst::Predicate Pred, 6933 bool &Increasing) { 6934 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6935 6936 #ifndef NDEBUG 6937 // Verify an invariant: inverting the predicate should turn a monotonically 6938 // increasing change to a monotonically decreasing one, and vice versa. 6939 bool IncreasingSwapped; 6940 bool ResultSwapped = isMonotonicPredicateImpl( 6941 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6942 6943 assert(Result == ResultSwapped && "should be able to analyze both!"); 6944 if (ResultSwapped) 6945 assert(Increasing == !IncreasingSwapped && 6946 "monotonicity should flip as we flip the predicate"); 6947 #endif 6948 6949 return Result; 6950 } 6951 6952 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6953 ICmpInst::Predicate Pred, 6954 bool &Increasing) { 6955 6956 // A zero step value for LHS means the induction variable is essentially a 6957 // loop invariant value. We don't really depend on the predicate actually 6958 // flipping from false to true (for increasing predicates, and the other way 6959 // around for decreasing predicates), all we care about is that *if* the 6960 // predicate changes then it only changes from false to true. 6961 // 6962 // A zero step value in itself is not very useful, but there may be places 6963 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 6964 // as general as possible. 6965 6966 switch (Pred) { 6967 default: 6968 return false; // Conservative answer 6969 6970 case ICmpInst::ICMP_UGT: 6971 case ICmpInst::ICMP_UGE: 6972 case ICmpInst::ICMP_ULT: 6973 case ICmpInst::ICMP_ULE: 6974 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 6975 return false; 6976 6977 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 6978 return true; 6979 6980 case ICmpInst::ICMP_SGT: 6981 case ICmpInst::ICMP_SGE: 6982 case ICmpInst::ICMP_SLT: 6983 case ICmpInst::ICMP_SLE: { 6984 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 6985 return false; 6986 6987 const SCEV *Step = LHS->getStepRecurrence(*this); 6988 6989 if (isKnownNonNegative(Step)) { 6990 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 6991 return true; 6992 } 6993 6994 if (isKnownNonPositive(Step)) { 6995 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 6996 return true; 6997 } 6998 6999 return false; 7000 } 7001 7002 } 7003 7004 llvm_unreachable("switch has default clause!"); 7005 } 7006 7007 bool ScalarEvolution::isLoopInvariantPredicate( 7008 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7009 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7010 const SCEV *&InvariantRHS) { 7011 7012 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7013 if (!isLoopInvariant(RHS, L)) { 7014 if (!isLoopInvariant(LHS, L)) 7015 return false; 7016 7017 std::swap(LHS, RHS); 7018 Pred = ICmpInst::getSwappedPredicate(Pred); 7019 } 7020 7021 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7022 if (!ArLHS || ArLHS->getLoop() != L) 7023 return false; 7024 7025 bool Increasing; 7026 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7027 return false; 7028 7029 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7030 // true as the loop iterates, and the backedge is control dependent on 7031 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7032 // 7033 // * if the predicate was false in the first iteration then the predicate 7034 // is never evaluated again, since the loop exits without taking the 7035 // backedge. 7036 // * if the predicate was true in the first iteration then it will 7037 // continue to be true for all future iterations since it is 7038 // monotonically increasing. 7039 // 7040 // For both the above possibilities, we can replace the loop varying 7041 // predicate with its value on the first iteration of the loop (which is 7042 // loop invariant). 7043 // 7044 // A similar reasoning applies for a monotonically decreasing predicate, by 7045 // replacing true with false and false with true in the above two bullets. 7046 7047 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7048 7049 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7050 return false; 7051 7052 InvariantPred = Pred; 7053 InvariantLHS = ArLHS->getStart(); 7054 InvariantRHS = RHS; 7055 return true; 7056 } 7057 7058 bool 7059 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 7060 const SCEV *LHS, const SCEV *RHS) { 7061 if (HasSameValue(LHS, RHS)) 7062 return ICmpInst::isTrueWhenEqual(Pred); 7063 7064 // This code is split out from isKnownPredicate because it is called from 7065 // within isLoopEntryGuardedByCond. 7066 switch (Pred) { 7067 default: 7068 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7069 case ICmpInst::ICMP_SGT: 7070 std::swap(LHS, RHS); 7071 case ICmpInst::ICMP_SLT: { 7072 ConstantRange LHSRange = getSignedRange(LHS); 7073 ConstantRange RHSRange = getSignedRange(RHS); 7074 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7075 return true; 7076 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7077 return false; 7078 break; 7079 } 7080 case ICmpInst::ICMP_SGE: 7081 std::swap(LHS, RHS); 7082 case ICmpInst::ICMP_SLE: { 7083 ConstantRange LHSRange = getSignedRange(LHS); 7084 ConstantRange RHSRange = getSignedRange(RHS); 7085 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7086 return true; 7087 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7088 return false; 7089 break; 7090 } 7091 case ICmpInst::ICMP_UGT: 7092 std::swap(LHS, RHS); 7093 case ICmpInst::ICMP_ULT: { 7094 ConstantRange LHSRange = getUnsignedRange(LHS); 7095 ConstantRange RHSRange = getUnsignedRange(RHS); 7096 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7097 return true; 7098 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7099 return false; 7100 break; 7101 } 7102 case ICmpInst::ICMP_UGE: 7103 std::swap(LHS, RHS); 7104 case ICmpInst::ICMP_ULE: { 7105 ConstantRange LHSRange = getUnsignedRange(LHS); 7106 ConstantRange RHSRange = getUnsignedRange(RHS); 7107 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7108 return true; 7109 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7110 return false; 7111 break; 7112 } 7113 case ICmpInst::ICMP_NE: { 7114 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7115 return true; 7116 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7117 return true; 7118 7119 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7120 if (isKnownNonZero(Diff)) 7121 return true; 7122 break; 7123 } 7124 case ICmpInst::ICMP_EQ: 7125 // The check at the top of the function catches the case where 7126 // the values are known to be equal. 7127 break; 7128 } 7129 return false; 7130 } 7131 7132 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7133 const SCEV *LHS, 7134 const SCEV *RHS) { 7135 if (ProvingSplitPredicate) 7136 return false; 7137 7138 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7139 // the stack can result in exponential time complexity. 7140 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7141 7142 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7143 // 7144 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7145 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7146 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7147 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7148 // use isKnownPredicate later if needed. 7149 if (Pred == ICmpInst::ICMP_ULT && isKnownNonNegative(RHS) && 7150 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7151 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS)) 7152 return true; 7153 7154 return false; 7155 } 7156 7157 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7158 /// protected by a conditional between LHS and RHS. This is used to 7159 /// to eliminate casts. 7160 bool 7161 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7162 ICmpInst::Predicate Pred, 7163 const SCEV *LHS, const SCEV *RHS) { 7164 // Interpret a null as meaning no loop, where there is obviously no guard 7165 // (interprocedural conditions notwithstanding). 7166 if (!L) return true; 7167 7168 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7169 7170 BasicBlock *Latch = L->getLoopLatch(); 7171 if (!Latch) 7172 return false; 7173 7174 BranchInst *LoopContinuePredicate = 7175 dyn_cast<BranchInst>(Latch->getTerminator()); 7176 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7177 isImpliedCond(Pred, LHS, RHS, 7178 LoopContinuePredicate->getCondition(), 7179 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7180 return true; 7181 7182 // We don't want more than one activation of the following loops on the stack 7183 // -- that can lead to O(n!) time complexity. 7184 if (WalkingBEDominatingConds) 7185 return false; 7186 7187 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7188 7189 // See if we can exploit a trip count to prove the predicate. 7190 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7191 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7192 if (LatchBECount != getCouldNotCompute()) { 7193 // We know that Latch branches back to the loop header exactly 7194 // LatchBECount times. This means the backdege condition at Latch is 7195 // equivalent to "{0,+,1} u< LatchBECount". 7196 Type *Ty = LatchBECount->getType(); 7197 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7198 const SCEV *LoopCounter = 7199 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7200 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7201 LatchBECount)) 7202 return true; 7203 } 7204 7205 // Check conditions due to any @llvm.assume intrinsics. 