1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/InstructionSimplify.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/Assembly/Writer.h" 76 #include "llvm/Target/TargetData.h" 77 #include "llvm/Target/TargetLibraryInfo.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/ConstantRange.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GetElementPtrTypeIterator.h" 83 #include "llvm/Support/InstIterator.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/ADT/Statistic.h" 87 #include "llvm/ADT/STLExtras.h" 88 #include "llvm/ADT/SmallPtrSet.h" 89 #include <algorithm> 90 using namespace llvm; 91 92 STATISTIC(NumArrayLenItCounts, 93 "Number of trip counts computed with array length"); 94 STATISTIC(NumTripCountsComputed, 95 "Number of loops with predictable loop counts"); 96 STATISTIC(NumTripCountsNotComputed, 97 "Number of loops without predictable loop counts"); 98 STATISTIC(NumBruteForceTripCountsComputed, 99 "Number of loops with trip counts computed by force"); 100 101 static cl::opt<unsigned> 102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 103 cl::desc("Maximum number of iterations SCEV will " 104 "symbolically execute a constant " 105 "derived loop"), 106 cl::init(100)); 107 108 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 109 "Scalar Evolution Analysis", false, true) 110 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 111 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 112 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 113 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 114 "Scalar Evolution Analysis", false, true) 115 char ScalarEvolution::ID = 0; 116 117 //===----------------------------------------------------------------------===// 118 // SCEV class definitions 119 //===----------------------------------------------------------------------===// 120 121 //===----------------------------------------------------------------------===// 122 // Implementation of the SCEV class. 123 // 124 125 void SCEV::dump() const { 126 print(dbgs()); 127 dbgs() << '\n'; 128 } 129 130 void SCEV::print(raw_ostream &OS) const { 131 switch (getSCEVType()) { 132 case scConstant: 133 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false); 134 return; 135 case scTruncate: { 136 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 137 const SCEV *Op = Trunc->getOperand(); 138 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 139 << *Trunc->getType() << ")"; 140 return; 141 } 142 case scZeroExtend: { 143 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 144 const SCEV *Op = ZExt->getOperand(); 145 OS << "(zext " << *Op->getType() << " " << *Op << " to " 146 << *ZExt->getType() << ")"; 147 return; 148 } 149 case scSignExtend: { 150 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 151 const SCEV *Op = SExt->getOperand(); 152 OS << "(sext " << *Op->getType() << " " << *Op << " to " 153 << *SExt->getType() << ")"; 154 return; 155 } 156 case scAddRecExpr: { 157 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 158 OS << "{" << *AR->getOperand(0); 159 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 160 OS << ",+," << *AR->getOperand(i); 161 OS << "}<"; 162 if (AR->getNoWrapFlags(FlagNUW)) 163 OS << "nuw><"; 164 if (AR->getNoWrapFlags(FlagNSW)) 165 OS << "nsw><"; 166 if (AR->getNoWrapFlags(FlagNW) && 167 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 168 OS << "nw><"; 169 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false); 170 OS << ">"; 171 return; 172 } 173 case scAddExpr: 174 case scMulExpr: 175 case scUMaxExpr: 176 case scSMaxExpr: { 177 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 178 const char *OpStr = 0; 179 switch (NAry->getSCEVType()) { 180 case scAddExpr: OpStr = " + "; break; 181 case scMulExpr: OpStr = " * "; break; 182 case scUMaxExpr: OpStr = " umax "; break; 183 case scSMaxExpr: OpStr = " smax "; break; 184 } 185 OS << "("; 186 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 187 I != E; ++I) { 188 OS << **I; 189 if (llvm::next(I) != E) 190 OS << OpStr; 191 } 192 OS << ")"; 193 switch (NAry->getSCEVType()) { 194 case scAddExpr: 195 case scMulExpr: 196 if (NAry->getNoWrapFlags(FlagNUW)) 197 OS << "<nuw>"; 198 if (NAry->getNoWrapFlags(FlagNSW)) 199 OS << "<nsw>"; 200 } 201 return; 202 } 203 case scUDivExpr: { 204 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 205 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 206 return; 207 } 208 case scUnknown: { 209 const SCEVUnknown *U = cast<SCEVUnknown>(this); 210 Type *AllocTy; 211 if (U->isSizeOf(AllocTy)) { 212 OS << "sizeof(" << *AllocTy << ")"; 213 return; 214 } 215 if (U->isAlignOf(AllocTy)) { 216 OS << "alignof(" << *AllocTy << ")"; 217 return; 218 } 219 220 Type *CTy; 221 Constant *FieldNo; 222 if (U->isOffsetOf(CTy, FieldNo)) { 223 OS << "offsetof(" << *CTy << ", "; 224 WriteAsOperand(OS, FieldNo, false); 225 OS << ")"; 226 return; 227 } 228 229 // Otherwise just print it normally. 230 WriteAsOperand(OS, U->getValue(), false); 231 return; 232 } 233 case scCouldNotCompute: 234 OS << "***COULDNOTCOMPUTE***"; 235 return; 236 default: break; 237 } 238 llvm_unreachable("Unknown SCEV kind!"); 239 } 240 241 Type *SCEV::getType() const { 242 switch (getSCEVType()) { 243 case scConstant: 244 return cast<SCEVConstant>(this)->getType(); 245 case scTruncate: 246 case scZeroExtend: 247 case scSignExtend: 248 return cast<SCEVCastExpr>(this)->getType(); 249 case scAddRecExpr: 250 case scMulExpr: 251 case scUMaxExpr: 252 case scSMaxExpr: 253 return cast<SCEVNAryExpr>(this)->getType(); 254 case scAddExpr: 255 return cast<SCEVAddExpr>(this)->getType(); 256 case scUDivExpr: 257 return cast<SCEVUDivExpr>(this)->getType(); 258 case scUnknown: 259 return cast<SCEVUnknown>(this)->getType(); 260 case scCouldNotCompute: 261 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 262 default: 263 llvm_unreachable("Unknown SCEV kind!"); 264 } 265 } 266 267 bool SCEV::isZero() const { 268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 269 return SC->getValue()->isZero(); 270 return false; 271 } 272 273 bool SCEV::isOne() const { 274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 275 return SC->getValue()->isOne(); 276 return false; 277 } 278 279 bool SCEV::isAllOnesValue() const { 280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 281 return SC->getValue()->isAllOnesValue(); 282 return false; 283 } 284 285 /// isNonConstantNegative - Return true if the specified scev is negated, but 286 /// not a constant. 287 bool SCEV::isNonConstantNegative() const { 288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 289 if (!Mul) return false; 290 291 // If there is a constant factor, it will be first. 292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 293 if (!SC) return false; 294 295 // Return true if the value is negative, this matches things like (-42 * V). 296 return SC->getValue()->getValue().isNegative(); 297 } 298 299 SCEVCouldNotCompute::SCEVCouldNotCompute() : 300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 301 302 bool SCEVCouldNotCompute::classof(const SCEV *S) { 303 return S->getSCEVType() == scCouldNotCompute; 304 } 305 306 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 307 FoldingSetNodeID ID; 308 ID.AddInteger(scConstant); 309 ID.AddPointer(V); 310 void *IP = 0; 311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 313 UniqueSCEVs.InsertNode(S, IP); 314 return S; 315 } 316 317 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 318 return getConstant(ConstantInt::get(getContext(), Val)); 319 } 320 321 const SCEV * 322 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 324 return getConstant(ConstantInt::get(ITy, V, isSigned)); 325 } 326 327 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 328 unsigned SCEVTy, const SCEV *op, Type *ty) 329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 330 331 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 332 const SCEV *op, Type *ty) 333 : SCEVCastExpr(ID, scTruncate, op, ty) { 334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 335 (Ty->isIntegerTy() || Ty->isPointerTy()) && 336 "Cannot truncate non-integer value!"); 337 } 338 339 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 340 const SCEV *op, Type *ty) 341 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 343 (Ty->isIntegerTy() || Ty->isPointerTy()) && 344 "Cannot zero extend non-integer value!"); 345 } 346 347 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 348 const SCEV *op, Type *ty) 349 : SCEVCastExpr(ID, scSignExtend, op, ty) { 350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 351 (Ty->isIntegerTy() || Ty->isPointerTy()) && 352 "Cannot sign extend non-integer value!"); 353 } 354 355 void SCEVUnknown::deleted() { 356 // Clear this SCEVUnknown from various maps. 357 SE->forgetMemoizedResults(this); 358 359 // Remove this SCEVUnknown from the uniquing map. 360 SE->UniqueSCEVs.RemoveNode(this); 361 362 // Release the value. 363 setValPtr(0); 364 } 365 366 void SCEVUnknown::allUsesReplacedWith(Value *New) { 367 // Clear this SCEVUnknown from various maps. 368 SE->forgetMemoizedResults(this); 369 370 // Remove this SCEVUnknown from the uniquing map. 371 SE->UniqueSCEVs.RemoveNode(this); 372 373 // Update this SCEVUnknown to point to the new value. This is needed 374 // because there may still be outstanding SCEVs which still point to 375 // this SCEVUnknown. 376 setValPtr(New); 377 } 378 379 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 381 if (VCE->getOpcode() == Instruction::PtrToInt) 382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 383 if (CE->getOpcode() == Instruction::GetElementPtr && 384 CE->getOperand(0)->isNullValue() && 385 CE->getNumOperands() == 2) 386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 387 if (CI->isOne()) { 388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 389 ->getElementType(); 390 return true; 391 } 392 393 return false; 394 } 395 396 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 398 if (VCE->getOpcode() == Instruction::PtrToInt) 399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 400 if (CE->getOpcode() == Instruction::GetElementPtr && 401 CE->getOperand(0)->isNullValue()) { 402 Type *Ty = 403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 404 if (StructType *STy = dyn_cast<StructType>(Ty)) 405 if (!STy->isPacked() && 406 CE->getNumOperands() == 3 && 407 CE->getOperand(1)->isNullValue()) { 408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 409 if (CI->isOne() && 410 STy->getNumElements() == 2 && 411 STy->getElementType(0)->isIntegerTy(1)) { 412 AllocTy = STy->getElementType(1); 413 return true; 414 } 415 } 416 } 417 418 return false; 419 } 420 421 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 423 if (VCE->getOpcode() == Instruction::PtrToInt) 424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 425 if (CE->getOpcode() == Instruction::GetElementPtr && 426 CE->getNumOperands() == 3 && 427 CE->getOperand(0)->isNullValue() && 428 CE->getOperand(1)->isNullValue()) { 429 Type *Ty = 430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 431 // Ignore vector types here so that ScalarEvolutionExpander doesn't 432 // emit getelementptrs that index into vectors. 433 if (Ty->isStructTy() || Ty->isArrayTy()) { 434 CTy = Ty; 435 FieldNo = CE->getOperand(2); 436 return true; 437 } 438 } 439 440 return false; 441 } 442 443 //===----------------------------------------------------------------------===// 444 // SCEV Utilities 445 //===----------------------------------------------------------------------===// 446 447 namespace { 448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 449 /// than the complexity of the RHS. This comparator is used to canonicalize 450 /// expressions. 451 class SCEVComplexityCompare { 452 const LoopInfo *const LI; 453 public: 454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 455 456 // Return true or false if LHS is less than, or at least RHS, respectively. 457 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 458 return compare(LHS, RHS) < 0; 459 } 460 461 // Return negative, zero, or positive, if LHS is less than, equal to, or 462 // greater than RHS, respectively. A three-way result allows recursive 463 // comparisons to be more efficient. 464 int compare(const SCEV *LHS, const SCEV *RHS) const { 465 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 466 if (LHS == RHS) 467 return 0; 468 469 // Primarily, sort the SCEVs by their getSCEVType(). 470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 471 if (LType != RType) 472 return (int)LType - (int)RType; 473 474 // Aside from the getSCEVType() ordering, the particular ordering 475 // isn't very important except that it's beneficial to be consistent, 476 // so that (a + b) and (b + a) don't end up as different expressions. 477 switch (LType) { 478 case scUnknown: { 479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 481 482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 483 // not as complete as it could be. 484 const Value *LV = LU->getValue(), *RV = RU->getValue(); 485 486 // Order pointer values after integer values. This helps SCEVExpander 487 // form GEPs. 488 bool LIsPointer = LV->getType()->isPointerTy(), 489 RIsPointer = RV->getType()->isPointerTy(); 490 if (LIsPointer != RIsPointer) 491 return (int)LIsPointer - (int)RIsPointer; 492 493 // Compare getValueID values. 494 unsigned LID = LV->getValueID(), 495 RID = RV->getValueID(); 496 if (LID != RID) 497 return (int)LID - (int)RID; 498 499 // Sort arguments by their position. 500 if (const Argument *LA = dyn_cast<Argument>(LV)) { 501 const Argument *RA = cast<Argument>(RV); 502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 503 return (int)LArgNo - (int)RArgNo; 504 } 505 506 // For instructions, compare their loop depth, and their operand 507 // count. This is pretty loose. 508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 509 const Instruction *RInst = cast<Instruction>(RV); 510 511 // Compare loop depths. 512 const BasicBlock *LParent = LInst->getParent(), 513 *RParent = RInst->getParent(); 514 if (LParent != RParent) { 515 unsigned LDepth = LI->getLoopDepth(LParent), 516 RDepth = LI->getLoopDepth(RParent); 517 if (LDepth != RDepth) 518 return (int)LDepth - (int)RDepth; 519 } 520 521 // Compare the number of operands. 522 unsigned LNumOps = LInst->getNumOperands(), 523 RNumOps = RInst->getNumOperands(); 524 return (int)LNumOps - (int)RNumOps; 525 } 526 527 return 0; 528 } 529 530 case scConstant: { 531 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 532 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 533 534 // Compare constant values. 535 const APInt &LA = LC->getValue()->getValue(); 536 const APInt &RA = RC->getValue()->getValue(); 537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 538 if (LBitWidth != RBitWidth) 539 return (int)LBitWidth - (int)RBitWidth; 540 return LA.ult(RA) ? -1 : 1; 541 } 542 543 case scAddRecExpr: { 544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 546 547 // Compare addrec loop depths. 548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 549 if (LLoop != RLoop) { 550 unsigned LDepth = LLoop->getLoopDepth(), 551 RDepth = RLoop->getLoopDepth(); 552 if (LDepth != RDepth) 553 return (int)LDepth - (int)RDepth; 554 } 555 556 // Addrec complexity grows with operand count. 557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 558 if (LNumOps != RNumOps) 559 return (int)LNumOps - (int)RNumOps; 560 561 // Lexicographically compare. 562 for (unsigned i = 0; i != LNumOps; ++i) { 563 long X = compare(LA->getOperand(i), RA->getOperand(i)); 564 if (X != 0) 565 return X; 566 } 567 568 return 0; 569 } 570 571 case scAddExpr: 572 case scMulExpr: 573 case scSMaxExpr: 574 case scUMaxExpr: { 575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 577 578 // Lexicographically compare n-ary expressions. 579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 580 for (unsigned i = 0; i != LNumOps; ++i) { 581 if (i >= RNumOps) 582 return 1; 583 long X = compare(LC->getOperand(i), RC->getOperand(i)); 584 if (X != 0) 585 return X; 586 } 587 return (int)LNumOps - (int)RNumOps; 588 } 589 590 case scUDivExpr: { 591 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 592 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 593 594 // Lexicographically compare udiv expressions. 595 long X = compare(LC->getLHS(), RC->getLHS()); 596 if (X != 0) 597 return X; 598 return compare(LC->getRHS(), RC->getRHS()); 599 } 600 601 case scTruncate: 602 case scZeroExtend: 603 case scSignExtend: { 604 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 606 607 // Compare cast expressions by operand. 608 return compare(LC->getOperand(), RC->getOperand()); 609 } 610 611 default: 612 llvm_unreachable("Unknown SCEV kind!"); 613 } 614 } 615 }; 616 } 617 618 /// GroupByComplexity - Given a list of SCEV objects, order them by their 619 /// complexity, and group objects of the same complexity together by value. 620 /// When this routine is finished, we know that any duplicates in the vector are 621 /// consecutive and that complexity is monotonically increasing. 622 /// 623 /// Note that we go take special precautions to ensure that we get deterministic 624 /// results from this routine. In other words, we don't want the results of 625 /// this to depend on where the addresses of various SCEV objects happened to 626 /// land in memory. 627 /// 628 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 629 LoopInfo *LI) { 630 if (Ops.size() < 2) return; // Noop 631 if (Ops.size() == 2) { 632 // This is the common case, which also happens to be trivially simple. 633 // Special case it. 634 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 635 if (SCEVComplexityCompare(LI)(RHS, LHS)) 636 std::swap(LHS, RHS); 637 return; 638 } 639 640 // Do the rough sort by complexity. 641 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 642 643 // Now that we are sorted by complexity, group elements of the same 644 // complexity. Note that this is, at worst, N^2, but the vector is likely to 645 // be extremely short in practice. Note that we take this approach because we 646 // do not want to depend on the addresses of the objects we are grouping. 