1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include <algorithm> 92 using namespace llvm; 93 94 #define DEBUG_TYPE "scalar-evolution" 95 96 STATISTIC(NumArrayLenItCounts, 97 "Number of trip counts computed with array length"); 98 STATISTIC(NumTripCountsComputed, 99 "Number of loops with predictable loop counts"); 100 STATISTIC(NumTripCountsNotComputed, 101 "Number of loops without predictable loop counts"); 102 STATISTIC(NumBruteForceTripCountsComputed, 103 "Number of loops with trip counts computed by force"); 104 105 static cl::opt<unsigned> 106 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 107 cl::desc("Maximum number of iterations SCEV will " 108 "symbolically execute a constant " 109 "derived loop"), 110 cl::init(100)); 111 112 // FIXME: Enable this with XDEBUG when the test suite is clean. 113 static cl::opt<bool> 114 VerifySCEV("verify-scev", 115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 116 117 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 118 "Scalar Evolution Analysis", false, true) 119 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 120 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 122 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 123 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 124 "Scalar Evolution Analysis", false, true) 125 char ScalarEvolution::ID = 0; 126 127 //===----------------------------------------------------------------------===// 128 // SCEV class definitions 129 //===----------------------------------------------------------------------===// 130 131 //===----------------------------------------------------------------------===// 132 // Implementation of the SCEV class. 133 // 134 135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 136 void SCEV::dump() const { 137 print(dbgs()); 138 dbgs() << '\n'; 139 } 140 #endif 141 142 void SCEV::print(raw_ostream &OS) const { 143 switch (static_cast<SCEVTypes>(getSCEVType())) { 144 case scConstant: 145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 146 return; 147 case scTruncate: { 148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 149 const SCEV *Op = Trunc->getOperand(); 150 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 151 << *Trunc->getType() << ")"; 152 return; 153 } 154 case scZeroExtend: { 155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 156 const SCEV *Op = ZExt->getOperand(); 157 OS << "(zext " << *Op->getType() << " " << *Op << " to " 158 << *ZExt->getType() << ")"; 159 return; 160 } 161 case scSignExtend: { 162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 163 const SCEV *Op = SExt->getOperand(); 164 OS << "(sext " << *Op->getType() << " " << *Op << " to " 165 << *SExt->getType() << ")"; 166 return; 167 } 168 case scAddRecExpr: { 169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 170 OS << "{" << *AR->getOperand(0); 171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 172 OS << ",+," << *AR->getOperand(i); 173 OS << "}<"; 174 if (AR->getNoWrapFlags(FlagNUW)) 175 OS << "nuw><"; 176 if (AR->getNoWrapFlags(FlagNSW)) 177 OS << "nsw><"; 178 if (AR->getNoWrapFlags(FlagNW) && 179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 180 OS << "nw><"; 181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 182 OS << ">"; 183 return; 184 } 185 case scAddExpr: 186 case scMulExpr: 187 case scUMaxExpr: 188 case scSMaxExpr: { 189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 190 const char *OpStr = nullptr; 191 switch (NAry->getSCEVType()) { 192 case scAddExpr: OpStr = " + "; break; 193 case scMulExpr: OpStr = " * "; break; 194 case scUMaxExpr: OpStr = " umax "; break; 195 case scSMaxExpr: OpStr = " smax "; break; 196 } 197 OS << "("; 198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 199 I != E; ++I) { 200 OS << **I; 201 if (std::next(I) != E) 202 OS << OpStr; 203 } 204 OS << ")"; 205 switch (NAry->getSCEVType()) { 206 case scAddExpr: 207 case scMulExpr: 208 if (NAry->getNoWrapFlags(FlagNUW)) 209 OS << "<nuw>"; 210 if (NAry->getNoWrapFlags(FlagNSW)) 211 OS << "<nsw>"; 212 } 213 return; 214 } 215 case scUDivExpr: { 216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 218 return; 219 } 220 case scUnknown: { 221 const SCEVUnknown *U = cast<SCEVUnknown>(this); 222 Type *AllocTy; 223 if (U->isSizeOf(AllocTy)) { 224 OS << "sizeof(" << *AllocTy << ")"; 225 return; 226 } 227 if (U->isAlignOf(AllocTy)) { 228 OS << "alignof(" << *AllocTy << ")"; 229 return; 230 } 231 232 Type *CTy; 233 Constant *FieldNo; 234 if (U->isOffsetOf(CTy, FieldNo)) { 235 OS << "offsetof(" << *CTy << ", "; 236 FieldNo->printAsOperand(OS, false); 237 OS << ")"; 238 return; 239 } 240 241 // Otherwise just print it normally. 242 U->getValue()->printAsOperand(OS, false); 243 return; 244 } 245 case scCouldNotCompute: 246 OS << "***COULDNOTCOMPUTE***"; 247 return; 248 } 249 llvm_unreachable("Unknown SCEV kind!"); 250 } 251 252 Type *SCEV::getType() const { 253 switch (static_cast<SCEVTypes>(getSCEVType())) { 254 case scConstant: 255 return cast<SCEVConstant>(this)->getType(); 256 case scTruncate: 257 case scZeroExtend: 258 case scSignExtend: 259 return cast<SCEVCastExpr>(this)->getType(); 260 case scAddRecExpr: 261 case scMulExpr: 262 case scUMaxExpr: 263 case scSMaxExpr: 264 return cast<SCEVNAryExpr>(this)->getType(); 265 case scAddExpr: 266 return cast<SCEVAddExpr>(this)->getType(); 267 case scUDivExpr: 268 return cast<SCEVUDivExpr>(this)->getType(); 269 case scUnknown: 270 return cast<SCEVUnknown>(this)->getType(); 271 case scCouldNotCompute: 272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 273 } 274 llvm_unreachable("Unknown SCEV kind!"); 275 } 276 277 bool SCEV::isZero() const { 278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 279 return SC->getValue()->isZero(); 280 return false; 281 } 282 283 bool SCEV::isOne() const { 284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 285 return SC->getValue()->isOne(); 286 return false; 287 } 288 289 bool SCEV::isAllOnesValue() const { 290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 291 return SC->getValue()->isAllOnesValue(); 292 return false; 293 } 294 295 /// isNonConstantNegative - Return true if the specified scev is negated, but 296 /// not a constant. 297 bool SCEV::isNonConstantNegative() const { 298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 299 if (!Mul) return false; 300 301 // If there is a constant factor, it will be first. 302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 303 if (!SC) return false; 304 305 // Return true if the value is negative, this matches things like (-42 * V). 306 return SC->getValue()->getValue().isNegative(); 307 } 308 309 SCEVCouldNotCompute::SCEVCouldNotCompute() : 310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 311 312 bool SCEVCouldNotCompute::classof(const SCEV *S) { 313 return S->getSCEVType() == scCouldNotCompute; 314 } 315 316 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 317 FoldingSetNodeID ID; 318 ID.AddInteger(scConstant); 319 ID.AddPointer(V); 320 void *IP = nullptr; 321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 323 UniqueSCEVs.InsertNode(S, IP); 324 return S; 325 } 326 327 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 328 return getConstant(ConstantInt::get(getContext(), Val)); 329 } 330 331 const SCEV * 332 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 334 return getConstant(ConstantInt::get(ITy, V, isSigned)); 335 } 336 337 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 338 unsigned SCEVTy, const SCEV *op, Type *ty) 339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 340 341 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 342 const SCEV *op, Type *ty) 343 : SCEVCastExpr(ID, scTruncate, op, ty) { 344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 345 (Ty->isIntegerTy() || Ty->isPointerTy()) && 346 "Cannot truncate non-integer value!"); 347 } 348 349 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 350 const SCEV *op, Type *ty) 351 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 353 (Ty->isIntegerTy() || Ty->isPointerTy()) && 354 "Cannot zero extend non-integer value!"); 355 } 356 357 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 358 const SCEV *op, Type *ty) 359 : SCEVCastExpr(ID, scSignExtend, op, ty) { 360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 361 (Ty->isIntegerTy() || Ty->isPointerTy()) && 362 "Cannot sign extend non-integer value!"); 363 } 364 365 void SCEVUnknown::deleted() { 366 // Clear this SCEVUnknown from various maps. 367 SE->forgetMemoizedResults(this); 368 369 // Remove this SCEVUnknown from the uniquing map. 370 SE->UniqueSCEVs.RemoveNode(this); 371 372 // Release the value. 373 setValPtr(nullptr); 374 } 375 376 void SCEVUnknown::allUsesReplacedWith(Value *New) { 377 // Clear this SCEVUnknown from various maps. 378 SE->forgetMemoizedResults(this); 379 380 // Remove this SCEVUnknown from the uniquing map. 381 SE->UniqueSCEVs.RemoveNode(this); 382 383 // Update this SCEVUnknown to point to the new value. This is needed 384 // because there may still be outstanding SCEVs which still point to 385 // this SCEVUnknown. 386 setValPtr(New); 387 } 388 389 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 391 if (VCE->getOpcode() == Instruction::PtrToInt) 392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 393 if (CE->getOpcode() == Instruction::GetElementPtr && 394 CE->getOperand(0)->isNullValue() && 395 CE->getNumOperands() == 2) 396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 397 if (CI->isOne()) { 398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 399 ->getElementType(); 400 return true; 401 } 402 403 return false; 404 } 405 406 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 408 if (VCE->getOpcode() == Instruction::PtrToInt) 409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 410 if (CE->getOpcode() == Instruction::GetElementPtr && 411 CE->getOperand(0)->isNullValue()) { 412 Type *Ty = 413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 414 if (StructType *STy = dyn_cast<StructType>(Ty)) 415 if (!STy->isPacked() && 416 CE->getNumOperands() == 3 && 417 CE->getOperand(1)->isNullValue()) { 418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 419 if (CI->isOne() && 420 STy->getNumElements() == 2 && 421 STy->getElementType(0)->isIntegerTy(1)) { 422 AllocTy = STy->getElementType(1); 423 return true; 424 } 425 } 426 } 427 428 return false; 429 } 430 431 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 433 if (VCE->getOpcode() == Instruction::PtrToInt) 434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 435 if (CE->getOpcode() == Instruction::GetElementPtr && 436 CE->getNumOperands() == 3 && 437 CE->getOperand(0)->isNullValue() && 438 CE->getOperand(1)->isNullValue()) { 439 Type *Ty = 440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 441 // Ignore vector types here so that ScalarEvolutionExpander doesn't 442 // emit getelementptrs that index into vectors. 443 if (Ty->isStructTy() || Ty->isArrayTy()) { 444 CTy = Ty; 445 FieldNo = CE->getOperand(2); 446 return true; 447 } 448 } 449 450 return false; 451 } 452 453 //===----------------------------------------------------------------------===// 454 // SCEV Utilities 455 //===----------------------------------------------------------------------===// 456 457 namespace { 458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 459 /// than the complexity of the RHS. This comparator is used to canonicalize 460 /// expressions. 461 class SCEVComplexityCompare { 462 const LoopInfo *const LI; 463 public: 464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 465 466 // Return true or false if LHS is less than, or at least RHS, respectively. 467 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 468 return compare(LHS, RHS) < 0; 469 } 470 471 // Return negative, zero, or positive, if LHS is less than, equal to, or 472 // greater than RHS, respectively. A three-way result allows recursive 473 // comparisons to be more efficient. 474 int compare(const SCEV *LHS, const SCEV *RHS) const { 475 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 476 if (LHS == RHS) 477 return 0; 478 479 // Primarily, sort the SCEVs by their getSCEVType(). 480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 481 if (LType != RType) 482 return (int)LType - (int)RType; 483 484 // Aside from the getSCEVType() ordering, the particular ordering 485 // isn't very important except that it's beneficial to be consistent, 486 // so that (a + b) and (b + a) don't end up as different expressions. 487 switch (static_cast<SCEVTypes>(LType)) { 488 case scUnknown: { 489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 491 492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 493 // not as complete as it could be. 494 const Value *LV = LU->getValue(), *RV = RU->getValue(); 495 496 // Order pointer values after integer values. This helps SCEVExpander 497 // form GEPs. 498 bool LIsPointer = LV->getType()->isPointerTy(), 499 RIsPointer = RV->getType()->isPointerTy(); 500 if (LIsPointer != RIsPointer) 501 return (int)LIsPointer - (int)RIsPointer; 502 503 // Compare getValueID values. 504 unsigned LID = LV->getValueID(), 505 RID = RV->getValueID(); 506 if (LID != RID) 507 return (int)LID - (int)RID; 508 509 // Sort arguments by their position. 510 if (const Argument *LA = dyn_cast<Argument>(LV)) { 511 const Argument *RA = cast<Argument>(RV); 512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 513 return (int)LArgNo - (int)RArgNo; 514 } 515 516 // For instructions, compare their loop depth, and their operand 517 // count. This is pretty loose. 518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 519 const Instruction *RInst = cast<Instruction>(RV); 520 521 // Compare loop depths. 522 const BasicBlock *LParent = LInst->getParent(), 523 *RParent = RInst->getParent(); 524 if (LParent != RParent) { 525 unsigned LDepth = LI->getLoopDepth(LParent), 526 RDepth = LI->getLoopDepth(RParent); 527 if (LDepth != RDepth) 528 return (int)LDepth - (int)RDepth; 529 } 530 531 // Compare the number of operands. 532 unsigned LNumOps = LInst->getNumOperands(), 533 RNumOps = RInst->getNumOperands(); 534 return (int)LNumOps - (int)RNumOps; 535 } 536 537 return 0; 538 } 539 540 case scConstant: { 541 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 542 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 543 544 // Compare constant values. 545 const APInt &LA = LC->getValue()->getValue(); 546 const APInt &RA = RC->getValue()->getValue(); 547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 548 if (LBitWidth != RBitWidth) 549 return (int)LBitWidth - (int)RBitWidth; 550 return LA.ult(RA) ? -1 : 1; 551 } 552 553 case scAddRecExpr: { 554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 556 557 // Compare addrec loop depths. 558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 559 if (LLoop != RLoop) { 560 unsigned LDepth = LLoop->getLoopDepth(), 561 RDepth = RLoop->getLoopDepth(); 562 if (LDepth != RDepth) 563 return (int)LDepth - (int)RDepth; 564 } 565 566 // Addrec complexity grows with operand count. 567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 568 if (LNumOps != RNumOps) 569 return (int)LNumOps - (int)RNumOps; 570 571 // Lexicographically compare. 572 for (unsigned i = 0; i != LNumOps; ++i) { 573 long X = compare(LA->getOperand(i), RA->getOperand(i)); 574 if (X != 0) 575 return X; 576 } 577 578 return 0; 579 } 580 581 case scAddExpr: 582 case scMulExpr: 583 case scSMaxExpr: 584 case scUMaxExpr: { 585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 587 588 // Lexicographically compare n-ary expressions. 589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 590 if (LNumOps != RNumOps) 591 return (int)LNumOps - (int)RNumOps; 592 593 for (unsigned i = 0; i != LNumOps; ++i) { 594 if (i >= RNumOps) 595 return 1; 596 long X = compare(LC->getOperand(i), RC->getOperand(i)); 597 if (X != 0) 598 return X; 599 } 600 return (int)LNumOps - (int)RNumOps; 601 } 602 603 case scUDivExpr: { 604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 606 607 // Lexicographically compare udiv expressions. 608 long X = compare(LC->getLHS(), RC->getLHS()); 609 if (X != 0) 610 return X; 611 return compare(LC->getRHS(), RC->getRHS()); 612 } 613 614 case scTruncate: 615 case scZeroExtend: 616 case scSignExtend: { 617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 619 620 // Compare cast expressions by operand. 621 return compare(LC->getOperand(), RC->getOperand()); 622 } 623 624 case scCouldNotCompute: 625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 626 } 627 llvm_unreachable("Unknown SCEV kind!"); 628 } 629 }; 630 } 631 632 /// GroupByComplexity - Given a list of SCEV objects, order them by their 633 /// complexity, and group objects of the same complexity together by value. 634 /// When this routine is finished, we know that any duplicates in the vector are 635 /// consecutive and that complexity is monotonically increasing. 636 /// 637 /// Note that we go take special precautions to ensure that we get deterministic 638 /// results from this routine. In other words, we don't want the results of 639 /// this to depend on where the addresses of various SCEV objects happened to 640 /// land in memory. 641 /// 642 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 643 LoopInfo *LI) { 644 if (Ops.size() < 2) return; // Noop 645 if (Ops.size() == 2) { 646 // This is the common case, which also happens to be trivially simple. 647 // Special case it. 648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 649 if (SCEVComplexityCompare(LI)(RHS, LHS)) 650 std::swap(LHS, RHS); 651 return; 652 } 653 654 // Do the rough sort by complexity. 655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 656 657 // Now that we are sorted by complexity, group elements of the same 658 // complexity. Note that this is, at worst, N^2, but the vector is likely to 659 // be extremely short in practice. Note that we take this approach because we 660 // do not want to depend on the addresses of the objects we are grouping. 661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 662 const SCEV *S = Ops[i]; 663 unsigned Complexity = S->getSCEVType(); 664 665 // If there are any objects of the same complexity and same value as this 666 // one, group them. 667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 668 if (Ops[j] == S) { // Found a duplicate. 669 // Move it to immediately after i'th element. 670 std::swap(Ops[i+1], Ops[j]); 671 ++i; // no need to rescan it. 672 if (i == e-2) return; // Done! 673 } 674 } 675 } 676 } 677 678 namespace { 679 struct FindSCEVSize { 680 int Size; 681 FindSCEVSize() : Size(0) {} 682 683 bool follow(const SCEV *S) { 684 ++Size; 685 // Keep looking at all operands of S. 686 return true; 687 } 688 bool isDone() const { 689 return false; 690 } 691 }; 692 } 693 694 // Returns the size of the SCEV S. 695 static inline int sizeOfSCEV(const SCEV *S) { 696 FindSCEVSize F; 697 SCEVTraversal<FindSCEVSize> ST(F); 698 ST.visitAll(S); 699 return F.Size; 700 } 701 702 namespace { 703 704 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 705 public: 706 // Computes the Quotient and Remainder of the division of Numerator by 707 // Denominator. 708 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 709 const SCEV *Denominator, const SCEV **Quotient, 710 const SCEV **Remainder) { 711 assert(Numerator && Denominator && "Uninitialized SCEV"); 712 713 SCEVDivision D(SE, Numerator, Denominator); 714 715 // Check for the trivial case here to avoid having to check for it in the 716 // rest of the code. 717 if (Numerator == Denominator) { 718 *Quotient = D.One; 719 *Remainder = D.Zero; 720 return; 721 } 722 723 if (Numerator->isZero()) { 724 *Quotient = D.Zero; 725 *Remainder = D.Zero; 726 return; 727 } 728 729 // A simple case when N/1. The quotient is N. 730 if (Denominator->isOne()) { 731 *Quotient = Numerator; 732 *Remainder = D.Zero; 733 return; 734 } 735 736 // Split the Denominator when it is a product. 737 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 738 const SCEV *Q, *R; 739 *Quotient = Numerator; 740 for (const SCEV *Op : T->operands()) { 741 divide(SE, *Quotient, Op, &Q, &R); 742 *Quotient = Q; 743 744 // Bail out when the Numerator is not divisible by one of the terms of 745 // the Denominator. 746 if (!R->isZero()) { 747 *Quotient = D.Zero; 748 *Remainder = Numerator; 749 return; 750 } 751 } 752 *Remainder = D.Zero; 753 return; 754 } 755 756 D.visit(Numerator); 757 *Quotient = D.Quotient; 758 *Remainder = D.Remainder; 759 } 760 761 // Except in the trivial case described above, we do not know how to divide 762 // Expr by Denominator for the following functions with empty implementation. 763 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 764 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 765 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 766 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 767 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 768 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 769 void visitUnknown(const SCEVUnknown *Numerator) {} 770 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 771 772 void visitConstant(const SCEVConstant *Numerator) { 773 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 774 APInt NumeratorVal = Numerator->getValue()->getValue(); 775 APInt DenominatorVal = D->getValue()->getValue(); 776 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 777 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 778 779 if (NumeratorBW > DenominatorBW) 780 DenominatorVal = DenominatorVal.sext(NumeratorBW); 781 else if (NumeratorBW < DenominatorBW) 782 NumeratorVal = NumeratorVal.sext(DenominatorBW); 783 784 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 785 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 786 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 787 Quotient = SE.getConstant(QuotientVal); 788 Remainder = SE.getConstant(RemainderVal); 789 return; 790 } 791 } 792 793 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 794 const SCEV *StartQ, *StartR, *StepQ, *StepR; 795 assert(Numerator->isAffine() && "Numerator should be affine"); 796 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 797 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 798 // Bail out if the types do not match. 799 Type *Ty = Denominator->getType(); 800 if (Ty != StartQ->getType() || Ty != StartR->getType() || 801 Ty != StepQ->getType() || Ty != StepR->getType()) { 802 Quotient = Zero; 803 Remainder = Numerator; 804 return; 805 } 806 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 807 Numerator->getNoWrapFlags()); 808 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 809 Numerator->getNoWrapFlags()); 810 } 811 812 void visitAddExpr(const SCEVAddExpr *Numerator) { 813 SmallVector<const SCEV *, 2> Qs, Rs; 814 Type *Ty = Denominator->getType(); 815 816 for (const SCEV *Op : Numerator->operands()) { 817 const SCEV *Q, *R; 818 divide(SE, Op, Denominator, &Q, &R); 819 820 // Bail out if types do not match. 821 if (Ty != Q->getType() || Ty != R->getType()) { 822 Quotient = Zero; 823 Remainder = Numerator; 824 return; 825 } 826 827 Qs.push_back(Q); 828 Rs.push_back(R); 829 } 830 831 if (Qs.size() == 1) { 832 Quotient = Qs[0]; 833 Remainder = Rs[0]; 834 return; 835 } 836 837 Quotient = SE.getAddExpr(Qs); 838 Remainder = SE.getAddExpr(Rs); 839 } 840 841 void visitMulExpr(const SCEVMulExpr *Numerator) { 842 SmallVector<const SCEV *, 2> Qs; 843 Type *Ty = Denominator->getType(); 844 845 bool FoundDenominatorTerm = false; 846 for (const SCEV *Op : Numerator->operands()) { 847 // Bail out if types do not match. 848 if (Ty != Op->getType()) { 849 Quotient = Zero; 850 Remainder = Numerator; 851 return; 852 } 853 854 if (FoundDenominatorTerm) { 855 Qs.push_back(Op); 856 continue; 857 } 858 859 // Check whether Denominator divides one of the product operands. 860 const SCEV *Q, *R; 861 divide(SE, Op, Denominator, &Q, &R); 862 if (!R->isZero()) { 863 Qs.push_back(Op); 864 continue; 865 } 866 867 // Bail out if types do not match. 868 if (Ty != Q->getType()) { 869 Quotient = Zero; 870 Remainder = Numerator; 871 return; 872 } 873 874 FoundDenominatorTerm = true; 875 Qs.push_back(Q); 876 } 877 878 if (FoundDenominatorTerm) { 879 Remainder = Zero; 880 if (Qs.size() == 1) 881 Quotient = Qs[0]; 882 else 883 Quotient = SE.getMulExpr(Qs); 884 return; 885 } 886 887 if (!isa<SCEVUnknown>(Denominator)) { 888 Quotient = Zero; 889 Remainder = Numerator; 890 return; 891 } 892 893 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 894 ValueToValueMap RewriteMap; 895 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 896 cast<SCEVConstant>(Zero)->getValue(); 897 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 898 899 if (Remainder->isZero()) { 900 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 901 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 902 cast<SCEVConstant>(One)->getValue(); 903 Quotient = 904 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 905 return; 906 } 907 908 // Quotient is (Numerator - Remainder) divided by Denominator. 909 const SCEV *Q, *R; 910 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 911 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) { 912 // This SCEV does not seem to simplify: fail the division here. 913 Quotient = Zero; 914 Remainder = Numerator; 915 return; 916 } 917 divide(SE, Diff, Denominator, &Q, &R); 918 assert(R == Zero && 919 "(Numerator - Remainder) should evenly divide Denominator"); 920 Quotient = Q; 921 } 922 923 private: 924 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 925 const SCEV *Denominator) 926 : SE(S), Denominator(Denominator) { 927 Zero = SE.getConstant(Denominator->getType(), 0); 928 One = SE.getConstant(Denominator->getType(), 1); 929 930 // By default, we don't know how to divide Expr by Denominator. 931 // Providing the default here simplifies the rest of the code. 932 Quotient = Zero; 933 Remainder = Numerator; 934 } 935 936 ScalarEvolution &SE; 937 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 938 }; 939 940 } 941 942 //===----------------------------------------------------------------------===// 943 // Simple SCEV method implementations 944 //===----------------------------------------------------------------------===// 945 946 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 947 /// Assume, K > 0. 948 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 949 ScalarEvolution &SE, 950 Type *ResultTy) { 951 // Handle the simplest case efficiently. 952 if (K == 1) 953 return SE.getTruncateOrZeroExtend(It, ResultTy); 954 955 // We are using the following formula for BC(It, K): 956 // 957 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 958 // 959 // Suppose, W is the bitwidth of the return value. We must be prepared for 960 // overflow. Hence, we must assure that the result of our computation is 961 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 962 // safe in modular arithmetic. 963 // 964 // However, this code doesn't use exactly that formula; the formula it uses 965 // is something like the following, where T is the number of factors of 2 in 966 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 967 // exponentiation: 968 // 969 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 970 // 971 // This formula is trivially equivalent to the previous formula. However, 972 // this formula can be implemented much more efficiently. The trick is that 973 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 974 // arithmetic. To do exact division in modular arithmetic, all we have 975 // to do is multiply by the inverse. Therefore, this step can be done at 976 // width W. 977 // 978 // The next issue is how to safely do the division by 2^T. The way this 979 // is done is by doing the multiplication step at a width of at least W + T 980 // bits. This way, the bottom W+T bits of the product are accurate. Then, 981 // when we perform the division by 2^T (which is equivalent to a right shift 982 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 983 // truncated out after the division by 2^T. 984 // 985 // In comparison to just directly using the first formula, this technique 986 // is much more efficient; using the first formula requires W * K bits, 987 // but this formula less than W + K bits. Also, the first formula requires 988 // a division step, whereas this formula only requires multiplies and shifts. 989 // 990 // It doesn't matter whether the subtraction step is done in the calculation 991 // width or the input iteration count's width; if the subtraction overflows, 992 // the result must be zero anyway. We prefer here to do it in the width of 993 // the induction variable because it helps a lot for certain cases; CodeGen 994 // isn't smart enough to ignore the overflow, which leads to much less 995 // efficient code if the width of the subtraction is wider than the native 996 // register width. 997 // 998 // (It's possible to not widen at all by pulling out factors of 2 before 999 // the multiplication; for example, K=2 can be calculated as 1000 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1001 // extra arithmetic, so it's not an obvious win, and it gets 1002 // much more complicated for K > 3.) 1003 1004 // Protection from insane SCEVs; this bound is conservative, 1005 // but it probably doesn't matter. 1006 if (K > 1000) 1007 return SE.getCouldNotCompute(); 1008 1009 unsigned W = SE.getTypeSizeInBits(ResultTy); 1010 1011 // Calculate K! / 2^T and T; we divide out the factors of two before 1012 // multiplying for calculating K! / 2^T to avoid overflow. 1013 // Other overflow doesn't matter because we only care about the bottom 1014 // W bits of the result. 1015 APInt OddFactorial(W, 1); 1016 unsigned T = 1; 1017 for (unsigned i = 3; i <= K; ++i) { 1018 APInt Mult(W, i); 1019 unsigned TwoFactors = Mult.countTrailingZeros(); 1020 T += TwoFactors; 1021 Mult = Mult.lshr(TwoFactors); 1022 OddFactorial *= Mult; 1023 } 1024 1025 // We need at least W + T bits for the multiplication step 1026 unsigned CalculationBits = W + T; 1027 1028 // Calculate 2^T, at width T+W. 1029 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1030 1031 // Calculate the multiplicative inverse of K! / 2^T; 1032 // this multiplication factor will perform the exact division by 1033 // K! / 2^T. 1034 APInt Mod = APInt::getSignedMinValue(W+1); 1035 APInt MultiplyFactor = OddFactorial.zext(W+1); 1036 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1037 MultiplyFactor = MultiplyFactor.trunc(W); 1038 1039 // Calculate the product, at width T+W 1040 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1041 CalculationBits); 1042 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1043 for (unsigned i = 1; i != K; ++i) { 1044 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1045 Dividend = SE.getMulExpr(Dividend, 1046 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1047 } 1048 1049 // Divide by 2^T 1050 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1051 1052 // Truncate the result, and divide by K! / 2^T. 1053 1054 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1055 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1056 } 1057 1058 /// evaluateAtIteration - Return the value of this chain of recurrences at 1059 /// the specified iteration number. We can evaluate this recurrence by 1060 /// multiplying each element in the chain by the binomial coefficient 1061 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1062 /// 1063 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1064 /// 1065 /// where BC(It, k) stands for binomial coefficient. 1066 /// 1067 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1068 ScalarEvolution &SE) const { 1069 const SCEV *Result = getStart(); 1070 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1071 // The computation is correct in the face of overflow provided that the 1072 // multiplication is performed _after_ the evaluation of the binomial 1073 // coefficient. 1074 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1075 if (isa<SCEVCouldNotCompute>(Coeff)) 1076 return Coeff; 1077 1078 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1079 } 1080 return Result; 1081 } 1082 1083 //===----------------------------------------------------------------------===// 1084 // SCEV Expression folder implementations 1085 //===----------------------------------------------------------------------===// 1086 1087 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1088 Type *Ty) { 1089 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1090 "This is not a truncating conversion!"); 1091 assert(isSCEVable(Ty) && 1092 "This is not a conversion to a SCEVable type!"); 1093 Ty = getEffectiveSCEVType(Ty); 1094 1095 FoldingSetNodeID ID; 1096 ID.AddInteger(scTruncate); 1097 ID.AddPointer(Op); 1098 ID.AddPointer(Ty); 1099 void *IP = nullptr; 1100 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1101 1102 // Fold if the operand is constant. 1103 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1104 return getConstant( 1105 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1106 1107 // trunc(trunc(x)) --> trunc(x) 1108 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1109 return getTruncateExpr(ST->getOperand(), Ty); 1110 1111 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1112 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1113 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1114 1115 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1116 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1117 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1118 1119 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1120 // eliminate all the truncates, or we replace other casts with truncates. 1121 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1122 SmallVector<const SCEV *, 4> Operands; 1123 bool hasTrunc = false; 1124 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1125 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1126 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1127 hasTrunc = isa<SCEVTruncateExpr>(S); 1128 Operands.push_back(S); 1129 } 1130 if (!hasTrunc) 1131 return getAddExpr(Operands); 1132 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1133 } 1134 1135 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1136 // eliminate all the truncates, or we replace other casts with truncates. 1137 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1138 SmallVector<const SCEV *, 4> Operands; 1139 bool hasTrunc = false; 1140 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1141 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1142 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1143 hasTrunc = isa<SCEVTruncateExpr>(S); 1144 Operands.push_back(S); 1145 } 1146 if (!hasTrunc) 1147 return getMulExpr(Operands); 1148 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1149 } 1150 1151 // If the input value is a chrec scev, truncate the chrec's operands. 1152 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1153 SmallVector<const SCEV *, 4> Operands; 1154 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1155 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 1156 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1157 } 1158 1159 // The cast wasn't folded; create an explicit cast node. We can reuse 1160 // the existing insert position since if we get here, we won't have 1161 // made any changes which would invalidate it. 1162 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1163 Op, Ty); 1164 UniqueSCEVs.InsertNode(S, IP); 1165 return S; 1166 } 1167 1168 // Get the limit of a recurrence such that incrementing by Step cannot cause 1169 // signed overflow as long as the value of the recurrence within the 1170 // loop does not exceed this limit before incrementing. 1171 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1172 ICmpInst::Predicate *Pred, 1173 ScalarEvolution *SE) { 1174 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1175 if (SE->isKnownPositive(Step)) { 1176 *Pred = ICmpInst::ICMP_SLT; 1177 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1178 SE->getSignedRange(Step).getSignedMax()); 1179 } 1180 if (SE->isKnownNegative(Step)) { 1181 *Pred = ICmpInst::ICMP_SGT; 1182 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1183 SE->getSignedRange(Step).getSignedMin()); 1184 } 1185 return nullptr; 1186 } 1187 1188 // Get the limit of a recurrence such that incrementing by Step cannot cause 1189 // unsigned overflow as long as the value of the recurrence within the loop does 1190 // not exceed this limit before incrementing. 1191 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1192 ICmpInst::Predicate *Pred, 1193 ScalarEvolution *SE) { 1194 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1195 *Pred = ICmpInst::ICMP_ULT; 1196 1197 return SE->getConstant(APInt::getMinValue(BitWidth) - 1198 SE->getUnsignedRange(Step).getUnsignedMax()); 1199 } 1200 1201 namespace { 1202 1203 struct ExtendOpTraitsBase { 1204 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1205 }; 1206 1207 // Used to make code generic over signed and unsigned overflow. 1208 template <typename ExtendOp> struct ExtendOpTraits { 1209 // Members present: 1210 // 1211 // static const SCEV::NoWrapFlags WrapType; 1212 // 1213 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1214 // 1215 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1216 // ICmpInst::Predicate *Pred, 1217 // ScalarEvolution *SE); 1218 }; 1219 1220 template <> 1221 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1222 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1223 1224 static const GetExtendExprTy GetExtendExpr; 1225 1226 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1227 ICmpInst::Predicate *Pred, 1228 ScalarEvolution *SE) { 1229 return getSignedOverflowLimitForStep(Step, Pred, SE); 1230 } 1231 }; 1232 1233 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1234 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1235 1236 template <> 1237 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1238 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1239 1240 static const GetExtendExprTy GetExtendExpr; 1241 1242 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1243 ICmpInst::Predicate *Pred, 1244 ScalarEvolution *SE) { 1245 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1246 } 1247 }; 1248 1249 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1250 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1251 } 1252 1253 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1254 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1255 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1256 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1257 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1258 // expression "Step + sext/zext(PreIncAR)" is congruent with 1259 // "sext/zext(PostIncAR)" 1260 template <typename ExtendOpTy> 1261 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1262 ScalarEvolution *SE) { 1263 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1264 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1265 1266 const Loop *L = AR->getLoop(); 1267 const SCEV *Start = AR->getStart(); 1268 const SCEV *Step = AR->getStepRecurrence(*SE); 1269 1270 // Check for a simple looking step prior to loop entry. 1271 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1272 if (!SA) 1273 return nullptr; 1274 1275 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1276 // subtraction is expensive. For this purpose, perform a quick and dirty 1277 // difference, by checking for Step in the operand list. 1278 SmallVector<const SCEV *, 4> DiffOps; 1279 for (const SCEV *Op : SA->operands()) 1280 if (Op != Step) 1281 DiffOps.push_back(Op); 1282 1283 if (DiffOps.size() == SA->getNumOperands()) 1284 return nullptr; 1285 1286 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1287 // `Step`: 1288 1289 // 1. NSW/NUW flags on the step increment. 