7206 for (auto &AssumeVH : AC.assumptions()) { 7207 if (!AssumeVH) 7208 continue; 7209 auto *CI = cast<CallInst>(AssumeVH); 7210 if (!DT.dominates(CI, Latch->getTerminator())) 7211 continue; 7212 7213 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7214 return true; 7215 } 7216 7217 // If the loop is not reachable from the entry block, we risk running into an 7218 // infinite loop as we walk up into the dom tree. These loops do not matter 7219 // anyway, so we just return a conservative answer when we see them. 7220 if (!DT.isReachableFromEntry(L->getHeader())) 7221 return false; 7222 7223 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7224 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7225 7226 assert(DTN && "should reach the loop header before reaching the root!"); 7227 7228 BasicBlock *BB = DTN->getBlock(); 7229 BasicBlock *PBB = BB->getSinglePredecessor(); 7230 if (!PBB) 7231 continue; 7232 7233 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7234 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7235 continue; 7236 7237 Value *Condition = ContinuePredicate->getCondition(); 7238 7239 // If we have an edge `E` within the loop body that dominates the only 7240 // latch, the condition guarding `E` also guards the backedge. This 7241 // reasoning works only for loops with a single latch. 7242 7243 BasicBlockEdge DominatingEdge(PBB, BB); 7244 if (DominatingEdge.isSingleEdge()) { 7245 // We're constructively (and conservatively) enumerating edges within the 7246 // loop body that dominate the latch. The dominator tree better agree 7247 // with us on this: 7248 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7249 7250 if (isImpliedCond(Pred, LHS, RHS, Condition, 7251 BB != ContinuePredicate->getSuccessor(0))) 7252 return true; 7253 } 7254 } 7255 7256 return false; 7257 } 7258 7259 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7260 /// by a conditional between LHS and RHS. This is used to help avoid max 7261 /// expressions in loop trip counts, and to eliminate casts. 7262 bool 7263 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7264 ICmpInst::Predicate Pred, 7265 const SCEV *LHS, const SCEV *RHS) { 7266 // Interpret a null as meaning no loop, where there is obviously no guard 7267 // (interprocedural conditions notwithstanding). 7268 if (!L) return false; 7269 7270 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7271 7272 // Starting at the loop predecessor, climb up the predecessor chain, as long 7273 // as there are predecessors that can be found that have unique successors 7274 // leading to the original header. 7275 for (std::pair<BasicBlock *, BasicBlock *> 7276 Pair(L->getLoopPredecessor(), L->getHeader()); 7277 Pair.first; 7278 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7279 7280 BranchInst *LoopEntryPredicate = 7281 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7282 if (!LoopEntryPredicate || 7283 LoopEntryPredicate->isUnconditional()) 7284 continue; 7285 7286 if (isImpliedCond(Pred, LHS, RHS, 7287 LoopEntryPredicate->getCondition(), 7288 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7289 return true; 7290 } 7291 7292 // Check conditions due to any @llvm.assume intrinsics. 7293 for (auto &AssumeVH : AC.assumptions()) { 7294 if (!AssumeVH) 7295 continue; 7296 auto *CI = cast<CallInst>(AssumeVH); 7297 if (!DT.dominates(CI, L->getHeader())) 7298 continue; 7299 7300 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7301 return true; 7302 } 7303 7304 return false; 7305 } 7306 7307 /// RAII wrapper to prevent recursive application of isImpliedCond. 7308 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7309 /// currently evaluating isImpliedCond. 7310 struct MarkPendingLoopPredicate { 7311 Value *Cond; 7312 DenseSet<Value*> &LoopPreds; 7313 bool Pending; 7314 7315 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7316 : Cond(C), LoopPreds(LP) { 7317 Pending = !LoopPreds.insert(Cond).second; 7318 } 7319 ~MarkPendingLoopPredicate() { 7320 if (!Pending) 7321 LoopPreds.erase(Cond); 7322 } 7323 }; 7324 7325 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7326 /// and RHS is true whenever the given Cond value evaluates to true. 7327 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7328 const SCEV *LHS, const SCEV *RHS, 7329 Value *FoundCondValue, 7330 bool Inverse) { 7331 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7332 if (Mark.Pending) 7333 return false; 7334 7335 // Recursively handle And and Or conditions. 7336 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7337 if (BO->getOpcode() == Instruction::And) { 7338 if (!Inverse) 7339 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7340 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7341 } else if (BO->getOpcode() == Instruction::Or) { 7342 if (Inverse) 7343 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7344 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7345 } 7346 } 7347 7348 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7349 if (!ICI) return false; 7350 7351 // Now that we found a conditional branch that dominates the loop or controls 7352 // the loop latch. Check to see if it is the comparison we are looking for. 7353 ICmpInst::Predicate FoundPred; 7354 if (Inverse) 7355 FoundPred = ICI->getInversePredicate(); 7356 else 7357 FoundPred = ICI->getPredicate(); 7358 7359 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7360 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7361 7362 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7363 } 7364 7365 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7366 const SCEV *RHS, 7367 ICmpInst::Predicate FoundPred, 7368 const SCEV *FoundLHS, 7369 const SCEV *FoundRHS) { 7370 // Balance the types. 7371 if (getTypeSizeInBits(LHS->getType()) < 7372 getTypeSizeInBits(FoundLHS->getType())) { 7373 if (CmpInst::isSigned(Pred)) { 7374 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7375 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7376 } else { 7377 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7378 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7379 } 7380 } else if (getTypeSizeInBits(LHS->getType()) > 7381 getTypeSizeInBits(FoundLHS->getType())) { 7382 if (CmpInst::isSigned(FoundPred)) { 7383 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7384 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7385 } else { 7386 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7387 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7388 } 7389 } 7390 7391 // Canonicalize the query to match the way instcombine will have 7392 // canonicalized the comparison. 7393 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7394 if (LHS == RHS) 7395 return CmpInst::isTrueWhenEqual(Pred); 7396 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7397 if (FoundLHS == FoundRHS) 7398 return CmpInst::isFalseWhenEqual(FoundPred); 7399 7400 // Check to see if we can make the LHS or RHS match. 7401 if (LHS == FoundRHS || RHS == FoundLHS) { 7402 if (isa<SCEVConstant>(RHS)) { 7403 std::swap(FoundLHS, FoundRHS); 7404 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7405 } else { 7406 std::swap(LHS, RHS); 7407 Pred = ICmpInst::getSwappedPredicate(Pred); 7408 } 7409 } 7410 7411 // Check whether the found predicate is the same as the desired predicate. 7412 if (FoundPred == Pred) 7413 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7414 7415 // Check whether swapping the found predicate makes it the same as the 7416 // desired predicate. 7417 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7418 if (isa<SCEVConstant>(RHS)) 7419 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7420 else 7421 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7422 RHS, LHS, FoundLHS, FoundRHS); 7423 } 7424 7425 // Check if we can make progress by sharpening ranges. 7426 if (FoundPred == ICmpInst::ICMP_NE && 7427 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7428 7429 const SCEVConstant *C = nullptr; 7430 const SCEV *V = nullptr; 7431 7432 if (isa<SCEVConstant>(FoundLHS)) { 7433 C = cast<SCEVConstant>(FoundLHS); 7434 V = FoundRHS; 7435 } else { 7436 C = cast<SCEVConstant>(FoundRHS); 7437 V = FoundLHS; 7438 } 7439 7440 // The guarding predicate tells us that C != V. If the known range 7441 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7442 // range we consider has to correspond to same signedness as the 7443 // predicate we're interested in folding. 7444 7445 APInt Min = ICmpInst::isSigned(Pred) ? 7446 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7447 7448 if (Min == C->getValue()->getValue()) { 7449 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7450 // This is true even if (Min + 1) wraps around -- in case of 7451 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7452 7453 APInt SharperMin = Min + 1; 7454 7455 switch (Pred) { 7456 case ICmpInst::ICMP_SGE: 7457 case ICmpInst::ICMP_UGE: 7458 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7459 // RHS, we're done. 7460 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7461 getConstant(SharperMin))) 7462 return true; 7463 7464 case ICmpInst::ICMP_SGT: 7465 case ICmpInst::ICMP_UGT: 7466 // We know from the range information that (V `Pred` Min || 7467 // V == Min). We know from the guarding condition that !(V 7468 // == Min). This gives us 7469 // 7470 // V `Pred` Min || V == Min && !(V == Min) 7471 // => V `Pred` Min 7472 // 7473 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7474 7475 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7476 return true; 7477 7478 default: 7479 // No change 7480 break; 7481 } 7482 } 7483 } 7484 7485 // Check whether the actual condition is beyond sufficient. 7486 if (FoundPred == ICmpInst::ICMP_EQ) 7487 if (ICmpInst::isTrueWhenEqual(Pred)) 7488 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7489 return true; 7490 if (Pred == ICmpInst::ICMP_NE) 7491 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7492 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7493 return true; 7494 7495 // Otherwise assume the worst. 7496 return false; 7497 } 7498 7499 // Return true if More == (Less + C), where C is a constant. 7500 static bool IsConstDiff(ScalarEvolution &SE, const SCEV *Less, const SCEV *More, 7501 APInt &C) { 7502 // We avoid subtracting expressions here because this function is usually 7503 // fairly deep in the call stack (i.e. is called many times). 