1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Debug.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Support/SaveAndRestore.h" 93 #include <algorithm> 94 using namespace llvm; 95 96 #define DEBUG_TYPE "scalar-evolution" 97 98 STATISTIC(NumArrayLenItCounts, 99 "Number of trip counts computed with array length"); 100 STATISTIC(NumTripCountsComputed, 101 "Number of loops with predictable loop counts"); 102 STATISTIC(NumTripCountsNotComputed, 103 "Number of loops without predictable loop counts"); 104 STATISTIC(NumBruteForceTripCountsComputed, 105 "Number of loops with trip counts computed by force"); 106 107 static cl::opt<unsigned> 108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 109 cl::desc("Maximum number of iterations SCEV will " 110 "symbolically execute a constant " 111 "derived loop"), 112 cl::init(100)); 113 114 // FIXME: Enable this with XDEBUG when the test suite is clean. 115 static cl::opt<bool> 116 VerifySCEV("verify-scev", 117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 118 119 //===----------------------------------------------------------------------===// 120 // SCEV class definitions 121 //===----------------------------------------------------------------------===// 122 123 //===----------------------------------------------------------------------===// 124 // Implementation of the SCEV class. 125 // 126 127 LLVM_DUMP_METHOD 128 void SCEV::dump() const { 129 print(dbgs()); 130 dbgs() << '\n'; 131 } 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getAPInt().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getAPInt(); 537 const APInt &RA = RC->getAPInt(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } // end anonymous namespace 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 // Returns the size of the SCEV S. 670 static inline int sizeOfSCEV(const SCEV *S) { 671 struct FindSCEVSize { 672 int Size; 673 FindSCEVSize() : Size(0) {} 674 675 bool follow(const SCEV *S) { 676 ++Size; 677 // Keep looking at all operands of S. 678 return true; 679 } 680 bool isDone() const { 681 return false; 682 } 683 }; 684 685 FindSCEVSize F; 686 SCEVTraversal<FindSCEVSize> ST(F); 687 ST.visitAll(S); 688 return F.Size; 689 } 690 691 namespace { 692 693 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 694 public: 695 // Computes the Quotient and Remainder of the division of Numerator by 696 // Denominator. 697 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 698 const SCEV *Denominator, const SCEV **Quotient, 699 const SCEV **Remainder) { 700 assert(Numerator && Denominator && "Uninitialized SCEV"); 701 702 SCEVDivision D(SE, Numerator, Denominator); 703 704 // Check for the trivial case here to avoid having to check for it in the 705 // rest of the code. 706 if (Numerator == Denominator) { 707 *Quotient = D.One; 708 *Remainder = D.Zero; 709 return; 710 } 711 712 if (Numerator->isZero()) { 713 *Quotient = D.Zero; 714 *Remainder = D.Zero; 715 return; 716 } 717 718 // A simple case when N/1. The quotient is N. 719 if (Denominator->isOne()) { 720 *Quotient = Numerator; 721 *Remainder = D.Zero; 722 return; 723 } 724 725 // Split the Denominator when it is a product. 726 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 727 const SCEV *Q, *R; 728 *Quotient = Numerator; 729 for (const SCEV *Op : T->operands()) { 730 divide(SE, *Quotient, Op, &Q, &R); 731 *Quotient = Q; 732 733 // Bail out when the Numerator is not divisible by one of the terms of 734 // the Denominator. 735 if (!R->isZero()) { 736 *Quotient = D.Zero; 737 *Remainder = Numerator; 738 return; 739 } 740 } 741 *Remainder = D.Zero; 742 return; 743 } 744 745 D.visit(Numerator); 746 *Quotient = D.Quotient; 747 *Remainder = D.Remainder; 748 } 749 750 // Except in the trivial case described above, we do not know how to divide 751 // Expr by Denominator for the following functions with empty implementation. 752 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 753 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 754 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 755 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 756 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 757 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 758 void visitUnknown(const SCEVUnknown *Numerator) {} 759 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 760 761 void visitConstant(const SCEVConstant *Numerator) { 762 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 763 APInt NumeratorVal = Numerator->getAPInt(); 764 APInt DenominatorVal = D->getAPInt(); 765 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 766 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 767 768 if (NumeratorBW > DenominatorBW) 769 DenominatorVal = DenominatorVal.sext(NumeratorBW); 770 else if (NumeratorBW < DenominatorBW) 771 NumeratorVal = NumeratorVal.sext(DenominatorBW); 772 773 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 774 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 775 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 776 Quotient = SE.getConstant(QuotientVal); 777 Remainder = SE.getConstant(RemainderVal); 778 return; 779 } 780 } 781 782 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 783 const SCEV *StartQ, *StartR, *StepQ, *StepR; 784 if (!Numerator->isAffine()) 785 return cannotDivide(Numerator); 786 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 787 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 788 // Bail out if the types do not match. 789 Type *Ty = Denominator->getType(); 790 if (Ty != StartQ->getType() || Ty != StartR->getType() || 791 Ty != StepQ->getType() || Ty != StepR->getType()) 792 return cannotDivide(Numerator); 793 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 794 Numerator->getNoWrapFlags()); 795 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 } 798 799 void visitAddExpr(const SCEVAddExpr *Numerator) { 800 SmallVector<const SCEV *, 2> Qs, Rs; 801 Type *Ty = Denominator->getType(); 802 803 for (const SCEV *Op : Numerator->operands()) { 804 const SCEV *Q, *R; 805 divide(SE, Op, Denominator, &Q, &R); 806 807 // Bail out if types do not match. 808 if (Ty != Q->getType() || Ty != R->getType()) 809 return cannotDivide(Numerator); 810 811 Qs.push_back(Q); 812 Rs.push_back(R); 813 } 814 815 if (Qs.size() == 1) { 816 Quotient = Qs[0]; 817 Remainder = Rs[0]; 818 return; 819 } 820 821 Quotient = SE.getAddExpr(Qs); 822 Remainder = SE.getAddExpr(Rs); 823 } 824 825 void visitMulExpr(const SCEVMulExpr *Numerator) { 826 SmallVector<const SCEV *, 2> Qs; 827 Type *Ty = Denominator->getType(); 828 829 bool FoundDenominatorTerm = false; 830 for (const SCEV *Op : Numerator->operands()) { 831 // Bail out if types do not match. 832 if (Ty != Op->getType()) 833 return cannotDivide(Numerator); 834 835 if (FoundDenominatorTerm) { 836 Qs.push_back(Op); 837 continue; 838 } 839 840 // Check whether Denominator divides one of the product operands. 841 const SCEV *Q, *R; 842 divide(SE, Op, Denominator, &Q, &R); 843 if (!R->isZero()) { 844 Qs.push_back(Op); 845 continue; 846 } 847 848 // Bail out if types do not match. 849 if (Ty != Q->getType()) 850 return cannotDivide(Numerator); 851 852 FoundDenominatorTerm = true; 853 Qs.push_back(Q); 854 } 855 856 if (FoundDenominatorTerm) { 857 Remainder = Zero; 858 if (Qs.size() == 1) 859 Quotient = Qs[0]; 860 else 861 Quotient = SE.getMulExpr(Qs); 862 return; 863 } 864 865 if (!isa<SCEVUnknown>(Denominator)) 866 return cannotDivide(Numerator); 867 868 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 869 ValueToValueMap RewriteMap; 870 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 871 cast<SCEVConstant>(Zero)->getValue(); 872 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 873 874 if (Remainder->isZero()) { 875 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 876 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 877 cast<SCEVConstant>(One)->getValue(); 878 Quotient = 879 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 880 return; 881 } 882 883 // Quotient is (Numerator - Remainder) divided by Denominator. 884 const SCEV *Q, *R; 885 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 886 // This SCEV does not seem to simplify: fail the division here. 887 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 888 return cannotDivide(Numerator); 889 divide(SE, Diff, Denominator, &Q, &R); 890 if (R != Zero) 891 return cannotDivide(Numerator); 892 Quotient = Q; 893 } 894 895 private: 896 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 897 const SCEV *Denominator) 898 : SE(S), Denominator(Denominator) { 899 Zero = SE.getZero(Denominator->getType()); 900 One = SE.getOne(Denominator->getType()); 901 902 // We generally do not know how to divide Expr by Denominator. We 903 // initialize the division to a "cannot divide" state to simplify the rest 904 // of the code. 905 cannotDivide(Numerator); 906 } 907 908 // Convenience function for giving up on the division. We set the quotient to 909 // be equal to zero and the remainder to be equal to the numerator. 910 void cannotDivide(const SCEV *Numerator) { 911 Quotient = Zero; 912 Remainder = Numerator; 913 } 914 915 ScalarEvolution &SE; 916 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 917 }; 918 919 } 920 921 //===----------------------------------------------------------------------===// 922 // Simple SCEV method implementations 923 //===----------------------------------------------------------------------===// 924 925 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 926 /// Assume, K > 0. 927 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 928 ScalarEvolution &SE, 929 Type *ResultTy) { 930 // Handle the simplest case efficiently. 931 if (K == 1) 932 return SE.getTruncateOrZeroExtend(It, ResultTy); 933 934 // We are using the following formula for BC(It, K): 935 // 936 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 937 // 938 // Suppose, W is the bitwidth of the return value. We must be prepared for 939 // overflow. Hence, we must assure that the result of our computation is 940 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 941 // safe in modular arithmetic. 942 // 943 // However, this code doesn't use exactly that formula; the formula it uses 944 // is something like the following, where T is the number of factors of 2 in 945 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 946 // exponentiation: 947 // 948 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 949 // 950 // This formula is trivially equivalent to the previous formula. However, 951 // this formula can be implemented much more efficiently. The trick is that 952 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 953 // arithmetic. To do exact division in modular arithmetic, all we have 954 // to do is multiply by the inverse. Therefore, this step can be done at 955 // width W. 956 // 957 // The next issue is how to safely do the division by 2^T. The way this 958 // is done is by doing the multiplication step at a width of at least W + T 959 // bits. This way, the bottom W+T bits of the product are accurate. Then, 960 // when we perform the division by 2^T (which is equivalent to a right shift 961 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 962 // truncated out after the division by 2^T. 963 // 964 // In comparison to just directly using the first formula, this technique 965 // is much more efficient; using the first formula requires W * K bits, 966 // but this formula less than W + K bits. Also, the first formula requires 967 // a division step, whereas this formula only requires multiplies and shifts. 968 // 969 // It doesn't matter whether the subtraction step is done in the calculation 970 // width or the input iteration count's width; if the subtraction overflows, 971 // the result must be zero anyway. We prefer here to do it in the width of 972 // the induction variable because it helps a lot for certain cases; CodeGen 973 // isn't smart enough to ignore the overflow, which leads to much less 974 // efficient code if the width of the subtraction is wider than the native 975 // register width. 976 // 977 // (It's possible to not widen at all by pulling out factors of 2 before 978 // the multiplication; for example, K=2 can be calculated as 979 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 980 // extra arithmetic, so it's not an obvious win, and it gets 981 // much more complicated for K > 3.) 982 983 // Protection from insane SCEVs; this bound is conservative, 984 // but it probably doesn't matter. 985 if (K > 1000) 986 return SE.getCouldNotCompute(); 987 988 unsigned W = SE.getTypeSizeInBits(ResultTy); 989 990 // Calculate K! / 2^T and T; we divide out the factors of two before 991 // multiplying for calculating K! / 2^T to avoid overflow. 992 // Other overflow doesn't matter because we only care about the bottom 993 // W bits of the result. 994 APInt OddFactorial(W, 1); 995 unsigned T = 1; 996 for (unsigned i = 3; i <= K; ++i) { 997 APInt Mult(W, i); 998 unsigned TwoFactors = Mult.countTrailingZeros(); 999 T += TwoFactors; 1000 Mult = Mult.lshr(TwoFactors); 1001 OddFactorial *= Mult; 1002 } 1003 1004 // We need at least W + T bits for the multiplication step 1005 unsigned CalculationBits = W + T; 1006 1007 // Calculate 2^T, at width T+W. 1008 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1009 1010 // Calculate the multiplicative inverse of K! / 2^T; 1011 // this multiplication factor will perform the exact division by 1012 // K! / 2^T. 1013 APInt Mod = APInt::getSignedMinValue(W+1); 1014 APInt MultiplyFactor = OddFactorial.zext(W+1); 1015 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1016 MultiplyFactor = MultiplyFactor.trunc(W); 1017 1018 // Calculate the product, at width T+W 1019 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1020 CalculationBits); 1021 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1022 for (unsigned i = 1; i != K; ++i) { 1023 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1024 Dividend = SE.getMulExpr(Dividend, 1025 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1026 } 1027 1028 // Divide by 2^T 1029 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1030 1031 // Truncate the result, and divide by K! / 2^T. 1032 1033 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1034 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1035 } 1036 1037 /// evaluateAtIteration - Return the value of this chain of recurrences at 1038 /// the specified iteration number. We can evaluate this recurrence by 1039 /// multiplying each element in the chain by the binomial coefficient 1040 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1041 /// 1042 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1043 /// 1044 /// where BC(It, k) stands for binomial coefficient. 1045 /// 1046 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1047 ScalarEvolution &SE) const { 1048 const SCEV *Result = getStart(); 1049 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1050 // The computation is correct in the face of overflow provided that the 1051 // multiplication is performed _after_ the evaluation of the binomial 1052 // coefficient. 1053 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1054 if (isa<SCEVCouldNotCompute>(Coeff)) 1055 return Coeff; 1056 1057 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1058 } 1059 return Result; 1060 } 1061 1062 //===----------------------------------------------------------------------===// 1063 // SCEV Expression folder implementations 1064 //===----------------------------------------------------------------------===// 1065 1066 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1067 Type *Ty) { 1068 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1069 "This is not a truncating conversion!"); 1070 assert(isSCEVable(Ty) && 1071 "This is not a conversion to a SCEVable type!"); 1072 Ty = getEffectiveSCEVType(Ty); 1073 1074 FoldingSetNodeID ID; 1075 ID.AddInteger(scTruncate); 1076 ID.AddPointer(Op); 1077 ID.AddPointer(Ty); 1078 void *IP = nullptr; 1079 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1080 1081 // Fold if the operand is constant. 1082 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1083 return getConstant( 1084 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1085 1086 // trunc(trunc(x)) --> trunc(x) 1087 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1088 return getTruncateExpr(ST->getOperand(), Ty); 1089 1090 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1091 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1092 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1093 1094 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1095 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1096 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1097 1098 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1099 // eliminate all the truncates, or we replace other casts with truncates. 1100 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1101 SmallVector<const SCEV *, 4> Operands; 1102 bool hasTrunc = false; 1103 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1104 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1105 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1106 hasTrunc = isa<SCEVTruncateExpr>(S); 1107 Operands.push_back(S); 1108 } 1109 if (!hasTrunc) 1110 return getAddExpr(Operands); 1111 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1112 } 1113 1114 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1115 // eliminate all the truncates, or we replace other casts with truncates. 1116 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1117 SmallVector<const SCEV *, 4> Operands; 1118 bool hasTrunc = false; 1119 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1120 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1121 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1122 hasTrunc = isa<SCEVTruncateExpr>(S); 1123 Operands.push_back(S); 1124 } 1125 if (!hasTrunc) 1126 return getMulExpr(Operands); 1127 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1128 } 1129 1130 // If the input value is a chrec scev, truncate the chrec's operands. 1131 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1132 SmallVector<const SCEV *, 4> Operands; 1133 for (const SCEV *Op : AddRec->operands()) 1134 Operands.push_back(getTruncateExpr(Op, Ty)); 1135 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1136 } 1137 1138 // The cast wasn't folded; create an explicit cast node. We can reuse 1139 // the existing insert position since if we get here, we won't have 1140 // made any changes which would invalidate it. 1141 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1142 Op, Ty); 1143 UniqueSCEVs.InsertNode(S, IP); 1144 return S; 1145 } 1146 1147 // Get the limit of a recurrence such that incrementing by Step cannot cause 1148 // signed overflow as long as the value of the recurrence within the 1149 // loop does not exceed this limit before incrementing. 1150 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1151 ICmpInst::Predicate *Pred, 1152 ScalarEvolution *SE) { 1153 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1154 if (SE->isKnownPositive(Step)) { 1155 *Pred = ICmpInst::ICMP_SLT; 1156 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1157 SE->getSignedRange(Step).getSignedMax()); 1158 } 1159 if (SE->isKnownNegative(Step)) { 1160 *Pred = ICmpInst::ICMP_SGT; 1161 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1162 SE->getSignedRange(Step).getSignedMin()); 1163 } 1164 return nullptr; 1165 } 1166 1167 // Get the limit of a recurrence such that incrementing by Step cannot cause 1168 // unsigned overflow as long as the value of the recurrence within the loop does 1169 // not exceed this limit before incrementing. 1170 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1171 ICmpInst::Predicate *Pred, 1172 ScalarEvolution *SE) { 1173 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1174 *Pred = ICmpInst::ICMP_ULT; 1175 1176 return SE->getConstant(APInt::getMinValue(BitWidth) - 1177 SE->getUnsignedRange(Step).getUnsignedMax()); 1178 } 1179 1180 namespace { 1181 1182 struct ExtendOpTraitsBase { 1183 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1184 }; 1185 1186 // Used to make code generic over signed and unsigned overflow. 1187 template <typename ExtendOp> struct ExtendOpTraits { 1188 // Members present: 1189 // 1190 // static const SCEV::NoWrapFlags WrapType; 1191 // 1192 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1193 // 1194 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1195 // ICmpInst::Predicate *Pred, 1196 // ScalarEvolution *SE); 1197 }; 1198 1199 template <> 1200 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1201 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1202 1203 static const GetExtendExprTy GetExtendExpr; 1204 1205 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1206 ICmpInst::Predicate *Pred, 1207 ScalarEvolution *SE) { 1208 return getSignedOverflowLimitForStep(Step, Pred, SE); 1209 } 1210 }; 1211 1212 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1213 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1214 1215 template <> 1216 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1217 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1218 1219 static const GetExtendExprTy GetExtendExpr; 1220 1221 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1222 ICmpInst::Predicate *Pred, 1223 ScalarEvolution *SE) { 1224 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1225 } 1226 }; 1227 1228 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1229 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1230 } 1231 1232 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1233 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1234 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1235 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1236 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1237 // expression "Step + sext/zext(PreIncAR)" is congruent with 1238 // "sext/zext(PostIncAR)" 1239 template <typename ExtendOpTy> 1240 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1241 ScalarEvolution *SE) { 1242 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1243 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1244 1245 const Loop *L = AR->getLoop(); 1246 const SCEV *Start = AR->getStart(); 1247 const SCEV *Step = AR->getStepRecurrence(*SE); 1248 1249 // Check for a simple looking step prior to loop entry. 1250 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1251 if (!SA) 1252 return nullptr; 1253 1254 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1255 // subtraction is expensive. For this purpose, perform a quick and dirty 1256 // difference, by checking for Step in the operand list. 1257 SmallVector<const SCEV *, 4> DiffOps; 1258 for (const SCEV *Op : SA->operands()) 1259 if (Op != Step) 1260 DiffOps.push_back(Op); 1261 1262 if (DiffOps.size() == SA->getNumOperands()) 1263 return nullptr; 1264 1265 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1266 // `Step`: 1267 1268 // 1. NSW/NUW flags on the step increment. 1269 auto PreStartFlags = 1270 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1274 1275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1276 // "S+X does not sign/unsign-overflow". 1277 // 1278 1279 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1282 return PreStart; 1283 1284 // 2. Direct overflow check on the step operation's expression. 1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1287 const SCEV *OperandExtendedStart = 1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1289 (SE->*GetExtendExpr)(Step, WideTy)); 1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1291 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1296 } 1297 return PreStart; 1298 } 1299 1300 // 3. Loop precondition. 1301 ICmpInst::Predicate Pred; 1302 const SCEV *OverflowLimit = 1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1304 1305 if (OverflowLimit && 1306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1307 return PreStart; 1308 1309 return nullptr; 1310 } 1311 1312 // Get the normalized zero or sign extended expression for this AddRec's Start. 1313 template <typename ExtendOpTy> 1314 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1315 ScalarEvolution *SE) { 1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1317 1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1319 if (!PreStart) 1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1321 1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1323 (SE->*GetExtendExpr)(PreStart, Ty)); 1324 } 1325 1326 // Try to prove away overflow by looking at "nearby" add recurrences. A 1327 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1328 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1329 // 1330 // Formally: 1331 // 1332 // {S,+,X} == {S-T,+,X} + T 1333 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1334 // 1335 // If ({S-T,+,X} + T) does not overflow ... (1) 1336 // 1337 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1338 // 1339 // If {S-T,+,X} does not overflow ... (2) 1340 // 1341 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1342 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1343 // 1344 // If (S-T)+T does not overflow ... (3) 1345 // 1346 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1347 // == {Ext(S),+,Ext(X)} == LHS 1348 // 1349 // Thus, if (1), (2) and (3) are true for some T, then 1350 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1351 // 1352 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1353 // does not overflow" restricted to the 0th iteration. Therefore we only need 1354 // to check for (1) and (2). 1355 // 1356 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1357 // is `Delta` (defined below). 1358 // 1359 template <typename ExtendOpTy> 1360 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1361 const SCEV *Step, 1362 const Loop *L) { 1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1364 1365 // We restrict `Start` to a constant to prevent SCEV from spending too much 1366 // time here. It is correct (but more expensive) to continue with a 1367 // non-constant `Start` and do a general SCEV subtraction to compute 1368 // `PreStart` below. 1369 // 1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1371 if (!StartC) 1372 return false; 1373 1374 APInt StartAI = StartC->getAPInt(); 1375 1376 for (unsigned Delta : {-2, -1, 1, 2}) { 1377 const SCEV *PreStart = getConstant(StartAI - Delta); 1378 1379 FoldingSetNodeID ID; 1380 ID.AddInteger(scAddRecExpr); 1381 ID.AddPointer(PreStart); 1382 ID.AddPointer(Step); 1383 ID.AddPointer(L); 1384 void *IP = nullptr; 1385 const auto *PreAR = 1386 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1387 1388 // Give up if we don't already have the add recurrence we need because 1389 // actually constructing an add recurrence is relatively expensive. 1390 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1391 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1392 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1393 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1394 DeltaS, &Pred, this); 1395 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1396 return true; 1397 } 1398 } 1399 1400 return false; 1401 } 1402 1403 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1404 Type *Ty) { 1405 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1406 "This is not an extending conversion!"); 1407 assert(isSCEVable(Ty) && 1408 "This is not a conversion to a SCEVable type!"); 1409 Ty = getEffectiveSCEVType(Ty); 1410 1411 // Fold if the operand is constant. 1412 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1413 return getConstant( 1414 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1415 1416 // zext(zext(x)) --> zext(x) 1417 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1418 return getZeroExtendExpr(SZ->getOperand(), Ty); 1419 1420 // Before doing any expensive analysis, check to see if we've already 1421 // computed a SCEV for this Op and Ty. 1422 FoldingSetNodeID ID; 1423 ID.AddInteger(scZeroExtend); 1424 ID.AddPointer(Op); 1425 ID.AddPointer(Ty); 1426 void *IP = nullptr; 1427 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1428 1429 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1430 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1431 // It's possible the bits taken off by the truncate were all zero bits. If 1432 // so, we should be able to simplify this further. 1433 const SCEV *X = ST->getOperand(); 1434 ConstantRange CR = getUnsignedRange(X); 1435 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1436 unsigned NewBits = getTypeSizeInBits(Ty); 1437 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1438 CR.zextOrTrunc(NewBits))) 1439 return getTruncateOrZeroExtend(X, Ty); 1440 } 1441 1442 // If the input value is a chrec scev, and we can prove that the value 1443 // did not overflow the old, smaller, value, we can zero extend all of the 1444 // operands (often constants). This allows analysis of something like 1445 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1446 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1447 if (AR->isAffine()) { 1448 const SCEV *Start = AR->getStart(); 1449 const SCEV *Step = AR->getStepRecurrence(*this); 1450 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1451 const Loop *L = AR->getLoop(); 1452 1453 // If we have special knowledge that this addrec won't overflow, 1454 // we don't need to do any further analysis. 1455 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1456 return getAddRecExpr( 1457 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1458 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1459 1460 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1461 // Note that this serves two purposes: It filters out loops that are 1462 // simply not analyzable, and it covers the case where this code is 1463 // being called from within backedge-taken count analysis, such that 1464 // attempting to ask for the backedge-taken count would likely result 1465 // in infinite recursion. In the later case, the analysis code will 1466 // cope with a conservative value, and it will take care to purge 1467 // that value once it has finished. 1468 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1469 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1470 // Manually compute the final value for AR, checking for 1471 // overflow. 1472 1473 // Check whether the backedge-taken count can be losslessly casted to 1474 // the addrec's type. The count is always unsigned. 1475 const SCEV *CastedMaxBECount = 1476 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1477 const SCEV *RecastedMaxBECount = 1478 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1479 if (MaxBECount == RecastedMaxBECount) { 1480 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1481 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1482 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1483 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1484 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1485 const SCEV *WideMaxBECount = 1486 getZeroExtendExpr(CastedMaxBECount, WideTy); 1487 const SCEV *OperandExtendedAdd = 1488 getAddExpr(WideStart, 1489 getMulExpr(WideMaxBECount, 1490 getZeroExtendExpr(Step, WideTy))); 1491 if (ZAdd == OperandExtendedAdd) { 1492 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1493 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1494 // Return the expression with the addrec on the outside. 1495 return getAddRecExpr( 1496 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1497 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1498 } 1499 // Similar to above, only this time treat the step value as signed. 1500 // This covers loops that count down. 1501 OperandExtendedAdd = 1502 getAddExpr(WideStart, 1503 getMulExpr(WideMaxBECount, 1504 getSignExtendExpr(Step, WideTy))); 1505 if (ZAdd == OperandExtendedAdd) { 1506 // Cache knowledge of AR NW, which is propagated to this AddRec. 1507 // Negative step causes unsigned wrap, but it still can't self-wrap. 1508 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1509 // Return the expression with the addrec on the outside. 1510 return getAddRecExpr( 1511 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1512 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1513 } 1514 } 1515 1516 // If the backedge is guarded by a comparison with the pre-inc value 1517 // the addrec is safe. Also, if the entry is guarded by a comparison 1518 // with the start value and the backedge is guarded by a comparison 1519 // with the post-inc value, the addrec is safe. 1520 if (isKnownPositive(Step)) { 1521 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1522 getUnsignedRange(Step).getUnsignedMax()); 1523 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1524 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1525 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1526 AR->getPostIncExpr(*this), N))) { 1527 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1528 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1529 // Return the expression with the addrec on the outside. 1530 return getAddRecExpr( 1531 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1532 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1533 } 1534 } else if (isKnownNegative(Step)) { 1535 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1536 getSignedRange(Step).getSignedMin()); 1537 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1538 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1539 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1540 AR->getPostIncExpr(*this), N))) { 1541 // Cache knowledge of AR NW, which is propagated to this AddRec. 1542 // Negative step causes unsigned wrap, but it still can't self-wrap. 1543 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1544 // Return the expression with the addrec on the outside. 1545 return getAddRecExpr( 1546 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1547 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1548 } 1549 } 1550 } 1551 1552 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1553 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1554 return getAddRecExpr( 1555 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1556 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1557 } 1558 } 1559 1560 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1561 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1562 if (SA->getNoWrapFlags(SCEV::FlagNUW)) { 1563 // If the addition does not unsign overflow then we can, by definition, 1564 // commute the zero extension with the addition operation. 1565 SmallVector<const SCEV *, 4> Ops; 1566 for (const auto *Op : SA->operands()) 1567 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1568 return getAddExpr(Ops, SCEV::FlagNUW); 1569 } 1570 } 1571 1572 // The cast wasn't folded; create an explicit cast node. 1573 // Recompute the insert position, as it may have been invalidated. 1574 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1575 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1576 Op, Ty); 1577 UniqueSCEVs.InsertNode(S, IP); 1578 return S; 1579 } 1580 1581 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1582 Type *Ty) { 1583 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1584 "This is not an extending conversion!"); 1585 assert(isSCEVable(Ty) && 1586 "This is not a conversion to a SCEVable type!"); 1587 Ty = getEffectiveSCEVType(Ty); 1588 1589 // Fold if the operand is constant. 1590 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1591 return getConstant( 1592 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1593 1594 // sext(sext(x)) --> sext(x) 1595 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1596 return getSignExtendExpr(SS->getOperand(), Ty); 1597 1598 // sext(zext(x)) --> zext(x) 1599 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1600 return getZeroExtendExpr(SZ->getOperand(), Ty); 1601 1602 // Before doing any expensive analysis, check to see if we've already 1603 // computed a SCEV for this Op and Ty. 1604 FoldingSetNodeID ID; 1605 ID.AddInteger(scSignExtend); 1606 ID.AddPointer(Op); 1607 ID.AddPointer(Ty); 1608 void *IP = nullptr; 1609 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1610 1611 // If the input value is provably positive, build a zext instead. 1612 if (isKnownNonNegative(Op)) 1613 return getZeroExtendExpr(Op, Ty); 1614 1615 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1616 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1617 // It's possible the bits taken off by the truncate were all sign bits. If 1618 // so, we should be able to simplify this further. 1619 const SCEV *X = ST->getOperand(); 1620 ConstantRange CR = getSignedRange(X); 1621 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1622 unsigned NewBits = getTypeSizeInBits(Ty); 1623 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1624 CR.sextOrTrunc(NewBits))) 1625 return getTruncateOrSignExtend(X, Ty); 1626 } 1627 1628 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1629 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1630 if (SA->getNumOperands() == 2) { 1631 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1632 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1633 if (SMul && SC1) { 1634 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1635 const APInt &C1 = SC1->getAPInt(); 1636 const APInt &C2 = SC2->getAPInt(); 1637 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1638 C2.ugt(C1) && C2.isPowerOf2()) 1639 return getAddExpr(getSignExtendExpr(SC1, Ty), 1640 getSignExtendExpr(SMul, Ty)); 1641 } 1642 } 1643 } 1644 1645 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1646 if (SA->getNoWrapFlags(SCEV::FlagNSW)) { 1647 // If the addition does not sign overflow then we can, by definition, 1648 // commute the sign extension with the addition operation. 1649 SmallVector<const SCEV *, 4> Ops; 1650 for (const auto *Op : SA->operands()) 1651 Ops.push_back(getSignExtendExpr(Op, Ty)); 1652 return getAddExpr(Ops, SCEV::FlagNSW); 1653 } 1654 } 1655 // If the input value is a chrec scev, and we can prove that the value 1656 // did not overflow the old, smaller, value, we can sign extend all of the 1657 // operands (often constants). This allows analysis of something like 1658 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1659 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1660 if (AR->isAffine()) { 1661 const SCEV *Start = AR->getStart(); 1662 const SCEV *Step = AR->getStepRecurrence(*this); 1663 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1664 const Loop *L = AR->getLoop(); 1665 1666 // If we have special knowledge that this addrec won't overflow, 1667 // we don't need to do any further analysis. 1668 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1669 return getAddRecExpr( 1670 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1671 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1672 1673 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1674 // Note that this serves two purposes: It filters out loops that are 1675 // simply not analyzable, and it covers the case where this code is 1676 // being called from within backedge-taken count analysis, such that 1677 // attempting to ask for the backedge-taken count would likely result 1678 // in infinite recursion. In the later case, the analysis code will 1679 // cope with a conservative value, and it will take care to purge 1680 // that value once it has finished. 1681 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1682 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1683 // Manually compute the final value for AR, checking for 1684 // overflow. 1685 1686 // Check whether the backedge-taken count can be losslessly casted to 1687 // the addrec's type. The count is always unsigned. 1688 const SCEV *CastedMaxBECount = 1689 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1690 const SCEV *RecastedMaxBECount = 1691 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1692 if (MaxBECount == RecastedMaxBECount) { 1693 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1694 // Check whether Start+Step*MaxBECount has no signed overflow. 1695 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1696 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1697 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1698 const SCEV *WideMaxBECount = 1699 getZeroExtendExpr(CastedMaxBECount, WideTy); 1700 const SCEV *OperandExtendedAdd = 1701 getAddExpr(WideStart, 1702 getMulExpr(WideMaxBECount, 1703 getSignExtendExpr(Step, WideTy))); 1704 if (SAdd == OperandExtendedAdd) { 1705 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1706 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1707 // Return the expression with the addrec on the outside. 1708 return getAddRecExpr( 1709 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1710 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1711 } 1712 // Similar to above, only this time treat the step value as unsigned. 1713 // This covers loops that count up with an unsigned step. 1714 OperandExtendedAdd = 1715 getAddExpr(WideStart, 1716 getMulExpr(WideMaxBECount, 1717 getZeroExtendExpr(Step, WideTy))); 1718 if (SAdd == OperandExtendedAdd) { 1719 // If AR wraps around then 1720 // 1721 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1722 // => SAdd != OperandExtendedAdd 1723 // 1724 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1725 // (SAdd == OperandExtendedAdd => AR is NW) 1726 1727 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1728 1729 // Return the expression with the addrec on the outside. 