647 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 648 const SCEV *S = Ops[i]; 649 unsigned Complexity = S->getSCEVType(); 650 651 // If there are any objects of the same complexity and same value as this 652 // one, group them. 653 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 654 if (Ops[j] == S) { // Found a duplicate. 655 // Move it to immediately after i'th element. 656 std::swap(Ops[i+1], Ops[j]); 657 ++i; // no need to rescan it. 658 if (i == e-2) return; // Done! 659 } 660 } 661 } 662 } 663 664 665 666 //===----------------------------------------------------------------------===// 667 // Simple SCEV method implementations 668 //===----------------------------------------------------------------------===// 669 670 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 671 /// Assume, K > 0. 672 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 673 ScalarEvolution &SE, 674 Type *ResultTy) { 675 // Handle the simplest case efficiently. 676 if (K == 1) 677 return SE.getTruncateOrZeroExtend(It, ResultTy); 678 679 // We are using the following formula for BC(It, K): 680 // 681 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 682 // 683 // Suppose, W is the bitwidth of the return value. We must be prepared for 684 // overflow. Hence, we must assure that the result of our computation is 685 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 686 // safe in modular arithmetic. 687 // 688 // However, this code doesn't use exactly that formula; the formula it uses 689 // is something like the following, where T is the number of factors of 2 in 690 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 691 // exponentiation: 692 // 693 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 694 // 695 // This formula is trivially equivalent to the previous formula. However, 696 // this formula can be implemented much more efficiently. The trick is that 697 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 698 // arithmetic. To do exact division in modular arithmetic, all we have 699 // to do is multiply by the inverse. Therefore, this step can be done at 700 // width W. 701 // 702 // The next issue is how to safely do the division by 2^T. The way this 703 // is done is by doing the multiplication step at a width of at least W + T 704 // bits. This way, the bottom W+T bits of the product are accurate. Then, 705 // when we perform the division by 2^T (which is equivalent to a right shift 706 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 707 // truncated out after the division by 2^T. 708 // 709 // In comparison to just directly using the first formula, this technique 710 // is much more efficient; using the first formula requires W * K bits, 711 // but this formula less than W + K bits. Also, the first formula requires 712 // a division step, whereas this formula only requires multiplies and shifts. 713 // 714 // It doesn't matter whether the subtraction step is done in the calculation 715 // width or the input iteration count's width; if the subtraction overflows, 716 // the result must be zero anyway. We prefer here to do it in the width of 717 // the induction variable because it helps a lot for certain cases; CodeGen 718 // isn't smart enough to ignore the overflow, which leads to much less 719 // efficient code if the width of the subtraction is wider than the native 720 // register width. 721 // 722 // (It's possible to not widen at all by pulling out factors of 2 before 723 // the multiplication; for example, K=2 can be calculated as 724 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 725 // extra arithmetic, so it's not an obvious win, and it gets 726 // much more complicated for K > 3.) 727 728 // Protection from insane SCEVs; this bound is conservative, 729 // but it probably doesn't matter. 730 if (K > 1000) 731 return SE.getCouldNotCompute(); 732 733 unsigned W = SE.getTypeSizeInBits(ResultTy); 734 735 // Calculate K! / 2^T and T; we divide out the factors of two before 736 // multiplying for calculating K! / 2^T to avoid overflow. 737 // Other overflow doesn't matter because we only care about the bottom 738 // W bits of the result. 739 APInt OddFactorial(W, 1); 740 unsigned T = 1; 741 for (unsigned i = 3; i <= K; ++i) { 742 APInt Mult(W, i); 743 unsigned TwoFactors = Mult.countTrailingZeros(); 744 T += TwoFactors; 745 Mult = Mult.lshr(TwoFactors); 746 OddFactorial *= Mult; 747 } 748 749 // We need at least W + T bits for the multiplication step 750 unsigned CalculationBits = W + T; 751 752 // Calculate 2^T, at width T+W. 753 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 754 755 // Calculate the multiplicative inverse of K! / 2^T; 756 // this multiplication factor will perform the exact division by 757 // K! / 2^T. 758 APInt Mod = APInt::getSignedMinValue(W+1); 759 APInt MultiplyFactor = OddFactorial.zext(W+1); 760 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 761 MultiplyFactor = MultiplyFactor.trunc(W); 762 763 // Calculate the product, at width T+W 764 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 765 CalculationBits); 766 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 767 for (unsigned i = 1; i != K; ++i) { 768 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 769 Dividend = SE.getMulExpr(Dividend, 770 SE.getTruncateOrZeroExtend(S, CalculationTy)); 771 } 772 773 // Divide by 2^T 774 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 775 776 // Truncate the result, and divide by K! / 2^T. 777 778 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 779 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 780 } 781 782 /// evaluateAtIteration - Return the value of this chain of recurrences at 783 /// the specified iteration number. We can evaluate this recurrence by 784 /// multiplying each element in the chain by the binomial coefficient 785 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 786 /// 787 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 788 /// 789 /// where BC(It, k) stands for binomial coefficient. 790 /// 791 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 792 ScalarEvolution &SE) const { 793 const SCEV *Result = getStart(); 794 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 795 // The computation is correct in the face of overflow provided that the 796 // multiplication is performed _after_ the evaluation of the binomial 797 // coefficient. 798 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 799 if (isa<SCEVCouldNotCompute>(Coeff)) 800 return Coeff; 801 802 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 803 } 804 return Result; 805 } 806 807 //===----------------------------------------------------------------------===// 808 // SCEV Expression folder implementations 809 //===----------------------------------------------------------------------===// 810 811 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 812 Type *Ty) { 813 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 814 "This is not a truncating conversion!"); 815 assert(isSCEVable(Ty) && 816 "This is not a conversion to a SCEVable type!"); 817 Ty = getEffectiveSCEVType(Ty); 818 819 FoldingSetNodeID ID; 820 ID.AddInteger(scTruncate); 821 ID.AddPointer(Op); 822 ID.AddPointer(Ty); 823 void *IP = 0; 824 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 825 826 // Fold if the operand is constant. 827 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 828 return getConstant( 829 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 830 831 // trunc(trunc(x)) --> trunc(x) 832 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 833 return getTruncateExpr(ST->getOperand(), Ty); 834 835 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 836 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 837 return getTruncateOrSignExtend(SS->getOperand(), Ty); 838 839 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 840 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 841 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 842 843 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 844 // eliminate all the truncates. 845 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 846 SmallVector<const SCEV *, 4> Operands; 847 bool hasTrunc = false; 848 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 849 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 850 hasTrunc = isa<SCEVTruncateExpr>(S); 851 Operands.push_back(S); 852 } 853 if (!hasTrunc) 854 return getAddExpr(Operands); 855 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 856 } 857 858 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 859 // eliminate all the truncates. 860 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 861 SmallVector<const SCEV *, 4> Operands; 862 bool hasTrunc = false; 863 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 864 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 865 hasTrunc = isa<SCEVTruncateExpr>(S); 866 Operands.push_back(S); 867 } 868 if (!hasTrunc) 869 return getMulExpr(Operands); 870 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 871 } 872 873 // If the input value is a chrec scev, truncate the chrec's operands. 874 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 875 SmallVector<const SCEV *, 4> Operands; 876 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 877 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 878 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 879 } 880 881 // The cast wasn't folded; create an explicit cast node. We can reuse 882 // the existing insert position since if we get here, we won't have 883 // made any changes which would invalidate it. 884 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 885 Op, Ty); 886 UniqueSCEVs.InsertNode(S, IP); 887 return S; 888 } 889 890 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 891 Type *Ty) { 892 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 893 "This is not an extending conversion!"); 894 assert(isSCEVable(Ty) && 895 "This is not a conversion to a SCEVable type!"); 896 Ty = getEffectiveSCEVType(Ty); 897 898 // Fold if the operand is constant. 899 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 900 return getConstant( 901 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 902 903 // zext(zext(x)) --> zext(x) 904 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 905 return getZeroExtendExpr(SZ->getOperand(), Ty); 906 907 // Before doing any expensive analysis, check to see if we've already 908 // computed a SCEV for this Op and Ty. 909 FoldingSetNodeID ID; 910 ID.AddInteger(scZeroExtend); 911 ID.AddPointer(Op); 912 ID.AddPointer(Ty); 913 void *IP = 0; 914 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 915 916 // zext(trunc(x)) --> zext(x) or x or trunc(x) 917 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 918 // It's possible the bits taken off by the truncate were all zero bits. If 919 // so, we should be able to simplify this further. 920 const SCEV *X = ST->getOperand(); 921 ConstantRange CR = getUnsignedRange(X); 922 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 923 unsigned NewBits = getTypeSizeInBits(Ty); 924 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 925 CR.zextOrTrunc(NewBits))) 926 return getTruncateOrZeroExtend(X, Ty); 927 } 928 929 // If the input value is a chrec scev, and we can prove that the value 930 // did not overflow the old, smaller, value, we can zero extend all of the 931 // operands (often constants). This allows analysis of something like 932 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 933 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 934 if (AR->isAffine()) { 935 const SCEV *Start = AR->getStart(); 936 const SCEV *Step = AR->getStepRecurrence(*this); 937 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 938 const Loop *L = AR->getLoop(); 939 940 // If we have special knowledge that this addrec won't overflow, 941 // we don't need to do any further analysis. 942 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 943 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 944 getZeroExtendExpr(Step, Ty), 945 L, AR->getNoWrapFlags()); 946 947 // Check whether the backedge-taken count is SCEVCouldNotCompute. 948 // Note that this serves two purposes: It filters out loops that are 949 // simply not analyzable, and it covers the case where this code is 950 // being called from within backedge-taken count analysis, such that 951 // attempting to ask for the backedge-taken count would likely result 952 // in infinite recursion. In the later case, the analysis code will 953 // cope with a conservative value, and it will take care to purge 954 // that value once it has finished. 955 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 956 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 957 // Manually compute the final value for AR, checking for 958 // overflow. 959 960 // Check whether the backedge-taken count can be losslessly casted to 961 // the addrec's type. The count is always unsigned. 962 const SCEV *CastedMaxBECount = 963 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 964 const SCEV *RecastedMaxBECount = 965 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 966 if (MaxBECount == RecastedMaxBECount) { 967 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 968 // Check whether Start+Step*MaxBECount has no unsigned overflow. 969 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 970 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 971 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 972 const SCEV *WideMaxBECount = 973 getZeroExtendExpr(CastedMaxBECount, WideTy); 974 const SCEV *OperandExtendedAdd = 975 getAddExpr(WideStart, 976 getMulExpr(WideMaxBECount, 977 getZeroExtendExpr(Step, WideTy))); 978 if (ZAdd == OperandExtendedAdd) { 979 // Cache knowledge of AR NUW, which is propagated to this AddRec. 980 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 981 // Return the expression with the addrec on the outside. 982 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 983 getZeroExtendExpr(Step, Ty), 984 L, AR->getNoWrapFlags()); 985 } 986 // Similar to above, only this time treat the step value as signed. 987 // This covers loops that count down. 988 OperandExtendedAdd = 989 getAddExpr(WideStart, 990 getMulExpr(WideMaxBECount, 991 getSignExtendExpr(Step, WideTy))); 992 if (ZAdd == OperandExtendedAdd) { 993 // Cache knowledge of AR NW, which is propagated to this AddRec. 994 // Negative step causes unsigned wrap, but it still can't self-wrap. 995 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 996 // Return the expression with the addrec on the outside. 997 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 998 getSignExtendExpr(Step, Ty), 999 L, AR->getNoWrapFlags()); 1000 } 1001 } 1002 1003 // If the backedge is guarded by a comparison with the pre-inc value 1004 // the addrec is safe. Also, if the entry is guarded by a comparison 1005 // with the start value and the backedge is guarded by a comparison 1006 // with the post-inc value, the addrec is safe. 1007 if (isKnownPositive(Step)) { 1008 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1009 getUnsignedRange(Step).getUnsignedMax()); 1010 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1011 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1012 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1013 AR->getPostIncExpr(*this), N))) { 1014 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1015 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1016 // Return the expression with the addrec on the outside. 1017 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1018 getZeroExtendExpr(Step, Ty), 1019 L, AR->getNoWrapFlags()); 1020 } 1021 } else if (isKnownNegative(Step)) { 1022 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1023 getSignedRange(Step).getSignedMin()); 1024 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1025 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1026 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1027 AR->getPostIncExpr(*this), N))) { 1028 // Cache knowledge of AR NW, which is propagated to this AddRec. 1029 // Negative step causes unsigned wrap, but it still can't self-wrap. 1030 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1031 // Return the expression with the addrec on the outside. 1032 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1033 getSignExtendExpr(Step, Ty), 1034 L, AR->getNoWrapFlags()); 1035 } 1036 } 1037 } 1038 } 1039 1040 // The cast wasn't folded; create an explicit cast node. 1041 // Recompute the insert position, as it may have been invalidated. 1042 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1043 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1044 Op, Ty); 1045 UniqueSCEVs.InsertNode(S, IP); 1046 return S; 1047 } 1048 1049 // Get the limit of a recurrence such that incrementing by Step cannot cause 1050 // signed overflow as long as the value of the recurrence within the loop does 1051 // not exceed this limit before incrementing. 1052 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1053 ICmpInst::Predicate *Pred, 1054 ScalarEvolution *SE) { 1055 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1056 if (SE->isKnownPositive(Step)) { 1057 *Pred = ICmpInst::ICMP_SLT; 1058 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1059 SE->getSignedRange(Step).getSignedMax()); 1060 } 1061 if (SE->isKnownNegative(Step)) { 1062 *Pred = ICmpInst::ICMP_SGT; 1063 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1064 SE->getSignedRange(Step).getSignedMin()); 1065 } 1066 return 0; 1067 } 1068 1069 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1070 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1071 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1072 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1073 // result, the expression "Step + sext(PreIncAR)" is congruent with 1074 // "sext(PostIncAR)" 1075 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1076 Type *Ty, 1077 ScalarEvolution *SE) { 1078 const Loop *L = AR->getLoop(); 1079 const SCEV *Start = AR->getStart(); 1080 const SCEV *Step = AR->getStepRecurrence(*SE); 1081 1082 // Check for a simple looking step prior to loop entry. 