1290 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1291 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1292 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1293 1294 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1295 // "S+X does not sign/unsign-overflow". 1296 // 1297 1298 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1299 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1300 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1301 return PreStart; 1302 1303 // 2. Direct overflow check on the step operation's expression. 1304 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1305 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1306 const SCEV *OperandExtendedStart = 1307 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1308 (SE->*GetExtendExpr)(Step, WideTy)); 1309 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1310 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1311 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1312 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1313 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1314 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1315 } 1316 return PreStart; 1317 } 1318 1319 // 3. Loop precondition. 1320 ICmpInst::Predicate Pred; 1321 const SCEV *OverflowLimit = 1322 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1323 1324 if (OverflowLimit && 1325 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1326 return PreStart; 1327 } 1328 return nullptr; 1329 } 1330 1331 // Get the normalized zero or sign extended expression for this AddRec's Start. 1332 template <typename ExtendOpTy> 1333 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1334 ScalarEvolution *SE) { 1335 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1336 1337 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1338 if (!PreStart) 1339 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1340 1341 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1342 (SE->*GetExtendExpr)(PreStart, Ty)); 1343 } 1344 1345 // Try to prove away overflow by looking at "nearby" add recurrences. A 1346 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1347 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1348 // 1349 // Formally: 1350 // 1351 // {S,+,X} == {S-T,+,X} + T 1352 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1353 // 1354 // If ({S-T,+,X} + T) does not overflow ... (1) 1355 // 1356 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1357 // 1358 // If {S-T,+,X} does not overflow ... (2) 1359 // 1360 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1361 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1362 // 1363 // If (S-T)+T does not overflow ... (3) 1364 // 1365 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1366 // == {Ext(S),+,Ext(X)} == LHS 1367 // 1368 // Thus, if (1), (2) and (3) are true for some T, then 1369 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1370 // 1371 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1372 // does not overflow" restricted to the 0th iteration. Therefore we only need 1373 // to check for (1) and (2). 1374 // 1375 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1376 // is `Delta` (defined below). 1377 // 1378 template <typename ExtendOpTy> 1379 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1380 const SCEV *Step, 1381 const Loop *L) { 1382 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1383 1384 // We restrict `Start` to a constant to prevent SCEV from spending too much 1385 // time here. It is correct (but more expensive) to continue with a 1386 // non-constant `Start` and do a general SCEV subtraction to compute 1387 // `PreStart` below. 1388 // 1389 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1390 if (!StartC) 1391 return false; 1392 1393 APInt StartAI = StartC->getValue()->getValue(); 1394 1395 for (unsigned Delta : {-2, -1, 1, 2}) { 1396 const SCEV *PreStart = getConstant(StartAI - Delta); 1397 1398 // Give up if we don't already have the add recurrence we need because 1399 // actually constructing an add recurrence is relatively expensive. 1400 const SCEVAddRecExpr *PreAR = [&]() { 1401 FoldingSetNodeID ID; 1402 ID.AddInteger(scAddRecExpr); 1403 ID.AddPointer(PreStart); 1404 ID.AddPointer(Step); 1405 ID.AddPointer(L); 1406 void *IP = nullptr; 1407 return static_cast<SCEVAddRecExpr *>( 1408 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1409 }(); 1410 1411 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1412 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1413 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1414 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1415 DeltaS, &Pred, this); 1416 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1417 return true; 1418 } 1419 } 1420 1421 return false; 1422 } 1423 1424 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1425 Type *Ty) { 1426 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1427 "This is not an extending conversion!"); 1428 assert(isSCEVable(Ty) && 1429 "This is not a conversion to a SCEVable type!"); 1430 Ty = getEffectiveSCEVType(Ty); 1431 1432 // Fold if the operand is constant. 1433 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1434 return getConstant( 1435 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1436 1437 // zext(zext(x)) --> zext(x) 1438 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1439 return getZeroExtendExpr(SZ->getOperand(), Ty); 1440 1441 // Before doing any expensive analysis, check to see if we've already 1442 // computed a SCEV for this Op and Ty. 1443 FoldingSetNodeID ID; 1444 ID.AddInteger(scZeroExtend); 1445 ID.AddPointer(Op); 1446 ID.AddPointer(Ty); 1447 void *IP = nullptr; 1448 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1449 1450 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1451 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1452 // It's possible the bits taken off by the truncate were all zero bits. If 1453 // so, we should be able to simplify this further. 1454 const SCEV *X = ST->getOperand(); 1455 ConstantRange CR = getUnsignedRange(X); 1456 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1457 unsigned NewBits = getTypeSizeInBits(Ty); 1458 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1459 CR.zextOrTrunc(NewBits))) 1460 return getTruncateOrZeroExtend(X, Ty); 1461 } 1462 1463 // If the input value is a chrec scev, and we can prove that the value 1464 // did not overflow the old, smaller, value, we can zero extend all of the 1465 // operands (often constants). This allows analysis of something like 1466 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1467 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1468 if (AR->isAffine()) { 1469 const SCEV *Start = AR->getStart(); 1470 const SCEV *Step = AR->getStepRecurrence(*this); 1471 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1472 const Loop *L = AR->getLoop(); 1473 1474 // If we have special knowledge that this addrec won't overflow, 1475 // we don't need to do any further analysis. 1476 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1477 return getAddRecExpr( 1478 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1479 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1480 1481 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1482 // Note that this serves two purposes: It filters out loops that are 1483 // simply not analyzable, and it covers the case where this code is 1484 // being called from within backedge-taken count analysis, such that 1485 // attempting to ask for the backedge-taken count would likely result 1486 // in infinite recursion. In the later case, the analysis code will 1487 // cope with a conservative value, and it will take care to purge 1488 // that value once it has finished. 1489 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1490 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1491 // Manually compute the final value for AR, checking for 1492 // overflow. 1493 1494 // Check whether the backedge-taken count can be losslessly casted to 1495 // the addrec's type. The count is always unsigned. 1496 const SCEV *CastedMaxBECount = 1497 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1498 const SCEV *RecastedMaxBECount = 1499 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1500 if (MaxBECount == RecastedMaxBECount) { 1501 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1502 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1503 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1504 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1505 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1506 const SCEV *WideMaxBECount = 1507 getZeroExtendExpr(CastedMaxBECount, WideTy); 1508 const SCEV *OperandExtendedAdd = 1509 getAddExpr(WideStart, 1510 getMulExpr(WideMaxBECount, 1511 getZeroExtendExpr(Step, WideTy))); 1512 if (ZAdd == OperandExtendedAdd) { 1513 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1514 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1515 // Return the expression with the addrec on the outside. 1516 return getAddRecExpr( 1517 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1518 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1519 } 1520 // Similar to above, only this time treat the step value as signed. 1521 // This covers loops that count down. 1522 OperandExtendedAdd = 1523 getAddExpr(WideStart, 1524 getMulExpr(WideMaxBECount, 1525 getSignExtendExpr(Step, WideTy))); 1526 if (ZAdd == OperandExtendedAdd) { 1527 // Cache knowledge of AR NW, which is propagated to this AddRec. 1528 // Negative step causes unsigned wrap, but it still can't self-wrap. 1529 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1530 // Return the expression with the addrec on the outside. 1531 return getAddRecExpr( 1532 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1533 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1534 } 1535 } 1536 1537 // If the backedge is guarded by a comparison with the pre-inc value 1538 // the addrec is safe. Also, if the entry is guarded by a comparison 1539 // with the start value and the backedge is guarded by a comparison 1540 // with the post-inc value, the addrec is safe. 1541 if (isKnownPositive(Step)) { 1542 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1543 getUnsignedRange(Step).getUnsignedMax()); 1544 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1545 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1546 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1547 AR->getPostIncExpr(*this), N))) { 1548 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1549 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1550 // Return the expression with the addrec on the outside. 1551 return getAddRecExpr( 1552 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1553 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1554 } 1555 } else if (isKnownNegative(Step)) { 1556 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1557 getSignedRange(Step).getSignedMin()); 1558 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1559 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1560 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1561 AR->getPostIncExpr(*this), N))) { 1562 // Cache knowledge of AR NW, which is propagated to this AddRec. 1563 // Negative step causes unsigned wrap, but it still can't self-wrap. 1564 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1565 // Return the expression with the addrec on the outside. 1566 return getAddRecExpr( 1567 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1568 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1569 } 1570 } 1571 } 1572 1573 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1574 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1575 return getAddRecExpr( 1576 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1577 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1578 } 1579 } 1580 1581 // The cast wasn't folded; create an explicit cast node. 1582 // Recompute the insert position, as it may have been invalidated. 1583 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1584 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1585 Op, Ty); 1586 UniqueSCEVs.InsertNode(S, IP); 1587 return S; 1588 } 1589 1590 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1591 Type *Ty) { 1592 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1593 "This is not an extending conversion!"); 1594 assert(isSCEVable(Ty) && 1595 "This is not a conversion to a SCEVable type!"); 1596 Ty = getEffectiveSCEVType(Ty); 1597 1598 // Fold if the operand is constant. 1599 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1600 return getConstant( 1601 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1602 1603 // sext(sext(x)) --> sext(x) 1604 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1605 return getSignExtendExpr(SS->getOperand(), Ty); 1606 1607 // sext(zext(x)) --> zext(x) 1608 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1609 return getZeroExtendExpr(SZ->getOperand(), Ty); 1610 1611 // Before doing any expensive analysis, check to see if we've already 1612 // computed a SCEV for this Op and Ty. 1613 FoldingSetNodeID ID; 1614 ID.AddInteger(scSignExtend); 1615 ID.AddPointer(Op); 1616 ID.AddPointer(Ty); 1617 void *IP = nullptr; 1618 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1619 1620 // If the input value is provably positive, build a zext instead. 1621 if (isKnownNonNegative(Op)) 1622 return getZeroExtendExpr(Op, Ty); 1623 1624 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1625 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1626 // It's possible the bits taken off by the truncate were all sign bits. If 1627 // so, we should be able to simplify this further. 1628 const SCEV *X = ST->getOperand(); 1629 ConstantRange CR = getSignedRange(X); 1630 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1631 unsigned NewBits = getTypeSizeInBits(Ty); 1632 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1633 CR.sextOrTrunc(NewBits))) 1634 return getTruncateOrSignExtend(X, Ty); 1635 } 1636 1637 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1638 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 1639 if (SA->getNumOperands() == 2) { 1640 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1641 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1642 if (SMul && SC1) { 1643 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1644 const APInt &C1 = SC1->getValue()->getValue(); 1645 const APInt &C2 = SC2->getValue()->getValue(); 1646 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1647 C2.ugt(C1) && C2.isPowerOf2()) 1648 return getAddExpr(getSignExtendExpr(SC1, Ty), 1649 getSignExtendExpr(SMul, Ty)); 1650 } 1651 } 1652 } 1653 } 1654 // If the input value is a chrec scev, and we can prove that the value 1655 // did not overflow the old, smaller, value, we can sign extend all of the 1656 // operands (often constants). This allows analysis of something like 1657 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1658 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1659 if (AR->isAffine()) { 1660 const SCEV *Start = AR->getStart(); 1661 const SCEV *Step = AR->getStepRecurrence(*this); 1662 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1663 const Loop *L = AR->getLoop(); 1664 1665 // If we have special knowledge that this addrec won't overflow, 1666 // we don't need to do any further analysis. 1667 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1668 return getAddRecExpr( 1669 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1670 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1671 1672 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1673 // Note that this serves two purposes: It filters out loops that are 1674 // simply not analyzable, and it covers the case where this code is 1675 // being called from within backedge-taken count analysis, such that 1676 // attempting to ask for the backedge-taken count would likely result 1677 // in infinite recursion. In the later case, the analysis code will 1678 // cope with a conservative value, and it will take care to purge 1679 // that value once it has finished. 1680 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1681 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1682 // Manually compute the final value for AR, checking for 1683 // overflow. 1684 1685 // Check whether the backedge-taken count can be losslessly casted to 1686 // the addrec's type. The count is always unsigned. 1687 const SCEV *CastedMaxBECount = 1688 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1689 const SCEV *RecastedMaxBECount = 1690 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1691 if (MaxBECount == RecastedMaxBECount) { 1692 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1693 // Check whether Start+Step*MaxBECount has no signed overflow. 1694 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1695 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1696 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1697 const SCEV *WideMaxBECount = 1698 getZeroExtendExpr(CastedMaxBECount, WideTy); 1699 const SCEV *OperandExtendedAdd = 1700 getAddExpr(WideStart, 1701 getMulExpr(WideMaxBECount, 1702 getSignExtendExpr(Step, WideTy))); 1703 if (SAdd == OperandExtendedAdd) { 1704 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1705 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1706 // Return the expression with the addrec on the outside. 1707 return getAddRecExpr( 1708 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1709 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1710 } 1711 // Similar to above, only this time treat the step value as unsigned. 1712 // This covers loops that count up with an unsigned step. 1713 OperandExtendedAdd = 1714 getAddExpr(WideStart, 1715 getMulExpr(WideMaxBECount, 1716 getZeroExtendExpr(Step, WideTy))); 1717 if (SAdd == OperandExtendedAdd) { 1718 // If AR wraps around then 1719 // 1720 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1721 // => SAdd != OperandExtendedAdd 1722 // 1723 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1724 // (SAdd == OperandExtendedAdd => AR is NW) 1725 1726 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1727 1728 // Return the expression with the addrec on the outside. 1729 return getAddRecExpr( 1730 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1731 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1732 } 1733 } 1734 1735 // If the backedge is guarded by a comparison with the pre-inc value 1736 // the addrec is safe. Also, if the entry is guarded by a comparison 1737 // with the start value and the backedge is guarded by a comparison 1738 // with the post-inc value, the addrec is safe. 1739 ICmpInst::Predicate Pred; 1740 const SCEV *OverflowLimit = 1741 getSignedOverflowLimitForStep(Step, &Pred, this); 1742 if (OverflowLimit && 1743 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1744 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1745 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1746 OverflowLimit)))) { 1747 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1748 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1749 return getAddRecExpr( 1750 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1751 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1752 } 1753 } 1754 // If Start and Step are constants, check if we can apply this 1755 // transformation: 1756 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1757 auto SC1 = dyn_cast<SCEVConstant>(Start); 1758 auto SC2 = dyn_cast<SCEVConstant>(Step); 1759 if (SC1 && SC2) { 1760 const APInt &C1 = SC1->getValue()->getValue(); 1761 const APInt &C2 = SC2->getValue()->getValue(); 1762 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1763 C2.isPowerOf2()) { 1764 Start = getSignExtendExpr(Start, Ty); 1765 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step, 1766 L, AR->getNoWrapFlags()); 1767 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1768 } 1769 } 1770 1771 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1772 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1773 return getAddRecExpr( 1774 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1775 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1776 } 1777 } 1778 1779 // The cast wasn't folded; create an explicit cast node. 1780 // Recompute the insert position, as it may have been invalidated. 1781 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1782 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1783 Op, Ty); 1784 UniqueSCEVs.InsertNode(S, IP); 1785 return S; 1786 } 1787 1788 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1789 /// unspecified bits out to the given type. 1790 /// 1791 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1792 Type *Ty) { 1793 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1794 "This is not an extending conversion!"); 1795 assert(isSCEVable(Ty) && 1796 "This is not a conversion to a SCEVable type!"); 1797 Ty = getEffectiveSCEVType(Ty); 1798 1799 // Sign-extend negative constants. 1800 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1801 if (SC->getValue()->getValue().isNegative()) 1802 return getSignExtendExpr(Op, Ty); 1803 1804 // Peel off a truncate cast. 1805 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1806 const SCEV *NewOp = T->getOperand(); 1807 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1808 return getAnyExtendExpr(NewOp, Ty); 1809 return getTruncateOrNoop(NewOp, Ty); 1810 } 1811 1812 // Next try a zext cast. If the cast is folded, use it. 1813 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1814 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1815 return ZExt; 1816 1817 // Next try a sext cast. If the cast is folded, use it. 1818 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1819 if (!isa<SCEVSignExtendExpr>(SExt)) 1820 return SExt; 1821 1822 // Force the cast to be folded into the operands of an addrec. 1823 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1824 SmallVector<const SCEV *, 4> Ops; 1825 for (const SCEV *Op : AR->operands()) 1826 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1827 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1828 } 1829 1830 // If the expression is obviously signed, use the sext cast value. 1831 if (isa<SCEVSMaxExpr>(Op)) 1832 return SExt; 1833 1834 // Absent any other information, use the zext cast value. 1835 return ZExt; 1836 } 1837 1838 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1839 /// a list of operands to be added under the given scale, update the given 1840 /// map. This is a helper function for getAddRecExpr. As an example of 1841 /// what it does, given a sequence of operands that would form an add 1842 /// expression like this: 1843 /// 1844 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1845 /// 1846 /// where A and B are constants, update the map with these values: 1847 /// 1848 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1849 /// 1850 /// and add 13 + A*B*29 to AccumulatedConstant. 1851 /// This will allow getAddRecExpr to produce this: 1852 /// 1853 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1854 /// 1855 /// This form often exposes folding opportunities that are hidden in 1856 /// the original operand list. 1857 /// 1858 /// Return true iff it appears that any interesting folding opportunities 1859 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1860 /// the common case where no interesting opportunities are present, and 1861 /// is also used as a check to avoid infinite recursion. 1862 /// 1863 static bool 1864 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1865 SmallVectorImpl<const SCEV *> &NewOps, 1866 APInt &AccumulatedConstant, 1867 const SCEV *const *Ops, size_t NumOperands, 1868 const APInt &Scale, 1869 ScalarEvolution &SE) { 1870 bool Interesting = false; 1871 1872 // Iterate over the add operands. They are sorted, with constants first. 1873 unsigned i = 0; 1874 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1875 ++i; 1876 // Pull a buried constant out to the outside. 1877 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1878 Interesting = true; 1879 AccumulatedConstant += Scale * C->getValue()->getValue(); 1880 } 1881 1882 // Next comes everything else. We're especially interested in multiplies 1883 // here, but they're in the middle, so just visit the rest with one loop. 1884 for (; i != NumOperands; ++i) { 1885 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1886 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1887 APInt NewScale = 1888 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1889 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1890 // A multiplication of a constant with another add; recurse. 1891 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1892 Interesting |= 1893 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1894 Add->op_begin(), Add->getNumOperands(), 1895 NewScale, SE); 1896 } else { 1897 // A multiplication of a constant with some other value. Update 1898 // the map. 1899 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1900 const SCEV *Key = SE.getMulExpr(MulOps); 1901 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1902 M.insert(std::make_pair(Key, NewScale)); 1903 if (Pair.second) { 1904 NewOps.push_back(Pair.first->first); 1905 } else { 1906 Pair.first->second += NewScale; 1907 // The map already had an entry for this value, which may indicate 1908 // a folding opportunity. 1909 Interesting = true; 1910 } 1911 } 1912 } else { 1913 // An ordinary operand. Update the map. 1914 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1915 M.insert(std::make_pair(Ops[i], Scale)); 1916 if (Pair.second) { 1917 NewOps.push_back(Pair.first->first); 1918 } else { 1919 Pair.first->second += Scale; 1920 // The map already had an entry for this value, which may indicate 1921 // a folding opportunity. 1922 Interesting = true; 1923 } 1924 } 1925 } 1926 1927 return Interesting; 1928 } 1929 1930 namespace { 1931 struct APIntCompare { 1932 bool operator()(const APInt &LHS, const APInt &RHS) const { 1933 return LHS.ult(RHS); 1934 } 1935 }; 1936 } 1937 1938 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1939 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1940 // can't-overflow flags for the operation if possible. 1941 static SCEV::NoWrapFlags 1942 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1943 const SmallVectorImpl<const SCEV *> &Ops, 1944 SCEV::NoWrapFlags OldFlags) { 1945 using namespace std::placeholders; 1946 1947 bool CanAnalyze = 1948 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1949 (void)CanAnalyze; 1950 assert(CanAnalyze && "don't call from other places!"); 1951 1952 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1953 SCEV::NoWrapFlags SignOrUnsignWrap = 1954 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); 1955 1956 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1957 auto IsKnownNonNegative = 1958 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1959 1960 if (SignOrUnsignWrap == SCEV::FlagNSW && 1961 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1962 return ScalarEvolution::setFlags(OldFlags, 1963 (SCEV::NoWrapFlags)SignOrUnsignMask); 1964 1965 return OldFlags; 1966 } 1967 1968 /// getAddExpr - Get a canonical add expression, or something simpler if 1969 /// possible. 1970 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1971 SCEV::NoWrapFlags Flags) { 1972 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1973 "only nuw or nsw allowed"); 1974 assert(!Ops.empty() && "Cannot get empty add!"); 1975 if (Ops.size() == 1) return Ops[0]; 1976 #ifndef NDEBUG 1977 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1978 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1979 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1980 "SCEVAddExpr operand types don't match!"); 1981 #endif 1982 1983 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 1984 1985 // Sort by complexity, this groups all similar expression types together. 1986 GroupByComplexity(Ops, LI); 1987 1988 // If there are any constants, fold them together. 1989 unsigned Idx = 0; 1990 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1991 ++Idx; 1992 assert(Idx < Ops.size()); 1993 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1994 // We found two constants, fold them together! 1995 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1996 RHSC->getValue()->getValue()); 1997 if (Ops.size() == 2) return Ops[0]; 1998 Ops.erase(Ops.begin()+1); // Erase the folded element 1999 LHSC = cast<SCEVConstant>(Ops[0]); 2000 } 2001 2002 // If we are left with a constant zero being added, strip it off. 2003 if (LHSC->getValue()->isZero()) { 2004 Ops.erase(Ops.begin()); 2005 --Idx; 2006 } 2007 2008 if (Ops.size() == 1) return Ops[0]; 2009 } 2010 2011 // Okay, check to see if the same value occurs in the operand list more than 2012 // once. If so, merge them together into an multiply expression. Since we 2013 // sorted the list, these values are required to be adjacent. 2014 Type *Ty = Ops[0]->getType(); 2015 bool FoundMatch = false; 2016 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2017 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2018 // Scan ahead to count how many equal operands there are. 2019 unsigned Count = 2; 2020 while (i+Count != e && Ops[i+Count] == Ops[i]) 2021 ++Count; 2022 // Merge the values into a multiply. 2023 const SCEV *Scale = getConstant(Ty, Count); 2024 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2025 if (Ops.size() == Count) 2026 return Mul; 2027 Ops[i] = Mul; 2028 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2029 --i; e -= Count - 1; 2030 FoundMatch = true; 2031 } 2032 if (FoundMatch) 2033 return getAddExpr(Ops, Flags); 2034 2035 // Check for truncates. If all the operands are truncated from the same 2036 // type, see if factoring out the truncate would permit the result to be 2037 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2038 // if the contents of the resulting outer trunc fold to something simple. 2039 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2040 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2041 Type *DstType = Trunc->getType(); 2042 Type *SrcType = Trunc->getOperand()->getType(); 2043 SmallVector<const SCEV *, 8> LargeOps; 2044 bool Ok = true; 2045 // Check all the operands to see if they can be represented in the 2046 // source type of the truncate. 2047 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2048 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2049 if (T->getOperand()->getType() != SrcType) { 2050 Ok = false; 2051 break; 2052 } 2053 LargeOps.push_back(T->getOperand()); 2054 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2055 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2056 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2057 SmallVector<const SCEV *, 8> LargeMulOps; 2058 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2059 if (const SCEVTruncateExpr *T = 2060 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2061 if (T->getOperand()->getType() != SrcType) { 2062 Ok = false; 2063 break; 2064 } 2065 LargeMulOps.push_back(T->getOperand()); 2066 } else if (const SCEVConstant *C = 2067 dyn_cast<SCEVConstant>(M->getOperand(j))) { 2068 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2069 } else { 2070 Ok = false; 2071 break; 2072 } 2073 } 2074 if (Ok) 2075 LargeOps.push_back(getMulExpr(LargeMulOps)); 2076 } else { 2077 Ok = false; 2078 break; 2079 } 2080 } 2081 if (Ok) { 2082 // Evaluate the expression in the larger type. 2083 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2084 // If it folds to something simple, use it. Otherwise, don't. 2085 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2086 return getTruncateExpr(Fold, DstType); 2087 } 2088 } 2089 2090 // Skip past any other cast SCEVs. 2091 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2092 ++Idx; 2093 2094 // If there are add operands they would be next. 2095 if (Idx < Ops.size()) { 2096 bool DeletedAdd = false; 2097 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2098 // If we have an add, expand the add operands onto the end of the operands 2099 // list. 2100 Ops.erase(Ops.begin()+Idx); 2101 Ops.append(Add->op_begin(), Add->op_end()); 2102 DeletedAdd = true; 2103 } 2104 2105 // If we deleted at least one add, we added operands to the end of the list, 2106 // and they are not necessarily sorted. Recurse to resort and resimplify 2107 // any operands we just acquired. 2108 if (DeletedAdd) 2109 return getAddExpr(Ops); 2110 } 2111 2112 // Skip over the add expression until we get to a multiply. 2113 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2114 ++Idx; 2115 2116 // Check to see if there are any folding opportunities present with 2117 // operands multiplied by constant values. 2118 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2119 uint64_t BitWidth = getTypeSizeInBits(Ty); 2120 DenseMap<const SCEV *, APInt> M; 2121 SmallVector<const SCEV *, 8> NewOps; 2122 APInt AccumulatedConstant(BitWidth, 0); 2123 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2124 Ops.data(), Ops.size(), 2125 APInt(BitWidth, 1), *this)) { 2126 // Some interesting folding opportunity is present, so its worthwhile to 2127 // re-generate the operands list. Group the operands by constant scale, 2128 // to avoid multiplying by the same constant scale multiple times. 2129 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2130 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2131 E = NewOps.end(); I != E; ++I) 2132 MulOpLists[M.find(*I)->second].push_back(*I); 2133 // Re-generate the operands list. 2134 Ops.clear(); 2135 if (AccumulatedConstant != 0) 2136 Ops.push_back(getConstant(AccumulatedConstant)); 2137 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2138 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2139 if (I->first != 0) 2140 Ops.push_back(getMulExpr(getConstant(I->first), 2141 getAddExpr(I->second))); 2142 if (Ops.empty()) 2143 return getConstant(Ty, 0); 2144 if (Ops.size() == 1) 2145 return Ops[0]; 2146 return getAddExpr(Ops); 2147 } 2148 } 2149 2150 // If we are adding something to a multiply expression, make sure the 2151 // something is not already an operand of the multiply. If so, merge it into 2152 // the multiply. 2153 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2154 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2155 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2156 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2157 if (isa<SCEVConstant>(MulOpSCEV)) 2158 continue; 2159 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2160 if (MulOpSCEV == Ops[AddOp]) { 2161 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2162 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2163 if (Mul->getNumOperands() != 2) { 2164 // If the multiply has more than two operands, we must get the 2165 // Y*Z term. 2166 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2167 Mul->op_begin()+MulOp); 2168 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2169 InnerMul = getMulExpr(MulOps); 2170 } 2171 const SCEV *One = getConstant(Ty, 1); 2172 const SCEV *AddOne = getAddExpr(One, InnerMul); 2173 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2174 if (Ops.size() == 2) return OuterMul; 2175 if (AddOp < Idx) { 2176 Ops.erase(Ops.begin()+AddOp); 2177 Ops.erase(Ops.begin()+Idx-1); 2178 } else { 2179 Ops.erase(Ops.begin()+Idx); 2180 Ops.erase(Ops.begin()+AddOp-1); 2181 } 2182 Ops.push_back(OuterMul); 2183 return getAddExpr(Ops); 2184 } 2185 2186 // Check this multiply against other multiplies being added together. 2187 for (unsigned OtherMulIdx = Idx+1; 2188 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2189 ++OtherMulIdx) { 2190 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2191 // If MulOp occurs in OtherMul, we can fold the two multiplies 2192 // together. 2193 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2194 OMulOp != e; ++OMulOp) 2195 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2196 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2197 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2198 if (Mul->getNumOperands() != 2) { 2199 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2200 Mul->op_begin()+MulOp); 2201 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2202 InnerMul1 = getMulExpr(MulOps); 2203 } 2204 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2205 if (OtherMul->getNumOperands() != 2) { 2206 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2207 OtherMul->op_begin()+OMulOp); 2208 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2209 InnerMul2 = getMulExpr(MulOps); 2210 } 2211 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2212 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2213 if (Ops.size() == 2) return OuterMul; 2214 Ops.erase(Ops.begin()+Idx); 2215 Ops.erase(Ops.begin()+OtherMulIdx-1); 2216 Ops.push_back(OuterMul); 2217 return getAddExpr(Ops); 2218 } 2219 } 2220 } 2221 } 2222 2223 // If there are any add recurrences in the operands list, see if any other 2224 // added values are loop invariant. If so, we can fold them into the 2225 // recurrence. 2226 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2227 ++Idx; 2228 2229 // Scan over all recurrences, trying to fold loop invariants into them. 2230 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2231 // Scan all of the other operands to this add and add them to the vector if 2232 // they are loop invariant w.r.t. the recurrence. 2233 SmallVector<const SCEV *, 8> LIOps; 2234 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2235 const Loop *AddRecLoop = AddRec->getLoop(); 2236 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2237 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2238 LIOps.push_back(Ops[i]); 2239 Ops.erase(Ops.begin()+i); 2240 --i; --e; 2241 } 2242 2243 // If we found some loop invariants, fold them into the recurrence. 2244 if (!LIOps.empty()) { 2245 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2246 LIOps.push_back(AddRec->getStart()); 2247 2248 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2249 AddRec->op_end()); 2250 AddRecOps[0] = getAddExpr(LIOps); 2251 2252 // Build the new addrec. Propagate the NUW and NSW flags if both the 2253 // outer add and the inner addrec are guaranteed to have no overflow. 2254 // Always propagate NW. 2255 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2256 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2257 2258 // If all of the other operands were loop invariant, we are done. 2259 if (Ops.size() == 1) return NewRec; 2260 2261 // Otherwise, add the folded AddRec by the non-invariant parts. 2262 for (unsigned i = 0;; ++i) 2263 if (Ops[i] == AddRec) { 2264 Ops[i] = NewRec; 2265 break; 2266 } 2267 return getAddExpr(Ops); 2268 } 2269 2270 // Okay, if there weren't any loop invariants to be folded, check to see if 2271 // there are multiple AddRec's with the same loop induction variable being 2272 // added together. If so, we can fold them. 2273 for (unsigned OtherIdx = Idx+1; 2274 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2275 ++OtherIdx) 2276 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2277 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2278 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2279 AddRec->op_end()); 2280 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2281 ++OtherIdx) 2282 if (const SCEVAddRecExpr *OtherAddRec = 2283 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2284 if (OtherAddRec->getLoop() == AddRecLoop) { 2285 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2286 i != e; ++i) { 2287 if (i >= AddRecOps.size()) { 2288 AddRecOps.append(OtherAddRec->op_begin()+i, 2289 OtherAddRec->op_end()); 2290 break; 2291 } 2292 AddRecOps[i] = getAddExpr(AddRecOps[i], 2293 OtherAddRec->getOperand(i)); 2294 } 2295 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2296 } 2297 // Step size has changed, so we cannot guarantee no self-wraparound. 