1730 return getAddRecExpr( 1731 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1732 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1733 } 1734 } 1735 1736 // If the backedge is guarded by a comparison with the pre-inc value 1737 // the addrec is safe. Also, if the entry is guarded by a comparison 1738 // with the start value and the backedge is guarded by a comparison 1739 // with the post-inc value, the addrec is safe. 1740 ICmpInst::Predicate Pred; 1741 const SCEV *OverflowLimit = 1742 getSignedOverflowLimitForStep(Step, &Pred, this); 1743 if (OverflowLimit && 1744 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1745 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1746 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1747 OverflowLimit)))) { 1748 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1749 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1750 return getAddRecExpr( 1751 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1752 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1753 } 1754 } 1755 // If Start and Step are constants, check if we can apply this 1756 // transformation: 1757 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1758 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1759 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1760 if (SC1 && SC2) { 1761 const APInt &C1 = SC1->getAPInt(); 1762 const APInt &C2 = SC2->getAPInt(); 1763 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1764 C2.isPowerOf2()) { 1765 Start = getSignExtendExpr(Start, Ty); 1766 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1767 AR->getNoWrapFlags()); 1768 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1769 } 1770 } 1771 1772 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1773 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1774 return getAddRecExpr( 1775 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1776 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1777 } 1778 } 1779 1780 // The cast wasn't folded; create an explicit cast node. 1781 // Recompute the insert position, as it may have been invalidated. 1782 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1783 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1784 Op, Ty); 1785 UniqueSCEVs.InsertNode(S, IP); 1786 return S; 1787 } 1788 1789 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1790 /// unspecified bits out to the given type. 1791 /// 1792 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1793 Type *Ty) { 1794 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1795 "This is not an extending conversion!"); 1796 assert(isSCEVable(Ty) && 1797 "This is not a conversion to a SCEVable type!"); 1798 Ty = getEffectiveSCEVType(Ty); 1799 1800 // Sign-extend negative constants. 1801 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1802 if (SC->getAPInt().isNegative()) 1803 return getSignExtendExpr(Op, Ty); 1804 1805 // Peel off a truncate cast. 1806 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1807 const SCEV *NewOp = T->getOperand(); 1808 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1809 return getAnyExtendExpr(NewOp, Ty); 1810 return getTruncateOrNoop(NewOp, Ty); 1811 } 1812 1813 // Next try a zext cast. If the cast is folded, use it. 1814 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1815 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1816 return ZExt; 1817 1818 // Next try a sext cast. If the cast is folded, use it. 1819 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1820 if (!isa<SCEVSignExtendExpr>(SExt)) 1821 return SExt; 1822 1823 // Force the cast to be folded into the operands of an addrec. 1824 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1825 SmallVector<const SCEV *, 4> Ops; 1826 for (const SCEV *Op : AR->operands()) 1827 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1828 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1829 } 1830 1831 // If the expression is obviously signed, use the sext cast value. 1832 if (isa<SCEVSMaxExpr>(Op)) 1833 return SExt; 1834 1835 // Absent any other information, use the zext cast value. 1836 return ZExt; 1837 } 1838 1839 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1840 /// a list of operands to be added under the given scale, update the given 1841 /// map. This is a helper function for getAddRecExpr. As an example of 1842 /// what it does, given a sequence of operands that would form an add 1843 /// expression like this: 1844 /// 1845 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1846 /// 1847 /// where A and B are constants, update the map with these values: 1848 /// 1849 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1850 /// 1851 /// and add 13 + A*B*29 to AccumulatedConstant. 1852 /// This will allow getAddRecExpr to produce this: 1853 /// 1854 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1855 /// 1856 /// This form often exposes folding opportunities that are hidden in 1857 /// the original operand list. 1858 /// 1859 /// Return true iff it appears that any interesting folding opportunities 1860 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1861 /// the common case where no interesting opportunities are present, and 1862 /// is also used as a check to avoid infinite recursion. 1863 /// 1864 static bool 1865 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1866 SmallVectorImpl<const SCEV *> &NewOps, 1867 APInt &AccumulatedConstant, 1868 const SCEV *const *Ops, size_t NumOperands, 1869 const APInt &Scale, 1870 ScalarEvolution &SE) { 1871 bool Interesting = false; 1872 1873 // Iterate over the add operands. They are sorted, with constants first. 1874 unsigned i = 0; 1875 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1876 ++i; 1877 // Pull a buried constant out to the outside. 1878 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1879 Interesting = true; 1880 AccumulatedConstant += Scale * C->getAPInt(); 1881 } 1882 1883 // Next comes everything else. We're especially interested in multiplies 1884 // here, but they're in the middle, so just visit the rest with one loop. 1885 for (; i != NumOperands; ++i) { 1886 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1887 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1888 APInt NewScale = 1889 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 1890 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1891 // A multiplication of a constant with another add; recurse. 1892 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1893 Interesting |= 1894 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1895 Add->op_begin(), Add->getNumOperands(), 1896 NewScale, SE); 1897 } else { 1898 // A multiplication of a constant with some other value. Update 1899 // the map. 1900 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1901 const SCEV *Key = SE.getMulExpr(MulOps); 1902 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1903 if (Pair.second) { 1904 NewOps.push_back(Pair.first->first); 1905 } else { 1906 Pair.first->second += NewScale; 1907 // The map already had an entry for this value, which may indicate 1908 // a folding opportunity. 1909 Interesting = true; 1910 } 1911 } 1912 } else { 1913 // An ordinary operand. Update the map. 1914 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1915 M.insert(std::make_pair(Ops[i], Scale)); 1916 if (Pair.second) { 1917 NewOps.push_back(Pair.first->first); 1918 } else { 1919 Pair.first->second += Scale; 1920 // The map already had an entry for this value, which may indicate 1921 // a folding opportunity. 1922 Interesting = true; 1923 } 1924 } 1925 } 1926 1927 return Interesting; 1928 } 1929 1930 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1931 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1932 // can't-overflow flags for the operation if possible. 1933 static SCEV::NoWrapFlags 1934 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1935 const SmallVectorImpl<const SCEV *> &Ops, 1936 SCEV::NoWrapFlags Flags) { 1937 using namespace std::placeholders; 1938 typedef OverflowingBinaryOperator OBO; 1939 1940 bool CanAnalyze = 1941 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1942 (void)CanAnalyze; 1943 assert(CanAnalyze && "don't call from other places!"); 1944 1945 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1946 SCEV::NoWrapFlags SignOrUnsignWrap = 1947 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1948 1949 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1950 auto IsKnownNonNegative = [&](const SCEV *S) { 1951 return SE->isKnownNonNegative(S); 1952 }; 1953 1954 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 1955 Flags = 1956 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1957 1958 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1959 1960 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1961 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1962 1963 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1964 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1965 1966 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 1967 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1968 auto NSWRegion = 1969 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap); 1970 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1971 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1972 } 1973 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1974 auto NUWRegion = 1975 ConstantRange::makeNoWrapRegion(Instruction::Add, C, 1976 OBO::NoUnsignedWrap); 1977 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1978 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1979 } 1980 } 1981 1982 return Flags; 1983 } 1984 1985 /// getAddExpr - Get a canonical add expression, or something simpler if 1986 /// possible. 1987 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1988 SCEV::NoWrapFlags Flags) { 1989 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1990 "only nuw or nsw allowed"); 1991 assert(!Ops.empty() && "Cannot get empty add!"); 1992 if (Ops.size() == 1) return Ops[0]; 1993 #ifndef NDEBUG 1994 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1995 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1996 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1997 "SCEVAddExpr operand types don't match!"); 1998 #endif 1999 2000 // Sort by complexity, this groups all similar expression types together. 2001 GroupByComplexity(Ops, &LI); 2002 2003 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2004 2005 // If there are any constants, fold them together. 2006 unsigned Idx = 0; 2007 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2008 ++Idx; 2009 assert(Idx < Ops.size()); 2010 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2011 // We found two constants, fold them together! 2012 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2013 if (Ops.size() == 2) return Ops[0]; 2014 Ops.erase(Ops.begin()+1); // Erase the folded element 2015 LHSC = cast<SCEVConstant>(Ops[0]); 2016 } 2017 2018 // If we are left with a constant zero being added, strip it off. 2019 if (LHSC->getValue()->isZero()) { 2020 Ops.erase(Ops.begin()); 2021 --Idx; 2022 } 2023 2024 if (Ops.size() == 1) return Ops[0]; 2025 } 2026 2027 // Okay, check to see if the same value occurs in the operand list more than 2028 // once. If so, merge them together into an multiply expression. Since we 2029 // sorted the list, these values are required to be adjacent. 2030 Type *Ty = Ops[0]->getType(); 2031 bool FoundMatch = false; 2032 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2033 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2034 // Scan ahead to count how many equal operands there are. 2035 unsigned Count = 2; 2036 while (i+Count != e && Ops[i+Count] == Ops[i]) 2037 ++Count; 2038 // Merge the values into a multiply. 2039 const SCEV *Scale = getConstant(Ty, Count); 2040 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2041 if (Ops.size() == Count) 2042 return Mul; 2043 Ops[i] = Mul; 2044 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2045 --i; e -= Count - 1; 2046 FoundMatch = true; 2047 } 2048 if (FoundMatch) 2049 return getAddExpr(Ops, Flags); 2050 2051 // Check for truncates. If all the operands are truncated from the same 2052 // type, see if factoring out the truncate would permit the result to be 2053 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2054 // if the contents of the resulting outer trunc fold to something simple. 2055 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2056 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2057 Type *DstType = Trunc->getType(); 2058 Type *SrcType = Trunc->getOperand()->getType(); 2059 SmallVector<const SCEV *, 8> LargeOps; 2060 bool Ok = true; 2061 // Check all the operands to see if they can be represented in the 2062 // source type of the truncate. 2063 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2064 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2065 if (T->getOperand()->getType() != SrcType) { 2066 Ok = false; 2067 break; 2068 } 2069 LargeOps.push_back(T->getOperand()); 2070 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2071 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2072 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2073 SmallVector<const SCEV *, 8> LargeMulOps; 2074 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2075 if (const SCEVTruncateExpr *T = 2076 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2077 if (T->getOperand()->getType() != SrcType) { 2078 Ok = false; 2079 break; 2080 } 2081 LargeMulOps.push_back(T->getOperand()); 2082 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2083 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2084 } else { 2085 Ok = false; 2086 break; 2087 } 2088 } 2089 if (Ok) 2090 LargeOps.push_back(getMulExpr(LargeMulOps)); 2091 } else { 2092 Ok = false; 2093 break; 2094 } 2095 } 2096 if (Ok) { 2097 // Evaluate the expression in the larger type. 2098 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2099 // If it folds to something simple, use it. Otherwise, don't. 2100 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2101 return getTruncateExpr(Fold, DstType); 2102 } 2103 } 2104 2105 // Skip past any other cast SCEVs. 2106 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2107 ++Idx; 2108 2109 // If there are add operands they would be next. 2110 if (Idx < Ops.size()) { 2111 bool DeletedAdd = false; 2112 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2113 // If we have an add, expand the add operands onto the end of the operands 2114 // list. 2115 Ops.erase(Ops.begin()+Idx); 2116 Ops.append(Add->op_begin(), Add->op_end()); 2117 DeletedAdd = true; 2118 } 2119 2120 // If we deleted at least one add, we added operands to the end of the list, 2121 // and they are not necessarily sorted. Recurse to resort and resimplify 2122 // any operands we just acquired. 2123 if (DeletedAdd) 2124 return getAddExpr(Ops); 2125 } 2126 2127 // Skip over the add expression until we get to a multiply. 2128 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2129 ++Idx; 2130 2131 // Check to see if there are any folding opportunities present with 2132 // operands multiplied by constant values. 2133 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2134 uint64_t BitWidth = getTypeSizeInBits(Ty); 2135 DenseMap<const SCEV *, APInt> M; 2136 SmallVector<const SCEV *, 8> NewOps; 2137 APInt AccumulatedConstant(BitWidth, 0); 2138 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2139 Ops.data(), Ops.size(), 2140 APInt(BitWidth, 1), *this)) { 2141 struct APIntCompare { 2142 bool operator()(const APInt &LHS, const APInt &RHS) const { 2143 return LHS.ult(RHS); 2144 } 2145 }; 2146 2147 // Some interesting folding opportunity is present, so its worthwhile to 2148 // re-generate the operands list. Group the operands by constant scale, 2149 // to avoid multiplying by the same constant scale multiple times. 2150 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2151 for (const SCEV *NewOp : NewOps) 2152 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2153 // Re-generate the operands list. 2154 Ops.clear(); 2155 if (AccumulatedConstant != 0) 2156 Ops.push_back(getConstant(AccumulatedConstant)); 2157 for (auto &MulOp : MulOpLists) 2158 if (MulOp.first != 0) 2159 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2160 getAddExpr(MulOp.second))); 2161 if (Ops.empty()) 2162 return getZero(Ty); 2163 if (Ops.size() == 1) 2164 return Ops[0]; 2165 return getAddExpr(Ops); 2166 } 2167 } 2168 2169 // If we are adding something to a multiply expression, make sure the 2170 // something is not already an operand of the multiply. If so, merge it into 2171 // the multiply. 2172 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2173 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2174 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2175 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2176 if (isa<SCEVConstant>(MulOpSCEV)) 2177 continue; 2178 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2179 if (MulOpSCEV == Ops[AddOp]) { 2180 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2181 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2182 if (Mul->getNumOperands() != 2) { 2183 // If the multiply has more than two operands, we must get the 2184 // Y*Z term. 2185 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2186 Mul->op_begin()+MulOp); 2187 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2188 InnerMul = getMulExpr(MulOps); 2189 } 2190 const SCEV *One = getOne(Ty); 2191 const SCEV *AddOne = getAddExpr(One, InnerMul); 2192 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2193 if (Ops.size() == 2) return OuterMul; 2194 if (AddOp < Idx) { 2195 Ops.erase(Ops.begin()+AddOp); 2196 Ops.erase(Ops.begin()+Idx-1); 2197 } else { 2198 Ops.erase(Ops.begin()+Idx); 2199 Ops.erase(Ops.begin()+AddOp-1); 2200 } 2201 Ops.push_back(OuterMul); 2202 return getAddExpr(Ops); 2203 } 2204 2205 // Check this multiply against other multiplies being added together. 2206 for (unsigned OtherMulIdx = Idx+1; 2207 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2208 ++OtherMulIdx) { 2209 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2210 // If MulOp occurs in OtherMul, we can fold the two multiplies 2211 // together. 2212 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2213 OMulOp != e; ++OMulOp) 2214 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2215 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2216 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2217 if (Mul->getNumOperands() != 2) { 2218 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2219 Mul->op_begin()+MulOp); 2220 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2221 InnerMul1 = getMulExpr(MulOps); 2222 } 2223 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2224 if (OtherMul->getNumOperands() != 2) { 2225 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2226 OtherMul->op_begin()+OMulOp); 2227 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2228 InnerMul2 = getMulExpr(MulOps); 2229 } 2230 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2231 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2232 if (Ops.size() == 2) return OuterMul; 2233 Ops.erase(Ops.begin()+Idx); 2234 Ops.erase(Ops.begin()+OtherMulIdx-1); 2235 Ops.push_back(OuterMul); 2236 return getAddExpr(Ops); 2237 } 2238 } 2239 } 2240 } 2241 2242 // If there are any add recurrences in the operands list, see if any other 2243 // added values are loop invariant. If so, we can fold them into the 2244 // recurrence. 2245 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2246 ++Idx; 2247 2248 // Scan over all recurrences, trying to fold loop invariants into them. 2249 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2250 // Scan all of the other operands to this add and add them to the vector if 2251 // they are loop invariant w.r.t. the recurrence. 2252 SmallVector<const SCEV *, 8> LIOps; 2253 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2254 const Loop *AddRecLoop = AddRec->getLoop(); 2255 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2256 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2257 LIOps.push_back(Ops[i]); 2258 Ops.erase(Ops.begin()+i); 2259 --i; --e; 2260 } 2261 2262 // If we found some loop invariants, fold them into the recurrence. 2263 if (!LIOps.empty()) { 2264 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2265 LIOps.push_back(AddRec->getStart()); 2266 2267 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2268 AddRec->op_end()); 2269 AddRecOps[0] = getAddExpr(LIOps); 2270 2271 // Build the new addrec. Propagate the NUW and NSW flags if both the 2272 // outer add and the inner addrec are guaranteed to have no overflow. 2273 // Always propagate NW. 2274 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2275 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2276 2277 // If all of the other operands were loop invariant, we are done. 2278 if (Ops.size() == 1) return NewRec; 2279 2280 // Otherwise, add the folded AddRec by the non-invariant parts. 2281 for (unsigned i = 0;; ++i) 2282 if (Ops[i] == AddRec) { 2283 Ops[i] = NewRec; 2284 break; 2285 } 2286 return getAddExpr(Ops); 2287 } 2288 2289 // Okay, if there weren't any loop invariants to be folded, check to see if 2290 // there are multiple AddRec's with the same loop induction variable being 2291 // added together. If so, we can fold them. 2292 for (unsigned OtherIdx = Idx+1; 2293 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2294 ++OtherIdx) 2295 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2296 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2297 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2298 AddRec->op_end()); 2299 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2300 ++OtherIdx) 2301 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2302 if (OtherAddRec->getLoop() == AddRecLoop) { 2303 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2304 i != e; ++i) { 2305 if (i >= AddRecOps.size()) { 2306 AddRecOps.append(OtherAddRec->op_begin()+i, 2307 OtherAddRec->op_end()); 2308 break; 2309 } 2310 AddRecOps[i] = getAddExpr(AddRecOps[i], 2311 OtherAddRec->getOperand(i)); 2312 } 2313 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2314 } 2315 // Step size has changed, so we cannot guarantee no self-wraparound. 2316 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2317 return getAddExpr(Ops); 2318 } 2319 2320 // Otherwise couldn't fold anything into this recurrence. Move onto the 2321 // next one. 2322 } 2323 2324 // Okay, it looks like we really DO need an add expr. Check to see if we 2325 // already have one, otherwise create a new one. 2326 FoldingSetNodeID ID; 2327 ID.AddInteger(scAddExpr); 2328 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2329 ID.AddPointer(Ops[i]); 2330 void *IP = nullptr; 2331 SCEVAddExpr *S = 2332 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2333 if (!S) { 2334 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2335 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2336 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2337 O, Ops.size()); 2338 UniqueSCEVs.InsertNode(S, IP); 2339 } 2340 S->setNoWrapFlags(Flags); 2341 return S; 2342 } 2343 2344 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2345 uint64_t k = i*j; 2346 if (j > 1 && k / j != i) Overflow = true; 2347 return k; 2348 } 2349 2350 /// Compute the result of "n choose k", the binomial coefficient. If an 2351 /// intermediate computation overflows, Overflow will be set and the return will 2352 /// be garbage. Overflow is not cleared on absence of overflow. 2353 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2354 // We use the multiplicative formula: 2355 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2356 // At each iteration, we take the n-th term of the numeral and divide by the 2357 // (k-n)th term of the denominator. This division will always produce an 2358 // integral result, and helps reduce the chance of overflow in the 2359 // intermediate computations. However, we can still overflow even when the 2360 // final result would fit. 2361 2362 if (n == 0 || n == k) return 1; 2363 if (k > n) return 0; 2364 2365 if (k > n/2) 2366 k = n-k; 2367 2368 uint64_t r = 1; 2369 for (uint64_t i = 1; i <= k; ++i) { 2370 r = umul_ov(r, n-(i-1), Overflow); 2371 r /= i; 2372 } 2373 return r; 2374 } 2375 2376 /// Determine if any of the operands in this SCEV are a constant or if 2377 /// any of the add or multiply expressions in this SCEV contain a constant. 2378 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2379 SmallVector<const SCEV *, 4> Ops; 2380 Ops.push_back(StartExpr); 2381 while (!Ops.empty()) { 2382 const SCEV *CurrentExpr = Ops.pop_back_val(); 2383 if (isa<SCEVConstant>(*CurrentExpr)) 2384 return true; 2385 2386 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2387 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2388 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2389 } 2390 } 2391 return false; 2392 } 2393 2394 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2395 /// possible. 2396 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2397 SCEV::NoWrapFlags Flags) { 2398 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2399 "only nuw or nsw allowed"); 2400 assert(!Ops.empty() && "Cannot get empty mul!"); 2401 if (Ops.size() == 1) return Ops[0]; 2402 #ifndef NDEBUG 2403 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2404 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2405 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2406 "SCEVMulExpr operand types don't match!"); 2407 #endif 2408 2409 // Sort by complexity, this groups all similar expression types together. 2410 GroupByComplexity(Ops, &LI); 2411 2412 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2413 2414 // If there are any constants, fold them together. 2415 unsigned Idx = 0; 2416 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2417 2418 // C1*(C2+V) -> C1*C2 + C1*V 2419 if (Ops.size() == 2) 2420 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2421 // If any of Add's ops are Adds or Muls with a constant, 2422 // apply this transformation as well. 2423 if (Add->getNumOperands() == 2) 2424 if (containsConstantSomewhere(Add)) 2425 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2426 getMulExpr(LHSC, Add->getOperand(1))); 2427 2428 ++Idx; 2429 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2430 // We found two constants, fold them together! 2431 ConstantInt *Fold = 2432 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2433 Ops[0] = getConstant(Fold); 2434 Ops.erase(Ops.begin()+1); // Erase the folded element 2435 if (Ops.size() == 1) return Ops[0]; 2436 LHSC = cast<SCEVConstant>(Ops[0]); 2437 } 2438 2439 // If we are left with a constant one being multiplied, strip it off. 2440 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2441 Ops.erase(Ops.begin()); 2442 --Idx; 2443 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2444 // If we have a multiply of zero, it will always be zero. 2445 return Ops[0]; 2446 } else if (Ops[0]->isAllOnesValue()) { 2447 // If we have a mul by -1 of an add, try distributing the -1 among the 2448 // add operands. 2449 if (Ops.size() == 2) { 2450 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2451 SmallVector<const SCEV *, 4> NewOps; 2452 bool AnyFolded = false; 2453 for (const SCEV *AddOp : Add->operands()) { 2454 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2455 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2456 NewOps.push_back(Mul); 2457 } 2458 if (AnyFolded) 2459 return getAddExpr(NewOps); 2460 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2461 // Negation preserves a recurrence's no self-wrap property. 2462 SmallVector<const SCEV *, 4> Operands; 2463 for (const SCEV *AddRecOp : AddRec->operands()) 2464 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2465 2466 return getAddRecExpr(Operands, AddRec->getLoop(), 2467 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2468 } 2469 } 2470 } 2471 2472 if (Ops.size() == 1) 2473 return Ops[0]; 2474 } 2475 2476 // Skip over the add expression until we get to a multiply. 2477 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2478 ++Idx; 2479 2480 // If there are mul operands inline them all into this expression. 2481 if (Idx < Ops.size()) { 2482 bool DeletedMul = false; 2483 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2484 // If we have an mul, expand the mul operands onto the end of the operands 2485 // list. 2486 Ops.erase(Ops.begin()+Idx); 2487 Ops.append(Mul->op_begin(), Mul->op_end()); 2488 DeletedMul = true; 2489 } 2490 2491 // If we deleted at least one mul, we added operands to the end of the list, 2492 // and they are not necessarily sorted. Recurse to resort and resimplify 2493 // any operands we just acquired. 2494 if (DeletedMul) 2495 return getMulExpr(Ops); 2496 } 2497 2498 // If there are any add recurrences in the operands list, see if any other 2499 // added values are loop invariant. If so, we can fold them into the 2500 // recurrence. 2501 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2502 ++Idx; 2503 2504 // Scan over all recurrences, trying to fold loop invariants into them. 2505 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2506 // Scan all of the other operands to this mul and add them to the vector if 2507 // they are loop invariant w.r.t. the recurrence. 2508 SmallVector<const SCEV *, 8> LIOps; 2509 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2510 const Loop *AddRecLoop = AddRec->getLoop(); 2511 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2512 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2513 LIOps.push_back(Ops[i]); 2514 Ops.erase(Ops.begin()+i); 2515 --i; --e; 2516 } 2517 2518 // If we found some loop invariants, fold them into the recurrence. 2519 if (!LIOps.empty()) { 2520 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2521 SmallVector<const SCEV *, 4> NewOps; 2522 NewOps.reserve(AddRec->getNumOperands()); 2523 const SCEV *Scale = getMulExpr(LIOps); 2524 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2525 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2526 2527 // Build the new addrec. Propagate the NUW and NSW flags if both the 2528 // outer mul and the inner addrec are guaranteed to have no overflow. 2529 // 2530 // No self-wrap cannot be guaranteed after changing the step size, but 2531 // will be inferred if either NUW or NSW is true. 2532 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2533 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2534 2535 // If all of the other operands were loop invariant, we are done. 2536 if (Ops.size() == 1) return NewRec; 2537 2538 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2539 for (unsigned i = 0;; ++i) 2540 if (Ops[i] == AddRec) { 2541 Ops[i] = NewRec; 2542 break; 2543 } 2544 return getMulExpr(Ops); 2545 } 2546 2547 // Okay, if there weren't any loop invariants to be folded, check to see if 2548 // there are multiple AddRec's with the same loop induction variable being 2549 // multiplied together. If so, we can fold them. 2550 2551 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2552 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2553 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2554 // ]]],+,...up to x=2n}. 2555 // Note that the arguments to choose() are always integers with values 2556 // known at compile time, never SCEV objects. 2557 // 2558 // The implementation avoids pointless extra computations when the two 2559 // addrec's are of different length (mathematically, it's equivalent to 2560 // an infinite stream of zeros on the right). 2561 bool OpsModified = false; 2562 for (unsigned OtherIdx = Idx+1; 2563 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2564 ++OtherIdx) { 2565 const SCEVAddRecExpr *OtherAddRec = 2566 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2567 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2568 continue; 2569 2570 bool Overflow = false; 2571 Type *Ty = AddRec->getType(); 2572 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2573 SmallVector<const SCEV*, 7> AddRecOps; 2574 for (int x = 0, xe = AddRec->getNumOperands() + 2575 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2576 const SCEV *Term = getZero(Ty); 2577 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2578 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2579 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2580 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2581 z < ze && !Overflow; ++z) { 2582 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2583 uint64_t Coeff; 2584 if (LargerThan64Bits) 2585 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2586 else 2587 Coeff = Coeff1*Coeff2; 2588 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2589 const SCEV *Term1 = AddRec->getOperand(y-z); 2590 const SCEV *Term2 = OtherAddRec->getOperand(z); 2591 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2592 } 2593 } 2594 AddRecOps.push_back(Term); 2595 } 2596 if (!Overflow) { 2597 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2598 SCEV::FlagAnyWrap); 2599 if (Ops.size() == 2) return NewAddRec; 2600 Ops[Idx] = NewAddRec; 2601 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2602 OpsModified = true; 2603 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2604 if (!AddRec) 2605 break; 2606 } 2607 } 2608 if (OpsModified) 2609 return getMulExpr(Ops); 2610 2611 // Otherwise couldn't fold anything into this recurrence. Move onto the 2612 // next one. 2613 } 2614 2615 // Okay, it looks like we really DO need an mul expr. Check to see if we 2616 // already have one, otherwise create a new one. 2617 FoldingSetNodeID ID; 2618 ID.AddInteger(scMulExpr); 2619 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2620 ID.AddPointer(Ops[i]); 2621 void *IP = nullptr; 2622 SCEVMulExpr *S = 2623 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2624 if (!S) { 2625 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2626 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2627 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2628 O, Ops.size()); 2629 UniqueSCEVs.InsertNode(S, IP); 2630 } 2631 S->setNoWrapFlags(Flags); 2632 return S; 2633 } 2634 2635 /// getUDivExpr - Get a canonical unsigned division expression, or something 2636 /// simpler if possible. 2637 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2638 const SCEV *RHS) { 2639 assert(getEffectiveSCEVType(LHS->getType()) == 2640 getEffectiveSCEVType(RHS->getType()) && 2641 "SCEVUDivExpr operand types don't match!"); 2642 2643 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2644 if (RHSC->getValue()->equalsInt(1)) 2645 return LHS; // X udiv 1 --> x 2646 // If the denominator is zero, the result of the udiv is undefined. Don't 2647 // try to analyze it, because the resolution chosen here may differ from 2648 // the resolution chosen in other parts of the compiler. 2649 if (!RHSC->getValue()->isZero()) { 2650 // Determine if the division can be folded into the operands of 2651 // its operands. 2652 // TODO: Generalize this to non-constants by using known-bits information. 2653 Type *Ty = LHS->getType(); 2654 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2655 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2656 // For non-power-of-two values, effectively round the value up to the 2657 // nearest power of two. 2658 if (!RHSC->getAPInt().isPowerOf2()) 2659 ++MaxShiftAmt; 2660 IntegerType *ExtTy = 2661 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2662 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2663 if (const SCEVConstant *Step = 2664 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2665 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2666 const APInt &StepInt = Step->getAPInt(); 2667 const APInt &DivInt = RHSC->getAPInt(); 2668 if (!StepInt.urem(DivInt) && 2669 getZeroExtendExpr(AR, ExtTy) == 2670 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2671 getZeroExtendExpr(Step, ExtTy), 2672 AR->getLoop(), SCEV::FlagAnyWrap)) { 2673 SmallVector<const SCEV *, 4> Operands; 2674 for (const SCEV *Op : AR->operands()) 2675 Operands.push_back(getUDivExpr(Op, RHS)); 2676 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2677 } 2678 /// Get a canonical UDivExpr for a recurrence. 2679 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2680 // We can currently only fold X%N if X is constant. 2681 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2682 if (StartC && !DivInt.urem(StepInt) && 2683 getZeroExtendExpr(AR, ExtTy) == 2684 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2685 getZeroExtendExpr(Step, ExtTy), 2686 AR->getLoop(), SCEV::FlagAnyWrap)) { 2687 const APInt &StartInt = StartC->getAPInt(); 2688 const APInt &StartRem = StartInt.urem(StepInt); 2689 if (StartRem != 0) 2690 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2691 AR->getLoop(), SCEV::FlagNW); 2692 } 2693 } 2694 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2695 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2696 SmallVector<const SCEV *, 4> Operands; 2697 for (const SCEV *Op : M->operands()) 2698 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2699 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2700 // Find an operand that's safely divisible. 2701 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2702 const SCEV *Op = M->getOperand(i); 2703 const SCEV *Div = getUDivExpr(Op, RHSC); 2704 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2705 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2706 M->op_end()); 2707 Operands[i] = Div; 2708 return getMulExpr(Operands); 2709 } 2710 } 2711 } 2712 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2713 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2714 SmallVector<const SCEV *, 4> Operands; 2715 for (const SCEV *Op : A->operands()) 2716 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2717 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2718 Operands.clear(); 2719 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2720 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2721 if (isa<SCEVUDivExpr>(Op) || 2722 getMulExpr(Op, RHS) != A->getOperand(i)) 2723 break; 2724 Operands.push_back(Op); 2725 } 2726 if (Operands.size() == A->getNumOperands()) 2727 return getAddExpr(Operands); 2728 } 2729 } 2730 2731 // Fold if both operands are constant. 2732 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2733 Constant *LHSCV = LHSC->getValue(); 2734 Constant *RHSCV = RHSC->getValue(); 2735 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2736 RHSCV))); 2737 } 2738 } 2739 } 2740 2741 FoldingSetNodeID ID; 2742 ID.AddInteger(scUDivExpr); 2743 ID.AddPointer(LHS); 2744 ID.AddPointer(RHS); 2745 void *IP = nullptr; 2746 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2747 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2748 LHS, RHS); 2749 UniqueSCEVs.InsertNode(S, IP); 2750 return S; 2751 } 2752 2753 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2754 APInt A = C1->getAPInt().abs(); 2755 APInt B = C2->getAPInt().abs(); 2756 uint32_t ABW = A.getBitWidth(); 2757 uint32_t BBW = B.getBitWidth(); 2758 2759 if (ABW > BBW) 2760 B = B.zext(ABW); 2761 else if (ABW < BBW) 2762 A = A.zext(BBW); 2763 2764 return APIntOps::GreatestCommonDivisor(A, B); 2765 } 2766 2767 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2768 /// something simpler if possible. There is no representation for an exact udiv 2769 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2770 /// We can't do this when it's not exact because the udiv may be clearing bits. 2771 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2772 const SCEV *RHS) { 2773 // TODO: we could try to find factors in all sorts of things, but for now we 2774 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2775 // end of this file for inspiration. 2776 2777 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2778 if (!Mul) 2779 return getUDivExpr(LHS, RHS); 2780 2781 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2782 // If the mulexpr multiplies by a constant, then that constant must be the 2783 // first element of the mulexpr. 2784 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2785 if (LHSCst == RHSCst) { 2786 SmallVector<const SCEV *, 2> Operands; 2787 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2788 return getMulExpr(Operands); 2789 } 2790 2791 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2792 // that there's a factor provided by one of the other terms. We need to 2793 // check. 2794 APInt Factor = gcd(LHSCst, RHSCst); 2795 if (!Factor.isIntN(1)) { 2796 LHSCst = 2797 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 2798 RHSCst = 2799 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 2800 SmallVector<const SCEV *, 2> Operands; 2801 Operands.push_back(LHSCst); 2802 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2803 LHS = getMulExpr(Operands); 2804 RHS = RHSCst; 2805 Mul = dyn_cast<SCEVMulExpr>(LHS); 2806 if (!Mul) 2807 return getUDivExactExpr(LHS, RHS); 2808 } 2809 } 2810 } 2811 2812 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2813 if (Mul->getOperand(i) == RHS) { 2814 SmallVector<const SCEV *, 2> Operands; 2815 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2816 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2817 return getMulExpr(Operands); 2818 } 2819 } 2820 2821 return getUDivExpr(LHS, RHS); 2822 } 2823 2824 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2825 /// Simplify the expression as much as possible. 