1083 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1084 if (!SA) 1085 return 0; 1086 1087 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1088 // subtraction is expensive. For this purpose, perform a quick and dirty 1089 // difference, by checking for Step in the operand list. 1090 SmallVector<const SCEV *, 4> DiffOps; 1091 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end(); 1092 I != E; ++I) { 1093 if (*I != Step) 1094 DiffOps.push_back(*I); 1095 } 1096 if (DiffOps.size() == SA->getNumOperands()) 1097 return 0; 1098 1099 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1100 // same three conditions that getSignExtendedExpr checks. 1101 1102 // 1. NSW flags on the step increment. 1103 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1104 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1105 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1106 1107 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1108 return PreStart; 1109 1110 // 2. Direct overflow check on the step operation's expression. 1111 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1112 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1113 const SCEV *OperandExtendedStart = 1114 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1115 SE->getSignExtendExpr(Step, WideTy)); 1116 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1117 // Cache knowledge of PreAR NSW. 1118 if (PreAR) 1119 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1120 // FIXME: this optimization needs a unit test 1121 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1122 return PreStart; 1123 } 1124 1125 // 3. Loop precondition. 1126 ICmpInst::Predicate Pred; 1127 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1128 1129 if (OverflowLimit && 1130 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1131 return PreStart; 1132 } 1133 return 0; 1134 } 1135 1136 // Get the normalized sign-extended expression for this AddRec's Start. 1137 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1138 Type *Ty, 1139 ScalarEvolution *SE) { 1140 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1141 if (!PreStart) 1142 return SE->getSignExtendExpr(AR->getStart(), Ty); 1143 1144 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1145 SE->getSignExtendExpr(PreStart, Ty)); 1146 } 1147 1148 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1149 Type *Ty) { 1150 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1151 "This is not an extending conversion!"); 1152 assert(isSCEVable(Ty) && 1153 "This is not a conversion to a SCEVable type!"); 1154 Ty = getEffectiveSCEVType(Ty); 1155 1156 // Fold if the operand is constant. 1157 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1158 return getConstant( 1159 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1160 1161 // sext(sext(x)) --> sext(x) 1162 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1163 return getSignExtendExpr(SS->getOperand(), Ty); 1164 1165 // sext(zext(x)) --> zext(x) 1166 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1167 return getZeroExtendExpr(SZ->getOperand(), Ty); 1168 1169 // Before doing any expensive analysis, check to see if we've already 1170 // computed a SCEV for this Op and Ty. 1171 FoldingSetNodeID ID; 1172 ID.AddInteger(scSignExtend); 1173 ID.AddPointer(Op); 1174 ID.AddPointer(Ty); 1175 void *IP = 0; 1176 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1177 1178 // If the input value is provably positive, build a zext instead. 1179 if (isKnownNonNegative(Op)) 1180 return getZeroExtendExpr(Op, Ty); 1181 1182 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1183 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1184 // It's possible the bits taken off by the truncate were all sign bits. If 1185 // so, we should be able to simplify this further. 1186 const SCEV *X = ST->getOperand(); 1187 ConstantRange CR = getSignedRange(X); 1188 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1189 unsigned NewBits = getTypeSizeInBits(Ty); 1190 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1191 CR.sextOrTrunc(NewBits))) 1192 return getTruncateOrSignExtend(X, Ty); 1193 } 1194 1195 // If the input value is a chrec scev, and we can prove that the value 1196 // did not overflow the old, smaller, value, we can sign extend all of the 1197 // operands (often constants). This allows analysis of something like 1198 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1199 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1200 if (AR->isAffine()) { 1201 const SCEV *Start = AR->getStart(); 1202 const SCEV *Step = AR->getStepRecurrence(*this); 1203 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1204 const Loop *L = AR->getLoop(); 1205 1206 // If we have special knowledge that this addrec won't overflow, 1207 // we don't need to do any further analysis. 1208 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1209 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1210 getSignExtendExpr(Step, Ty), 1211 L, SCEV::FlagNSW); 1212 1213 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1214 // Note that this serves two purposes: It filters out loops that are 1215 // simply not analyzable, and it covers the case where this code is 1216 // being called from within backedge-taken count analysis, such that 1217 // attempting to ask for the backedge-taken count would likely result 1218 // in infinite recursion. In the later case, the analysis code will 1219 // cope with a conservative value, and it will take care to purge 1220 // that value once it has finished. 1221 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1222 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1223 // Manually compute the final value for AR, checking for 1224 // overflow. 1225 1226 // Check whether the backedge-taken count can be losslessly casted to 1227 // the addrec's type. The count is always unsigned. 1228 const SCEV *CastedMaxBECount = 1229 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1230 const SCEV *RecastedMaxBECount = 1231 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1232 if (MaxBECount == RecastedMaxBECount) { 1233 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1234 // Check whether Start+Step*MaxBECount has no signed overflow. 1235 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1236 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1237 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1238 const SCEV *WideMaxBECount = 1239 getZeroExtendExpr(CastedMaxBECount, WideTy); 1240 const SCEV *OperandExtendedAdd = 1241 getAddExpr(WideStart, 1242 getMulExpr(WideMaxBECount, 1243 getSignExtendExpr(Step, WideTy))); 1244 if (SAdd == OperandExtendedAdd) { 1245 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1246 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1247 // Return the expression with the addrec on the outside. 1248 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1249 getSignExtendExpr(Step, Ty), 1250 L, AR->getNoWrapFlags()); 1251 } 1252 // Similar to above, only this time treat the step value as unsigned. 1253 // This covers loops that count up with an unsigned step. 1254 OperandExtendedAdd = 1255 getAddExpr(WideStart, 1256 getMulExpr(WideMaxBECount, 1257 getZeroExtendExpr(Step, WideTy))); 1258 if (SAdd == OperandExtendedAdd) { 1259 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1260 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1261 // Return the expression with the addrec on the outside. 1262 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1263 getZeroExtendExpr(Step, Ty), 1264 L, AR->getNoWrapFlags()); 1265 } 1266 } 1267 1268 // If the backedge is guarded by a comparison with the pre-inc value 1269 // the addrec is safe. Also, if the entry is guarded by a comparison 1270 // with the start value and the backedge is guarded by a comparison 1271 // with the post-inc value, the addrec is safe. 1272 ICmpInst::Predicate Pred; 1273 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1274 if (OverflowLimit && 1275 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1276 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1277 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1278 OverflowLimit)))) { 1279 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1280 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1281 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1282 getSignExtendExpr(Step, Ty), 1283 L, AR->getNoWrapFlags()); 1284 } 1285 } 1286 } 1287 1288 // The cast wasn't folded; create an explicit cast node. 1289 // Recompute the insert position, as it may have been invalidated. 1290 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1291 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1292 Op, Ty); 1293 UniqueSCEVs.InsertNode(S, IP); 1294 return S; 1295 } 1296 1297 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1298 /// unspecified bits out to the given type. 1299 /// 1300 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1301 Type *Ty) { 1302 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1303 "This is not an extending conversion!"); 1304 assert(isSCEVable(Ty) && 1305 "This is not a conversion to a SCEVable type!"); 1306 Ty = getEffectiveSCEVType(Ty); 1307 1308 // Sign-extend negative constants. 1309 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1310 if (SC->getValue()->getValue().isNegative()) 1311 return getSignExtendExpr(Op, Ty); 1312 1313 // Peel off a truncate cast. 1314 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1315 const SCEV *NewOp = T->getOperand(); 1316 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1317 return getAnyExtendExpr(NewOp, Ty); 1318 return getTruncateOrNoop(NewOp, Ty); 1319 } 1320 1321 // Next try a zext cast. If the cast is folded, use it. 1322 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1323 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1324 return ZExt; 1325 1326 // Next try a sext cast. If the cast is folded, use it. 1327 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1328 if (!isa<SCEVSignExtendExpr>(SExt)) 1329 return SExt; 1330 1331 // Force the cast to be folded into the operands of an addrec. 1332 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1333 SmallVector<const SCEV *, 4> Ops; 1334 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1335 I != E; ++I) 1336 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1337 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1338 } 1339 1340 // If the expression is obviously signed, use the sext cast value. 1341 if (isa<SCEVSMaxExpr>(Op)) 1342 return SExt; 1343 1344 // Absent any other information, use the zext cast value. 1345 return ZExt; 1346 } 1347 1348 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1349 /// a list of operands to be added under the given scale, update the given 1350 /// map. This is a helper function for getAddRecExpr. As an example of 1351 /// what it does, given a sequence of operands that would form an add 1352 /// expression like this: 1353 /// 1354 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1355 /// 1356 /// where A and B are constants, update the map with these values: 1357 /// 1358 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1359 /// 1360 /// and add 13 + A*B*29 to AccumulatedConstant. 1361 /// This will allow getAddRecExpr to produce this: 1362 /// 1363 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1364 /// 1365 /// This form often exposes folding opportunities that are hidden in 1366 /// the original operand list. 1367 /// 1368 /// Return true iff it appears that any interesting folding opportunities 1369 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1370 /// the common case where no interesting opportunities are present, and 1371 /// is also used as a check to avoid infinite recursion. 1372 /// 1373 static bool 1374 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1375 SmallVector<const SCEV *, 8> &NewOps, 1376 APInt &AccumulatedConstant, 1377 const SCEV *const *Ops, size_t NumOperands, 1378 const APInt &Scale, 1379 ScalarEvolution &SE) { 1380 bool Interesting = false; 1381 1382 // Iterate over the add operands. They are sorted, with constants first. 1383 unsigned i = 0; 1384 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1385 ++i; 1386 // Pull a buried constant out to the outside. 1387 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1388 Interesting = true; 1389 AccumulatedConstant += Scale * C->getValue()->getValue(); 1390 } 1391 1392 // Next comes everything else. We're especially interested in multiplies 1393 // here, but they're in the middle, so just visit the rest with one loop. 1394 for (; i != NumOperands; ++i) { 1395 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1396 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1397 APInt NewScale = 1398 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1399 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1400 // A multiplication of a constant with another add; recurse. 1401 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1402 Interesting |= 1403 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1404 Add->op_begin(), Add->getNumOperands(), 1405 NewScale, SE); 1406 } else { 1407 // A multiplication of a constant with some other value. Update 1408 // the map. 1409 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1410 const SCEV *Key = SE.getMulExpr(MulOps); 1411 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1412 M.insert(std::make_pair(Key, NewScale)); 1413 if (Pair.second) { 1414 NewOps.push_back(Pair.first->first); 1415 } else { 1416 Pair.first->second += NewScale; 1417 // The map already had an entry for this value, which may indicate 1418 // a folding opportunity. 1419 Interesting = true; 1420 } 1421 } 1422 } else { 1423 // An ordinary operand. Update the map. 1424 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1425 M.insert(std::make_pair(Ops[i], Scale)); 1426 if (Pair.second) { 1427 NewOps.push_back(Pair.first->first); 1428 } else { 1429 Pair.first->second += Scale; 1430 // The map already had an entry for this value, which may indicate 1431 // a folding opportunity. 1432 Interesting = true; 1433 } 1434 } 1435 } 1436 1437 return Interesting; 1438 } 1439 1440 namespace { 1441 struct APIntCompare { 1442 bool operator()(const APInt &LHS, const APInt &RHS) const { 1443 return LHS.ult(RHS); 1444 } 1445 }; 1446 } 1447 1448 /// getAddExpr - Get a canonical add expression, or something simpler if 1449 /// possible. 1450 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1451 SCEV::NoWrapFlags Flags) { 1452 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1453 "only nuw or nsw allowed"); 1454 assert(!Ops.empty() && "Cannot get empty add!"); 1455 if (Ops.size() == 1) return Ops[0]; 1456 #ifndef NDEBUG 1457 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1458 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1459 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1460 "SCEVAddExpr operand types don't match!"); 1461 #endif 1462 1463 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1464 // And vice-versa. 1465 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1466 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1467 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1468 bool All = true; 1469 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1470 E = Ops.end(); I != E; ++I) 1471 if (!isKnownNonNegative(*I)) { 1472 All = false; 1473 break; 1474 } 1475 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1476 } 1477 1478 // Sort by complexity, this groups all similar expression types together. 1479 GroupByComplexity(Ops, LI); 1480 1481 // If there are any constants, fold them together. 1482 unsigned Idx = 0; 1483 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1484 ++Idx; 1485 assert(Idx < Ops.size()); 1486 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1487 // We found two constants, fold them together! 1488 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1489 RHSC->getValue()->getValue()); 1490 if (Ops.size() == 2) return Ops[0]; 1491 Ops.erase(Ops.begin()+1); // Erase the folded element 1492 LHSC = cast<SCEVConstant>(Ops[0]); 1493 } 1494 1495 // If we are left with a constant zero being added, strip it off. 1496 if (LHSC->getValue()->isZero()) { 1497 Ops.erase(Ops.begin()); 1498 --Idx; 1499 } 1500 1501 if (Ops.size() == 1) return Ops[0]; 1502 } 1503 1504 // Okay, check to see if the same value occurs in the operand list more than 1505 // once. If so, merge them together into an multiply expression. Since we 1506 // sorted the list, these values are required to be adjacent. 1507 Type *Ty = Ops[0]->getType(); 1508 bool FoundMatch = false; 1509 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1510 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1511 // Scan ahead to count how many equal operands there are. 1512 unsigned Count = 2; 1513 while (i+Count != e && Ops[i+Count] == Ops[i]) 1514 ++Count; 1515 // Merge the values into a multiply. 1516 const SCEV *Scale = getConstant(Ty, Count); 1517 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1518 if (Ops.size() == Count) 1519 return Mul; 1520 Ops[i] = Mul; 1521 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1522 --i; e -= Count - 1; 1523 FoundMatch = true; 1524 } 1525 if (FoundMatch) 1526 return getAddExpr(Ops, Flags); 1527 1528 // Check for truncates. If all the operands are truncated from the same 1529 // type, see if factoring out the truncate would permit the result to be 1530 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1531 // if the contents of the resulting outer trunc fold to something simple. 1532 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1533 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1534 Type *DstType = Trunc->getType(); 1535 Type *SrcType = Trunc->getOperand()->getType(); 1536 SmallVector<const SCEV *, 8> LargeOps; 1537 bool Ok = true; 1538 // Check all the operands to see if they can be represented in the 1539 // source type of the truncate. 