7504 7505 auto SplitBinaryAdd = [](const SCEV *Expr, const SCEV *&L, const SCEV *&R) { 7506 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7507 if (!AE || AE->getNumOperands() != 2) 7508 return false; 7509 7510 L = AE->getOperand(0); 7511 R = AE->getOperand(1); 7512 return true; 7513 }; 7514 7515 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7516 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7517 const auto *MAR = cast<SCEVAddRecExpr>(More); 7518 7519 if (LAR->getLoop() != MAR->getLoop()) 7520 return false; 7521 7522 // We look at affine expressions only; not for correctness but to keep 7523 // getStepRecurrence cheap. 7524 if (!LAR->isAffine() || !MAR->isAffine()) 7525 return false; 7526 7527 if (LAR->getStepRecurrence(SE) != MAR->getStepRecurrence(SE)) 7528 return false; 7529 7530 Less = LAR->getStart(); 7531 More = MAR->getStart(); 7532 7533 // fall through 7534 } 7535 7536 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7537 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7538 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7539 C = M - L; 7540 return true; 7541 } 7542 7543 const SCEV *L, *R; 7544 if (SplitBinaryAdd(Less, L, R)) 7545 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7546 if (R == More) { 7547 C = -(LC->getValue()->getValue()); 7548 return true; 7549 } 7550 7551 if (SplitBinaryAdd(More, L, R)) 7552 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7553 if (R == Less) { 7554 C = LC->getValue()->getValue(); 7555 return true; 7556 } 7557 7558 return false; 7559 } 7560 7561 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7562 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7563 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7564 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7565 return false; 7566 7567 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7568 if (!AddRecLHS) 7569 return false; 7570 7571 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7572 if (!AddRecFoundLHS) 7573 return false; 7574 7575 // We'd like to let SCEV reason about control dependencies, so we constrain 7576 // both the inequalities to be about add recurrences on the same loop. This 7577 // way we can use isLoopEntryGuardedByCond later. 7578 7579 const Loop *L = AddRecFoundLHS->getLoop(); 7580 if (L != AddRecLHS->getLoop()) 7581 return false; 7582 7583 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7584 // 7585 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7586 // ... (2) 7587 // 7588 // Informal proof for (2), assuming (1) [*]: 7589 // 7590 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7591 // 7592 // Then 7593 // 7594 // FoundLHS s< FoundRHS s< INT_MIN - C 7595 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7596 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7597 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7598 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7599 // <=> FoundLHS + C s< FoundRHS + C 7600 // 7601 // [*]: (1) can be proved by ruling out overflow. 7602 // 7603 // [**]: This can be proved by analyzing all the four possibilities: 7604 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7605 // (A s>= 0, B s>= 0). 7606 // 7607 // Note: 7608 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7609 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7610 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7611 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7612 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7613 // C)". 7614 7615 APInt LDiff, RDiff; 7616 if (!IsConstDiff(*this, FoundLHS, LHS, LDiff) || 7617 !IsConstDiff(*this, FoundRHS, RHS, RDiff) || 7618 LDiff != RDiff) 7619 return false; 7620 7621 if (LDiff == 0) 7622 return true; 7623 7624 APInt FoundRHSLimit; 7625 7626 if (Pred == CmpInst::ICMP_ULT) { 7627 FoundRHSLimit = -RDiff; 7628 } else { 7629 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7630 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7631 } 7632 7633 // Try to prove (1) or (2), as needed. 7634 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7635 getConstant(FoundRHSLimit)); 7636 } 7637 7638 /// isImpliedCondOperands - Test whether the condition described by Pred, 7639 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7640 /// and FoundRHS is true. 7641 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7642 const SCEV *LHS, const SCEV *RHS, 7643 const SCEV *FoundLHS, 7644 const SCEV *FoundRHS) { 7645 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7646 return true; 7647 7648 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7649 return true; 7650 7651 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7652 FoundLHS, FoundRHS) || 7653 // ~x < ~y --> x > y 7654 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7655 getNotSCEV(FoundRHS), 7656 getNotSCEV(FoundLHS)); 7657 } 7658 7659 7660 /// If Expr computes ~A, return A else return nullptr 7661 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7662 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7663 if (!Add || Add->getNumOperands() != 2) return nullptr; 7664 7665 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0)); 7666 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue())) 7667 return nullptr; 7668 7669 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7670 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr; 7671 7672 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0)); 7673 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue())) 7674 return nullptr; 7675 7676 return AddRHS->getOperand(1); 7677 } 7678 7679 7680 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7681 template<typename MaxExprType> 7682 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7683 const SCEV *Candidate) { 7684 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7685 if (!MaxExpr) return false; 7686 7687 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7688 return It != MaxExpr->op_end(); 7689 } 7690 7691 7692 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7693 template<typename MaxExprType> 7694 static bool IsMinConsistingOf(ScalarEvolution &SE, 7695 const SCEV *MaybeMinExpr, 7696 const SCEV *Candidate) { 7697 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7698 if (!MaybeMaxExpr) 7699 return false; 7700 7701 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7702 } 7703 7704 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7705 ICmpInst::Predicate Pred, 7706 const SCEV *LHS, const SCEV *RHS) { 7707 7708 // If both sides are affine addrecs for the same loop, with equal 7709 // steps, and we know the recurrences don't wrap, then we only 7710 // need to check the predicate on the starting values. 7711 7712 if (!ICmpInst::isRelational(Pred)) 7713 return false; 7714 7715 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7716 if (!LAR) 7717 return false; 7718 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7719 if (!RAR) 7720 return false; 7721 if (LAR->getLoop() != RAR->getLoop()) 7722 return false; 7723 if (!LAR->isAffine() || !RAR->isAffine()) 7724 return false; 7725 7726 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7727 return false; 7728 7729 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7730 SCEV::FlagNSW : SCEV::FlagNUW; 7731 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7732 return false; 7733 7734 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7735 } 7736 7737 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7738 /// expression? 7739 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7740 ICmpInst::Predicate Pred, 7741 const SCEV *LHS, const SCEV *RHS) { 7742 switch (Pred) { 7743 default: 7744 return false; 7745 7746 case ICmpInst::ICMP_SGE: 7747 std::swap(LHS, RHS); 7748 // fall through 7749 case ICmpInst::ICMP_SLE: 7750 return 7751 // min(A, ...) <= A 7752 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7753 // A <= max(A, ...) 7754 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7755 7756 case ICmpInst::ICMP_UGE: 7757 std::swap(LHS, RHS); 7758 // fall through 7759 case ICmpInst::ICMP_ULE: 7760 return 7761 // min(A, ...) <= A 7762 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7763 // A <= max(A, ...) 7764 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7765 } 7766 7767 llvm_unreachable("covered switch fell through?!"); 7768 } 7769 7770 /// isImpliedCondOperandsHelper - Test whether the condition described by 7771 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7772 /// FoundLHS, and FoundRHS is true. 7773 bool 7774 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7775 const SCEV *LHS, const SCEV *RHS, 7776 const SCEV *FoundLHS, 7777 const SCEV *FoundRHS) { 7778 auto IsKnownPredicateFull = 7779 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7780 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7781 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 7782 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS); 7783 }; 7784 7785 switch (Pred) { 7786 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7787 case ICmpInst::ICMP_EQ: 7788 case ICmpInst::ICMP_NE: 7789 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7790 return true; 7791 break; 7792 case ICmpInst::ICMP_SLT: 7793 case ICmpInst::ICMP_SLE: 7794 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7795 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7796 return true; 7797 break; 7798 case ICmpInst::ICMP_SGT: 7799 case ICmpInst::ICMP_SGE: 7800 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7801 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7802 return true; 7803 break; 7804 case ICmpInst::ICMP_ULT: 7805 case ICmpInst::ICMP_ULE: 7806 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7807 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7808 return true; 7809 break; 7810 case ICmpInst::ICMP_UGT: 7811 case ICmpInst::ICMP_UGE: 7812 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7813 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7814 return true; 7815 break; 7816 } 7817 7818 return false; 7819 } 7820 7821 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7822 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7823 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7824 const SCEV *LHS, 7825 const SCEV *RHS, 7826 const SCEV *FoundLHS, 7827 const SCEV *FoundRHS) { 7828 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7829 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7830 // reduce the compile time impact of this optimization. 