2826 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2827 const Loop *L, 2828 SCEV::NoWrapFlags Flags) { 2829 SmallVector<const SCEV *, 4> Operands; 2830 Operands.push_back(Start); 2831 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2832 if (StepChrec->getLoop() == L) { 2833 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2834 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2835 } 2836 2837 Operands.push_back(Step); 2838 return getAddRecExpr(Operands, L, Flags); 2839 } 2840 2841 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2842 /// Simplify the expression as much as possible. 2843 const SCEV * 2844 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2845 const Loop *L, SCEV::NoWrapFlags Flags) { 2846 if (Operands.size() == 1) return Operands[0]; 2847 #ifndef NDEBUG 2848 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2849 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2850 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2851 "SCEVAddRecExpr operand types don't match!"); 2852 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2853 assert(isLoopInvariant(Operands[i], L) && 2854 "SCEVAddRecExpr operand is not loop-invariant!"); 2855 #endif 2856 2857 if (Operands.back()->isZero()) { 2858 Operands.pop_back(); 2859 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2860 } 2861 2862 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2863 // use that information to infer NUW and NSW flags. However, computing a 2864 // BE count requires calling getAddRecExpr, so we may not yet have a 2865 // meaningful BE count at this point (and if we don't, we'd be stuck 2866 // with a SCEVCouldNotCompute as the cached BE count). 2867 2868 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2869 2870 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2871 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2872 const Loop *NestedLoop = NestedAR->getLoop(); 2873 if (L->contains(NestedLoop) 2874 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2875 : (!NestedLoop->contains(L) && 2876 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2877 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2878 NestedAR->op_end()); 2879 Operands[0] = NestedAR->getStart(); 2880 // AddRecs require their operands be loop-invariant with respect to their 2881 // loops. Don't perform this transformation if it would break this 2882 // requirement. 2883 bool AllInvariant = all_of( 2884 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2885 2886 if (AllInvariant) { 2887 // Create a recurrence for the outer loop with the same step size. 2888 // 2889 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2890 // inner recurrence has the same property. 2891 SCEV::NoWrapFlags OuterFlags = 2892 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2893 2894 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2895 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 2896 return isLoopInvariant(Op, NestedLoop); 2897 }); 2898 2899 if (AllInvariant) { 2900 // Ok, both add recurrences are valid after the transformation. 2901 // 2902 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2903 // the outer recurrence has the same property. 2904 SCEV::NoWrapFlags InnerFlags = 2905 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2906 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2907 } 2908 } 2909 // Reset Operands to its original state. 2910 Operands[0] = NestedAR; 2911 } 2912 } 2913 2914 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2915 // already have one, otherwise create a new one. 2916 FoldingSetNodeID ID; 2917 ID.AddInteger(scAddRecExpr); 2918 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2919 ID.AddPointer(Operands[i]); 2920 ID.AddPointer(L); 2921 void *IP = nullptr; 2922 SCEVAddRecExpr *S = 2923 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2924 if (!S) { 2925 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2926 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2927 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2928 O, Operands.size(), L); 2929 UniqueSCEVs.InsertNode(S, IP); 2930 } 2931 S->setNoWrapFlags(Flags); 2932 return S; 2933 } 2934 2935 const SCEV * 2936 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2937 const SmallVectorImpl<const SCEV *> &IndexExprs, 2938 bool InBounds) { 2939 // getSCEV(Base)->getType() has the same address space as Base->getType() 2940 // because SCEV::getType() preserves the address space. 2941 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2942 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2943 // instruction to its SCEV, because the Instruction may be guarded by control 2944 // flow and the no-overflow bits may not be valid for the expression in any 2945 // context. This can be fixed similarly to how these flags are handled for 2946 // adds. 2947 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2948 2949 const SCEV *TotalOffset = getZero(IntPtrTy); 2950 // The address space is unimportant. The first thing we do on CurTy is getting 2951 // its element type. 2952 Type *CurTy = PointerType::getUnqual(PointeeType); 2953 for (const SCEV *IndexExpr : IndexExprs) { 2954 // Compute the (potentially symbolic) offset in bytes for this index. 2955 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2956 // For a struct, add the member offset. 2957 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2958 unsigned FieldNo = Index->getZExtValue(); 2959 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2960 2961 // Add the field offset to the running total offset. 2962 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2963 2964 // Update CurTy to the type of the field at Index. 2965 CurTy = STy->getTypeAtIndex(Index); 2966 } else { 2967 // Update CurTy to its element type. 2968 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2969 // For an array, add the element offset, explicitly scaled. 2970 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2971 // Getelementptr indices are signed. 2972 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2973 2974 // Multiply the index by the element size to compute the element offset. 2975 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2976 2977 // Add the element offset to the running total offset. 2978 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2979 } 2980 } 2981 2982 // Add the total offset from all the GEP indices to the base. 2983 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2984 } 2985 2986 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2987 const SCEV *RHS) { 2988 SmallVector<const SCEV *, 2> Ops; 2989 Ops.push_back(LHS); 2990 Ops.push_back(RHS); 2991 return getSMaxExpr(Ops); 2992 } 2993 2994 const SCEV * 2995 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2996 assert(!Ops.empty() && "Cannot get empty smax!"); 2997 if (Ops.size() == 1) return Ops[0]; 2998 #ifndef NDEBUG 2999 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3000 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3001 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3002 "SCEVSMaxExpr operand types don't match!"); 3003 #endif 3004 3005 // Sort by complexity, this groups all similar expression types together. 3006 GroupByComplexity(Ops, &LI); 3007 3008 // If there are any constants, fold them together. 3009 unsigned Idx = 0; 3010 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3011 ++Idx; 3012 assert(Idx < Ops.size()); 3013 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3014 // We found two constants, fold them together! 3015 ConstantInt *Fold = ConstantInt::get( 3016 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3017 Ops[0] = getConstant(Fold); 3018 Ops.erase(Ops.begin()+1); // Erase the folded element 3019 if (Ops.size() == 1) return Ops[0]; 3020 LHSC = cast<SCEVConstant>(Ops[0]); 3021 } 3022 3023 // If we are left with a constant minimum-int, strip it off. 3024 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3025 Ops.erase(Ops.begin()); 3026 --Idx; 3027 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3028 // If we have an smax with a constant maximum-int, it will always be 3029 // maximum-int. 3030 return Ops[0]; 3031 } 3032 3033 if (Ops.size() == 1) return Ops[0]; 3034 } 3035 3036 // Find the first SMax 3037 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3038 ++Idx; 3039 3040 // Check to see if one of the operands is an SMax. If so, expand its operands 3041 // onto our operand list, and recurse to simplify. 3042 if (Idx < Ops.size()) { 3043 bool DeletedSMax = false; 3044 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3045 Ops.erase(Ops.begin()+Idx); 3046 Ops.append(SMax->op_begin(), SMax->op_end()); 3047 DeletedSMax = true; 3048 } 3049 3050 if (DeletedSMax) 3051 return getSMaxExpr(Ops); 3052 } 3053 3054 // Okay, check to see if the same value occurs in the operand list twice. If 3055 // so, delete one. Since we sorted the list, these values are required to 3056 // be adjacent. 3057 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3058 // X smax Y smax Y --> X smax Y 3059 // X smax Y --> X, if X is always greater than Y 3060 if (Ops[i] == Ops[i+1] || 3061 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3062 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3063 --i; --e; 3064 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3065 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3066 --i; --e; 3067 } 3068 3069 if (Ops.size() == 1) return Ops[0]; 3070 3071 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3072 3073 // Okay, it looks like we really DO need an smax expr. Check to see if we 3074 // already have one, otherwise create a new one. 3075 FoldingSetNodeID ID; 3076 ID.AddInteger(scSMaxExpr); 3077 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3078 ID.AddPointer(Ops[i]); 3079 void *IP = nullptr; 3080 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3081 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3082 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3083 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3084 O, Ops.size()); 3085 UniqueSCEVs.InsertNode(S, IP); 3086 return S; 3087 } 3088 3089 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3090 const SCEV *RHS) { 3091 SmallVector<const SCEV *, 2> Ops; 3092 Ops.push_back(LHS); 3093 Ops.push_back(RHS); 3094 return getUMaxExpr(Ops); 3095 } 3096 3097 const SCEV * 3098 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3099 assert(!Ops.empty() && "Cannot get empty umax!"); 3100 if (Ops.size() == 1) return Ops[0]; 3101 #ifndef NDEBUG 3102 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3103 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3104 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3105 "SCEVUMaxExpr operand types don't match!"); 3106 #endif 3107 3108 // Sort by complexity, this groups all similar expression types together. 3109 GroupByComplexity(Ops, &LI); 3110 3111 // If there are any constants, fold them together. 3112 unsigned Idx = 0; 3113 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3114 ++Idx; 3115 assert(Idx < Ops.size()); 3116 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3117 // We found two constants, fold them together! 3118 ConstantInt *Fold = ConstantInt::get( 3119 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3120 Ops[0] = getConstant(Fold); 3121 Ops.erase(Ops.begin()+1); // Erase the folded element 3122 if (Ops.size() == 1) return Ops[0]; 3123 LHSC = cast<SCEVConstant>(Ops[0]); 3124 } 3125 3126 // If we are left with a constant minimum-int, strip it off. 3127 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3128 Ops.erase(Ops.begin()); 3129 --Idx; 3130 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3131 // If we have an umax with a constant maximum-int, it will always be 3132 // maximum-int. 3133 return Ops[0]; 3134 } 3135 3136 if (Ops.size() == 1) return Ops[0]; 3137 } 3138 3139 // Find the first UMax 3140 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3141 ++Idx; 3142 3143 // Check to see if one of the operands is a UMax. If so, expand its operands 3144 // onto our operand list, and recurse to simplify. 3145 if (Idx < Ops.size()) { 3146 bool DeletedUMax = false; 3147 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3148 Ops.erase(Ops.begin()+Idx); 3149 Ops.append(UMax->op_begin(), UMax->op_end()); 3150 DeletedUMax = true; 3151 } 3152 3153 if (DeletedUMax) 3154 return getUMaxExpr(Ops); 3155 } 3156 3157 // Okay, check to see if the same value occurs in the operand list twice. If 3158 // so, delete one. Since we sorted the list, these values are required to 3159 // be adjacent. 3160 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3161 // X umax Y umax Y --> X umax Y 3162 // X umax Y --> X, if X is always greater than Y 3163 if (Ops[i] == Ops[i+1] || 3164 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3165 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3166 --i; --e; 3167 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3168 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3169 --i; --e; 3170 } 3171 3172 if (Ops.size() == 1) return Ops[0]; 3173 3174 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3175 3176 // Okay, it looks like we really DO need a umax expr. Check to see if we 3177 // already have one, otherwise create a new one. 3178 FoldingSetNodeID ID; 3179 ID.AddInteger(scUMaxExpr); 3180 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3181 ID.AddPointer(Ops[i]); 3182 void *IP = nullptr; 3183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3184 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3185 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3186 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3187 O, Ops.size()); 3188 UniqueSCEVs.InsertNode(S, IP); 3189 return S; 3190 } 3191 3192 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3193 const SCEV *RHS) { 3194 // ~smax(~x, ~y) == smin(x, y). 3195 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3196 } 3197 3198 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3199 const SCEV *RHS) { 3200 // ~umax(~x, ~y) == umin(x, y) 3201 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3202 } 3203 3204 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3205 // We can bypass creating a target-independent 3206 // constant expression and then folding it back into a ConstantInt. 3207 // This is just a compile-time optimization. 3208 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3209 } 3210 3211 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3212 StructType *STy, 3213 unsigned FieldNo) { 3214 // We can bypass creating a target-independent 3215 // constant expression and then folding it back into a ConstantInt. 3216 // This is just a compile-time optimization. 3217 return getConstant( 3218 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3219 } 3220 3221 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3222 // Don't attempt to do anything other than create a SCEVUnknown object 3223 // here. createSCEV only calls getUnknown after checking for all other 3224 // interesting possibilities, and any other code that calls getUnknown 3225 // is doing so in order to hide a value from SCEV canonicalization. 3226 3227 FoldingSetNodeID ID; 3228 ID.AddInteger(scUnknown); 3229 ID.AddPointer(V); 3230 void *IP = nullptr; 3231 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3232 assert(cast<SCEVUnknown>(S)->getValue() == V && 3233 "Stale SCEVUnknown in uniquing map!"); 3234 return S; 3235 } 3236 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3237 FirstUnknown); 3238 FirstUnknown = cast<SCEVUnknown>(S); 3239 UniqueSCEVs.InsertNode(S, IP); 3240 return S; 3241 } 3242 3243 //===----------------------------------------------------------------------===// 3244 // Basic SCEV Analysis and PHI Idiom Recognition Code 3245 // 3246 3247 /// isSCEVable - Test if values of the given type are analyzable within 3248 /// the SCEV framework. This primarily includes integer types, and it 3249 /// can optionally include pointer types if the ScalarEvolution class 3250 /// has access to target-specific information. 3251 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3252 // Integers and pointers are always SCEVable. 3253 return Ty->isIntegerTy() || Ty->isPointerTy(); 3254 } 3255 3256 /// getTypeSizeInBits - Return the size in bits of the specified type, 3257 /// for which isSCEVable must return true. 3258 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3259 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3260 return getDataLayout().getTypeSizeInBits(Ty); 3261 } 3262 3263 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3264 /// the given type and which represents how SCEV will treat the given 3265 /// type, for which isSCEVable must return true. For pointer types, 3266 /// this is the pointer-sized integer type. 3267 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3268 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3269 3270 if (Ty->isIntegerTy()) 3271 return Ty; 3272 3273 // The only other support type is pointer. 3274 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3275 return getDataLayout().getIntPtrType(Ty); 3276 } 3277 3278 const SCEV *ScalarEvolution::getCouldNotCompute() { 3279 return CouldNotCompute.get(); 3280 } 3281 3282 3283 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3284 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3285 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3286 // is set iff if find such SCEVUnknown. 3287 // 3288 struct FindInvalidSCEVUnknown { 3289 bool FindOne; 3290 FindInvalidSCEVUnknown() { FindOne = false; } 3291 bool follow(const SCEV *S) { 3292 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3293 case scConstant: 3294 return false; 3295 case scUnknown: 3296 if (!cast<SCEVUnknown>(S)->getValue()) 3297 FindOne = true; 3298 return false; 3299 default: 3300 return true; 3301 } 3302 } 3303 bool isDone() const { return FindOne; } 3304 }; 3305 3306 FindInvalidSCEVUnknown F; 3307 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3308 ST.visitAll(S); 3309 3310 return !F.FindOne; 3311 } 3312 3313 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3314 /// expression and create a new one. 3315 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3316 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3317 3318 const SCEV *S = getExistingSCEV(V); 3319 if (S == nullptr) { 3320 S = createSCEV(V); 3321 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3322 } 3323 return S; 3324 } 3325 3326 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3327 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3328 3329 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3330 if (I != ValueExprMap.end()) { 3331 const SCEV *S = I->second; 3332 if (checkValidity(S)) 3333 return S; 3334 ValueExprMap.erase(I); 3335 } 3336 return nullptr; 3337 } 3338 3339 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3340 /// 3341 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3342 SCEV::NoWrapFlags Flags) { 3343 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3344 return getConstant( 3345 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3346 3347 Type *Ty = V->getType(); 3348 Ty = getEffectiveSCEVType(Ty); 3349 return getMulExpr( 3350 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3351 } 3352 3353 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3354 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3355 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3356 return getConstant( 3357 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3358 3359 Type *Ty = V->getType(); 3360 Ty = getEffectiveSCEVType(Ty); 3361 const SCEV *AllOnes = 3362 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3363 return getMinusSCEV(AllOnes, V); 3364 } 3365 3366 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3367 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3368 SCEV::NoWrapFlags Flags) { 3369 // Fast path: X - X --> 0. 3370 if (LHS == RHS) 3371 return getZero(LHS->getType()); 3372 3373 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3374 // makes it so that we cannot make much use of NUW. 3375 auto AddFlags = SCEV::FlagAnyWrap; 3376 const bool RHSIsNotMinSigned = 3377 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3378 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3379 // Let M be the minimum representable signed value. Then (-1)*RHS 3380 // signed-wraps if and only if RHS is M. That can happen even for 3381 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3382 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3383 // (-1)*RHS, we need to prove that RHS != M. 3384 // 3385 // If LHS is non-negative and we know that LHS - RHS does not 3386 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3387 // either by proving that RHS > M or that LHS >= 0. 3388 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3389 AddFlags = SCEV::FlagNSW; 3390 } 3391 } 3392 3393 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3394 // RHS is NSW and LHS >= 0. 3395 // 3396 // The difficulty here is that the NSW flag may have been proven 3397 // relative to a loop that is to be found in a recurrence in LHS and 3398 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3399 // larger scope than intended. 3400 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3401 3402 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3403 } 3404 3405 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3406 /// input value to the specified type. If the type must be extended, it is zero 3407 /// extended. 3408 const SCEV * 3409 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3410 Type *SrcTy = V->getType(); 3411 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3412 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3413 "Cannot truncate or zero extend with non-integer arguments!"); 3414 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3415 return V; // No conversion 3416 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3417 return getTruncateExpr(V, Ty); 3418 return getZeroExtendExpr(V, Ty); 3419 } 3420 3421 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3422 /// input value to the specified type. If the type must be extended, it is sign 3423 /// extended. 3424 const SCEV * 3425 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3426 Type *Ty) { 3427 Type *SrcTy = V->getType(); 3428 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3429 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3430 "Cannot truncate or zero extend with non-integer arguments!"); 3431 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3432 return V; // No conversion 3433 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3434 return getTruncateExpr(V, Ty); 3435 return getSignExtendExpr(V, Ty); 3436 } 3437 3438 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3439 /// input value to the specified type. If the type must be extended, it is zero 3440 /// extended. The conversion must not be narrowing. 3441 const SCEV * 3442 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3443 Type *SrcTy = V->getType(); 3444 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3445 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3446 "Cannot noop or zero extend with non-integer arguments!"); 3447 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3448 "getNoopOrZeroExtend cannot truncate!"); 3449 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3450 return V; // No conversion 3451 return getZeroExtendExpr(V, Ty); 3452 } 3453 3454 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3455 /// input value to the specified type. If the type must be extended, it is sign 3456 /// extended. The conversion must not be narrowing. 3457 const SCEV * 3458 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3459 Type *SrcTy = V->getType(); 3460 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3461 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3462 "Cannot noop or sign extend with non-integer arguments!"); 3463 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3464 "getNoopOrSignExtend cannot truncate!"); 3465 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3466 return V; // No conversion 3467 return getSignExtendExpr(V, Ty); 3468 } 3469 3470 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3471 /// the input value to the specified type. If the type must be extended, 3472 /// it is extended with unspecified bits. The conversion must not be 3473 /// narrowing. 3474 const SCEV * 3475 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3476 Type *SrcTy = V->getType(); 3477 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3478 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3479 "Cannot noop or any extend with non-integer arguments!"); 3480 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3481 "getNoopOrAnyExtend cannot truncate!"); 3482 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3483 return V; // No conversion 3484 return getAnyExtendExpr(V, Ty); 3485 } 3486 3487 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3488 /// input value to the specified type. The conversion must not be widening. 3489 const SCEV * 3490 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3491 Type *SrcTy = V->getType(); 3492 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3493 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3494 "Cannot truncate or noop with non-integer arguments!"); 3495 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3496 "getTruncateOrNoop cannot extend!"); 3497 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3498 return V; // No conversion 3499 return getTruncateExpr(V, Ty); 3500 } 3501 3502 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3503 /// the types using zero-extension, and then perform a umax operation 3504 /// with them. 3505 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3506 const SCEV *RHS) { 3507 const SCEV *PromotedLHS = LHS; 3508 const SCEV *PromotedRHS = RHS; 3509 3510 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3511 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3512 else 3513 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3514 3515 return getUMaxExpr(PromotedLHS, PromotedRHS); 3516 } 3517 3518 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3519 /// the types using zero-extension, and then perform a umin operation 3520 /// with them. 3521 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3522 const SCEV *RHS) { 3523 const SCEV *PromotedLHS = LHS; 3524 const SCEV *PromotedRHS = RHS; 3525 3526 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3527 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3528 else 3529 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3530 3531 return getUMinExpr(PromotedLHS, PromotedRHS); 3532 } 3533 3534 /// getPointerBase - Transitively follow the chain of pointer-type operands 3535 /// until reaching a SCEV that does not have a single pointer operand. This 3536 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3537 /// but corner cases do exist. 3538 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3539 // A pointer operand may evaluate to a nonpointer expression, such as null. 3540 if (!V->getType()->isPointerTy()) 3541 return V; 3542 3543 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3544 return getPointerBase(Cast->getOperand()); 3545 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3546 const SCEV *PtrOp = nullptr; 3547 for (const SCEV *NAryOp : NAry->operands()) { 3548 if (NAryOp->getType()->isPointerTy()) { 3549 // Cannot find the base of an expression with multiple pointer operands. 3550 if (PtrOp) 3551 return V; 3552 PtrOp = NAryOp; 3553 } 3554 } 3555 if (!PtrOp) 3556 return V; 3557 return getPointerBase(PtrOp); 3558 } 3559 return V; 3560 } 3561 3562 /// PushDefUseChildren - Push users of the given Instruction 3563 /// onto the given Worklist. 3564 static void 3565 PushDefUseChildren(Instruction *I, 3566 SmallVectorImpl<Instruction *> &Worklist) { 3567 // Push the def-use children onto the Worklist stack. 3568 for (User *U : I->users()) 3569 Worklist.push_back(cast<Instruction>(U)); 3570 } 3571 3572 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3573 /// instructions that depend on the given instruction and removes them from 3574 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3575 /// resolution. 3576 void 3577 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3578 SmallVector<Instruction *, 16> Worklist; 3579 PushDefUseChildren(PN, Worklist); 3580 3581 SmallPtrSet<Instruction *, 8> Visited; 3582 Visited.insert(PN); 3583 while (!Worklist.empty()) { 3584 Instruction *I = Worklist.pop_back_val(); 3585 if (!Visited.insert(I).second) 3586 continue; 3587 3588 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3589 if (It != ValueExprMap.end()) { 3590 const SCEV *Old = It->second; 3591 3592 // Short-circuit the def-use traversal if the symbolic name 3593 // ceases to appear in expressions. 3594 if (Old != SymName && !hasOperand(Old, SymName)) 3595 continue; 3596 3597 // SCEVUnknown for a PHI either means that it has an unrecognized 3598 // structure, it's a PHI that's in the progress of being computed 3599 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3600 // additional loop trip count information isn't going to change anything. 3601 // In the second case, createNodeForPHI will perform the necessary 3602 // updates on its own when it gets to that point. In the third, we do 3603 // want to forget the SCEVUnknown. 3604 if (!isa<PHINode>(I) || 3605 !isa<SCEVUnknown>(Old) || 3606 (I != PN && Old == SymName)) { 3607 forgetMemoizedResults(Old); 3608 ValueExprMap.erase(It); 3609 } 3610 } 3611 3612 PushDefUseChildren(I, Worklist); 3613 } 3614 } 3615 3616 namespace { 3617 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3618 public: 3619 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 3620 ScalarEvolution &SE) { 3621 SCEVInitRewriter Rewriter(L, SE); 3622 const SCEV *Result = Rewriter.visit(Scev); 3623 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3624 } 3625 3626 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3627 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3628 3629 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3630 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3631 Valid = false; 3632 return Expr; 3633 } 3634 3635 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3636 // Only allow AddRecExprs for this loop. 3637 if (Expr->getLoop() == L) 3638 return Expr->getStart(); 3639 Valid = false; 3640 return Expr; 3641 } 3642 3643 bool isValid() { return Valid; } 3644 3645 private: 3646 const Loop *L; 3647 bool Valid; 3648 }; 3649 3650 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3651 public: 3652 static const SCEV *rewrite(const SCEV *Scev, const Loop *L, 3653 ScalarEvolution &SE) { 3654 SCEVShiftRewriter Rewriter(L, SE); 3655 const SCEV *Result = Rewriter.visit(Scev); 3656 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3657 } 3658 3659 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3660 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3661 3662 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3663 // Only allow AddRecExprs for this loop. 3664 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3665 Valid = false; 3666 return Expr; 3667 } 3668 3669 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3670 if (Expr->getLoop() == L && Expr->isAffine()) 3671 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3672 Valid = false; 3673 return Expr; 3674 } 3675 bool isValid() { return Valid; } 3676 3677 private: 3678 const Loop *L; 3679 bool Valid; 3680 }; 3681 } // end anonymous namespace 3682 3683 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3684 const Loop *L = LI.getLoopFor(PN->getParent()); 3685 if (!L || L->getHeader() != PN->getParent()) 3686 return nullptr; 3687 3688 // The loop may have multiple entrances or multiple exits; we can analyze 3689 // this phi as an addrec if it has a unique entry value and a unique 3690 // backedge value. 3691 Value *BEValueV = nullptr, *StartValueV = nullptr; 3692 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3693 Value *V = PN->getIncomingValue(i); 3694 if (L->contains(PN->getIncomingBlock(i))) { 3695 if (!BEValueV) { 3696 BEValueV = V; 3697 } else if (BEValueV != V) { 3698 BEValueV = nullptr; 3699 break; 3700 } 3701 } else if (!StartValueV) { 3702 StartValueV = V; 3703 } else if (StartValueV != V) { 3704 StartValueV = nullptr; 3705 break; 3706 } 3707 } 3708 if (BEValueV && StartValueV) { 3709 // While we are analyzing this PHI node, handle its value symbolically. 3710 const SCEV *SymbolicName = getUnknown(PN); 3711 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3712 "PHI node already processed?"); 3713 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3714 3715 // Using this symbolic name for the PHI, analyze the value coming around 3716 // the back-edge. 3717 const SCEV *BEValue = getSCEV(BEValueV); 3718 3719 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3720 // has a special value for the first iteration of the loop. 3721 3722 // If the value coming around the backedge is an add with the symbolic 3723 // value we just inserted, then we found a simple induction variable! 3724 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3725 // If there is a single occurrence of the symbolic value, replace it 3726 // with a recurrence. 3727 unsigned FoundIndex = Add->getNumOperands(); 3728 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3729 if (Add->getOperand(i) == SymbolicName) 3730 if (FoundIndex == e) { 3731 FoundIndex = i; 3732 break; 3733 } 3734 3735 if (FoundIndex != Add->getNumOperands()) { 3736 // Create an add with everything but the specified operand. 3737 SmallVector<const SCEV *, 8> Ops; 3738 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3739 if (i != FoundIndex) 3740 Ops.push_back(Add->getOperand(i)); 3741 const SCEV *Accum = getAddExpr(Ops); 3742 3743 // This is not a valid addrec if the step amount is varying each 3744 // loop iteration, but is not itself an addrec in this loop. 3745 if (isLoopInvariant(Accum, L) || 3746 (isa<SCEVAddRecExpr>(Accum) && 3747 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3748 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3749 3750 // If the increment doesn't overflow, then neither the addrec nor 3751 // the post-increment will overflow. 3752 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3753 if (OBO->getOperand(0) == PN) { 3754 if (OBO->hasNoUnsignedWrap()) 3755 Flags = setFlags(Flags, SCEV::FlagNUW); 3756 if (OBO->hasNoSignedWrap()) 3757 Flags = setFlags(Flags, SCEV::FlagNSW); 3758 } 3759 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3760 // If the increment is an inbounds GEP, then we know the address 3761 // space cannot be wrapped around. We cannot make any guarantee 3762 // about signed or unsigned overflow because pointers are 3763 // unsigned but we may have a negative index from the base 3764 // pointer. We can guarantee that no unsigned wrap occurs if the 3765 // indices form a positive value. 3766 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3767 Flags = setFlags(Flags, SCEV::FlagNW); 3768 3769 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3770 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3771 Flags = setFlags(Flags, SCEV::FlagNUW); 3772 } 3773 3774 // We cannot transfer nuw and nsw flags from subtraction 3775 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3776 // for instance. 3777 } 3778 3779 const SCEV *StartVal = getSCEV(StartValueV); 3780 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3781 3782 // Since the no-wrap flags are on the increment, they apply to the 3783 // post-incremented value as well. 3784 if (isLoopInvariant(Accum, L)) 3785 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3786 3787 // Okay, for the entire analysis of this edge we assumed the PHI 3788 // to be symbolic. We now need to go back and purge all of the 3789 // entries for the scalars that use the symbolic expression. 3790 ForgetSymbolicName(PN, SymbolicName); 3791 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3792 return PHISCEV; 3793 } 3794 } 3795 } else { 3796 // Otherwise, this could be a loop like this: 3797 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3798 // In this case, j = {1,+,1} and BEValue is j. 3799 // Because the other in-value of i (0) fits the evolution of BEValue 3800 // i really is an addrec evolution. 3801 // 3802 // We can generalize this saying that i is the shifted value of BEValue 3803 // by one iteration: 3804 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 3805 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 3806 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 3807 if (Shifted != getCouldNotCompute() && 3808 Start != getCouldNotCompute()) { 3809 const SCEV *StartVal = getSCEV(StartValueV); 3810 if (Start == StartVal) { 3811 // Okay, for the entire analysis of this edge we assumed the PHI 3812 // to be symbolic. We now need to go back and purge all of the 3813 // entries for the scalars that use the symbolic expression. 3814 ForgetSymbolicName(PN, SymbolicName); 3815 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 3816 return Shifted; 3817 } 3818 } 3819 } 3820 } 3821 3822 return nullptr; 3823 } 3824 3825 // Checks if the SCEV S is available at BB. S is considered available at BB 3826 // if S can be materialized at BB without introducing a fault. 3827 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3828 BasicBlock *BB) { 3829 struct CheckAvailable { 3830 bool TraversalDone = false; 3831 bool Available = true; 3832 3833 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3834 BasicBlock *BB = nullptr; 3835 DominatorTree &DT; 3836 3837 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3838 : L(L), BB(BB), DT(DT) {} 3839 3840 bool setUnavailable() { 3841 TraversalDone = true; 3842 Available = false; 3843 return false; 3844 } 3845 3846 bool follow(const SCEV *S) { 3847 switch (S->getSCEVType()) { 3848 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3849 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3850 // These expressions are available if their operand(s) is/are. 3851 return true; 3852 3853 case scAddRecExpr: { 3854 // We allow add recurrences that are on the loop BB is in, or some 3855 // outer loop. This guarantees availability because the value of the 3856 // add recurrence at BB is simply the "current" value of the induction 3857 // variable. We can relax this in the future; for instance an add 3858 // recurrence on a sibling dominating loop is also available at BB. 3859 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3860 if (L && (ARLoop == L || ARLoop->contains(L))) 3861 return true; 3862 3863 return setUnavailable(); 3864 } 3865 3866 case scUnknown: { 3867 // For SCEVUnknown, we check for simple dominance. 3868 const auto *SU = cast<SCEVUnknown>(S); 3869 Value *V = SU->getValue(); 3870 3871 if (isa<Argument>(V)) 3872 return false; 3873 3874 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3875 return false; 3876 3877 return setUnavailable(); 3878 } 3879 3880 case scUDivExpr: 3881 case scCouldNotCompute: 3882 // We do not try to smart about these at all. 3883 return setUnavailable(); 3884 } 3885 llvm_unreachable("switch should be fully covered!"); 3886 } 3887 3888 bool isDone() { return TraversalDone; } 3889 }; 3890 3891 CheckAvailable CA(L, BB, DT); 3892 SCEVTraversal<CheckAvailable> ST(CA); 3893 3894 ST.visitAll(S); 3895 return CA.Available; 3896 } 3897 3898 // Try to match a control flow sequence that branches out at BI and merges back 3899 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3900 // match. 3901 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3902 Value *&C, Value *&LHS, Value *&RHS) { 3903 C = BI->getCondition(); 3904 3905 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3906 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3907 3908 if (!LeftEdge.isSingleEdge()) 3909 return false; 3910 3911 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3912 3913 Use &LeftUse = Merge->getOperandUse(0); 3914 Use &RightUse = Merge->getOperandUse(1); 3915 3916 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3917 LHS = LeftUse; 3918 RHS = RightUse; 3919 return true; 3920 } 3921 3922 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3923 LHS = RightUse; 3924 RHS = LeftUse; 3925 return true; 3926 } 3927 3928 return false; 3929 } 3930 3931 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3932 if (PN->getNumIncomingValues() == 2) { 3933 const Loop *L = LI.getLoopFor(PN->getParent()); 3934 3935 // We don't want to break LCSSA, even in a SCEV expression tree. 3936 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 3937 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 3938 return nullptr; 3939 3940 // Try to match 3941 // 3942 // br %cond, label %left, label %right 3943 // left: 3944 // br label %merge 3945 // right: 3946 // br label %merge 3947 // merge: 3948 // V = phi [ %x, %left ], [ %y, %right ] 3949 // 3950 // as "select %cond, %x, %y" 3951 3952 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3953 assert(IDom && "At least the entry block should dominate PN"); 3954 3955 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3956 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3957 3958 if (BI && BI->isConditional() && 3959 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3960 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3961 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3962 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3963 } 3964 3965 return nullptr; 3966 } 3967 3968 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3969 if (const SCEV *S = createAddRecFromPHI(PN)) 3970 return S; 3971 3972 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3973 return S; 3974 3975 // If the PHI has a single incoming value, follow that value, unless the 3976 // PHI's incoming blocks are in a different loop, in which case doing so 3977 // risks breaking LCSSA form. Instcombine would normally zap these, but 3978 // it doesn't have DominatorTree information, so it may miss cases. 