1540 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1541 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1542 if (T->getOperand()->getType() != SrcType) { 1543 Ok = false; 1544 break; 1545 } 1546 LargeOps.push_back(T->getOperand()); 1547 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1548 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1549 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1550 SmallVector<const SCEV *, 8> LargeMulOps; 1551 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1552 if (const SCEVTruncateExpr *T = 1553 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1554 if (T->getOperand()->getType() != SrcType) { 1555 Ok = false; 1556 break; 1557 } 1558 LargeMulOps.push_back(T->getOperand()); 1559 } else if (const SCEVConstant *C = 1560 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1561 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1562 } else { 1563 Ok = false; 1564 break; 1565 } 1566 } 1567 if (Ok) 1568 LargeOps.push_back(getMulExpr(LargeMulOps)); 1569 } else { 1570 Ok = false; 1571 break; 1572 } 1573 } 1574 if (Ok) { 1575 // Evaluate the expression in the larger type. 1576 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1577 // If it folds to something simple, use it. Otherwise, don't. 1578 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1579 return getTruncateExpr(Fold, DstType); 1580 } 1581 } 1582 1583 // Skip past any other cast SCEVs. 1584 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1585 ++Idx; 1586 1587 // If there are add operands they would be next. 1588 if (Idx < Ops.size()) { 1589 bool DeletedAdd = false; 1590 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1591 // If we have an add, expand the add operands onto the end of the operands 1592 // list. 1593 Ops.erase(Ops.begin()+Idx); 1594 Ops.append(Add->op_begin(), Add->op_end()); 1595 DeletedAdd = true; 1596 } 1597 1598 // If we deleted at least one add, we added operands to the end of the list, 1599 // and they are not necessarily sorted. Recurse to resort and resimplify 1600 // any operands we just acquired. 1601 if (DeletedAdd) 1602 return getAddExpr(Ops); 1603 } 1604 1605 // Skip over the add expression until we get to a multiply. 1606 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1607 ++Idx; 1608 1609 // Check to see if there are any folding opportunities present with 1610 // operands multiplied by constant values. 1611 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1612 uint64_t BitWidth = getTypeSizeInBits(Ty); 1613 DenseMap<const SCEV *, APInt> M; 1614 SmallVector<const SCEV *, 8> NewOps; 1615 APInt AccumulatedConstant(BitWidth, 0); 1616 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1617 Ops.data(), Ops.size(), 1618 APInt(BitWidth, 1), *this)) { 1619 // Some interesting folding opportunity is present, so its worthwhile to 1620 // re-generate the operands list. Group the operands by constant scale, 1621 // to avoid multiplying by the same constant scale multiple times. 1622 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1623 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(), 1624 E = NewOps.end(); I != E; ++I) 1625 MulOpLists[M.find(*I)->second].push_back(*I); 1626 // Re-generate the operands list. 1627 Ops.clear(); 1628 if (AccumulatedConstant != 0) 1629 Ops.push_back(getConstant(AccumulatedConstant)); 1630 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1631 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1632 if (I->first != 0) 1633 Ops.push_back(getMulExpr(getConstant(I->first), 1634 getAddExpr(I->second))); 1635 if (Ops.empty()) 1636 return getConstant(Ty, 0); 1637 if (Ops.size() == 1) 1638 return Ops[0]; 1639 return getAddExpr(Ops); 1640 } 1641 } 1642 1643 // If we are adding something to a multiply expression, make sure the 1644 // something is not already an operand of the multiply. If so, merge it into 1645 // the multiply. 1646 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1647 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1648 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1649 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1650 if (isa<SCEVConstant>(MulOpSCEV)) 1651 continue; 1652 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1653 if (MulOpSCEV == Ops[AddOp]) { 1654 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1655 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1656 if (Mul->getNumOperands() != 2) { 1657 // If the multiply has more than two operands, we must get the 1658 // Y*Z term. 1659 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1660 Mul->op_begin()+MulOp); 1661 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1662 InnerMul = getMulExpr(MulOps); 1663 } 1664 const SCEV *One = getConstant(Ty, 1); 1665 const SCEV *AddOne = getAddExpr(One, InnerMul); 1666 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1667 if (Ops.size() == 2) return OuterMul; 1668 if (AddOp < Idx) { 1669 Ops.erase(Ops.begin()+AddOp); 1670 Ops.erase(Ops.begin()+Idx-1); 1671 } else { 1672 Ops.erase(Ops.begin()+Idx); 1673 Ops.erase(Ops.begin()+AddOp-1); 1674 } 1675 Ops.push_back(OuterMul); 1676 return getAddExpr(Ops); 1677 } 1678 1679 // Check this multiply against other multiplies being added together. 1680 for (unsigned OtherMulIdx = Idx+1; 1681 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1682 ++OtherMulIdx) { 1683 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1684 // If MulOp occurs in OtherMul, we can fold the two multiplies 1685 // together. 1686 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1687 OMulOp != e; ++OMulOp) 1688 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1689 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1690 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1691 if (Mul->getNumOperands() != 2) { 1692 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1693 Mul->op_begin()+MulOp); 1694 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1695 InnerMul1 = getMulExpr(MulOps); 1696 } 1697 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1698 if (OtherMul->getNumOperands() != 2) { 1699 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1700 OtherMul->op_begin()+OMulOp); 1701 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1702 InnerMul2 = getMulExpr(MulOps); 1703 } 1704 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1705 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1706 if (Ops.size() == 2) return OuterMul; 1707 Ops.erase(Ops.begin()+Idx); 1708 Ops.erase(Ops.begin()+OtherMulIdx-1); 1709 Ops.push_back(OuterMul); 1710 return getAddExpr(Ops); 1711 } 1712 } 1713 } 1714 } 1715 1716 // If there are any add recurrences in the operands list, see if any other 1717 // added values are loop invariant. If so, we can fold them into the 1718 // recurrence. 1719 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1720 ++Idx; 1721 1722 // Scan over all recurrences, trying to fold loop invariants into them. 1723 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1724 // Scan all of the other operands to this add and add them to the vector if 1725 // they are loop invariant w.r.t. the recurrence. 1726 SmallVector<const SCEV *, 8> LIOps; 1727 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1728 const Loop *AddRecLoop = AddRec->getLoop(); 1729 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1730 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1731 LIOps.push_back(Ops[i]); 1732 Ops.erase(Ops.begin()+i); 1733 --i; --e; 1734 } 1735 1736 // If we found some loop invariants, fold them into the recurrence. 1737 if (!LIOps.empty()) { 1738 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1739 LIOps.push_back(AddRec->getStart()); 1740 1741 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1742 AddRec->op_end()); 1743 AddRecOps[0] = getAddExpr(LIOps); 1744 1745 // Build the new addrec. Propagate the NUW and NSW flags if both the 1746 // outer add and the inner addrec are guaranteed to have no overflow. 1747 // Always propagate NW. 1748 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1749 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1750 1751 // If all of the other operands were loop invariant, we are done. 1752 if (Ops.size() == 1) return NewRec; 1753 1754 // Otherwise, add the folded AddRec by the non-invariant parts. 1755 for (unsigned i = 0;; ++i) 1756 if (Ops[i] == AddRec) { 1757 Ops[i] = NewRec; 1758 break; 1759 } 1760 return getAddExpr(Ops); 1761 } 1762 1763 // Okay, if there weren't any loop invariants to be folded, check to see if 1764 // there are multiple AddRec's with the same loop induction variable being 1765 // added together. If so, we can fold them. 1766 for (unsigned OtherIdx = Idx+1; 1767 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1768 ++OtherIdx) 1769 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1770 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1771 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1772 AddRec->op_end()); 1773 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1774 ++OtherIdx) 1775 if (const SCEVAddRecExpr *OtherAddRec = 1776 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1777 if (OtherAddRec->getLoop() == AddRecLoop) { 1778 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1779 i != e; ++i) { 1780 if (i >= AddRecOps.size()) { 1781 AddRecOps.append(OtherAddRec->op_begin()+i, 1782 OtherAddRec->op_end()); 1783 break; 1784 } 1785 AddRecOps[i] = getAddExpr(AddRecOps[i], 1786 OtherAddRec->getOperand(i)); 1787 } 1788 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1789 } 1790 // Step size has changed, so we cannot guarantee no self-wraparound. 1791 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1792 return getAddExpr(Ops); 1793 } 1794 1795 // Otherwise couldn't fold anything into this recurrence. Move onto the 1796 // next one. 1797 } 1798 1799 // Okay, it looks like we really DO need an add expr. Check to see if we 1800 // already have one, otherwise create a new one. 1801 FoldingSetNodeID ID; 1802 ID.AddInteger(scAddExpr); 1803 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1804 ID.AddPointer(Ops[i]); 1805 void *IP = 0; 1806 SCEVAddExpr *S = 1807 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1808 if (!S) { 1809 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1810 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1811 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1812 O, Ops.size()); 1813 UniqueSCEVs.InsertNode(S, IP); 1814 } 1815 S->setNoWrapFlags(Flags); 1816 return S; 1817 } 1818 1819 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1820 uint64_t k = i*j; 1821 if (j > 1 && k / j != i) Overflow = true; 1822 return k; 1823 } 1824 1825 /// Compute the result of "n choose k", the binomial coefficient. If an 1826 /// intermediate computation overflows, Overflow will be set and the return will 1827 /// be garbage. Overflow is not cleared on absence of overflow. 1828 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1829 // We use the multiplicative formula: 1830 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1831 // At each iteration, we take the n-th term of the numeral and divide by the 1832 // (k-n)th term of the denominator. This division will always produce an 1833 // integral result, and helps reduce the chance of overflow in the 1834 // intermediate computations. However, we can still overflow even when the 1835 // final result would fit. 1836 1837 if (n == 0 || n == k) return 1; 1838 if (k > n) return 0; 1839 1840 if (k > n/2) 1841 k = n-k; 1842 1843 uint64_t r = 1; 1844 for (uint64_t i = 1; i <= k; ++i) { 1845 r = umul_ov(r, n-(i-1), Overflow); 1846 r /= i; 1847 } 1848 return r; 1849 } 1850 1851 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1852 /// possible. 1853 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1854 SCEV::NoWrapFlags Flags) { 1855 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1856 "only nuw or nsw allowed"); 1857 assert(!Ops.empty() && "Cannot get empty mul!"); 1858 if (Ops.size() == 1) return Ops[0]; 1859 #ifndef NDEBUG 1860 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1861 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1862 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1863 "SCEVMulExpr operand types don't match!"); 1864 #endif 1865 1866 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1867 // And vice-versa. 1868 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1869 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1870 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1871 bool All = true; 1872 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1873 E = Ops.end(); I != E; ++I) 1874 if (!isKnownNonNegative(*I)) { 1875 All = false; 1876 break; 1877 } 1878 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1879 } 1880 1881 // Sort by complexity, this groups all similar expression types together. 1882 GroupByComplexity(Ops, LI); 1883 1884 // If there are any constants, fold them together. 1885 unsigned Idx = 0; 1886 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1887 1888 // C1*(C2+V) -> C1*C2 + C1*V 1889 if (Ops.size() == 2) 1890 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1891 if (Add->getNumOperands() == 2 && 1892 isa<SCEVConstant>(Add->getOperand(0))) 1893 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1894 getMulExpr(LHSC, Add->getOperand(1))); 1895 1896 ++Idx; 1897 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1898 // We found two constants, fold them together! 1899 ConstantInt *Fold = ConstantInt::get(getContext(), 1900 LHSC->getValue()->getValue() * 1901 RHSC->getValue()->getValue()); 1902 Ops[0] = getConstant(Fold); 1903 Ops.erase(Ops.begin()+1); // Erase the folded element 1904 if (Ops.size() == 1) return Ops[0]; 1905 LHSC = cast<SCEVConstant>(Ops[0]); 1906 } 1907 1908 // If we are left with a constant one being multiplied, strip it off. 1909 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1910 Ops.erase(Ops.begin()); 1911 --Idx; 1912 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1913 // If we have a multiply of zero, it will always be zero. 1914 return Ops[0]; 1915 } else if (Ops[0]->isAllOnesValue()) { 1916 // If we have a mul by -1 of an add, try distributing the -1 among the 1917 // add operands. 1918 if (Ops.size() == 2) { 1919 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1920 SmallVector<const SCEV *, 4> NewOps; 1921 bool AnyFolded = false; 1922 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1923 E = Add->op_end(); I != E; ++I) { 1924 const SCEV *Mul = getMulExpr(Ops[0], *I); 1925 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1926 NewOps.push_back(Mul); 1927 } 1928 if (AnyFolded) 1929 return getAddExpr(NewOps); 1930 } 1931 else if (const SCEVAddRecExpr * 1932 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1933 // Negation preserves a recurrence's no self-wrap property. 1934 SmallVector<const SCEV *, 4> Operands; 1935 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1936 E = AddRec->op_end(); I != E; ++I) { 1937 Operands.push_back(getMulExpr(Ops[0], *I)); 1938 } 1939 return getAddRecExpr(Operands, AddRec->getLoop(), 1940 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1941 } 1942 } 1943 } 1944 1945 if (Ops.size() == 1) 1946 return Ops[0]; 1947 } 1948 1949 // Skip over the add expression until we get to a multiply. 1950 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1951 ++Idx; 1952 1953 // If there are mul operands inline them all into this expression. 1954 if (Idx < Ops.size()) { 1955 bool DeletedMul = false; 1956 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1957 // If we have an mul, expand the mul operands onto the end of the operands 1958 // list. 1959 Ops.erase(Ops.begin()+Idx); 1960 Ops.append(Mul->op_begin(), Mul->op_end()); 1961 DeletedMul = true; 1962 } 1963 1964 // If we deleted at least one mul, we added operands to the end of the list, 1965 // and they are not necessarily sorted. Recurse to resort and resimplify 1966 // any operands we just acquired. 1967 if (DeletedMul) 1968 return getMulExpr(Ops); 1969 } 1970 1971 // If there are any add recurrences in the operands list, see if any other 1972 // added values are loop invariant. If so, we can fold them into the 1973 // recurrence. 1974 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1975 ++Idx; 1976 1977 // Scan over all recurrences, trying to fold loop invariants into them. 1978 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1979 // Scan all of the other operands to this mul and add them to the vector if 1980 // they are loop invariant w.r.t. the recurrence. 1981 SmallVector<const SCEV *, 8> LIOps; 1982 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1983 const Loop *AddRecLoop = AddRec->getLoop(); 1984 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1985 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1986 LIOps.push_back(Ops[i]); 1987 Ops.erase(Ops.begin()+i); 1988 --i; --e; 1989 } 1990 1991 // If we found some loop invariants, fold them into the recurrence. 1992 if (!LIOps.empty()) { 1993 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1994 SmallVector<const SCEV *, 4> NewOps; 1995 NewOps.reserve(AddRec->getNumOperands()); 1996 const SCEV *Scale = getMulExpr(LIOps); 1997 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1998 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1999 2000 // Build the new addrec. Propagate the NUW and NSW flags if both the 2001 // outer mul and the inner addrec are guaranteed to have no overflow. 2002 // 2003 // No self-wrap cannot be guaranteed after changing the step size, but 2004 // will be inferred if either NUW or NSW is true. 2005 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2006 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2007 2008 // If all of the other operands were loop invariant, we are done. 2009 if (Ops.size() == 1) return NewRec; 2010 2011 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2012 for (unsigned i = 0;; ++i) 2013 if (Ops[i] == AddRec) { 2014 Ops[i] = NewRec; 2015 break; 2016 } 2017 return getMulExpr(Ops); 2018 } 2019 2020 // Okay, if there weren't any loop invariants to be folded, check to see if 2021 // there are multiple AddRec's with the same loop induction variable being 2022 // multiplied together. If so, we can fold them. 2023 for (unsigned OtherIdx = Idx+1; 2024 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2025 ++OtherIdx) { 2026 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) 2027 continue; 2028 2029 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2030 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2031 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2032 // ]]],+,...up to x=2n}. 2033 // Note that the arguments to choose() are always integers with values 2034 // known at compile time, never SCEV objects. 