2298 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2299 return getAddExpr(Ops); 2300 } 2301 2302 // Otherwise couldn't fold anything into this recurrence. Move onto the 2303 // next one. 2304 } 2305 2306 // Okay, it looks like we really DO need an add expr. Check to see if we 2307 // already have one, otherwise create a new one. 2308 FoldingSetNodeID ID; 2309 ID.AddInteger(scAddExpr); 2310 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2311 ID.AddPointer(Ops[i]); 2312 void *IP = nullptr; 2313 SCEVAddExpr *S = 2314 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2315 if (!S) { 2316 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2317 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2318 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2319 O, Ops.size()); 2320 UniqueSCEVs.InsertNode(S, IP); 2321 } 2322 S->setNoWrapFlags(Flags); 2323 return S; 2324 } 2325 2326 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2327 uint64_t k = i*j; 2328 if (j > 1 && k / j != i) Overflow = true; 2329 return k; 2330 } 2331 2332 /// Compute the result of "n choose k", the binomial coefficient. If an 2333 /// intermediate computation overflows, Overflow will be set and the return will 2334 /// be garbage. Overflow is not cleared on absence of overflow. 2335 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2336 // We use the multiplicative formula: 2337 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2338 // At each iteration, we take the n-th term of the numeral and divide by the 2339 // (k-n)th term of the denominator. This division will always produce an 2340 // integral result, and helps reduce the chance of overflow in the 2341 // intermediate computations. However, we can still overflow even when the 2342 // final result would fit. 2343 2344 if (n == 0 || n == k) return 1; 2345 if (k > n) return 0; 2346 2347 if (k > n/2) 2348 k = n-k; 2349 2350 uint64_t r = 1; 2351 for (uint64_t i = 1; i <= k; ++i) { 2352 r = umul_ov(r, n-(i-1), Overflow); 2353 r /= i; 2354 } 2355 return r; 2356 } 2357 2358 /// Determine if any of the operands in this SCEV are a constant or if 2359 /// any of the add or multiply expressions in this SCEV contain a constant. 2360 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2361 SmallVector<const SCEV *, 4> Ops; 2362 Ops.push_back(StartExpr); 2363 while (!Ops.empty()) { 2364 const SCEV *CurrentExpr = Ops.pop_back_val(); 2365 if (isa<SCEVConstant>(*CurrentExpr)) 2366 return true; 2367 2368 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2369 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2370 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2371 } 2372 } 2373 return false; 2374 } 2375 2376 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2377 /// possible. 2378 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2379 SCEV::NoWrapFlags Flags) { 2380 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2381 "only nuw or nsw allowed"); 2382 assert(!Ops.empty() && "Cannot get empty mul!"); 2383 if (Ops.size() == 1) return Ops[0]; 2384 #ifndef NDEBUG 2385 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2386 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2387 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2388 "SCEVMulExpr operand types don't match!"); 2389 #endif 2390 2391 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2392 2393 // Sort by complexity, this groups all similar expression types together. 2394 GroupByComplexity(Ops, LI); 2395 2396 // If there are any constants, fold them together. 2397 unsigned Idx = 0; 2398 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2399 2400 // C1*(C2+V) -> C1*C2 + C1*V 2401 if (Ops.size() == 2) 2402 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2403 // If any of Add's ops are Adds or Muls with a constant, 2404 // apply this transformation as well. 2405 if (Add->getNumOperands() == 2) 2406 if (containsConstantSomewhere(Add)) 2407 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2408 getMulExpr(LHSC, Add->getOperand(1))); 2409 2410 ++Idx; 2411 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2412 // We found two constants, fold them together! 2413 ConstantInt *Fold = ConstantInt::get(getContext(), 2414 LHSC->getValue()->getValue() * 2415 RHSC->getValue()->getValue()); 2416 Ops[0] = getConstant(Fold); 2417 Ops.erase(Ops.begin()+1); // Erase the folded element 2418 if (Ops.size() == 1) return Ops[0]; 2419 LHSC = cast<SCEVConstant>(Ops[0]); 2420 } 2421 2422 // If we are left with a constant one being multiplied, strip it off. 2423 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2424 Ops.erase(Ops.begin()); 2425 --Idx; 2426 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2427 // If we have a multiply of zero, it will always be zero. 2428 return Ops[0]; 2429 } else if (Ops[0]->isAllOnesValue()) { 2430 // If we have a mul by -1 of an add, try distributing the -1 among the 2431 // add operands. 2432 if (Ops.size() == 2) { 2433 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2434 SmallVector<const SCEV *, 4> NewOps; 2435 bool AnyFolded = false; 2436 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2437 E = Add->op_end(); I != E; ++I) { 2438 const SCEV *Mul = getMulExpr(Ops[0], *I); 2439 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2440 NewOps.push_back(Mul); 2441 } 2442 if (AnyFolded) 2443 return getAddExpr(NewOps); 2444 } 2445 else if (const SCEVAddRecExpr * 2446 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2447 // Negation preserves a recurrence's no self-wrap property. 2448 SmallVector<const SCEV *, 4> Operands; 2449 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2450 E = AddRec->op_end(); I != E; ++I) { 2451 Operands.push_back(getMulExpr(Ops[0], *I)); 2452 } 2453 return getAddRecExpr(Operands, AddRec->getLoop(), 2454 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2455 } 2456 } 2457 } 2458 2459 if (Ops.size() == 1) 2460 return Ops[0]; 2461 } 2462 2463 // Skip over the add expression until we get to a multiply. 2464 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2465 ++Idx; 2466 2467 // If there are mul operands inline them all into this expression. 2468 if (Idx < Ops.size()) { 2469 bool DeletedMul = false; 2470 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2471 // If we have an mul, expand the mul operands onto the end of the operands 2472 // list. 2473 Ops.erase(Ops.begin()+Idx); 2474 Ops.append(Mul->op_begin(), Mul->op_end()); 2475 DeletedMul = true; 2476 } 2477 2478 // If we deleted at least one mul, we added operands to the end of the list, 2479 // and they are not necessarily sorted. Recurse to resort and resimplify 2480 // any operands we just acquired. 2481 if (DeletedMul) 2482 return getMulExpr(Ops); 2483 } 2484 2485 // If there are any add recurrences in the operands list, see if any other 2486 // added values are loop invariant. If so, we can fold them into the 2487 // recurrence. 2488 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2489 ++Idx; 2490 2491 // Scan over all recurrences, trying to fold loop invariants into them. 2492 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2493 // Scan all of the other operands to this mul and add them to the vector if 2494 // they are loop invariant w.r.t. the recurrence. 2495 SmallVector<const SCEV *, 8> LIOps; 2496 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2497 const Loop *AddRecLoop = AddRec->getLoop(); 2498 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2499 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2500 LIOps.push_back(Ops[i]); 2501 Ops.erase(Ops.begin()+i); 2502 --i; --e; 2503 } 2504 2505 // If we found some loop invariants, fold them into the recurrence. 2506 if (!LIOps.empty()) { 2507 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2508 SmallVector<const SCEV *, 4> NewOps; 2509 NewOps.reserve(AddRec->getNumOperands()); 2510 const SCEV *Scale = getMulExpr(LIOps); 2511 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2512 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2513 2514 // Build the new addrec. Propagate the NUW and NSW flags if both the 2515 // outer mul and the inner addrec are guaranteed to have no overflow. 2516 // 2517 // No self-wrap cannot be guaranteed after changing the step size, but 2518 // will be inferred if either NUW or NSW is true. 2519 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2520 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2521 2522 // If all of the other operands were loop invariant, we are done. 2523 if (Ops.size() == 1) return NewRec; 2524 2525 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2526 for (unsigned i = 0;; ++i) 2527 if (Ops[i] == AddRec) { 2528 Ops[i] = NewRec; 2529 break; 2530 } 2531 return getMulExpr(Ops); 2532 } 2533 2534 // Okay, if there weren't any loop invariants to be folded, check to see if 2535 // there are multiple AddRec's with the same loop induction variable being 2536 // multiplied together. If so, we can fold them. 2537 2538 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2539 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2540 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2541 // ]]],+,...up to x=2n}. 2542 // Note that the arguments to choose() are always integers with values 2543 // known at compile time, never SCEV objects. 2544 // 2545 // The implementation avoids pointless extra computations when the two 2546 // addrec's are of different length (mathematically, it's equivalent to 2547 // an infinite stream of zeros on the right). 2548 bool OpsModified = false; 2549 for (unsigned OtherIdx = Idx+1; 2550 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2551 ++OtherIdx) { 2552 const SCEVAddRecExpr *OtherAddRec = 2553 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2554 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2555 continue; 2556 2557 bool Overflow = false; 2558 Type *Ty = AddRec->getType(); 2559 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2560 SmallVector<const SCEV*, 7> AddRecOps; 2561 for (int x = 0, xe = AddRec->getNumOperands() + 2562 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2563 const SCEV *Term = getConstant(Ty, 0); 2564 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2565 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2566 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2567 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2568 z < ze && !Overflow; ++z) { 2569 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2570 uint64_t Coeff; 2571 if (LargerThan64Bits) 2572 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2573 else 2574 Coeff = Coeff1*Coeff2; 2575 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2576 const SCEV *Term1 = AddRec->getOperand(y-z); 2577 const SCEV *Term2 = OtherAddRec->getOperand(z); 2578 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2579 } 2580 } 2581 AddRecOps.push_back(Term); 2582 } 2583 if (!Overflow) { 2584 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2585 SCEV::FlagAnyWrap); 2586 if (Ops.size() == 2) return NewAddRec; 2587 Ops[Idx] = NewAddRec; 2588 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2589 OpsModified = true; 2590 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2591 if (!AddRec) 2592 break; 2593 } 2594 } 2595 if (OpsModified) 2596 return getMulExpr(Ops); 2597 2598 // Otherwise couldn't fold anything into this recurrence. Move onto the 2599 // next one. 2600 } 2601 2602 // Okay, it looks like we really DO need an mul expr. Check to see if we 2603 // already have one, otherwise create a new one. 2604 FoldingSetNodeID ID; 2605 ID.AddInteger(scMulExpr); 2606 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2607 ID.AddPointer(Ops[i]); 2608 void *IP = nullptr; 2609 SCEVMulExpr *S = 2610 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2611 if (!S) { 2612 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2613 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2614 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2615 O, Ops.size()); 2616 UniqueSCEVs.InsertNode(S, IP); 2617 } 2618 S->setNoWrapFlags(Flags); 2619 return S; 2620 } 2621 2622 /// getUDivExpr - Get a canonical unsigned division expression, or something 2623 /// simpler if possible. 2624 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2625 const SCEV *RHS) { 2626 assert(getEffectiveSCEVType(LHS->getType()) == 2627 getEffectiveSCEVType(RHS->getType()) && 2628 "SCEVUDivExpr operand types don't match!"); 2629 2630 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2631 if (RHSC->getValue()->equalsInt(1)) 2632 return LHS; // X udiv 1 --> x 2633 // If the denominator is zero, the result of the udiv is undefined. Don't 2634 // try to analyze it, because the resolution chosen here may differ from 2635 // the resolution chosen in other parts of the compiler. 2636 if (!RHSC->getValue()->isZero()) { 2637 // Determine if the division can be folded into the operands of 2638 // its operands. 2639 // TODO: Generalize this to non-constants by using known-bits information. 2640 Type *Ty = LHS->getType(); 2641 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2642 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2643 // For non-power-of-two values, effectively round the value up to the 2644 // nearest power of two. 2645 if (!RHSC->getValue()->getValue().isPowerOf2()) 2646 ++MaxShiftAmt; 2647 IntegerType *ExtTy = 2648 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2649 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2650 if (const SCEVConstant *Step = 2651 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2652 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2653 const APInt &StepInt = Step->getValue()->getValue(); 2654 const APInt &DivInt = RHSC->getValue()->getValue(); 2655 if (!StepInt.urem(DivInt) && 2656 getZeroExtendExpr(AR, ExtTy) == 2657 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2658 getZeroExtendExpr(Step, ExtTy), 2659 AR->getLoop(), SCEV::FlagAnyWrap)) { 2660 SmallVector<const SCEV *, 4> Operands; 2661 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2662 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2663 return getAddRecExpr(Operands, AR->getLoop(), 2664 SCEV::FlagNW); 2665 } 2666 /// Get a canonical UDivExpr for a recurrence. 2667 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2668 // We can currently only fold X%N if X is constant. 2669 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2670 if (StartC && !DivInt.urem(StepInt) && 2671 getZeroExtendExpr(AR, ExtTy) == 2672 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2673 getZeroExtendExpr(Step, ExtTy), 2674 AR->getLoop(), SCEV::FlagAnyWrap)) { 2675 const APInt &StartInt = StartC->getValue()->getValue(); 2676 const APInt &StartRem = StartInt.urem(StepInt); 2677 if (StartRem != 0) 2678 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2679 AR->getLoop(), SCEV::FlagNW); 2680 } 2681 } 2682 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2683 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2684 SmallVector<const SCEV *, 4> Operands; 2685 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2686 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2687 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2688 // Find an operand that's safely divisible. 2689 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2690 const SCEV *Op = M->getOperand(i); 2691 const SCEV *Div = getUDivExpr(Op, RHSC); 2692 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2693 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2694 M->op_end()); 2695 Operands[i] = Div; 2696 return getMulExpr(Operands); 2697 } 2698 } 2699 } 2700 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2701 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2702 SmallVector<const SCEV *, 4> Operands; 2703 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2704 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2705 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2706 Operands.clear(); 2707 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2708 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2709 if (isa<SCEVUDivExpr>(Op) || 2710 getMulExpr(Op, RHS) != A->getOperand(i)) 2711 break; 2712 Operands.push_back(Op); 2713 } 2714 if (Operands.size() == A->getNumOperands()) 2715 return getAddExpr(Operands); 2716 } 2717 } 2718 2719 // Fold if both operands are constant. 2720 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2721 Constant *LHSCV = LHSC->getValue(); 2722 Constant *RHSCV = RHSC->getValue(); 2723 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2724 RHSCV))); 2725 } 2726 } 2727 } 2728 2729 FoldingSetNodeID ID; 2730 ID.AddInteger(scUDivExpr); 2731 ID.AddPointer(LHS); 2732 ID.AddPointer(RHS); 2733 void *IP = nullptr; 2734 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2735 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2736 LHS, RHS); 2737 UniqueSCEVs.InsertNode(S, IP); 2738 return S; 2739 } 2740 2741 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2742 APInt A = C1->getValue()->getValue().abs(); 2743 APInt B = C2->getValue()->getValue().abs(); 2744 uint32_t ABW = A.getBitWidth(); 2745 uint32_t BBW = B.getBitWidth(); 2746 2747 if (ABW > BBW) 2748 B = B.zext(ABW); 2749 else if (ABW < BBW) 2750 A = A.zext(BBW); 2751 2752 return APIntOps::GreatestCommonDivisor(A, B); 2753 } 2754 2755 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2756 /// something simpler if possible. There is no representation for an exact udiv 2757 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2758 /// We can't do this when it's not exact because the udiv may be clearing bits. 2759 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2760 const SCEV *RHS) { 2761 // TODO: we could try to find factors in all sorts of things, but for now we 2762 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2763 // end of this file for inspiration. 2764 2765 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2766 if (!Mul) 2767 return getUDivExpr(LHS, RHS); 2768 2769 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2770 // If the mulexpr multiplies by a constant, then that constant must be the 2771 // first element of the mulexpr. 2772 if (const SCEVConstant *LHSCst = 2773 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2774 if (LHSCst == RHSCst) { 2775 SmallVector<const SCEV *, 2> Operands; 2776 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2777 return getMulExpr(Operands); 2778 } 2779 2780 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2781 // that there's a factor provided by one of the other terms. We need to 2782 // check. 2783 APInt Factor = gcd(LHSCst, RHSCst); 2784 if (!Factor.isIntN(1)) { 2785 LHSCst = cast<SCEVConstant>( 2786 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2787 RHSCst = cast<SCEVConstant>( 2788 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2789 SmallVector<const SCEV *, 2> Operands; 2790 Operands.push_back(LHSCst); 2791 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2792 LHS = getMulExpr(Operands); 2793 RHS = RHSCst; 2794 Mul = dyn_cast<SCEVMulExpr>(LHS); 2795 if (!Mul) 2796 return getUDivExactExpr(LHS, RHS); 2797 } 2798 } 2799 } 2800 2801 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2802 if (Mul->getOperand(i) == RHS) { 2803 SmallVector<const SCEV *, 2> Operands; 2804 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2805 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2806 return getMulExpr(Operands); 2807 } 2808 } 2809 2810 return getUDivExpr(LHS, RHS); 2811 } 2812 2813 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2814 /// Simplify the expression as much as possible. 2815 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2816 const Loop *L, 2817 SCEV::NoWrapFlags Flags) { 2818 SmallVector<const SCEV *, 4> Operands; 2819 Operands.push_back(Start); 2820 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2821 if (StepChrec->getLoop() == L) { 2822 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2823 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2824 } 2825 2826 Operands.push_back(Step); 2827 return getAddRecExpr(Operands, L, Flags); 2828 } 2829 2830 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2831 /// Simplify the expression as much as possible. 2832 const SCEV * 2833 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2834 const Loop *L, SCEV::NoWrapFlags Flags) { 2835 if (Operands.size() == 1) return Operands[0]; 2836 #ifndef NDEBUG 2837 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2838 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2839 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2840 "SCEVAddRecExpr operand types don't match!"); 2841 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2842 assert(isLoopInvariant(Operands[i], L) && 2843 "SCEVAddRecExpr operand is not loop-invariant!"); 2844 #endif 2845 2846 if (Operands.back()->isZero()) { 2847 Operands.pop_back(); 2848 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2849 } 2850 2851 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2852 // use that information to infer NUW and NSW flags. However, computing a 2853 // BE count requires calling getAddRecExpr, so we may not yet have a 2854 // meaningful BE count at this point (and if we don't, we'd be stuck 2855 // with a SCEVCouldNotCompute as the cached BE count). 2856 2857 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2858 2859 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2860 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2861 const Loop *NestedLoop = NestedAR->getLoop(); 2862 if (L->contains(NestedLoop) ? 2863 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2864 (!NestedLoop->contains(L) && 2865 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2866 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2867 NestedAR->op_end()); 2868 Operands[0] = NestedAR->getStart(); 2869 // AddRecs require their operands be loop-invariant with respect to their 2870 // loops. Don't perform this transformation if it would break this 2871 // requirement. 2872 bool AllInvariant = true; 2873 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2874 if (!isLoopInvariant(Operands[i], L)) { 2875 AllInvariant = false; 2876 break; 2877 } 2878 if (AllInvariant) { 2879 // Create a recurrence for the outer loop with the same step size. 2880 // 2881 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2882 // inner recurrence has the same property. 2883 SCEV::NoWrapFlags OuterFlags = 2884 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2885 2886 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2887 AllInvariant = true; 2888 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2889 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2890 AllInvariant = false; 2891 break; 2892 } 2893 if (AllInvariant) { 2894 // Ok, both add recurrences are valid after the transformation. 2895 // 2896 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2897 // the outer recurrence has the same property. 2898 SCEV::NoWrapFlags InnerFlags = 2899 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2900 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2901 } 2902 } 2903 // Reset Operands to its original state. 2904 Operands[0] = NestedAR; 2905 } 2906 } 2907 2908 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2909 // already have one, otherwise create a new one. 2910 FoldingSetNodeID ID; 2911 ID.AddInteger(scAddRecExpr); 2912 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2913 ID.AddPointer(Operands[i]); 2914 ID.AddPointer(L); 2915 void *IP = nullptr; 2916 SCEVAddRecExpr *S = 2917 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2918 if (!S) { 2919 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2920 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2921 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2922 O, Operands.size(), L); 2923 UniqueSCEVs.InsertNode(S, IP); 2924 } 2925 S->setNoWrapFlags(Flags); 2926 return S; 2927 } 2928 2929 const SCEV * 2930 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2931 const SmallVectorImpl<const SCEV *> &IndexExprs, 2932 bool InBounds) { 2933 // getSCEV(Base)->getType() has the same address space as Base->getType() 2934 // because SCEV::getType() preserves the address space. 2935 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2936 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2937 // instruction to its SCEV, because the Instruction may be guarded by control 2938 // flow and the no-overflow bits may not be valid for the expression in any 2939 // context. This can be fixed similarly to how these flags are handled for 2940 // adds. 2941 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2942 2943 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2944 // The address space is unimportant. The first thing we do on CurTy is getting 2945 // its element type. 2946 Type *CurTy = PointerType::getUnqual(PointeeType); 2947 for (const SCEV *IndexExpr : IndexExprs) { 2948 // Compute the (potentially symbolic) offset in bytes for this index. 2949 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2950 // For a struct, add the member offset. 2951 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2952 unsigned FieldNo = Index->getZExtValue(); 2953 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2954 2955 // Add the field offset to the running total offset. 2956 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2957 2958 // Update CurTy to the type of the field at Index. 2959 CurTy = STy->getTypeAtIndex(Index); 2960 } else { 2961 // Update CurTy to its element type. 2962 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2963 // For an array, add the element offset, explicitly scaled. 2964 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2965 // Getelementptr indices are signed. 2966 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2967 2968 // Multiply the index by the element size to compute the element offset. 2969 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2970 2971 // Add the element offset to the running total offset. 2972 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2973 } 2974 } 2975 2976 // Add the total offset from all the GEP indices to the base. 2977 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2978 } 2979 2980 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2981 const SCEV *RHS) { 2982 SmallVector<const SCEV *, 2> Ops; 2983 Ops.push_back(LHS); 2984 Ops.push_back(RHS); 2985 return getSMaxExpr(Ops); 2986 } 2987 2988 const SCEV * 2989 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2990 assert(!Ops.empty() && "Cannot get empty smax!"); 2991 if (Ops.size() == 1) return Ops[0]; 2992 #ifndef NDEBUG 2993 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2994 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2995 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2996 "SCEVSMaxExpr operand types don't match!"); 2997 #endif 2998 2999 // Sort by complexity, this groups all similar expression types together. 3000 GroupByComplexity(Ops, LI); 3001 3002 // If there are any constants, fold them together. 3003 unsigned Idx = 0; 3004 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3005 ++Idx; 3006 assert(Idx < Ops.size()); 3007 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3008 // We found two constants, fold them together! 3009 ConstantInt *Fold = ConstantInt::get(getContext(), 3010 APIntOps::smax(LHSC->getValue()->getValue(), 3011 RHSC->getValue()->getValue())); 3012 Ops[0] = getConstant(Fold); 3013 Ops.erase(Ops.begin()+1); // Erase the folded element 3014 if (Ops.size() == 1) return Ops[0]; 3015 LHSC = cast<SCEVConstant>(Ops[0]); 3016 } 3017 3018 // If we are left with a constant minimum-int, strip it off. 3019 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3020 Ops.erase(Ops.begin()); 3021 --Idx; 3022 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3023 // If we have an smax with a constant maximum-int, it will always be 3024 // maximum-int. 3025 return Ops[0]; 3026 } 3027 3028 if (Ops.size() == 1) return Ops[0]; 3029 } 3030 3031 // Find the first SMax 3032 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3033 ++Idx; 3034 3035 // Check to see if one of the operands is an SMax. If so, expand its operands 3036 // onto our operand list, and recurse to simplify. 3037 if (Idx < Ops.size()) { 3038 bool DeletedSMax = false; 3039 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3040 Ops.erase(Ops.begin()+Idx); 3041 Ops.append(SMax->op_begin(), SMax->op_end()); 3042 DeletedSMax = true; 3043 } 3044 3045 if (DeletedSMax) 3046 return getSMaxExpr(Ops); 3047 } 3048 3049 // Okay, check to see if the same value occurs in the operand list twice. If 3050 // so, delete one. Since we sorted the list, these values are required to 3051 // be adjacent. 3052 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3053 // X smax Y smax Y --> X smax Y 3054 // X smax Y --> X, if X is always greater than Y 3055 if (Ops[i] == Ops[i+1] || 3056 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3057 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3058 --i; --e; 3059 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3060 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3061 --i; --e; 3062 } 3063 3064 if (Ops.size() == 1) return Ops[0]; 3065 3066 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3067 3068 // Okay, it looks like we really DO need an smax expr. Check to see if we 3069 // already have one, otherwise create a new one. 3070 FoldingSetNodeID ID; 3071 ID.AddInteger(scSMaxExpr); 3072 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3073 ID.AddPointer(Ops[i]); 3074 void *IP = nullptr; 3075 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3076 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3077 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3078 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3079 O, Ops.size()); 3080 UniqueSCEVs.InsertNode(S, IP); 3081 return S; 3082 } 3083 3084 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3085 const SCEV *RHS) { 3086 SmallVector<const SCEV *, 2> Ops; 3087 Ops.push_back(LHS); 3088 Ops.push_back(RHS); 3089 return getUMaxExpr(Ops); 3090 } 3091 3092 const SCEV * 3093 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3094 assert(!Ops.empty() && "Cannot get empty umax!"); 3095 if (Ops.size() == 1) return Ops[0]; 3096 #ifndef NDEBUG 3097 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3098 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3099 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3100 "SCEVUMaxExpr operand types don't match!"); 3101 #endif 3102 3103 // Sort by complexity, this groups all similar expression types together. 3104 GroupByComplexity(Ops, LI); 3105 3106 // If there are any constants, fold them together. 3107 unsigned Idx = 0; 3108 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3109 ++Idx; 3110 assert(Idx < Ops.size()); 3111 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3112 // We found two constants, fold them together! 3113 ConstantInt *Fold = ConstantInt::get(getContext(), 3114 APIntOps::umax(LHSC->getValue()->getValue(), 3115 RHSC->getValue()->getValue())); 3116 Ops[0] = getConstant(Fold); 3117 Ops.erase(Ops.begin()+1); // Erase the folded element 3118 if (Ops.size() == 1) return Ops[0]; 3119 LHSC = cast<SCEVConstant>(Ops[0]); 3120 } 3121 3122 // If we are left with a constant minimum-int, strip it off. 3123 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3124 Ops.erase(Ops.begin()); 3125 --Idx; 3126 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3127 // If we have an umax with a constant maximum-int, it will always be 3128 // maximum-int. 3129 return Ops[0]; 3130 } 3131 3132 if (Ops.size() == 1) return Ops[0]; 3133 } 3134 3135 // Find the first UMax 3136 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3137 ++Idx; 3138 3139 // Check to see if one of the operands is a UMax. If so, expand its operands 3140 // onto our operand list, and recurse to simplify. 3141 if (Idx < Ops.size()) { 3142 bool DeletedUMax = false; 3143 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3144 Ops.erase(Ops.begin()+Idx); 3145 Ops.append(UMax->op_begin(), UMax->op_end()); 3146 DeletedUMax = true; 3147 } 3148 3149 if (DeletedUMax) 3150 return getUMaxExpr(Ops); 3151 } 3152 3153 // Okay, check to see if the same value occurs in the operand list twice. If 3154 // so, delete one. Since we sorted the list, these values are required to 3155 // be adjacent. 3156 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3157 // X umax Y umax Y --> X umax Y 3158 // X umax Y --> X, if X is always greater than Y 3159 if (Ops[i] == Ops[i+1] || 3160 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3161 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3162 --i; --e; 3163 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3164 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3165 --i; --e; 3166 } 3167 3168 if (Ops.size() == 1) return Ops[0]; 3169 3170 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3171 3172 // Okay, it looks like we really DO need a umax expr. Check to see if we 3173 // already have one, otherwise create a new one. 3174 FoldingSetNodeID ID; 3175 ID.AddInteger(scUMaxExpr); 3176 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3177 ID.AddPointer(Ops[i]); 3178 void *IP = nullptr; 3179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3180 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3181 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3182 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3183 O, Ops.size()); 3184 UniqueSCEVs.InsertNode(S, IP); 3185 return S; 3186 } 3187 3188 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3189 const SCEV *RHS) { 3190 // ~smax(~x, ~y) == smin(x, y). 3191 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3192 } 3193 3194 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3195 const SCEV *RHS) { 3196 // ~umax(~x, ~y) == umin(x, y) 3197 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3198 } 3199 3200 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3201 // We can bypass creating a target-independent 3202 // constant expression and then folding it back into a ConstantInt. 3203 // This is just a compile-time optimization. 3204 return getConstant(IntTy, 3205 F->getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3206 } 3207 3208 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3209 StructType *STy, 3210 unsigned FieldNo) { 3211 // We can bypass creating a target-independent 3212 // constant expression and then folding it back into a ConstantInt. 3213 // This is just a compile-time optimization. 3214 return getConstant( 3215 IntTy, 3216 F->getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3217 FieldNo)); 3218 } 3219 3220 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3221 // Don't attempt to do anything other than create a SCEVUnknown object 3222 // here. createSCEV only calls getUnknown after checking for all other 3223 // interesting possibilities, and any other code that calls getUnknown 3224 // is doing so in order to hide a value from SCEV canonicalization. 3225 3226 FoldingSetNodeID ID; 3227 ID.AddInteger(scUnknown); 3228 ID.AddPointer(V); 3229 void *IP = nullptr; 3230 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3231 assert(cast<SCEVUnknown>(S)->getValue() == V && 3232 "Stale SCEVUnknown in uniquing map!"); 3233 return S; 3234 } 3235 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3236 FirstUnknown); 3237 FirstUnknown = cast<SCEVUnknown>(S); 3238 UniqueSCEVs.InsertNode(S, IP); 3239 return S; 3240 } 3241 3242 //===----------------------------------------------------------------------===// 3243 // Basic SCEV Analysis and PHI Idiom Recognition Code 3244 // 3245 3246 /// isSCEVable - Test if values of the given type are analyzable within 3247 /// the SCEV framework. This primarily includes integer types, and it 3248 /// can optionally include pointer types if the ScalarEvolution class 3249 /// has access to target-specific information. 3250 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3251 // Integers and pointers are always SCEVable. 3252 return Ty->isIntegerTy() || Ty->isPointerTy(); 3253 } 3254 3255 /// getTypeSizeInBits - Return the size in bits of the specified type, 3256 /// for which isSCEVable must return true. 3257 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3258 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3259 return F->getParent()->getDataLayout().getTypeSizeInBits(Ty); 3260 } 3261 3262 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3263 /// the given type and which represents how SCEV will treat the given 3264 /// type, for which isSCEVable must return true. For pointer types, 3265 /// this is the pointer-sized integer type. 3266 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3267 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3268 3269 if (Ty->isIntegerTy()) { 3270 return Ty; 3271 } 3272 3273 // The only other support type is pointer. 3274 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3275 return F->getParent()->getDataLayout().getIntPtrType(Ty); 3276 } 3277 3278 const SCEV *ScalarEvolution::getCouldNotCompute() { 3279 return &CouldNotCompute; 3280 } 3281 3282 namespace { 3283 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3284 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3285 // is set iff if find such SCEVUnknown. 3286 // 3287 struct FindInvalidSCEVUnknown { 3288 bool FindOne; 3289 FindInvalidSCEVUnknown() { FindOne = false; } 3290 bool follow(const SCEV *S) { 3291 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3292 case scConstant: 3293 return false; 3294 case scUnknown: 3295 if (!cast<SCEVUnknown>(S)->getValue()) 3296 FindOne = true; 3297 return false; 3298 default: 3299 return true; 3300 } 3301 } 3302 bool isDone() const { return FindOne; } 3303 }; 3304 } 3305 3306 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3307 FindInvalidSCEVUnknown F; 3308 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3309 ST.visitAll(S); 3310 3311 return !F.FindOne; 3312 } 3313 3314 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3315 /// expression and create a new one. 3316 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3317 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3318 3319 const SCEV *S = getExistingSCEV(V); 3320 if (S == nullptr) { 3321 S = createSCEV(V); 3322 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3323 } 3324 return S; 3325 } 3326 3327 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3328 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3329 3330 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3331 if (I != ValueExprMap.end()) { 3332 const SCEV *S = I->second; 3333 if (checkValidity(S)) 3334 return S; 3335 ValueExprMap.erase(I); 3336 } 3337 return nullptr; 3338 } 3339 3340 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3341 /// 3342 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 3343 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3344 return getConstant( 3345 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3346 3347 Type *Ty = V->getType(); 3348 Ty = getEffectiveSCEVType(Ty); 3349 return getMulExpr(V, 3350 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 3351 } 3352 3353 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3354 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3355 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3356 return getConstant( 3357 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3358 3359 Type *Ty = V->getType(); 3360 Ty = getEffectiveSCEVType(Ty); 3361 const SCEV *AllOnes = 3362 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3363 return getMinusSCEV(AllOnes, V); 3364 } 3365 3366 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3367 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3368 SCEV::NoWrapFlags Flags) { 3369 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 3370 3371 // Fast path: X - X --> 0. 