7831 return false; 7832 7833 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7834 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7835 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7836 return false; 7837 7838 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7839 7840 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7841 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7842 ConstantRange FoundLHSRange = 7843 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7844 7845 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7846 // for `LHS`: 7847 APInt Addend = 7848 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7849 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7850 7851 // We can also compute the range of values for `LHS` that satisfy the 7852 // consequent, "`LHS` `Pred` `RHS`": 7853 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7854 ConstantRange SatisfyingLHSRange = 7855 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7856 7857 // The antecedent implies the consequent if every value of `LHS` that 7858 // satisfies the antecedent also satisfies the consequent. 7859 return SatisfyingLHSRange.contains(LHSRange); 7860 } 7861 7862 // Verify if an linear IV with positive stride can overflow when in a 7863 // less-than comparison, knowing the invariant term of the comparison, the 7864 // stride and the knowledge of NSW/NUW flags on the recurrence. 7865 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7866 bool IsSigned, bool NoWrap) { 7867 if (NoWrap) return false; 7868 7869 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7870 const SCEV *One = getOne(Stride->getType()); 7871 7872 if (IsSigned) { 7873 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7874 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7875 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7876 .getSignedMax(); 7877 7878 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7879 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7880 } 7881 7882 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7883 APInt MaxValue = APInt::getMaxValue(BitWidth); 7884 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7885 .getUnsignedMax(); 7886 7887 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7888 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7889 } 7890 7891 // Verify if an linear IV with negative stride can overflow when in a 7892 // greater-than comparison, knowing the invariant term of the comparison, 7893 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7894 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7895 bool IsSigned, bool NoWrap) { 7896 if (NoWrap) return false; 7897 7898 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7899 const SCEV *One = getOne(Stride->getType()); 7900 7901 if (IsSigned) { 7902 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7903 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7904 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7905 .getSignedMax(); 7906 7907 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7908 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7909 } 7910 7911 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7912 APInt MinValue = APInt::getMinValue(BitWidth); 7913 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7914 .getUnsignedMax(); 7915 7916 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7917 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7918 } 7919 7920 // Compute the backedge taken count knowing the interval difference, the 7921 // stride and presence of the equality in the comparison. 7922 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7923 bool Equality) { 7924 const SCEV *One = getOne(Step->getType()); 7925 Delta = Equality ? getAddExpr(Delta, Step) 7926 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7927 return getUDivExpr(Delta, Step); 7928 } 7929 7930 /// HowManyLessThans - Return the number of times a backedge containing the 7931 /// specified less-than comparison will execute. If not computable, return 7932 /// CouldNotCompute. 7933 /// 7934 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7935 /// the branch (loops exits only if condition is true). In this case, we can use 7936 /// NoWrapFlags to skip overflow checks. 7937 ScalarEvolution::ExitLimit 7938 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7939 const Loop *L, bool IsSigned, 7940 bool ControlsExit) { 7941 // We handle only IV < Invariant 7942 if (!isLoopInvariant(RHS, L)) 7943 return getCouldNotCompute(); 7944 7945 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7946 7947 // Avoid weird loops 7948 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7949 return getCouldNotCompute(); 7950 7951 bool NoWrap = ControlsExit && 7952 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7953 7954 const SCEV *Stride = IV->getStepRecurrence(*this); 7955 7956 // Avoid negative or zero stride values 7957 if (!isKnownPositive(Stride)) 7958 return getCouldNotCompute(); 7959 7960 // Avoid proven overflow cases: this will ensure that the backedge taken count 7961 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7962 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7963 // behaviors like the case of C language. 7964 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7965 return getCouldNotCompute(); 7966 7967 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 7968 : ICmpInst::ICMP_ULT; 7969 const SCEV *Start = IV->getStart(); 7970 const SCEV *End = RHS; 7971 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 7972 const SCEV *Diff = getMinusSCEV(RHS, Start); 7973 // If we have NoWrap set, then we can assume that the increment won't 7974 // overflow, in which case if RHS - Start is a constant, we don't need to 7975 // do a max operation since we can just figure it out statically 7976 if (NoWrap && isa<SCEVConstant>(Diff)) { 7977 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7978 if (D.isNegative()) 7979 End = Start; 7980 } else 7981 End = IsSigned ? getSMaxExpr(RHS, Start) 7982 : getUMaxExpr(RHS, Start); 7983 } 7984 7985 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 7986 7987 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 7988 : getUnsignedRange(Start).getUnsignedMin(); 7989 7990 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7991 : getUnsignedRange(Stride).getUnsignedMin(); 7992 7993 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7994 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 7995 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 7996 7997 // Although End can be a MAX expression we estimate MaxEnd considering only 7998 // the case End = RHS. This is safe because in the other case (End - Start) 7999 // is zero, leading to a zero maximum backedge taken count. 8000 APInt MaxEnd = 8001 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8002 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8003 8004 const SCEV *MaxBECount; 8005 if (isa<SCEVConstant>(BECount)) 8006 MaxBECount = BECount; 8007 else 8008 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8009 getConstant(MinStride), false); 8010 8011 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8012 MaxBECount = BECount; 8013 8014 return ExitLimit(BECount, MaxBECount); 8015 } 8016 8017 ScalarEvolution::ExitLimit 8018 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8019 const Loop *L, bool IsSigned, 8020 bool ControlsExit) { 8021 // We handle only IV > Invariant 8022 if (!isLoopInvariant(RHS, L)) 8023 return getCouldNotCompute(); 8024 8025 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8026 8027 // Avoid weird loops 8028 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8029 return getCouldNotCompute(); 8030 8031 bool NoWrap = ControlsExit && 8032 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8033 8034 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8035 8036 // Avoid negative or zero stride values 8037 if (!isKnownPositive(Stride)) 8038 return getCouldNotCompute(); 8039 8040 // Avoid proven overflow cases: this will ensure that the backedge taken count 8041 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8042 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8043 // behaviors like the case of C language. 8044 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8045 return getCouldNotCompute(); 8046 8047 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8048 : ICmpInst::ICMP_UGT; 8049 8050 const SCEV *Start = IV->getStart(); 8051 const SCEV *End = RHS; 8052 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8053 const SCEV *Diff = getMinusSCEV(RHS, Start); 8054 // If we have NoWrap set, then we can assume that the increment won't 8055 // overflow, in which case if RHS - Start is a constant, we don't need to 8056 // do a max operation since we can just figure it out statically 8057 if (NoWrap && isa<SCEVConstant>(Diff)) { 8058 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8059 if (!D.isNegative()) 8060 End = Start; 8061 } else 8062 End = IsSigned ? getSMinExpr(RHS, Start) 8063 : getUMinExpr(RHS, Start); 8064 } 8065 8066 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8067 8068 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8069 : getUnsignedRange(Start).getUnsignedMax(); 8070 8071 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8072 : getUnsignedRange(Stride).getUnsignedMin(); 8073 8074 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8075 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8076 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8077 8078 // Although End can be a MIN expression we estimate MinEnd considering only 8079 // the case End = RHS. This is safe because in the other case (Start - End) 8080 // is zero, leading to a zero maximum backedge taken count. 