3979 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 3980 if (LI.replacementPreservesLCSSAForm(PN, V)) 3981 return getSCEV(V); 3982 3983 // If it's not a loop phi, we can't handle it yet. 3984 return getUnknown(PN); 3985 } 3986 3987 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3988 Value *Cond, 3989 Value *TrueVal, 3990 Value *FalseVal) { 3991 // Handle "constant" branch or select. This can occur for instance when a 3992 // loop pass transforms an inner loop and moves on to process the outer loop. 3993 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 3994 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 3995 3996 // Try to match some simple smax or umax patterns. 3997 auto *ICI = dyn_cast<ICmpInst>(Cond); 3998 if (!ICI) 3999 return getUnknown(I); 4000 4001 Value *LHS = ICI->getOperand(0); 4002 Value *RHS = ICI->getOperand(1); 4003 4004 switch (ICI->getPredicate()) { 4005 case ICmpInst::ICMP_SLT: 4006 case ICmpInst::ICMP_SLE: 4007 std::swap(LHS, RHS); 4008 // fall through 4009 case ICmpInst::ICMP_SGT: 4010 case ICmpInst::ICMP_SGE: 4011 // a >s b ? a+x : b+x -> smax(a, b)+x 4012 // a >s b ? b+x : a+x -> smin(a, b)+x 4013 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4014 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4015 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4016 const SCEV *LA = getSCEV(TrueVal); 4017 const SCEV *RA = getSCEV(FalseVal); 4018 const SCEV *LDiff = getMinusSCEV(LA, LS); 4019 const SCEV *RDiff = getMinusSCEV(RA, RS); 4020 if (LDiff == RDiff) 4021 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4022 LDiff = getMinusSCEV(LA, RS); 4023 RDiff = getMinusSCEV(RA, LS); 4024 if (LDiff == RDiff) 4025 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4026 } 4027 break; 4028 case ICmpInst::ICMP_ULT: 4029 case ICmpInst::ICMP_ULE: 4030 std::swap(LHS, RHS); 4031 // fall through 4032 case ICmpInst::ICMP_UGT: 4033 case ICmpInst::ICMP_UGE: 4034 // a >u b ? a+x : b+x -> umax(a, b)+x 4035 // a >u b ? b+x : a+x -> umin(a, b)+x 4036 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4037 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4038 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4039 const SCEV *LA = getSCEV(TrueVal); 4040 const SCEV *RA = getSCEV(FalseVal); 4041 const SCEV *LDiff = getMinusSCEV(LA, LS); 4042 const SCEV *RDiff = getMinusSCEV(RA, RS); 4043 if (LDiff == RDiff) 4044 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4045 LDiff = getMinusSCEV(LA, RS); 4046 RDiff = getMinusSCEV(RA, LS); 4047 if (LDiff == RDiff) 4048 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4049 } 4050 break; 4051 case ICmpInst::ICMP_NE: 4052 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4053 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4054 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4055 const SCEV *One = getOne(I->getType()); 4056 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4057 const SCEV *LA = getSCEV(TrueVal); 4058 const SCEV *RA = getSCEV(FalseVal); 4059 const SCEV *LDiff = getMinusSCEV(LA, LS); 4060 const SCEV *RDiff = getMinusSCEV(RA, One); 4061 if (LDiff == RDiff) 4062 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4063 } 4064 break; 4065 case ICmpInst::ICMP_EQ: 4066 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4067 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4068 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4069 const SCEV *One = getOne(I->getType()); 4070 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4071 const SCEV *LA = getSCEV(TrueVal); 4072 const SCEV *RA = getSCEV(FalseVal); 4073 const SCEV *LDiff = getMinusSCEV(LA, One); 4074 const SCEV *RDiff = getMinusSCEV(RA, LS); 4075 if (LDiff == RDiff) 4076 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4077 } 4078 break; 4079 default: 4080 break; 4081 } 4082 4083 return getUnknown(I); 4084 } 4085 4086 /// createNodeForGEP - Expand GEP instructions into add and multiply 4087 /// operations. This allows them to be analyzed by regular SCEV code. 4088 /// 4089 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4090 // Don't attempt to analyze GEPs over unsized objects. 4091 if (!GEP->getSourceElementType()->isSized()) 4092 return getUnknown(GEP); 4093 4094 SmallVector<const SCEV *, 4> IndexExprs; 4095 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4096 IndexExprs.push_back(getSCEV(*Index)); 4097 return getGEPExpr(GEP->getSourceElementType(), 4098 getSCEV(GEP->getPointerOperand()), 4099 IndexExprs, GEP->isInBounds()); 4100 } 4101 4102 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4103 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4104 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4105 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4106 uint32_t 4107 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4108 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4109 return C->getAPInt().countTrailingZeros(); 4110 4111 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4112 return std::min(GetMinTrailingZeros(T->getOperand()), 4113 (uint32_t)getTypeSizeInBits(T->getType())); 4114 4115 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4116 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4117 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4118 getTypeSizeInBits(E->getType()) : OpRes; 4119 } 4120 4121 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4122 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4123 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4124 getTypeSizeInBits(E->getType()) : OpRes; 4125 } 4126 4127 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4128 // The result is the min of all operands results. 4129 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4130 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4131 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4132 return MinOpRes; 4133 } 4134 4135 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4136 // The result is the sum of all operands results. 4137 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4138 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4139 for (unsigned i = 1, e = M->getNumOperands(); 4140 SumOpRes != BitWidth && i != e; ++i) 4141 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4142 BitWidth); 4143 return SumOpRes; 4144 } 4145 4146 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4147 // The result is the min of all operands results. 4148 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4149 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4150 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4151 return MinOpRes; 4152 } 4153 4154 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4155 // The result is the min of all operands results. 4156 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4157 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4158 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4159 return MinOpRes; 4160 } 4161 4162 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4163 // The result is the min of all operands results. 4164 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4165 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4166 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4167 return MinOpRes; 4168 } 4169 4170 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4171 // For a SCEVUnknown, ask ValueTracking. 4172 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4173 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4174 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4175 nullptr, &DT); 4176 return Zeros.countTrailingOnes(); 4177 } 4178 4179 // SCEVUDivExpr 4180 return 0; 4181 } 4182 4183 /// GetRangeFromMetadata - Helper method to assign a range to V from 4184 /// metadata present in the IR. 4185 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4186 if (Instruction *I = dyn_cast<Instruction>(V)) 4187 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4188 return getConstantRangeFromMetadata(*MD); 4189 4190 return None; 4191 } 4192 4193 /// getRange - Determine the range for a particular SCEV. If SignHint is 4194 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4195 /// with a "cleaner" unsigned (resp. signed) representation. 4196 /// 4197 ConstantRange 4198 ScalarEvolution::getRange(const SCEV *S, 4199 ScalarEvolution::RangeSignHint SignHint) { 4200 DenseMap<const SCEV *, ConstantRange> &Cache = 4201 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4202 : SignedRanges; 4203 4204 // See if we've computed this range already. 4205 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4206 if (I != Cache.end()) 4207 return I->second; 4208 4209 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4210 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4211 4212 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4213 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4214 4215 // If the value has known zeros, the maximum value will have those known zeros 4216 // as well. 4217 uint32_t TZ = GetMinTrailingZeros(S); 4218 if (TZ != 0) { 4219 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4220 ConservativeResult = 4221 ConstantRange(APInt::getMinValue(BitWidth), 4222 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4223 else 4224 ConservativeResult = ConstantRange( 4225 APInt::getSignedMinValue(BitWidth), 4226 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4227 } 4228 4229 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4230 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4231 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4232 X = X.add(getRange(Add->getOperand(i), SignHint)); 4233 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4234 } 4235 4236 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4237 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4238 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4239 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4240 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4241 } 4242 4243 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4244 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4245 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4246 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4247 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4248 } 4249 4250 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4251 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4252 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4253 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4254 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4255 } 4256 4257 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4258 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4259 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4260 return setRange(UDiv, SignHint, 4261 ConservativeResult.intersectWith(X.udiv(Y))); 4262 } 4263 4264 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4265 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4266 return setRange(ZExt, SignHint, 4267 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4268 } 4269 4270 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4271 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4272 return setRange(SExt, SignHint, 4273 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4274 } 4275 4276 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4277 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4278 return setRange(Trunc, SignHint, 4279 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4280 } 4281 4282 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4283 // If there's no unsigned wrap, the value will never be less than its 4284 // initial value. 4285 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4286 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4287 if (!C->getValue()->isZero()) 4288 ConservativeResult = ConservativeResult.intersectWith( 4289 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4290 4291 // If there's no signed wrap, and all the operands have the same sign or 4292 // zero, the value won't ever change sign. 4293 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4294 bool AllNonNeg = true; 4295 bool AllNonPos = true; 4296 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4297 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4298 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4299 } 4300 if (AllNonNeg) 4301 ConservativeResult = ConservativeResult.intersectWith( 4302 ConstantRange(APInt(BitWidth, 0), 4303 APInt::getSignedMinValue(BitWidth))); 4304 else if (AllNonPos) 4305 ConservativeResult = ConservativeResult.intersectWith( 4306 ConstantRange(APInt::getSignedMinValue(BitWidth), 4307 APInt(BitWidth, 1))); 4308 } 4309 4310 // TODO: non-affine addrec 4311 if (AddRec->isAffine()) { 4312 Type *Ty = AddRec->getType(); 4313 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4314 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4315 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4316 4317 // Check for overflow. This must be done with ConstantRange arithmetic 4318 // because we could be called from within the ScalarEvolution overflow 4319 // checking code. 4320 4321 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4322 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4323 ConstantRange ZExtMaxBECountRange = 4324 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4325 4326 const SCEV *Start = AddRec->getStart(); 4327 const SCEV *Step = AddRec->getStepRecurrence(*this); 4328 ConstantRange StepSRange = getSignedRange(Step); 4329 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4330 4331 ConstantRange StartURange = getUnsignedRange(Start); 4332 ConstantRange EndURange = 4333 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4334 4335 // Check for unsigned overflow. 4336 ConstantRange ZExtStartURange = 4337 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4338 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4339 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4340 ZExtEndURange) { 4341 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4342 EndURange.getUnsignedMin()); 4343 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4344 EndURange.getUnsignedMax()); 4345 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4346 if (!IsFullRange) 4347 ConservativeResult = 4348 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4349 } 4350 4351 ConstantRange StartSRange = getSignedRange(Start); 4352 ConstantRange EndSRange = 4353 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4354 4355 // Check for signed overflow. This must be done with ConstantRange 4356 // arithmetic because we could be called from within the ScalarEvolution 4357 // overflow checking code. 4358 ConstantRange SExtStartSRange = 4359 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4360 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4361 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4362 SExtEndSRange) { 4363 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4364 EndSRange.getSignedMin()); 4365 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4366 EndSRange.getSignedMax()); 4367 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4368 if (!IsFullRange) 4369 ConservativeResult = 4370 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4371 } 4372 } 4373 } 4374 4375 return setRange(AddRec, SignHint, ConservativeResult); 4376 } 4377 4378 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4379 // Check if the IR explicitly contains !range metadata. 4380 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4381 if (MDRange.hasValue()) 4382 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4383 4384 // Split here to avoid paying the compile-time cost of calling both 4385 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4386 // if needed. 4387 const DataLayout &DL = getDataLayout(); 4388 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4389 // For a SCEVUnknown, ask ValueTracking. 4390 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4391 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4392 if (Ones != ~Zeros + 1) 4393 ConservativeResult = 4394 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4395 } else { 4396 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4397 "generalize as needed!"); 4398 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4399 if (NS > 1) 4400 ConservativeResult = ConservativeResult.intersectWith( 4401 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4402 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4403 } 4404 4405 return setRange(U, SignHint, ConservativeResult); 4406 } 4407 4408 return setRange(S, SignHint, ConservativeResult); 4409 } 4410 4411 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4412 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4413 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4414 4415 // Return early if there are no flags to propagate to the SCEV. 4416 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4417 if (BinOp->hasNoUnsignedWrap()) 4418 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4419 if (BinOp->hasNoSignedWrap()) 4420 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4421 if (Flags == SCEV::FlagAnyWrap) { 4422 return SCEV::FlagAnyWrap; 4423 } 4424 4425 // Here we check that BinOp is in the header of the innermost loop 4426 // containing BinOp, since we only deal with instructions in the loop 4427 // header. The actual loop we need to check later will come from an add 4428 // recurrence, but getting that requires computing the SCEV of the operands, 4429 // which can be expensive. This check we can do cheaply to rule out some 4430 // cases early. 4431 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4432 if (innermostContainingLoop == nullptr || 4433 innermostContainingLoop->getHeader() != BinOp->getParent()) 4434 return SCEV::FlagAnyWrap; 4435 4436 // Only proceed if we can prove that BinOp does not yield poison. 4437 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4438 4439 // At this point we know that if V is executed, then it does not wrap 4440 // according to at least one of NSW or NUW. If V is not executed, then we do 4441 // not know if the calculation that V represents would wrap. Multiple 4442 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4443 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4444 // derived from other instructions that map to the same SCEV. We cannot make 4445 // that guarantee for cases where V is not executed. So we need to find the 4446 // loop that V is considered in relation to and prove that V is executed for 4447 // every iteration of that loop. That implies that the value that V 4448 // calculates does not wrap anywhere in the loop, so then we can apply the 4449 // flags to the SCEV. 4450 // 4451 // We check isLoopInvariant to disambiguate in case we are adding two 4452 // recurrences from different loops, so that we know which loop to prove 4453 // that V is executed in. 4454 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4455 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4456 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4457 const int OtherOpIndex = 1 - OpIndex; 4458 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4459 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4460 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4461 return Flags; 4462 } 4463 } 4464 return SCEV::FlagAnyWrap; 4465 } 4466 4467 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4468 /// the expression. 4469 /// 4470 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4471 if (!isSCEVable(V->getType())) 4472 return getUnknown(V); 4473 4474 unsigned Opcode = Instruction::UserOp1; 4475 if (Instruction *I = dyn_cast<Instruction>(V)) { 4476 Opcode = I->getOpcode(); 4477 4478 // Don't attempt to analyze instructions in blocks that aren't 4479 // reachable. Such instructions don't matter, and they aren't required 4480 // to obey basic rules for definitions dominating uses which this 4481 // analysis depends on. 4482 if (!DT.isReachableFromEntry(I->getParent())) 4483 return getUnknown(V); 4484 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4485 Opcode = CE->getOpcode(); 4486 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4487 return getConstant(CI); 4488 else if (isa<ConstantPointerNull>(V)) 4489 return getZero(V->getType()); 4490 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4491 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4492 else 4493 return getUnknown(V); 4494 4495 Operator *U = cast<Operator>(V); 4496 switch (Opcode) { 4497 case Instruction::Add: { 4498 // The simple thing to do would be to just call getSCEV on both operands 4499 // and call getAddExpr with the result. However if we're looking at a 4500 // bunch of things all added together, this can be quite inefficient, 4501 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4502 // Instead, gather up all the operands and make a single getAddExpr call. 4503 // LLVM IR canonical form means we need only traverse the left operands. 4504 SmallVector<const SCEV *, 4> AddOps; 4505 for (Value *Op = U;; Op = U->getOperand(0)) { 4506 U = dyn_cast<Operator>(Op); 4507 unsigned Opcode = U ? U->getOpcode() : 0; 4508 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4509 assert(Op != V && "V should be an add"); 4510 AddOps.push_back(getSCEV(Op)); 4511 break; 4512 } 4513 4514 if (auto *OpSCEV = getExistingSCEV(U)) { 4515 AddOps.push_back(OpSCEV); 4516 break; 4517 } 4518 4519 // If a NUW or NSW flag can be applied to the SCEV for this 4520 // addition, then compute the SCEV for this addition by itself 4521 // with a separate call to getAddExpr. We need to do that 4522 // instead of pushing the operands of the addition onto AddOps, 4523 // since the flags are only known to apply to this particular 4524 // addition - they may not apply to other additions that can be 4525 // formed with operands from AddOps. 4526 const SCEV *RHS = getSCEV(U->getOperand(1)); 4527 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4528 if (Flags != SCEV::FlagAnyWrap) { 4529 const SCEV *LHS = getSCEV(U->getOperand(0)); 4530 if (Opcode == Instruction::Sub) 4531 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4532 else 4533 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4534 break; 4535 } 4536 4537 if (Opcode == Instruction::Sub) 4538 AddOps.push_back(getNegativeSCEV(RHS)); 4539 else 4540 AddOps.push_back(RHS); 4541 } 4542 return getAddExpr(AddOps); 4543 } 4544 4545 case Instruction::Mul: { 4546 SmallVector<const SCEV *, 4> MulOps; 4547 for (Value *Op = U;; Op = U->getOperand(0)) { 4548 U = dyn_cast<Operator>(Op); 4549 if (!U || U->getOpcode() != Instruction::Mul) { 4550 assert(Op != V && "V should be a mul"); 4551 MulOps.push_back(getSCEV(Op)); 4552 break; 4553 } 4554 4555 if (auto *OpSCEV = getExistingSCEV(U)) { 4556 MulOps.push_back(OpSCEV); 4557 break; 4558 } 4559 4560 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4561 if (Flags != SCEV::FlagAnyWrap) { 4562 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4563 getSCEV(U->getOperand(1)), Flags)); 4564 break; 4565 } 4566 4567 MulOps.push_back(getSCEV(U->getOperand(1))); 4568 } 4569 return getMulExpr(MulOps); 4570 } 4571 case Instruction::UDiv: 4572 return getUDivExpr(getSCEV(U->getOperand(0)), 4573 getSCEV(U->getOperand(1))); 4574 case Instruction::Sub: 4575 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4576 getNoWrapFlagsFromUB(U)); 4577 case Instruction::And: 4578 // For an expression like x&255 that merely masks off the high bits, 4579 // use zext(trunc(x)) as the SCEV expression. 4580 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4581 if (CI->isNullValue()) 4582 return getSCEV(U->getOperand(1)); 4583 if (CI->isAllOnesValue()) 4584 return getSCEV(U->getOperand(0)); 4585 const APInt &A = CI->getValue(); 4586 4587 // Instcombine's ShrinkDemandedConstant may strip bits out of 4588 // constants, obscuring what would otherwise be a low-bits mask. 4589 // Use computeKnownBits to compute what ShrinkDemandedConstant 4590 // knew about to reconstruct a low-bits mask value. 4591 unsigned LZ = A.countLeadingZeros(); 4592 unsigned TZ = A.countTrailingZeros(); 4593 unsigned BitWidth = A.getBitWidth(); 4594 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4595 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(), 4596 0, &AC, nullptr, &DT); 4597 4598 APInt EffectiveMask = 4599 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4600 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4601 const SCEV *MulCount = getConstant( 4602 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4603 return getMulExpr( 4604 getZeroExtendExpr( 4605 getTruncateExpr( 4606 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4607 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4608 U->getType()), 4609 MulCount); 4610 } 4611 } 4612 break; 4613 4614 case Instruction::Or: 4615 // If the RHS of the Or is a constant, we may have something like: 4616 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4617 // optimizations will transparently handle this case. 4618 // 4619 // In order for this transformation to be safe, the LHS must be of the 4620 // form X*(2^n) and the Or constant must be less than 2^n. 4621 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4622 const SCEV *LHS = getSCEV(U->getOperand(0)); 4623 const APInt &CIVal = CI->getValue(); 4624 if (GetMinTrailingZeros(LHS) >= 4625 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4626 // Build a plain add SCEV. 4627 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4628 // If the LHS of the add was an addrec and it has no-wrap flags, 4629 // transfer the no-wrap flags, since an or won't introduce a wrap. 4630 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4631 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4632 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4633 OldAR->getNoWrapFlags()); 4634 } 4635 return S; 4636 } 4637 } 4638 break; 4639 case Instruction::Xor: 4640 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4641 // If the RHS of the xor is a signbit, then this is just an add. 4642 // Instcombine turns add of signbit into xor as a strength reduction step. 4643 if (CI->getValue().isSignBit()) 4644 return getAddExpr(getSCEV(U->getOperand(0)), 4645 getSCEV(U->getOperand(1))); 4646 4647 // If the RHS of xor is -1, then this is a not operation. 4648 if (CI->isAllOnesValue()) 4649 return getNotSCEV(getSCEV(U->getOperand(0))); 4650 4651 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4652 // This is a variant of the check for xor with -1, and it handles 4653 // the case where instcombine has trimmed non-demanded bits out 4654 // of an xor with -1. 4655 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4656 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4657 if (BO->getOpcode() == Instruction::And && 4658 LCI->getValue() == CI->getValue()) 4659 if (const SCEVZeroExtendExpr *Z = 4660 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4661 Type *UTy = U->getType(); 4662 const SCEV *Z0 = Z->getOperand(); 4663 Type *Z0Ty = Z0->getType(); 4664 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4665 4666 // If C is a low-bits mask, the zero extend is serving to 4667 // mask off the high bits. Complement the operand and 4668 // re-apply the zext. 4669 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4670 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4671 4672 // If C is a single bit, it may be in the sign-bit position 4673 // before the zero-extend. In this case, represent the xor 4674 // using an add, which is equivalent, and re-apply the zext. 4675 APInt Trunc = CI->getValue().trunc(Z0TySize); 4676 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4677 Trunc.isSignBit()) 4678 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4679 UTy); 4680 } 4681 } 4682 break; 4683 4684 case Instruction::Shl: 4685 // Turn shift left of a constant amount into a multiply. 4686 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4687 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4688 4689 // If the shift count is not less than the bitwidth, the result of 4690 // the shift is undefined. Don't try to analyze it, because the 4691 // resolution chosen here may differ from the resolution chosen in 4692 // other parts of the compiler. 4693 if (SA->getValue().uge(BitWidth)) 4694 break; 4695 4696 // It is currently not resolved how to interpret NSW for left 4697 // shift by BitWidth - 1, so we avoid applying flags in that 4698 // case. Remove this check (or this comment) once the situation 4699 // is resolved. See 4700 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4701 // and http://reviews.llvm.org/D8890 . 4702 auto Flags = SCEV::FlagAnyWrap; 4703 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4704 4705 Constant *X = ConstantInt::get(getContext(), 4706 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4707 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4708 } 4709 break; 4710 4711 case Instruction::LShr: 4712 // Turn logical shift right of a constant into a unsigned divide. 4713 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4714 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4715 4716 // If the shift count is not less than the bitwidth, the result of 4717 // the shift is undefined. Don't try to analyze it, because the 4718 // resolution chosen here may differ from the resolution chosen in 4719 // other parts of the compiler. 4720 if (SA->getValue().uge(BitWidth)) 4721 break; 4722 4723 Constant *X = ConstantInt::get(getContext(), 4724 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4725 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4726 } 4727 break; 4728 4729 case Instruction::AShr: 4730 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4731 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4732 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4733 if (L->getOpcode() == Instruction::Shl && 4734 L->getOperand(1) == U->getOperand(1)) { 4735 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4736 4737 // If the shift count is not less than the bitwidth, the result of 4738 // the shift is undefined. Don't try to analyze it, because the 4739 // resolution chosen here may differ from the resolution chosen in 4740 // other parts of the compiler. 4741 if (CI->getValue().uge(BitWidth)) 4742 break; 4743 4744 uint64_t Amt = BitWidth - CI->getZExtValue(); 4745 if (Amt == BitWidth) 4746 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4747 return 4748 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4749 IntegerType::get(getContext(), 4750 Amt)), 4751 U->getType()); 4752 } 4753 break; 4754 4755 case Instruction::Trunc: 4756 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4757 4758 case Instruction::ZExt: 4759 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4760 4761 case Instruction::SExt: 4762 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4763 4764 case Instruction::BitCast: 4765 // BitCasts are no-op casts so we just eliminate the cast. 4766 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4767 return getSCEV(U->getOperand(0)); 4768 break; 4769 4770 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4771 // lead to pointer expressions which cannot safely be expanded to GEPs, 4772 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4773 // simplifying integer expressions. 4774 4775 case Instruction::GetElementPtr: 4776 return createNodeForGEP(cast<GEPOperator>(U)); 4777 4778 case Instruction::PHI: 4779 return createNodeForPHI(cast<PHINode>(U)); 4780 4781 case Instruction::Select: 4782 // U can also be a select constant expr, which let fall through. Since 4783 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4784 // constant expressions cannot have instructions as operands, we'd have 4785 // returned getUnknown for a select constant expressions anyway. 4786 if (isa<Instruction>(U)) 4787 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4788 U->getOperand(1), U->getOperand(2)); 4789 4790 default: // We cannot analyze this expression. 4791 break; 4792 } 4793 4794 return getUnknown(V); 4795 } 4796 4797 4798 4799 //===----------------------------------------------------------------------===// 4800 // Iteration Count Computation Code 4801 // 4802 4803 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4804 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4805 return getSmallConstantTripCount(L, ExitingBB); 4806 4807 // No trip count information for multiple exits. 4808 return 0; 4809 } 4810 4811 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4812 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4813 /// constant. Will also return 0 if the maximum trip count is very large (>= 4814 /// 2^32). 4815 /// 4816 /// This "trip count" assumes that control exits via ExitingBlock. More 4817 /// precisely, it is the number of times that control may reach ExitingBlock 4818 /// before taking the branch. For loops with multiple exits, it may not be the 4819 /// number times that the loop header executes because the loop may exit 4820 /// prematurely via another branch. 4821 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4822 BasicBlock *ExitingBlock) { 4823 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4824 assert(L->isLoopExiting(ExitingBlock) && 4825 "Exiting block must actually branch out of the loop!"); 4826 const SCEVConstant *ExitCount = 4827 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4828 if (!ExitCount) 4829 return 0; 4830 4831 ConstantInt *ExitConst = ExitCount->getValue(); 4832 4833 // Guard against huge trip counts. 4834 if (ExitConst->getValue().getActiveBits() > 32) 4835 return 0; 4836 4837 // In case of integer overflow, this returns 0, which is correct. 4838 return ((unsigned)ExitConst->getZExtValue()) + 1; 4839 } 4840 4841 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4842 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4843 return getSmallConstantTripMultiple(L, ExitingBB); 4844 4845 // No trip multiple information for multiple exits. 4846 return 0; 4847 } 4848 4849 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4850 /// trip count of this loop as a normal unsigned value, if possible. This 4851 /// means that the actual trip count is always a multiple of the returned 4852 /// value (don't forget the trip count could very well be zero as well!). 4853 /// 4854 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4855 /// multiple of a constant (which is also the case if the trip count is simply 4856 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4857 /// if the trip count is very large (>= 2^32). 4858 /// 4859 /// As explained in the comments for getSmallConstantTripCount, this assumes 4860 /// that control exits the loop via ExitingBlock. 4861 unsigned 4862 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4863 BasicBlock *ExitingBlock) { 4864 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4865 assert(L->isLoopExiting(ExitingBlock) && 4866 "Exiting block must actually branch out of the loop!"); 4867 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4868 if (ExitCount == getCouldNotCompute()) 4869 return 1; 4870 4871 // Get the trip count from the BE count by adding 1. 4872 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4873 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4874 // to factor simple cases. 4875 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4876 TCMul = Mul->getOperand(0); 4877 4878 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4879 if (!MulC) 4880 return 1; 4881 4882 ConstantInt *Result = MulC->getValue(); 4883 4884 // Guard against huge trip counts (this requires checking 4885 // for zero to handle the case where the trip count == -1 and the 4886 // addition wraps). 4887 if (!Result || Result->getValue().getActiveBits() > 32 || 4888 Result->getValue().getActiveBits() == 0) 4889 return 1; 4890 4891 return (unsigned)Result->getZExtValue(); 4892 } 4893 4894 // getExitCount - Get the expression for the number of loop iterations for which 4895 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4896 // SCEVCouldNotCompute. 4897 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4898 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4899 } 4900 4901 /// getBackedgeTakenCount - If the specified loop has a predictable 4902 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4903 /// object. The backedge-taken count is the number of times the loop header 4904 /// will be branched to from within the loop. This is one less than the 4905 /// trip count of the loop, since it doesn't count the first iteration, 4906 /// when the header is branched to from outside the loop. 4907 /// 4908 /// Note that it is not valid to call this method on a loop without a 4909 /// loop-invariant backedge-taken count (see 4910 /// hasLoopInvariantBackedgeTakenCount). 4911 /// 4912 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4913 return getBackedgeTakenInfo(L).getExact(this); 4914 } 4915 4916 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4917 /// return the least SCEV value that is known never to be less than the 4918 /// actual backedge taken count. 4919 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4920 return getBackedgeTakenInfo(L).getMax(this); 4921 } 4922 4923 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4924 /// onto the given Worklist. 4925 static void 4926 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4927 BasicBlock *Header = L->getHeader(); 4928 4929 // Push all Loop-header PHIs onto the Worklist stack. 4930 for (BasicBlock::iterator I = Header->begin(); 4931 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4932 Worklist.push_back(PN); 4933 } 4934 4935 const ScalarEvolution::BackedgeTakenInfo & 4936 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4937 // Initially insert an invalid entry for this loop. If the insertion 4938 // succeeds, proceed to actually compute a backedge-taken count and 4939 // update the value. The temporary CouldNotCompute value tells SCEV 4940 // code elsewhere that it shouldn't attempt to request a new 4941 // backedge-taken count, which could result in infinite recursion. 4942 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4943 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4944 if (!Pair.second) 4945 return Pair.first->second; 4946 4947 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 4948 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4949 // must be cleared in this scope. 4950 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 4951 4952 if (Result.getExact(this) != getCouldNotCompute()) { 4953 assert(isLoopInvariant(Result.getExact(this), L) && 4954 isLoopInvariant(Result.getMax(this), L) && 4955 "Computed backedge-taken count isn't loop invariant for loop!"); 4956 ++NumTripCountsComputed; 4957 } 4958 else if (Result.getMax(this) == getCouldNotCompute() && 4959 isa<PHINode>(L->getHeader()->begin())) { 4960 // Only count loops that have phi nodes as not being computable. 4961 ++NumTripCountsNotComputed; 4962 } 4963 4964 // Now that we know more about the trip count for this loop, forget any 4965 // existing SCEV values for PHI nodes in this loop since they are only 4966 // conservative estimates made without the benefit of trip count 4967 // information. This is similar to the code in forgetLoop, except that 4968 // it handles SCEVUnknown PHI nodes specially. 4969 if (Result.hasAnyInfo()) { 4970 SmallVector<Instruction *, 16> Worklist; 4971 PushLoopPHIs(L, Worklist); 4972 4973 SmallPtrSet<Instruction *, 8> Visited; 4974 while (!Worklist.empty()) { 4975 Instruction *I = Worklist.pop_back_val(); 4976 if (!Visited.insert(I).second) 4977 continue; 4978 4979 ValueExprMapType::iterator It = 4980 ValueExprMap.find_as(static_cast<Value *>(I)); 4981 if (It != ValueExprMap.end()) { 4982 const SCEV *Old = It->second; 4983 4984 // SCEVUnknown for a PHI either means that it has an unrecognized 4985 // structure, or it's a PHI that's in the progress of being computed 4986 // by createNodeForPHI. In the former case, additional loop trip 4987 // count information isn't going to change anything. In the later 4988 // case, createNodeForPHI will perform the necessary updates on its 4989 // own when it gets to that point. 4990 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4991 forgetMemoizedResults(Old); 4992 ValueExprMap.erase(It); 4993 } 4994 if (PHINode *PN = dyn_cast<PHINode>(I)) 4995 ConstantEvolutionLoopExitValue.erase(PN); 4996 } 4997 4998 PushDefUseChildren(I, Worklist); 4999 } 5000 } 5001 5002 // Re-lookup the insert position, since the call to 5003 // computeBackedgeTakenCount above could result in a 5004 // recusive call to getBackedgeTakenInfo (on a different 5005 // loop), which would invalidate the iterator computed 5006 // earlier. 