3372 if (LHS == RHS) 3373 return getConstant(LHS->getType(), 0); 3374 3375 // X - Y --> X + -Y. 3376 // X -(nsw || nuw) Y --> X + -Y. 3377 return getAddExpr(LHS, getNegativeSCEV(RHS)); 3378 } 3379 3380 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3381 /// input value to the specified type. If the type must be extended, it is zero 3382 /// extended. 3383 const SCEV * 3384 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3385 Type *SrcTy = V->getType(); 3386 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3387 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3388 "Cannot truncate or zero extend with non-integer arguments!"); 3389 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3390 return V; // No conversion 3391 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3392 return getTruncateExpr(V, Ty); 3393 return getZeroExtendExpr(V, Ty); 3394 } 3395 3396 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3397 /// input value to the specified type. If the type must be extended, it is sign 3398 /// extended. 3399 const SCEV * 3400 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3401 Type *Ty) { 3402 Type *SrcTy = V->getType(); 3403 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3404 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3405 "Cannot truncate or zero extend with non-integer arguments!"); 3406 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3407 return V; // No conversion 3408 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3409 return getTruncateExpr(V, Ty); 3410 return getSignExtendExpr(V, Ty); 3411 } 3412 3413 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3414 /// input value to the specified type. If the type must be extended, it is zero 3415 /// extended. The conversion must not be narrowing. 3416 const SCEV * 3417 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3418 Type *SrcTy = V->getType(); 3419 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3420 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3421 "Cannot noop or zero extend with non-integer arguments!"); 3422 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3423 "getNoopOrZeroExtend cannot truncate!"); 3424 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3425 return V; // No conversion 3426 return getZeroExtendExpr(V, Ty); 3427 } 3428 3429 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3430 /// input value to the specified type. If the type must be extended, it is sign 3431 /// extended. The conversion must not be narrowing. 3432 const SCEV * 3433 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3434 Type *SrcTy = V->getType(); 3435 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3436 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3437 "Cannot noop or sign extend with non-integer arguments!"); 3438 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3439 "getNoopOrSignExtend cannot truncate!"); 3440 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3441 return V; // No conversion 3442 return getSignExtendExpr(V, Ty); 3443 } 3444 3445 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3446 /// the input value to the specified type. If the type must be extended, 3447 /// it is extended with unspecified bits. The conversion must not be 3448 /// narrowing. 3449 const SCEV * 3450 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3451 Type *SrcTy = V->getType(); 3452 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3453 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3454 "Cannot noop or any extend with non-integer arguments!"); 3455 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3456 "getNoopOrAnyExtend cannot truncate!"); 3457 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3458 return V; // No conversion 3459 return getAnyExtendExpr(V, Ty); 3460 } 3461 3462 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3463 /// input value to the specified type. The conversion must not be widening. 3464 const SCEV * 3465 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3466 Type *SrcTy = V->getType(); 3467 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3468 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3469 "Cannot truncate or noop with non-integer arguments!"); 3470 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3471 "getTruncateOrNoop cannot extend!"); 3472 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3473 return V; // No conversion 3474 return getTruncateExpr(V, Ty); 3475 } 3476 3477 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3478 /// the types using zero-extension, and then perform a umax operation 3479 /// with them. 3480 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3481 const SCEV *RHS) { 3482 const SCEV *PromotedLHS = LHS; 3483 const SCEV *PromotedRHS = RHS; 3484 3485 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3486 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3487 else 3488 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3489 3490 return getUMaxExpr(PromotedLHS, PromotedRHS); 3491 } 3492 3493 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3494 /// the types using zero-extension, and then perform a umin operation 3495 /// with them. 3496 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3497 const SCEV *RHS) { 3498 const SCEV *PromotedLHS = LHS; 3499 const SCEV *PromotedRHS = RHS; 3500 3501 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3502 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3503 else 3504 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3505 3506 return getUMinExpr(PromotedLHS, PromotedRHS); 3507 } 3508 3509 /// getPointerBase - Transitively follow the chain of pointer-type operands 3510 /// until reaching a SCEV that does not have a single pointer operand. This 3511 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3512 /// but corner cases do exist. 3513 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3514 // A pointer operand may evaluate to a nonpointer expression, such as null. 3515 if (!V->getType()->isPointerTy()) 3516 return V; 3517 3518 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3519 return getPointerBase(Cast->getOperand()); 3520 } 3521 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3522 const SCEV *PtrOp = nullptr; 3523 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3524 I != E; ++I) { 3525 if ((*I)->getType()->isPointerTy()) { 3526 // Cannot find the base of an expression with multiple pointer operands. 3527 if (PtrOp) 3528 return V; 3529 PtrOp = *I; 3530 } 3531 } 3532 if (!PtrOp) 3533 return V; 3534 return getPointerBase(PtrOp); 3535 } 3536 return V; 3537 } 3538 3539 /// PushDefUseChildren - Push users of the given Instruction 3540 /// onto the given Worklist. 3541 static void 3542 PushDefUseChildren(Instruction *I, 3543 SmallVectorImpl<Instruction *> &Worklist) { 3544 // Push the def-use children onto the Worklist stack. 3545 for (User *U : I->users()) 3546 Worklist.push_back(cast<Instruction>(U)); 3547 } 3548 3549 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3550 /// instructions that depend on the given instruction and removes them from 3551 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3552 /// resolution. 3553 void 3554 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3555 SmallVector<Instruction *, 16> Worklist; 3556 PushDefUseChildren(PN, Worklist); 3557 3558 SmallPtrSet<Instruction *, 8> Visited; 3559 Visited.insert(PN); 3560 while (!Worklist.empty()) { 3561 Instruction *I = Worklist.pop_back_val(); 3562 if (!Visited.insert(I).second) 3563 continue; 3564 3565 ValueExprMapType::iterator It = 3566 ValueExprMap.find_as(static_cast<Value *>(I)); 3567 if (It != ValueExprMap.end()) { 3568 const SCEV *Old = It->second; 3569 3570 // Short-circuit the def-use traversal if the symbolic name 3571 // ceases to appear in expressions. 3572 if (Old != SymName && !hasOperand(Old, SymName)) 3573 continue; 3574 3575 // SCEVUnknown for a PHI either means that it has an unrecognized 3576 // structure, it's a PHI that's in the progress of being computed 3577 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3578 // additional loop trip count information isn't going to change anything. 3579 // In the second case, createNodeForPHI will perform the necessary 3580 // updates on its own when it gets to that point. In the third, we do 3581 // want to forget the SCEVUnknown. 3582 if (!isa<PHINode>(I) || 3583 !isa<SCEVUnknown>(Old) || 3584 (I != PN && Old == SymName)) { 3585 forgetMemoizedResults(Old); 3586 ValueExprMap.erase(It); 3587 } 3588 } 3589 3590 PushDefUseChildren(I, Worklist); 3591 } 3592 } 3593 3594 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3595 /// a loop header, making it a potential recurrence, or it doesn't. 3596 /// 3597 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3598 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3599 if (L->getHeader() == PN->getParent()) { 3600 // The loop may have multiple entrances or multiple exits; we can analyze 3601 // this phi as an addrec if it has a unique entry value and a unique 3602 // backedge value. 3603 Value *BEValueV = nullptr, *StartValueV = nullptr; 3604 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3605 Value *V = PN->getIncomingValue(i); 3606 if (L->contains(PN->getIncomingBlock(i))) { 3607 if (!BEValueV) { 3608 BEValueV = V; 3609 } else if (BEValueV != V) { 3610 BEValueV = nullptr; 3611 break; 3612 } 3613 } else if (!StartValueV) { 3614 StartValueV = V; 3615 } else if (StartValueV != V) { 3616 StartValueV = nullptr; 3617 break; 3618 } 3619 } 3620 if (BEValueV && StartValueV) { 3621 // While we are analyzing this PHI node, handle its value symbolically. 3622 const SCEV *SymbolicName = getUnknown(PN); 3623 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3624 "PHI node already processed?"); 3625 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3626 3627 // Using this symbolic name for the PHI, analyze the value coming around 3628 // the back-edge. 3629 const SCEV *BEValue = getSCEV(BEValueV); 3630 3631 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3632 // has a special value for the first iteration of the loop. 3633 3634 // If the value coming around the backedge is an add with the symbolic 3635 // value we just inserted, then we found a simple induction variable! 3636 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3637 // If there is a single occurrence of the symbolic value, replace it 3638 // with a recurrence. 3639 unsigned FoundIndex = Add->getNumOperands(); 3640 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3641 if (Add->getOperand(i) == SymbolicName) 3642 if (FoundIndex == e) { 3643 FoundIndex = i; 3644 break; 3645 } 3646 3647 if (FoundIndex != Add->getNumOperands()) { 3648 // Create an add with everything but the specified operand. 3649 SmallVector<const SCEV *, 8> Ops; 3650 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3651 if (i != FoundIndex) 3652 Ops.push_back(Add->getOperand(i)); 3653 const SCEV *Accum = getAddExpr(Ops); 3654 3655 // This is not a valid addrec if the step amount is varying each 3656 // loop iteration, but is not itself an addrec in this loop. 3657 if (isLoopInvariant(Accum, L) || 3658 (isa<SCEVAddRecExpr>(Accum) && 3659 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3660 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3661 3662 // If the increment doesn't overflow, then neither the addrec nor 3663 // the post-increment will overflow. 3664 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3665 if (OBO->getOperand(0) == PN) { 3666 if (OBO->hasNoUnsignedWrap()) 3667 Flags = setFlags(Flags, SCEV::FlagNUW); 3668 if (OBO->hasNoSignedWrap()) 3669 Flags = setFlags(Flags, SCEV::FlagNSW); 3670 } 3671 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3672 // If the increment is an inbounds GEP, then we know the address 3673 // space cannot be wrapped around. We cannot make any guarantee 3674 // about signed or unsigned overflow because pointers are 3675 // unsigned but we may have a negative index from the base 3676 // pointer. We can guarantee that no unsigned wrap occurs if the 3677 // indices form a positive value. 3678 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3679 Flags = setFlags(Flags, SCEV::FlagNW); 3680 3681 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3682 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3683 Flags = setFlags(Flags, SCEV::FlagNUW); 3684 } 3685 3686 // We cannot transfer nuw and nsw flags from subtraction 3687 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3688 // for instance. 3689 } 3690 3691 const SCEV *StartVal = getSCEV(StartValueV); 3692 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3693 3694 // Since the no-wrap flags are on the increment, they apply to the 3695 // post-incremented value as well. 3696 if (isLoopInvariant(Accum, L)) 3697 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3698 Accum, L, Flags); 3699 3700 // Okay, for the entire analysis of this edge we assumed the PHI 3701 // to be symbolic. We now need to go back and purge all of the 3702 // entries for the scalars that use the symbolic expression. 3703 ForgetSymbolicName(PN, SymbolicName); 3704 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3705 return PHISCEV; 3706 } 3707 } 3708 } else if (const SCEVAddRecExpr *AddRec = 3709 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3710 // Otherwise, this could be a loop like this: 3711 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3712 // In this case, j = {1,+,1} and BEValue is j. 3713 // Because the other in-value of i (0) fits the evolution of BEValue 3714 // i really is an addrec evolution. 3715 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3716 const SCEV *StartVal = getSCEV(StartValueV); 3717 3718 // If StartVal = j.start - j.stride, we can use StartVal as the 3719 // initial step of the addrec evolution. 3720 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3721 AddRec->getOperand(1))) { 3722 // FIXME: For constant StartVal, we should be able to infer 3723 // no-wrap flags. 3724 const SCEV *PHISCEV = 3725 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3726 SCEV::FlagAnyWrap); 3727 3728 // Okay, for the entire analysis of this edge we assumed the PHI 3729 // to be symbolic. We now need to go back and purge all of the 3730 // entries for the scalars that use the symbolic expression. 3731 ForgetSymbolicName(PN, SymbolicName); 3732 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3733 return PHISCEV; 3734 } 3735 } 3736 } 3737 } 3738 } 3739 3740 // If the PHI has a single incoming value, follow that value, unless the 3741 // PHI's incoming blocks are in a different loop, in which case doing so 3742 // risks breaking LCSSA form. Instcombine would normally zap these, but 3743 // it doesn't have DominatorTree information, so it may miss cases. 3744 if (Value *V = 3745 SimplifyInstruction(PN, F->getParent()->getDataLayout(), TLI, DT, AC)) 3746 if (LI->replacementPreservesLCSSAForm(PN, V)) 3747 return getSCEV(V); 3748 3749 // If it's not a loop phi, we can't handle it yet. 3750 return getUnknown(PN); 3751 } 3752 3753 /// createNodeForGEP - Expand GEP instructions into add and multiply 3754 /// operations. This allows them to be analyzed by regular SCEV code. 3755 /// 3756 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3757 Value *Base = GEP->getOperand(0); 3758 // Don't attempt to analyze GEPs over unsized objects. 3759 if (!Base->getType()->getPointerElementType()->isSized()) 3760 return getUnknown(GEP); 3761 3762 SmallVector<const SCEV *, 4> IndexExprs; 3763 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 3764 IndexExprs.push_back(getSCEV(*Index)); 3765 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 3766 GEP->isInBounds()); 3767 } 3768 3769 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3770 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3771 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3772 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3773 uint32_t 3774 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3775 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3776 return C->getValue()->getValue().countTrailingZeros(); 3777 3778 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3779 return std::min(GetMinTrailingZeros(T->getOperand()), 3780 (uint32_t)getTypeSizeInBits(T->getType())); 3781 3782 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3783 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3784 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3785 getTypeSizeInBits(E->getType()) : OpRes; 3786 } 3787 3788 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3789 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3790 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3791 getTypeSizeInBits(E->getType()) : OpRes; 3792 } 3793 3794 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3795 // The result is the min of all operands results. 3796 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3797 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3798 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3799 return MinOpRes; 3800 } 3801 3802 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3803 // The result is the sum of all operands results. 3804 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3805 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3806 for (unsigned i = 1, e = M->getNumOperands(); 3807 SumOpRes != BitWidth && i != e; ++i) 3808 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3809 BitWidth); 3810 return SumOpRes; 3811 } 3812 3813 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3814 // The result is the min of all operands results. 3815 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3816 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3817 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3818 return MinOpRes; 3819 } 3820 3821 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3822 // The result is the min of all operands results. 3823 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3824 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3825 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3826 return MinOpRes; 3827 } 3828 3829 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3830 // The result is the min of all operands results. 3831 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3832 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3833 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3834 return MinOpRes; 3835 } 3836 3837 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3838 // For a SCEVUnknown, ask ValueTracking. 3839 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3840 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3841 computeKnownBits(U->getValue(), Zeros, Ones, 3842 F->getParent()->getDataLayout(), 0, AC, nullptr, DT); 3843 return Zeros.countTrailingOnes(); 3844 } 3845 3846 // SCEVUDivExpr 3847 return 0; 3848 } 3849 3850 /// GetRangeFromMetadata - Helper method to assign a range to V from 3851 /// metadata present in the IR. 3852 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 3853 if (Instruction *I = dyn_cast<Instruction>(V)) { 3854 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 3855 ConstantRange TotalRange( 3856 cast<IntegerType>(I->getType())->getBitWidth(), false); 3857 3858 unsigned NumRanges = MD->getNumOperands() / 2; 3859 assert(NumRanges >= 1); 3860 3861 for (unsigned i = 0; i < NumRanges; ++i) { 3862 ConstantInt *Lower = 3863 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 3864 ConstantInt *Upper = 3865 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 3866 ConstantRange Range(Lower->getValue(), Upper->getValue()); 3867 TotalRange = TotalRange.unionWith(Range); 3868 } 3869 3870 return TotalRange; 3871 } 3872 } 3873 3874 return None; 3875 } 3876 3877 /// getRange - Determine the range for a particular SCEV. If SignHint is 3878 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 3879 /// with a "cleaner" unsigned (resp. signed) representation. 3880 /// 3881 ConstantRange 3882 ScalarEvolution::getRange(const SCEV *S, 3883 ScalarEvolution::RangeSignHint SignHint) { 3884 DenseMap<const SCEV *, ConstantRange> &Cache = 3885 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 3886 : SignedRanges; 3887 3888 // See if we've computed this range already. 3889 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 3890 if (I != Cache.end()) 3891 return I->second; 3892 3893 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3894 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 3895 3896 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3897 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3898 3899 // If the value has known zeros, the maximum value will have those known zeros 3900 // as well. 3901 uint32_t TZ = GetMinTrailingZeros(S); 3902 if (TZ != 0) { 3903 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 3904 ConservativeResult = 3905 ConstantRange(APInt::getMinValue(BitWidth), 3906 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3907 else 3908 ConservativeResult = ConstantRange( 3909 APInt::getSignedMinValue(BitWidth), 3910 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3911 } 3912 3913 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3914 ConstantRange X = getRange(Add->getOperand(0), SignHint); 3915 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3916 X = X.add(getRange(Add->getOperand(i), SignHint)); 3917 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 3918 } 3919 3920 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3921 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 3922 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3923 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 3924 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 3925 } 3926 3927 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3928 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 3929 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3930 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 3931 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 3932 } 3933 3934 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3935 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 3936 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3937 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 3938 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 3939 } 3940 3941 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3942 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 3943 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 3944 return setRange(UDiv, SignHint, 3945 ConservativeResult.intersectWith(X.udiv(Y))); 3946 } 3947 3948 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3949 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 3950 return setRange(ZExt, SignHint, 3951 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3952 } 3953 3954 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3955 ConstantRange X = getRange(SExt->getOperand(), SignHint); 3956 return setRange(SExt, SignHint, 3957 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3958 } 3959 3960 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3961 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 3962 return setRange(Trunc, SignHint, 3963 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3964 } 3965 3966 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3967 // If there's no unsigned wrap, the value will never be less than its 3968 // initial value. 3969 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3970 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3971 if (!C->getValue()->isZero()) 3972 ConservativeResult = 3973 ConservativeResult.intersectWith( 3974 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3975 3976 // If there's no signed wrap, and all the operands have the same sign or 3977 // zero, the value won't ever change sign. 3978 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3979 bool AllNonNeg = true; 3980 bool AllNonPos = true; 3981 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3982 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3983 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3984 } 3985 if (AllNonNeg) 3986 ConservativeResult = ConservativeResult.intersectWith( 3987 ConstantRange(APInt(BitWidth, 0), 3988 APInt::getSignedMinValue(BitWidth))); 3989 else if (AllNonPos) 3990 ConservativeResult = ConservativeResult.intersectWith( 3991 ConstantRange(APInt::getSignedMinValue(BitWidth), 3992 APInt(BitWidth, 1))); 3993 } 3994 3995 // TODO: non-affine addrec 3996 if (AddRec->isAffine()) { 3997 Type *Ty = AddRec->getType(); 3998 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3999 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4000 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4001 4002 // Check for overflow. This must be done with ConstantRange arithmetic 4003 // because we could be called from within the ScalarEvolution overflow 4004 // checking code. 4005 4006 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4007 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4008 ConstantRange ZExtMaxBECountRange = 4009 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4010 4011 const SCEV *Start = AddRec->getStart(); 4012 const SCEV *Step = AddRec->getStepRecurrence(*this); 4013 ConstantRange StepSRange = getSignedRange(Step); 4014 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4015 4016 ConstantRange StartURange = getUnsignedRange(Start); 4017 ConstantRange EndURange = 4018 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4019 4020 // Check for unsigned overflow. 4021 ConstantRange ZExtStartURange = 4022 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4023 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4024 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4025 ZExtEndURange) { 4026 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4027 EndURange.getUnsignedMin()); 4028 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4029 EndURange.getUnsignedMax()); 4030 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4031 if (!IsFullRange) 4032 ConservativeResult = 4033 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4034 } 4035 4036 ConstantRange StartSRange = getSignedRange(Start); 4037 ConstantRange EndSRange = 4038 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4039 4040 // Check for signed overflow. This must be done with ConstantRange 4041 // arithmetic because we could be called from within the ScalarEvolution 4042 // overflow checking code. 4043 ConstantRange SExtStartSRange = 4044 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4045 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4046 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4047 SExtEndSRange) { 4048 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4049 EndSRange.getSignedMin()); 4050 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4051 EndSRange.getSignedMax()); 4052 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4053 if (!IsFullRange) 4054 ConservativeResult = 4055 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4056 } 4057 } 4058 } 4059 4060 return setRange(AddRec, SignHint, ConservativeResult); 4061 } 4062 4063 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4064 // Check if the IR explicitly contains !range metadata. 4065 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4066 if (MDRange.hasValue()) 4067 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4068 4069 // Split here to avoid paying the compile-time cost of calling both 4070 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4071 // if needed. 4072 const DataLayout &DL = F->getParent()->getDataLayout(); 4073 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4074 // For a SCEVUnknown, ask ValueTracking. 4075 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4076 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT); 4077 if (Ones != ~Zeros + 1) 4078 ConservativeResult = 4079 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4080 } else { 4081 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4082 "generalize as needed!"); 4083 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT); 4084 if (NS > 1) 4085 ConservativeResult = ConservativeResult.intersectWith( 4086 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4087 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4088 } 4089 4090 return setRange(U, SignHint, ConservativeResult); 4091 } 4092 4093 return setRange(S, SignHint, ConservativeResult); 4094 } 4095 4096 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4097 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4098 4099 // Return early if there are no flags to propagate to the SCEV. 4100 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4101 if (BinOp->hasNoUnsignedWrap()) 4102 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4103 if (BinOp->hasNoSignedWrap()) 4104 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4105 if (Flags == SCEV::FlagAnyWrap) { 4106 return SCEV::FlagAnyWrap; 4107 } 4108 4109 // Here we check that BinOp is in the header of the innermost loop 4110 // containing BinOp, since we only deal with instructions in the loop 4111 // header. The actual loop we need to check later will come from an add 4112 // recurrence, but getting that requires computing the SCEV of the operands, 4113 // which can be expensive. This check we can do cheaply to rule out some 4114 // cases early. 4115 Loop *innermostContainingLoop = LI->getLoopFor(BinOp->getParent()); 4116 if (innermostContainingLoop == nullptr || 4117 innermostContainingLoop->getHeader() != BinOp->getParent()) 4118 return SCEV::FlagAnyWrap; 4119 4120 // Only proceed if we can prove that BinOp does not yield poison. 4121 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4122 4123 // At this point we know that if V is executed, then it does not wrap 4124 // according to at least one of NSW or NUW. If V is not executed, then we do 4125 // not know if the calculation that V represents would wrap. Multiple 4126 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4127 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4128 // derived from other instructions that map to the same SCEV. We cannot make 4129 // that guarantee for cases where V is not executed. So we need to find the 4130 // loop that V is considered in relation to and prove that V is executed for 4131 // every iteration of that loop. That implies that the value that V 4132 // calculates does not wrap anywhere in the loop, so then we can apply the 4133 // flags to the SCEV. 4134 // 4135 // We check isLoopInvariant to disambiguate in case we are adding two 4136 // recurrences from different loops, so that we know which loop to prove 4137 // that V is executed in. 4138 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4139 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4140 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4141 const int OtherOpIndex = 1 - OpIndex; 4142 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4143 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4144 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4145 return Flags; 4146 } 4147 } 4148 return SCEV::FlagAnyWrap; 4149 } 4150 4151 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4152 /// the expression. 4153 /// 4154 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4155 if (!isSCEVable(V->getType())) 4156 return getUnknown(V); 4157 4158 unsigned Opcode = Instruction::UserOp1; 4159 if (Instruction *I = dyn_cast<Instruction>(V)) { 4160 Opcode = I->getOpcode(); 4161 4162 // Don't attempt to analyze instructions in blocks that aren't 4163 // reachable. Such instructions don't matter, and they aren't required 4164 // to obey basic rules for definitions dominating uses which this 4165 // analysis depends on. 4166 if (!DT->isReachableFromEntry(I->getParent())) 4167 return getUnknown(V); 4168 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4169 Opcode = CE->getOpcode(); 4170 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4171 return getConstant(CI); 4172 else if (isa<ConstantPointerNull>(V)) 4173 return getConstant(V->getType(), 0); 4174 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4175 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4176 else 4177 return getUnknown(V); 4178 4179 Operator *U = cast<Operator>(V); 4180 switch (Opcode) { 4181 case Instruction::Add: { 4182 // The simple thing to do would be to just call getSCEV on both operands 4183 // and call getAddExpr with the result. However if we're looking at a 4184 // bunch of things all added together, this can be quite inefficient, 4185 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4186 // Instead, gather up all the operands and make a single getAddExpr call. 4187 // LLVM IR canonical form means we need only traverse the left operands. 4188 // 4189 // FIXME: Expand this handling of NSW and NUW to other instructions, like 4190 // sub and mul. 4191 SmallVector<const SCEV *, 4> AddOps; 4192 for (Value *Op = U;; Op = U->getOperand(0)) { 4193 U = dyn_cast<Operator>(Op); 4194 unsigned Opcode = U ? U->getOpcode() : 0; 4195 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4196 assert(Op != V && "V should be an add"); 4197 AddOps.push_back(getSCEV(Op)); 4198 break; 4199 } 4200 4201 if (auto *OpSCEV = getExistingSCEV(Op)) { 4202 AddOps.push_back(OpSCEV); 4203 break; 4204 } 4205 4206 // If a NUW or NSW flag can be applied to the SCEV for this 4207 // addition, then compute the SCEV for this addition by itself 4208 // with a separate call to getAddExpr. We need to do that 4209 // instead of pushing the operands of the addition onto AddOps, 4210 // since the flags are only known to apply to this particular 4211 // addition - they may not apply to other additions that can be 4212 // formed with operands from AddOps. 4213 // 4214 // FIXME: Expand this to sub instructions. 4215 if (Opcode == Instruction::Add && isa<BinaryOperator>(U)) { 4216 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4217 if (Flags != SCEV::FlagAnyWrap) { 4218 AddOps.push_back(getAddExpr(getSCEV(U->getOperand(0)), 4219 getSCEV(U->getOperand(1)), Flags)); 4220 break; 4221 } 4222 } 4223 4224 const SCEV *Op1 = getSCEV(U->getOperand(1)); 4225 if (Opcode == Instruction::Sub) 4226 AddOps.push_back(getNegativeSCEV(Op1)); 4227 else 4228 AddOps.push_back(Op1); 4229 } 4230 return getAddExpr(AddOps); 4231 } 4232 4233 case Instruction::Mul: { 4234 // FIXME: Transfer NSW/NUW as in AddExpr. 4235 SmallVector<const SCEV *, 4> MulOps; 4236 MulOps.push_back(getSCEV(U->getOperand(1))); 4237 for (Value *Op = U->getOperand(0); 4238 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 4239 Op = U->getOperand(0)) { 4240 U = cast<Operator>(Op); 4241 MulOps.push_back(getSCEV(U->getOperand(1))); 4242 } 4243 MulOps.push_back(getSCEV(U->getOperand(0))); 4244 return getMulExpr(MulOps); 4245 } 4246 case Instruction::UDiv: 4247 return getUDivExpr(getSCEV(U->getOperand(0)), 4248 getSCEV(U->getOperand(1))); 4249 case Instruction::Sub: 4250 return getMinusSCEV(getSCEV(U->getOperand(0)), 4251 getSCEV(U->getOperand(1))); 4252 case Instruction::And: 4253 // For an expression like x&255 that merely masks off the high bits, 4254 // use zext(trunc(x)) as the SCEV expression. 4255 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4256 if (CI->isNullValue()) 4257 return getSCEV(U->getOperand(1)); 4258 if (CI->isAllOnesValue()) 4259 return getSCEV(U->getOperand(0)); 4260 const APInt &A = CI->getValue(); 4261 4262 // Instcombine's ShrinkDemandedConstant may strip bits out of 4263 // constants, obscuring what would otherwise be a low-bits mask. 4264 // Use computeKnownBits to compute what ShrinkDemandedConstant 4265 // knew about to reconstruct a low-bits mask value. 4266 unsigned LZ = A.countLeadingZeros(); 4267 unsigned TZ = A.countTrailingZeros(); 4268 unsigned BitWidth = A.getBitWidth(); 4269 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4270 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4271 F->getParent()->getDataLayout(), 0, AC, nullptr, DT); 4272 4273 APInt EffectiveMask = 4274 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4275 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4276 const SCEV *MulCount = getConstant( 4277 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4278 return getMulExpr( 4279 getZeroExtendExpr( 4280 getTruncateExpr( 4281 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4282 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4283 U->getType()), 4284 MulCount); 4285 } 4286 } 4287 break; 4288 4289 case Instruction::Or: 4290 // If the RHS of the Or is a constant, we may have something like: 4291 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4292 // optimizations will transparently handle this case. 4293 // 4294 // In order for this transformation to be safe, the LHS must be of the 4295 // form X*(2^n) and the Or constant must be less than 2^n. 4296 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4297 const SCEV *LHS = getSCEV(U->getOperand(0)); 4298 const APInt &CIVal = CI->getValue(); 4299 if (GetMinTrailingZeros(LHS) >= 4300 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4301 // Build a plain add SCEV. 4302 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4303 // If the LHS of the add was an addrec and it has no-wrap flags, 4304 // transfer the no-wrap flags, since an or won't introduce a wrap. 4305 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4306 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4307 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4308 OldAR->getNoWrapFlags()); 4309 } 4310 return S; 4311 } 4312 } 4313 break; 4314 case Instruction::Xor: 4315 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4316 // If the RHS of the xor is a signbit, then this is just an add. 4317 // Instcombine turns add of signbit into xor as a strength reduction step. 4318 if (CI->getValue().isSignBit()) 4319 return getAddExpr(getSCEV(U->getOperand(0)), 4320 getSCEV(U->getOperand(1))); 4321 4322 // If the RHS of xor is -1, then this is a not operation. 4323 if (CI->isAllOnesValue()) 4324 return getNotSCEV(getSCEV(U->getOperand(0))); 4325 4326 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4327 // This is a variant of the check for xor with -1, and it handles 4328 // the case where instcombine has trimmed non-demanded bits out 4329 // of an xor with -1. 