2035 // 2036 // The implementation avoids pointless extra computations when the two 2037 // addrec's are of different length (mathematically, it's equivalent to 2038 // an infinite stream of zeros on the right). 2039 bool OpsModified = false; 2040 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2041 ++OtherIdx) { 2042 const SCEVAddRecExpr *OtherAddRec = 2043 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2044 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2045 continue; 2046 2047 bool Overflow = false; 2048 Type *Ty = AddRec->getType(); 2049 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2050 SmallVector<const SCEV*, 7> AddRecOps; 2051 for (int x = 0, xe = AddRec->getNumOperands() + 2052 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2053 const SCEV *Term = getConstant(Ty, 0); 2054 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2055 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2056 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2057 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2058 z < ze && !Overflow; ++z) { 2059 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2060 uint64_t Coeff; 2061 if (LargerThan64Bits) 2062 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2063 else 2064 Coeff = Coeff1*Coeff2; 2065 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2066 const SCEV *Term1 = AddRec->getOperand(y-z); 2067 const SCEV *Term2 = OtherAddRec->getOperand(z); 2068 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2069 } 2070 } 2071 AddRecOps.push_back(Term); 2072 } 2073 if (!Overflow) { 2074 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2075 SCEV::FlagAnyWrap); 2076 if (Ops.size() == 2) return NewAddRec; 2077 Ops[Idx] = NewAddRec; 2078 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2079 OpsModified = true; 2080 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2081 if (!AddRec) 2082 break; 2083 } 2084 } 2085 if (OpsModified) 2086 return getMulExpr(Ops); 2087 } 2088 2089 // Otherwise couldn't fold anything into this recurrence. Move onto the 2090 // next one. 2091 } 2092 2093 // Okay, it looks like we really DO need an mul expr. Check to see if we 2094 // already have one, otherwise create a new one. 2095 FoldingSetNodeID ID; 2096 ID.AddInteger(scMulExpr); 2097 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2098 ID.AddPointer(Ops[i]); 2099 void *IP = 0; 2100 SCEVMulExpr *S = 2101 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2102 if (!S) { 2103 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2104 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2105 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2106 O, Ops.size()); 2107 UniqueSCEVs.InsertNode(S, IP); 2108 } 2109 S->setNoWrapFlags(Flags); 2110 return S; 2111 } 2112 2113 /// getUDivExpr - Get a canonical unsigned division expression, or something 2114 /// simpler if possible. 2115 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2116 const SCEV *RHS) { 2117 assert(getEffectiveSCEVType(LHS->getType()) == 2118 getEffectiveSCEVType(RHS->getType()) && 2119 "SCEVUDivExpr operand types don't match!"); 2120 2121 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2122 if (RHSC->getValue()->equalsInt(1)) 2123 return LHS; // X udiv 1 --> x 2124 // If the denominator is zero, the result of the udiv is undefined. Don't 2125 // try to analyze it, because the resolution chosen here may differ from 2126 // the resolution chosen in other parts of the compiler. 2127 if (!RHSC->getValue()->isZero()) { 2128 // Determine if the division can be folded into the operands of 2129 // its operands. 2130 // TODO: Generalize this to non-constants by using known-bits information. 2131 Type *Ty = LHS->getType(); 2132 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2133 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2134 // For non-power-of-two values, effectively round the value up to the 2135 // nearest power of two. 2136 if (!RHSC->getValue()->getValue().isPowerOf2()) 2137 ++MaxShiftAmt; 2138 IntegerType *ExtTy = 2139 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2140 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2141 if (const SCEVConstant *Step = 2142 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2143 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2144 const APInt &StepInt = Step->getValue()->getValue(); 2145 const APInt &DivInt = RHSC->getValue()->getValue(); 2146 if (!StepInt.urem(DivInt) && 2147 getZeroExtendExpr(AR, ExtTy) == 2148 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2149 getZeroExtendExpr(Step, ExtTy), 2150 AR->getLoop(), SCEV::FlagAnyWrap)) { 2151 SmallVector<const SCEV *, 4> Operands; 2152 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2153 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2154 return getAddRecExpr(Operands, AR->getLoop(), 2155 SCEV::FlagNW); 2156 } 2157 /// Get a canonical UDivExpr for a recurrence. 2158 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2159 // We can currently only fold X%N if X is constant. 2160 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2161 if (StartC && !DivInt.urem(StepInt) && 2162 getZeroExtendExpr(AR, ExtTy) == 2163 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2164 getZeroExtendExpr(Step, ExtTy), 2165 AR->getLoop(), SCEV::FlagAnyWrap)) { 2166 const APInt &StartInt = StartC->getValue()->getValue(); 2167 const APInt &StartRem = StartInt.urem(StepInt); 2168 if (StartRem != 0) 2169 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2170 AR->getLoop(), SCEV::FlagNW); 2171 } 2172 } 2173 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2174 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2175 SmallVector<const SCEV *, 4> Operands; 2176 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2177 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2178 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2179 // Find an operand that's safely divisible. 2180 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2181 const SCEV *Op = M->getOperand(i); 2182 const SCEV *Div = getUDivExpr(Op, RHSC); 2183 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2184 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2185 M->op_end()); 2186 Operands[i] = Div; 2187 return getMulExpr(Operands); 2188 } 2189 } 2190 } 2191 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2192 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2193 SmallVector<const SCEV *, 4> Operands; 2194 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2195 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2196 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2197 Operands.clear(); 2198 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2199 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2200 if (isa<SCEVUDivExpr>(Op) || 2201 getMulExpr(Op, RHS) != A->getOperand(i)) 2202 break; 2203 Operands.push_back(Op); 2204 } 2205 if (Operands.size() == A->getNumOperands()) 2206 return getAddExpr(Operands); 2207 } 2208 } 2209 2210 // Fold if both operands are constant. 2211 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2212 Constant *LHSCV = LHSC->getValue(); 2213 Constant *RHSCV = RHSC->getValue(); 2214 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2215 RHSCV))); 2216 } 2217 } 2218 } 2219 2220 FoldingSetNodeID ID; 2221 ID.AddInteger(scUDivExpr); 2222 ID.AddPointer(LHS); 2223 ID.AddPointer(RHS); 2224 void *IP = 0; 2225 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2226 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2227 LHS, RHS); 2228 UniqueSCEVs.InsertNode(S, IP); 2229 return S; 2230 } 2231 2232 2233 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2234 /// Simplify the expression as much as possible. 2235 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2236 const Loop *L, 2237 SCEV::NoWrapFlags Flags) { 2238 SmallVector<const SCEV *, 4> Operands; 2239 Operands.push_back(Start); 2240 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2241 if (StepChrec->getLoop() == L) { 2242 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2243 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2244 } 2245 2246 Operands.push_back(Step); 2247 return getAddRecExpr(Operands, L, Flags); 2248 } 2249 2250 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2251 /// Simplify the expression as much as possible. 2252 const SCEV * 2253 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2254 const Loop *L, SCEV::NoWrapFlags Flags) { 2255 if (Operands.size() == 1) return Operands[0]; 2256 #ifndef NDEBUG 2257 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2258 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2259 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2260 "SCEVAddRecExpr operand types don't match!"); 2261 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2262 assert(isLoopInvariant(Operands[i], L) && 2263 "SCEVAddRecExpr operand is not loop-invariant!"); 2264 #endif 2265 2266 if (Operands.back()->isZero()) { 2267 Operands.pop_back(); 2268 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2269 } 2270 2271 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2272 // use that information to infer NUW and NSW flags. However, computing a 2273 // BE count requires calling getAddRecExpr, so we may not yet have a 2274 // meaningful BE count at this point (and if we don't, we'd be stuck 2275 // with a SCEVCouldNotCompute as the cached BE count). 2276 2277 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2278 // And vice-versa. 2279 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2280 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2281 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2282 bool All = true; 2283 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2284 E = Operands.end(); I != E; ++I) 2285 if (!isKnownNonNegative(*I)) { 2286 All = false; 2287 break; 2288 } 2289 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2290 } 2291 2292 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2293 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2294 const Loop *NestedLoop = NestedAR->getLoop(); 2295 if (L->contains(NestedLoop) ? 2296 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2297 (!NestedLoop->contains(L) && 2298 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2299 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2300 NestedAR->op_end()); 2301 Operands[0] = NestedAR->getStart(); 2302 // AddRecs require their operands be loop-invariant with respect to their 2303 // loops. Don't perform this transformation if it would break this 2304 // requirement. 2305 bool AllInvariant = true; 2306 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2307 if (!isLoopInvariant(Operands[i], L)) { 2308 AllInvariant = false; 2309 break; 2310 } 2311 if (AllInvariant) { 2312 // Create a recurrence for the outer loop with the same step size. 2313 // 2314 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2315 // inner recurrence has the same property. 2316 SCEV::NoWrapFlags OuterFlags = 2317 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2318 2319 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2320 AllInvariant = true; 2321 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2322 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2323 AllInvariant = false; 2324 break; 2325 } 2326 if (AllInvariant) { 2327 // Ok, both add recurrences are valid after the transformation. 2328 // 2329 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2330 // the outer recurrence has the same property. 2331 SCEV::NoWrapFlags InnerFlags = 2332 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2333 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2334 } 2335 } 2336 // Reset Operands to its original state. 2337 Operands[0] = NestedAR; 2338 } 2339 } 2340 2341 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2342 // already have one, otherwise create a new one. 2343 FoldingSetNodeID ID; 2344 ID.AddInteger(scAddRecExpr); 2345 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2346 ID.AddPointer(Operands[i]); 2347 ID.AddPointer(L); 2348 void *IP = 0; 2349 SCEVAddRecExpr *S = 2350 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2351 if (!S) { 2352 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2353 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2354 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2355 O, Operands.size(), L); 2356 UniqueSCEVs.InsertNode(S, IP); 2357 } 2358 S->setNoWrapFlags(Flags); 2359 return S; 2360 } 2361 2362 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2363 const SCEV *RHS) { 2364 SmallVector<const SCEV *, 2> Ops; 2365 Ops.push_back(LHS); 2366 Ops.push_back(RHS); 2367 return getSMaxExpr(Ops); 2368 } 2369 2370 const SCEV * 2371 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2372 assert(!Ops.empty() && "Cannot get empty smax!"); 2373 if (Ops.size() == 1) return Ops[0]; 2374 #ifndef NDEBUG 2375 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2376 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2377 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2378 "SCEVSMaxExpr operand types don't match!"); 2379 #endif 2380 2381 // Sort by complexity, this groups all similar expression types together. 2382 GroupByComplexity(Ops, LI); 2383 2384 // If there are any constants, fold them together. 2385 unsigned Idx = 0; 2386 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2387 ++Idx; 2388 assert(Idx < Ops.size()); 2389 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2390 // We found two constants, fold them together! 2391 ConstantInt *Fold = ConstantInt::get(getContext(), 2392 APIntOps::smax(LHSC->getValue()->getValue(), 2393 RHSC->getValue()->getValue())); 2394 Ops[0] = getConstant(Fold); 2395 Ops.erase(Ops.begin()+1); // Erase the folded element 2396 if (Ops.size() == 1) return Ops[0]; 2397 LHSC = cast<SCEVConstant>(Ops[0]); 2398 } 2399 2400 // If we are left with a constant minimum-int, strip it off. 2401 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2402 Ops.erase(Ops.begin()); 2403 --Idx; 2404 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2405 // If we have an smax with a constant maximum-int, it will always be 2406 // maximum-int. 2407 return Ops[0]; 2408 } 2409 2410 if (Ops.size() == 1) return Ops[0]; 2411 } 2412 2413 // Find the first SMax 2414 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2415 ++Idx; 2416 2417 // Check to see if one of the operands is an SMax. If so, expand its operands 2418 // onto our operand list, and recurse to simplify. 2419 if (Idx < Ops.size()) { 2420 bool DeletedSMax = false; 2421 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2422 Ops.erase(Ops.begin()+Idx); 2423 Ops.append(SMax->op_begin(), SMax->op_end()); 2424 DeletedSMax = true; 2425 } 2426 2427 if (DeletedSMax) 2428 return getSMaxExpr(Ops); 2429 } 2430 2431 // Okay, check to see if the same value occurs in the operand list twice. If 2432 // so, delete one. Since we sorted the list, these values are required to 2433 // be adjacent. 2434 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2435 // X smax Y smax Y --> X smax Y 2436 // X smax Y --> X, if X is always greater than Y 2437 if (Ops[i] == Ops[i+1] || 2438 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2439 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2440 --i; --e; 2441 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2442 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2443 --i; --e; 2444 } 2445 2446 if (Ops.size() == 1) return Ops[0]; 2447 2448 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2449 2450 // Okay, it looks like we really DO need an smax expr. Check to see if we 2451 // already have one, otherwise create a new one. 2452 FoldingSetNodeID ID; 2453 ID.AddInteger(scSMaxExpr); 2454 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2455 ID.AddPointer(Ops[i]); 2456 void *IP = 0; 2457 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2458 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2459 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2460 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2461 O, Ops.size()); 2462 UniqueSCEVs.InsertNode(S, IP); 2463 return S; 2464 } 2465 2466 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2467 const SCEV *RHS) { 2468 SmallVector<const SCEV *, 2> Ops; 2469 Ops.push_back(LHS); 2470 Ops.push_back(RHS); 2471 return getUMaxExpr(Ops); 2472 } 2473 2474 const SCEV * 2475 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2476 assert(!Ops.empty() && "Cannot get empty umax!"); 2477 if (Ops.size() == 1) return Ops[0]; 2478 #ifndef NDEBUG 2479 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2480 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2481 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2482 "SCEVUMaxExpr operand types don't match!"); 2483 #endif 2484 2485 // Sort by complexity, this groups all similar expression types together. 2486 GroupByComplexity(Ops, LI); 2487 2488 // If there are any constants, fold them together. 2489 unsigned Idx = 0; 2490 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2491 ++Idx; 2492 assert(Idx < Ops.size()); 2493 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2494 // We found two constants, fold them together! 2495 ConstantInt *Fold = ConstantInt::get(getContext(), 2496 APIntOps::umax(LHSC->getValue()->getValue(), 2497 RHSC->getValue()->getValue())); 2498 Ops[0] = getConstant(Fold); 2499 Ops.erase(Ops.begin()+1); // Erase the folded element 2500 if (Ops.size() == 1) return Ops[0]; 2501 LHSC = cast<SCEVConstant>(Ops[0]); 2502 } 2503 2504 // If we are left with a constant minimum-int, strip it off. 2505 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2506 Ops.erase(Ops.begin()); 2507 --Idx; 2508 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2509 // If we have an umax with a constant maximum-int, it will always be 2510 // maximum-int. 2511 return Ops[0]; 2512 } 2513 2514 if (Ops.size() == 1) return Ops[0]; 2515 } 2516 2517 // Find the first UMax 2518 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2519 ++Idx; 2520 2521 // Check to see if one of the operands is a UMax. If so, expand its operands 2522 // onto our operand list, and recurse to simplify. 