5007 return BackedgeTakenCounts.find(L)->second = Result; 5008 } 5009 5010 /// forgetLoop - This method should be called by the client when it has 5011 /// changed a loop in a way that may effect ScalarEvolution's ability to 5012 /// compute a trip count, or if the loop is deleted. 5013 void ScalarEvolution::forgetLoop(const Loop *L) { 5014 // Drop any stored trip count value. 5015 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 5016 BackedgeTakenCounts.find(L); 5017 if (BTCPos != BackedgeTakenCounts.end()) { 5018 BTCPos->second.clear(); 5019 BackedgeTakenCounts.erase(BTCPos); 5020 } 5021 5022 // Drop information about expressions based on loop-header PHIs. 5023 SmallVector<Instruction *, 16> Worklist; 5024 PushLoopPHIs(L, Worklist); 5025 5026 SmallPtrSet<Instruction *, 8> Visited; 5027 while (!Worklist.empty()) { 5028 Instruction *I = Worklist.pop_back_val(); 5029 if (!Visited.insert(I).second) 5030 continue; 5031 5032 ValueExprMapType::iterator It = 5033 ValueExprMap.find_as(static_cast<Value *>(I)); 5034 if (It != ValueExprMap.end()) { 5035 forgetMemoizedResults(It->second); 5036 ValueExprMap.erase(It); 5037 if (PHINode *PN = dyn_cast<PHINode>(I)) 5038 ConstantEvolutionLoopExitValue.erase(PN); 5039 } 5040 5041 PushDefUseChildren(I, Worklist); 5042 } 5043 5044 // Forget all contained loops too, to avoid dangling entries in the 5045 // ValuesAtScopes map. 5046 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5047 forgetLoop(*I); 5048 } 5049 5050 /// forgetValue - This method should be called by the client when it has 5051 /// changed a value in a way that may effect its value, or which may 5052 /// disconnect it from a def-use chain linking it to a loop. 5053 void ScalarEvolution::forgetValue(Value *V) { 5054 Instruction *I = dyn_cast<Instruction>(V); 5055 if (!I) return; 5056 5057 // Drop information about expressions based on loop-header PHIs. 5058 SmallVector<Instruction *, 16> Worklist; 5059 Worklist.push_back(I); 5060 5061 SmallPtrSet<Instruction *, 8> Visited; 5062 while (!Worklist.empty()) { 5063 I = Worklist.pop_back_val(); 5064 if (!Visited.insert(I).second) 5065 continue; 5066 5067 ValueExprMapType::iterator It = 5068 ValueExprMap.find_as(static_cast<Value *>(I)); 5069 if (It != ValueExprMap.end()) { 5070 forgetMemoizedResults(It->second); 5071 ValueExprMap.erase(It); 5072 if (PHINode *PN = dyn_cast<PHINode>(I)) 5073 ConstantEvolutionLoopExitValue.erase(PN); 5074 } 5075 5076 PushDefUseChildren(I, Worklist); 5077 } 5078 } 5079 5080 /// getExact - Get the exact loop backedge taken count considering all loop 5081 /// exits. A computable result can only be returned for loops with a single 5082 /// exit. Returning the minimum taken count among all exits is incorrect 5083 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5084 /// assumes that the limit of each loop test is never skipped. This is a valid 5085 /// assumption as long as the loop exits via that test. For precise results, it 5086 /// is the caller's responsibility to specify the relevant loop exit using 5087 /// getExact(ExitingBlock, SE). 5088 const SCEV * 5089 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5090 // If any exits were not computable, the loop is not computable. 5091 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5092 5093 // We need exactly one computable exit. 5094 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5095 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5096 5097 const SCEV *BECount = nullptr; 5098 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5099 ENT != nullptr; ENT = ENT->getNextExit()) { 5100 5101 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5102 5103 if (!BECount) 5104 BECount = ENT->ExactNotTaken; 5105 else if (BECount != ENT->ExactNotTaken) 5106 return SE->getCouldNotCompute(); 5107 } 5108 assert(BECount && "Invalid not taken count for loop exit"); 5109 return BECount; 5110 } 5111 5112 /// getExact - Get the exact not taken count for this loop exit. 5113 const SCEV * 5114 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5115 ScalarEvolution *SE) const { 5116 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5117 ENT != nullptr; ENT = ENT->getNextExit()) { 5118 5119 if (ENT->ExitingBlock == ExitingBlock) 5120 return ENT->ExactNotTaken; 5121 } 5122 return SE->getCouldNotCompute(); 5123 } 5124 5125 /// getMax - Get the max backedge taken count for the loop. 5126 const SCEV * 5127 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5128 return Max ? Max : SE->getCouldNotCompute(); 5129 } 5130 5131 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5132 ScalarEvolution *SE) const { 5133 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5134 return true; 5135 5136 if (!ExitNotTaken.ExitingBlock) 5137 return false; 5138 5139 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5140 ENT != nullptr; ENT = ENT->getNextExit()) { 5141 5142 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5143 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5144 return true; 5145 } 5146 } 5147 return false; 5148 } 5149 5150 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5151 /// computable exit into a persistent ExitNotTakenInfo array. 5152 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5153 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5154 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5155 5156 if (!Complete) 5157 ExitNotTaken.setIncomplete(); 5158 5159 unsigned NumExits = ExitCounts.size(); 5160 if (NumExits == 0) return; 5161 5162 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5163 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5164 if (NumExits == 1) return; 5165 5166 // Handle the rare case of multiple computable exits. 5167 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5168 5169 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5170 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5171 PrevENT->setNextExit(ENT); 5172 ENT->ExitingBlock = ExitCounts[i].first; 5173 ENT->ExactNotTaken = ExitCounts[i].second; 5174 } 5175 } 5176 5177 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5178 void ScalarEvolution::BackedgeTakenInfo::clear() { 5179 ExitNotTaken.ExitingBlock = nullptr; 5180 ExitNotTaken.ExactNotTaken = nullptr; 5181 delete[] ExitNotTaken.getNextExit(); 5182 } 5183 5184 /// computeBackedgeTakenCount - Compute the number of times the backedge 5185 /// of the specified loop will execute. 5186 ScalarEvolution::BackedgeTakenInfo 5187 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5188 SmallVector<BasicBlock *, 8> ExitingBlocks; 5189 L->getExitingBlocks(ExitingBlocks); 5190 5191 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5192 bool CouldComputeBECount = true; 5193 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5194 const SCEV *MustExitMaxBECount = nullptr; 5195 const SCEV *MayExitMaxBECount = nullptr; 5196 5197 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5198 // and compute maxBECount. 5199 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5200 BasicBlock *ExitBB = ExitingBlocks[i]; 5201 ExitLimit EL = computeExitLimit(L, ExitBB); 5202 5203 // 1. For each exit that can be computed, add an entry to ExitCounts. 5204 // CouldComputeBECount is true only if all exits can be computed. 5205 if (EL.Exact == getCouldNotCompute()) 5206 // We couldn't compute an exact value for this exit, so 5207 // we won't be able to compute an exact value for the loop. 5208 CouldComputeBECount = false; 5209 else 5210 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5211 5212 // 2. Derive the loop's MaxBECount from each exit's max number of 5213 // non-exiting iterations. Partition the loop exits into two kinds: 5214 // LoopMustExits and LoopMayExits. 5215 // 5216 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5217 // is a LoopMayExit. If any computable LoopMustExit is found, then 5218 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5219 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5220 // considered greater than any computable EL.Max. 5221 if (EL.Max != getCouldNotCompute() && Latch && 5222 DT.dominates(ExitBB, Latch)) { 5223 if (!MustExitMaxBECount) 5224 MustExitMaxBECount = EL.Max; 5225 else { 5226 MustExitMaxBECount = 5227 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5228 } 5229 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5230 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5231 MayExitMaxBECount = EL.Max; 5232 else { 5233 MayExitMaxBECount = 5234 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5235 } 5236 } 5237 } 5238 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5239 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5240 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5241 } 5242 5243 ScalarEvolution::ExitLimit 5244 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5245 5246 // Okay, we've chosen an exiting block. See what condition causes us to exit 5247 // at this block and remember the exit block and whether all other targets 5248 // lead to the loop header. 5249 bool MustExecuteLoopHeader = true; 5250 BasicBlock *Exit = nullptr; 5251 for (auto *SBB : successors(ExitingBlock)) 5252 if (!L->contains(SBB)) { 5253 if (Exit) // Multiple exit successors. 5254 return getCouldNotCompute(); 5255 Exit = SBB; 5256 } else if (SBB != L->getHeader()) { 5257 MustExecuteLoopHeader = false; 5258 } 5259 5260 // At this point, we know we have a conditional branch that determines whether 5261 // the loop is exited. However, we don't know if the branch is executed each 5262 // time through the loop. If not, then the execution count of the branch will 5263 // not be equal to the trip count of the loop. 5264 // 5265 // Currently we check for this by checking to see if the Exit branch goes to 5266 // the loop header. If so, we know it will always execute the same number of 5267 // times as the loop. We also handle the case where the exit block *is* the 5268 // loop header. This is common for un-rotated loops. 5269 // 5270 // If both of those tests fail, walk up the unique predecessor chain to the 5271 // header, stopping if there is an edge that doesn't exit the loop. If the 5272 // header is reached, the execution count of the branch will be equal to the 5273 // trip count of the loop. 5274 // 5275 // More extensive analysis could be done to handle more cases here. 5276 // 5277 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5278 // The simple checks failed, try climbing the unique predecessor chain 5279 // up to the header. 5280 bool Ok = false; 5281 for (BasicBlock *BB = ExitingBlock; BB; ) { 5282 BasicBlock *Pred = BB->getUniquePredecessor(); 5283 if (!Pred) 5284 return getCouldNotCompute(); 5285 TerminatorInst *PredTerm = Pred->getTerminator(); 5286 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5287 if (PredSucc == BB) 5288 continue; 5289 // If the predecessor has a successor that isn't BB and isn't 5290 // outside the loop, assume the worst. 5291 if (L->contains(PredSucc)) 5292 return getCouldNotCompute(); 5293 } 5294 if (Pred == L->getHeader()) { 5295 Ok = true; 5296 break; 5297 } 5298 BB = Pred; 5299 } 5300 if (!Ok) 5301 return getCouldNotCompute(); 5302 } 5303 5304 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5305 TerminatorInst *Term = ExitingBlock->getTerminator(); 5306 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5307 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5308 // Proceed to the next level to examine the exit condition expression. 5309 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5310 BI->getSuccessor(1), 5311 /*ControlsExit=*/IsOnlyExit); 5312 } 5313 5314 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5315 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5316 /*ControlsExit=*/IsOnlyExit); 5317 5318 return getCouldNotCompute(); 5319 } 5320 5321 /// computeExitLimitFromCond - Compute the number of times the 5322 /// backedge of the specified loop will execute if its exit condition 5323 /// were a conditional branch of ExitCond, TBB, and FBB. 5324 /// 5325 /// @param ControlsExit is true if ExitCond directly controls the exit 5326 /// branch. In this case, we can assume that the loop exits only if the 5327 /// condition is true and can infer that failing to meet the condition prior to 5328 /// integer wraparound results in undefined behavior. 5329 ScalarEvolution::ExitLimit 5330 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5331 Value *ExitCond, 5332 BasicBlock *TBB, 5333 BasicBlock *FBB, 5334 bool ControlsExit) { 5335 // Check if the controlling expression for this loop is an And or Or. 5336 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5337 if (BO->getOpcode() == Instruction::And) { 5338 // Recurse on the operands of the and. 5339 bool EitherMayExit = L->contains(TBB); 5340 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5341 ControlsExit && !EitherMayExit); 5342 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5343 ControlsExit && !EitherMayExit); 5344 const SCEV *BECount = getCouldNotCompute(); 5345 const SCEV *MaxBECount = getCouldNotCompute(); 5346 if (EitherMayExit) { 5347 // Both conditions must be true for the loop to continue executing. 5348 // Choose the less conservative count. 5349 if (EL0.Exact == getCouldNotCompute() || 5350 EL1.Exact == getCouldNotCompute()) 5351 BECount = getCouldNotCompute(); 5352 else 5353 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5354 if (EL0.Max == getCouldNotCompute()) 5355 MaxBECount = EL1.Max; 5356 else if (EL1.Max == getCouldNotCompute()) 5357 MaxBECount = EL0.Max; 5358 else 5359 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5360 } else { 5361 // Both conditions must be true at the same time for the loop to exit. 5362 // For now, be conservative. 5363 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5364 if (EL0.Max == EL1.Max) 5365 MaxBECount = EL0.Max; 5366 if (EL0.Exact == EL1.Exact) 5367 BECount = EL0.Exact; 5368 } 5369 5370 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 5371 // to be more aggressive when computing BECount than when computing 5372 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact 5373 // to match, but for EL0.Max and EL1.Max to not. 5374 if (isa<SCEVCouldNotCompute>(MaxBECount) && 5375 !isa<SCEVCouldNotCompute>(BECount)) 5376 MaxBECount = BECount; 5377 5378 return ExitLimit(BECount, MaxBECount); 5379 } 5380 if (BO->getOpcode() == Instruction::Or) { 5381 // Recurse on the operands of the or. 5382 bool EitherMayExit = L->contains(FBB); 5383 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5384 ControlsExit && !EitherMayExit); 5385 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5386 ControlsExit && !EitherMayExit); 5387 const SCEV *BECount = getCouldNotCompute(); 5388 const SCEV *MaxBECount = getCouldNotCompute(); 5389 if (EitherMayExit) { 5390 // Both conditions must be false for the loop to continue executing. 5391 // Choose the less conservative count. 5392 if (EL0.Exact == getCouldNotCompute() || 5393 EL1.Exact == getCouldNotCompute()) 5394 BECount = getCouldNotCompute(); 5395 else 5396 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5397 if (EL0.Max == getCouldNotCompute()) 5398 MaxBECount = EL1.Max; 5399 else if (EL1.Max == getCouldNotCompute()) 5400 MaxBECount = EL0.Max; 5401 else 5402 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5403 } else { 5404 // Both conditions must be false at the same time for the loop to exit. 5405 // For now, be conservative. 5406 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5407 if (EL0.Max == EL1.Max) 5408 MaxBECount = EL0.Max; 5409 if (EL0.Exact == EL1.Exact) 5410 BECount = EL0.Exact; 5411 } 5412 5413 return ExitLimit(BECount, MaxBECount); 5414 } 5415 } 5416 5417 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5418 // Proceed to the next level to examine the icmp. 5419 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5420 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5421 5422 // Check for a constant condition. These are normally stripped out by 5423 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5424 // preserve the CFG and is temporarily leaving constant conditions 5425 // in place. 5426 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5427 if (L->contains(FBB) == !CI->getZExtValue()) 5428 // The backedge is always taken. 5429 return getCouldNotCompute(); 5430 else 5431 // The backedge is never taken. 5432 return getZero(CI->getType()); 5433 } 5434 5435 // If it's not an integer or pointer comparison then compute it the hard way. 5436 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5437 } 5438 5439 ScalarEvolution::ExitLimit 5440 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5441 ICmpInst *ExitCond, 5442 BasicBlock *TBB, 5443 BasicBlock *FBB, 5444 bool ControlsExit) { 5445 5446 // If the condition was exit on true, convert the condition to exit on false 5447 ICmpInst::Predicate Cond; 5448 if (!L->contains(FBB)) 5449 Cond = ExitCond->getPredicate(); 5450 else 5451 Cond = ExitCond->getInversePredicate(); 5452 5453 // Handle common loops like: for (X = "string"; *X; ++X) 5454 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5455 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5456 ExitLimit ItCnt = 5457 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5458 if (ItCnt.hasAnyInfo()) 5459 return ItCnt; 5460 } 5461 5462 ExitLimit ShiftEL = computeShiftCompareExitLimit( 5463 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond); 5464 if (ShiftEL.hasAnyInfo()) 5465 return ShiftEL; 5466 5467 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5468 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5469 5470 // Try to evaluate any dependencies out of the loop. 5471 LHS = getSCEVAtScope(LHS, L); 5472 RHS = getSCEVAtScope(RHS, L); 5473 5474 // At this point, we would like to compute how many iterations of the 5475 // loop the predicate will return true for these inputs. 5476 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5477 // If there is a loop-invariant, force it into the RHS. 5478 std::swap(LHS, RHS); 5479 Cond = ICmpInst::getSwappedPredicate(Cond); 5480 } 5481 5482 // Simplify the operands before analyzing them. 5483 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5484 5485 // If we have a comparison of a chrec against a constant, try to use value 5486 // ranges to answer this query. 5487 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5488 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5489 if (AddRec->getLoop() == L) { 5490 // Form the constant range. 5491 ConstantRange CompRange( 5492 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt())); 5493 5494 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5495 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5496 } 5497 5498 switch (Cond) { 5499 case ICmpInst::ICMP_NE: { // while (X != Y) 5500 // Convert to: while (X-Y != 0) 5501 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5502 if (EL.hasAnyInfo()) return EL; 5503 break; 5504 } 5505 case ICmpInst::ICMP_EQ: { // while (X == Y) 5506 // Convert to: while (X-Y == 0) 5507 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5508 if (EL.hasAnyInfo()) return EL; 5509 break; 5510 } 5511 case ICmpInst::ICMP_SLT: 5512 case ICmpInst::ICMP_ULT: { // while (X < Y) 5513 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5514 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5515 if (EL.hasAnyInfo()) return EL; 5516 break; 5517 } 5518 case ICmpInst::ICMP_SGT: 5519 case ICmpInst::ICMP_UGT: { // while (X > Y) 5520 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5521 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5522 if (EL.hasAnyInfo()) return EL; 5523 break; 5524 } 5525 default: 5526 break; 5527 } 5528 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5529 } 5530 5531 ScalarEvolution::ExitLimit 5532 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5533 SwitchInst *Switch, 5534 BasicBlock *ExitingBlock, 5535 bool ControlsExit) { 5536 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5537 5538 // Give up if the exit is the default dest of a switch. 5539 if (Switch->getDefaultDest() == ExitingBlock) 5540 return getCouldNotCompute(); 5541 5542 assert(L->contains(Switch->getDefaultDest()) && 5543 "Default case must not exit the loop!"); 5544 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5545 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5546 5547 // while (X != Y) --> while (X-Y != 0) 5548 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5549 if (EL.hasAnyInfo()) 5550 return EL; 5551 5552 return getCouldNotCompute(); 5553 } 5554 5555 static ConstantInt * 5556 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5557 ScalarEvolution &SE) { 5558 const SCEV *InVal = SE.getConstant(C); 5559 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5560 assert(isa<SCEVConstant>(Val) && 5561 "Evaluation of SCEV at constant didn't fold correctly?"); 5562 return cast<SCEVConstant>(Val)->getValue(); 5563 } 5564 5565 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5566 /// 'icmp op load X, cst', try to see if we can compute the backedge 5567 /// execution count. 5568 ScalarEvolution::ExitLimit 5569 ScalarEvolution::computeLoadConstantCompareExitLimit( 5570 LoadInst *LI, 5571 Constant *RHS, 5572 const Loop *L, 5573 ICmpInst::Predicate predicate) { 5574 5575 if (LI->isVolatile()) return getCouldNotCompute(); 5576 5577 // Check to see if the loaded pointer is a getelementptr of a global. 5578 // TODO: Use SCEV instead of manually grubbing with GEPs. 5579 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5580 if (!GEP) return getCouldNotCompute(); 5581 5582 // Make sure that it is really a constant global we are gepping, with an 5583 // initializer, and make sure the first IDX is really 0. 5584 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5585 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5586 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5587 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5588 return getCouldNotCompute(); 5589 5590 // Okay, we allow one non-constant index into the GEP instruction. 5591 Value *VarIdx = nullptr; 5592 std::vector<Constant*> Indexes; 5593 unsigned VarIdxNum = 0; 5594 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5595 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5596 Indexes.push_back(CI); 5597 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5598 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5599 VarIdx = GEP->getOperand(i); 5600 VarIdxNum = i-2; 5601 Indexes.push_back(nullptr); 5602 } 5603 5604 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5605 if (!VarIdx) 5606 return getCouldNotCompute(); 5607 5608 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5609 // Check to see if X is a loop variant variable value now. 5610 const SCEV *Idx = getSCEV(VarIdx); 5611 Idx = getSCEVAtScope(Idx, L); 5612 5613 // We can only recognize very limited forms of loop index expressions, in 5614 // particular, only affine AddRec's like {C1,+,C2}. 5615 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5616 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5617 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5618 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5619 return getCouldNotCompute(); 5620 5621 unsigned MaxSteps = MaxBruteForceIterations; 5622 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5623 ConstantInt *ItCst = ConstantInt::get( 5624 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5625 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5626 5627 // Form the GEP offset. 5628 Indexes[VarIdxNum] = Val; 5629 5630 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5631 Indexes); 5632 if (!Result) break; // Cannot compute! 5633 5634 // Evaluate the condition for this iteration. 5635 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5636 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5637 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5638 ++NumArrayLenItCounts; 5639 return getConstant(ItCst); // Found terminating iteration! 5640 } 5641 } 5642 return getCouldNotCompute(); 5643 } 5644 5645 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 5646 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 5647 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 5648 if (!RHS) 5649 return getCouldNotCompute(); 5650 5651 const BasicBlock *Latch = L->getLoopLatch(); 5652 if (!Latch) 5653 return getCouldNotCompute(); 5654 5655 const BasicBlock *Predecessor = L->getLoopPredecessor(); 5656 if (!Predecessor) 5657 return getCouldNotCompute(); 5658 5659 // Return true if V is of the form "LHS `shift_op` <positive constant>". 5660 // Return LHS in OutLHS and shift_opt in OutOpCode. 5661 auto MatchPositiveShift = 5662 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 5663 5664 using namespace PatternMatch; 5665 5666 ConstantInt *ShiftAmt; 5667 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5668 OutOpCode = Instruction::LShr; 5669 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5670 OutOpCode = Instruction::AShr; 5671 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5672 OutOpCode = Instruction::Shl; 5673 else 5674 return false; 5675 5676 return ShiftAmt->getValue().isStrictlyPositive(); 5677 }; 5678 5679 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 5680 // 5681 // loop: 5682 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 5683 // %iv.shifted = lshr i32 %iv, <positive constant> 5684 // 5685 // Return true on a succesful match. Return the corresponding PHI node (%iv 5686 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 5687 auto MatchShiftRecurrence = 5688 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 5689 Optional<Instruction::BinaryOps> PostShiftOpCode; 5690 5691 { 5692 Instruction::BinaryOps OpC; 5693 Value *V; 5694 5695 // If we encounter a shift instruction, "peel off" the shift operation, 5696 // and remember that we did so. Later when we inspect %iv's backedge 5697 // value, we will make sure that the backedge value uses the same 5698 // operation. 5699 // 5700 // Note: the peeled shift operation does not have to be the same 5701 // instruction as the one feeding into the PHI's backedge value. We only 5702 // really care about it being the same *kind* of shift instruction -- 5703 // that's all that is required for our later inferences to hold. 5704 if (MatchPositiveShift(LHS, V, OpC)) { 5705 PostShiftOpCode = OpC; 5706 LHS = V; 5707 } 5708 } 5709 5710 PNOut = dyn_cast<PHINode>(LHS); 5711 if (!PNOut || PNOut->getParent() != L->getHeader()) 5712 return false; 5713 5714 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 5715 Value *OpLHS; 5716 5717 return 5718 // The backedge value for the PHI node must be a shift by a positive 5719 // amount 5720 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 5721 5722 // of the PHI node itself 5723 OpLHS == PNOut && 5724 5725 // and the kind of shift should be match the kind of shift we peeled 5726 // off, if any. 5727 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 5728 }; 5729 5730 PHINode *PN; 5731 Instruction::BinaryOps OpCode; 5732 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 5733 return getCouldNotCompute(); 5734 5735 const DataLayout &DL = getDataLayout(); 5736 5737 // The key rationale for this optimization is that for some kinds of shift 5738 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 5739 // within a finite number of iterations. If the condition guarding the 5740 // backedge (in the sense that the backedge is taken if the condition is true) 5741 // is false for the value the shift recurrence stabilizes to, then we know 5742 // that the backedge is taken only a finite number of times. 5743 5744 ConstantInt *StableValue = nullptr; 5745 switch (OpCode) { 5746 default: 5747 llvm_unreachable("Impossible case!"); 5748 5749 case Instruction::AShr: { 5750 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 5751 // bitwidth(K) iterations. 5752 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 5753 bool KnownZero, KnownOne; 5754 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 5755 Predecessor->getTerminator(), &DT); 5756 auto *Ty = cast<IntegerType>(RHS->getType()); 5757 if (KnownZero) 5758 StableValue = ConstantInt::get(Ty, 0); 5759 else if (KnownOne) 5760 StableValue = ConstantInt::get(Ty, -1, true); 5761 else 5762 return getCouldNotCompute(); 5763 5764 break; 5765 } 5766 case Instruction::LShr: 5767 case Instruction::Shl: 5768 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 5769 // stabilize to 0 in at most bitwidth(K) iterations. 5770 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 5771 break; 5772 } 5773 5774 auto *Result = 5775 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 5776 assert(Result->getType()->isIntegerTy(1) && 5777 "Otherwise cannot be an operand to a branch instruction"); 5778 5779 if (Result->isZeroValue()) { 5780 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 5781 const SCEV *UpperBound = 5782 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 5783 return ExitLimit(getCouldNotCompute(), UpperBound); 5784 } 5785 5786 return getCouldNotCompute(); 5787 } 5788 5789 /// CanConstantFold - Return true if we can constant fold an instruction of the 5790 /// specified type, assuming that all operands were constants. 5791 static bool CanConstantFold(const Instruction *I) { 5792 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5793 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5794 isa<LoadInst>(I)) 5795 return true; 5796 5797 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5798 if (const Function *F = CI->getCalledFunction()) 5799 return canConstantFoldCallTo(F); 5800 return false; 5801 } 5802 5803 /// Determine whether this instruction can constant evolve within this loop 5804 /// assuming its operands can all constant evolve. 5805 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5806 // An instruction outside of the loop can't be derived from a loop PHI. 5807 if (!L->contains(I)) return false; 5808 5809 if (isa<PHINode>(I)) { 5810 // We don't currently keep track of the control flow needed to evaluate 5811 // PHIs, so we cannot handle PHIs inside of loops. 5812 return L->getHeader() == I->getParent(); 5813 } 5814 5815 // If we won't be able to constant fold this expression even if the operands 5816 // are constants, bail early. 5817 return CanConstantFold(I); 5818 } 5819 5820 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5821 /// recursing through each instruction operand until reaching a loop header phi. 5822 static PHINode * 5823 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5824 DenseMap<Instruction *, PHINode *> &PHIMap) { 5825 5826 // Otherwise, we can evaluate this instruction if all of its operands are 5827 // constant or derived from a PHI node themselves. 5828 PHINode *PHI = nullptr; 5829 for (Value *Op : UseInst->operands()) { 5830 if (isa<Constant>(Op)) continue; 5831 5832 Instruction *OpInst = dyn_cast<Instruction>(Op); 5833 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5834 5835 PHINode *P = dyn_cast<PHINode>(OpInst); 5836 if (!P) 5837 // If this operand is already visited, reuse the prior result. 5838 // We may have P != PHI if this is the deepest point at which the 5839 // inconsistent paths meet. 5840 P = PHIMap.lookup(OpInst); 5841 if (!P) { 5842 // Recurse and memoize the results, whether a phi is found or not. 5843 // This recursive call invalidates pointers into PHIMap. 5844 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5845 PHIMap[OpInst] = P; 5846 } 5847 if (!P) 5848 return nullptr; // Not evolving from PHI 5849 if (PHI && PHI != P) 5850 return nullptr; // Evolving from multiple different PHIs. 5851 PHI = P; 5852 } 5853 // This is a expression evolving from a constant PHI! 5854 return PHI; 5855 } 5856 5857 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5858 /// in the loop that V is derived from. We allow arbitrary operations along the 5859 /// way, but the operands of an operation must either be constants or a value 5860 /// derived from a constant PHI. If this expression does not fit with these 5861 /// constraints, return null. 5862 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5863 Instruction *I = dyn_cast<Instruction>(V); 5864 if (!I || !canConstantEvolve(I, L)) return nullptr; 5865 5866 if (PHINode *PN = dyn_cast<PHINode>(I)) 5867 return PN; 5868 5869 // Record non-constant instructions contained by the loop. 5870 DenseMap<Instruction *, PHINode *> PHIMap; 5871 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5872 } 5873 5874 /// EvaluateExpression - Given an expression that passes the 5875 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5876 /// in the loop has the value PHIVal. If we can't fold this expression for some 5877 /// reason, return null. 5878 static Constant *EvaluateExpression(Value *V, const Loop *L, 5879 DenseMap<Instruction *, Constant *> &Vals, 5880 const DataLayout &DL, 5881 const TargetLibraryInfo *TLI) { 5882 // Convenient constant check, but redundant for recursive calls. 5883 if (Constant *C = dyn_cast<Constant>(V)) return C; 5884 Instruction *I = dyn_cast<Instruction>(V); 5885 if (!I) return nullptr; 5886 5887 if (Constant *C = Vals.lookup(I)) return C; 5888 5889 // An instruction inside the loop depends on a value outside the loop that we 5890 // weren't given a mapping for, or a value such as a call inside the loop. 5891 if (!canConstantEvolve(I, L)) return nullptr; 5892 5893 // An unmapped PHI can be due to a branch or another loop inside this loop, 5894 // or due to this not being the initial iteration through a loop where we 5895 // couldn't compute the evolution of this particular PHI last time. 5896 if (isa<PHINode>(I)) return nullptr; 5897 5898 std::vector<Constant*> Operands(I->getNumOperands()); 5899 5900 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5901 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5902 if (!Operand) { 5903 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5904 if (!Operands[i]) return nullptr; 5905 continue; 5906 } 5907 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5908 Vals[Operand] = C; 5909 if (!C) return nullptr; 5910 Operands[i] = C; 5911 } 5912 5913 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5914 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5915 Operands[1], DL, TLI); 5916 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5917 if (!LI->isVolatile()) 5918 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 5919 } 5920 return ConstantFoldInstOperands(I, Operands, DL, TLI); 5921 } 5922 5923 5924 // If every incoming value to PN except the one for BB is a specific Constant, 5925 // return that, else return nullptr. 5926 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 5927 Constant *IncomingVal = nullptr; 5928 5929 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5930 if (PN->getIncomingBlock(i) == BB) 5931 continue; 5932 5933 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 5934 if (!CurrentVal) 5935 return nullptr; 5936 5937 if (IncomingVal != CurrentVal) { 5938 if (IncomingVal) 5939 return nullptr; 5940 IncomingVal = CurrentVal; 5941 } 5942 } 5943 5944 return IncomingVal; 5945 } 5946 5947 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5948 /// in the header of its containing loop, we know the loop executes a 5949 /// constant number of times, and the PHI node is just a recurrence 5950 /// involving constants, fold it. 5951 Constant * 5952 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5953 const APInt &BEs, 5954 const Loop *L) { 5955 auto I = ConstantEvolutionLoopExitValue.find(PN); 5956 if (I != ConstantEvolutionLoopExitValue.end()) 5957 return I->second; 5958 5959 if (BEs.ugt(MaxBruteForceIterations)) 5960 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5961 5962 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5963 5964 DenseMap<Instruction *, Constant *> CurrentIterVals; 5965 BasicBlock *Header = L->getHeader(); 5966 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5967 5968 BasicBlock *Latch = L->getLoopLatch(); 5969 if (!Latch) 5970 return nullptr; 5971 5972 for (auto &I : *Header) { 5973 PHINode *PHI = dyn_cast<PHINode>(&I); 5974 if (!PHI) break; 5975 auto *StartCST = getOtherIncomingValue(PHI, Latch); 5976 if (!StartCST) continue; 5977 CurrentIterVals[PHI] = StartCST; 5978 } 5979 if (!CurrentIterVals.count(PN)) 5980 return RetVal = nullptr; 5981 5982 Value *BEValue = PN->getIncomingValueForBlock(Latch); 5983 5984 // Execute the loop symbolically to determine the exit value. 5985 if (BEs.getActiveBits() >= 32) 5986 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5987 5988 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5989 unsigned IterationNum = 0; 5990 const DataLayout &DL = getDataLayout(); 5991 for (; ; ++IterationNum) { 5992 if (IterationNum == NumIterations) 5993 return RetVal = CurrentIterVals[PN]; // Got exit value! 5994 5995 // Compute the value of the PHIs for the next iteration. 5996 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5997 DenseMap<Instruction *, Constant *> NextIterVals; 5998 Constant *NextPHI = 5999 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6000 if (!NextPHI) 6001 return nullptr; // Couldn't evaluate! 6002 NextIterVals[PN] = NextPHI; 6003 6004 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6005 6006 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6007 // cease to be able to evaluate one of them or if they stop evolving, 6008 // because that doesn't necessarily prevent us from computing PN. 6009 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6010 for (const auto &I : CurrentIterVals) { 6011 PHINode *PHI = dyn_cast<PHINode>(I.first); 6012 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6013 PHIsToCompute.emplace_back(PHI, I.second); 6014 } 6015 // We use two distinct loops because EvaluateExpression may invalidate any 6016 // iterators into CurrentIterVals. 6017 for (const auto &I : PHIsToCompute) { 6018 PHINode *PHI = I.first; 6019 Constant *&NextPHI = NextIterVals[PHI]; 6020 if (!NextPHI) { // Not already computed. 6021 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6022 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6023 } 6024 if (NextPHI != I.second) 6025 StoppedEvolving = false; 6026 } 6027 6028 // If all entries in CurrentIterVals == NextIterVals then we can stop 6029 // iterating, the loop can't continue to change. 6030 if (StoppedEvolving) 6031 return RetVal = CurrentIterVals[PN]; 6032 6033 CurrentIterVals.swap(NextIterVals); 6034 } 6035 } 6036 6037 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6038 Value *Cond, 6039 bool ExitWhen) { 6040 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6041 if (!PN) return getCouldNotCompute(); 6042 6043 // If the loop is canonicalized, the PHI will have exactly two entries. 6044 // That's the only form we support here. 6045 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6046 6047 DenseMap<Instruction *, Constant *> CurrentIterVals; 6048 BasicBlock *Header = L->getHeader(); 6049 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6050 6051 BasicBlock *Latch = L->getLoopLatch(); 6052 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6053 6054 for (auto &I : *Header) { 6055 PHINode *PHI = dyn_cast<PHINode>(&I); 6056 if (!PHI) 6057 break; 6058 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6059 if (!StartCST) continue; 6060 CurrentIterVals[PHI] = StartCST; 6061 } 6062 if (!CurrentIterVals.count(PN)) 6063 return getCouldNotCompute(); 6064 6065 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6066 // the loop symbolically to determine when the condition gets a value of 6067 // "ExitWhen". 6068 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6069 const DataLayout &DL = getDataLayout(); 6070 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6071 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6072 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6073 6074 // Couldn't symbolically evaluate. 6075 if (!CondVal) return getCouldNotCompute(); 6076 6077 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6078 ++NumBruteForceTripCountsComputed; 6079 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6080 } 6081 6082 // Update all the PHI nodes for the next iteration. 6083 DenseMap<Instruction *, Constant *> NextIterVals; 6084 6085 // Create a list of which PHIs we need to compute. We want to do this before 6086 // calling EvaluateExpression on them because that may invalidate iterators 6087 // into CurrentIterVals. 6088 SmallVector<PHINode *, 8> PHIsToCompute; 6089 for (const auto &I : CurrentIterVals) { 6090 PHINode *PHI = dyn_cast<PHINode>(I.first); 6091 if (!PHI || PHI->getParent() != Header) continue; 6092 PHIsToCompute.push_back(PHI); 6093 } 6094 for (PHINode *PHI : PHIsToCompute) { 6095 Constant *&NextPHI = NextIterVals[PHI]; 6096 if (NextPHI) continue; // Already computed! 6097 6098 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6099 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6100 } 6101 CurrentIterVals.swap(NextIterVals); 6102 } 6103 6104 // Too many iterations were needed to evaluate. 6105 return getCouldNotCompute(); 6106 } 6107 6108 /// getSCEVAtScope - Return a SCEV expression for the specified value 6109 /// at the specified scope in the program. The L value specifies a loop 6110 /// nest to evaluate the expression at, where null is the top-level or a 6111 /// specified loop is immediately inside of the loop. 6112 /// 6113 /// This method can be used to compute the exit value for a variable defined 6114 /// in a loop by querying what the value will hold in the parent loop. 6115 /// 6116 /// In the case that a relevant loop exit value cannot be computed, the 6117 /// original value V is returned. 