8081 APInt MinEnd = 8082 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8083 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8084 8085 8086 const SCEV *MaxBECount = getCouldNotCompute(); 8087 if (isa<SCEVConstant>(BECount)) 8088 MaxBECount = BECount; 8089 else 8090 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8091 getConstant(MinStride), false); 8092 8093 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8094 MaxBECount = BECount; 8095 8096 return ExitLimit(BECount, MaxBECount); 8097 } 8098 8099 /// getNumIterationsInRange - Return the number of iterations of this loop that 8100 /// produce values in the specified constant range. Another way of looking at 8101 /// this is that it returns the first iteration number where the value is not in 8102 /// the condition, thus computing the exit count. If the iteration count can't 8103 /// be computed, an instance of SCEVCouldNotCompute is returned. 8104 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8105 ScalarEvolution &SE) const { 8106 if (Range.isFullSet()) // Infinite loop. 8107 return SE.getCouldNotCompute(); 8108 8109 // If the start is a non-zero constant, shift the range to simplify things. 8110 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8111 if (!SC->getValue()->isZero()) { 8112 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8113 Operands[0] = SE.getZero(SC->getType()); 8114 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8115 getNoWrapFlags(FlagNW)); 8116 if (const SCEVAddRecExpr *ShiftedAddRec = 8117 dyn_cast<SCEVAddRecExpr>(Shifted)) 8118 return ShiftedAddRec->getNumIterationsInRange( 8119 Range.subtract(SC->getValue()->getValue()), SE); 8120 // This is strange and shouldn't happen. 8121 return SE.getCouldNotCompute(); 8122 } 8123 8124 // The only time we can solve this is when we have all constant indices. 8125 // Otherwise, we cannot determine the overflow conditions. 8126 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 8127 if (!isa<SCEVConstant>(getOperand(i))) 8128 return SE.getCouldNotCompute(); 8129 8130 8131 // Okay at this point we know that all elements of the chrec are constants and 8132 // that the start element is zero. 8133 8134 // First check to see if the range contains zero. If not, the first 8135 // iteration exits. 8136 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8137 if (!Range.contains(APInt(BitWidth, 0))) 8138 return SE.getZero(getType()); 8139 8140 if (isAffine()) { 8141 // If this is an affine expression then we have this situation: 8142 // Solve {0,+,A} in Range === Ax in Range 8143 8144 // We know that zero is in the range. If A is positive then we know that 8145 // the upper value of the range must be the first possible exit value. 8146 // If A is negative then the lower of the range is the last possible loop 8147 // value. Also note that we already checked for a full range. 8148 APInt One(BitWidth,1); 8149 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 8150 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8151 8152 // The exit value should be (End+A)/A. 8153 APInt ExitVal = (End + A).udiv(A); 8154 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8155 8156 // Evaluate at the exit value. If we really did fall out of the valid 8157 // range, then we computed our trip count, otherwise wrap around or other 8158 // things must have happened. 8159 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8160 if (Range.contains(Val->getValue())) 8161 return SE.getCouldNotCompute(); // Something strange happened 8162 8163 // Ensure that the previous value is in the range. This is a sanity check. 8164 assert(Range.contains( 8165 EvaluateConstantChrecAtConstant(this, 8166 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8167 "Linear scev computation is off in a bad way!"); 8168 return SE.getConstant(ExitValue); 8169 } else if (isQuadratic()) { 8170 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8171 // quadratic equation to solve it. To do this, we must frame our problem in 8172 // terms of figuring out when zero is crossed, instead of when 8173 // Range.getUpper() is crossed. 8174 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8175 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8176 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8177 // getNoWrapFlags(FlagNW) 8178 FlagAnyWrap); 8179 8180 // Next, solve the constructed addrec 8181 std::pair<const SCEV *,const SCEV *> Roots = 8182 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8183 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8184 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8185 if (R1) { 8186 // Pick the smallest positive root value. 8187 if (ConstantInt *CB = 8188 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 8189 R1->getValue(), R2->getValue()))) { 8190 if (!CB->getZExtValue()) 8191 std::swap(R1, R2); // R1 is the minimum root now. 8192 8193 // Make sure the root is not off by one. The returned iteration should 8194 // not be in the range, but the previous one should be. When solving 8195 // for "X*X < 5", for example, we should not return a root of 2. 8196 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8197 R1->getValue(), 8198 SE); 8199 if (Range.contains(R1Val->getValue())) { 8200 // The next iteration must be out of the range... 8201 ConstantInt *NextVal = 8202 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8203 8204 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8205 if (!Range.contains(R1Val->getValue())) 8206 return SE.getConstant(NextVal); 8207 return SE.getCouldNotCompute(); // Something strange happened 8208 } 8209 8210 // If R1 was not in the range, then it is a good return value. Make 8211 // sure that R1-1 WAS in the range though, just in case. 8212 ConstantInt *NextVal = 8213 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8214 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8215 if (Range.contains(R1Val->getValue())) 8216 return R1; 8217 return SE.getCouldNotCompute(); // Something strange happened 8218 } 8219 } 8220 } 8221 8222 return SE.getCouldNotCompute(); 8223 } 8224 8225 namespace { 8226 struct FindUndefs { 8227 bool Found; 8228 FindUndefs() : Found(false) {} 8229 8230 bool follow(const SCEV *S) { 8231 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8232 if (isa<UndefValue>(C->getValue())) 8233 Found = true; 8234 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8235 if (isa<UndefValue>(C->getValue())) 8236 Found = true; 8237 } 8238 8239 // Keep looking if we haven't found it yet. 8240 return !Found; 8241 } 8242 bool isDone() const { 8243 // Stop recursion if we have found an undef. 8244 return Found; 8245 } 8246 }; 8247 } 8248 8249 // Return true when S contains at least an undef value. 8250 static inline bool 8251 containsUndefs(const SCEV *S) { 8252 FindUndefs F; 8253 SCEVTraversal<FindUndefs> ST(F); 8254 ST.visitAll(S); 8255 8256 return F.Found; 8257 } 8258 8259 namespace { 8260 // Collect all steps of SCEV expressions. 8261 struct SCEVCollectStrides { 8262 ScalarEvolution &SE; 8263 SmallVectorImpl<const SCEV *> &Strides; 8264 8265 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8266 : SE(SE), Strides(S) {} 8267 8268 bool follow(const SCEV *S) { 8269 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8270 Strides.push_back(AR->getStepRecurrence(SE)); 8271 return true; 8272 } 8273 bool isDone() const { return false; } 8274 }; 8275 8276 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8277 struct SCEVCollectTerms { 8278 SmallVectorImpl<const SCEV *> &Terms; 8279 8280 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8281 : Terms(T) {} 8282 8283 bool follow(const SCEV *S) { 8284 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8285 if (!containsUndefs(S)) 8286 Terms.push_back(S); 8287 8288 // Stop recursion: once we collected a term, do not walk its operands. 8289 return false; 8290 } 8291 8292 // Keep looking. 8293 return true; 8294 } 8295 bool isDone() const { return false; } 8296 }; 8297 } 8298 8299 /// Find parametric terms in this SCEVAddRecExpr. 8300 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8301 SmallVectorImpl<const SCEV *> &Terms) { 8302 SmallVector<const SCEV *, 4> Strides; 8303 SCEVCollectStrides StrideCollector(*this, Strides); 8304 visitAll(Expr, StrideCollector); 8305 8306 DEBUG({ 8307 dbgs() << "Strides:\n"; 8308 for (const SCEV *S : Strides) 8309 dbgs() << *S << "\n"; 8310 }); 8311 8312 for (const SCEV *S : Strides) { 8313 SCEVCollectTerms TermCollector(Terms); 8314 visitAll(S, TermCollector); 8315 } 8316 8317 DEBUG({ 8318 dbgs() << "Terms:\n"; 8319 for (const SCEV *T : Terms) 8320 dbgs() << *T << "\n"; 8321 }); 8322 } 8323 8324 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8325 SmallVectorImpl<const SCEV *> &Terms, 8326 SmallVectorImpl<const SCEV *> &Sizes) { 8327 int Last = Terms.size() - 1; 8328 const SCEV *Step = Terms[Last]; 8329 8330 // End of recursion. 8331 if (Last == 0) { 8332 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8333 SmallVector<const SCEV *, 2> Qs; 8334 for (const SCEV *Op : M->operands()) 8335 if (!isa<SCEVConstant>(Op)) 8336 Qs.push_back(Op); 8337 8338 Step = SE.getMulExpr(Qs); 8339 } 8340 8341 Sizes.push_back(Step); 8342 return true; 8343 } 8344 8345 for (const SCEV *&Term : Terms) { 8346 // Normalize the terms before the next call to findArrayDimensionsRec. 