2523 if (Idx < Ops.size()) { 2524 bool DeletedUMax = false; 2525 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2526 Ops.erase(Ops.begin()+Idx); 2527 Ops.append(UMax->op_begin(), UMax->op_end()); 2528 DeletedUMax = true; 2529 } 2530 2531 if (DeletedUMax) 2532 return getUMaxExpr(Ops); 2533 } 2534 2535 // Okay, check to see if the same value occurs in the operand list twice. If 2536 // so, delete one. Since we sorted the list, these values are required to 2537 // be adjacent. 2538 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2539 // X umax Y umax Y --> X umax Y 2540 // X umax Y --> X, if X is always greater than Y 2541 if (Ops[i] == Ops[i+1] || 2542 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2543 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2544 --i; --e; 2545 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2546 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2547 --i; --e; 2548 } 2549 2550 if (Ops.size() == 1) return Ops[0]; 2551 2552 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2553 2554 // Okay, it looks like we really DO need a umax expr. Check to see if we 2555 // already have one, otherwise create a new one. 2556 FoldingSetNodeID ID; 2557 ID.AddInteger(scUMaxExpr); 2558 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2559 ID.AddPointer(Ops[i]); 2560 void *IP = 0; 2561 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2562 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2563 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2564 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2565 O, Ops.size()); 2566 UniqueSCEVs.InsertNode(S, IP); 2567 return S; 2568 } 2569 2570 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2571 const SCEV *RHS) { 2572 // ~smax(~x, ~y) == smin(x, y). 2573 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2574 } 2575 2576 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2577 const SCEV *RHS) { 2578 // ~umax(~x, ~y) == umin(x, y) 2579 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2580 } 2581 2582 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) { 2583 // If we have TargetData, we can bypass creating a target-independent 2584 // constant expression and then folding it back into a ConstantInt. 2585 // This is just a compile-time optimization. 2586 if (TD) 2587 return getConstant(TD->getIntPtrType(getContext()), 2588 TD->getTypeAllocSize(AllocTy)); 2589 2590 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2591 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2592 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2593 C = Folded; 2594 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2595 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2596 } 2597 2598 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) { 2599 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2600 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2601 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2602 C = Folded; 2603 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2604 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2605 } 2606 2607 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy, 2608 unsigned FieldNo) { 2609 // If we have TargetData, we can bypass creating a target-independent 2610 // constant expression and then folding it back into a ConstantInt. 2611 // This is just a compile-time optimization. 2612 if (TD) 2613 return getConstant(TD->getIntPtrType(getContext()), 2614 TD->getStructLayout(STy)->getElementOffset(FieldNo)); 2615 2616 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2617 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2618 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2619 C = Folded; 2620 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2621 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2622 } 2623 2624 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy, 2625 Constant *FieldNo) { 2626 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2627 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2628 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI)) 2629 C = Folded; 2630 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2631 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2632 } 2633 2634 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2635 // Don't attempt to do anything other than create a SCEVUnknown object 2636 // here. createSCEV only calls getUnknown after checking for all other 2637 // interesting possibilities, and any other code that calls getUnknown 2638 // is doing so in order to hide a value from SCEV canonicalization. 2639 2640 FoldingSetNodeID ID; 2641 ID.AddInteger(scUnknown); 2642 ID.AddPointer(V); 2643 void *IP = 0; 2644 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2645 assert(cast<SCEVUnknown>(S)->getValue() == V && 2646 "Stale SCEVUnknown in uniquing map!"); 2647 return S; 2648 } 2649 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2650 FirstUnknown); 2651 FirstUnknown = cast<SCEVUnknown>(S); 2652 UniqueSCEVs.InsertNode(S, IP); 2653 return S; 2654 } 2655 2656 //===----------------------------------------------------------------------===// 2657 // Basic SCEV Analysis and PHI Idiom Recognition Code 2658 // 2659 2660 /// isSCEVable - Test if values of the given type are analyzable within 2661 /// the SCEV framework. This primarily includes integer types, and it 2662 /// can optionally include pointer types if the ScalarEvolution class 2663 /// has access to target-specific information. 2664 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2665 // Integers and pointers are always SCEVable. 2666 return Ty->isIntegerTy() || Ty->isPointerTy(); 2667 } 2668 2669 /// getTypeSizeInBits - Return the size in bits of the specified type, 2670 /// for which isSCEVable must return true. 2671 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2672 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2673 2674 // If we have a TargetData, use it! 2675 if (TD) 2676 return TD->getTypeSizeInBits(Ty); 2677 2678 // Integer types have fixed sizes. 2679 if (Ty->isIntegerTy()) 2680 return Ty->getPrimitiveSizeInBits(); 2681 2682 // The only other support type is pointer. Without TargetData, conservatively 2683 // assume pointers are 64-bit. 2684 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2685 return 64; 2686 } 2687 2688 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2689 /// the given type and which represents how SCEV will treat the given 2690 /// type, for which isSCEVable must return true. For pointer types, 2691 /// this is the pointer-sized integer type. 2692 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2693 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2694 2695 if (Ty->isIntegerTy()) 2696 return Ty; 2697 2698 // The only other support type is pointer. 2699 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2700 if (TD) return TD->getIntPtrType(getContext()); 2701 2702 // Without TargetData, conservatively assume pointers are 64-bit. 2703 return Type::getInt64Ty(getContext()); 2704 } 2705 2706 const SCEV *ScalarEvolution::getCouldNotCompute() { 2707 return &CouldNotCompute; 2708 } 2709 2710 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2711 /// expression and create a new one. 2712 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2713 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2714 2715 ValueExprMapType::const_iterator I = ValueExprMap.find_as(V); 2716 if (I != ValueExprMap.end()) return I->second; 2717 const SCEV *S = createSCEV(V); 2718 2719 // The process of creating a SCEV for V may have caused other SCEVs 2720 // to have been created, so it's necessary to insert the new entry 2721 // from scratch, rather than trying to remember the insert position 2722 // above. 2723 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2724 return S; 2725 } 2726 2727 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2728 /// 2729 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2730 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2731 return getConstant( 2732 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2733 2734 Type *Ty = V->getType(); 2735 Ty = getEffectiveSCEVType(Ty); 2736 return getMulExpr(V, 2737 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2738 } 2739 2740 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2741 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2742 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2743 return getConstant( 2744 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2745 2746 Type *Ty = V->getType(); 2747 Ty = getEffectiveSCEVType(Ty); 2748 const SCEV *AllOnes = 2749 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2750 return getMinusSCEV(AllOnes, V); 2751 } 2752 2753 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2754 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2755 SCEV::NoWrapFlags Flags) { 2756 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2757 2758 // Fast path: X - X --> 0. 2759 if (LHS == RHS) 2760 return getConstant(LHS->getType(), 0); 2761 2762 // X - Y --> X + -Y 2763 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2764 } 2765 2766 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2767 /// input value to the specified type. If the type must be extended, it is zero 2768 /// extended. 2769 const SCEV * 2770 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2771 Type *SrcTy = V->getType(); 2772 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2773 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2774 "Cannot truncate or zero extend with non-integer arguments!"); 2775 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2776 return V; // No conversion 2777 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2778 return getTruncateExpr(V, Ty); 2779 return getZeroExtendExpr(V, Ty); 2780 } 2781 2782 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2783 /// input value to the specified type. If the type must be extended, it is sign 2784 /// extended. 2785 const SCEV * 2786 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2787 Type *Ty) { 2788 Type *SrcTy = V->getType(); 2789 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2790 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2791 "Cannot truncate or zero extend with non-integer arguments!"); 2792 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2793 return V; // No conversion 2794 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2795 return getTruncateExpr(V, Ty); 2796 return getSignExtendExpr(V, Ty); 2797 } 2798 2799 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2800 /// input value to the specified type. If the type must be extended, it is zero 2801 /// extended. The conversion must not be narrowing. 2802 const SCEV * 2803 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2804 Type *SrcTy = V->getType(); 2805 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2806 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2807 "Cannot noop or zero extend with non-integer arguments!"); 2808 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2809 "getNoopOrZeroExtend cannot truncate!"); 2810 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2811 return V; // No conversion 2812 return getZeroExtendExpr(V, Ty); 2813 } 2814 2815 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2816 /// input value to the specified type. If the type must be extended, it is sign 2817 /// extended. The conversion must not be narrowing. 2818 const SCEV * 2819 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2820 Type *SrcTy = V->getType(); 2821 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2822 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2823 "Cannot noop or sign extend with non-integer arguments!"); 2824 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2825 "getNoopOrSignExtend cannot truncate!"); 2826 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2827 return V; // No conversion 2828 return getSignExtendExpr(V, Ty); 2829 } 2830 2831 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2832 /// the input value to the specified type. If the type must be extended, 2833 /// it is extended with unspecified bits. The conversion must not be 2834 /// narrowing. 2835 const SCEV * 2836 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2837 Type *SrcTy = V->getType(); 2838 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2839 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2840 "Cannot noop or any extend with non-integer arguments!"); 2841 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2842 "getNoopOrAnyExtend cannot truncate!"); 2843 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2844 return V; // No conversion 2845 return getAnyExtendExpr(V, Ty); 2846 } 2847 2848 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2849 /// input value to the specified type. The conversion must not be widening. 2850 const SCEV * 2851 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2852 Type *SrcTy = V->getType(); 2853 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2854 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2855 "Cannot truncate or noop with non-integer arguments!"); 2856 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2857 "getTruncateOrNoop cannot extend!"); 2858 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2859 return V; // No conversion 2860 return getTruncateExpr(V, Ty); 2861 } 2862 2863 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2864 /// the types using zero-extension, and then perform a umax operation 2865 /// with them. 2866 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2867 const SCEV *RHS) { 2868 const SCEV *PromotedLHS = LHS; 2869 const SCEV *PromotedRHS = RHS; 2870 2871 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2872 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2873 else 2874 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2875 2876 return getUMaxExpr(PromotedLHS, PromotedRHS); 2877 } 2878 2879 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2880 /// the types using zero-extension, and then perform a umin operation 2881 /// with them. 2882 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2883 const SCEV *RHS) { 2884 const SCEV *PromotedLHS = LHS; 2885 const SCEV *PromotedRHS = RHS; 2886 2887 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2888 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2889 else 2890 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2891 2892 return getUMinExpr(PromotedLHS, PromotedRHS); 2893 } 2894 2895 /// getPointerBase - Transitively follow the chain of pointer-type operands 2896 /// until reaching a SCEV that does not have a single pointer operand. This 2897 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 2898 /// but corner cases do exist. 2899 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 2900 // A pointer operand may evaluate to a nonpointer expression, such as null. 2901 if (!V->getType()->isPointerTy()) 2902 return V; 2903 2904 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 2905 return getPointerBase(Cast->getOperand()); 2906 } 2907 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 2908 const SCEV *PtrOp = 0; 2909 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 2910 I != E; ++I) { 2911 if ((*I)->getType()->isPointerTy()) { 2912 // Cannot find the base of an expression with multiple pointer operands. 2913 if (PtrOp) 2914 return V; 2915 PtrOp = *I; 2916 } 2917 } 2918 if (!PtrOp) 2919 return V; 2920 return getPointerBase(PtrOp); 2921 } 2922 return V; 2923 } 2924 2925 /// PushDefUseChildren - Push users of the given Instruction 2926 /// onto the given Worklist. 2927 static void 2928 PushDefUseChildren(Instruction *I, 2929 SmallVectorImpl<Instruction *> &Worklist) { 2930 // Push the def-use children onto the Worklist stack. 2931 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2932 UI != UE; ++UI) 2933 Worklist.push_back(cast<Instruction>(*UI)); 2934 } 2935 2936 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2937 /// instructions that depend on the given instruction and removes them from 2938 /// the ValueExprMapType map if they reference SymName. This is used during PHI 2939 /// resolution. 2940 void 2941 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 2942 SmallVector<Instruction *, 16> Worklist; 2943 PushDefUseChildren(PN, Worklist); 2944 2945 SmallPtrSet<Instruction *, 8> Visited; 2946 Visited.insert(PN); 2947 while (!Worklist.empty()) { 2948 Instruction *I = Worklist.pop_back_val(); 2949 if (!Visited.insert(I)) continue; 2950 2951 ValueExprMapType::iterator It = 2952 ValueExprMap.find_as(static_cast<Value *>(I)); 2953 if (It != ValueExprMap.end()) { 2954 const SCEV *Old = It->second; 2955 2956 // Short-circuit the def-use traversal if the symbolic name 2957 // ceases to appear in expressions. 2958 if (Old != SymName && !hasOperand(Old, SymName)) 2959 continue; 2960 2961 // SCEVUnknown for a PHI either means that it has an unrecognized 2962 // structure, it's a PHI that's in the progress of being computed 2963 // by createNodeForPHI, or it's a single-value PHI. In the first case, 2964 // additional loop trip count information isn't going to change anything. 2965 // In the second case, createNodeForPHI will perform the necessary 2966 // updates on its own when it gets to that point. In the third, we do 2967 // want to forget the SCEVUnknown. 2968 if (!isa<PHINode>(I) || 2969 !isa<SCEVUnknown>(Old) || 2970 (I != PN && Old == SymName)) { 2971 forgetMemoizedResults(Old); 2972 ValueExprMap.erase(It); 2973 } 2974 } 2975 2976 PushDefUseChildren(I, Worklist); 2977 } 2978 } 2979 2980 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2981 /// a loop header, making it a potential recurrence, or it doesn't. 2982 /// 2983 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2984 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2985 if (L->getHeader() == PN->getParent()) { 2986 // The loop may have multiple entrances or multiple exits; we can analyze 2987 // this phi as an addrec if it has a unique entry value and a unique 2988 // backedge value. 