6118 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6119 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6120 ValuesAtScopes[V]; 6121 // Check to see if we've folded this expression at this loop before. 6122 for (auto &LS : Values) 6123 if (LS.first == L) 6124 return LS.second ? LS.second : V; 6125 6126 Values.emplace_back(L, nullptr); 6127 6128 // Otherwise compute it. 6129 const SCEV *C = computeSCEVAtScope(V, L); 6130 for (auto &LS : reverse(ValuesAtScopes[V])) 6131 if (LS.first == L) { 6132 LS.second = C; 6133 break; 6134 } 6135 return C; 6136 } 6137 6138 /// This builds up a Constant using the ConstantExpr interface. That way, we 6139 /// will return Constants for objects which aren't represented by a 6140 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6141 /// Returns NULL if the SCEV isn't representable as a Constant. 6142 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6143 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6144 case scCouldNotCompute: 6145 case scAddRecExpr: 6146 break; 6147 case scConstant: 6148 return cast<SCEVConstant>(V)->getValue(); 6149 case scUnknown: 6150 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6151 case scSignExtend: { 6152 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6153 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6154 return ConstantExpr::getSExt(CastOp, SS->getType()); 6155 break; 6156 } 6157 case scZeroExtend: { 6158 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6159 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6160 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6161 break; 6162 } 6163 case scTruncate: { 6164 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6165 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6166 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6167 break; 6168 } 6169 case scAddExpr: { 6170 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6171 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6172 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6173 unsigned AS = PTy->getAddressSpace(); 6174 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6175 C = ConstantExpr::getBitCast(C, DestPtrTy); 6176 } 6177 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6178 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6179 if (!C2) return nullptr; 6180 6181 // First pointer! 6182 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6183 unsigned AS = C2->getType()->getPointerAddressSpace(); 6184 std::swap(C, C2); 6185 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6186 // The offsets have been converted to bytes. We can add bytes to an 6187 // i8* by GEP with the byte count in the first index. 6188 C = ConstantExpr::getBitCast(C, DestPtrTy); 6189 } 6190 6191 // Don't bother trying to sum two pointers. We probably can't 6192 // statically compute a load that results from it anyway. 6193 if (C2->getType()->isPointerTy()) 6194 return nullptr; 6195 6196 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6197 if (PTy->getElementType()->isStructTy()) 6198 C2 = ConstantExpr::getIntegerCast( 6199 C2, Type::getInt32Ty(C->getContext()), true); 6200 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6201 } else 6202 C = ConstantExpr::getAdd(C, C2); 6203 } 6204 return C; 6205 } 6206 break; 6207 } 6208 case scMulExpr: { 6209 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6210 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6211 // Don't bother with pointers at all. 6212 if (C->getType()->isPointerTy()) return nullptr; 6213 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6214 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6215 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6216 C = ConstantExpr::getMul(C, C2); 6217 } 6218 return C; 6219 } 6220 break; 6221 } 6222 case scUDivExpr: { 6223 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6224 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6225 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6226 if (LHS->getType() == RHS->getType()) 6227 return ConstantExpr::getUDiv(LHS, RHS); 6228 break; 6229 } 6230 case scSMaxExpr: 6231 case scUMaxExpr: 6232 break; // TODO: smax, umax. 6233 } 6234 return nullptr; 6235 } 6236 6237 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6238 if (isa<SCEVConstant>(V)) return V; 6239 6240 // If this instruction is evolved from a constant-evolving PHI, compute the 6241 // exit value from the loop without using SCEVs. 6242 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6243 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6244 const Loop *LI = this->LI[I->getParent()]; 6245 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6246 if (PHINode *PN = dyn_cast<PHINode>(I)) 6247 if (PN->getParent() == LI->getHeader()) { 6248 // Okay, there is no closed form solution for the PHI node. Check 6249 // to see if the loop that contains it has a known backedge-taken 6250 // count. If so, we may be able to force computation of the exit 6251 // value. 6252 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6253 if (const SCEVConstant *BTCC = 6254 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6255 // Okay, we know how many times the containing loop executes. If 6256 // this is a constant evolving PHI node, get the final value at 6257 // the specified iteration number. 6258 Constant *RV = 6259 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 6260 if (RV) return getSCEV(RV); 6261 } 6262 } 6263 6264 // Okay, this is an expression that we cannot symbolically evaluate 6265 // into a SCEV. Check to see if it's possible to symbolically evaluate 6266 // the arguments into constants, and if so, try to constant propagate the 6267 // result. This is particularly useful for computing loop exit values. 6268 if (CanConstantFold(I)) { 6269 SmallVector<Constant *, 4> Operands; 6270 bool MadeImprovement = false; 6271 for (Value *Op : I->operands()) { 6272 if (Constant *C = dyn_cast<Constant>(Op)) { 6273 Operands.push_back(C); 6274 continue; 6275 } 6276 6277 // If any of the operands is non-constant and if they are 6278 // non-integer and non-pointer, don't even try to analyze them 6279 // with scev techniques. 6280 if (!isSCEVable(Op->getType())) 6281 return V; 6282 6283 const SCEV *OrigV = getSCEV(Op); 6284 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6285 MadeImprovement |= OrigV != OpV; 6286 6287 Constant *C = BuildConstantFromSCEV(OpV); 6288 if (!C) return V; 6289 if (C->getType() != Op->getType()) 6290 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6291 Op->getType(), 6292 false), 6293 C, Op->getType()); 6294 Operands.push_back(C); 6295 } 6296 6297 // Check to see if getSCEVAtScope actually made an improvement. 6298 if (MadeImprovement) { 6299 Constant *C = nullptr; 6300 const DataLayout &DL = getDataLayout(); 6301 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6302 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6303 Operands[1], DL, &TLI); 6304 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6305 if (!LI->isVolatile()) 6306 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6307 } else 6308 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 6309 if (!C) return V; 6310 return getSCEV(C); 6311 } 6312 } 6313 } 6314 6315 // This is some other type of SCEVUnknown, just return it. 6316 return V; 6317 } 6318 6319 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6320 // Avoid performing the look-up in the common case where the specified 6321 // expression has no loop-variant portions. 6322 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6323 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6324 if (OpAtScope != Comm->getOperand(i)) { 6325 // Okay, at least one of these operands is loop variant but might be 6326 // foldable. Build a new instance of the folded commutative expression. 6327 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6328 Comm->op_begin()+i); 6329 NewOps.push_back(OpAtScope); 6330 6331 for (++i; i != e; ++i) { 6332 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6333 NewOps.push_back(OpAtScope); 6334 } 6335 if (isa<SCEVAddExpr>(Comm)) 6336 return getAddExpr(NewOps); 6337 if (isa<SCEVMulExpr>(Comm)) 6338 return getMulExpr(NewOps); 6339 if (isa<SCEVSMaxExpr>(Comm)) 6340 return getSMaxExpr(NewOps); 6341 if (isa<SCEVUMaxExpr>(Comm)) 6342 return getUMaxExpr(NewOps); 6343 llvm_unreachable("Unknown commutative SCEV type!"); 6344 } 6345 } 6346 // If we got here, all operands are loop invariant. 6347 return Comm; 6348 } 6349 6350 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6351 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6352 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6353 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6354 return Div; // must be loop invariant 6355 return getUDivExpr(LHS, RHS); 6356 } 6357 6358 // If this is a loop recurrence for a loop that does not contain L, then we 6359 // are dealing with the final value computed by the loop. 6360 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6361 // First, attempt to evaluate each operand. 6362 // Avoid performing the look-up in the common case where the specified 6363 // expression has no loop-variant portions. 6364 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6365 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6366 if (OpAtScope == AddRec->getOperand(i)) 6367 continue; 6368 6369 // Okay, at least one of these operands is loop variant but might be 6370 // foldable. Build a new instance of the folded commutative expression. 6371 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6372 AddRec->op_begin()+i); 6373 NewOps.push_back(OpAtScope); 6374 for (++i; i != e; ++i) 6375 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6376 6377 const SCEV *FoldedRec = 6378 getAddRecExpr(NewOps, AddRec->getLoop(), 6379 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6380 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6381 // The addrec may be folded to a nonrecurrence, for example, if the 6382 // induction variable is multiplied by zero after constant folding. Go 6383 // ahead and return the folded value. 6384 if (!AddRec) 6385 return FoldedRec; 6386 break; 6387 } 6388 6389 // If the scope is outside the addrec's loop, evaluate it by using the 6390 // loop exit value of the addrec. 6391 if (!AddRec->getLoop()->contains(L)) { 6392 // To evaluate this recurrence, we need to know how many times the AddRec 6393 // loop iterates. Compute this now. 6394 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6395 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6396 6397 // Then, evaluate the AddRec. 6398 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6399 } 6400 6401 return AddRec; 6402 } 6403 6404 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6405 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6406 if (Op == Cast->getOperand()) 6407 return Cast; // must be loop invariant 6408 return getZeroExtendExpr(Op, Cast->getType()); 6409 } 6410 6411 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6412 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6413 if (Op == Cast->getOperand()) 6414 return Cast; // must be loop invariant 6415 return getSignExtendExpr(Op, Cast->getType()); 6416 } 6417 6418 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6419 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6420 if (Op == Cast->getOperand()) 6421 return Cast; // must be loop invariant 6422 return getTruncateExpr(Op, Cast->getType()); 6423 } 6424 6425 llvm_unreachable("Unknown SCEV type!"); 6426 } 6427 6428 /// getSCEVAtScope - This is a convenience function which does 6429 /// getSCEVAtScope(getSCEV(V), L). 6430 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6431 return getSCEVAtScope(getSCEV(V), L); 6432 } 6433 6434 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6435 /// following equation: 6436 /// 6437 /// A * X = B (mod N) 6438 /// 6439 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6440 /// A and B isn't important. 6441 /// 6442 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6443 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6444 ScalarEvolution &SE) { 6445 uint32_t BW = A.getBitWidth(); 6446 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6447 assert(A != 0 && "A must be non-zero."); 6448 6449 // 1. D = gcd(A, N) 6450 // 6451 // The gcd of A and N may have only one prime factor: 2. The number of 6452 // trailing zeros in A is its multiplicity 6453 uint32_t Mult2 = A.countTrailingZeros(); 6454 // D = 2^Mult2 6455 6456 // 2. Check if B is divisible by D. 6457 // 6458 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6459 // is not less than multiplicity of this prime factor for D. 6460 if (B.countTrailingZeros() < Mult2) 6461 return SE.getCouldNotCompute(); 6462 6463 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6464 // modulo (N / D). 6465 // 6466 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6467 // bit width during computations. 6468 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6469 APInt Mod(BW + 1, 0); 6470 Mod.setBit(BW - Mult2); // Mod = N / D 6471 APInt I = AD.multiplicativeInverse(Mod); 6472 6473 // 4. Compute the minimum unsigned root of the equation: 6474 // I * (B / D) mod (N / D) 6475 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6476 6477 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6478 // bits. 6479 return SE.getConstant(Result.trunc(BW)); 6480 } 6481 6482 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6483 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6484 /// might be the same) or two SCEVCouldNotCompute objects. 6485 /// 6486 static std::pair<const SCEV *,const SCEV *> 6487 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6488 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6489 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6490 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6491 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6492 6493 // We currently can only solve this if the coefficients are constants. 6494 if (!LC || !MC || !NC) { 6495 const SCEV *CNC = SE.getCouldNotCompute(); 6496 return std::make_pair(CNC, CNC); 6497 } 6498 6499 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 6500 const APInt &L = LC->getAPInt(); 6501 const APInt &M = MC->getAPInt(); 6502 const APInt &N = NC->getAPInt(); 6503 APInt Two(BitWidth, 2); 6504 APInt Four(BitWidth, 4); 6505 6506 { 6507 using namespace APIntOps; 6508 const APInt& C = L; 6509 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6510 // The B coefficient is M-N/2 6511 APInt B(M); 6512 B -= sdiv(N,Two); 6513 6514 // The A coefficient is N/2 6515 APInt A(N.sdiv(Two)); 6516 6517 // Compute the B^2-4ac term. 6518 APInt SqrtTerm(B); 6519 SqrtTerm *= B; 6520 SqrtTerm -= Four * (A * C); 6521 6522 if (SqrtTerm.isNegative()) { 6523 // The loop is provably infinite. 6524 const SCEV *CNC = SE.getCouldNotCompute(); 6525 return std::make_pair(CNC, CNC); 6526 } 6527 6528 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6529 // integer value or else APInt::sqrt() will assert. 6530 APInt SqrtVal(SqrtTerm.sqrt()); 6531 6532 // Compute the two solutions for the quadratic formula. 6533 // The divisions must be performed as signed divisions. 6534 APInt NegB(-B); 6535 APInt TwoA(A << 1); 6536 if (TwoA.isMinValue()) { 6537 const SCEV *CNC = SE.getCouldNotCompute(); 6538 return std::make_pair(CNC, CNC); 6539 } 6540 6541 LLVMContext &Context = SE.getContext(); 6542 6543 ConstantInt *Solution1 = 6544 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6545 ConstantInt *Solution2 = 6546 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6547 6548 return std::make_pair(SE.getConstant(Solution1), 6549 SE.getConstant(Solution2)); 6550 } // end APIntOps namespace 6551 } 6552 6553 /// HowFarToZero - Return the number of times a backedge comparing the specified 6554 /// value to zero will execute. If not computable, return CouldNotCompute. 6555 /// 6556 /// This is only used for loops with a "x != y" exit test. The exit condition is 6557 /// now expressed as a single expression, V = x-y. So the exit test is 6558 /// effectively V != 0. We know and take advantage of the fact that this 6559 /// expression only being used in a comparison by zero context. 6560 ScalarEvolution::ExitLimit 6561 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6562 // If the value is a constant 6563 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6564 // If the value is already zero, the branch will execute zero times. 6565 if (C->getValue()->isZero()) return C; 6566 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6567 } 6568 6569 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6570 if (!AddRec || AddRec->getLoop() != L) 6571 return getCouldNotCompute(); 6572 6573 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6574 // the quadratic equation to solve it. 6575 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6576 std::pair<const SCEV *,const SCEV *> Roots = 6577 SolveQuadraticEquation(AddRec, *this); 6578 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6579 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6580 if (R1 && R2) { 6581 // Pick the smallest positive root value. 6582 if (ConstantInt *CB = 6583 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6584 R1->getValue(), 6585 R2->getValue()))) { 6586 if (!CB->getZExtValue()) 6587 std::swap(R1, R2); // R1 is the minimum root now. 6588 6589 // We can only use this value if the chrec ends up with an exact zero 6590 // value at this index. When solving for "X*X != 5", for example, we 6591 // should not accept a root of 2. 6592 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6593 if (Val->isZero()) 6594 return R1; // We found a quadratic root! 6595 } 6596 } 6597 return getCouldNotCompute(); 6598 } 6599 6600 // Otherwise we can only handle this if it is affine. 6601 if (!AddRec->isAffine()) 6602 return getCouldNotCompute(); 6603 6604 // If this is an affine expression, the execution count of this branch is 6605 // the minimum unsigned root of the following equation: 6606 // 6607 // Start + Step*N = 0 (mod 2^BW) 6608 // 6609 // equivalent to: 6610 // 6611 // Step*N = -Start (mod 2^BW) 6612 // 6613 // where BW is the common bit width of Start and Step. 6614 6615 // Get the initial value for the loop. 6616 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6617 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6618 6619 // For now we handle only constant steps. 6620 // 6621 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6622 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6623 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6624 // We have not yet seen any such cases. 6625 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6626 if (!StepC || StepC->getValue()->equalsInt(0)) 6627 return getCouldNotCompute(); 6628 6629 // For positive steps (counting up until unsigned overflow): 6630 // N = -Start/Step (as unsigned) 6631 // For negative steps (counting down to zero): 6632 // N = Start/-Step 6633 // First compute the unsigned distance from zero in the direction of Step. 6634 bool CountDown = StepC->getAPInt().isNegative(); 6635 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6636 6637 // Handle unitary steps, which cannot wraparound. 6638 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6639 // N = Distance (as unsigned) 6640 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6641 ConstantRange CR = getUnsignedRange(Start); 6642 const SCEV *MaxBECount; 6643 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6644 // When counting up, the worst starting value is 1, not 0. 6645 MaxBECount = CR.getUnsignedMax().isMinValue() 6646 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6647 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6648 else 6649 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6650 : -CR.getUnsignedMin()); 6651 return ExitLimit(Distance, MaxBECount); 6652 } 6653 6654 // As a special case, handle the instance where Step is a positive power of 6655 // two. In this case, determining whether Step divides Distance evenly can be 6656 // done by counting and comparing the number of trailing zeros of Step and 6657 // Distance. 6658 if (!CountDown) { 6659 const APInt &StepV = StepC->getAPInt(); 6660 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6661 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6662 // case is not handled as this code is guarded by !CountDown. 6663 if (StepV.isPowerOf2() && 6664 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6665 // Here we've constrained the equation to be of the form 6666 // 6667 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6668 // 6669 // where we're operating on a W bit wide integer domain and k is 6670 // non-negative. The smallest unsigned solution for X is the trip count. 6671 // 6672 // (0) is equivalent to: 6673 // 6674 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6675 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6676 // <=> 2^k * Distance' - X = L * 2^(W - N) 6677 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6678 // 6679 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6680 // by 2^(W - N). 6681 // 6682 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6683 // 6684 // E.g. say we're solving 6685 // 6686 // 2 * Val = 2 * X (in i8) ... (3) 6687 // 6688 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6689 // 6690 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6691 // necessarily the smallest unsigned value of X that satisfies (3). 6692 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6693 // is i8 1, not i8 -127 6694 6695 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6696 6697 // Since SCEV does not have a URem node, we construct one using a truncate 6698 // and a zero extend. 6699 6700 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6701 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6702 auto *WideTy = Distance->getType(); 6703 6704 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6705 } 6706 } 6707 6708 // If the condition controls loop exit (the loop exits only if the expression 6709 // is true) and the addition is no-wrap we can use unsigned divide to 6710 // compute the backedge count. In this case, the step may not divide the 6711 // distance, but we don't care because if the condition is "missed" the loop 6712 // will have undefined behavior due to wrapping. 6713 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6714 const SCEV *Exact = 6715 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6716 return ExitLimit(Exact, Exact); 6717 } 6718 6719 // Then, try to solve the above equation provided that Start is constant. 6720 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6721 return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(), 6722 *this); 6723 return getCouldNotCompute(); 6724 } 6725 6726 /// HowFarToNonZero - Return the number of times a backedge checking the 6727 /// specified value for nonzero will execute. If not computable, return 6728 /// CouldNotCompute 6729 ScalarEvolution::ExitLimit 6730 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6731 // Loops that look like: while (X == 0) are very strange indeed. We don't 6732 // handle them yet except for the trivial case. This could be expanded in the 6733 // future as needed. 6734 6735 // If the value is a constant, check to see if it is known to be non-zero 6736 // already. If so, the backedge will execute zero times. 6737 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6738 if (!C->getValue()->isNullValue()) 6739 return getZero(C->getType()); 6740 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6741 } 6742 6743 // We could implement others, but I really doubt anyone writes loops like 6744 // this, and if they did, they would already be constant folded. 6745 return getCouldNotCompute(); 6746 } 6747 6748 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6749 /// (which may not be an immediate predecessor) which has exactly one 6750 /// successor from which BB is reachable, or null if no such block is 6751 /// found. 6752 /// 6753 std::pair<BasicBlock *, BasicBlock *> 6754 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6755 // If the block has a unique predecessor, then there is no path from the 6756 // predecessor to the block that does not go through the direct edge 6757 // from the predecessor to the block. 6758 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6759 return std::make_pair(Pred, BB); 6760 6761 // A loop's header is defined to be a block that dominates the loop. 6762 // If the header has a unique predecessor outside the loop, it must be 6763 // a block that has exactly one successor that can reach the loop. 6764 if (Loop *L = LI.getLoopFor(BB)) 6765 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6766 6767 return std::pair<BasicBlock *, BasicBlock *>(); 6768 } 6769 6770 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6771 /// testing whether two expressions are equal, however for the purposes of 6772 /// looking for a condition guarding a loop, it can be useful to be a little 6773 /// more general, since a front-end may have replicated the controlling 6774 /// expression. 6775 /// 6776 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6777 // Quick check to see if they are the same SCEV. 6778 if (A == B) return true; 6779 6780 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6781 // Not all instructions that are "identical" compute the same value. For 6782 // instance, two distinct alloca instructions allocating the same type are 6783 // identical and do not read memory; but compute distinct values. 6784 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6785 }; 6786 6787 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6788 // two different instructions with the same value. Check for this case. 6789 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6790 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6791 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6792 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6793 if (ComputesEqualValues(AI, BI)) 6794 return true; 6795 6796 // Otherwise assume they may have a different value. 6797 return false; 6798 } 6799 6800 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6801 /// predicate Pred. Return true iff any changes were made. 6802 /// 6803 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6804 const SCEV *&LHS, const SCEV *&RHS, 6805 unsigned Depth) { 6806 bool Changed = false; 6807 6808 // If we hit the max recursion limit bail out. 6809 if (Depth >= 3) 6810 return false; 6811 6812 // Canonicalize a constant to the right side. 6813 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6814 // Check for both operands constant. 6815 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6816 if (ConstantExpr::getICmp(Pred, 6817 LHSC->getValue(), 6818 RHSC->getValue())->isNullValue()) 6819 goto trivially_false; 6820 else 6821 goto trivially_true; 6822 } 6823 // Otherwise swap the operands to put the constant on the right. 6824 std::swap(LHS, RHS); 6825 Pred = ICmpInst::getSwappedPredicate(Pred); 6826 Changed = true; 6827 } 6828 6829 // If we're comparing an addrec with a value which is loop-invariant in the 6830 // addrec's loop, put the addrec on the left. Also make a dominance check, 6831 // as both operands could be addrecs loop-invariant in each other's loop. 6832 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6833 const Loop *L = AR->getLoop(); 6834 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6835 std::swap(LHS, RHS); 6836 Pred = ICmpInst::getSwappedPredicate(Pred); 6837 Changed = true; 6838 } 6839 } 6840 6841 // If there's a constant operand, canonicalize comparisons with boundary 6842 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6843 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6844 const APInt &RA = RC->getAPInt(); 6845 switch (Pred) { 6846 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6847 case ICmpInst::ICMP_EQ: 6848 case ICmpInst::ICMP_NE: 6849 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6850 if (!RA) 6851 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6852 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6853 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6854 ME->getOperand(0)->isAllOnesValue()) { 6855 RHS = AE->getOperand(1); 6856 LHS = ME->getOperand(1); 6857 Changed = true; 6858 } 6859 break; 6860 case ICmpInst::ICMP_UGE: 6861 if ((RA - 1).isMinValue()) { 6862 Pred = ICmpInst::ICMP_NE; 6863 RHS = getConstant(RA - 1); 6864 Changed = true; 6865 break; 6866 } 6867 if (RA.isMaxValue()) { 6868 Pred = ICmpInst::ICMP_EQ; 6869 Changed = true; 6870 break; 6871 } 6872 if (RA.isMinValue()) goto trivially_true; 6873 6874 Pred = ICmpInst::ICMP_UGT; 6875 RHS = getConstant(RA - 1); 6876 Changed = true; 6877 break; 6878 case ICmpInst::ICMP_ULE: 6879 if ((RA + 1).isMaxValue()) { 6880 Pred = ICmpInst::ICMP_NE; 6881 RHS = getConstant(RA + 1); 6882 Changed = true; 6883 break; 6884 } 6885 if (RA.isMinValue()) { 6886 Pred = ICmpInst::ICMP_EQ; 6887 Changed = true; 6888 break; 6889 } 6890 if (RA.isMaxValue()) goto trivially_true; 6891 6892 Pred = ICmpInst::ICMP_ULT; 6893 RHS = getConstant(RA + 1); 6894 Changed = true; 6895 break; 6896 case ICmpInst::ICMP_SGE: 6897 if ((RA - 1).isMinSignedValue()) { 6898 Pred = ICmpInst::ICMP_NE; 6899 RHS = getConstant(RA - 1); 6900 Changed = true; 6901 break; 6902 } 6903 if (RA.isMaxSignedValue()) { 6904 Pred = ICmpInst::ICMP_EQ; 6905 Changed = true; 6906 break; 6907 } 6908 if (RA.isMinSignedValue()) goto trivially_true; 6909 6910 Pred = ICmpInst::ICMP_SGT; 6911 RHS = getConstant(RA - 1); 6912 Changed = true; 6913 break; 6914 case ICmpInst::ICMP_SLE: 6915 if ((RA + 1).isMaxSignedValue()) { 6916 Pred = ICmpInst::ICMP_NE; 6917 RHS = getConstant(RA + 1); 6918 Changed = true; 6919 break; 6920 } 6921 if (RA.isMinSignedValue()) { 6922 Pred = ICmpInst::ICMP_EQ; 6923 Changed = true; 6924 break; 6925 } 6926 if (RA.isMaxSignedValue()) goto trivially_true; 6927 6928 Pred = ICmpInst::ICMP_SLT; 6929 RHS = getConstant(RA + 1); 6930 Changed = true; 6931 break; 6932 case ICmpInst::ICMP_UGT: 6933 if (RA.isMinValue()) { 6934 Pred = ICmpInst::ICMP_NE; 6935 Changed = true; 6936 break; 6937 } 6938 if ((RA + 1).isMaxValue()) { 6939 Pred = ICmpInst::ICMP_EQ; 6940 RHS = getConstant(RA + 1); 6941 Changed = true; 6942 break; 6943 } 6944 if (RA.isMaxValue()) goto trivially_false; 6945 break; 6946 case ICmpInst::ICMP_ULT: 6947 if (RA.isMaxValue()) { 6948 Pred = ICmpInst::ICMP_NE; 6949 Changed = true; 6950 break; 6951 } 6952 if ((RA - 1).isMinValue()) { 6953 Pred = ICmpInst::ICMP_EQ; 6954 RHS = getConstant(RA - 1); 6955 Changed = true; 6956 break; 6957 } 6958 if (RA.isMinValue()) goto trivially_false; 6959 break; 6960 case ICmpInst::ICMP_SGT: 6961 if (RA.isMinSignedValue()) { 6962 Pred = ICmpInst::ICMP_NE; 6963 Changed = true; 6964 break; 6965 } 6966 if ((RA + 1).isMaxSignedValue()) { 6967 Pred = ICmpInst::ICMP_EQ; 6968 RHS = getConstant(RA + 1); 6969 Changed = true; 6970 break; 6971 } 6972 if (RA.isMaxSignedValue()) goto trivially_false; 6973 break; 6974 case ICmpInst::ICMP_SLT: 6975 if (RA.isMaxSignedValue()) { 6976 Pred = ICmpInst::ICMP_NE; 6977 Changed = true; 6978 break; 6979 } 6980 if ((RA - 1).isMinSignedValue()) { 6981 Pred = ICmpInst::ICMP_EQ; 6982 RHS = getConstant(RA - 1); 6983 Changed = true; 6984 break; 6985 } 6986 if (RA.isMinSignedValue()) goto trivially_false; 6987 break; 6988 } 6989 } 6990 6991 // Check for obvious equality. 6992 if (HasSameValue(LHS, RHS)) { 6993 if (ICmpInst::isTrueWhenEqual(Pred)) 6994 goto trivially_true; 6995 if (ICmpInst::isFalseWhenEqual(Pred)) 6996 goto trivially_false; 6997 } 6998 6999 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7000 // adding or subtracting 1 from one of the operands. 7001 switch (Pred) { 7002 case ICmpInst::ICMP_SLE: 7003 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7004 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7005 SCEV::FlagNSW); 7006 Pred = ICmpInst::ICMP_SLT; 7007 Changed = true; 7008 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7009 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7010 SCEV::FlagNSW); 7011 Pred = ICmpInst::ICMP_SLT; 7012 Changed = true; 7013 } 7014 break; 7015 case ICmpInst::ICMP_SGE: 7016 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7017 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7018 SCEV::FlagNSW); 7019 Pred = ICmpInst::ICMP_SGT; 7020 Changed = true; 7021 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7022 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7023 SCEV::FlagNSW); 7024 Pred = ICmpInst::ICMP_SGT; 7025 Changed = true; 7026 } 7027 break; 7028 case ICmpInst::ICMP_ULE: 7029 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7030 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7031 SCEV::FlagNUW); 7032 Pred = ICmpInst::ICMP_ULT; 7033 Changed = true; 7034 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7035 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7036 Pred = ICmpInst::ICMP_ULT; 7037 Changed = true; 7038 } 7039 break; 7040 case ICmpInst::ICMP_UGE: 7041 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7042 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7043 Pred = ICmpInst::ICMP_UGT; 7044 Changed = true; 7045 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7046 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7047 SCEV::FlagNUW); 7048 Pred = ICmpInst::ICMP_UGT; 7049 Changed = true; 7050 } 7051 break; 7052 default: 7053 break; 7054 } 7055 7056 // TODO: More simplifications are possible here. 7057 7058 // Recursively simplify until we either hit a recursion limit or nothing 7059 // changes. 7060 if (Changed) 7061 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7062 7063 return Changed; 7064 7065 trivially_true: 7066 // Return 0 == 0. 7067 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7068 Pred = ICmpInst::ICMP_EQ; 7069 return true; 7070 7071 trivially_false: 7072 // Return 0 != 0. 7073 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7074 Pred = ICmpInst::ICMP_NE; 7075 return true; 7076 } 7077 7078 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7079 return getSignedRange(S).getSignedMax().isNegative(); 7080 } 7081 7082 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7083 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7084 } 7085 7086 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7087 return !getSignedRange(S).getSignedMin().isNegative(); 7088 } 7089 7090 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7091 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7092 } 7093 7094 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7095 return isKnownNegative(S) || isKnownPositive(S); 7096 } 7097 7098 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7099 const SCEV *LHS, const SCEV *RHS) { 7100 // Canonicalize the inputs first. 7101 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7102 7103 // If LHS or RHS is an addrec, check to see if the condition is true in 7104 // every iteration of the loop. 7105 // If LHS and RHS are both addrec, both conditions must be true in 7106 // every iteration of the loop. 7107 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7108 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7109 bool LeftGuarded = false; 7110 bool RightGuarded = false; 7111 if (LAR) { 7112 const Loop *L = LAR->getLoop(); 7113 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7114 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7115 if (!RAR) return true; 7116 LeftGuarded = true; 7117 } 7118 } 7119 if (RAR) { 7120 const Loop *L = RAR->getLoop(); 7121 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7122 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7123 if (!LAR) return true; 7124 RightGuarded = true; 7125 } 7126 } 7127 if (LeftGuarded && RightGuarded) 7128 return true; 7129 7130 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7131 return true; 7132 7133 // Otherwise see what can be done with known constant ranges. 7134 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7135 } 7136 7137 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7138 ICmpInst::Predicate Pred, 7139 bool &Increasing) { 7140 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7141 7142 #ifndef NDEBUG 7143 // Verify an invariant: inverting the predicate should turn a monotonically 7144 // increasing change to a monotonically decreasing one, and vice versa. 7145 bool IncreasingSwapped; 7146 bool ResultSwapped = isMonotonicPredicateImpl( 7147 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7148 7149 assert(Result == ResultSwapped && "should be able to analyze both!"); 7150 if (ResultSwapped) 7151 assert(Increasing == !IncreasingSwapped && 7152 "monotonicity should flip as we flip the predicate"); 7153 #endif 7154 7155 return Result; 7156 } 7157 7158 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7159 ICmpInst::Predicate Pred, 7160 bool &Increasing) { 7161 7162 // A zero step value for LHS means the induction variable is essentially a 7163 // loop invariant value. We don't really depend on the predicate actually 7164 // flipping from false to true (for increasing predicates, and the other way 7165 // around for decreasing predicates), all we care about is that *if* the 7166 // predicate changes then it only changes from false to true. 7167 // 7168 // A zero step value in itself is not very useful, but there may be places 7169 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7170 // as general as possible. 7171 7172 switch (Pred) { 7173 default: 7174 return false; // Conservative answer 7175 7176 case ICmpInst::ICMP_UGT: 7177 case ICmpInst::ICMP_UGE: 7178 case ICmpInst::ICMP_ULT: 7179 case ICmpInst::ICMP_ULE: 7180 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 7181 return false; 7182 7183 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7184 return true; 7185 7186 case ICmpInst::ICMP_SGT: 7187 case ICmpInst::ICMP_SGE: 7188 case ICmpInst::ICMP_SLT: 7189 case ICmpInst::ICMP_SLE: { 7190 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 7191 return false; 7192 7193 const SCEV *Step = LHS->getStepRecurrence(*this); 7194 7195 if (isKnownNonNegative(Step)) { 7196 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7197 return true; 7198 } 7199 7200 if (isKnownNonPositive(Step)) { 7201 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7202 return true; 7203 } 7204 7205 return false; 7206 } 7207 7208 } 7209 7210 llvm_unreachable("switch has default clause!"); 7211 } 7212 7213 bool ScalarEvolution::isLoopInvariantPredicate( 7214 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7215 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7216 const SCEV *&InvariantRHS) { 7217 7218 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7219 if (!isLoopInvariant(RHS, L)) { 7220 if (!isLoopInvariant(LHS, L)) 7221 return false; 7222 7223 std::swap(LHS, RHS); 7224 Pred = ICmpInst::getSwappedPredicate(Pred); 7225 } 7226 7227 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7228 if (!ArLHS || ArLHS->getLoop() != L) 7229 return false; 7230 7231 bool Increasing; 7232 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7233 return false; 7234 7235 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7236 // true as the loop iterates, and the backedge is control dependent on 7237 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7238 // 7239 // * if the predicate was false in the first iteration then the predicate 7240 // is never evaluated again, since the loop exits without taking the 7241 // backedge. 7242 // * if the predicate was true in the first iteration then it will 7243 // continue to be true for all future iterations since it is 7244 // monotonically increasing. 7245 // 7246 // For both the above possibilities, we can replace the loop varying 7247 // predicate with its value on the first iteration of the loop (which is 7248 // loop invariant). 7249 // 7250 // A similar reasoning applies for a monotonically decreasing predicate, by 7251 // replacing true with false and false with true in the above two bullets. 7252 7253 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7254 7255 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7256 return false; 7257 7258 InvariantPred = Pred; 7259 InvariantLHS = ArLHS->getStart(); 7260 InvariantRHS = RHS; 7261 return true; 7262 } 7263 7264 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 7265 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7266 if (HasSameValue(LHS, RHS)) 7267 return ICmpInst::isTrueWhenEqual(Pred); 7268 7269 // This code is split out from isKnownPredicate because it is called from 7270 // within isLoopEntryGuardedByCond. 