4330 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4331 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4332 if (BO->getOpcode() == Instruction::And && 4333 LCI->getValue() == CI->getValue()) 4334 if (const SCEVZeroExtendExpr *Z = 4335 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4336 Type *UTy = U->getType(); 4337 const SCEV *Z0 = Z->getOperand(); 4338 Type *Z0Ty = Z0->getType(); 4339 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4340 4341 // If C is a low-bits mask, the zero extend is serving to 4342 // mask off the high bits. Complement the operand and 4343 // re-apply the zext. 4344 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4345 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4346 4347 // If C is a single bit, it may be in the sign-bit position 4348 // before the zero-extend. In this case, represent the xor 4349 // using an add, which is equivalent, and re-apply the zext. 4350 APInt Trunc = CI->getValue().trunc(Z0TySize); 4351 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4352 Trunc.isSignBit()) 4353 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4354 UTy); 4355 } 4356 } 4357 break; 4358 4359 case Instruction::Shl: 4360 // Turn shift left of a constant amount into a multiply. 4361 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4362 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4363 4364 // If the shift count is not less than the bitwidth, the result of 4365 // the shift is undefined. Don't try to analyze it, because the 4366 // resolution chosen here may differ from the resolution chosen in 4367 // other parts of the compiler. 4368 if (SA->getValue().uge(BitWidth)) 4369 break; 4370 4371 Constant *X = ConstantInt::get(getContext(), 4372 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4373 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4374 } 4375 break; 4376 4377 case Instruction::LShr: 4378 // Turn logical shift right of a constant into a unsigned divide. 4379 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4380 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4381 4382 // If the shift count is not less than the bitwidth, the result of 4383 // the shift is undefined. Don't try to analyze it, because the 4384 // resolution chosen here may differ from the resolution chosen in 4385 // other parts of the compiler. 4386 if (SA->getValue().uge(BitWidth)) 4387 break; 4388 4389 Constant *X = ConstantInt::get(getContext(), 4390 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4391 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4392 } 4393 break; 4394 4395 case Instruction::AShr: 4396 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4397 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4398 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4399 if (L->getOpcode() == Instruction::Shl && 4400 L->getOperand(1) == U->getOperand(1)) { 4401 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4402 4403 // If the shift count is not less than the bitwidth, the result of 4404 // the shift is undefined. Don't try to analyze it, because the 4405 // resolution chosen here may differ from the resolution chosen in 4406 // other parts of the compiler. 4407 if (CI->getValue().uge(BitWidth)) 4408 break; 4409 4410 uint64_t Amt = BitWidth - CI->getZExtValue(); 4411 if (Amt == BitWidth) 4412 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4413 return 4414 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4415 IntegerType::get(getContext(), 4416 Amt)), 4417 U->getType()); 4418 } 4419 break; 4420 4421 case Instruction::Trunc: 4422 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4423 4424 case Instruction::ZExt: 4425 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4426 4427 case Instruction::SExt: 4428 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4429 4430 case Instruction::BitCast: 4431 // BitCasts are no-op casts so we just eliminate the cast. 4432 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4433 return getSCEV(U->getOperand(0)); 4434 break; 4435 4436 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4437 // lead to pointer expressions which cannot safely be expanded to GEPs, 4438 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4439 // simplifying integer expressions. 4440 4441 case Instruction::GetElementPtr: 4442 return createNodeForGEP(cast<GEPOperator>(U)); 4443 4444 case Instruction::PHI: 4445 return createNodeForPHI(cast<PHINode>(U)); 4446 4447 case Instruction::Select: 4448 // This could be a smax or umax that was lowered earlier. 4449 // Try to recover it. 4450 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 4451 Value *LHS = ICI->getOperand(0); 4452 Value *RHS = ICI->getOperand(1); 4453 switch (ICI->getPredicate()) { 4454 case ICmpInst::ICMP_SLT: 4455 case ICmpInst::ICMP_SLE: 4456 std::swap(LHS, RHS); 4457 // fall through 4458 case ICmpInst::ICMP_SGT: 4459 case ICmpInst::ICMP_SGE: 4460 // a >s b ? a+x : b+x -> smax(a, b)+x 4461 // a >s b ? b+x : a+x -> smin(a, b)+x 4462 if (getTypeSizeInBits(LHS->getType()) <= 4463 getTypeSizeInBits(U->getType())) { 4464 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType()); 4465 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType()); 4466 const SCEV *LA = getSCEV(U->getOperand(1)); 4467 const SCEV *RA = getSCEV(U->getOperand(2)); 4468 const SCEV *LDiff = getMinusSCEV(LA, LS); 4469 const SCEV *RDiff = getMinusSCEV(RA, RS); 4470 if (LDiff == RDiff) 4471 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4472 LDiff = getMinusSCEV(LA, RS); 4473 RDiff = getMinusSCEV(RA, LS); 4474 if (LDiff == RDiff) 4475 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4476 } 4477 break; 4478 case ICmpInst::ICMP_ULT: 4479 case ICmpInst::ICMP_ULE: 4480 std::swap(LHS, RHS); 4481 // fall through 4482 case ICmpInst::ICMP_UGT: 4483 case ICmpInst::ICMP_UGE: 4484 // a >u b ? a+x : b+x -> umax(a, b)+x 4485 // a >u b ? b+x : a+x -> umin(a, b)+x 4486 if (getTypeSizeInBits(LHS->getType()) <= 4487 getTypeSizeInBits(U->getType())) { 4488 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4489 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType()); 4490 const SCEV *LA = getSCEV(U->getOperand(1)); 4491 const SCEV *RA = getSCEV(U->getOperand(2)); 4492 const SCEV *LDiff = getMinusSCEV(LA, LS); 4493 const SCEV *RDiff = getMinusSCEV(RA, RS); 4494 if (LDiff == RDiff) 4495 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4496 LDiff = getMinusSCEV(LA, RS); 4497 RDiff = getMinusSCEV(RA, LS); 4498 if (LDiff == RDiff) 4499 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4500 } 4501 break; 4502 case ICmpInst::ICMP_NE: 4503 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4504 if (getTypeSizeInBits(LHS->getType()) <= 4505 getTypeSizeInBits(U->getType()) && 4506 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4507 const SCEV *One = getConstant(U->getType(), 1); 4508 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4509 const SCEV *LA = getSCEV(U->getOperand(1)); 4510 const SCEV *RA = getSCEV(U->getOperand(2)); 4511 const SCEV *LDiff = getMinusSCEV(LA, LS); 4512 const SCEV *RDiff = getMinusSCEV(RA, One); 4513 if (LDiff == RDiff) 4514 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4515 } 4516 break; 4517 case ICmpInst::ICMP_EQ: 4518 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4519 if (getTypeSizeInBits(LHS->getType()) <= 4520 getTypeSizeInBits(U->getType()) && 4521 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4522 const SCEV *One = getConstant(U->getType(), 1); 4523 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4524 const SCEV *LA = getSCEV(U->getOperand(1)); 4525 const SCEV *RA = getSCEV(U->getOperand(2)); 4526 const SCEV *LDiff = getMinusSCEV(LA, One); 4527 const SCEV *RDiff = getMinusSCEV(RA, LS); 4528 if (LDiff == RDiff) 4529 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4530 } 4531 break; 4532 default: 4533 break; 4534 } 4535 } 4536 4537 default: // We cannot analyze this expression. 4538 break; 4539 } 4540 4541 return getUnknown(V); 4542 } 4543 4544 4545 4546 //===----------------------------------------------------------------------===// 4547 // Iteration Count Computation Code 4548 // 4549 4550 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4551 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4552 return getSmallConstantTripCount(L, ExitingBB); 4553 4554 // No trip count information for multiple exits. 4555 return 0; 4556 } 4557 4558 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4559 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4560 /// constant. Will also return 0 if the maximum trip count is very large (>= 4561 /// 2^32). 4562 /// 4563 /// This "trip count" assumes that control exits via ExitingBlock. More 4564 /// precisely, it is the number of times that control may reach ExitingBlock 4565 /// before taking the branch. For loops with multiple exits, it may not be the 4566 /// number times that the loop header executes because the loop may exit 4567 /// prematurely via another branch. 4568 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4569 BasicBlock *ExitingBlock) { 4570 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4571 assert(L->isLoopExiting(ExitingBlock) && 4572 "Exiting block must actually branch out of the loop!"); 4573 const SCEVConstant *ExitCount = 4574 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4575 if (!ExitCount) 4576 return 0; 4577 4578 ConstantInt *ExitConst = ExitCount->getValue(); 4579 4580 // Guard against huge trip counts. 4581 if (ExitConst->getValue().getActiveBits() > 32) 4582 return 0; 4583 4584 // In case of integer overflow, this returns 0, which is correct. 4585 return ((unsigned)ExitConst->getZExtValue()) + 1; 4586 } 4587 4588 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4589 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4590 return getSmallConstantTripMultiple(L, ExitingBB); 4591 4592 // No trip multiple information for multiple exits. 4593 return 0; 4594 } 4595 4596 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4597 /// trip count of this loop as a normal unsigned value, if possible. This 4598 /// means that the actual trip count is always a multiple of the returned 4599 /// value (don't forget the trip count could very well be zero as well!). 4600 /// 4601 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4602 /// multiple of a constant (which is also the case if the trip count is simply 4603 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4604 /// if the trip count is very large (>= 2^32). 4605 /// 4606 /// As explained in the comments for getSmallConstantTripCount, this assumes 4607 /// that control exits the loop via ExitingBlock. 4608 unsigned 4609 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4610 BasicBlock *ExitingBlock) { 4611 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4612 assert(L->isLoopExiting(ExitingBlock) && 4613 "Exiting block must actually branch out of the loop!"); 4614 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4615 if (ExitCount == getCouldNotCompute()) 4616 return 1; 4617 4618 // Get the trip count from the BE count by adding 1. 4619 const SCEV *TCMul = getAddExpr(ExitCount, 4620 getConstant(ExitCount->getType(), 1)); 4621 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4622 // to factor simple cases. 4623 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4624 TCMul = Mul->getOperand(0); 4625 4626 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4627 if (!MulC) 4628 return 1; 4629 4630 ConstantInt *Result = MulC->getValue(); 4631 4632 // Guard against huge trip counts (this requires checking 4633 // for zero to handle the case where the trip count == -1 and the 4634 // addition wraps). 4635 if (!Result || Result->getValue().getActiveBits() > 32 || 4636 Result->getValue().getActiveBits() == 0) 4637 return 1; 4638 4639 return (unsigned)Result->getZExtValue(); 4640 } 4641 4642 // getExitCount - Get the expression for the number of loop iterations for which 4643 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4644 // SCEVCouldNotCompute. 4645 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4646 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4647 } 4648 4649 /// getBackedgeTakenCount - If the specified loop has a predictable 4650 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4651 /// object. The backedge-taken count is the number of times the loop header 4652 /// will be branched to from within the loop. This is one less than the 4653 /// trip count of the loop, since it doesn't count the first iteration, 4654 /// when the header is branched to from outside the loop. 4655 /// 4656 /// Note that it is not valid to call this method on a loop without a 4657 /// loop-invariant backedge-taken count (see 4658 /// hasLoopInvariantBackedgeTakenCount). 4659 /// 4660 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4661 return getBackedgeTakenInfo(L).getExact(this); 4662 } 4663 4664 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4665 /// return the least SCEV value that is known never to be less than the 4666 /// actual backedge taken count. 4667 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4668 return getBackedgeTakenInfo(L).getMax(this); 4669 } 4670 4671 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4672 /// onto the given Worklist. 4673 static void 4674 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4675 BasicBlock *Header = L->getHeader(); 4676 4677 // Push all Loop-header PHIs onto the Worklist stack. 4678 for (BasicBlock::iterator I = Header->begin(); 4679 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4680 Worklist.push_back(PN); 4681 } 4682 4683 const ScalarEvolution::BackedgeTakenInfo & 4684 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4685 // Initially insert an invalid entry for this loop. If the insertion 4686 // succeeds, proceed to actually compute a backedge-taken count and 4687 // update the value. The temporary CouldNotCompute value tells SCEV 4688 // code elsewhere that it shouldn't attempt to request a new 4689 // backedge-taken count, which could result in infinite recursion. 4690 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4691 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4692 if (!Pair.second) 4693 return Pair.first->second; 4694 4695 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4696 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4697 // must be cleared in this scope. 4698 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4699 4700 if (Result.getExact(this) != getCouldNotCompute()) { 4701 assert(isLoopInvariant(Result.getExact(this), L) && 4702 isLoopInvariant(Result.getMax(this), L) && 4703 "Computed backedge-taken count isn't loop invariant for loop!"); 4704 ++NumTripCountsComputed; 4705 } 4706 else if (Result.getMax(this) == getCouldNotCompute() && 4707 isa<PHINode>(L->getHeader()->begin())) { 4708 // Only count loops that have phi nodes as not being computable. 4709 ++NumTripCountsNotComputed; 4710 } 4711 4712 // Now that we know more about the trip count for this loop, forget any 4713 // existing SCEV values for PHI nodes in this loop since they are only 4714 // conservative estimates made without the benefit of trip count 4715 // information. This is similar to the code in forgetLoop, except that 4716 // it handles SCEVUnknown PHI nodes specially. 4717 if (Result.hasAnyInfo()) { 4718 SmallVector<Instruction *, 16> Worklist; 4719 PushLoopPHIs(L, Worklist); 4720 4721 SmallPtrSet<Instruction *, 8> Visited; 4722 while (!Worklist.empty()) { 4723 Instruction *I = Worklist.pop_back_val(); 4724 if (!Visited.insert(I).second) 4725 continue; 4726 4727 ValueExprMapType::iterator It = 4728 ValueExprMap.find_as(static_cast<Value *>(I)); 4729 if (It != ValueExprMap.end()) { 4730 const SCEV *Old = It->second; 4731 4732 // SCEVUnknown for a PHI either means that it has an unrecognized 4733 // structure, or it's a PHI that's in the progress of being computed 4734 // by createNodeForPHI. In the former case, additional loop trip 4735 // count information isn't going to change anything. In the later 4736 // case, createNodeForPHI will perform the necessary updates on its 4737 // own when it gets to that point. 4738 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4739 forgetMemoizedResults(Old); 4740 ValueExprMap.erase(It); 4741 } 4742 if (PHINode *PN = dyn_cast<PHINode>(I)) 4743 ConstantEvolutionLoopExitValue.erase(PN); 4744 } 4745 4746 PushDefUseChildren(I, Worklist); 4747 } 4748 } 4749 4750 // Re-lookup the insert position, since the call to 4751 // ComputeBackedgeTakenCount above could result in a 4752 // recusive call to getBackedgeTakenInfo (on a different 4753 // loop), which would invalidate the iterator computed 4754 // earlier. 4755 return BackedgeTakenCounts.find(L)->second = Result; 4756 } 4757 4758 /// forgetLoop - This method should be called by the client when it has 4759 /// changed a loop in a way that may effect ScalarEvolution's ability to 4760 /// compute a trip count, or if the loop is deleted. 4761 void ScalarEvolution::forgetLoop(const Loop *L) { 4762 // Drop any stored trip count value. 4763 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4764 BackedgeTakenCounts.find(L); 4765 if (BTCPos != BackedgeTakenCounts.end()) { 4766 BTCPos->second.clear(); 4767 BackedgeTakenCounts.erase(BTCPos); 4768 } 4769 4770 // Drop information about expressions based on loop-header PHIs. 4771 SmallVector<Instruction *, 16> Worklist; 4772 PushLoopPHIs(L, Worklist); 4773 4774 SmallPtrSet<Instruction *, 8> Visited; 4775 while (!Worklist.empty()) { 4776 Instruction *I = Worklist.pop_back_val(); 4777 if (!Visited.insert(I).second) 4778 continue; 4779 4780 ValueExprMapType::iterator It = 4781 ValueExprMap.find_as(static_cast<Value *>(I)); 4782 if (It != ValueExprMap.end()) { 4783 forgetMemoizedResults(It->second); 4784 ValueExprMap.erase(It); 4785 if (PHINode *PN = dyn_cast<PHINode>(I)) 4786 ConstantEvolutionLoopExitValue.erase(PN); 4787 } 4788 4789 PushDefUseChildren(I, Worklist); 4790 } 4791 4792 // Forget all contained loops too, to avoid dangling entries in the 4793 // ValuesAtScopes map. 4794 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4795 forgetLoop(*I); 4796 } 4797 4798 /// forgetValue - This method should be called by the client when it has 4799 /// changed a value in a way that may effect its value, or which may 4800 /// disconnect it from a def-use chain linking it to a loop. 4801 void ScalarEvolution::forgetValue(Value *V) { 4802 Instruction *I = dyn_cast<Instruction>(V); 4803 if (!I) return; 4804 4805 // Drop information about expressions based on loop-header PHIs. 4806 SmallVector<Instruction *, 16> Worklist; 4807 Worklist.push_back(I); 4808 4809 SmallPtrSet<Instruction *, 8> Visited; 4810 while (!Worklist.empty()) { 4811 I = Worklist.pop_back_val(); 4812 if (!Visited.insert(I).second) 4813 continue; 4814 4815 ValueExprMapType::iterator It = 4816 ValueExprMap.find_as(static_cast<Value *>(I)); 4817 if (It != ValueExprMap.end()) { 4818 forgetMemoizedResults(It->second); 4819 ValueExprMap.erase(It); 4820 if (PHINode *PN = dyn_cast<PHINode>(I)) 4821 ConstantEvolutionLoopExitValue.erase(PN); 4822 } 4823 4824 PushDefUseChildren(I, Worklist); 4825 } 4826 } 4827 4828 /// getExact - Get the exact loop backedge taken count considering all loop 4829 /// exits. A computable result can only be returned for loops with a single 4830 /// exit. Returning the minimum taken count among all exits is incorrect 4831 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 4832 /// assumes that the limit of each loop test is never skipped. This is a valid 4833 /// assumption as long as the loop exits via that test. For precise results, it 4834 /// is the caller's responsibility to specify the relevant loop exit using 4835 /// getExact(ExitingBlock, SE). 4836 const SCEV * 4837 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4838 // If any exits were not computable, the loop is not computable. 4839 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4840 4841 // We need exactly one computable exit. 4842 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4843 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4844 4845 const SCEV *BECount = nullptr; 4846 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4847 ENT != nullptr; ENT = ENT->getNextExit()) { 4848 4849 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4850 4851 if (!BECount) 4852 BECount = ENT->ExactNotTaken; 4853 else if (BECount != ENT->ExactNotTaken) 4854 return SE->getCouldNotCompute(); 4855 } 4856 assert(BECount && "Invalid not taken count for loop exit"); 4857 return BECount; 4858 } 4859 4860 /// getExact - Get the exact not taken count for this loop exit. 4861 const SCEV * 4862 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4863 ScalarEvolution *SE) const { 4864 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4865 ENT != nullptr; ENT = ENT->getNextExit()) { 4866 4867 if (ENT->ExitingBlock == ExitingBlock) 4868 return ENT->ExactNotTaken; 4869 } 4870 return SE->getCouldNotCompute(); 4871 } 4872 4873 /// getMax - Get the max backedge taken count for the loop. 4874 const SCEV * 4875 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4876 return Max ? Max : SE->getCouldNotCompute(); 4877 } 4878 4879 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4880 ScalarEvolution *SE) const { 4881 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4882 return true; 4883 4884 if (!ExitNotTaken.ExitingBlock) 4885 return false; 4886 4887 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4888 ENT != nullptr; ENT = ENT->getNextExit()) { 4889 4890 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4891 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4892 return true; 4893 } 4894 } 4895 return false; 4896 } 4897 4898 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4899 /// computable exit into a persistent ExitNotTakenInfo array. 4900 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4901 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4902 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4903 4904 if (!Complete) 4905 ExitNotTaken.setIncomplete(); 4906 4907 unsigned NumExits = ExitCounts.size(); 4908 if (NumExits == 0) return; 4909 4910 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4911 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4912 if (NumExits == 1) return; 4913 4914 // Handle the rare case of multiple computable exits. 4915 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4916 4917 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4918 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4919 PrevENT->setNextExit(ENT); 4920 ENT->ExitingBlock = ExitCounts[i].first; 4921 ENT->ExactNotTaken = ExitCounts[i].second; 4922 } 4923 } 4924 4925 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4926 void ScalarEvolution::BackedgeTakenInfo::clear() { 4927 ExitNotTaken.ExitingBlock = nullptr; 4928 ExitNotTaken.ExactNotTaken = nullptr; 4929 delete[] ExitNotTaken.getNextExit(); 4930 } 4931 4932 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4933 /// of the specified loop will execute. 4934 ScalarEvolution::BackedgeTakenInfo 4935 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4936 SmallVector<BasicBlock *, 8> ExitingBlocks; 4937 L->getExitingBlocks(ExitingBlocks); 4938 4939 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4940 bool CouldComputeBECount = true; 4941 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4942 const SCEV *MustExitMaxBECount = nullptr; 4943 const SCEV *MayExitMaxBECount = nullptr; 4944 4945 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 4946 // and compute maxBECount. 4947 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4948 BasicBlock *ExitBB = ExitingBlocks[i]; 4949 ExitLimit EL = ComputeExitLimit(L, ExitBB); 4950 4951 // 1. For each exit that can be computed, add an entry to ExitCounts. 4952 // CouldComputeBECount is true only if all exits can be computed. 4953 if (EL.Exact == getCouldNotCompute()) 4954 // We couldn't compute an exact value for this exit, so 4955 // we won't be able to compute an exact value for the loop. 4956 CouldComputeBECount = false; 4957 else 4958 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 4959 4960 // 2. Derive the loop's MaxBECount from each exit's max number of 4961 // non-exiting iterations. Partition the loop exits into two kinds: 4962 // LoopMustExits and LoopMayExits. 4963 // 4964 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 4965 // is a LoopMayExit. If any computable LoopMustExit is found, then 4966 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 4967 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 4968 // considered greater than any computable EL.Max. 4969 if (EL.Max != getCouldNotCompute() && Latch && 4970 DT->dominates(ExitBB, Latch)) { 4971 if (!MustExitMaxBECount) 4972 MustExitMaxBECount = EL.Max; 4973 else { 4974 MustExitMaxBECount = 4975 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 4976 } 4977 } else if (MayExitMaxBECount != getCouldNotCompute()) { 4978 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 4979 MayExitMaxBECount = EL.Max; 4980 else { 4981 MayExitMaxBECount = 4982 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 4983 } 4984 } 4985 } 4986 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 4987 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 4988 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4989 } 4990 4991 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4992 /// loop will execute if it exits via the specified block. 4993 ScalarEvolution::ExitLimit 4994 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4995 4996 // Okay, we've chosen an exiting block. See what condition causes us to 4997 // exit at this block and remember the exit block and whether all other targets 4998 // lead to the loop header. 4999 bool MustExecuteLoopHeader = true; 5000 BasicBlock *Exit = nullptr; 5001 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5002 SI != SE; ++SI) 5003 if (!L->contains(*SI)) { 5004 if (Exit) // Multiple exit successors. 5005 return getCouldNotCompute(); 5006 Exit = *SI; 5007 } else if (*SI != L->getHeader()) { 5008 MustExecuteLoopHeader = false; 5009 } 5010 5011 // At this point, we know we have a conditional branch that determines whether 5012 // the loop is exited. However, we don't know if the branch is executed each 5013 // time through the loop. If not, then the execution count of the branch will 5014 // not be equal to the trip count of the loop. 5015 // 5016 // Currently we check for this by checking to see if the Exit branch goes to 5017 // the loop header. If so, we know it will always execute the same number of 5018 // times as the loop. We also handle the case where the exit block *is* the 5019 // loop header. This is common for un-rotated loops. 5020 // 5021 // If both of those tests fail, walk up the unique predecessor chain to the 5022 // header, stopping if there is an edge that doesn't exit the loop. If the 5023 // header is reached, the execution count of the branch will be equal to the 5024 // trip count of the loop. 5025 // 5026 // More extensive analysis could be done to handle more cases here. 5027 // 5028 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5029 // The simple checks failed, try climbing the unique predecessor chain 5030 // up to the header. 5031 bool Ok = false; 5032 for (BasicBlock *BB = ExitingBlock; BB; ) { 5033 BasicBlock *Pred = BB->getUniquePredecessor(); 5034 if (!Pred) 5035 return getCouldNotCompute(); 5036 TerminatorInst *PredTerm = Pred->getTerminator(); 5037 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 5038 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 5039 if (PredSucc == BB) 5040 continue; 5041 // If the predecessor has a successor that isn't BB and isn't 5042 // outside the loop, assume the worst. 5043 if (L->contains(PredSucc)) 5044 return getCouldNotCompute(); 5045 } 5046 if (Pred == L->getHeader()) { 5047 Ok = true; 5048 break; 5049 } 5050 BB = Pred; 5051 } 5052 if (!Ok) 5053 return getCouldNotCompute(); 5054 } 5055 5056 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5057 TerminatorInst *Term = ExitingBlock->getTerminator(); 5058 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5059 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5060 // Proceed to the next level to examine the exit condition expression. 5061 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5062 BI->getSuccessor(1), 5063 /*ControlsExit=*/IsOnlyExit); 5064 } 5065 5066 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5067 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 5068 /*ControlsExit=*/IsOnlyExit); 5069 5070 return getCouldNotCompute(); 5071 } 5072 5073 /// ComputeExitLimitFromCond - Compute the number of times the 5074 /// backedge of the specified loop will execute if its exit condition 5075 /// were a conditional branch of ExitCond, TBB, and FBB. 5076 /// 5077 /// @param ControlsExit is true if ExitCond directly controls the exit 5078 /// branch. In this case, we can assume that the loop exits only if the 5079 /// condition is true and can infer that failing to meet the condition prior to 5080 /// integer wraparound results in undefined behavior. 5081 ScalarEvolution::ExitLimit 5082 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 5083 Value *ExitCond, 5084 BasicBlock *TBB, 5085 BasicBlock *FBB, 5086 bool ControlsExit) { 5087 // Check if the controlling expression for this loop is an And or Or. 5088 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5089 if (BO->getOpcode() == Instruction::And) { 5090 // Recurse on the operands of the and. 5091 bool EitherMayExit = L->contains(TBB); 5092 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5093 ControlsExit && !EitherMayExit); 5094 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5095 ControlsExit && !EitherMayExit); 5096 const SCEV *BECount = getCouldNotCompute(); 5097 const SCEV *MaxBECount = getCouldNotCompute(); 5098 if (EitherMayExit) { 5099 // Both conditions must be true for the loop to continue executing. 5100 // Choose the less conservative count. 5101 if (EL0.Exact == getCouldNotCompute() || 5102 EL1.Exact == getCouldNotCompute()) 5103 BECount = getCouldNotCompute(); 5104 else 5105 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5106 if (EL0.Max == getCouldNotCompute()) 5107 MaxBECount = EL1.Max; 5108 else if (EL1.Max == getCouldNotCompute()) 5109 MaxBECount = EL0.Max; 5110 else 5111 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5112 } else { 5113 // Both conditions must be true at the same time for the loop to exit. 5114 // For now, be conservative. 5115 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5116 if (EL0.Max == EL1.Max) 5117 MaxBECount = EL0.Max; 5118 if (EL0.Exact == EL1.Exact) 5119 BECount = EL0.Exact; 5120 } 5121 5122 return ExitLimit(BECount, MaxBECount); 5123 } 5124 if (BO->getOpcode() == Instruction::Or) { 5125 // Recurse on the operands of the or. 5126 bool EitherMayExit = L->contains(FBB); 5127 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5128 ControlsExit && !EitherMayExit); 5129 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5130 ControlsExit && !EitherMayExit); 5131 const SCEV *BECount = getCouldNotCompute(); 5132 const SCEV *MaxBECount = getCouldNotCompute(); 5133 if (EitherMayExit) { 5134 // Both conditions must be false for the loop to continue executing. 5135 // Choose the less conservative count. 5136 if (EL0.Exact == getCouldNotCompute() || 5137 EL1.Exact == getCouldNotCompute()) 5138 BECount = getCouldNotCompute(); 5139 else 5140 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5141 if (EL0.Max == getCouldNotCompute()) 5142 MaxBECount = EL1.Max; 5143 else if (EL1.Max == getCouldNotCompute()) 5144 MaxBECount = EL0.Max; 5145 else 5146 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5147 } else { 5148 // Both conditions must be false at the same time for the loop to exit. 5149 // For now, be conservative. 5150 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5151 if (EL0.Max == EL1.Max) 5152 MaxBECount = EL0.Max; 5153 if (EL0.Exact == EL1.Exact) 5154 BECount = EL0.Exact; 5155 } 5156 5157 return ExitLimit(BECount, MaxBECount); 5158 } 5159 } 5160 5161 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5162 // Proceed to the next level to examine the icmp. 5163 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5164 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5165 5166 // Check for a constant condition. These are normally stripped out by 5167 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5168 // preserve the CFG and is temporarily leaving constant conditions 5169 // in place. 5170 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5171 if (L->contains(FBB) == !CI->getZExtValue()) 5172 // The backedge is always taken. 5173 return getCouldNotCompute(); 5174 else 5175 // The backedge is never taken. 5176 return getConstant(CI->getType(), 0); 5177 } 5178 5179 // If it's not an integer or pointer comparison then compute it the hard way. 5180 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5181 } 5182 5183 /// ComputeExitLimitFromICmp - Compute the number of times the 5184 /// backedge of the specified loop will execute if its exit condition 5185 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 5186 ScalarEvolution::ExitLimit 5187 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 5188 ICmpInst *ExitCond, 5189 BasicBlock *TBB, 5190 BasicBlock *FBB, 5191 bool ControlsExit) { 5192 5193 // If the condition was exit on true, convert the condition to exit on false 5194 ICmpInst::Predicate Cond; 5195 if (!L->contains(FBB)) 5196 Cond = ExitCond->getPredicate(); 5197 else 5198 Cond = ExitCond->getInversePredicate(); 5199 5200 // Handle common loops like: for (X = "string"; *X; ++X) 5201 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5202 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5203 ExitLimit ItCnt = 5204 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5205 if (ItCnt.hasAnyInfo()) 5206 return ItCnt; 5207 } 5208 5209 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5210 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5211 5212 // Try to evaluate any dependencies out of the loop. 5213 LHS = getSCEVAtScope(LHS, L); 5214 RHS = getSCEVAtScope(RHS, L); 5215 5216 // At this point, we would like to compute how many iterations of the 5217 // loop the predicate will return true for these inputs. 5218 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5219 // If there is a loop-invariant, force it into the RHS. 5220 std::swap(LHS, RHS); 5221 Cond = ICmpInst::getSwappedPredicate(Cond); 5222 } 5223 5224 // Simplify the operands before analyzing them. 5225 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5226 5227 // If we have a comparison of a chrec against a constant, try to use value 5228 // ranges to answer this query. 5229 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5230 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5231 if (AddRec->getLoop() == L) { 5232 // Form the constant range. 5233 ConstantRange CompRange( 5234 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5235 5236 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5237 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5238 } 5239 5240 switch (Cond) { 5241 case ICmpInst::ICMP_NE: { // while (X != Y) 5242 // Convert to: while (X-Y != 0) 5243 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5244 if (EL.hasAnyInfo()) return EL; 5245 break; 5246 } 5247 case ICmpInst::ICMP_EQ: { // while (X == Y) 5248 // Convert to: while (X-Y == 0) 5249 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5250 if (EL.hasAnyInfo()) return EL; 5251 break; 5252 } 5253 case ICmpInst::ICMP_SLT: 5254 case ICmpInst::ICMP_ULT: { // while (X < Y) 5255 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5256 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5257 if (EL.hasAnyInfo()) return EL; 5258 break; 5259 } 5260 case ICmpInst::ICMP_SGT: 5261 case ICmpInst::ICMP_UGT: { // while (X > Y) 5262 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5263 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5264 if (EL.hasAnyInfo()) return EL; 5265 break; 5266 } 5267 default: 5268 #if 0 5269 dbgs() << "ComputeBackedgeTakenCount "; 5270 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5271 dbgs() << "[unsigned] "; 5272 dbgs() << *LHS << " " 5273 << Instruction::getOpcodeName(Instruction::ICmp) 5274 << " " << *RHS << "\n"; 5275 #endif 5276 break; 5277 } 5278 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5279 } 5280 5281 ScalarEvolution::ExitLimit 5282 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 5283 SwitchInst *Switch, 5284 BasicBlock *ExitingBlock, 5285 bool ControlsExit) { 5286 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5287 5288 // Give up if the exit is the default dest of a switch. 5289 if (Switch->getDefaultDest() == ExitingBlock) 5290 return getCouldNotCompute(); 5291 5292 assert(L->contains(Switch->getDefaultDest()) && 5293 "Default case must not exit the loop!"); 5294 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5295 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5296 5297 // while (X != Y) --> while (X-Y != 0) 5298 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5299 if (EL.hasAnyInfo()) 5300 return EL; 5301 5302 return getCouldNotCompute(); 5303 } 5304 5305 static ConstantInt * 5306 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5307 ScalarEvolution &SE) { 5308 const SCEV *InVal = SE.getConstant(C); 5309 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5310 assert(isa<SCEVConstant>(Val) && 5311 "Evaluation of SCEV at constant didn't fold correctly?"); 5312 return cast<SCEVConstant>(Val)->getValue(); 5313 } 5314 5315 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 5316 /// 'icmp op load X, cst', try to see if we can compute the backedge 5317 /// execution count. 5318 ScalarEvolution::ExitLimit 5319 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 5320 LoadInst *LI, 5321 Constant *RHS, 5322 const Loop *L, 5323 ICmpInst::Predicate predicate) { 5324 5325 if (LI->isVolatile()) return getCouldNotCompute(); 5326 5327 // Check to see if the loaded pointer is a getelementptr of a global. 5328 // TODO: Use SCEV instead of manually grubbing with GEPs. 5329 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5330 if (!GEP) return getCouldNotCompute(); 5331 5332 // Make sure that it is really a constant global we are gepping, with an 5333 // initializer, and make sure the first IDX is really 0. 5334 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5335 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5336 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5337 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5338 return getCouldNotCompute(); 5339 5340 // Okay, we allow one non-constant index into the GEP instruction. 5341 Value *VarIdx = nullptr; 5342 std::vector<Constant*> Indexes; 5343 unsigned VarIdxNum = 0; 5344 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5345 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5346 Indexes.push_back(CI); 5347 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5348 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5349 VarIdx = GEP->getOperand(i); 5350 VarIdxNum = i-2; 5351 Indexes.push_back(nullptr); 5352 } 5353 5354 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5355 if (!VarIdx) 5356 return getCouldNotCompute(); 5357 5358 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5359 // Check to see if X is a loop variant variable value now. 5360 const SCEV *Idx = getSCEV(VarIdx); 5361 Idx = getSCEVAtScope(Idx, L); 5362 5363 // We can only recognize very limited forms of loop index expressions, in 5364 // particular, only affine AddRec's like {C1,+,C2}. 