8347 const SCEV *Q, *R; 8348 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8349 8350 // Bail out when GCD does not evenly divide one of the terms. 8351 if (!R->isZero()) 8352 return false; 8353 8354 Term = Q; 8355 } 8356 8357 // Remove all SCEVConstants. 8358 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8359 return isa<SCEVConstant>(E); 8360 }), 8361 Terms.end()); 8362 8363 if (Terms.size() > 0) 8364 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8365 return false; 8366 8367 Sizes.push_back(Step); 8368 return true; 8369 } 8370 8371 namespace { 8372 struct FindParameter { 8373 bool FoundParameter; 8374 FindParameter() : FoundParameter(false) {} 8375 8376 bool follow(const SCEV *S) { 8377 if (isa<SCEVUnknown>(S)) { 8378 FoundParameter = true; 8379 // Stop recursion: we found a parameter. 8380 return false; 8381 } 8382 // Keep looking. 8383 return true; 8384 } 8385 bool isDone() const { 8386 // Stop recursion if we have found a parameter. 8387 return FoundParameter; 8388 } 8389 }; 8390 } 8391 8392 // Returns true when S contains at least a SCEVUnknown parameter. 8393 static inline bool 8394 containsParameters(const SCEV *S) { 8395 FindParameter F; 8396 SCEVTraversal<FindParameter> ST(F); 8397 ST.visitAll(S); 8398 8399 return F.FoundParameter; 8400 } 8401 8402 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8403 static inline bool 8404 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8405 for (const SCEV *T : Terms) 8406 if (containsParameters(T)) 8407 return true; 8408 return false; 8409 } 8410 8411 // Return the number of product terms in S. 8412 static inline int numberOfTerms(const SCEV *S) { 8413 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8414 return Expr->getNumOperands(); 8415 return 1; 8416 } 8417 8418 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8419 if (isa<SCEVConstant>(T)) 8420 return nullptr; 8421 8422 if (isa<SCEVUnknown>(T)) 8423 return T; 8424 8425 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8426 SmallVector<const SCEV *, 2> Factors; 8427 for (const SCEV *Op : M->operands()) 8428 if (!isa<SCEVConstant>(Op)) 8429 Factors.push_back(Op); 8430 8431 return SE.getMulExpr(Factors); 8432 } 8433 8434 return T; 8435 } 8436 8437 /// Return the size of an element read or written by Inst. 8438 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8439 Type *Ty; 8440 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8441 Ty = Store->getValueOperand()->getType(); 8442 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8443 Ty = Load->getType(); 8444 else 8445 return nullptr; 8446 8447 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8448 return getSizeOfExpr(ETy, Ty); 8449 } 8450 8451 /// Second step of delinearization: compute the array dimensions Sizes from the 8452 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8453 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8454 SmallVectorImpl<const SCEV *> &Sizes, 8455 const SCEV *ElementSize) const { 8456 8457 if (Terms.size() < 1 || !ElementSize) 8458 return; 8459 8460 // Early return when Terms do not contain parameters: we do not delinearize 8461 // non parametric SCEVs. 8462 if (!containsParameters(Terms)) 8463 return; 8464 8465 DEBUG({ 8466 dbgs() << "Terms:\n"; 8467 for (const SCEV *T : Terms) 8468 dbgs() << *T << "\n"; 8469 }); 8470 8471 // Remove duplicates. 8472 std::sort(Terms.begin(), Terms.end()); 8473 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8474 8475 // Put larger terms first. 8476 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8477 return numberOfTerms(LHS) > numberOfTerms(RHS); 8478 }); 8479 8480 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8481 8482 // Divide all terms by the element size. 8483 for (const SCEV *&Term : Terms) { 8484 const SCEV *Q, *R; 8485 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8486 Term = Q; 8487 } 8488 8489 SmallVector<const SCEV *, 4> NewTerms; 8490 8491 // Remove constant factors. 8492 for (const SCEV *T : Terms) 8493 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8494 NewTerms.push_back(NewT); 8495 8496 DEBUG({ 8497 dbgs() << "Terms after sorting:\n"; 8498 for (const SCEV *T : NewTerms) 8499 dbgs() << *T << "\n"; 8500 }); 8501 8502 if (NewTerms.empty() || 8503 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8504 Sizes.clear(); 8505 return; 8506 } 8507 8508 // The last element to be pushed into Sizes is the size of an element. 8509 Sizes.push_back(ElementSize); 8510 8511 DEBUG({ 8512 dbgs() << "Sizes:\n"; 8513 for (const SCEV *S : Sizes) 8514 dbgs() << *S << "\n"; 8515 }); 8516 } 8517 8518 /// Third step of delinearization: compute the access functions for the 8519 /// Subscripts based on the dimensions in Sizes. 8520 void ScalarEvolution::computeAccessFunctions( 8521 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8522 SmallVectorImpl<const SCEV *> &Sizes) { 8523 8524 // Early exit in case this SCEV is not an affine multivariate function. 8525 if (Sizes.empty()) 8526 return; 8527 8528 if (auto AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8529 if (!AR->isAffine()) 8530 return; 8531 8532 const SCEV *Res = Expr; 8533 int Last = Sizes.size() - 1; 8534 for (int i = Last; i >= 0; i--) { 8535 const SCEV *Q, *R; 8536 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8537 8538 DEBUG({ 8539 dbgs() << "Res: " << *Res << "\n"; 8540 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8541 dbgs() << "Res divided by Sizes[i]:\n"; 8542 dbgs() << "Quotient: " << *Q << "\n"; 8543 dbgs() << "Remainder: " << *R << "\n"; 8544 }); 8545 8546 Res = Q; 8547 8548 // Do not record the last subscript corresponding to the size of elements in 8549 // the array. 8550 if (i == Last) { 8551 8552 // Bail out if the remainder is too complex. 8553 if (isa<SCEVAddRecExpr>(R)) { 8554 Subscripts.clear(); 8555 Sizes.clear(); 8556 return; 8557 } 8558 8559 continue; 8560 } 8561 8562 // Record the access function for the current subscript. 8563 Subscripts.push_back(R); 8564 } 8565 8566 // Also push in last position the remainder of the last division: it will be 8567 // the access function of the innermost dimension. 8568 Subscripts.push_back(Res); 8569 8570 std::reverse(Subscripts.begin(), Subscripts.end()); 8571 8572 DEBUG({ 8573 dbgs() << "Subscripts:\n"; 8574 for (const SCEV *S : Subscripts) 8575 dbgs() << *S << "\n"; 8576 }); 8577 } 8578 8579 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8580 /// sizes of an array access. Returns the remainder of the delinearization that 8581 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8582 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8583 /// expressions in the stride and base of a SCEV corresponding to the 8584 /// computation of a GCD (greatest common divisor) of base and stride. When 8585 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8586 /// 8587 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8588 /// 8589 /// void foo(long n, long m, long o, double A[n][m][o]) { 8590 /// 8591 /// for (long i = 0; i < n; i++) 8592 /// for (long j = 0; j < m; j++) 8593 /// for (long k = 0; k < o; k++) 8594 /// A[i][j][k] = 1.0; 8595 /// } 8596 /// 8597 /// the delinearization input is the following AddRec SCEV: 8598 /// 8599 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8600 /// 8601 /// From this SCEV, we are able to say that the base offset of the access is %A 8602 /// because it appears as an offset that does not divide any of the strides in 8603 /// the loops: 8604 /// 8605 /// CHECK: Base offset: %A 8606 /// 8607 /// and then SCEV->delinearize determines the size of some of the dimensions of 8608 /// the array as these are the multiples by which the strides are happening: 8609 /// 8610 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8611 /// 8612 /// Note that the outermost dimension remains of UnknownSize because there are 8613 /// no strides that would help identifying the size of the last dimension: when 8614 /// the array has been statically allocated, one could compute the size of that 8615 /// dimension by dividing the overall size of the array by the size of the known 8616 /// dimensions: %m * %o * 8. 8617 /// 8618 /// Finally delinearize provides the access functions for the array reference 8619 /// that does correspond to A[i][j][k] of the above C testcase: 8620 /// 8621 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8622 /// 8623 /// The testcases are checking the output of a function pass: 8624 /// DelinearizationPass that walks through all loads and stores of a function 8625 /// asking for the SCEV of the memory access with respect to all enclosing 8626 /// loops, calling SCEV->delinearize on that and printing the results. 8627 8628 void ScalarEvolution::delinearize(const SCEV *Expr, 8629 SmallVectorImpl<const SCEV *> &Subscripts, 8630 SmallVectorImpl<const SCEV *> &Sizes, 8631 const SCEV *ElementSize) { 8632 // First step: collect parametric terms. 8633 SmallVector<const SCEV *, 4> Terms; 8634 collectParametricTerms(Expr, Terms); 8635 8636 if (Terms.empty()) 8637 return; 8638 8639 // Second step: find subscript sizes. 8640 findArrayDimensions(Terms, Sizes, ElementSize); 8641 8642 if (Sizes.empty()) 8643 return; 8644 8645 // Third step: compute the access functions for each subscript. 8646 computeAccessFunctions(Expr, Subscripts, Sizes); 8647 8648 if (Subscripts.empty()) 8649 return; 8650 8651 DEBUG({ 8652 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8653 dbgs() << "ArrayDecl[UnknownSize]"; 8654 for (const SCEV *S : Sizes) 8655 dbgs() << "[" << *S << "]"; 8656 8657 dbgs() << "\nArrayRef"; 8658 for (const SCEV *S : Subscripts) 8659 dbgs() << "[" << *S << "]"; 8660 dbgs() << "\n"; 8661 }); 8662 } 8663 8664 //===----------------------------------------------------------------------===// 8665 // SCEVCallbackVH Class Implementation 8666 //===----------------------------------------------------------------------===// 8667 8668 void ScalarEvolution::SCEVCallbackVH::deleted() { 8669 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8670 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8671 SE->ConstantEvolutionLoopExitValue.erase(PN); 8672 SE->ValueExprMap.erase(getValPtr()); 8673 // this now dangles! 