7271 switch (Pred) { 7272 default: 7273 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7274 case ICmpInst::ICMP_SGT: 7275 std::swap(LHS, RHS); 7276 case ICmpInst::ICMP_SLT: { 7277 ConstantRange LHSRange = getSignedRange(LHS); 7278 ConstantRange RHSRange = getSignedRange(RHS); 7279 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7280 return true; 7281 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7282 return false; 7283 break; 7284 } 7285 case ICmpInst::ICMP_SGE: 7286 std::swap(LHS, RHS); 7287 case ICmpInst::ICMP_SLE: { 7288 ConstantRange LHSRange = getSignedRange(LHS); 7289 ConstantRange RHSRange = getSignedRange(RHS); 7290 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7291 return true; 7292 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7293 return false; 7294 break; 7295 } 7296 case ICmpInst::ICMP_UGT: 7297 std::swap(LHS, RHS); 7298 case ICmpInst::ICMP_ULT: { 7299 ConstantRange LHSRange = getUnsignedRange(LHS); 7300 ConstantRange RHSRange = getUnsignedRange(RHS); 7301 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7302 return true; 7303 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7304 return false; 7305 break; 7306 } 7307 case ICmpInst::ICMP_UGE: 7308 std::swap(LHS, RHS); 7309 case ICmpInst::ICMP_ULE: { 7310 ConstantRange LHSRange = getUnsignedRange(LHS); 7311 ConstantRange RHSRange = getUnsignedRange(RHS); 7312 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7313 return true; 7314 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7315 return false; 7316 break; 7317 } 7318 case ICmpInst::ICMP_NE: { 7319 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7320 return true; 7321 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7322 return true; 7323 7324 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7325 if (isKnownNonZero(Diff)) 7326 return true; 7327 break; 7328 } 7329 case ICmpInst::ICMP_EQ: 7330 // The check at the top of the function catches the case where 7331 // the values are known to be equal. 7332 break; 7333 } 7334 return false; 7335 } 7336 7337 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7338 const SCEV *LHS, 7339 const SCEV *RHS) { 7340 7341 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7342 // Return Y via OutY. 7343 auto MatchBinaryAddToConst = 7344 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7345 SCEV::NoWrapFlags ExpectedFlags) { 7346 const SCEV *NonConstOp, *ConstOp; 7347 SCEV::NoWrapFlags FlagsPresent; 7348 7349 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7350 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7351 return false; 7352 7353 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7354 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7355 }; 7356 7357 APInt C; 7358 7359 switch (Pred) { 7360 default: 7361 break; 7362 7363 case ICmpInst::ICMP_SGE: 7364 std::swap(LHS, RHS); 7365 case ICmpInst::ICMP_SLE: 7366 // X s<= (X + C)<nsw> if C >= 0 7367 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7368 return true; 7369 7370 // (X + C)<nsw> s<= X if C <= 0 7371 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7372 !C.isStrictlyPositive()) 7373 return true; 7374 break; 7375 7376 case ICmpInst::ICMP_SGT: 7377 std::swap(LHS, RHS); 7378 case ICmpInst::ICMP_SLT: 7379 // X s< (X + C)<nsw> if C > 0 7380 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7381 C.isStrictlyPositive()) 7382 return true; 7383 7384 // (X + C)<nsw> s< X if C < 0 7385 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7386 return true; 7387 break; 7388 } 7389 7390 return false; 7391 } 7392 7393 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7394 const SCEV *LHS, 7395 const SCEV *RHS) { 7396 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7397 return false; 7398 7399 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7400 // the stack can result in exponential time complexity. 7401 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7402 7403 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7404 // 7405 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7406 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7407 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7408 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7409 // use isKnownPredicate later if needed. 7410 return isKnownNonNegative(RHS) && 7411 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7412 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7413 } 7414 7415 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7416 /// protected by a conditional between LHS and RHS. This is used to 7417 /// to eliminate casts. 7418 bool 7419 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7420 ICmpInst::Predicate Pred, 7421 const SCEV *LHS, const SCEV *RHS) { 7422 // Interpret a null as meaning no loop, where there is obviously no guard 7423 // (interprocedural conditions notwithstanding). 7424 if (!L) return true; 7425 7426 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7427 return true; 7428 7429 BasicBlock *Latch = L->getLoopLatch(); 7430 if (!Latch) 7431 return false; 7432 7433 BranchInst *LoopContinuePredicate = 7434 dyn_cast<BranchInst>(Latch->getTerminator()); 7435 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7436 isImpliedCond(Pred, LHS, RHS, 7437 LoopContinuePredicate->getCondition(), 7438 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7439 return true; 7440 7441 // We don't want more than one activation of the following loops on the stack 7442 // -- that can lead to O(n!) time complexity. 7443 if (WalkingBEDominatingConds) 7444 return false; 7445 7446 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7447 7448 // See if we can exploit a trip count to prove the predicate. 7449 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7450 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7451 if (LatchBECount != getCouldNotCompute()) { 7452 // We know that Latch branches back to the loop header exactly 7453 // LatchBECount times. This means the backdege condition at Latch is 7454 // equivalent to "{0,+,1} u< LatchBECount". 7455 Type *Ty = LatchBECount->getType(); 7456 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7457 const SCEV *LoopCounter = 7458 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7459 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7460 LatchBECount)) 7461 return true; 7462 } 7463 7464 // Check conditions due to any @llvm.assume intrinsics. 7465 for (auto &AssumeVH : AC.assumptions()) { 7466 if (!AssumeVH) 7467 continue; 7468 auto *CI = cast<CallInst>(AssumeVH); 7469 if (!DT.dominates(CI, Latch->getTerminator())) 7470 continue; 7471 7472 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7473 return true; 7474 } 7475 7476 // If the loop is not reachable from the entry block, we risk running into an 7477 // infinite loop as we walk up into the dom tree. These loops do not matter 7478 // anyway, so we just return a conservative answer when we see them. 7479 if (!DT.isReachableFromEntry(L->getHeader())) 7480 return false; 7481 7482 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7483 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7484 7485 assert(DTN && "should reach the loop header before reaching the root!"); 7486 7487 BasicBlock *BB = DTN->getBlock(); 7488 BasicBlock *PBB = BB->getSinglePredecessor(); 7489 if (!PBB) 7490 continue; 7491 7492 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7493 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7494 continue; 7495 7496 Value *Condition = ContinuePredicate->getCondition(); 7497 7498 // If we have an edge `E` within the loop body that dominates the only 7499 // latch, the condition guarding `E` also guards the backedge. This 7500 // reasoning works only for loops with a single latch. 7501 7502 BasicBlockEdge DominatingEdge(PBB, BB); 7503 if (DominatingEdge.isSingleEdge()) { 7504 // We're constructively (and conservatively) enumerating edges within the 7505 // loop body that dominate the latch. The dominator tree better agree 7506 // with us on this: 7507 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7508 7509 if (isImpliedCond(Pred, LHS, RHS, Condition, 7510 BB != ContinuePredicate->getSuccessor(0))) 7511 return true; 7512 } 7513 } 7514 7515 return false; 7516 } 7517 7518 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7519 /// by a conditional between LHS and RHS. This is used to help avoid max 7520 /// expressions in loop trip counts, and to eliminate casts. 7521 bool 7522 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7523 ICmpInst::Predicate Pred, 7524 const SCEV *LHS, const SCEV *RHS) { 7525 // Interpret a null as meaning no loop, where there is obviously no guard 7526 // (interprocedural conditions notwithstanding). 7527 if (!L) return false; 7528 7529 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7530 return true; 7531 7532 // Starting at the loop predecessor, climb up the predecessor chain, as long 7533 // as there are predecessors that can be found that have unique successors 7534 // leading to the original header. 7535 for (std::pair<BasicBlock *, BasicBlock *> 7536 Pair(L->getLoopPredecessor(), L->getHeader()); 7537 Pair.first; 7538 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7539 7540 BranchInst *LoopEntryPredicate = 7541 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7542 if (!LoopEntryPredicate || 7543 LoopEntryPredicate->isUnconditional()) 7544 continue; 7545 7546 if (isImpliedCond(Pred, LHS, RHS, 7547 LoopEntryPredicate->getCondition(), 7548 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7549 return true; 7550 } 7551 7552 // Check conditions due to any @llvm.assume intrinsics. 7553 for (auto &AssumeVH : AC.assumptions()) { 7554 if (!AssumeVH) 7555 continue; 7556 auto *CI = cast<CallInst>(AssumeVH); 7557 if (!DT.dominates(CI, L->getHeader())) 7558 continue; 7559 7560 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7561 return true; 7562 } 7563 7564 return false; 7565 } 7566 7567 namespace { 7568 /// RAII wrapper to prevent recursive application of isImpliedCond. 7569 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7570 /// currently evaluating isImpliedCond. 7571 struct MarkPendingLoopPredicate { 7572 Value *Cond; 7573 DenseSet<Value*> &LoopPreds; 7574 bool Pending; 7575 7576 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7577 : Cond(C), LoopPreds(LP) { 7578 Pending = !LoopPreds.insert(Cond).second; 7579 } 7580 ~MarkPendingLoopPredicate() { 7581 if (!Pending) 7582 LoopPreds.erase(Cond); 7583 } 7584 }; 7585 } // end anonymous namespace 7586 7587 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7588 /// and RHS is true whenever the given Cond value evaluates to true. 7589 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7590 const SCEV *LHS, const SCEV *RHS, 7591 Value *FoundCondValue, 7592 bool Inverse) { 7593 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7594 if (Mark.Pending) 7595 return false; 7596 7597 // Recursively handle And and Or conditions. 7598 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7599 if (BO->getOpcode() == Instruction::And) { 7600 if (!Inverse) 7601 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7602 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7603 } else if (BO->getOpcode() == Instruction::Or) { 7604 if (Inverse) 7605 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7606 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7607 } 7608 } 7609 7610 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7611 if (!ICI) return false; 7612 7613 // Now that we found a conditional branch that dominates the loop or controls 7614 // the loop latch. Check to see if it is the comparison we are looking for. 7615 ICmpInst::Predicate FoundPred; 7616 if (Inverse) 7617 FoundPred = ICI->getInversePredicate(); 7618 else 7619 FoundPred = ICI->getPredicate(); 7620 7621 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7622 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7623 7624 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7625 } 7626 7627 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7628 const SCEV *RHS, 7629 ICmpInst::Predicate FoundPred, 7630 const SCEV *FoundLHS, 7631 const SCEV *FoundRHS) { 7632 // Balance the types. 7633 if (getTypeSizeInBits(LHS->getType()) < 7634 getTypeSizeInBits(FoundLHS->getType())) { 7635 if (CmpInst::isSigned(Pred)) { 7636 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7637 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7638 } else { 7639 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7640 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7641 } 7642 } else if (getTypeSizeInBits(LHS->getType()) > 7643 getTypeSizeInBits(FoundLHS->getType())) { 7644 if (CmpInst::isSigned(FoundPred)) { 7645 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7646 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7647 } else { 7648 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7649 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7650 } 7651 } 7652 7653 // Canonicalize the query to match the way instcombine will have 7654 // canonicalized the comparison. 7655 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7656 if (LHS == RHS) 7657 return CmpInst::isTrueWhenEqual(Pred); 7658 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7659 if (FoundLHS == FoundRHS) 7660 return CmpInst::isFalseWhenEqual(FoundPred); 7661 7662 // Check to see if we can make the LHS or RHS match. 7663 if (LHS == FoundRHS || RHS == FoundLHS) { 7664 if (isa<SCEVConstant>(RHS)) { 7665 std::swap(FoundLHS, FoundRHS); 7666 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7667 } else { 7668 std::swap(LHS, RHS); 7669 Pred = ICmpInst::getSwappedPredicate(Pred); 7670 } 7671 } 7672 7673 // Check whether the found predicate is the same as the desired predicate. 7674 if (FoundPred == Pred) 7675 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7676 7677 // Check whether swapping the found predicate makes it the same as the 7678 // desired predicate. 7679 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7680 if (isa<SCEVConstant>(RHS)) 7681 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7682 else 7683 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7684 RHS, LHS, FoundLHS, FoundRHS); 7685 } 7686 7687 // Unsigned comparison is the same as signed comparison when both the operands 7688 // are non-negative. 7689 if (CmpInst::isUnsigned(FoundPred) && 7690 CmpInst::getSignedPredicate(FoundPred) == Pred && 7691 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7692 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7693 7694 // Check if we can make progress by sharpening ranges. 7695 if (FoundPred == ICmpInst::ICMP_NE && 7696 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7697 7698 const SCEVConstant *C = nullptr; 7699 const SCEV *V = nullptr; 7700 7701 if (isa<SCEVConstant>(FoundLHS)) { 7702 C = cast<SCEVConstant>(FoundLHS); 7703 V = FoundRHS; 7704 } else { 7705 C = cast<SCEVConstant>(FoundRHS); 7706 V = FoundLHS; 7707 } 7708 7709 // The guarding predicate tells us that C != V. If the known range 7710 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7711 // range we consider has to correspond to same signedness as the 7712 // predicate we're interested in folding. 7713 7714 APInt Min = ICmpInst::isSigned(Pred) ? 7715 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7716 7717 if (Min == C->getAPInt()) { 7718 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7719 // This is true even if (Min + 1) wraps around -- in case of 7720 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7721 7722 APInt SharperMin = Min + 1; 7723 7724 switch (Pred) { 7725 case ICmpInst::ICMP_SGE: 7726 case ICmpInst::ICMP_UGE: 7727 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7728 // RHS, we're done. 7729 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7730 getConstant(SharperMin))) 7731 return true; 7732 7733 case ICmpInst::ICMP_SGT: 7734 case ICmpInst::ICMP_UGT: 7735 // We know from the range information that (V `Pred` Min || 7736 // V == Min). We know from the guarding condition that !(V 7737 // == Min). This gives us 7738 // 7739 // V `Pred` Min || V == Min && !(V == Min) 7740 // => V `Pred` Min 7741 // 7742 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7743 7744 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7745 return true; 7746 7747 default: 7748 // No change 7749 break; 7750 } 7751 } 7752 } 7753 7754 // Check whether the actual condition is beyond sufficient. 7755 if (FoundPred == ICmpInst::ICMP_EQ) 7756 if (ICmpInst::isTrueWhenEqual(Pred)) 7757 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7758 return true; 7759 if (Pred == ICmpInst::ICMP_NE) 7760 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7761 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7762 return true; 7763 7764 // Otherwise assume the worst. 7765 return false; 7766 } 7767 7768 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7769 const SCEV *&L, const SCEV *&R, 7770 SCEV::NoWrapFlags &Flags) { 7771 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7772 if (!AE || AE->getNumOperands() != 2) 7773 return false; 7774 7775 L = AE->getOperand(0); 7776 R = AE->getOperand(1); 7777 Flags = AE->getNoWrapFlags(); 7778 return true; 7779 } 7780 7781 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7782 const SCEV *More, 7783 APInt &C) { 7784 // We avoid subtracting expressions here because this function is usually 7785 // fairly deep in the call stack (i.e. is called many times). 7786 7787 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7788 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7789 const auto *MAR = cast<SCEVAddRecExpr>(More); 7790 7791 if (LAR->getLoop() != MAR->getLoop()) 7792 return false; 7793 7794 // We look at affine expressions only; not for correctness but to keep 7795 // getStepRecurrence cheap. 7796 if (!LAR->isAffine() || !MAR->isAffine()) 7797 return false; 7798 7799 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7800 return false; 7801 7802 Less = LAR->getStart(); 7803 More = MAR->getStart(); 7804 7805 // fall through 7806 } 7807 7808 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7809 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 7810 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 7811 C = M - L; 7812 return true; 7813 } 7814 7815 const SCEV *L, *R; 7816 SCEV::NoWrapFlags Flags; 7817 if (splitBinaryAdd(Less, L, R, Flags)) 7818 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7819 if (R == More) { 7820 C = -(LC->getAPInt()); 7821 return true; 7822 } 7823 7824 if (splitBinaryAdd(More, L, R, Flags)) 7825 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7826 if (R == Less) { 7827 C = LC->getAPInt(); 7828 return true; 7829 } 7830 7831 return false; 7832 } 7833 7834 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7835 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7836 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7837 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7838 return false; 7839 7840 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7841 if (!AddRecLHS) 7842 return false; 7843 7844 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7845 if (!AddRecFoundLHS) 7846 return false; 7847 7848 // We'd like to let SCEV reason about control dependencies, so we constrain 7849 // both the inequalities to be about add recurrences on the same loop. This 7850 // way we can use isLoopEntryGuardedByCond later. 7851 7852 const Loop *L = AddRecFoundLHS->getLoop(); 7853 if (L != AddRecLHS->getLoop()) 7854 return false; 7855 7856 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7857 // 7858 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7859 // ... (2) 7860 // 7861 // Informal proof for (2), assuming (1) [*]: 7862 // 7863 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7864 // 7865 // Then 7866 // 7867 // FoundLHS s< FoundRHS s< INT_MIN - C 7868 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7869 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7870 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7871 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7872 // <=> FoundLHS + C s< FoundRHS + C 7873 // 7874 // [*]: (1) can be proved by ruling out overflow. 7875 // 7876 // [**]: This can be proved by analyzing all the four possibilities: 7877 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7878 // (A s>= 0, B s>= 0). 7879 // 7880 // Note: 7881 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7882 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7883 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7884 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7885 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7886 // C)". 7887 7888 APInt LDiff, RDiff; 7889 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7890 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7891 LDiff != RDiff) 7892 return false; 7893 7894 if (LDiff == 0) 7895 return true; 7896 7897 APInt FoundRHSLimit; 7898 7899 if (Pred == CmpInst::ICMP_ULT) { 7900 FoundRHSLimit = -RDiff; 7901 } else { 7902 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7903 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7904 } 7905 7906 // Try to prove (1) or (2), as needed. 7907 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7908 getConstant(FoundRHSLimit)); 7909 } 7910 7911 /// isImpliedCondOperands - Test whether the condition described by Pred, 7912 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7913 /// and FoundRHS is true. 7914 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7915 const SCEV *LHS, const SCEV *RHS, 7916 const SCEV *FoundLHS, 7917 const SCEV *FoundRHS) { 7918 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7919 return true; 7920 7921 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7922 return true; 7923 7924 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7925 FoundLHS, FoundRHS) || 7926 // ~x < ~y --> x > y 7927 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7928 getNotSCEV(FoundRHS), 7929 getNotSCEV(FoundLHS)); 7930 } 7931 7932 7933 /// If Expr computes ~A, return A else return nullptr 7934 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7935 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7936 if (!Add || Add->getNumOperands() != 2 || 7937 !Add->getOperand(0)->isAllOnesValue()) 7938 return nullptr; 7939 7940 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7941 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7942 !AddRHS->getOperand(0)->isAllOnesValue()) 7943 return nullptr; 7944 7945 return AddRHS->getOperand(1); 7946 } 7947 7948 7949 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7950 template<typename MaxExprType> 7951 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7952 const SCEV *Candidate) { 7953 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7954 if (!MaxExpr) return false; 7955 7956 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 7957 } 7958 7959 7960 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7961 template<typename MaxExprType> 7962 static bool IsMinConsistingOf(ScalarEvolution &SE, 7963 const SCEV *MaybeMinExpr, 7964 const SCEV *Candidate) { 7965 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7966 if (!MaybeMaxExpr) 7967 return false; 7968 7969 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7970 } 7971 7972 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7973 ICmpInst::Predicate Pred, 7974 const SCEV *LHS, const SCEV *RHS) { 7975 7976 // If both sides are affine addrecs for the same loop, with equal 7977 // steps, and we know the recurrences don't wrap, then we only 7978 // need to check the predicate on the starting values. 7979 7980 if (!ICmpInst::isRelational(Pred)) 7981 return false; 7982 7983 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7984 if (!LAR) 7985 return false; 7986 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7987 if (!RAR) 7988 return false; 7989 if (LAR->getLoop() != RAR->getLoop()) 7990 return false; 7991 if (!LAR->isAffine() || !RAR->isAffine()) 7992 return false; 7993 7994 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7995 return false; 7996 7997 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7998 SCEV::FlagNSW : SCEV::FlagNUW; 7999 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8000 return false; 8001 8002 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8003 } 8004 8005 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8006 /// expression? 8007 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8008 ICmpInst::Predicate Pred, 8009 const SCEV *LHS, const SCEV *RHS) { 8010 switch (Pred) { 8011 default: 8012 return false; 8013 8014 case ICmpInst::ICMP_SGE: 8015 std::swap(LHS, RHS); 8016 // fall through 8017 case ICmpInst::ICMP_SLE: 8018 return 8019 // min(A, ...) <= A 8020 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8021 // A <= max(A, ...) 8022 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8023 8024 case ICmpInst::ICMP_UGE: 8025 std::swap(LHS, RHS); 8026 // fall through 8027 case ICmpInst::ICMP_ULE: 8028 return 8029 // min(A, ...) <= A 8030 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8031 // A <= max(A, ...) 8032 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8033 } 8034 8035 llvm_unreachable("covered switch fell through?!"); 8036 } 8037 8038 /// isImpliedCondOperandsHelper - Test whether the condition described by 8039 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 8040 /// FoundLHS, and FoundRHS is true. 8041 bool 8042 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8043 const SCEV *LHS, const SCEV *RHS, 8044 const SCEV *FoundLHS, 8045 const SCEV *FoundRHS) { 8046 auto IsKnownPredicateFull = 8047 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8048 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8049 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8050 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8051 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8052 }; 8053 8054 switch (Pred) { 8055 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8056 case ICmpInst::ICMP_EQ: 8057 case ICmpInst::ICMP_NE: 8058 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8059 return true; 8060 break; 8061 case ICmpInst::ICMP_SLT: 8062 case ICmpInst::ICMP_SLE: 8063 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8064 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8065 return true; 8066 break; 8067 case ICmpInst::ICMP_SGT: 8068 case ICmpInst::ICMP_SGE: 8069 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8070 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8071 return true; 8072 break; 8073 case ICmpInst::ICMP_ULT: 8074 case ICmpInst::ICMP_ULE: 8075 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8076 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8077 return true; 8078 break; 8079 case ICmpInst::ICMP_UGT: 8080 case ICmpInst::ICMP_UGE: 8081 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8082 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8083 return true; 8084 break; 8085 } 8086 8087 return false; 8088 } 8089 8090 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 8091 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 8092 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8093 const SCEV *LHS, 8094 const SCEV *RHS, 8095 const SCEV *FoundLHS, 8096 const SCEV *FoundRHS) { 8097 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8098 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8099 // reduce the compile time impact of this optimization. 8100 return false; 8101 8102 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 8103 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 8104 !isa<SCEVConstant>(AddLHS->getOperand(0))) 8105 return false; 8106 8107 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8108 8109 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8110 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8111 ConstantRange FoundLHSRange = 8112 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8113 8114 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 8115 // for `LHS`: 8116 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt(); 8117 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 8118 8119 // We can also compute the range of values for `LHS` that satisfy the 8120 // consequent, "`LHS` `Pred` `RHS`": 8121 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8122 ConstantRange SatisfyingLHSRange = 8123 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8124 8125 // The antecedent implies the consequent if every value of `LHS` that 8126 // satisfies the antecedent also satisfies the consequent. 8127 return SatisfyingLHSRange.contains(LHSRange); 8128 } 8129 8130 // Verify if an linear IV with positive stride can overflow when in a 8131 // less-than comparison, knowing the invariant term of the comparison, the 8132 // stride and the knowledge of NSW/NUW flags on the recurrence. 8133 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8134 bool IsSigned, bool NoWrap) { 8135 if (NoWrap) return false; 8136 8137 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8138 const SCEV *One = getOne(Stride->getType()); 8139 8140 if (IsSigned) { 8141 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8142 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8143 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8144 .getSignedMax(); 8145 8146 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8147 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8148 } 8149 8150 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8151 APInt MaxValue = APInt::getMaxValue(BitWidth); 8152 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8153 .getUnsignedMax(); 8154 8155 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8156 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8157 } 8158 8159 // Verify if an linear IV with negative stride can overflow when in a 8160 // greater-than comparison, knowing the invariant term of the comparison, 8161 // the stride and the knowledge of NSW/NUW flags on the recurrence. 8162 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8163 bool IsSigned, bool NoWrap) { 8164 if (NoWrap) return false; 8165 8166 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8167 const SCEV *One = getOne(Stride->getType()); 8168 8169 if (IsSigned) { 8170 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8171 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8172 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8173 .getSignedMax(); 8174 8175 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8176 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8177 } 8178 8179 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8180 APInt MinValue = APInt::getMinValue(BitWidth); 8181 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8182 .getUnsignedMax(); 8183 8184 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8185 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8186 } 8187 8188 // Compute the backedge taken count knowing the interval difference, the 8189 // stride and presence of the equality in the comparison. 8190 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8191 bool Equality) { 8192 const SCEV *One = getOne(Step->getType()); 8193 Delta = Equality ? getAddExpr(Delta, Step) 8194 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8195 return getUDivExpr(Delta, Step); 8196 } 8197 8198 /// HowManyLessThans - Return the number of times a backedge containing the 8199 /// specified less-than comparison will execute. If not computable, return 8200 /// CouldNotCompute. 8201 /// 8202 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8203 /// the branch (loops exits only if condition is true). In this case, we can use 8204 /// NoWrapFlags to skip overflow checks. 8205 ScalarEvolution::ExitLimit 8206 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8207 const Loop *L, bool IsSigned, 8208 bool ControlsExit) { 8209 // We handle only IV < Invariant 8210 if (!isLoopInvariant(RHS, L)) 8211 return getCouldNotCompute(); 8212 8213 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8214 8215 // Avoid weird loops 8216 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8217 return getCouldNotCompute(); 8218 8219 bool NoWrap = ControlsExit && 8220 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8221 8222 const SCEV *Stride = IV->getStepRecurrence(*this); 8223 8224 // Avoid negative or zero stride values 8225 if (!isKnownPositive(Stride)) 8226 return getCouldNotCompute(); 8227 8228 // Avoid proven overflow cases: this will ensure that the backedge taken count 8229 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8230 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8231 // behaviors like the case of C language. 8232 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8233 return getCouldNotCompute(); 8234 8235 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8236 : ICmpInst::ICMP_ULT; 8237 const SCEV *Start = IV->getStart(); 8238 const SCEV *End = RHS; 8239 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8240 const SCEV *Diff = getMinusSCEV(RHS, Start); 8241 // If we have NoWrap set, then we can assume that the increment won't 8242 // overflow, in which case if RHS - Start is a constant, we don't need to 8243 // do a max operation since we can just figure it out statically 8244 if (NoWrap && isa<SCEVConstant>(Diff)) { 8245 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8246 if (D.isNegative()) 8247 End = Start; 8248 } else 8249 End = IsSigned ? getSMaxExpr(RHS, Start) 8250 : getUMaxExpr(RHS, Start); 8251 } 8252 8253 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8254 8255 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8256 : getUnsignedRange(Start).getUnsignedMin(); 8257 8258 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8259 : getUnsignedRange(Stride).getUnsignedMin(); 8260 8261 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8262 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8263 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8264 8265 // Although End can be a MAX expression we estimate MaxEnd considering only 8266 // the case End = RHS. This is safe because in the other case (End - Start) 8267 // is zero, leading to a zero maximum backedge taken count. 8268 APInt MaxEnd = 8269 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8270 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8271 8272 const SCEV *MaxBECount; 8273 if (isa<SCEVConstant>(BECount)) 8274 MaxBECount = BECount; 8275 else 8276 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8277 getConstant(MinStride), false); 8278 8279 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8280 MaxBECount = BECount; 8281 8282 return ExitLimit(BECount, MaxBECount); 8283 } 8284 8285 ScalarEvolution::ExitLimit 8286 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8287 const Loop *L, bool IsSigned, 8288 bool ControlsExit) { 8289 // We handle only IV > Invariant 8290 if (!isLoopInvariant(RHS, L)) 8291 return getCouldNotCompute(); 8292 8293 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8294 8295 // Avoid weird loops 8296 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8297 return getCouldNotCompute(); 8298 8299 bool NoWrap = ControlsExit && 8300 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8301 8302 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8303 8304 // Avoid negative or zero stride values 8305 if (!isKnownPositive(Stride)) 8306 return getCouldNotCompute(); 8307 8308 // Avoid proven overflow cases: this will ensure that the backedge taken count 8309 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8310 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8311 // behaviors like the case of C language. 8312 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8313 return getCouldNotCompute(); 8314 8315 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8316 : ICmpInst::ICMP_UGT; 8317 8318 const SCEV *Start = IV->getStart(); 8319 const SCEV *End = RHS; 8320 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8321 const SCEV *Diff = getMinusSCEV(RHS, Start); 8322 // If we have NoWrap set, then we can assume that the increment won't 8323 // overflow, in which case if RHS - Start is a constant, we don't need to 8324 // do a max operation since we can just figure it out statically 8325 if (NoWrap && isa<SCEVConstant>(Diff)) { 8326 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8327 if (!D.isNegative()) 8328 End = Start; 8329 } else 8330 End = IsSigned ? getSMinExpr(RHS, Start) 8331 : getUMinExpr(RHS, Start); 8332 } 8333 8334 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8335 8336 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8337 : getUnsignedRange(Start).getUnsignedMax(); 8338 8339 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8340 : getUnsignedRange(Stride).getUnsignedMin(); 8341 8342 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8343 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8344 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8345 8346 // Although End can be a MIN expression we estimate MinEnd considering only 8347 // the case End = RHS. This is safe because in the other case (Start - End) 8348 // is zero, leading to a zero maximum backedge taken count. 8349 APInt MinEnd = 8350 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8351 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8352 8353 8354 const SCEV *MaxBECount = getCouldNotCompute(); 8355 if (isa<SCEVConstant>(BECount)) 8356 MaxBECount = BECount; 8357 else 8358 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8359 getConstant(MinStride), false); 8360 8361 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8362 MaxBECount = BECount; 8363 8364 return ExitLimit(BECount, MaxBECount); 8365 } 8366 8367 /// getNumIterationsInRange - Return the number of iterations of this loop that 8368 /// produce values in the specified constant range. Another way of looking at 8369 /// this is that it returns the first iteration number where the value is not in 8370 /// the condition, thus computing the exit count. If the iteration count can't 8371 /// be computed, an instance of SCEVCouldNotCompute is returned. 8372 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8373 ScalarEvolution &SE) const { 8374 if (Range.isFullSet()) // Infinite loop. 8375 return SE.getCouldNotCompute(); 8376 8377 // If the start is a non-zero constant, shift the range to simplify things. 8378 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8379 if (!SC->getValue()->isZero()) { 8380 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8381 Operands[0] = SE.getZero(SC->getType()); 8382 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8383 getNoWrapFlags(FlagNW)); 8384 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8385 return ShiftedAddRec->getNumIterationsInRange( 8386 Range.subtract(SC->getAPInt()), SE); 8387 // This is strange and shouldn't happen. 8388 return SE.getCouldNotCompute(); 8389 } 8390 8391 // The only time we can solve this is when we have all constant indices. 8392 // Otherwise, we cannot determine the overflow conditions. 8393 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8394 return SE.getCouldNotCompute(); 8395 8396 // Okay at this point we know that all elements of the chrec are constants and 8397 // that the start element is zero. 8398 8399 // First check to see if the range contains zero. If not, the first 8400 // iteration exits. 8401 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8402 if (!Range.contains(APInt(BitWidth, 0))) 8403 return SE.getZero(getType()); 8404 8405 if (isAffine()) { 8406 // If this is an affine expression then we have this situation: 8407 // Solve {0,+,A} in Range === Ax in Range 8408 8409 // We know that zero is in the range. If A is positive then we know that 8410 // the upper value of the range must be the first possible exit value. 8411 // If A is negative then the lower of the range is the last possible loop 8412 // value. Also note that we already checked for a full range. 8413 APInt One(BitWidth,1); 8414 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 8415 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8416 8417 // The exit value should be (End+A)/A. 8418 APInt ExitVal = (End + A).udiv(A); 8419 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8420 8421 // Evaluate at the exit value. If we really did fall out of the valid 8422 // range, then we computed our trip count, otherwise wrap around or other 8423 // things must have happened. 8424 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8425 if (Range.contains(Val->getValue())) 8426 return SE.getCouldNotCompute(); // Something strange happened 8427 8428 // Ensure that the previous value is in the range. This is a sanity check. 8429 assert(Range.contains( 8430 EvaluateConstantChrecAtConstant(this, 8431 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8432 "Linear scev computation is off in a bad way!"); 8433 return SE.getConstant(ExitValue); 8434 } else if (isQuadratic()) { 8435 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8436 // quadratic equation to solve it. To do this, we must frame our problem in 8437 // terms of figuring out when zero is crossed, instead of when 8438 // Range.getUpper() is crossed. 8439 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8440 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8441 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8442 // getNoWrapFlags(FlagNW) 8443 FlagAnyWrap); 8444 8445 // Next, solve the constructed addrec 8446 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8447 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8448 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8449 if (R1) { 8450 // Pick the smallest positive root value. 8451 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8452 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8453 if (!CB->getZExtValue()) 8454 std::swap(R1, R2); // R1 is the minimum root now. 8455 8456 // Make sure the root is not off by one. The returned iteration should 8457 // not be in the range, but the previous one should be. When solving 8458 // for "X*X < 5", for example, we should not return a root of 2. 