5365 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5366 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5367 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5368 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5369 return getCouldNotCompute(); 5370 5371 unsigned MaxSteps = MaxBruteForceIterations; 5372 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5373 ConstantInt *ItCst = ConstantInt::get( 5374 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5375 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5376 5377 // Form the GEP offset. 5378 Indexes[VarIdxNum] = Val; 5379 5380 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5381 Indexes); 5382 if (!Result) break; // Cannot compute! 5383 5384 // Evaluate the condition for this iteration. 5385 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5386 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5387 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5388 #if 0 5389 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5390 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5391 << "***\n"; 5392 #endif 5393 ++NumArrayLenItCounts; 5394 return getConstant(ItCst); // Found terminating iteration! 5395 } 5396 } 5397 return getCouldNotCompute(); 5398 } 5399 5400 5401 /// CanConstantFold - Return true if we can constant fold an instruction of the 5402 /// specified type, assuming that all operands were constants. 5403 static bool CanConstantFold(const Instruction *I) { 5404 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5405 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5406 isa<LoadInst>(I)) 5407 return true; 5408 5409 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5410 if (const Function *F = CI->getCalledFunction()) 5411 return canConstantFoldCallTo(F); 5412 return false; 5413 } 5414 5415 /// Determine whether this instruction can constant evolve within this loop 5416 /// assuming its operands can all constant evolve. 5417 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5418 // An instruction outside of the loop can't be derived from a loop PHI. 5419 if (!L->contains(I)) return false; 5420 5421 if (isa<PHINode>(I)) { 5422 // We don't currently keep track of the control flow needed to evaluate 5423 // PHIs, so we cannot handle PHIs inside of loops. 5424 return L->getHeader() == I->getParent(); 5425 } 5426 5427 // If we won't be able to constant fold this expression even if the operands 5428 // are constants, bail early. 5429 return CanConstantFold(I); 5430 } 5431 5432 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5433 /// recursing through each instruction operand until reaching a loop header phi. 5434 static PHINode * 5435 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5436 DenseMap<Instruction *, PHINode *> &PHIMap) { 5437 5438 // Otherwise, we can evaluate this instruction if all of its operands are 5439 // constant or derived from a PHI node themselves. 5440 PHINode *PHI = nullptr; 5441 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5442 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5443 5444 if (isa<Constant>(*OpI)) continue; 5445 5446 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5447 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5448 5449 PHINode *P = dyn_cast<PHINode>(OpInst); 5450 if (!P) 5451 // If this operand is already visited, reuse the prior result. 5452 // We may have P != PHI if this is the deepest point at which the 5453 // inconsistent paths meet. 5454 P = PHIMap.lookup(OpInst); 5455 if (!P) { 5456 // Recurse and memoize the results, whether a phi is found or not. 5457 // This recursive call invalidates pointers into PHIMap. 5458 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5459 PHIMap[OpInst] = P; 5460 } 5461 if (!P) 5462 return nullptr; // Not evolving from PHI 5463 if (PHI && PHI != P) 5464 return nullptr; // Evolving from multiple different PHIs. 5465 PHI = P; 5466 } 5467 // This is a expression evolving from a constant PHI! 5468 return PHI; 5469 } 5470 5471 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5472 /// in the loop that V is derived from. We allow arbitrary operations along the 5473 /// way, but the operands of an operation must either be constants or a value 5474 /// derived from a constant PHI. If this expression does not fit with these 5475 /// constraints, return null. 5476 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5477 Instruction *I = dyn_cast<Instruction>(V); 5478 if (!I || !canConstantEvolve(I, L)) return nullptr; 5479 5480 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5481 return PN; 5482 } 5483 5484 // Record non-constant instructions contained by the loop. 5485 DenseMap<Instruction *, PHINode *> PHIMap; 5486 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5487 } 5488 5489 /// EvaluateExpression - Given an expression that passes the 5490 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5491 /// in the loop has the value PHIVal. If we can't fold this expression for some 5492 /// reason, return null. 5493 static Constant *EvaluateExpression(Value *V, const Loop *L, 5494 DenseMap<Instruction *, Constant *> &Vals, 5495 const DataLayout &DL, 5496 const TargetLibraryInfo *TLI) { 5497 // Convenient constant check, but redundant for recursive calls. 5498 if (Constant *C = dyn_cast<Constant>(V)) return C; 5499 Instruction *I = dyn_cast<Instruction>(V); 5500 if (!I) return nullptr; 5501 5502 if (Constant *C = Vals.lookup(I)) return C; 5503 5504 // An instruction inside the loop depends on a value outside the loop that we 5505 // weren't given a mapping for, or a value such as a call inside the loop. 5506 if (!canConstantEvolve(I, L)) return nullptr; 5507 5508 // An unmapped PHI can be due to a branch or another loop inside this loop, 5509 // or due to this not being the initial iteration through a loop where we 5510 // couldn't compute the evolution of this particular PHI last time. 5511 if (isa<PHINode>(I)) return nullptr; 5512 5513 std::vector<Constant*> Operands(I->getNumOperands()); 5514 5515 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5516 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5517 if (!Operand) { 5518 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5519 if (!Operands[i]) return nullptr; 5520 continue; 5521 } 5522 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5523 Vals[Operand] = C; 5524 if (!C) return nullptr; 5525 Operands[i] = C; 5526 } 5527 5528 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5529 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5530 Operands[1], DL, TLI); 5531 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5532 if (!LI->isVolatile()) 5533 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5534 } 5535 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5536 TLI); 5537 } 5538 5539 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5540 /// in the header of its containing loop, we know the loop executes a 5541 /// constant number of times, and the PHI node is just a recurrence 5542 /// involving constants, fold it. 5543 Constant * 5544 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5545 const APInt &BEs, 5546 const Loop *L) { 5547 DenseMap<PHINode*, Constant*>::const_iterator I = 5548 ConstantEvolutionLoopExitValue.find(PN); 5549 if (I != ConstantEvolutionLoopExitValue.end()) 5550 return I->second; 5551 5552 if (BEs.ugt(MaxBruteForceIterations)) 5553 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5554 5555 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5556 5557 DenseMap<Instruction *, Constant *> CurrentIterVals; 5558 BasicBlock *Header = L->getHeader(); 5559 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5560 5561 // Since the loop is canonicalized, the PHI node must have two entries. One 5562 // entry must be a constant (coming in from outside of the loop), and the 5563 // second must be derived from the same PHI. 5564 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5565 PHINode *PHI = nullptr; 5566 for (BasicBlock::iterator I = Header->begin(); 5567 (PHI = dyn_cast<PHINode>(I)); ++I) { 5568 Constant *StartCST = 5569 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5570 if (!StartCST) continue; 5571 CurrentIterVals[PHI] = StartCST; 5572 } 5573 if (!CurrentIterVals.count(PN)) 5574 return RetVal = nullptr; 5575 5576 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5577 5578 // Execute the loop symbolically to determine the exit value. 5579 if (BEs.getActiveBits() >= 32) 5580 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5581 5582 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5583 unsigned IterationNum = 0; 5584 const DataLayout &DL = F->getParent()->getDataLayout(); 5585 for (; ; ++IterationNum) { 5586 if (IterationNum == NumIterations) 5587 return RetVal = CurrentIterVals[PN]; // Got exit value! 5588 5589 // Compute the value of the PHIs for the next iteration. 5590 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5591 DenseMap<Instruction *, Constant *> NextIterVals; 5592 Constant *NextPHI = 5593 EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5594 if (!NextPHI) 5595 return nullptr; // Couldn't evaluate! 5596 NextIterVals[PN] = NextPHI; 5597 5598 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5599 5600 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5601 // cease to be able to evaluate one of them or if they stop evolving, 5602 // because that doesn't necessarily prevent us from computing PN. 5603 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5604 for (DenseMap<Instruction *, Constant *>::const_iterator 5605 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5606 PHINode *PHI = dyn_cast<PHINode>(I->first); 5607 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5608 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5609 } 5610 // We use two distinct loops because EvaluateExpression may invalidate any 5611 // iterators into CurrentIterVals. 5612 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5613 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5614 PHINode *PHI = I->first; 5615 Constant *&NextPHI = NextIterVals[PHI]; 5616 if (!NextPHI) { // Not already computed. 5617 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5618 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5619 } 5620 if (NextPHI != I->second) 5621 StoppedEvolving = false; 5622 } 5623 5624 // If all entries in CurrentIterVals == NextIterVals then we can stop 5625 // iterating, the loop can't continue to change. 5626 if (StoppedEvolving) 5627 return RetVal = CurrentIterVals[PN]; 5628 5629 CurrentIterVals.swap(NextIterVals); 5630 } 5631 } 5632 5633 /// ComputeExitCountExhaustively - If the loop is known to execute a 5634 /// constant number of times (the condition evolves only from constants), 5635 /// try to evaluate a few iterations of the loop until we get the exit 5636 /// condition gets a value of ExitWhen (true or false). If we cannot 5637 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5638 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5639 Value *Cond, 5640 bool ExitWhen) { 5641 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5642 if (!PN) return getCouldNotCompute(); 5643 5644 // If the loop is canonicalized, the PHI will have exactly two entries. 5645 // That's the only form we support here. 5646 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5647 5648 DenseMap<Instruction *, Constant *> CurrentIterVals; 5649 BasicBlock *Header = L->getHeader(); 5650 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5651 5652 // One entry must be a constant (coming in from outside of the loop), and the 5653 // second must be derived from the same PHI. 5654 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5655 PHINode *PHI = nullptr; 5656 for (BasicBlock::iterator I = Header->begin(); 5657 (PHI = dyn_cast<PHINode>(I)); ++I) { 5658 Constant *StartCST = 5659 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5660 if (!StartCST) continue; 5661 CurrentIterVals[PHI] = StartCST; 5662 } 5663 if (!CurrentIterVals.count(PN)) 5664 return getCouldNotCompute(); 5665 5666 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5667 // the loop symbolically to determine when the condition gets a value of 5668 // "ExitWhen". 5669 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5670 const DataLayout &DL = F->getParent()->getDataLayout(); 5671 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5672 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>( 5673 EvaluateExpression(Cond, L, CurrentIterVals, DL, TLI)); 5674 5675 // Couldn't symbolically evaluate. 5676 if (!CondVal) return getCouldNotCompute(); 5677 5678 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5679 ++NumBruteForceTripCountsComputed; 5680 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5681 } 5682 5683 // Update all the PHI nodes for the next iteration. 5684 DenseMap<Instruction *, Constant *> NextIterVals; 5685 5686 // Create a list of which PHIs we need to compute. We want to do this before 5687 // calling EvaluateExpression on them because that may invalidate iterators 5688 // into CurrentIterVals. 5689 SmallVector<PHINode *, 8> PHIsToCompute; 5690 for (DenseMap<Instruction *, Constant *>::const_iterator 5691 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5692 PHINode *PHI = dyn_cast<PHINode>(I->first); 5693 if (!PHI || PHI->getParent() != Header) continue; 5694 PHIsToCompute.push_back(PHI); 5695 } 5696 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5697 E = PHIsToCompute.end(); I != E; ++I) { 5698 PHINode *PHI = *I; 5699 Constant *&NextPHI = NextIterVals[PHI]; 5700 if (NextPHI) continue; // Already computed! 5701 5702 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5703 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5704 } 5705 CurrentIterVals.swap(NextIterVals); 5706 } 5707 5708 // Too many iterations were needed to evaluate. 5709 return getCouldNotCompute(); 5710 } 5711 5712 /// getSCEVAtScope - Return a SCEV expression for the specified value 5713 /// at the specified scope in the program. The L value specifies a loop 5714 /// nest to evaluate the expression at, where null is the top-level or a 5715 /// specified loop is immediately inside of the loop. 5716 /// 5717 /// This method can be used to compute the exit value for a variable defined 5718 /// in a loop by querying what the value will hold in the parent loop. 5719 /// 5720 /// In the case that a relevant loop exit value cannot be computed, the 5721 /// original value V is returned. 5722 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5723 // Check to see if we've folded this expression at this loop before. 5724 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5725 for (unsigned u = 0; u < Values.size(); u++) { 5726 if (Values[u].first == L) 5727 return Values[u].second ? Values[u].second : V; 5728 } 5729 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5730 // Otherwise compute it. 5731 const SCEV *C = computeSCEVAtScope(V, L); 5732 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5733 for (unsigned u = Values2.size(); u > 0; u--) { 5734 if (Values2[u - 1].first == L) { 5735 Values2[u - 1].second = C; 5736 break; 5737 } 5738 } 5739 return C; 5740 } 5741 5742 /// This builds up a Constant using the ConstantExpr interface. That way, we 5743 /// will return Constants for objects which aren't represented by a 5744 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5745 /// Returns NULL if the SCEV isn't representable as a Constant. 5746 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5747 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5748 case scCouldNotCompute: 5749 case scAddRecExpr: 5750 break; 5751 case scConstant: 5752 return cast<SCEVConstant>(V)->getValue(); 5753 case scUnknown: 5754 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5755 case scSignExtend: { 5756 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5757 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5758 return ConstantExpr::getSExt(CastOp, SS->getType()); 5759 break; 5760 } 5761 case scZeroExtend: { 5762 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5763 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5764 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5765 break; 5766 } 5767 case scTruncate: { 5768 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5769 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5770 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5771 break; 5772 } 5773 case scAddExpr: { 5774 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5775 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5776 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5777 unsigned AS = PTy->getAddressSpace(); 5778 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5779 C = ConstantExpr::getBitCast(C, DestPtrTy); 5780 } 5781 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5782 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5783 if (!C2) return nullptr; 5784 5785 // First pointer! 5786 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5787 unsigned AS = C2->getType()->getPointerAddressSpace(); 5788 std::swap(C, C2); 5789 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5790 // The offsets have been converted to bytes. We can add bytes to an 5791 // i8* by GEP with the byte count in the first index. 5792 C = ConstantExpr::getBitCast(C, DestPtrTy); 5793 } 5794 5795 // Don't bother trying to sum two pointers. We probably can't 5796 // statically compute a load that results from it anyway. 5797 if (C2->getType()->isPointerTy()) 5798 return nullptr; 5799 5800 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5801 if (PTy->getElementType()->isStructTy()) 5802 C2 = ConstantExpr::getIntegerCast( 5803 C2, Type::getInt32Ty(C->getContext()), true); 5804 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 5805 } else 5806 C = ConstantExpr::getAdd(C, C2); 5807 } 5808 return C; 5809 } 5810 break; 5811 } 5812 case scMulExpr: { 5813 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5814 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5815 // Don't bother with pointers at all. 5816 if (C->getType()->isPointerTy()) return nullptr; 5817 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5818 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5819 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5820 C = ConstantExpr::getMul(C, C2); 5821 } 5822 return C; 5823 } 5824 break; 5825 } 5826 case scUDivExpr: { 5827 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5828 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5829 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5830 if (LHS->getType() == RHS->getType()) 5831 return ConstantExpr::getUDiv(LHS, RHS); 5832 break; 5833 } 5834 case scSMaxExpr: 5835 case scUMaxExpr: 5836 break; // TODO: smax, umax. 5837 } 5838 return nullptr; 5839 } 5840 5841 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5842 if (isa<SCEVConstant>(V)) return V; 5843 5844 // If this instruction is evolved from a constant-evolving PHI, compute the 5845 // exit value from the loop without using SCEVs. 5846 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5847 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5848 const Loop *LI = (*this->LI)[I->getParent()]; 5849 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5850 if (PHINode *PN = dyn_cast<PHINode>(I)) 5851 if (PN->getParent() == LI->getHeader()) { 5852 // Okay, there is no closed form solution for the PHI node. Check 5853 // to see if the loop that contains it has a known backedge-taken 5854 // count. If so, we may be able to force computation of the exit 5855 // value. 5856 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5857 if (const SCEVConstant *BTCC = 5858 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5859 // Okay, we know how many times the containing loop executes. If 5860 // this is a constant evolving PHI node, get the final value at 5861 // the specified iteration number. 5862 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5863 BTCC->getValue()->getValue(), 5864 LI); 5865 if (RV) return getSCEV(RV); 5866 } 5867 } 5868 5869 // Okay, this is an expression that we cannot symbolically evaluate 5870 // into a SCEV. Check to see if it's possible to symbolically evaluate 5871 // the arguments into constants, and if so, try to constant propagate the 5872 // result. This is particularly useful for computing loop exit values. 5873 if (CanConstantFold(I)) { 5874 SmallVector<Constant *, 4> Operands; 5875 bool MadeImprovement = false; 5876 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5877 Value *Op = I->getOperand(i); 5878 if (Constant *C = dyn_cast<Constant>(Op)) { 5879 Operands.push_back(C); 5880 continue; 5881 } 5882 5883 // If any of the operands is non-constant and if they are 5884 // non-integer and non-pointer, don't even try to analyze them 5885 // with scev techniques. 5886 if (!isSCEVable(Op->getType())) 5887 return V; 5888 5889 const SCEV *OrigV = getSCEV(Op); 5890 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5891 MadeImprovement |= OrigV != OpV; 5892 5893 Constant *C = BuildConstantFromSCEV(OpV); 5894 if (!C) return V; 5895 if (C->getType() != Op->getType()) 5896 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5897 Op->getType(), 5898 false), 5899 C, Op->getType()); 5900 Operands.push_back(C); 5901 } 5902 5903 // Check to see if getSCEVAtScope actually made an improvement. 5904 if (MadeImprovement) { 5905 Constant *C = nullptr; 5906 const DataLayout &DL = F->getParent()->getDataLayout(); 5907 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5908 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5909 Operands[1], DL, TLI); 5910 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5911 if (!LI->isVolatile()) 5912 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5913 } else 5914 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 5915 DL, TLI); 5916 if (!C) return V; 5917 return getSCEV(C); 5918 } 5919 } 5920 } 5921 5922 // This is some other type of SCEVUnknown, just return it. 5923 return V; 5924 } 5925 5926 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5927 // Avoid performing the look-up in the common case where the specified 5928 // expression has no loop-variant portions. 5929 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5930 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5931 if (OpAtScope != Comm->getOperand(i)) { 5932 // Okay, at least one of these operands is loop variant but might be 5933 // foldable. Build a new instance of the folded commutative expression. 5934 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5935 Comm->op_begin()+i); 5936 NewOps.push_back(OpAtScope); 5937 5938 for (++i; i != e; ++i) { 5939 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5940 NewOps.push_back(OpAtScope); 5941 } 5942 if (isa<SCEVAddExpr>(Comm)) 5943 return getAddExpr(NewOps); 5944 if (isa<SCEVMulExpr>(Comm)) 5945 return getMulExpr(NewOps); 5946 if (isa<SCEVSMaxExpr>(Comm)) 5947 return getSMaxExpr(NewOps); 5948 if (isa<SCEVUMaxExpr>(Comm)) 5949 return getUMaxExpr(NewOps); 5950 llvm_unreachable("Unknown commutative SCEV type!"); 5951 } 5952 } 5953 // If we got here, all operands are loop invariant. 5954 return Comm; 5955 } 5956 5957 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5958 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5959 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5960 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5961 return Div; // must be loop invariant 5962 return getUDivExpr(LHS, RHS); 5963 } 5964 5965 // If this is a loop recurrence for a loop that does not contain L, then we 5966 // are dealing with the final value computed by the loop. 5967 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5968 // First, attempt to evaluate each operand. 5969 // Avoid performing the look-up in the common case where the specified 5970 // expression has no loop-variant portions. 5971 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5972 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5973 if (OpAtScope == AddRec->getOperand(i)) 5974 continue; 5975 5976 // Okay, at least one of these operands is loop variant but might be 5977 // foldable. Build a new instance of the folded commutative expression. 5978 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5979 AddRec->op_begin()+i); 5980 NewOps.push_back(OpAtScope); 5981 for (++i; i != e; ++i) 5982 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5983 5984 const SCEV *FoldedRec = 5985 getAddRecExpr(NewOps, AddRec->getLoop(), 5986 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5987 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5988 // The addrec may be folded to a nonrecurrence, for example, if the 5989 // induction variable is multiplied by zero after constant folding. Go 5990 // ahead and return the folded value. 5991 if (!AddRec) 5992 return FoldedRec; 5993 break; 5994 } 5995 5996 // If the scope is outside the addrec's loop, evaluate it by using the 5997 // loop exit value of the addrec. 5998 if (!AddRec->getLoop()->contains(L)) { 5999 // To evaluate this recurrence, we need to know how many times the AddRec 6000 // loop iterates. Compute this now. 6001 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6002 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6003 6004 // Then, evaluate the AddRec. 6005 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6006 } 6007 6008 return AddRec; 6009 } 6010 6011 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6012 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6013 if (Op == Cast->getOperand()) 6014 return Cast; // must be loop invariant 6015 return getZeroExtendExpr(Op, Cast->getType()); 6016 } 6017 6018 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6019 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6020 if (Op == Cast->getOperand()) 6021 return Cast; // must be loop invariant 6022 return getSignExtendExpr(Op, Cast->getType()); 6023 } 6024 6025 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6026 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6027 if (Op == Cast->getOperand()) 6028 return Cast; // must be loop invariant 6029 return getTruncateExpr(Op, Cast->getType()); 6030 } 6031 6032 llvm_unreachable("Unknown SCEV type!"); 6033 } 6034 6035 /// getSCEVAtScope - This is a convenience function which does 6036 /// getSCEVAtScope(getSCEV(V), L). 6037 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6038 return getSCEVAtScope(getSCEV(V), L); 6039 } 6040 6041 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6042 /// following equation: 6043 /// 6044 /// A * X = B (mod N) 6045 /// 6046 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6047 /// A and B isn't important. 6048 /// 6049 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6050 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6051 ScalarEvolution &SE) { 6052 uint32_t BW = A.getBitWidth(); 6053 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6054 assert(A != 0 && "A must be non-zero."); 6055 6056 // 1. D = gcd(A, N) 6057 // 6058 // The gcd of A and N may have only one prime factor: 2. The number of 6059 // trailing zeros in A is its multiplicity 6060 uint32_t Mult2 = A.countTrailingZeros(); 6061 // D = 2^Mult2 6062 6063 // 2. Check if B is divisible by D. 6064 // 6065 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6066 // is not less than multiplicity of this prime factor for D. 6067 if (B.countTrailingZeros() < Mult2) 6068 return SE.getCouldNotCompute(); 6069 6070 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6071 // modulo (N / D). 6072 // 6073 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6074 // bit width during computations. 6075 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6076 APInt Mod(BW + 1, 0); 6077 Mod.setBit(BW - Mult2); // Mod = N / D 6078 APInt I = AD.multiplicativeInverse(Mod); 6079 6080 // 4. Compute the minimum unsigned root of the equation: 6081 // I * (B / D) mod (N / D) 6082 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6083 6084 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6085 // bits. 6086 return SE.getConstant(Result.trunc(BW)); 6087 } 6088 6089 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6090 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6091 /// might be the same) or two SCEVCouldNotCompute objects. 6092 /// 6093 static std::pair<const SCEV *,const SCEV *> 6094 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6095 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6096 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6097 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6098 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6099 6100 // We currently can only solve this if the coefficients are constants. 6101 if (!LC || !MC || !NC) { 6102 const SCEV *CNC = SE.getCouldNotCompute(); 6103 return std::make_pair(CNC, CNC); 6104 } 6105 6106 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6107 const APInt &L = LC->getValue()->getValue(); 6108 const APInt &M = MC->getValue()->getValue(); 6109 const APInt &N = NC->getValue()->getValue(); 6110 APInt Two(BitWidth, 2); 6111 APInt Four(BitWidth, 4); 6112 6113 { 6114 using namespace APIntOps; 6115 const APInt& C = L; 6116 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6117 // The B coefficient is M-N/2 6118 APInt B(M); 6119 B -= sdiv(N,Two); 6120 6121 // The A coefficient is N/2 6122 APInt A(N.sdiv(Two)); 6123 6124 // Compute the B^2-4ac term. 6125 APInt SqrtTerm(B); 6126 SqrtTerm *= B; 6127 SqrtTerm -= Four * (A * C); 6128 6129 if (SqrtTerm.isNegative()) { 6130 // The loop is provably infinite. 6131 const SCEV *CNC = SE.getCouldNotCompute(); 6132 return std::make_pair(CNC, CNC); 6133 } 6134 6135 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6136 // integer value or else APInt::sqrt() will assert. 6137 APInt SqrtVal(SqrtTerm.sqrt()); 6138 6139 // Compute the two solutions for the quadratic formula. 6140 // The divisions must be performed as signed divisions. 6141 APInt NegB(-B); 6142 APInt TwoA(A << 1); 6143 if (TwoA.isMinValue()) { 6144 const SCEV *CNC = SE.getCouldNotCompute(); 6145 return std::make_pair(CNC, CNC); 6146 } 6147 6148 LLVMContext &Context = SE.getContext(); 6149 6150 ConstantInt *Solution1 = 6151 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6152 ConstantInt *Solution2 = 6153 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6154 6155 return std::make_pair(SE.getConstant(Solution1), 6156 SE.getConstant(Solution2)); 6157 } // end APIntOps namespace 6158 } 6159 6160 /// HowFarToZero - Return the number of times a backedge comparing the specified 6161 /// value to zero will execute. If not computable, return CouldNotCompute. 6162 /// 6163 /// This is only used for loops with a "x != y" exit test. The exit condition is 6164 /// now expressed as a single expression, V = x-y. So the exit test is 6165 /// effectively V != 0. We know and take advantage of the fact that this 6166 /// expression only being used in a comparison by zero context. 6167 ScalarEvolution::ExitLimit 6168 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6169 // If the value is a constant 6170 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6171 // If the value is already zero, the branch will execute zero times. 6172 if (C->getValue()->isZero()) return C; 6173 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6174 } 6175 6176 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6177 if (!AddRec || AddRec->getLoop() != L) 6178 return getCouldNotCompute(); 6179 6180 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6181 // the quadratic equation to solve it. 6182 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6183 std::pair<const SCEV *,const SCEV *> Roots = 6184 SolveQuadraticEquation(AddRec, *this); 6185 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6186 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6187 if (R1 && R2) { 6188 #if 0 6189 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6190 << " sol#2: " << *R2 << "\n"; 6191 #endif 6192 // Pick the smallest positive root value. 6193 if (ConstantInt *CB = 6194 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6195 R1->getValue(), 6196 R2->getValue()))) { 6197 if (!CB->getZExtValue()) 6198 std::swap(R1, R2); // R1 is the minimum root now. 6199 6200 // We can only use this value if the chrec ends up with an exact zero 6201 // value at this index. When solving for "X*X != 5", for example, we 6202 // should not accept a root of 2. 6203 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6204 if (Val->isZero()) 6205 return R1; // We found a quadratic root! 6206 } 6207 } 6208 return getCouldNotCompute(); 6209 } 6210 6211 // Otherwise we can only handle this if it is affine. 6212 if (!AddRec->isAffine()) 6213 return getCouldNotCompute(); 6214 6215 // If this is an affine expression, the execution count of this branch is 6216 // the minimum unsigned root of the following equation: 6217 // 6218 // Start + Step*N = 0 (mod 2^BW) 6219 // 6220 // equivalent to: 6221 // 6222 // Step*N = -Start (mod 2^BW) 6223 // 6224 // where BW is the common bit width of Start and Step. 6225 6226 // Get the initial value for the loop. 6227 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6228 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6229 6230 // For now we handle only constant steps. 6231 // 6232 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6233 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6234 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6235 // We have not yet seen any such cases. 6236 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6237 if (!StepC || StepC->getValue()->equalsInt(0)) 6238 return getCouldNotCompute(); 6239 6240 // For positive steps (counting up until unsigned overflow): 6241 // N = -Start/Step (as unsigned) 6242 // For negative steps (counting down to zero): 6243 // N = Start/-Step 6244 // First compute the unsigned distance from zero in the direction of Step. 6245 bool CountDown = StepC->getValue()->getValue().isNegative(); 6246 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6247 6248 // Handle unitary steps, which cannot wraparound. 6249 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6250 // N = Distance (as unsigned) 6251 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6252 ConstantRange CR = getUnsignedRange(Start); 6253 const SCEV *MaxBECount; 6254 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6255 // When counting up, the worst starting value is 1, not 0. 6256 MaxBECount = CR.getUnsignedMax().isMinValue() 6257 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6258 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6259 else 6260 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6261 : -CR.getUnsignedMin()); 6262 return ExitLimit(Distance, MaxBECount); 6263 } 6264 6265 // As a special case, handle the instance where Step is a positive power of 6266 // two. In this case, determining whether Step divides Distance evenly can be 6267 // done by counting and comparing the number of trailing zeros of Step and 6268 // Distance. 6269 if (!CountDown) { 6270 const APInt &StepV = StepC->getValue()->getValue(); 6271 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6272 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6273 // case is not handled as this code is guarded by !CountDown. 6274 if (StepV.isPowerOf2() && 6275 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) 6276 return getUDivExactExpr(Distance, Step); 6277 } 6278 6279 // If the condition controls loop exit (the loop exits only if the expression 6280 // is true) and the addition is no-wrap we can use unsigned divide to 6281 // compute the backedge count. In this case, the step may not divide the 6282 // distance, but we don't care because if the condition is "missed" the loop 6283 // will have undefined behavior due to wrapping. 6284 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6285 const SCEV *Exact = 6286 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6287 return ExitLimit(Exact, Exact); 6288 } 6289 6290 // Then, try to solve the above equation provided that Start is constant. 6291 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6292 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6293 -StartC->getValue()->getValue(), 6294 *this); 6295 return getCouldNotCompute(); 6296 } 6297 6298 /// HowFarToNonZero - Return the number of times a backedge checking the 6299 /// specified value for nonzero will execute. If not computable, return 6300 /// CouldNotCompute 6301 ScalarEvolution::ExitLimit 6302 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6303 // Loops that look like: while (X == 0) are very strange indeed. We don't 6304 // handle them yet except for the trivial case. This could be expanded in the 6305 // future as needed. 6306 6307 // If the value is a constant, check to see if it is known to be non-zero 6308 // already. If so, the backedge will execute zero times. 6309 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6310 if (!C->getValue()->isNullValue()) 6311 return getConstant(C->getType(), 0); 6312 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6313 } 6314 6315 // We could implement others, but I really doubt anyone writes loops like 6316 // this, and if they did, they would already be constant folded. 6317 return getCouldNotCompute(); 6318 } 6319 6320 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6321 /// (which may not be an immediate predecessor) which has exactly one 6322 /// successor from which BB is reachable, or null if no such block is 6323 /// found. 6324 /// 6325 std::pair<BasicBlock *, BasicBlock *> 6326 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6327 // If the block has a unique predecessor, then there is no path from the 6328 // predecessor to the block that does not go through the direct edge 6329 // from the predecessor to the block. 6330 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6331 return std::make_pair(Pred, BB); 6332 6333 // A loop's header is defined to be a block that dominates the loop. 6334 // If the header has a unique predecessor outside the loop, it must be 6335 // a block that has exactly one successor that can reach the loop. 6336 if (Loop *L = LI->getLoopFor(BB)) 6337 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6338 6339 return std::pair<BasicBlock *, BasicBlock *>(); 6340 } 6341 6342 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6343 /// testing whether two expressions are equal, however for the purposes of 6344 /// looking for a condition guarding a loop, it can be useful to be a little 6345 /// more general, since a front-end may have replicated the controlling 6346 /// expression. 6347 /// 6348 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6349 // Quick check to see if they are the same SCEV. 6350 if (A == B) return true; 6351 6352 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6353 // two different instructions with the same value. Check for this case. 6354 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6355 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6356 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6357 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6358 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 6359 return true; 6360 6361 // Otherwise assume they may have a different value. 6362 return false; 6363 } 6364 6365 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6366 /// predicate Pred. Return true iff any changes were made. 6367 /// 6368 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6369 const SCEV *&LHS, const SCEV *&RHS, 6370 unsigned Depth) { 6371 bool Changed = false; 6372 6373 // If we hit the max recursion limit bail out. 6374 if (Depth >= 3) 6375 return false; 6376 6377 // Canonicalize a constant to the right side. 6378 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6379 // Check for both operands constant. 