2989 Value *BEValueV = 0, *StartValueV = 0; 2990 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2991 Value *V = PN->getIncomingValue(i); 2992 if (L->contains(PN->getIncomingBlock(i))) { 2993 if (!BEValueV) { 2994 BEValueV = V; 2995 } else if (BEValueV != V) { 2996 BEValueV = 0; 2997 break; 2998 } 2999 } else if (!StartValueV) { 3000 StartValueV = V; 3001 } else if (StartValueV != V) { 3002 StartValueV = 0; 3003 break; 3004 } 3005 } 3006 if (BEValueV && StartValueV) { 3007 // While we are analyzing this PHI node, handle its value symbolically. 3008 const SCEV *SymbolicName = getUnknown(PN); 3009 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3010 "PHI node already processed?"); 3011 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3012 3013 // Using this symbolic name for the PHI, analyze the value coming around 3014 // the back-edge. 3015 const SCEV *BEValue = getSCEV(BEValueV); 3016 3017 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3018 // has a special value for the first iteration of the loop. 3019 3020 // If the value coming around the backedge is an add with the symbolic 3021 // value we just inserted, then we found a simple induction variable! 3022 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3023 // If there is a single occurrence of the symbolic value, replace it 3024 // with a recurrence. 3025 unsigned FoundIndex = Add->getNumOperands(); 3026 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3027 if (Add->getOperand(i) == SymbolicName) 3028 if (FoundIndex == e) { 3029 FoundIndex = i; 3030 break; 3031 } 3032 3033 if (FoundIndex != Add->getNumOperands()) { 3034 // Create an add with everything but the specified operand. 3035 SmallVector<const SCEV *, 8> Ops; 3036 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3037 if (i != FoundIndex) 3038 Ops.push_back(Add->getOperand(i)); 3039 const SCEV *Accum = getAddExpr(Ops); 3040 3041 // This is not a valid addrec if the step amount is varying each 3042 // loop iteration, but is not itself an addrec in this loop. 3043 if (isLoopInvariant(Accum, L) || 3044 (isa<SCEVAddRecExpr>(Accum) && 3045 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3046 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3047 3048 // If the increment doesn't overflow, then neither the addrec nor 3049 // the post-increment will overflow. 3050 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3051 if (OBO->hasNoUnsignedWrap()) 3052 Flags = setFlags(Flags, SCEV::FlagNUW); 3053 if (OBO->hasNoSignedWrap()) 3054 Flags = setFlags(Flags, SCEV::FlagNSW); 3055 } else if (const GEPOperator *GEP = 3056 dyn_cast<GEPOperator>(BEValueV)) { 3057 // If the increment is an inbounds GEP, then we know the address 3058 // space cannot be wrapped around. We cannot make any guarantee 3059 // about signed or unsigned overflow because pointers are 3060 // unsigned but we may have a negative index from the base 3061 // pointer. 3062 if (GEP->isInBounds()) 3063 Flags = setFlags(Flags, SCEV::FlagNW); 3064 } 3065 3066 const SCEV *StartVal = getSCEV(StartValueV); 3067 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3068 3069 // Since the no-wrap flags are on the increment, they apply to the 3070 // post-incremented value as well. 3071 if (isLoopInvariant(Accum, L)) 3072 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3073 Accum, L, Flags); 3074 3075 // Okay, for the entire analysis of this edge we assumed the PHI 3076 // to be symbolic. We now need to go back and purge all of the 3077 // entries for the scalars that use the symbolic expression. 3078 ForgetSymbolicName(PN, SymbolicName); 3079 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3080 return PHISCEV; 3081 } 3082 } 3083 } else if (const SCEVAddRecExpr *AddRec = 3084 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3085 // Otherwise, this could be a loop like this: 3086 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3087 // In this case, j = {1,+,1} and BEValue is j. 3088 // Because the other in-value of i (0) fits the evolution of BEValue 3089 // i really is an addrec evolution. 3090 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3091 const SCEV *StartVal = getSCEV(StartValueV); 3092 3093 // If StartVal = j.start - j.stride, we can use StartVal as the 3094 // initial step of the addrec evolution. 3095 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3096 AddRec->getOperand(1))) { 3097 // FIXME: For constant StartVal, we should be able to infer 3098 // no-wrap flags. 3099 const SCEV *PHISCEV = 3100 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3101 SCEV::FlagAnyWrap); 3102 3103 // Okay, for the entire analysis of this edge we assumed the PHI 3104 // to be symbolic. We now need to go back and purge all of the 3105 // entries for the scalars that use the symbolic expression. 3106 ForgetSymbolicName(PN, SymbolicName); 3107 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3108 return PHISCEV; 3109 } 3110 } 3111 } 3112 } 3113 } 3114 3115 // If the PHI has a single incoming value, follow that value, unless the 3116 // PHI's incoming blocks are in a different loop, in which case doing so 3117 // risks breaking LCSSA form. Instcombine would normally zap these, but 3118 // it doesn't have DominatorTree information, so it may miss cases. 3119 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT)) 3120 if (LI->replacementPreservesLCSSAForm(PN, V)) 3121 return getSCEV(V); 3122 3123 // If it's not a loop phi, we can't handle it yet. 3124 return getUnknown(PN); 3125 } 3126 3127 /// createNodeForGEP - Expand GEP instructions into add and multiply 3128 /// operations. This allows them to be analyzed by regular SCEV code. 3129 /// 3130 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3131 3132 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3133 // Add expression, because the Instruction may be guarded by control flow 3134 // and the no-overflow bits may not be valid for the expression in any 3135 // context. 3136 bool isInBounds = GEP->isInBounds(); 3137 3138 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3139 Value *Base = GEP->getOperand(0); 3140 // Don't attempt to analyze GEPs over unsized objects. 3141 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 3142 return getUnknown(GEP); 3143 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3144 gep_type_iterator GTI = gep_type_begin(GEP); 3145 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()), 3146 E = GEP->op_end(); 3147 I != E; ++I) { 3148 Value *Index = *I; 3149 // Compute the (potentially symbolic) offset in bytes for this index. 3150 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3151 // For a struct, add the member offset. 3152 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3153 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo); 3154 3155 // Add the field offset to the running total offset. 3156 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3157 } else { 3158 // For an array, add the element offset, explicitly scaled. 3159 const SCEV *ElementSize = getSizeOfExpr(*GTI); 3160 const SCEV *IndexS = getSCEV(Index); 3161 // Getelementptr indices are signed. 3162 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3163 3164 // Multiply the index by the element size to compute the element offset. 3165 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, 3166 isInBounds ? SCEV::FlagNSW : 3167 SCEV::FlagAnyWrap); 3168 3169 // Add the element offset to the running total offset. 3170 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3171 } 3172 } 3173 3174 // Get the SCEV for the GEP base. 3175 const SCEV *BaseS = getSCEV(Base); 3176 3177 // Add the total offset from all the GEP indices to the base. 3178 return getAddExpr(BaseS, TotalOffset, 3179 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap); 3180 } 3181 3182 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3183 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3184 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3185 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3186 uint32_t 3187 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3188 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3189 return C->getValue()->getValue().countTrailingZeros(); 3190 3191 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3192 return std::min(GetMinTrailingZeros(T->getOperand()), 3193 (uint32_t)getTypeSizeInBits(T->getType())); 3194 3195 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3196 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3197 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3198 getTypeSizeInBits(E->getType()) : OpRes; 3199 } 3200 3201 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3202 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3203 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3204 getTypeSizeInBits(E->getType()) : OpRes; 3205 } 3206 3207 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3208 // The result is the min of all operands results. 3209 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3210 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3211 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3212 return MinOpRes; 3213 } 3214 3215 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3216 // The result is the sum of all operands results. 3217 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3218 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3219 for (unsigned i = 1, e = M->getNumOperands(); 3220 SumOpRes != BitWidth && i != e; ++i) 3221 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3222 BitWidth); 3223 return SumOpRes; 3224 } 3225 3226 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3227 // The result is the min of all operands results. 3228 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3229 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3230 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3231 return MinOpRes; 3232 } 3233 3234 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3235 // The result is the min of all operands results. 3236 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3237 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3238 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3239 return MinOpRes; 3240 } 3241 3242 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3243 // The result is the min of all operands results. 3244 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3245 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3246 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3247 return MinOpRes; 3248 } 3249 3250 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3251 // For a SCEVUnknown, ask ValueTracking. 3252 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3253 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3254 ComputeMaskedBits(U->getValue(), Zeros, Ones); 3255 return Zeros.countTrailingOnes(); 3256 } 3257 3258 // SCEVUDivExpr 3259 return 0; 3260 } 3261 3262 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3263 /// 3264 ConstantRange 3265 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3266 // See if we've computed this range already. 3267 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3268 if (I != UnsignedRanges.end()) 3269 return I->second; 3270 3271 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3272 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3273 3274 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3275 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3276 3277 // If the value has known zeros, the maximum unsigned value will have those 3278 // known zeros as well. 3279 uint32_t TZ = GetMinTrailingZeros(S); 3280 if (TZ != 0) 3281 ConservativeResult = 3282 ConstantRange(APInt::getMinValue(BitWidth), 3283 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3284 3285 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3286 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3287 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3288 X = X.add(getUnsignedRange(Add->getOperand(i))); 3289 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3290 } 3291 3292 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3293 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3294 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3295 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3296 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3297 } 3298 3299 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3300 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3301 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3302 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3303 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3304 } 3305 3306 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3307 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3308 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3309 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3310 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3311 } 3312 3313 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3314 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3315 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3316 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3317 } 3318 3319 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3320 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3321 return setUnsignedRange(ZExt, 3322 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3323 } 3324 3325 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3326 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3327 return setUnsignedRange(SExt, 3328 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3329 } 3330 3331 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3332 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3333 return setUnsignedRange(Trunc, 3334 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3335 } 3336 3337 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3338 // If there's no unsigned wrap, the value will never be less than its 3339 // initial value. 3340 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3341 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3342 if (!C->getValue()->isZero()) 3343 ConservativeResult = 3344 ConservativeResult.intersectWith( 3345 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3346 3347 // TODO: non-affine addrec 3348 if (AddRec->isAffine()) { 3349 Type *Ty = AddRec->getType(); 3350 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3351 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3352 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3353 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3354 3355 const SCEV *Start = AddRec->getStart(); 3356 const SCEV *Step = AddRec->getStepRecurrence(*this); 3357 3358 ConstantRange StartRange = getUnsignedRange(Start); 3359 ConstantRange StepRange = getSignedRange(Step); 3360 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3361 ConstantRange EndRange = 3362 StartRange.add(MaxBECountRange.multiply(StepRange)); 3363 3364 // Check for overflow. This must be done with ConstantRange arithmetic 3365 // because we could be called from within the ScalarEvolution overflow 3366 // checking code. 3367 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3368 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3369 ConstantRange ExtMaxBECountRange = 3370 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3371 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3372 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3373 ExtEndRange) 3374 return setUnsignedRange(AddRec, ConservativeResult); 3375 3376 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3377 EndRange.getUnsignedMin()); 3378 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3379 EndRange.getUnsignedMax()); 3380 if (Min.isMinValue() && Max.isMaxValue()) 3381 return setUnsignedRange(AddRec, ConservativeResult); 3382 return setUnsignedRange(AddRec, 3383 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3384 } 3385 } 3386 3387 return setUnsignedRange(AddRec, ConservativeResult); 3388 } 3389 3390 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3391 // For a SCEVUnknown, ask ValueTracking. 3392 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3393 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD); 3394 if (Ones == ~Zeros + 1) 3395 return setUnsignedRange(U, ConservativeResult); 3396 return setUnsignedRange(U, 3397 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3398 } 3399 3400 return setUnsignedRange(S, ConservativeResult); 3401 } 3402 3403 /// getSignedRange - Determine the signed range for a particular SCEV. 3404 /// 3405 ConstantRange 3406 ScalarEvolution::getSignedRange(const SCEV *S) { 3407 // See if we've computed this range already. 