8459 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8460 R1->getValue(), 8461 SE); 8462 if (Range.contains(R1Val->getValue())) { 8463 // The next iteration must be out of the range... 8464 ConstantInt *NextVal = 8465 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 8466 8467 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8468 if (!Range.contains(R1Val->getValue())) 8469 return SE.getConstant(NextVal); 8470 return SE.getCouldNotCompute(); // Something strange happened 8471 } 8472 8473 // If R1 was not in the range, then it is a good return value. Make 8474 // sure that R1-1 WAS in the range though, just in case. 8475 ConstantInt *NextVal = 8476 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 8477 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8478 if (Range.contains(R1Val->getValue())) 8479 return R1; 8480 return SE.getCouldNotCompute(); // Something strange happened 8481 } 8482 } 8483 } 8484 8485 return SE.getCouldNotCompute(); 8486 } 8487 8488 namespace { 8489 struct FindUndefs { 8490 bool Found; 8491 FindUndefs() : Found(false) {} 8492 8493 bool follow(const SCEV *S) { 8494 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8495 if (isa<UndefValue>(C->getValue())) 8496 Found = true; 8497 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8498 if (isa<UndefValue>(C->getValue())) 8499 Found = true; 8500 } 8501 8502 // Keep looking if we haven't found it yet. 8503 return !Found; 8504 } 8505 bool isDone() const { 8506 // Stop recursion if we have found an undef. 8507 return Found; 8508 } 8509 }; 8510 } 8511 8512 // Return true when S contains at least an undef value. 8513 static inline bool 8514 containsUndefs(const SCEV *S) { 8515 FindUndefs F; 8516 SCEVTraversal<FindUndefs> ST(F); 8517 ST.visitAll(S); 8518 8519 return F.Found; 8520 } 8521 8522 namespace { 8523 // Collect all steps of SCEV expressions. 8524 struct SCEVCollectStrides { 8525 ScalarEvolution &SE; 8526 SmallVectorImpl<const SCEV *> &Strides; 8527 8528 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8529 : SE(SE), Strides(S) {} 8530 8531 bool follow(const SCEV *S) { 8532 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8533 Strides.push_back(AR->getStepRecurrence(SE)); 8534 return true; 8535 } 8536 bool isDone() const { return false; } 8537 }; 8538 8539 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8540 struct SCEVCollectTerms { 8541 SmallVectorImpl<const SCEV *> &Terms; 8542 8543 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8544 : Terms(T) {} 8545 8546 bool follow(const SCEV *S) { 8547 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8548 if (!containsUndefs(S)) 8549 Terms.push_back(S); 8550 8551 // Stop recursion: once we collected a term, do not walk its operands. 8552 return false; 8553 } 8554 8555 // Keep looking. 8556 return true; 8557 } 8558 bool isDone() const { return false; } 8559 }; 8560 8561 // Check if a SCEV contains an AddRecExpr. 8562 struct SCEVHasAddRec { 8563 bool &ContainsAddRec; 8564 8565 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8566 ContainsAddRec = false; 8567 } 8568 8569 bool follow(const SCEV *S) { 8570 if (isa<SCEVAddRecExpr>(S)) { 8571 ContainsAddRec = true; 8572 8573 // Stop recursion: once we collected a term, do not walk its operands. 8574 return false; 8575 } 8576 8577 // Keep looking. 8578 return true; 8579 } 8580 bool isDone() const { return false; } 8581 }; 8582 8583 // Find factors that are multiplied with an expression that (possibly as a 8584 // subexpression) contains an AddRecExpr. In the expression: 8585 // 8586 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8587 // 8588 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8589 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8590 // parameters as they form a product with an induction variable. 8591 // 8592 // This collector expects all array size parameters to be in the same MulExpr. 8593 // It might be necessary to later add support for collecting parameters that are 8594 // spread over different nested MulExpr. 8595 struct SCEVCollectAddRecMultiplies { 8596 SmallVectorImpl<const SCEV *> &Terms; 8597 ScalarEvolution &SE; 8598 8599 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8600 : Terms(T), SE(SE) {} 8601 8602 bool follow(const SCEV *S) { 8603 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8604 bool HasAddRec = false; 8605 SmallVector<const SCEV *, 0> Operands; 8606 for (auto Op : Mul->operands()) { 8607 if (isa<SCEVUnknown>(Op)) { 8608 Operands.push_back(Op); 8609 } else { 8610 bool ContainsAddRec; 8611 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8612 visitAll(Op, ContiansAddRec); 8613 HasAddRec |= ContainsAddRec; 8614 } 8615 } 8616 if (Operands.size() == 0) 8617 return true; 8618 8619 if (!HasAddRec) 8620 return false; 8621 8622 Terms.push_back(SE.getMulExpr(Operands)); 8623 // Stop recursion: once we collected a term, do not walk its operands. 8624 return false; 8625 } 8626 8627 // Keep looking. 8628 return true; 8629 } 8630 bool isDone() const { return false; } 8631 }; 8632 } 8633 8634 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8635 /// two places: 8636 /// 1) The strides of AddRec expressions. 8637 /// 2) Unknowns that are multiplied with AddRec expressions. 8638 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8639 SmallVectorImpl<const SCEV *> &Terms) { 8640 SmallVector<const SCEV *, 4> Strides; 8641 SCEVCollectStrides StrideCollector(*this, Strides); 8642 visitAll(Expr, StrideCollector); 8643 8644 DEBUG({ 8645 dbgs() << "Strides:\n"; 8646 for (const SCEV *S : Strides) 8647 dbgs() << *S << "\n"; 8648 }); 8649 8650 for (const SCEV *S : Strides) { 8651 SCEVCollectTerms TermCollector(Terms); 8652 visitAll(S, TermCollector); 8653 } 8654 8655 DEBUG({ 8656 dbgs() << "Terms:\n"; 8657 for (const SCEV *T : Terms) 8658 dbgs() << *T << "\n"; 8659 }); 8660 8661 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8662 visitAll(Expr, MulCollector); 8663 } 8664 8665 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8666 SmallVectorImpl<const SCEV *> &Terms, 8667 SmallVectorImpl<const SCEV *> &Sizes) { 8668 int Last = Terms.size() - 1; 8669 const SCEV *Step = Terms[Last]; 8670 8671 // End of recursion. 8672 if (Last == 0) { 8673 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8674 SmallVector<const SCEV *, 2> Qs; 8675 for (const SCEV *Op : M->operands()) 8676 if (!isa<SCEVConstant>(Op)) 8677 Qs.push_back(Op); 8678 8679 Step = SE.getMulExpr(Qs); 8680 } 8681 8682 Sizes.push_back(Step); 8683 return true; 8684 } 8685 8686 for (const SCEV *&Term : Terms) { 8687 // Normalize the terms before the next call to findArrayDimensionsRec. 8688 const SCEV *Q, *R; 8689 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8690 8691 // Bail out when GCD does not evenly divide one of the terms. 8692 if (!R->isZero()) 8693 return false; 8694 8695 Term = Q; 8696 } 8697 8698 // Remove all SCEVConstants. 8699 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8700 return isa<SCEVConstant>(E); 8701 }), 8702 Terms.end()); 8703 8704 if (Terms.size() > 0) 8705 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8706 return false; 8707 8708 Sizes.push_back(Step); 8709 return true; 8710 } 8711 8712 // Returns true when S contains at least a SCEVUnknown parameter. 8713 static inline bool 8714 containsParameters(const SCEV *S) { 8715 struct FindParameter { 8716 bool FoundParameter; 8717 FindParameter() : FoundParameter(false) {} 8718 8719 bool follow(const SCEV *S) { 8720 if (isa<SCEVUnknown>(S)) { 8721 FoundParameter = true; 8722 // Stop recursion: we found a parameter. 8723 return false; 8724 } 8725 // Keep looking. 8726 return true; 8727 } 8728 bool isDone() const { 8729 // Stop recursion if we have found a parameter. 8730 return FoundParameter; 8731 } 8732 }; 8733 8734 FindParameter F; 8735 SCEVTraversal<FindParameter> ST(F); 8736 ST.visitAll(S); 8737 8738 return F.FoundParameter; 8739 } 8740 8741 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8742 static inline bool 8743 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8744 for (const SCEV *T : Terms) 8745 if (containsParameters(T)) 8746 return true; 8747 return false; 8748 } 8749 8750 // Return the number of product terms in S. 8751 static inline int numberOfTerms(const SCEV *S) { 8752 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8753 return Expr->getNumOperands(); 8754 return 1; 8755 } 8756 8757 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8758 if (isa<SCEVConstant>(T)) 8759 return nullptr; 8760 8761 if (isa<SCEVUnknown>(T)) 8762 return T; 8763 8764 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8765 SmallVector<const SCEV *, 2> Factors; 8766 for (const SCEV *Op : M->operands()) 8767 if (!isa<SCEVConstant>(Op)) 8768 Factors.push_back(Op); 8769 8770 return SE.getMulExpr(Factors); 8771 } 8772 8773 return T; 8774 } 8775 8776 /// Return the size of an element read or written by Inst. 8777 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8778 Type *Ty; 8779 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8780 Ty = Store->getValueOperand()->getType(); 8781 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8782 Ty = Load->getType(); 8783 else 8784 return nullptr; 8785 8786 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8787 return getSizeOfExpr(ETy, Ty); 8788 } 8789 8790 /// Second step of delinearization: compute the array dimensions Sizes from the 8791 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8792 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8793 SmallVectorImpl<const SCEV *> &Sizes, 8794 const SCEV *ElementSize) const { 8795 8796 if (Terms.size() < 1 || !ElementSize) 8797 return; 8798 8799 // Early return when Terms do not contain parameters: we do not delinearize 8800 // non parametric SCEVs. 8801 if (!containsParameters(Terms)) 8802 return; 8803 8804 DEBUG({ 8805 dbgs() << "Terms:\n"; 8806 for (const SCEV *T : Terms) 8807 dbgs() << *T << "\n"; 8808 }); 8809 8810 // Remove duplicates. 8811 std::sort(Terms.begin(), Terms.end()); 8812 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8813 8814 // Put larger terms first. 8815 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8816 return numberOfTerms(LHS) > numberOfTerms(RHS); 8817 }); 8818 8819 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8820 8821 // Try to divide all terms by the element size. If term is not divisible by 8822 // element size, proceed with the original term. 8823 for (const SCEV *&Term : Terms) { 8824 const SCEV *Q, *R; 8825 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8826 if (!Q->isZero()) 8827 Term = Q; 8828 } 8829 8830 SmallVector<const SCEV *, 4> NewTerms; 8831 8832 // Remove constant factors. 8833 for (const SCEV *T : Terms) 8834 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8835 NewTerms.push_back(NewT); 8836 8837 DEBUG({ 8838 dbgs() << "Terms after sorting:\n"; 8839 for (const SCEV *T : NewTerms) 8840 dbgs() << *T << "\n"; 8841 }); 8842 8843 if (NewTerms.empty() || 8844 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8845 Sizes.clear(); 8846 return; 8847 } 8848 8849 // The last element to be pushed into Sizes is the size of an element. 8850 Sizes.push_back(ElementSize); 8851 8852 DEBUG({ 8853 dbgs() << "Sizes:\n"; 8854 for (const SCEV *S : Sizes) 8855 dbgs() << *S << "\n"; 8856 }); 8857 } 8858 8859 /// Third step of delinearization: compute the access functions for the 8860 /// Subscripts based on the dimensions in Sizes. 8861 void ScalarEvolution::computeAccessFunctions( 8862 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8863 SmallVectorImpl<const SCEV *> &Sizes) { 8864 8865 // Early exit in case this SCEV is not an affine multivariate function. 8866 if (Sizes.empty()) 8867 return; 8868 8869 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8870 if (!AR->isAffine()) 8871 return; 8872 8873 const SCEV *Res = Expr; 8874 int Last = Sizes.size() - 1; 8875 for (int i = Last; i >= 0; i--) { 8876 const SCEV *Q, *R; 8877 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8878 8879 DEBUG({ 8880 dbgs() << "Res: " << *Res << "\n"; 8881 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8882 dbgs() << "Res divided by Sizes[i]:\n"; 8883 dbgs() << "Quotient: " << *Q << "\n"; 8884 dbgs() << "Remainder: " << *R << "\n"; 8885 }); 8886 8887 Res = Q; 8888 8889 // Do not record the last subscript corresponding to the size of elements in 8890 // the array. 8891 if (i == Last) { 8892 8893 // Bail out if the remainder is too complex. 8894 if (isa<SCEVAddRecExpr>(R)) { 8895 Subscripts.clear(); 8896 Sizes.clear(); 8897 return; 8898 } 8899 8900 continue; 8901 } 8902 8903 // Record the access function for the current subscript. 8904 Subscripts.push_back(R); 8905 } 8906 8907 // Also push in last position the remainder of the last division: it will be 8908 // the access function of the innermost dimension. 8909 Subscripts.push_back(Res); 8910 8911 std::reverse(Subscripts.begin(), Subscripts.end()); 8912 8913 DEBUG({ 8914 dbgs() << "Subscripts:\n"; 8915 for (const SCEV *S : Subscripts) 8916 dbgs() << *S << "\n"; 8917 }); 8918 } 8919 8920 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8921 /// sizes of an array access. Returns the remainder of the delinearization that 8922 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8923 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8924 /// expressions in the stride and base of a SCEV corresponding to the 8925 /// computation of a GCD (greatest common divisor) of base and stride. When 8926 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8927 /// 8928 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8929 /// 8930 /// void foo(long n, long m, long o, double A[n][m][o]) { 8931 /// 8932 /// for (long i = 0; i < n; i++) 8933 /// for (long j = 0; j < m; j++) 8934 /// for (long k = 0; k < o; k++) 8935 /// A[i][j][k] = 1.0; 8936 /// } 8937 /// 8938 /// the delinearization input is the following AddRec SCEV: 8939 /// 8940 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8941 /// 8942 /// From this SCEV, we are able to say that the base offset of the access is %A 8943 /// because it appears as an offset that does not divide any of the strides in 8944 /// the loops: 8945 /// 8946 /// CHECK: Base offset: %A 8947 /// 8948 /// and then SCEV->delinearize determines the size of some of the dimensions of 8949 /// the array as these are the multiples by which the strides are happening: 8950 /// 8951 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8952 /// 8953 /// Note that the outermost dimension remains of UnknownSize because there are 8954 /// no strides that would help identifying the size of the last dimension: when 8955 /// the array has been statically allocated, one could compute the size of that 8956 /// dimension by dividing the overall size of the array by the size of the known 8957 /// dimensions: %m * %o * 8. 8958 /// 8959 /// Finally delinearize provides the access functions for the array reference 8960 /// that does correspond to A[i][j][k] of the above C testcase: 8961 /// 8962 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8963 /// 8964 /// The testcases are checking the output of a function pass: 8965 /// DelinearizationPass that walks through all loads and stores of a function 8966 /// asking for the SCEV of the memory access with respect to all enclosing 8967 /// loops, calling SCEV->delinearize on that and printing the results. 8968 8969 void ScalarEvolution::delinearize(const SCEV *Expr, 8970 SmallVectorImpl<const SCEV *> &Subscripts, 8971 SmallVectorImpl<const SCEV *> &Sizes, 8972 const SCEV *ElementSize) { 8973 // First step: collect parametric terms. 8974 SmallVector<const SCEV *, 4> Terms; 8975 collectParametricTerms(Expr, Terms); 8976 8977 if (Terms.empty()) 8978 return; 8979 8980 // Second step: find subscript sizes. 8981 findArrayDimensions(Terms, Sizes, ElementSize); 8982 8983 if (Sizes.empty()) 8984 return; 8985 8986 // Third step: compute the access functions for each subscript. 8987 computeAccessFunctions(Expr, Subscripts, Sizes); 8988 8989 if (Subscripts.empty()) 8990 return; 8991 8992 DEBUG({ 8993 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8994 dbgs() << "ArrayDecl[UnknownSize]"; 8995 for (const SCEV *S : Sizes) 8996 dbgs() << "[" << *S << "]"; 8997 8998 dbgs() << "\nArrayRef"; 8999 for (const SCEV *S : Subscripts) 9000 dbgs() << "[" << *S << "]"; 9001 dbgs() << "\n"; 9002 }); 9003 } 9004 9005 //===----------------------------------------------------------------------===// 9006 // SCEVCallbackVH Class Implementation 9007 //===----------------------------------------------------------------------===// 9008 9009 void ScalarEvolution::SCEVCallbackVH::deleted() { 9010 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9011 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9012 SE->ConstantEvolutionLoopExitValue.erase(PN); 9013 SE->ValueExprMap.erase(getValPtr()); 9014 // this now dangles! 9015 } 9016 9017 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9018 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9019 9020 // Forget all the expressions associated with users of the old value, 9021 // so that future queries will recompute the expressions using the new 9022 // value. 9023 Value *Old = getValPtr(); 9024 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9025 SmallPtrSet<User *, 8> Visited; 9026 while (!Worklist.empty()) { 9027 User *U = Worklist.pop_back_val(); 9028 // Deleting the Old value will cause this to dangle. Postpone 9029 // that until everything else is done. 9030 if (U == Old) 9031 continue; 9032 if (!Visited.insert(U).second) 9033 continue; 9034 if (PHINode *PN = dyn_cast<PHINode>(U)) 9035 SE->ConstantEvolutionLoopExitValue.erase(PN); 9036 SE->ValueExprMap.erase(U); 9037 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9038 } 9039 // Delete the Old value. 9040 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9041 SE->ConstantEvolutionLoopExitValue.erase(PN); 9042 SE->ValueExprMap.erase(Old); 9043 // this now dangles! 9044 } 9045 9046 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9047 : CallbackVH(V), SE(se) {} 9048 9049 //===----------------------------------------------------------------------===// 9050 // ScalarEvolution Class Implementation 9051 //===----------------------------------------------------------------------===// 9052 9053 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9054 AssumptionCache &AC, DominatorTree &DT, 9055 LoopInfo &LI) 9056 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9057 CouldNotCompute(new SCEVCouldNotCompute()), 9058 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9059 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9060 FirstUnknown(nullptr) {} 9061 9062 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9063 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 9064 CouldNotCompute(std::move(Arg.CouldNotCompute)), 9065 ValueExprMap(std::move(Arg.ValueExprMap)), 9066 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9067 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9068 ConstantEvolutionLoopExitValue( 9069 std::move(Arg.ConstantEvolutionLoopExitValue)), 9070 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9071 LoopDispositions(std::move(Arg.LoopDispositions)), 9072 BlockDispositions(std::move(Arg.BlockDispositions)), 9073 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9074 SignedRanges(std::move(Arg.SignedRanges)), 9075 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9076 UniquePreds(std::move(Arg.UniquePreds)), 9077 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9078 FirstUnknown(Arg.FirstUnknown) { 9079 Arg.FirstUnknown = nullptr; 9080 } 9081 9082 ScalarEvolution::~ScalarEvolution() { 9083 // Iterate through all the SCEVUnknown instances and call their 9084 // destructors, so that they release their references to their values. 9085 for (SCEVUnknown *U = FirstUnknown; U;) { 9086 SCEVUnknown *Tmp = U; 9087 U = U->Next; 9088 Tmp->~SCEVUnknown(); 9089 } 9090 FirstUnknown = nullptr; 9091 9092 ValueExprMap.clear(); 9093 9094 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9095 // that a loop had multiple computable exits. 9096 for (auto &BTCI : BackedgeTakenCounts) 9097 BTCI.second.clear(); 9098 9099 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9100 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9101 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9102 } 9103 9104 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9105 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9106 } 9107 9108 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9109 const Loop *L) { 9110 // Print all inner loops first 9111 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 9112 PrintLoopInfo(OS, SE, *I); 9113 9114 OS << "Loop "; 9115 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9116 OS << ": "; 9117 9118 SmallVector<BasicBlock *, 8> ExitBlocks; 9119 L->getExitBlocks(ExitBlocks); 9120 if (ExitBlocks.size() != 1) 9121 OS << "<multiple exits> "; 9122 9123 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9124 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9125 } else { 9126 OS << "Unpredictable backedge-taken count. "; 9127 } 9128 9129 OS << "\n" 9130 "Loop "; 9131 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9132 OS << ": "; 9133 9134 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9135 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9136 } else { 9137 OS << "Unpredictable max backedge-taken count. "; 9138 } 9139 9140 OS << "\n"; 9141 } 9142 9143 void ScalarEvolution::print(raw_ostream &OS) const { 9144 // ScalarEvolution's implementation of the print method is to print 9145 // out SCEV values of all instructions that are interesting. Doing 9146 // this potentially causes it to create new SCEV objects though, 9147 // which technically conflicts with the const qualifier. This isn't 9148 // observable from outside the class though, so casting away the 9149 // const isn't dangerous. 9150 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9151 9152 OS << "Classifying expressions for: "; 9153 F.printAsOperand(OS, /*PrintType=*/false); 9154 OS << "\n"; 9155 for (Instruction &I : instructions(F)) 9156 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9157 OS << I << '\n'; 9158 OS << " --> "; 9159 const SCEV *SV = SE.getSCEV(&I); 9160 SV->print(OS); 9161 if (!isa<SCEVCouldNotCompute>(SV)) { 9162 OS << " U: "; 9163 SE.getUnsignedRange(SV).print(OS); 9164 OS << " S: "; 9165 SE.getSignedRange(SV).print(OS); 9166 } 9167 9168 const Loop *L = LI.getLoopFor(I.getParent()); 9169 9170 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9171 if (AtUse != SV) { 9172 OS << " --> "; 9173 AtUse->print(OS); 9174 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9175 OS << " U: "; 9176 SE.getUnsignedRange(AtUse).print(OS); 9177 OS << " S: "; 9178 SE.getSignedRange(AtUse).print(OS); 9179 } 9180 } 9181 9182 if (L) { 9183 OS << "\t\t" "Exits: "; 9184 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9185 if (!SE.isLoopInvariant(ExitValue, L)) { 9186 OS << "<<Unknown>>"; 9187 } else { 9188 OS << *ExitValue; 9189 } 9190 } 9191 9192 OS << "\n"; 9193 } 9194 9195 OS << "Determining loop execution counts for: "; 9196 F.printAsOperand(OS, /*PrintType=*/false); 9197 OS << "\n"; 9198 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9199 PrintLoopInfo(OS, &SE, *I); 9200 } 9201 9202 ScalarEvolution::LoopDisposition 9203 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9204 auto &Values = LoopDispositions[S]; 9205 for (auto &V : Values) { 9206 if (V.getPointer() == L) 9207 return V.getInt(); 9208 } 9209 Values.emplace_back(L, LoopVariant); 9210 LoopDisposition D = computeLoopDisposition(S, L); 9211 auto &Values2 = LoopDispositions[S]; 9212 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9213 if (V.getPointer() == L) { 9214 V.setInt(D); 9215 break; 9216 } 9217 } 9218 return D; 9219 } 9220 9221 ScalarEvolution::LoopDisposition 9222 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9223 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9224 case scConstant: 9225 return LoopInvariant; 9226 case scTruncate: 9227 case scZeroExtend: 9228 case scSignExtend: 9229 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9230 case scAddRecExpr: { 9231 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9232 9233 // If L is the addrec's loop, it's computable. 9234 if (AR->getLoop() == L) 9235 return LoopComputable; 9236 9237 // Add recurrences are never invariant in the function-body (null loop). 9238 if (!L) 9239 return LoopVariant; 9240 9241 // This recurrence is variant w.r.t. L if L contains AR's loop. 9242 if (L->contains(AR->getLoop())) 9243 return LoopVariant; 9244 9245 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9246 if (AR->getLoop()->contains(L)) 9247 return LoopInvariant; 9248 9249 // This recurrence is variant w.r.t. L if any of its operands 9250 // are variant. 9251 for (auto *Op : AR->operands()) 9252 if (!isLoopInvariant(Op, L)) 9253 return LoopVariant; 9254 9255 // Otherwise it's loop-invariant. 9256 return LoopInvariant; 9257 } 9258 case scAddExpr: 9259 case scMulExpr: 9260 case scUMaxExpr: 9261 case scSMaxExpr: { 9262 bool HasVarying = false; 9263 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9264 LoopDisposition D = getLoopDisposition(Op, L); 9265 if (D == LoopVariant) 9266 return LoopVariant; 9267 if (D == LoopComputable) 9268 HasVarying = true; 9269 } 9270 return HasVarying ? LoopComputable : LoopInvariant; 9271 } 9272 case scUDivExpr: { 9273 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9274 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9275 if (LD == LoopVariant) 9276 return LoopVariant; 9277 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9278 if (RD == LoopVariant) 9279 return LoopVariant; 9280 return (LD == LoopInvariant && RD == LoopInvariant) ? 9281 LoopInvariant : LoopComputable; 9282 } 9283 case scUnknown: 9284 // All non-instruction values are loop invariant. All instructions are loop 9285 // invariant if they are not contained in the specified loop. 9286 // Instructions are never considered invariant in the function body 9287 // (null loop) because they are defined within the "loop". 9288 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9289 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9290 return LoopInvariant; 9291 case scCouldNotCompute: 9292 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9293 } 9294 llvm_unreachable("Unknown SCEV kind!"); 9295 } 9296 9297 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9298 return getLoopDisposition(S, L) == LoopInvariant; 9299 } 9300 9301 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9302 return getLoopDisposition(S, L) == LoopComputable; 9303 } 9304 9305 ScalarEvolution::BlockDisposition 9306 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9307 auto &Values = BlockDispositions[S]; 9308 for (auto &V : Values) { 9309 if (V.getPointer() == BB) 9310 return V.getInt(); 9311 } 9312 Values.emplace_back(BB, DoesNotDominateBlock); 9313 BlockDisposition D = computeBlockDisposition(S, BB); 9314 auto &Values2 = BlockDispositions[S]; 9315 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9316 if (V.getPointer() == BB) { 9317 V.setInt(D); 9318 break; 9319 } 9320 } 9321 return D; 9322 } 9323 9324 ScalarEvolution::BlockDisposition 9325 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9326 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9327 case scConstant: 9328 return ProperlyDominatesBlock; 9329 case scTruncate: 9330 case scZeroExtend: 9331 case scSignExtend: 9332 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9333 case scAddRecExpr: { 9334 // This uses a "dominates" query instead of "properly dominates" query 9335 // to test for proper dominance too, because the instruction which 9336 // produces the addrec's value is a PHI, and a PHI effectively properly 9337 // dominates its entire containing block. 9338 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9339 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9340 return DoesNotDominateBlock; 9341 } 9342 // FALL THROUGH into SCEVNAryExpr handling. 9343 case scAddExpr: 9344 case scMulExpr: 9345 case scUMaxExpr: 9346 case scSMaxExpr: { 9347 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9348 bool Proper = true; 9349 for (const SCEV *NAryOp : NAry->operands()) { 9350 BlockDisposition D = getBlockDisposition(NAryOp, BB); 9351 if (D == DoesNotDominateBlock) 9352 return DoesNotDominateBlock; 9353 if (D == DominatesBlock) 9354 Proper = false; 9355 } 9356 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9357 } 9358 case scUDivExpr: { 9359 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9360 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9361 BlockDisposition LD = getBlockDisposition(LHS, BB); 9362 if (LD == DoesNotDominateBlock) 9363 return DoesNotDominateBlock; 9364 BlockDisposition RD = getBlockDisposition(RHS, BB); 9365 if (RD == DoesNotDominateBlock) 9366 return DoesNotDominateBlock; 9367 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9368 ProperlyDominatesBlock : DominatesBlock; 9369 } 9370 case scUnknown: 9371 if (Instruction *I = 9372 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9373 if (I->getParent() == BB) 9374 return DominatesBlock; 9375 if (DT.properlyDominates(I->getParent(), BB)) 9376 return ProperlyDominatesBlock; 9377 return DoesNotDominateBlock; 9378 } 9379 return ProperlyDominatesBlock; 9380 case scCouldNotCompute: 9381 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9382 } 9383 llvm_unreachable("Unknown SCEV kind!"); 9384 } 9385 9386 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9387 return getBlockDisposition(S, BB) >= DominatesBlock; 9388 } 9389 9390 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9391 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9392 } 9393 9394 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9395 // Search for a SCEV expression node within an expression tree. 9396 // Implements SCEVTraversal::Visitor. 9397 struct SCEVSearch { 9398 const SCEV *Node; 9399 bool IsFound; 9400 9401 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9402 9403 bool follow(const SCEV *S) { 9404 IsFound |= (S == Node); 9405 return !IsFound; 9406 } 9407 bool isDone() const { return IsFound; } 9408 }; 9409 9410 SCEVSearch Search(Op); 9411 visitAll(S, Search); 9412 return Search.IsFound; 9413 } 9414 9415 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9416 ValuesAtScopes.erase(S); 9417 LoopDispositions.erase(S); 9418 BlockDispositions.erase(S); 9419 UnsignedRanges.erase(S); 9420 SignedRanges.erase(S); 9421 9422 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9423 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9424 BackedgeTakenInfo &BEInfo = I->second; 9425 if (BEInfo.hasOperand(S, this)) { 9426 BEInfo.clear(); 9427 BackedgeTakenCounts.erase(I++); 9428 } 9429 else 9430 ++I; 9431 } 9432 } 9433 9434 typedef DenseMap<const Loop *, std::string> VerifyMap; 9435 9436 /// replaceSubString - Replaces all occurrences of From in Str with To. 9437 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9438 size_t Pos = 0; 9439 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9440 Str.replace(Pos, From.size(), To.data(), To.size()); 9441 Pos += To.size(); 9442 } 9443 } 9444 9445 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9446 static void 9447 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9448 std::string &S = Map[L]; 9449 if (S.empty()) { 9450 raw_string_ostream OS(S); 9451 SE.getBackedgeTakenCount(L)->print(OS); 9452 9453 // false and 0 are semantically equivalent. This can happen in dead loops. 9454 replaceSubString(OS.str(), "false", "0"); 9455 // Remove wrap flags, their use in SCEV is highly fragile. 9456 // FIXME: Remove this when SCEV gets smarter about them. 9457 replaceSubString(OS.str(), "<nw>", ""); 9458 replaceSubString(OS.str(), "<nsw>", ""); 9459 replaceSubString(OS.str(), "<nuw>", ""); 9460 } 9461 9462 for (auto *R : reverse(*L)) 9463 getLoopBackedgeTakenCounts(R, Map, SE); // recurse. 9464 } 9465 9466 void ScalarEvolution::verify() const { 9467 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9468 9469 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9470 // FIXME: It would be much better to store actual values instead of strings, 9471 // but SCEV pointers will change if we drop the caches. 9472 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9473 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9474 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9475 9476 // Gather stringified backedge taken counts for all loops using a fresh 9477 // ScalarEvolution object. 9478 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9479 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9480 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9481 9482 // Now compare whether they're the same with and without caches. This allows 9483 // verifying that no pass changed the cache. 9484 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9485 "New loops suddenly appeared!"); 9486 9487 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9488 OldE = BackedgeDumpsOld.end(), 9489 NewI = BackedgeDumpsNew.begin(); 9490 OldI != OldE; ++OldI, ++NewI) { 9491 assert(OldI->first == NewI->first && "Loop order changed!"); 9492 9493 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9494 // changes. 9495 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9496 // means that a pass is buggy or SCEV has to learn a new pattern but is 9497 // usually not harmful. 9498 if (OldI->second != NewI->second && 9499 OldI->second.find("undef") == std::string::npos && 9500 NewI->second.find("undef") == std::string::npos && 9501 OldI->second != "***COULDNOTCOMPUTE***" && 9502 NewI->second != "***COULDNOTCOMPUTE***") { 9503 dbgs() << "SCEVValidator: SCEV for loop '" 9504 << OldI->first->getHeader()->getName() 9505 << "' changed from '" << OldI->second 9506 << "' to '" << NewI->second << "'!\n"; 9507 std::abort(); 9508 } 9509 } 9510 9511 // TODO: Verify more things. 9512 } 9513 9514 char ScalarEvolutionAnalysis::PassID; 9515 9516 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9517 AnalysisManager<Function> *AM) { 9518 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9519 AM->getResult<AssumptionAnalysis>(F), 9520 AM->getResult<DominatorTreeAnalysis>(F), 9521 AM->getResult<LoopAnalysis>(F)); 9522 } 9523 9524 PreservedAnalyses 9525 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9526 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9527 return PreservedAnalyses::all(); 9528 } 9529 9530 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9531 "Scalar Evolution Analysis", false, true) 9532 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9533 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9534 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9535 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9536 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9537 "Scalar Evolution Analysis", false, true) 9538 char ScalarEvolutionWrapperPass::ID = 0; 9539 9540 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9541 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9542 } 9543 9544 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9545 SE.reset(new ScalarEvolution( 9546 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9547 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9548 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9549 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9550 return false; 9551 } 9552 9553 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9554 9555 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9556 SE->print(OS); 9557 } 9558 9559 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9560 if (!VerifySCEV) 9561 return; 9562 9563 SE->verify(); 9564 } 9565 9566 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9567 AU.setPreservesAll(); 9568 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9569 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9570 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9571 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9572 } 9573 9574 const SCEVPredicate * 9575 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 9576 const SCEVConstant *RHS) { 9577 FoldingSetNodeID ID; 9578 // Unique this node based on the arguments 9579 ID.AddInteger(SCEVPredicate::P_Equal); 9580 ID.AddPointer(LHS); 9581 ID.AddPointer(RHS); 9582 void *IP = nullptr; 9583 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 9584 return S; 9585 SCEVEqualPredicate *Eq = new (SCEVAllocator) 9586 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 9587 UniquePreds.InsertNode(Eq, IP); 9588 return Eq; 9589 } 9590 9591 namespace { 9592 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 9593 public: 9594 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, 9595 SCEVUnionPredicate &A) { 9596 SCEVPredicateRewriter Rewriter(SE, A); 9597 return Rewriter.visit(Scev); 9598 } 9599 9600 SCEVPredicateRewriter(ScalarEvolution &SE, SCEVUnionPredicate &P) 9601 : SCEVRewriteVisitor(SE), P(P) {} 9602 9603 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 9604 auto ExprPreds = P.getPredicatesForExpr(Expr); 9605 for (auto *Pred : ExprPreds) 9606 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred)) 9607 if (IPred->getLHS() == Expr) 9608 return IPred->getRHS(); 9609 9610 return Expr; 9611 } 9612 9613 private: 9614 SCEVUnionPredicate &P; 9615 }; 9616 } // end anonymous namespace 9617 9618 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev, 9619 SCEVUnionPredicate &Preds) { 9620 return SCEVPredicateRewriter::rewrite(Scev, *this, Preds); 9621 } 9622 9623 /// SCEV predicates 9624 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 9625 SCEVPredicateKind Kind) 9626 : FastID(ID), Kind(Kind) {} 9627 9628 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 9629 const SCEVUnknown *LHS, 9630 const SCEVConstant *RHS) 9631 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 9632 9633 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 9634 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N); 9635 9636 if (!Op) 9637 return false; 9638 9639 return Op->LHS == LHS && Op->RHS == RHS; 9640 } 9641 9642 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 9643 9644 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 9645 9646 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 9647 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 9648 } 9649 9650 /// Union predicates don't get cached so create a dummy set ID for it. 9651 SCEVUnionPredicate::SCEVUnionPredicate() 9652 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 9653 9654 bool SCEVUnionPredicate::isAlwaysTrue() const { 9655 return all_of(Preds, 9656 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 9657 } 9658 9659 ArrayRef<const SCEVPredicate *> 9660 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 9661 auto I = SCEVToPreds.find(Expr); 9662 if (I == SCEVToPreds.end()) 9663 return ArrayRef<const SCEVPredicate *>(); 9664 return I->second; 9665 } 9666 9667 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 9668 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) 9669 return all_of(Set->Preds, 9670 [this](const SCEVPredicate *I) { return this->implies(I); }); 9671 9672 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 9673 if (ScevPredsIt == SCEVToPreds.end()) 9674 return false; 9675 auto &SCEVPreds = ScevPredsIt->second; 9676 9677 return any_of(SCEVPreds, 9678 [N](const SCEVPredicate *I) { return I->implies(N); }); 9679 } 9680 9681 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 9682 9683 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 9684 for (auto Pred : Preds) 9685 Pred->print(OS, Depth); 9686 } 9687 9688 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 9689 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) { 9690 for (auto Pred : Set->Preds) 9691 add(Pred); 9692 return; 9693 } 9694 9695 if (implies(N)) 9696 return; 9697 9698 const SCEV *Key = N->getExpr(); 9699 assert(Key && "Only SCEVUnionPredicate doesn't have an " 9700 " associated expression!"); 9701 9702 SCEVToPreds[Key].push_back(N); 9703 Preds.push_back(N); 9704 } 9705 9706 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE) 9707 : SE(SE), Generation(0) {} 9708 9709 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 9710 const SCEV *Expr = SE.getSCEV(V); 9711 RewriteEntry &Entry = RewriteMap[Expr]; 9712 9713 // If we already have an entry and the version matches, return it. 9714 if (Entry.second && Generation == Entry.first) 9715 return Entry.second; 9716 9717 // We found an entry but it's stale. Rewrite the stale entry 9718 // acording to the current predicate. 9719 if (Entry.second) 9720 Expr = Entry.second; 9721 9722 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, Preds); 9723 Entry = {Generation, NewSCEV}; 9724 9725 return NewSCEV; 9726 } 9727 9728 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 9729 if (Preds.implies(&Pred)) 9730 return; 9731 Preds.add(&Pred); 9732 updateGeneration(); 9733 } 9734 9735 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 9736 return Preds; 9737 } 9738 9739 void PredicatedScalarEvolution::updateGeneration() { 9740 // If the generation number wrapped recompute everything. 9741 if (++Generation == 0) { 9742 for (auto &II : RewriteMap) { 9743 const SCEV *Rewritten = II.second.second; 9744 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, Preds)}; 9745 } 9746 } 9747 } 9748