6380 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6381 if (ConstantExpr::getICmp(Pred, 6382 LHSC->getValue(), 6383 RHSC->getValue())->isNullValue()) 6384 goto trivially_false; 6385 else 6386 goto trivially_true; 6387 } 6388 // Otherwise swap the operands to put the constant on the right. 6389 std::swap(LHS, RHS); 6390 Pred = ICmpInst::getSwappedPredicate(Pred); 6391 Changed = true; 6392 } 6393 6394 // If we're comparing an addrec with a value which is loop-invariant in the 6395 // addrec's loop, put the addrec on the left. Also make a dominance check, 6396 // as both operands could be addrecs loop-invariant in each other's loop. 6397 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6398 const Loop *L = AR->getLoop(); 6399 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6400 std::swap(LHS, RHS); 6401 Pred = ICmpInst::getSwappedPredicate(Pred); 6402 Changed = true; 6403 } 6404 } 6405 6406 // If there's a constant operand, canonicalize comparisons with boundary 6407 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6408 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6409 const APInt &RA = RC->getValue()->getValue(); 6410 switch (Pred) { 6411 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6412 case ICmpInst::ICMP_EQ: 6413 case ICmpInst::ICMP_NE: 6414 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6415 if (!RA) 6416 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6417 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6418 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6419 ME->getOperand(0)->isAllOnesValue()) { 6420 RHS = AE->getOperand(1); 6421 LHS = ME->getOperand(1); 6422 Changed = true; 6423 } 6424 break; 6425 case ICmpInst::ICMP_UGE: 6426 if ((RA - 1).isMinValue()) { 6427 Pred = ICmpInst::ICMP_NE; 6428 RHS = getConstant(RA - 1); 6429 Changed = true; 6430 break; 6431 } 6432 if (RA.isMaxValue()) { 6433 Pred = ICmpInst::ICMP_EQ; 6434 Changed = true; 6435 break; 6436 } 6437 if (RA.isMinValue()) goto trivially_true; 6438 6439 Pred = ICmpInst::ICMP_UGT; 6440 RHS = getConstant(RA - 1); 6441 Changed = true; 6442 break; 6443 case ICmpInst::ICMP_ULE: 6444 if ((RA + 1).isMaxValue()) { 6445 Pred = ICmpInst::ICMP_NE; 6446 RHS = getConstant(RA + 1); 6447 Changed = true; 6448 break; 6449 } 6450 if (RA.isMinValue()) { 6451 Pred = ICmpInst::ICMP_EQ; 6452 Changed = true; 6453 break; 6454 } 6455 if (RA.isMaxValue()) goto trivially_true; 6456 6457 Pred = ICmpInst::ICMP_ULT; 6458 RHS = getConstant(RA + 1); 6459 Changed = true; 6460 break; 6461 case ICmpInst::ICMP_SGE: 6462 if ((RA - 1).isMinSignedValue()) { 6463 Pred = ICmpInst::ICMP_NE; 6464 RHS = getConstant(RA - 1); 6465 Changed = true; 6466 break; 6467 } 6468 if (RA.isMaxSignedValue()) { 6469 Pred = ICmpInst::ICMP_EQ; 6470 Changed = true; 6471 break; 6472 } 6473 if (RA.isMinSignedValue()) goto trivially_true; 6474 6475 Pred = ICmpInst::ICMP_SGT; 6476 RHS = getConstant(RA - 1); 6477 Changed = true; 6478 break; 6479 case ICmpInst::ICMP_SLE: 6480 if ((RA + 1).isMaxSignedValue()) { 6481 Pred = ICmpInst::ICMP_NE; 6482 RHS = getConstant(RA + 1); 6483 Changed = true; 6484 break; 6485 } 6486 if (RA.isMinSignedValue()) { 6487 Pred = ICmpInst::ICMP_EQ; 6488 Changed = true; 6489 break; 6490 } 6491 if (RA.isMaxSignedValue()) goto trivially_true; 6492 6493 Pred = ICmpInst::ICMP_SLT; 6494 RHS = getConstant(RA + 1); 6495 Changed = true; 6496 break; 6497 case ICmpInst::ICMP_UGT: 6498 if (RA.isMinValue()) { 6499 Pred = ICmpInst::ICMP_NE; 6500 Changed = true; 6501 break; 6502 } 6503 if ((RA + 1).isMaxValue()) { 6504 Pred = ICmpInst::ICMP_EQ; 6505 RHS = getConstant(RA + 1); 6506 Changed = true; 6507 break; 6508 } 6509 if (RA.isMaxValue()) goto trivially_false; 6510 break; 6511 case ICmpInst::ICMP_ULT: 6512 if (RA.isMaxValue()) { 6513 Pred = ICmpInst::ICMP_NE; 6514 Changed = true; 6515 break; 6516 } 6517 if ((RA - 1).isMinValue()) { 6518 Pred = ICmpInst::ICMP_EQ; 6519 RHS = getConstant(RA - 1); 6520 Changed = true; 6521 break; 6522 } 6523 if (RA.isMinValue()) goto trivially_false; 6524 break; 6525 case ICmpInst::ICMP_SGT: 6526 if (RA.isMinSignedValue()) { 6527 Pred = ICmpInst::ICMP_NE; 6528 Changed = true; 6529 break; 6530 } 6531 if ((RA + 1).isMaxSignedValue()) { 6532 Pred = ICmpInst::ICMP_EQ; 6533 RHS = getConstant(RA + 1); 6534 Changed = true; 6535 break; 6536 } 6537 if (RA.isMaxSignedValue()) goto trivially_false; 6538 break; 6539 case ICmpInst::ICMP_SLT: 6540 if (RA.isMaxSignedValue()) { 6541 Pred = ICmpInst::ICMP_NE; 6542 Changed = true; 6543 break; 6544 } 6545 if ((RA - 1).isMinSignedValue()) { 6546 Pred = ICmpInst::ICMP_EQ; 6547 RHS = getConstant(RA - 1); 6548 Changed = true; 6549 break; 6550 } 6551 if (RA.isMinSignedValue()) goto trivially_false; 6552 break; 6553 } 6554 } 6555 6556 // Check for obvious equality. 6557 if (HasSameValue(LHS, RHS)) { 6558 if (ICmpInst::isTrueWhenEqual(Pred)) 6559 goto trivially_true; 6560 if (ICmpInst::isFalseWhenEqual(Pred)) 6561 goto trivially_false; 6562 } 6563 6564 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6565 // adding or subtracting 1 from one of the operands. 6566 switch (Pred) { 6567 case ICmpInst::ICMP_SLE: 6568 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6569 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6570 SCEV::FlagNSW); 6571 Pred = ICmpInst::ICMP_SLT; 6572 Changed = true; 6573 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6574 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6575 SCEV::FlagNSW); 6576 Pred = ICmpInst::ICMP_SLT; 6577 Changed = true; 6578 } 6579 break; 6580 case ICmpInst::ICMP_SGE: 6581 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6582 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6583 SCEV::FlagNSW); 6584 Pred = ICmpInst::ICMP_SGT; 6585 Changed = true; 6586 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6587 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6588 SCEV::FlagNSW); 6589 Pred = ICmpInst::ICMP_SGT; 6590 Changed = true; 6591 } 6592 break; 6593 case ICmpInst::ICMP_ULE: 6594 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6595 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6596 SCEV::FlagNUW); 6597 Pred = ICmpInst::ICMP_ULT; 6598 Changed = true; 6599 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6600 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6601 SCEV::FlagNUW); 6602 Pred = ICmpInst::ICMP_ULT; 6603 Changed = true; 6604 } 6605 break; 6606 case ICmpInst::ICMP_UGE: 6607 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6608 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6609 SCEV::FlagNUW); 6610 Pred = ICmpInst::ICMP_UGT; 6611 Changed = true; 6612 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6613 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6614 SCEV::FlagNUW); 6615 Pred = ICmpInst::ICMP_UGT; 6616 Changed = true; 6617 } 6618 break; 6619 default: 6620 break; 6621 } 6622 6623 // TODO: More simplifications are possible here. 6624 6625 // Recursively simplify until we either hit a recursion limit or nothing 6626 // changes. 6627 if (Changed) 6628 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6629 6630 return Changed; 6631 6632 trivially_true: 6633 // Return 0 == 0. 6634 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6635 Pred = ICmpInst::ICMP_EQ; 6636 return true; 6637 6638 trivially_false: 6639 // Return 0 != 0. 6640 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6641 Pred = ICmpInst::ICMP_NE; 6642 return true; 6643 } 6644 6645 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6646 return getSignedRange(S).getSignedMax().isNegative(); 6647 } 6648 6649 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6650 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6651 } 6652 6653 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6654 return !getSignedRange(S).getSignedMin().isNegative(); 6655 } 6656 6657 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6658 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6659 } 6660 6661 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6662 return isKnownNegative(S) || isKnownPositive(S); 6663 } 6664 6665 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6666 const SCEV *LHS, const SCEV *RHS) { 6667 // Canonicalize the inputs first. 6668 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6669 6670 // If LHS or RHS is an addrec, check to see if the condition is true in 6671 // every iteration of the loop. 6672 // If LHS and RHS are both addrec, both conditions must be true in 6673 // every iteration of the loop. 6674 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6675 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6676 bool LeftGuarded = false; 6677 bool RightGuarded = false; 6678 if (LAR) { 6679 const Loop *L = LAR->getLoop(); 6680 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6681 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6682 if (!RAR) return true; 6683 LeftGuarded = true; 6684 } 6685 } 6686 if (RAR) { 6687 const Loop *L = RAR->getLoop(); 6688 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6689 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6690 if (!LAR) return true; 6691 RightGuarded = true; 6692 } 6693 } 6694 if (LeftGuarded && RightGuarded) 6695 return true; 6696 6697 // Otherwise see what can be done with known constant ranges. 6698 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6699 } 6700 6701 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6702 ICmpInst::Predicate Pred, 6703 bool &Increasing) { 6704 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6705 6706 #ifndef NDEBUG 6707 // Verify an invariant: inverting the predicate should turn a monotonically 6708 // increasing change to a monotonically decreasing one, and vice versa. 6709 bool IncreasingSwapped; 6710 bool ResultSwapped = isMonotonicPredicateImpl( 6711 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6712 6713 assert(Result == ResultSwapped && "should be able to analyze both!"); 6714 if (ResultSwapped) 6715 assert(Increasing == !IncreasingSwapped && 6716 "monotonicity should flip as we flip the predicate"); 6717 #endif 6718 6719 return Result; 6720 } 6721 6722 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6723 ICmpInst::Predicate Pred, 6724 bool &Increasing) { 6725 SCEV::NoWrapFlags FlagsRequired = SCEV::FlagAnyWrap; 6726 bool IncreasingOnNonNegativeStep = false; 6727 6728 switch (Pred) { 6729 default: 6730 return false; // Conservative answer 6731 6732 case ICmpInst::ICMP_UGT: 6733 case ICmpInst::ICMP_UGE: 6734 FlagsRequired = SCEV::FlagNUW; 6735 IncreasingOnNonNegativeStep = true; 6736 break; 6737 6738 case ICmpInst::ICMP_ULT: 6739 case ICmpInst::ICMP_ULE: 6740 FlagsRequired = SCEV::FlagNUW; 6741 IncreasingOnNonNegativeStep = false; 6742 break; 6743 6744 case ICmpInst::ICMP_SGT: 6745 case ICmpInst::ICMP_SGE: 6746 FlagsRequired = SCEV::FlagNSW; 6747 IncreasingOnNonNegativeStep = true; 6748 break; 6749 6750 case ICmpInst::ICMP_SLT: 6751 case ICmpInst::ICMP_SLE: 6752 FlagsRequired = SCEV::FlagNSW; 6753 IncreasingOnNonNegativeStep = false; 6754 break; 6755 } 6756 6757 if (!LHS->getNoWrapFlags(FlagsRequired)) 6758 return false; 6759 6760 // A zero step value for LHS means the induction variable is essentially a 6761 // loop invariant value. We don't really depend on the predicate actually 6762 // flipping from false to true (for increasing predicates, and the other way 6763 // around for decreasing predicates), all we care about is that *if* the 6764 // predicate changes then it only changes from false to true. 6765 // 6766 // A zero step value in itself is not very useful, but there may be places 6767 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 6768 // as general as possible. 6769 6770 if (isKnownNonNegative(LHS->getStepRecurrence(*this))) { 6771 Increasing = IncreasingOnNonNegativeStep; 6772 return true; 6773 } 6774 6775 if (isKnownNonPositive(LHS->getStepRecurrence(*this))) { 6776 Increasing = !IncreasingOnNonNegativeStep; 6777 return true; 6778 } 6779 6780 return false; 6781 } 6782 6783 bool ScalarEvolution::isLoopInvariantPredicate( 6784 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 6785 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 6786 const SCEV *&InvariantRHS) { 6787 6788 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 6789 if (!isLoopInvariant(RHS, L)) { 6790 if (!isLoopInvariant(LHS, L)) 6791 return false; 6792 6793 std::swap(LHS, RHS); 6794 Pred = ICmpInst::getSwappedPredicate(Pred); 6795 } 6796 6797 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 6798 if (!ArLHS || ArLHS->getLoop() != L) 6799 return false; 6800 6801 bool Increasing; 6802 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 6803 return false; 6804 6805 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 6806 // true as the loop iterates, and the backedge is control dependent on 6807 // "ArLHS `Pred` RHS" == true then we can reason as follows: 6808 // 6809 // * if the predicate was false in the first iteration then the predicate 6810 // is never evaluated again, since the loop exits without taking the 6811 // backedge. 6812 // * if the predicate was true in the first iteration then it will 6813 // continue to be true for all future iterations since it is 6814 // monotonically increasing. 6815 // 6816 // For both the above possibilities, we can replace the loop varying 6817 // predicate with its value on the first iteration of the loop (which is 6818 // loop invariant). 6819 // 6820 // A similar reasoning applies for a monotonically decreasing predicate, by 6821 // replacing true with false and false with true in the above two bullets. 6822 6823 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 6824 6825 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 6826 return false; 6827 6828 InvariantPred = Pred; 6829 InvariantLHS = ArLHS->getStart(); 6830 InvariantRHS = RHS; 6831 return true; 6832 } 6833 6834 bool 6835 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6836 const SCEV *LHS, const SCEV *RHS) { 6837 if (HasSameValue(LHS, RHS)) 6838 return ICmpInst::isTrueWhenEqual(Pred); 6839 6840 // This code is split out from isKnownPredicate because it is called from 6841 // within isLoopEntryGuardedByCond. 6842 switch (Pred) { 6843 default: 6844 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6845 case ICmpInst::ICMP_SGT: 6846 std::swap(LHS, RHS); 6847 case ICmpInst::ICMP_SLT: { 6848 ConstantRange LHSRange = getSignedRange(LHS); 6849 ConstantRange RHSRange = getSignedRange(RHS); 6850 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6851 return true; 6852 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6853 return false; 6854 break; 6855 } 6856 case ICmpInst::ICMP_SGE: 6857 std::swap(LHS, RHS); 6858 case ICmpInst::ICMP_SLE: { 6859 ConstantRange LHSRange = getSignedRange(LHS); 6860 ConstantRange RHSRange = getSignedRange(RHS); 6861 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6862 return true; 6863 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6864 return false; 6865 break; 6866 } 6867 case ICmpInst::ICMP_UGT: 6868 std::swap(LHS, RHS); 6869 case ICmpInst::ICMP_ULT: { 6870 ConstantRange LHSRange = getUnsignedRange(LHS); 6871 ConstantRange RHSRange = getUnsignedRange(RHS); 6872 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6873 return true; 6874 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6875 return false; 6876 break; 6877 } 6878 case ICmpInst::ICMP_UGE: 6879 std::swap(LHS, RHS); 6880 case ICmpInst::ICMP_ULE: { 6881 ConstantRange LHSRange = getUnsignedRange(LHS); 6882 ConstantRange RHSRange = getUnsignedRange(RHS); 6883 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6884 return true; 6885 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6886 return false; 6887 break; 6888 } 6889 case ICmpInst::ICMP_NE: { 6890 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6891 return true; 6892 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6893 return true; 6894 6895 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6896 if (isKnownNonZero(Diff)) 6897 return true; 6898 break; 6899 } 6900 case ICmpInst::ICMP_EQ: 6901 // The check at the top of the function catches the case where 6902 // the values are known to be equal. 6903 break; 6904 } 6905 return false; 6906 } 6907 6908 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6909 /// protected by a conditional between LHS and RHS. This is used to 6910 /// to eliminate casts. 6911 bool 6912 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6913 ICmpInst::Predicate Pred, 6914 const SCEV *LHS, const SCEV *RHS) { 6915 // Interpret a null as meaning no loop, where there is obviously no guard 6916 // (interprocedural conditions notwithstanding). 6917 if (!L) return true; 6918 6919 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 6920 6921 BasicBlock *Latch = L->getLoopLatch(); 6922 if (!Latch) 6923 return false; 6924 6925 BranchInst *LoopContinuePredicate = 6926 dyn_cast<BranchInst>(Latch->getTerminator()); 6927 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 6928 isImpliedCond(Pred, LHS, RHS, 6929 LoopContinuePredicate->getCondition(), 6930 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 6931 return true; 6932 6933 // Check conditions due to any @llvm.assume intrinsics. 6934 for (auto &AssumeVH : AC->assumptions()) { 6935 if (!AssumeVH) 6936 continue; 6937 auto *CI = cast<CallInst>(AssumeVH); 6938 if (!DT->dominates(CI, Latch->getTerminator())) 6939 continue; 6940 6941 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 6942 return true; 6943 } 6944 6945 struct ClearWalkingBEDominatingCondsOnExit { 6946 ScalarEvolution &SE; 6947 6948 explicit ClearWalkingBEDominatingCondsOnExit(ScalarEvolution &SE) 6949 : SE(SE){} 6950 6951 ~ClearWalkingBEDominatingCondsOnExit() { 6952 SE.WalkingBEDominatingConds = false; 6953 } 6954 }; 6955 6956 // We don't want more than one activation of the following loop on the stack 6957 // -- that can lead to O(n!) time complexity. 6958 if (WalkingBEDominatingConds) 6959 return false; 6960 6961 WalkingBEDominatingConds = true; 6962 ClearWalkingBEDominatingCondsOnExit ClearOnExit(*this); 6963 6964 // If the loop is not reachable from the entry block, we risk running into an 6965 // infinite loop as we walk up into the dom tree. These loops do not matter 6966 // anyway, so we just return a conservative answer when we see them. 6967 if (!DT->isReachableFromEntry(L->getHeader())) 6968 return false; 6969 6970 for (DomTreeNode *DTN = (*DT)[Latch], *HeaderDTN = (*DT)[L->getHeader()]; 6971 DTN != HeaderDTN; 6972 DTN = DTN->getIDom()) { 6973 6974 assert(DTN && "should reach the loop header before reaching the root!"); 6975 6976 BasicBlock *BB = DTN->getBlock(); 6977 BasicBlock *PBB = BB->getSinglePredecessor(); 6978 if (!PBB) 6979 continue; 6980 6981 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 6982 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 6983 continue; 6984 6985 Value *Condition = ContinuePredicate->getCondition(); 6986 6987 // If we have an edge `E` within the loop body that dominates the only 6988 // latch, the condition guarding `E` also guards the backedge. This 6989 // reasoning works only for loops with a single latch. 6990 6991 BasicBlockEdge DominatingEdge(PBB, BB); 6992 if (DominatingEdge.isSingleEdge()) { 6993 // We're constructively (and conservatively) enumerating edges within the 6994 // loop body that dominate the latch. The dominator tree better agree 6995 // with us on this: 6996 assert(DT->dominates(DominatingEdge, Latch) && "should be!"); 6997 6998 if (isImpliedCond(Pred, LHS, RHS, Condition, 6999 BB != ContinuePredicate->getSuccessor(0))) 7000 return true; 7001 } 7002 } 7003 7004 return false; 7005 } 7006 7007 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7008 /// by a conditional between LHS and RHS. This is used to help avoid max 7009 /// expressions in loop trip counts, and to eliminate casts. 7010 bool 7011 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7012 ICmpInst::Predicate Pred, 7013 const SCEV *LHS, const SCEV *RHS) { 7014 // Interpret a null as meaning no loop, where there is obviously no guard 7015 // (interprocedural conditions notwithstanding). 7016 if (!L) return false; 7017 7018 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7019 7020 // Starting at the loop predecessor, climb up the predecessor chain, as long 7021 // as there are predecessors that can be found that have unique successors 7022 // leading to the original header. 7023 for (std::pair<BasicBlock *, BasicBlock *> 7024 Pair(L->getLoopPredecessor(), L->getHeader()); 7025 Pair.first; 7026 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7027 7028 BranchInst *LoopEntryPredicate = 7029 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7030 if (!LoopEntryPredicate || 7031 LoopEntryPredicate->isUnconditional()) 7032 continue; 7033 7034 if (isImpliedCond(Pred, LHS, RHS, 7035 LoopEntryPredicate->getCondition(), 7036 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7037 return true; 7038 } 7039 7040 // Check conditions due to any @llvm.assume intrinsics. 7041 for (auto &AssumeVH : AC->assumptions()) { 7042 if (!AssumeVH) 7043 continue; 7044 auto *CI = cast<CallInst>(AssumeVH); 7045 if (!DT->dominates(CI, L->getHeader())) 7046 continue; 7047 7048 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7049 return true; 7050 } 7051 7052 return false; 7053 } 7054 7055 /// RAII wrapper to prevent recursive application of isImpliedCond. 7056 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7057 /// currently evaluating isImpliedCond. 7058 struct MarkPendingLoopPredicate { 7059 Value *Cond; 7060 DenseSet<Value*> &LoopPreds; 7061 bool Pending; 7062 7063 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7064 : Cond(C), LoopPreds(LP) { 7065 Pending = !LoopPreds.insert(Cond).second; 7066 } 7067 ~MarkPendingLoopPredicate() { 7068 if (!Pending) 7069 LoopPreds.erase(Cond); 7070 } 7071 }; 7072 7073 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7074 /// and RHS is true whenever the given Cond value evaluates to true. 7075 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7076 const SCEV *LHS, const SCEV *RHS, 7077 Value *FoundCondValue, 7078 bool Inverse) { 7079 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7080 if (Mark.Pending) 7081 return false; 7082 7083 // Recursively handle And and Or conditions. 7084 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7085 if (BO->getOpcode() == Instruction::And) { 7086 if (!Inverse) 7087 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7088 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7089 } else if (BO->getOpcode() == Instruction::Or) { 7090 if (Inverse) 7091 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7092 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7093 } 7094 } 7095 7096 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7097 if (!ICI) return false; 7098 7099 // Now that we found a conditional branch that dominates the loop or controls 7100 // the loop latch. Check to see if it is the comparison we are looking for. 7101 ICmpInst::Predicate FoundPred; 7102 if (Inverse) 7103 FoundPred = ICI->getInversePredicate(); 7104 else 7105 FoundPred = ICI->getPredicate(); 7106 7107 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7108 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7109 7110 // Balance the types. 7111 if (getTypeSizeInBits(LHS->getType()) < 7112 getTypeSizeInBits(FoundLHS->getType())) { 7113 if (CmpInst::isSigned(Pred)) { 7114 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7115 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7116 } else { 7117 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7118 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7119 } 7120 } else if (getTypeSizeInBits(LHS->getType()) > 7121 getTypeSizeInBits(FoundLHS->getType())) { 7122 if (CmpInst::isSigned(FoundPred)) { 7123 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7124 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7125 } else { 7126 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7127 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7128 } 7129 } 7130 7131 // Canonicalize the query to match the way instcombine will have 7132 // canonicalized the comparison. 7133 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7134 if (LHS == RHS) 7135 return CmpInst::isTrueWhenEqual(Pred); 7136 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7137 if (FoundLHS == FoundRHS) 7138 return CmpInst::isFalseWhenEqual(FoundPred); 7139 7140 // Check to see if we can make the LHS or RHS match. 7141 if (LHS == FoundRHS || RHS == FoundLHS) { 7142 if (isa<SCEVConstant>(RHS)) { 7143 std::swap(FoundLHS, FoundRHS); 7144 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7145 } else { 7146 std::swap(LHS, RHS); 7147 Pred = ICmpInst::getSwappedPredicate(Pred); 7148 } 7149 } 7150 7151 // Check whether the found predicate is the same as the desired predicate. 7152 if (FoundPred == Pred) 7153 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7154 7155 // Check whether swapping the found predicate makes it the same as the 7156 // desired predicate. 7157 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7158 if (isa<SCEVConstant>(RHS)) 7159 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7160 else 7161 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7162 RHS, LHS, FoundLHS, FoundRHS); 7163 } 7164 7165 // Check if we can make progress by sharpening ranges. 7166 if (FoundPred == ICmpInst::ICMP_NE && 7167 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7168 7169 const SCEVConstant *C = nullptr; 7170 const SCEV *V = nullptr; 7171 7172 if (isa<SCEVConstant>(FoundLHS)) { 7173 C = cast<SCEVConstant>(FoundLHS); 7174 V = FoundRHS; 7175 } else { 7176 C = cast<SCEVConstant>(FoundRHS); 7177 V = FoundLHS; 7178 } 7179 7180 // The guarding predicate tells us that C != V. If the known range 7181 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7182 // range we consider has to correspond to same signedness as the 7183 // predicate we're interested in folding. 7184 7185 APInt Min = ICmpInst::isSigned(Pred) ? 7186 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7187 7188 if (Min == C->getValue()->getValue()) { 7189 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7190 // This is true even if (Min + 1) wraps around -- in case of 7191 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7192 7193 APInt SharperMin = Min + 1; 7194 7195 switch (Pred) { 7196 case ICmpInst::ICMP_SGE: 7197 case ICmpInst::ICMP_UGE: 7198 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7199 // RHS, we're done. 7200 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7201 getConstant(SharperMin))) 7202 return true; 7203 7204 case ICmpInst::ICMP_SGT: 7205 case ICmpInst::ICMP_UGT: 7206 // We know from the range information that (V `Pred` Min || 7207 // V == Min). We know from the guarding condition that !(V 7208 // == Min). This gives us 7209 // 7210 // V `Pred` Min || V == Min && !(V == Min) 7211 // => V `Pred` Min 7212 // 7213 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7214 7215 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7216 return true; 7217 7218 default: 7219 // No change 7220 break; 7221 } 7222 } 7223 } 7224 7225 // Check whether the actual condition is beyond sufficient. 7226 if (FoundPred == ICmpInst::ICMP_EQ) 7227 if (ICmpInst::isTrueWhenEqual(Pred)) 7228 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7229 return true; 7230 if (Pred == ICmpInst::ICMP_NE) 7231 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7232 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7233 return true; 7234 7235 // Otherwise assume the worst. 7236 return false; 7237 } 7238 7239 /// isImpliedCondOperands - Test whether the condition described by Pred, 7240 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7241 /// and FoundRHS is true. 7242 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7243 const SCEV *LHS, const SCEV *RHS, 7244 const SCEV *FoundLHS, 7245 const SCEV *FoundRHS) { 7246 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7247 return true; 7248 7249 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7250 FoundLHS, FoundRHS) || 7251 // ~x < ~y --> x > y 7252 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7253 getNotSCEV(FoundRHS), 7254 getNotSCEV(FoundLHS)); 7255 } 7256 7257 7258 /// If Expr computes ~A, return A else return nullptr 7259 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7260 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7261 if (!Add || Add->getNumOperands() != 2) return nullptr; 7262 7263 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0)); 7264 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue())) 7265 return nullptr; 7266 7267 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7268 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr; 7269 7270 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0)); 7271 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue())) 7272 return nullptr; 7273 7274 return AddRHS->getOperand(1); 7275 } 7276 7277 7278 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7279 template<typename MaxExprType> 7280 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7281 const SCEV *Candidate) { 7282 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7283 if (!MaxExpr) return false; 7284 7285 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7286 return It != MaxExpr->op_end(); 7287 } 7288 7289 7290 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7291 template<typename MaxExprType> 7292 static bool IsMinConsistingOf(ScalarEvolution &SE, 7293 const SCEV *MaybeMinExpr, 7294 const SCEV *Candidate) { 7295 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7296 if (!MaybeMaxExpr) 7297 return false; 7298 7299 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7300 } 7301 7302 7303 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7304 /// expression? 7305 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7306 ICmpInst::Predicate Pred, 7307 const SCEV *LHS, const SCEV *RHS) { 7308 switch (Pred) { 7309 default: 7310 return false; 7311 7312 case ICmpInst::ICMP_SGE: 7313 std::swap(LHS, RHS); 7314 // fall through 7315 case ICmpInst::ICMP_SLE: 7316 return 7317 // min(A, ...) <= A 7318 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7319 // A <= max(A, ...) 7320 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7321 7322 case ICmpInst::ICMP_UGE: 7323 std::swap(LHS, RHS); 7324 // fall through 7325 case ICmpInst::ICMP_ULE: 7326 return 7327 // min(A, ...) <= A 7328 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7329 // A <= max(A, ...) 7330 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7331 } 7332 7333 llvm_unreachable("covered switch fell through?!"); 7334 } 7335 7336 /// isImpliedCondOperandsHelper - Test whether the condition described by 7337 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7338 /// FoundLHS, and FoundRHS is true. 7339 bool 7340 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7341 const SCEV *LHS, const SCEV *RHS, 7342 const SCEV *FoundLHS, 7343 const SCEV *FoundRHS) { 7344 auto IsKnownPredicateFull = 7345 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7346 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7347 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS); 7348 }; 7349 7350 switch (Pred) { 7351 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7352 case ICmpInst::ICMP_EQ: 7353 case ICmpInst::ICMP_NE: 7354 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7355 return true; 7356 break; 7357 case ICmpInst::ICMP_SLT: 7358 case ICmpInst::ICMP_SLE: 7359 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7360 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7361 return true; 7362 break; 7363 case ICmpInst::ICMP_SGT: 7364 case ICmpInst::ICMP_SGE: 7365 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7366 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7367 return true; 7368 break; 7369 case ICmpInst::ICMP_ULT: 7370 case ICmpInst::ICMP_ULE: 7371 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7372 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7373 return true; 7374 break; 7375 case ICmpInst::ICMP_UGT: 7376 case ICmpInst::ICMP_UGE: 7377 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7378 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7379 return true; 7380 break; 7381 } 7382 7383 return false; 7384 } 7385 7386 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7387 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7388 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7389 const SCEV *LHS, 7390 const SCEV *RHS, 7391 const SCEV *FoundLHS, 7392 const SCEV *FoundRHS) { 7393 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7394 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7395 // reduce the compile time impact of this optimization. 7396 return false; 7397 7398 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7399 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7400 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7401 return false; 7402 7403 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7404 7405 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7406 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7407 ConstantRange FoundLHSRange = 7408 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7409 7410 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7411 // for `LHS`: 7412 APInt Addend = 7413 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7414 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7415 7416 // We can also compute the range of values for `LHS` that satisfy the 7417 // consequent, "`LHS` `Pred` `RHS`": 7418 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7419 ConstantRange SatisfyingLHSRange = 7420 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7421 7422 // The antecedent implies the consequent if every value of `LHS` that 7423 // satisfies the antecedent also satisfies the consequent. 7424 return SatisfyingLHSRange.contains(LHSRange); 7425 } 7426 7427 // Verify if an linear IV with positive stride can overflow when in a 7428 // less-than comparison, knowing the invariant term of the comparison, the 7429 // stride and the knowledge of NSW/NUW flags on the recurrence. 7430 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7431 bool IsSigned, bool NoWrap) { 7432 if (NoWrap) return false; 7433 7434 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7435 const SCEV *One = getConstant(Stride->getType(), 1); 7436 7437 if (IsSigned) { 7438 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7439 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7440 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7441 .getSignedMax(); 7442 7443 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7444 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7445 } 7446 7447 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7448 APInt MaxValue = APInt::getMaxValue(BitWidth); 7449 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7450 .getUnsignedMax(); 7451 7452 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7453 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7454 } 7455 7456 // Verify if an linear IV with negative stride can overflow when in a 7457 // greater-than comparison, knowing the invariant term of the comparison, 7458 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7459 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7460 bool IsSigned, bool NoWrap) { 7461 if (NoWrap) return false; 7462 7463 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7464 const SCEV *One = getConstant(Stride->getType(), 1); 7465 7466 if (IsSigned) { 7467 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7468 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7469 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7470 .getSignedMax(); 7471 7472 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7473 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7474 } 7475 7476 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7477 APInt MinValue = APInt::getMinValue(BitWidth); 7478 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7479 .getUnsignedMax(); 7480 7481 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7482 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7483 } 7484 7485 // Compute the backedge taken count knowing the interval difference, the 7486 // stride and presence of the equality in the comparison. 7487 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7488 bool Equality) { 7489 const SCEV *One = getConstant(Step->getType(), 1); 7490 Delta = Equality ? getAddExpr(Delta, Step) 7491 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7492 return getUDivExpr(Delta, Step); 7493 } 7494 7495 /// HowManyLessThans - Return the number of times a backedge containing the 7496 /// specified less-than comparison will execute. If not computable, return 7497 /// CouldNotCompute. 7498 /// 7499 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7500 /// the branch (loops exits only if condition is true). In this case, we can use 7501 /// NoWrapFlags to skip overflow checks. 7502 ScalarEvolution::ExitLimit 7503 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7504 const Loop *L, bool IsSigned, 7505 bool ControlsExit) { 7506 // We handle only IV < Invariant 7507 if (!isLoopInvariant(RHS, L)) 7508 return getCouldNotCompute(); 7509 7510 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7511 7512 // Avoid weird loops 7513 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7514 return getCouldNotCompute(); 7515 7516 bool NoWrap = ControlsExit && 7517 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7518 7519 const SCEV *Stride = IV->getStepRecurrence(*this); 7520 7521 // Avoid negative or zero stride values 7522 if (!isKnownPositive(Stride)) 7523 return getCouldNotCompute(); 7524 7525 // Avoid proven overflow cases: this will ensure that the backedge taken count 7526 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7527 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7528 // behaviors like the case of C language. 7529 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7530 return getCouldNotCompute(); 7531 7532 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 7533 : ICmpInst::ICMP_ULT; 7534 const SCEV *Start = IV->getStart(); 7535 const SCEV *End = RHS; 7536 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 7537 const SCEV *Diff = getMinusSCEV(RHS, Start); 7538 // If we have NoWrap set, then we can assume that the increment won't 7539 // overflow, in which case if RHS - Start is a constant, we don't need to 7540 // do a max operation since we can just figure it out statically 7541 if (NoWrap && isa<SCEVConstant>(Diff)) { 7542 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7543 if (D.isNegative()) 7544 End = Start; 7545 } else 7546 End = IsSigned ? getSMaxExpr(RHS, Start) 7547 : getUMaxExpr(RHS, Start); 7548 } 7549 7550 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 7551 7552 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 7553 : getUnsignedRange(Start).getUnsignedMin(); 7554 7555 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7556 : getUnsignedRange(Stride).getUnsignedMin(); 7557 7558 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7559 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 7560 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 7561 7562 // Although End can be a MAX expression we estimate MaxEnd considering only 7563 // the case End = RHS. This is safe because in the other case (End - Start) 7564 // is zero, leading to a zero maximum backedge taken count. 