8674 } 8675 8676 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8677 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8678 8679 // Forget all the expressions associated with users of the old value, 8680 // so that future queries will recompute the expressions using the new 8681 // value. 8682 Value *Old = getValPtr(); 8683 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8684 SmallPtrSet<User *, 8> Visited; 8685 while (!Worklist.empty()) { 8686 User *U = Worklist.pop_back_val(); 8687 // Deleting the Old value will cause this to dangle. Postpone 8688 // that until everything else is done. 8689 if (U == Old) 8690 continue; 8691 if (!Visited.insert(U).second) 8692 continue; 8693 if (PHINode *PN = dyn_cast<PHINode>(U)) 8694 SE->ConstantEvolutionLoopExitValue.erase(PN); 8695 SE->ValueExprMap.erase(U); 8696 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8697 } 8698 // Delete the Old value. 8699 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8700 SE->ConstantEvolutionLoopExitValue.erase(PN); 8701 SE->ValueExprMap.erase(Old); 8702 // this now dangles! 8703 } 8704 8705 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8706 : CallbackVH(V), SE(se) {} 8707 8708 //===----------------------------------------------------------------------===// 8709 // ScalarEvolution Class Implementation 8710 //===----------------------------------------------------------------------===// 8711 8712 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 8713 AssumptionCache &AC, DominatorTree &DT, 8714 LoopInfo &LI) 8715 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 8716 CouldNotCompute(new SCEVCouldNotCompute()), 8717 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8718 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 8719 FirstUnknown(nullptr) {} 8720 8721 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 8722 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 8723 CouldNotCompute(std::move(Arg.CouldNotCompute)), 8724 ValueExprMap(std::move(Arg.ValueExprMap)), 8725 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8726 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 8727 ConstantEvolutionLoopExitValue( 8728 std::move(Arg.ConstantEvolutionLoopExitValue)), 8729 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 8730 LoopDispositions(std::move(Arg.LoopDispositions)), 8731 BlockDispositions(std::move(Arg.BlockDispositions)), 8732 UnsignedRanges(std::move(Arg.UnsignedRanges)), 8733 SignedRanges(std::move(Arg.SignedRanges)), 8734 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 8735 SCEVAllocator(std::move(Arg.SCEVAllocator)), 8736 FirstUnknown(Arg.FirstUnknown) { 8737 Arg.FirstUnknown = nullptr; 8738 } 8739 8740 ScalarEvolution::~ScalarEvolution() { 8741 // Iterate through all the SCEVUnknown instances and call their 8742 // destructors, so that they release their references to their values. 8743 for (SCEVUnknown *U = FirstUnknown; U;) { 8744 SCEVUnknown *Tmp = U; 8745 U = U->Next; 8746 Tmp->~SCEVUnknown(); 8747 } 8748 FirstUnknown = nullptr; 8749 8750 ValueExprMap.clear(); 8751 8752 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8753 // that a loop had multiple computable exits. 8754 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8755 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 8756 I != E; ++I) { 8757 I->second.clear(); 8758 } 8759 8760 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8761 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8762 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 8763 } 8764 8765 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8766 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8767 } 8768 8769 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8770 const Loop *L) { 8771 // Print all inner loops first 8772 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8773 PrintLoopInfo(OS, SE, *I); 8774 8775 OS << "Loop "; 8776 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8777 OS << ": "; 8778 8779 SmallVector<BasicBlock *, 8> ExitBlocks; 8780 L->getExitBlocks(ExitBlocks); 8781 if (ExitBlocks.size() != 1) 8782 OS << "<multiple exits> "; 8783 8784 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8785 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8786 } else { 8787 OS << "Unpredictable backedge-taken count. "; 8788 } 8789 8790 OS << "\n" 8791 "Loop "; 8792 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8793 OS << ": "; 8794 8795 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8796 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8797 } else { 8798 OS << "Unpredictable max backedge-taken count. "; 8799 } 8800 8801 OS << "\n"; 8802 } 8803 8804 void ScalarEvolution::print(raw_ostream &OS) const { 8805 // ScalarEvolution's implementation of the print method is to print 8806 // out SCEV values of all instructions that are interesting. Doing 8807 // this potentially causes it to create new SCEV objects though, 8808 // which technically conflicts with the const qualifier. This isn't 8809 // observable from outside the class though, so casting away the 8810 // const isn't dangerous. 8811 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8812 8813 OS << "Classifying expressions for: "; 8814 F.printAsOperand(OS, /*PrintType=*/false); 8815 OS << "\n"; 8816 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 8817 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 8818 OS << *I << '\n'; 8819 OS << " --> "; 8820 const SCEV *SV = SE.getSCEV(&*I); 8821 SV->print(OS); 8822 if (!isa<SCEVCouldNotCompute>(SV)) { 8823 OS << " U: "; 8824 SE.getUnsignedRange(SV).print(OS); 8825 OS << " S: "; 8826 SE.getSignedRange(SV).print(OS); 8827 } 8828 8829 const Loop *L = LI.getLoopFor((*I).getParent()); 8830 8831 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8832 if (AtUse != SV) { 8833 OS << " --> "; 8834 AtUse->print(OS); 8835 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8836 OS << " U: "; 8837 SE.getUnsignedRange(AtUse).print(OS); 8838 OS << " S: "; 8839 SE.getSignedRange(AtUse).print(OS); 8840 } 8841 } 8842 8843 if (L) { 8844 OS << "\t\t" "Exits: "; 8845 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8846 if (!SE.isLoopInvariant(ExitValue, L)) { 8847 OS << "<<Unknown>>"; 8848 } else { 8849 OS << *ExitValue; 8850 } 8851 } 8852 8853 OS << "\n"; 8854 } 8855 8856 OS << "Determining loop execution counts for: "; 8857 F.printAsOperand(OS, /*PrintType=*/false); 8858 OS << "\n"; 8859 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 8860 PrintLoopInfo(OS, &SE, *I); 8861 } 8862 8863 ScalarEvolution::LoopDisposition 8864 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8865 auto &Values = LoopDispositions[S]; 8866 for (auto &V : Values) { 8867 if (V.getPointer() == L) 8868 return V.getInt(); 8869 } 8870 Values.emplace_back(L, LoopVariant); 8871 LoopDisposition D = computeLoopDisposition(S, L); 8872 auto &Values2 = LoopDispositions[S]; 8873 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8874 if (V.getPointer() == L) { 8875 V.setInt(D); 8876 break; 8877 } 8878 } 8879 return D; 8880 } 8881 8882 ScalarEvolution::LoopDisposition 8883 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8884 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8885 case scConstant: 8886 return LoopInvariant; 8887 case scTruncate: 8888 case scZeroExtend: 8889 case scSignExtend: 8890 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8891 case scAddRecExpr: { 8892 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8893 8894 // If L is the addrec's loop, it's computable. 8895 if (AR->getLoop() == L) 8896 return LoopComputable; 8897 8898 // Add recurrences are never invariant in the function-body (null loop). 8899 if (!L) 8900 return LoopVariant; 8901 8902 // This recurrence is variant w.r.t. L if L contains AR's loop. 8903 if (L->contains(AR->getLoop())) 8904 return LoopVariant; 8905 8906 // This recurrence is invariant w.r.t. L if AR's loop contains L. 8907 if (AR->getLoop()->contains(L)) 8908 return LoopInvariant; 8909 8910 // This recurrence is variant w.r.t. L if any of its operands 8911 // are variant. 8912 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 8913 I != E; ++I) 8914 if (!isLoopInvariant(*I, L)) 8915 return LoopVariant; 8916 8917 // Otherwise it's loop-invariant. 8918 return LoopInvariant; 8919 } 8920 case scAddExpr: 8921 case scMulExpr: 8922 case scUMaxExpr: 8923 case scSMaxExpr: { 8924 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8925 bool HasVarying = false; 8926 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8927 I != E; ++I) { 8928 LoopDisposition D = getLoopDisposition(*I, L); 8929 if (D == LoopVariant) 8930 return LoopVariant; 8931 if (D == LoopComputable) 8932 HasVarying = true; 8933 } 8934 return HasVarying ? LoopComputable : LoopInvariant; 8935 } 8936 case scUDivExpr: { 8937 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8938 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 8939 if (LD == LoopVariant) 8940 return LoopVariant; 8941 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 8942 if (RD == LoopVariant) 8943 return LoopVariant; 8944 return (LD == LoopInvariant && RD == LoopInvariant) ? 8945 LoopInvariant : LoopComputable; 8946 } 8947 case scUnknown: 8948 // All non-instruction values are loop invariant. All instructions are loop 8949 // invariant if they are not contained in the specified loop. 8950 // Instructions are never considered invariant in the function body 8951 // (null loop) because they are defined within the "loop". 