7565 APInt MaxEnd = 7566 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 7567 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 7568 7569 const SCEV *MaxBECount; 7570 if (isa<SCEVConstant>(BECount)) 7571 MaxBECount = BECount; 7572 else 7573 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 7574 getConstant(MinStride), false); 7575 7576 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7577 MaxBECount = BECount; 7578 7579 return ExitLimit(BECount, MaxBECount); 7580 } 7581 7582 ScalarEvolution::ExitLimit 7583 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 7584 const Loop *L, bool IsSigned, 7585 bool ControlsExit) { 7586 // We handle only IV > Invariant 7587 if (!isLoopInvariant(RHS, L)) 7588 return getCouldNotCompute(); 7589 7590 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7591 7592 // Avoid weird loops 7593 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7594 return getCouldNotCompute(); 7595 7596 bool NoWrap = ControlsExit && 7597 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7598 7599 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 7600 7601 // Avoid negative or zero stride values 7602 if (!isKnownPositive(Stride)) 7603 return getCouldNotCompute(); 7604 7605 // Avoid proven overflow cases: this will ensure that the backedge taken count 7606 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7607 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7608 // behaviors like the case of C language. 7609 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 7610 return getCouldNotCompute(); 7611 7612 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 7613 : ICmpInst::ICMP_UGT; 7614 7615 const SCEV *Start = IV->getStart(); 7616 const SCEV *End = RHS; 7617 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 7618 const SCEV *Diff = getMinusSCEV(RHS, Start); 7619 // If we have NoWrap set, then we can assume that the increment won't 7620 // overflow, in which case if RHS - Start is a constant, we don't need to 7621 // do a max operation since we can just figure it out statically 7622 if (NoWrap && isa<SCEVConstant>(Diff)) { 7623 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7624 if (!D.isNegative()) 7625 End = Start; 7626 } else 7627 End = IsSigned ? getSMinExpr(RHS, Start) 7628 : getUMinExpr(RHS, Start); 7629 } 7630 7631 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 7632 7633 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 7634 : getUnsignedRange(Start).getUnsignedMax(); 7635 7636 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7637 : getUnsignedRange(Stride).getUnsignedMin(); 7638 7639 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7640 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 7641 : APInt::getMinValue(BitWidth) + (MinStride - 1); 7642 7643 // Although End can be a MIN expression we estimate MinEnd considering only 7644 // the case End = RHS. This is safe because in the other case (Start - End) 7645 // is zero, leading to a zero maximum backedge taken count. 7646 APInt MinEnd = 7647 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 7648 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 7649 7650 7651 const SCEV *MaxBECount = getCouldNotCompute(); 7652 if (isa<SCEVConstant>(BECount)) 7653 MaxBECount = BECount; 7654 else 7655 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 7656 getConstant(MinStride), false); 7657 7658 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7659 MaxBECount = BECount; 7660 7661 return ExitLimit(BECount, MaxBECount); 7662 } 7663 7664 /// getNumIterationsInRange - Return the number of iterations of this loop that 7665 /// produce values in the specified constant range. Another way of looking at 7666 /// this is that it returns the first iteration number where the value is not in 7667 /// the condition, thus computing the exit count. If the iteration count can't 7668 /// be computed, an instance of SCEVCouldNotCompute is returned. 7669 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 7670 ScalarEvolution &SE) const { 7671 if (Range.isFullSet()) // Infinite loop. 7672 return SE.getCouldNotCompute(); 7673 7674 // If the start is a non-zero constant, shift the range to simplify things. 7675 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 7676 if (!SC->getValue()->isZero()) { 7677 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 7678 Operands[0] = SE.getConstant(SC->getType(), 0); 7679 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 7680 getNoWrapFlags(FlagNW)); 7681 if (const SCEVAddRecExpr *ShiftedAddRec = 7682 dyn_cast<SCEVAddRecExpr>(Shifted)) 7683 return ShiftedAddRec->getNumIterationsInRange( 7684 Range.subtract(SC->getValue()->getValue()), SE); 7685 // This is strange and shouldn't happen. 7686 return SE.getCouldNotCompute(); 7687 } 7688 7689 // The only time we can solve this is when we have all constant indices. 7690 // Otherwise, we cannot determine the overflow conditions. 7691 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 7692 if (!isa<SCEVConstant>(getOperand(i))) 7693 return SE.getCouldNotCompute(); 7694 7695 7696 // Okay at this point we know that all elements of the chrec are constants and 7697 // that the start element is zero. 7698 7699 // First check to see if the range contains zero. If not, the first 7700 // iteration exits. 7701 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 7702 if (!Range.contains(APInt(BitWidth, 0))) 7703 return SE.getConstant(getType(), 0); 7704 7705 if (isAffine()) { 7706 // If this is an affine expression then we have this situation: 7707 // Solve {0,+,A} in Range === Ax in Range 7708 7709 // We know that zero is in the range. If A is positive then we know that 7710 // the upper value of the range must be the first possible exit value. 7711 // If A is negative then the lower of the range is the last possible loop 7712 // value. Also note that we already checked for a full range. 7713 APInt One(BitWidth,1); 7714 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 7715 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 7716 7717 // The exit value should be (End+A)/A. 7718 APInt ExitVal = (End + A).udiv(A); 7719 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 7720 7721 // Evaluate at the exit value. If we really did fall out of the valid 7722 // range, then we computed our trip count, otherwise wrap around or other 7723 // things must have happened. 7724 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 7725 if (Range.contains(Val->getValue())) 7726 return SE.getCouldNotCompute(); // Something strange happened 7727 7728 // Ensure that the previous value is in the range. This is a sanity check. 7729 assert(Range.contains( 7730 EvaluateConstantChrecAtConstant(this, 7731 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 7732 "Linear scev computation is off in a bad way!"); 7733 return SE.getConstant(ExitValue); 7734 } else if (isQuadratic()) { 7735 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 7736 // quadratic equation to solve it. To do this, we must frame our problem in 7737 // terms of figuring out when zero is crossed, instead of when 7738 // Range.getUpper() is crossed. 7739 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 7740 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 7741 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 7742 // getNoWrapFlags(FlagNW) 7743 FlagAnyWrap); 7744 7745 // Next, solve the constructed addrec 7746 std::pair<const SCEV *,const SCEV *> Roots = 7747 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 7748 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 7749 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 7750 if (R1) { 7751 // Pick the smallest positive root value. 7752 if (ConstantInt *CB = 7753 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 7754 R1->getValue(), R2->getValue()))) { 7755 if (!CB->getZExtValue()) 7756 std::swap(R1, R2); // R1 is the minimum root now. 7757 7758 // Make sure the root is not off by one. The returned iteration should 7759 // not be in the range, but the previous one should be. When solving 7760 // for "X*X < 5", for example, we should not return a root of 2. 7761 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 7762 R1->getValue(), 7763 SE); 7764 if (Range.contains(R1Val->getValue())) { 7765 // The next iteration must be out of the range... 7766 ConstantInt *NextVal = 7767 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 7768 7769 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7770 if (!Range.contains(R1Val->getValue())) 7771 return SE.getConstant(NextVal); 7772 return SE.getCouldNotCompute(); // Something strange happened 7773 } 7774 7775 // If R1 was not in the range, then it is a good return value. Make 7776 // sure that R1-1 WAS in the range though, just in case. 7777 ConstantInt *NextVal = 7778 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 7779 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7780 if (Range.contains(R1Val->getValue())) 7781 return R1; 7782 return SE.getCouldNotCompute(); // Something strange happened 7783 } 7784 } 7785 } 7786 7787 return SE.getCouldNotCompute(); 7788 } 7789 7790 namespace { 7791 struct FindUndefs { 7792 bool Found; 7793 FindUndefs() : Found(false) {} 7794 7795 bool follow(const SCEV *S) { 7796 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 7797 if (isa<UndefValue>(C->getValue())) 7798 Found = true; 7799 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 7800 if (isa<UndefValue>(C->getValue())) 7801 Found = true; 7802 } 7803 7804 // Keep looking if we haven't found it yet. 7805 return !Found; 7806 } 7807 bool isDone() const { 7808 // Stop recursion if we have found an undef. 7809 return Found; 7810 } 7811 }; 7812 } 7813 7814 // Return true when S contains at least an undef value. 7815 static inline bool 7816 containsUndefs(const SCEV *S) { 7817 FindUndefs F; 7818 SCEVTraversal<FindUndefs> ST(F); 7819 ST.visitAll(S); 7820 7821 return F.Found; 7822 } 7823 7824 namespace { 7825 // Collect all steps of SCEV expressions. 7826 struct SCEVCollectStrides { 7827 ScalarEvolution &SE; 7828 SmallVectorImpl<const SCEV *> &Strides; 7829 7830 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 7831 : SE(SE), Strides(S) {} 7832 7833 bool follow(const SCEV *S) { 7834 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 7835 Strides.push_back(AR->getStepRecurrence(SE)); 7836 return true; 7837 } 7838 bool isDone() const { return false; } 7839 }; 7840 7841 // Collect all SCEVUnknown and SCEVMulExpr expressions. 7842 struct SCEVCollectTerms { 7843 SmallVectorImpl<const SCEV *> &Terms; 7844 7845 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 7846 : Terms(T) {} 7847 7848 bool follow(const SCEV *S) { 7849 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 7850 if (!containsUndefs(S)) 7851 Terms.push_back(S); 7852 7853 // Stop recursion: once we collected a term, do not walk its operands. 7854 return false; 7855 } 7856 7857 // Keep looking. 7858 return true; 7859 } 7860 bool isDone() const { return false; } 7861 }; 7862 } 7863 7864 /// Find parametric terms in this SCEVAddRecExpr. 7865 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 7866 SmallVectorImpl<const SCEV *> &Terms) { 7867 SmallVector<const SCEV *, 4> Strides; 7868 SCEVCollectStrides StrideCollector(*this, Strides); 7869 visitAll(Expr, StrideCollector); 7870 7871 DEBUG({ 7872 dbgs() << "Strides:\n"; 7873 for (const SCEV *S : Strides) 7874 dbgs() << *S << "\n"; 7875 }); 7876 7877 for (const SCEV *S : Strides) { 7878 SCEVCollectTerms TermCollector(Terms); 7879 visitAll(S, TermCollector); 7880 } 7881 7882 DEBUG({ 7883 dbgs() << "Terms:\n"; 7884 for (const SCEV *T : Terms) 7885 dbgs() << *T << "\n"; 7886 }); 7887 } 7888 7889 static bool findArrayDimensionsRec(ScalarEvolution &SE, 7890 SmallVectorImpl<const SCEV *> &Terms, 7891 SmallVectorImpl<const SCEV *> &Sizes) { 7892 int Last = Terms.size() - 1; 7893 const SCEV *Step = Terms[Last]; 7894 7895 // End of recursion. 7896 if (Last == 0) { 7897 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 7898 SmallVector<const SCEV *, 2> Qs; 7899 for (const SCEV *Op : M->operands()) 7900 if (!isa<SCEVConstant>(Op)) 7901 Qs.push_back(Op); 7902 7903 Step = SE.getMulExpr(Qs); 7904 } 7905 7906 Sizes.push_back(Step); 7907 return true; 7908 } 7909 7910 for (const SCEV *&Term : Terms) { 7911 // Normalize the terms before the next call to findArrayDimensionsRec. 7912 const SCEV *Q, *R; 7913 SCEVDivision::divide(SE, Term, Step, &Q, &R); 7914 7915 // Bail out when GCD does not evenly divide one of the terms. 7916 if (!R->isZero()) 7917 return false; 7918 7919 Term = Q; 7920 } 7921 7922 // Remove all SCEVConstants. 7923 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 7924 return isa<SCEVConstant>(E); 7925 }), 7926 Terms.end()); 7927 7928 if (Terms.size() > 0) 7929 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 7930 return false; 7931 7932 Sizes.push_back(Step); 7933 return true; 7934 } 7935 7936 namespace { 7937 struct FindParameter { 7938 bool FoundParameter; 7939 FindParameter() : FoundParameter(false) {} 7940 7941 bool follow(const SCEV *S) { 7942 if (isa<SCEVUnknown>(S)) { 7943 FoundParameter = true; 7944 // Stop recursion: we found a parameter. 7945 return false; 7946 } 7947 // Keep looking. 7948 return true; 7949 } 7950 bool isDone() const { 7951 // Stop recursion if we have found a parameter. 7952 return FoundParameter; 7953 } 7954 }; 7955 } 7956 7957 // Returns true when S contains at least a SCEVUnknown parameter. 7958 static inline bool 7959 containsParameters(const SCEV *S) { 7960 FindParameter F; 7961 SCEVTraversal<FindParameter> ST(F); 7962 ST.visitAll(S); 7963 7964 return F.FoundParameter; 7965 } 7966 7967 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 7968 static inline bool 7969 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 7970 for (const SCEV *T : Terms) 7971 if (containsParameters(T)) 7972 return true; 7973 return false; 7974 } 7975 7976 // Return the number of product terms in S. 7977 static inline int numberOfTerms(const SCEV *S) { 7978 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 7979 return Expr->getNumOperands(); 7980 return 1; 7981 } 7982 7983 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 7984 if (isa<SCEVConstant>(T)) 7985 return nullptr; 7986 7987 if (isa<SCEVUnknown>(T)) 7988 return T; 7989 7990 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 7991 SmallVector<const SCEV *, 2> Factors; 7992 for (const SCEV *Op : M->operands()) 7993 if (!isa<SCEVConstant>(Op)) 7994 Factors.push_back(Op); 7995 7996 return SE.getMulExpr(Factors); 7997 } 7998 7999 return T; 8000 } 8001 8002 /// Return the size of an element read or written by Inst. 8003 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8004 Type *Ty; 8005 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8006 Ty = Store->getValueOperand()->getType(); 8007 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8008 Ty = Load->getType(); 8009 else 8010 return nullptr; 8011 8012 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8013 return getSizeOfExpr(ETy, Ty); 8014 } 8015 8016 /// Second step of delinearization: compute the array dimensions Sizes from the 8017 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8018 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8019 SmallVectorImpl<const SCEV *> &Sizes, 8020 const SCEV *ElementSize) const { 8021 8022 if (Terms.size() < 1 || !ElementSize) 8023 return; 8024 8025 // Early return when Terms do not contain parameters: we do not delinearize 8026 // non parametric SCEVs. 8027 if (!containsParameters(Terms)) 8028 return; 8029 8030 DEBUG({ 8031 dbgs() << "Terms:\n"; 8032 for (const SCEV *T : Terms) 8033 dbgs() << *T << "\n"; 8034 }); 8035 8036 // Remove duplicates. 8037 std::sort(Terms.begin(), Terms.end()); 8038 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8039 8040 // Put larger terms first. 8041 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8042 return numberOfTerms(LHS) > numberOfTerms(RHS); 8043 }); 8044 8045 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8046 8047 // Divide all terms by the element size. 8048 for (const SCEV *&Term : Terms) { 8049 const SCEV *Q, *R; 8050 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8051 Term = Q; 8052 } 8053 8054 SmallVector<const SCEV *, 4> NewTerms; 8055 8056 // Remove constant factors. 8057 for (const SCEV *T : Terms) 8058 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8059 NewTerms.push_back(NewT); 8060 8061 DEBUG({ 8062 dbgs() << "Terms after sorting:\n"; 8063 for (const SCEV *T : NewTerms) 8064 dbgs() << *T << "\n"; 8065 }); 8066 8067 if (NewTerms.empty() || 8068 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8069 Sizes.clear(); 8070 return; 8071 } 8072 8073 // The last element to be pushed into Sizes is the size of an element. 8074 Sizes.push_back(ElementSize); 8075 8076 DEBUG({ 8077 dbgs() << "Sizes:\n"; 8078 for (const SCEV *S : Sizes) 8079 dbgs() << *S << "\n"; 8080 }); 8081 } 8082 8083 /// Third step of delinearization: compute the access functions for the 8084 /// Subscripts based on the dimensions in Sizes. 8085 void ScalarEvolution::computeAccessFunctions( 8086 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8087 SmallVectorImpl<const SCEV *> &Sizes) { 8088 8089 // Early exit in case this SCEV is not an affine multivariate function. 8090 if (Sizes.empty()) 8091 return; 8092 8093 if (auto AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8094 if (!AR->isAffine()) 8095 return; 8096 8097 const SCEV *Res = Expr; 8098 int Last = Sizes.size() - 1; 8099 for (int i = Last; i >= 0; i--) { 8100 const SCEV *Q, *R; 8101 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8102 8103 DEBUG({ 8104 dbgs() << "Res: " << *Res << "\n"; 8105 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8106 dbgs() << "Res divided by Sizes[i]:\n"; 8107 dbgs() << "Quotient: " << *Q << "\n"; 8108 dbgs() << "Remainder: " << *R << "\n"; 8109 }); 8110 8111 Res = Q; 8112 8113 // Do not record the last subscript corresponding to the size of elements in 8114 // the array. 8115 if (i == Last) { 8116 8117 // Bail out if the remainder is too complex. 8118 if (isa<SCEVAddRecExpr>(R)) { 8119 Subscripts.clear(); 8120 Sizes.clear(); 8121 return; 8122 } 8123 8124 continue; 8125 } 8126 8127 // Record the access function for the current subscript. 8128 Subscripts.push_back(R); 8129 } 8130 8131 // Also push in last position the remainder of the last division: it will be 8132 // the access function of the innermost dimension. 8133 Subscripts.push_back(Res); 8134 8135 std::reverse(Subscripts.begin(), Subscripts.end()); 8136 8137 DEBUG({ 8138 dbgs() << "Subscripts:\n"; 8139 for (const SCEV *S : Subscripts) 8140 dbgs() << *S << "\n"; 8141 }); 8142 } 8143 8144 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8145 /// sizes of an array access. Returns the remainder of the delinearization that 8146 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8147 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8148 /// expressions in the stride and base of a SCEV corresponding to the 8149 /// computation of a GCD (greatest common divisor) of base and stride. When 8150 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8151 /// 8152 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8153 /// 8154 /// void foo(long n, long m, long o, double A[n][m][o]) { 8155 /// 8156 /// for (long i = 0; i < n; i++) 8157 /// for (long j = 0; j < m; j++) 8158 /// for (long k = 0; k < o; k++) 8159 /// A[i][j][k] = 1.0; 8160 /// } 8161 /// 8162 /// the delinearization input is the following AddRec SCEV: 8163 /// 8164 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8165 /// 8166 /// From this SCEV, we are able to say that the base offset of the access is %A 8167 /// because it appears as an offset that does not divide any of the strides in 8168 /// the loops: 8169 /// 8170 /// CHECK: Base offset: %A 8171 /// 8172 /// and then SCEV->delinearize determines the size of some of the dimensions of 8173 /// the array as these are the multiples by which the strides are happening: 8174 /// 8175 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8176 /// 8177 /// Note that the outermost dimension remains of UnknownSize because there are 8178 /// no strides that would help identifying the size of the last dimension: when 8179 /// the array has been statically allocated, one could compute the size of that 8180 /// dimension by dividing the overall size of the array by the size of the known 8181 /// dimensions: %m * %o * 8. 8182 /// 8183 /// Finally delinearize provides the access functions for the array reference 8184 /// that does correspond to A[i][j][k] of the above C testcase: 8185 /// 8186 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8187 /// 8188 /// The testcases are checking the output of a function pass: 8189 /// DelinearizationPass that walks through all loads and stores of a function 8190 /// asking for the SCEV of the memory access with respect to all enclosing 8191 /// loops, calling SCEV->delinearize on that and printing the results. 8192 8193 void ScalarEvolution::delinearize(const SCEV *Expr, 8194 SmallVectorImpl<const SCEV *> &Subscripts, 8195 SmallVectorImpl<const SCEV *> &Sizes, 8196 const SCEV *ElementSize) { 8197 // First step: collect parametric terms. 8198 SmallVector<const SCEV *, 4> Terms; 8199 collectParametricTerms(Expr, Terms); 8200 8201 if (Terms.empty()) 8202 return; 8203 8204 // Second step: find subscript sizes. 8205 findArrayDimensions(Terms, Sizes, ElementSize); 8206 8207 if (Sizes.empty()) 8208 return; 8209 8210 // Third step: compute the access functions for each subscript. 8211 computeAccessFunctions(Expr, Subscripts, Sizes); 8212 8213 if (Subscripts.empty()) 8214 return; 8215 8216 DEBUG({ 8217 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8218 dbgs() << "ArrayDecl[UnknownSize]"; 8219 for (const SCEV *S : Sizes) 8220 dbgs() << "[" << *S << "]"; 8221 8222 dbgs() << "\nArrayRef"; 8223 for (const SCEV *S : Subscripts) 8224 dbgs() << "[" << *S << "]"; 8225 dbgs() << "\n"; 8226 }); 8227 } 8228 8229 //===----------------------------------------------------------------------===// 8230 // SCEVCallbackVH Class Implementation 8231 //===----------------------------------------------------------------------===// 8232 8233 void ScalarEvolution::SCEVCallbackVH::deleted() { 8234 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8235 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8236 SE->ConstantEvolutionLoopExitValue.erase(PN); 8237 SE->ValueExprMap.erase(getValPtr()); 8238 // this now dangles! 8239 } 8240 8241 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8242 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8243 8244 // Forget all the expressions associated with users of the old value, 8245 // so that future queries will recompute the expressions using the new 8246 // value. 8247 Value *Old = getValPtr(); 8248 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8249 SmallPtrSet<User *, 8> Visited; 8250 while (!Worklist.empty()) { 8251 User *U = Worklist.pop_back_val(); 8252 // Deleting the Old value will cause this to dangle. Postpone 8253 // that until everything else is done. 8254 if (U == Old) 8255 continue; 8256 if (!Visited.insert(U).second) 8257 continue; 8258 if (PHINode *PN = dyn_cast<PHINode>(U)) 8259 SE->ConstantEvolutionLoopExitValue.erase(PN); 8260 SE->ValueExprMap.erase(U); 8261 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8262 } 8263 // Delete the Old value. 8264 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8265 SE->ConstantEvolutionLoopExitValue.erase(PN); 8266 SE->ValueExprMap.erase(Old); 8267 // this now dangles! 8268 } 8269 8270 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8271 : CallbackVH(V), SE(se) {} 8272 8273 //===----------------------------------------------------------------------===// 8274 // ScalarEvolution Class Implementation 8275 //===----------------------------------------------------------------------===// 8276 8277 ScalarEvolution::ScalarEvolution() 8278 : FunctionPass(ID), WalkingBEDominatingConds(false), ValuesAtScopes(64), 8279 LoopDispositions(64), BlockDispositions(64), FirstUnknown(nullptr) { 8280 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 8281 } 8282 8283 bool ScalarEvolution::runOnFunction(Function &F) { 8284 this->F = &F; 8285 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8286 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8287 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 8288 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8289 return false; 8290 } 8291 8292 void ScalarEvolution::releaseMemory() { 8293 // Iterate through all the SCEVUnknown instances and call their 8294 // destructors, so that they release their references to their values. 8295 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 8296 U->~SCEVUnknown(); 8297 FirstUnknown = nullptr; 8298 8299 ValueExprMap.clear(); 8300 8301 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8302 // that a loop had multiple computable exits. 8303 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8304 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 8305 I != E; ++I) { 8306 I->second.clear(); 8307 } 8308 8309 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8310 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8311 8312 BackedgeTakenCounts.clear(); 8313 ConstantEvolutionLoopExitValue.clear(); 8314 ValuesAtScopes.clear(); 8315 LoopDispositions.clear(); 8316 BlockDispositions.clear(); 8317 UnsignedRanges.clear(); 8318 SignedRanges.clear(); 8319 UniqueSCEVs.clear(); 8320 SCEVAllocator.Reset(); 8321 } 8322 8323 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 8324 AU.setPreservesAll(); 8325 AU.addRequiredTransitive<AssumptionCacheTracker>(); 8326 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 8327 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 8328 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 8329 } 8330 8331 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8332 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8333 } 8334 8335 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8336 const Loop *L) { 8337 // Print all inner loops first 8338 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8339 PrintLoopInfo(OS, SE, *I); 8340 8341 OS << "Loop "; 8342 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8343 OS << ": "; 8344 8345 SmallVector<BasicBlock *, 8> ExitBlocks; 8346 L->getExitBlocks(ExitBlocks); 8347 if (ExitBlocks.size() != 1) 8348 OS << "<multiple exits> "; 8349 8350 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8351 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8352 } else { 8353 OS << "Unpredictable backedge-taken count. "; 8354 } 8355 8356 OS << "\n" 8357 "Loop "; 8358 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8359 OS << ": "; 8360 8361 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8362 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8363 } else { 8364 OS << "Unpredictable max backedge-taken count. "; 8365 } 8366 8367 OS << "\n"; 8368 } 8369 8370 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 8371 // ScalarEvolution's implementation of the print method is to print 8372 // out SCEV values of all instructions that are interesting. Doing 8373 // this potentially causes it to create new SCEV objects though, 8374 // which technically conflicts with the const qualifier. This isn't 8375 // observable from outside the class though, so casting away the 8376 // const isn't dangerous. 8377 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8378 8379 OS << "Classifying expressions for: "; 8380 F->printAsOperand(OS, /*PrintType=*/false); 8381 OS << "\n"; 8382 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 8383 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 8384 OS << *I << '\n'; 8385 OS << " --> "; 8386 const SCEV *SV = SE.getSCEV(&*I); 8387 SV->print(OS); 8388 if (!isa<SCEVCouldNotCompute>(SV)) { 8389 OS << " U: "; 8390 SE.getUnsignedRange(SV).print(OS); 8391 OS << " S: "; 8392 SE.getSignedRange(SV).print(OS); 8393 } 8394 8395 const Loop *L = LI->getLoopFor((*I).getParent()); 8396 8397 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8398 if (AtUse != SV) { 8399 OS << " --> "; 8400 AtUse->print(OS); 8401 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8402 OS << " U: "; 8403 SE.getUnsignedRange(AtUse).print(OS); 8404 OS << " S: "; 8405 SE.getSignedRange(AtUse).print(OS); 8406 } 8407 } 8408 8409 if (L) { 8410 OS << "\t\t" "Exits: "; 8411 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8412 if (!SE.isLoopInvariant(ExitValue, L)) { 8413 OS << "<<Unknown>>"; 8414 } else { 8415 OS << *ExitValue; 8416 } 8417 } 8418 8419 OS << "\n"; 8420 } 8421 8422 OS << "Determining loop execution counts for: "; 8423 F->printAsOperand(OS, /*PrintType=*/false); 8424 OS << "\n"; 8425 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 8426 PrintLoopInfo(OS, &SE, *I); 8427 } 8428 8429 ScalarEvolution::LoopDisposition 8430 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8431 auto &Values = LoopDispositions[S]; 8432 for (auto &V : Values) { 8433 if (V.getPointer() == L) 8434 return V.getInt(); 8435 } 8436 Values.emplace_back(L, LoopVariant); 8437 LoopDisposition D = computeLoopDisposition(S, L); 8438 auto &Values2 = LoopDispositions[S]; 8439 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8440 if (V.getPointer() == L) { 8441 V.setInt(D); 8442 break; 8443 } 8444 } 8445 return D; 8446 } 8447 8448 ScalarEvolution::LoopDisposition 8449 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8450 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8451 case scConstant: 8452 return LoopInvariant; 8453 case scTruncate: 8454 case scZeroExtend: 8455 case scSignExtend: 8456 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8457 case scAddRecExpr: { 8458 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8459 8460 // If L is the addrec's loop, it's computable. 8461 if (AR->getLoop() == L) 8462 return LoopComputable; 8463 8464 // Add recurrences are never invariant in the function-body (null loop). 8465 if (!L) 8466 return LoopVariant; 8467 8468 // This recurrence is variant w.r.t. L if L contains AR's loop. 8469 if (L->contains(AR->getLoop())) 8470 return LoopVariant; 8471 8472 // This recurrence is invariant w.r.t. L if AR's loop contains L. 8473 if (AR->getLoop()->contains(L)) 8474 return LoopInvariant; 8475 8476 // This recurrence is variant w.r.t. L if any of its operands 8477 // are variant. 8478 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 8479 I != E; ++I) 8480 if (!isLoopInvariant(*I, L)) 8481 return LoopVariant; 8482 8483 // Otherwise it's loop-invariant. 8484 return LoopInvariant; 8485 } 8486 case scAddExpr: 8487 case scMulExpr: 8488 case scUMaxExpr: 8489 case scSMaxExpr: { 8490 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8491 bool HasVarying = false; 8492 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8493 I != E; ++I) { 8494 LoopDisposition D = getLoopDisposition(*I, L); 8495 if (D == LoopVariant) 8496 return LoopVariant; 8497 if (D == LoopComputable) 8498 HasVarying = true; 8499 } 8500 return HasVarying ? LoopComputable : LoopInvariant; 8501 } 8502 case scUDivExpr: { 8503 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8504 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 8505 if (LD == LoopVariant) 8506 return LoopVariant; 8507 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 8508 if (RD == LoopVariant) 8509 return LoopVariant; 8510 return (LD == LoopInvariant && RD == LoopInvariant) ? 8511 LoopInvariant : LoopComputable; 8512 } 8513 case scUnknown: 8514 // All non-instruction values are loop invariant. All instructions are loop 8515 // invariant if they are not contained in the specified loop. 8516 // Instructions are never considered invariant in the function body 8517 // (null loop) because they are defined within the "loop". 8518 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 8519 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 8520 return LoopInvariant; 8521 case scCouldNotCompute: 8522 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8523 } 8524 llvm_unreachable("Unknown SCEV kind!"); 8525 } 8526 8527 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 8528 return getLoopDisposition(S, L) == LoopInvariant; 8529 } 8530 8531 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 8532 return getLoopDisposition(S, L) == LoopComputable; 8533 } 8534 8535 ScalarEvolution::BlockDisposition 8536 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8537 auto &Values = BlockDispositions[S]; 8538 for (auto &V : Values) { 8539 if (V.getPointer() == BB) 8540 return V.getInt(); 8541 } 8542 Values.emplace_back(BB, DoesNotDominateBlock); 8543 BlockDisposition D = computeBlockDisposition(S, BB); 8544 auto &Values2 = BlockDispositions[S]; 8545 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8546 if (V.getPointer() == BB) { 8547 V.setInt(D); 8548 break; 8549 } 8550 } 8551 return D; 8552 } 8553 8554 ScalarEvolution::BlockDisposition 8555 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8556 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8557 case scConstant: 8558 return ProperlyDominatesBlock; 8559 case scTruncate: 8560 case scZeroExtend: 8561 case scSignExtend: 8562 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 8563 case scAddRecExpr: { 8564 // This uses a "dominates" query instead of "properly dominates" query 8565 // to test for proper dominance too, because the instruction which 8566 // produces the addrec's value is a PHI, and a PHI effectively properly 8567 // dominates its entire containing block. 8568 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8569 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 8570 return DoesNotDominateBlock; 8571 } 8572 // FALL THROUGH into SCEVNAryExpr handling. 8573 case scAddExpr: 8574 case scMulExpr: 8575 case scUMaxExpr: 8576 case scSMaxExpr: { 8577 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8578 bool Proper = true; 8579 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8580 I != E; ++I) { 8581 BlockDisposition D = getBlockDisposition(*I, BB); 8582 if (D == DoesNotDominateBlock) 8583 return DoesNotDominateBlock; 8584 if (D == DominatesBlock) 8585 Proper = false; 8586 } 8587 return Proper ? ProperlyDominatesBlock : DominatesBlock; 8588 } 8589 case scUDivExpr: { 8590 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8591 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 8592 BlockDisposition LD = getBlockDisposition(LHS, BB); 8593 if (LD == DoesNotDominateBlock) 8594 return DoesNotDominateBlock; 8595 BlockDisposition RD = getBlockDisposition(RHS, BB); 8596 if (RD == DoesNotDominateBlock) 8597 return DoesNotDominateBlock; 8598 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 8599 ProperlyDominatesBlock : DominatesBlock; 8600 } 8601 case scUnknown: 8602 if (Instruction *I = 8603 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 8604 if (I->getParent() == BB) 8605 return DominatesBlock; 8606 if (DT->properlyDominates(I->getParent(), BB)) 8607 return ProperlyDominatesBlock; 8608 return DoesNotDominateBlock; 8609 } 8610 return ProperlyDominatesBlock; 8611 case scCouldNotCompute: 8612 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8613 } 8614 llvm_unreachable("Unknown SCEV kind!"); 8615 } 8616 8617 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 8618 return getBlockDisposition(S, BB) >= DominatesBlock; 8619 } 8620 8621 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 8622 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 8623 } 8624 8625 namespace { 8626 // Search for a SCEV expression node within an expression tree. 8627 // Implements SCEVTraversal::Visitor. 8628 struct SCEVSearch { 8629 const SCEV *Node; 8630 bool IsFound; 8631 8632 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 8633 8634 bool follow(const SCEV *S) { 8635 IsFound |= (S == Node); 8636 return !IsFound; 8637 } 8638 bool isDone() const { return IsFound; } 8639 }; 8640 } 8641 8642 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 8643 SCEVSearch Search(Op); 8644 visitAll(S, Search); 8645 return Search.IsFound; 8646 } 8647 8648 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 8649 ValuesAtScopes.erase(S); 8650 LoopDispositions.erase(S); 8651 BlockDispositions.erase(S); 8652 UnsignedRanges.erase(S); 8653 SignedRanges.erase(S); 8654 8655 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8656 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 8657 BackedgeTakenInfo &BEInfo = I->second; 8658 if (BEInfo.hasOperand(S, this)) { 8659 BEInfo.clear(); 8660 BackedgeTakenCounts.erase(I++); 8661 } 8662 else 8663 ++I; 8664 } 8665 } 8666 8667 typedef DenseMap<const Loop *, std::string> VerifyMap; 8668 8669 /// replaceSubString - Replaces all occurrences of From in Str with To. 8670 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 8671 size_t Pos = 0; 8672 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 8673 Str.replace(Pos, From.size(), To.data(), To.size()); 8674 Pos += To.size(); 8675 } 8676 } 8677 8678 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 8679 static void 8680 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 8681 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 8682 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 8683 8684 std::string &S = Map[L]; 8685 if (S.empty()) { 8686 raw_string_ostream OS(S); 8687 SE.getBackedgeTakenCount(L)->print(OS); 8688 8689 // false and 0 are semantically equivalent. This can happen in dead loops. 8690 replaceSubString(OS.str(), "false", "0"); 8691 // Remove wrap flags, their use in SCEV is highly fragile. 8692 // FIXME: Remove this when SCEV gets smarter about them. 8693 replaceSubString(OS.str(), "<nw>", ""); 8694 replaceSubString(OS.str(), "<nsw>", ""); 8695 replaceSubString(OS.str(), "<nuw>", ""); 8696 } 8697 } 8698 } 8699 8700 void ScalarEvolution::verifyAnalysis() const { 8701 if (!VerifySCEV) 8702 return; 8703 8704 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8705 8706 // Gather stringified backedge taken counts for all loops using SCEV's caches. 8707 // FIXME: It would be much better to store actual values instead of strings, 8708 // but SCEV pointers will change if we drop the caches. 8709 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 8710 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8711 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 8712 8713 // Gather stringified backedge taken counts for all loops without using 8714 // SCEV's caches. 8715 SE.releaseMemory(); 8716 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8717 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 8718 8719 // Now compare whether they're the same with and without caches. This allows 8720 // verifying that no pass changed the cache. 8721 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 8722 "New loops suddenly appeared!"); 8723 8724 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 8725 OldE = BackedgeDumpsOld.end(), 8726 NewI = BackedgeDumpsNew.begin(); 8727 OldI != OldE; ++OldI, ++NewI) { 8728 assert(OldI->first == NewI->first && "Loop order changed!"); 8729 8730 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 8731 // changes. 8732 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 8733 // means that a pass is buggy or SCEV has to learn a new pattern but is 8734 // usually not harmful. 8735 if (OldI->second != NewI->second && 8736 OldI->second.find("undef") == std::string::npos && 8737 NewI->second.find("undef") == std::string::npos && 8738 OldI->second != "***COULDNOTCOMPUTE***" && 8739 NewI->second != "***COULDNOTCOMPUTE***") { 8740 dbgs() << "SCEVValidator: SCEV for loop '" 8741 << OldI->first->getHeader()->getName() 8742 << "' changed from '" << OldI->second 8743 << "' to '" << NewI->second << "'!\n"; 8744 std::abort(); 8745 } 8746 } 8747 8748 // TODO: Verify more things. 8749 } 8750