8952 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 8953 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 8954 return LoopInvariant; 8955 case scCouldNotCompute: 8956 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8957 } 8958 llvm_unreachable("Unknown SCEV kind!"); 8959 } 8960 8961 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 8962 return getLoopDisposition(S, L) == LoopInvariant; 8963 } 8964 8965 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 8966 return getLoopDisposition(S, L) == LoopComputable; 8967 } 8968 8969 ScalarEvolution::BlockDisposition 8970 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8971 auto &Values = BlockDispositions[S]; 8972 for (auto &V : Values) { 8973 if (V.getPointer() == BB) 8974 return V.getInt(); 8975 } 8976 Values.emplace_back(BB, DoesNotDominateBlock); 8977 BlockDisposition D = computeBlockDisposition(S, BB); 8978 auto &Values2 = BlockDispositions[S]; 8979 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8980 if (V.getPointer() == BB) { 8981 V.setInt(D); 8982 break; 8983 } 8984 } 8985 return D; 8986 } 8987 8988 ScalarEvolution::BlockDisposition 8989 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8990 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8991 case scConstant: 8992 return ProperlyDominatesBlock; 8993 case scTruncate: 8994 case scZeroExtend: 8995 case scSignExtend: 8996 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 8997 case scAddRecExpr: { 8998 // This uses a "dominates" query instead of "properly dominates" query 8999 // to test for proper dominance too, because the instruction which 9000 // produces the addrec's value is a PHI, and a PHI effectively properly 9001 // dominates its entire containing block. 9002 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9003 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9004 return DoesNotDominateBlock; 9005 } 9006 // FALL THROUGH into SCEVNAryExpr handling. 9007 case scAddExpr: 9008 case scMulExpr: 9009 case scUMaxExpr: 9010 case scSMaxExpr: { 9011 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9012 bool Proper = true; 9013 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9014 I != E; ++I) { 9015 BlockDisposition D = getBlockDisposition(*I, BB); 9016 if (D == DoesNotDominateBlock) 9017 return DoesNotDominateBlock; 9018 if (D == DominatesBlock) 9019 Proper = false; 9020 } 9021 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9022 } 9023 case scUDivExpr: { 9024 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9025 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9026 BlockDisposition LD = getBlockDisposition(LHS, BB); 9027 if (LD == DoesNotDominateBlock) 9028 return DoesNotDominateBlock; 9029 BlockDisposition RD = getBlockDisposition(RHS, BB); 9030 if (RD == DoesNotDominateBlock) 9031 return DoesNotDominateBlock; 9032 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9033 ProperlyDominatesBlock : DominatesBlock; 9034 } 9035 case scUnknown: 9036 if (Instruction *I = 9037 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9038 if (I->getParent() == BB) 9039 return DominatesBlock; 9040 if (DT.properlyDominates(I->getParent(), BB)) 9041 return ProperlyDominatesBlock; 9042 return DoesNotDominateBlock; 9043 } 9044 return ProperlyDominatesBlock; 9045 case scCouldNotCompute: 9046 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9047 } 9048 llvm_unreachable("Unknown SCEV kind!"); 9049 } 9050 9051 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9052 return getBlockDisposition(S, BB) >= DominatesBlock; 9053 } 9054 9055 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9056 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9057 } 9058 9059 namespace { 9060 // Search for a SCEV expression node within an expression tree. 9061 // Implements SCEVTraversal::Visitor. 9062 struct SCEVSearch { 9063 const SCEV *Node; 9064 bool IsFound; 9065 9066 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9067 9068 bool follow(const SCEV *S) { 9069 IsFound |= (S == Node); 9070 return !IsFound; 9071 } 9072 bool isDone() const { return IsFound; } 9073 }; 9074 } 9075 9076 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9077 SCEVSearch Search(Op); 9078 visitAll(S, Search); 9079 return Search.IsFound; 9080 } 9081 9082 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9083 ValuesAtScopes.erase(S); 9084 LoopDispositions.erase(S); 9085 BlockDispositions.erase(S); 9086 UnsignedRanges.erase(S); 9087 SignedRanges.erase(S); 9088 9089 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9090 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9091 BackedgeTakenInfo &BEInfo = I->second; 9092 if (BEInfo.hasOperand(S, this)) { 9093 BEInfo.clear(); 9094 BackedgeTakenCounts.erase(I++); 9095 } 9096 else 9097 ++I; 9098 } 9099 } 9100 9101 typedef DenseMap<const Loop *, std::string> VerifyMap; 9102 9103 /// replaceSubString - Replaces all occurrences of From in Str with To. 9104 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9105 size_t Pos = 0; 9106 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9107 Str.replace(Pos, From.size(), To.data(), To.size()); 9108 Pos += To.size(); 9109 } 9110 } 9111 9112 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9113 static void 9114 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9115 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 9116 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 9117 9118 std::string &S = Map[L]; 9119 if (S.empty()) { 9120 raw_string_ostream OS(S); 9121 SE.getBackedgeTakenCount(L)->print(OS); 9122 9123 // false and 0 are semantically equivalent. This can happen in dead loops. 9124 replaceSubString(OS.str(), "false", "0"); 9125 // Remove wrap flags, their use in SCEV is highly fragile. 9126 // FIXME: Remove this when SCEV gets smarter about them. 9127 replaceSubString(OS.str(), "<nw>", ""); 9128 replaceSubString(OS.str(), "<nsw>", ""); 9129 replaceSubString(OS.str(), "<nuw>", ""); 9130 } 9131 } 9132 } 9133 9134 void ScalarEvolution::verify() const { 9135 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9136 9137 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9138 // FIXME: It would be much better to store actual values instead of strings, 9139 // but SCEV pointers will change if we drop the caches. 9140 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9141 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9142 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9143 9144 // Gather stringified backedge taken counts for all loops using a fresh 9145 // ScalarEvolution object. 9146 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9147 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9148 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9149 9150 // Now compare whether they're the same with and without caches. This allows 9151 // verifying that no pass changed the cache. 9152 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9153 "New loops suddenly appeared!"); 9154 9155 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9156 OldE = BackedgeDumpsOld.end(), 9157 NewI = BackedgeDumpsNew.begin(); 9158 OldI != OldE; ++OldI, ++NewI) { 9159 assert(OldI->first == NewI->first && "Loop order changed!"); 9160 9161 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9162 // changes. 9163 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9164 // means that a pass is buggy or SCEV has to learn a new pattern but is 9165 // usually not harmful. 9166 if (OldI->second != NewI->second && 9167 OldI->second.find("undef") == std::string::npos && 9168 NewI->second.find("undef") == std::string::npos && 9169 OldI->second != "***COULDNOTCOMPUTE***" && 9170 NewI->second != "***COULDNOTCOMPUTE***") { 9171 dbgs() << "SCEVValidator: SCEV for loop '" 9172 << OldI->first->getHeader()->getName() 9173 << "' changed from '" << OldI->second 9174 << "' to '" << NewI->second << "'!\n"; 9175 std::abort(); 9176 } 9177 } 9178 9179 // TODO: Verify more things. 9180 } 9181 9182 char ScalarEvolutionAnalysis::PassID; 9183 9184 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9185 AnalysisManager<Function> *AM) { 9186 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9187 AM->getResult<AssumptionAnalysis>(F), 9188 AM->getResult<DominatorTreeAnalysis>(F), 9189 AM->getResult<LoopAnalysis>(F)); 9190 } 9191 9192 PreservedAnalyses 9193 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9194 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9195 return PreservedAnalyses::all(); 9196 } 9197 9198 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9199 "Scalar Evolution Analysis", false, true) 9200 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9201 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9202 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9203 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9204 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9205 "Scalar Evolution Analysis", false, true) 9206 char ScalarEvolutionWrapperPass::ID = 0; 9207 9208 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9209 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9210 } 9211 9212 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9213 SE.reset(new ScalarEvolution( 9214 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9215 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9216 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9217 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9218 return false; 9219 } 9220 9221 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9222 9223 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9224 SE->print(OS); 9225 } 9226 9227 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9228 if (!VerifySCEV) 9229 return; 9230 9231 SE->verify(); 9232 } 9233 9234 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9235 AU.setPreservesAll(); 9236 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9237 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9238 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9239 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9240 } 9241