3408 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3409 if (I != SignedRanges.end()) 3410 return I->second; 3411 3412 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3413 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3414 3415 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3416 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3417 3418 // If the value has known zeros, the maximum signed value will have those 3419 // known zeros as well. 3420 uint32_t TZ = GetMinTrailingZeros(S); 3421 if (TZ != 0) 3422 ConservativeResult = 3423 ConstantRange(APInt::getSignedMinValue(BitWidth), 3424 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3425 3426 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3427 ConstantRange X = getSignedRange(Add->getOperand(0)); 3428 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3429 X = X.add(getSignedRange(Add->getOperand(i))); 3430 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3431 } 3432 3433 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3434 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3435 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3436 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3437 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3438 } 3439 3440 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3441 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3442 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3443 X = X.smax(getSignedRange(SMax->getOperand(i))); 3444 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3445 } 3446 3447 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3448 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3449 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3450 X = X.umax(getSignedRange(UMax->getOperand(i))); 3451 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3452 } 3453 3454 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3455 ConstantRange X = getSignedRange(UDiv->getLHS()); 3456 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3457 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3458 } 3459 3460 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3461 ConstantRange X = getSignedRange(ZExt->getOperand()); 3462 return setSignedRange(ZExt, 3463 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3464 } 3465 3466 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3467 ConstantRange X = getSignedRange(SExt->getOperand()); 3468 return setSignedRange(SExt, 3469 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3470 } 3471 3472 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3473 ConstantRange X = getSignedRange(Trunc->getOperand()); 3474 return setSignedRange(Trunc, 3475 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3476 } 3477 3478 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3479 // If there's no signed wrap, and all the operands have the same sign or 3480 // zero, the value won't ever change sign. 3481 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3482 bool AllNonNeg = true; 3483 bool AllNonPos = true; 3484 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3485 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3486 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3487 } 3488 if (AllNonNeg) 3489 ConservativeResult = ConservativeResult.intersectWith( 3490 ConstantRange(APInt(BitWidth, 0), 3491 APInt::getSignedMinValue(BitWidth))); 3492 else if (AllNonPos) 3493 ConservativeResult = ConservativeResult.intersectWith( 3494 ConstantRange(APInt::getSignedMinValue(BitWidth), 3495 APInt(BitWidth, 1))); 3496 } 3497 3498 // TODO: non-affine addrec 3499 if (AddRec->isAffine()) { 3500 Type *Ty = AddRec->getType(); 3501 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3502 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3503 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3504 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3505 3506 const SCEV *Start = AddRec->getStart(); 3507 const SCEV *Step = AddRec->getStepRecurrence(*this); 3508 3509 ConstantRange StartRange = getSignedRange(Start); 3510 ConstantRange StepRange = getSignedRange(Step); 3511 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3512 ConstantRange EndRange = 3513 StartRange.add(MaxBECountRange.multiply(StepRange)); 3514 3515 // Check for overflow. This must be done with ConstantRange arithmetic 3516 // because we could be called from within the ScalarEvolution overflow 3517 // checking code. 3518 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3519 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3520 ConstantRange ExtMaxBECountRange = 3521 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3522 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3523 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3524 ExtEndRange) 3525 return setSignedRange(AddRec, ConservativeResult); 3526 3527 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3528 EndRange.getSignedMin()); 3529 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3530 EndRange.getSignedMax()); 3531 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3532 return setSignedRange(AddRec, ConservativeResult); 3533 return setSignedRange(AddRec, 3534 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3535 } 3536 } 3537 3538 return setSignedRange(AddRec, ConservativeResult); 3539 } 3540 3541 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3542 // For a SCEVUnknown, ask ValueTracking. 3543 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3544 return setSignedRange(U, ConservativeResult); 3545 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3546 if (NS == 1) 3547 return setSignedRange(U, ConservativeResult); 3548 return setSignedRange(U, ConservativeResult.intersectWith( 3549 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3550 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3551 } 3552 3553 return setSignedRange(S, ConservativeResult); 3554 } 3555 3556 /// createSCEV - We know that there is no SCEV for the specified value. 3557 /// Analyze the expression. 3558 /// 3559 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3560 if (!isSCEVable(V->getType())) 3561 return getUnknown(V); 3562 3563 unsigned Opcode = Instruction::UserOp1; 3564 if (Instruction *I = dyn_cast<Instruction>(V)) { 3565 Opcode = I->getOpcode(); 3566 3567 // Don't attempt to analyze instructions in blocks that aren't 3568 // reachable. Such instructions don't matter, and they aren't required 3569 // to obey basic rules for definitions dominating uses which this 3570 // analysis depends on. 3571 if (!DT->isReachableFromEntry(I->getParent())) 3572 return getUnknown(V); 3573 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3574 Opcode = CE->getOpcode(); 3575 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3576 return getConstant(CI); 3577 else if (isa<ConstantPointerNull>(V)) 3578 return getConstant(V->getType(), 0); 3579 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3580 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3581 else 3582 return getUnknown(V); 3583 3584 Operator *U = cast<Operator>(V); 3585 switch (Opcode) { 3586 case Instruction::Add: { 3587 // The simple thing to do would be to just call getSCEV on both operands 3588 // and call getAddExpr with the result. However if we're looking at a 3589 // bunch of things all added together, this can be quite inefficient, 3590 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3591 // Instead, gather up all the operands and make a single getAddExpr call. 3592 // LLVM IR canonical form means we need only traverse the left operands. 3593 // 3594 // Don't apply this instruction's NSW or NUW flags to the new 3595 // expression. The instruction may be guarded by control flow that the 3596 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3597 // mapped to the same SCEV expression, and it would be incorrect to transfer 3598 // NSW/NUW semantics to those operations. 3599 SmallVector<const SCEV *, 4> AddOps; 3600 AddOps.push_back(getSCEV(U->getOperand(1))); 3601 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3602 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3603 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3604 break; 3605 U = cast<Operator>(Op); 3606 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3607 if (Opcode == Instruction::Sub) 3608 AddOps.push_back(getNegativeSCEV(Op1)); 3609 else 3610 AddOps.push_back(Op1); 3611 } 3612 AddOps.push_back(getSCEV(U->getOperand(0))); 3613 return getAddExpr(AddOps); 3614 } 3615 case Instruction::Mul: { 3616 // Don't transfer NSW/NUW for the same reason as AddExpr. 3617 SmallVector<const SCEV *, 4> MulOps; 3618 MulOps.push_back(getSCEV(U->getOperand(1))); 3619 for (Value *Op = U->getOperand(0); 3620 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3621 Op = U->getOperand(0)) { 3622 U = cast<Operator>(Op); 3623 MulOps.push_back(getSCEV(U->getOperand(1))); 3624 } 3625 MulOps.push_back(getSCEV(U->getOperand(0))); 3626 return getMulExpr(MulOps); 3627 } 3628 case Instruction::UDiv: 3629 return getUDivExpr(getSCEV(U->getOperand(0)), 3630 getSCEV(U->getOperand(1))); 3631 case Instruction::Sub: 3632 return getMinusSCEV(getSCEV(U->getOperand(0)), 3633 getSCEV(U->getOperand(1))); 3634 case Instruction::And: 3635 // For an expression like x&255 that merely masks off the high bits, 3636 // use zext(trunc(x)) as the SCEV expression. 3637 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3638 if (CI->isNullValue()) 3639 return getSCEV(U->getOperand(1)); 3640 if (CI->isAllOnesValue()) 3641 return getSCEV(U->getOperand(0)); 3642 const APInt &A = CI->getValue(); 3643 3644 // Instcombine's ShrinkDemandedConstant may strip bits out of 3645 // constants, obscuring what would otherwise be a low-bits mask. 3646 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3647 // knew about to reconstruct a low-bits mask value. 3648 unsigned LZ = A.countLeadingZeros(); 3649 unsigned BitWidth = A.getBitWidth(); 3650 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3651 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD); 3652 3653 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3654 3655 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3656 return 3657 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3658 IntegerType::get(getContext(), BitWidth - LZ)), 3659 U->getType()); 3660 } 3661 break; 3662 3663 case Instruction::Or: 3664 // If the RHS of the Or is a constant, we may have something like: 3665 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3666 // optimizations will transparently handle this case. 3667 // 3668 // In order for this transformation to be safe, the LHS must be of the 3669 // form X*(2^n) and the Or constant must be less than 2^n. 3670 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3671 const SCEV *LHS = getSCEV(U->getOperand(0)); 3672 const APInt &CIVal = CI->getValue(); 3673 if (GetMinTrailingZeros(LHS) >= 3674 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3675 // Build a plain add SCEV. 3676 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3677 // If the LHS of the add was an addrec and it has no-wrap flags, 3678 // transfer the no-wrap flags, since an or won't introduce a wrap. 3679 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3680 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3681 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3682 OldAR->getNoWrapFlags()); 3683 } 3684 return S; 3685 } 3686 } 3687 break; 3688 case Instruction::Xor: 3689 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3690 // If the RHS of the xor is a signbit, then this is just an add. 3691 // Instcombine turns add of signbit into xor as a strength reduction step. 3692 if (CI->getValue().isSignBit()) 3693 return getAddExpr(getSCEV(U->getOperand(0)), 3694 getSCEV(U->getOperand(1))); 3695 3696 // If the RHS of xor is -1, then this is a not operation. 3697 if (CI->isAllOnesValue()) 3698 return getNotSCEV(getSCEV(U->getOperand(0))); 3699 3700 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3701 // This is a variant of the check for xor with -1, and it handles 3702 // the case where instcombine has trimmed non-demanded bits out 3703 // of an xor with -1. 3704 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3705 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3706 if (BO->getOpcode() == Instruction::And && 3707 LCI->getValue() == CI->getValue()) 3708 if (const SCEVZeroExtendExpr *Z = 3709 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3710 Type *UTy = U->getType(); 3711 const SCEV *Z0 = Z->getOperand(); 3712 Type *Z0Ty = Z0->getType(); 3713 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3714 3715 // If C is a low-bits mask, the zero extend is serving to 3716 // mask off the high bits. Complement the operand and 3717 // re-apply the zext. 3718 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3719 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3720 3721 // If C is a single bit, it may be in the sign-bit position 3722 // before the zero-extend. In this case, represent the xor 3723 // using an add, which is equivalent, and re-apply the zext. 3724 APInt Trunc = CI->getValue().trunc(Z0TySize); 3725 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3726 Trunc.isSignBit()) 3727 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3728 UTy); 3729 } 3730 } 3731 break; 3732 3733 case Instruction::Shl: 3734 // Turn shift left of a constant amount into a multiply. 3735 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3736 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3737 3738 // If the shift count is not less than the bitwidth, the result of 3739 // the shift is undefined. Don't try to analyze it, because the 3740 // resolution chosen here may differ from the resolution chosen in 3741 // other parts of the compiler. 3742 if (SA->getValue().uge(BitWidth)) 3743 break; 3744 3745 Constant *X = ConstantInt::get(getContext(), 3746 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3747 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3748 } 3749 break; 3750 3751 case Instruction::LShr: 3752 // Turn logical shift right of a constant into a unsigned divide. 3753 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3754 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3755 3756 // If the shift count is not less than the bitwidth, the result of 3757 // the shift is undefined. Don't try to analyze it, because the 3758 // resolution chosen here may differ from the resolution chosen in 3759 // other parts of the compiler. 3760 if (SA->getValue().uge(BitWidth)) 3761 break; 3762 3763 Constant *X = ConstantInt::get(getContext(), 3764 APInt(BitWidth, 1).shl(SA->getZExtValue())); 3765 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3766 } 3767 break; 3768 3769 case Instruction::AShr: 3770 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3771 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3772 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3773 if (L->getOpcode() == Instruction::Shl && 3774 L->getOperand(1) == U->getOperand(1)) { 3775 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3776 3777 // If the shift count is not less than the bitwidth, the result of 3778 // the shift is undefined. Don't try to analyze it, because the 3779 // resolution chosen here may differ from the resolution chosen in 3780 // other parts of the compiler. 3781 if (CI->getValue().uge(BitWidth)) 3782 break; 3783 3784 uint64_t Amt = BitWidth - CI->getZExtValue(); 3785 if (Amt == BitWidth) 3786 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3787 return 3788 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3789 IntegerType::get(getContext(), 3790 Amt)), 3791 U->getType()); 3792 } 3793 break; 3794 3795 case Instruction::Trunc: 3796 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3797 3798 case Instruction::ZExt: 3799 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3800 3801 case Instruction::SExt: 3802 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3803 3804 case Instruction::BitCast: 3805 // BitCasts are no-op casts so we just eliminate the cast. 3806 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3807 return getSCEV(U->getOperand(0)); 3808 break; 3809 3810 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3811 // lead to pointer expressions which cannot safely be expanded to GEPs, 3812 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3813 // simplifying integer expressions. 3814 3815 case Instruction::GetElementPtr: 3816 return createNodeForGEP(cast<GEPOperator>(U)); 3817 3818 case Instruction::PHI: 3819 return createNodeForPHI(cast<PHINode>(U)); 3820 3821 case Instruction::Select: 3822 // This could be a smax or umax that was lowered earlier. 3823 // Try to recover it. 3824 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3825 Value *LHS = ICI->getOperand(0); 3826 Value *RHS = ICI->getOperand(1); 3827 switch (ICI->getPredicate()) { 3828 case ICmpInst::ICMP_SLT: 3829 case ICmpInst::ICMP_SLE: 3830 std::swap(LHS, RHS); 3831 // fall through 3832 case ICmpInst::ICMP_SGT: 3833 case ICmpInst::ICMP_SGE: 3834 // a >s b ? a+x : b+x -> smax(a, b)+x 3835 // a >s b ? b+x : a+x -> smin(a, b)+x 3836 if (LHS->getType() == U->getType()) { 3837 const SCEV *LS = getSCEV(LHS); 3838 const SCEV *RS = getSCEV(RHS); 3839 const SCEV *LA = getSCEV(U->getOperand(1)); 3840 const SCEV *RA = getSCEV(U->getOperand(2)); 3841 const SCEV *LDiff = getMinusSCEV(LA, LS); 3842 const SCEV *RDiff = getMinusSCEV(RA, RS); 3843 if (LDiff == RDiff) 3844 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3845 LDiff = getMinusSCEV(LA, RS); 3846 RDiff = getMinusSCEV(RA, LS); 3847 if (LDiff == RDiff) 3848 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3849 } 3850 break; 3851 case ICmpInst::ICMP_ULT: 3852 case ICmpInst::ICMP_ULE: 3853 std::swap(LHS, RHS); 3854 // fall through 3855 case ICmpInst::ICMP_UGT: 3856 case ICmpInst::ICMP_UGE: 3857 // a >u b ? a+x : b+x -> umax(a, b)+x 3858 // a >u b ? b+x : a+x -> umin(a, b)+x 3859 if (LHS->getType() == U->getType()) { 3860 const SCEV *LS = getSCEV(LHS); 3861 const SCEV *RS = getSCEV(RHS); 3862 const SCEV *LA = getSCEV(U->getOperand(1)); 3863 const SCEV *RA = getSCEV(U->getOperand(2)); 3864 const SCEV *LDiff = getMinusSCEV(LA, LS); 3865 const SCEV *RDiff = getMinusSCEV(RA, RS); 3866 if (LDiff == RDiff) 3867 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3868 LDiff = getMinusSCEV(LA, RS); 3869 RDiff = getMinusSCEV(RA, LS); 3870 if (LDiff == RDiff) 3871 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3872 } 3873 break; 3874 case ICmpInst::ICMP_NE: 3875 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3876 if (LHS->getType() == U->getType() && 3877 isa<ConstantInt>(RHS) && 3878 cast<ConstantInt>(RHS)->isZero()) { 3879 const SCEV *One = getConstant(LHS->getType(), 1); 3880 const SCEV *LS = getSCEV(LHS); 3881 const SCEV *LA = getSCEV(U->getOperand(1)); 3882 const SCEV *RA = getSCEV(U->getOperand(2)); 3883 const SCEV *LDiff = getMinusSCEV(LA, LS); 3884 const SCEV *RDiff = getMinusSCEV(RA, One); 3885 if (LDiff == RDiff) 3886 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3887 } 3888 break; 3889 case ICmpInst::ICMP_EQ: 3890 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 3891 if (LHS->getType() == U->getType() && 3892 isa<ConstantInt>(RHS) && 3893 cast<ConstantInt>(RHS)->isZero()) { 3894 const SCEV *One = getConstant(LHS->getType(), 1); 3895 const SCEV *LS = getSCEV(LHS); 3896 const SCEV *LA = getSCEV(U->getOperand(1)); 3897 const SCEV *RA = getSCEV(U->getOperand(2)); 3898 const SCEV *LDiff = getMinusSCEV(LA, One); 3899 const SCEV *RDiff = getMinusSCEV(RA, LS); 3900 if (LDiff == RDiff) 3901 return getAddExpr(getUMaxExpr(One, LS), LDiff); 3902 } 3903 break; 3904 default: 3905 break; 3906 } 3907 } 3908 3909 default: // We cannot analyze this expression. 3910 break; 3911 } 3912 3913 return getUnknown(V); 3914 } 3915 3916 3917 3918 //===----------------------------------------------------------------------===// 3919 // Iteration Count Computation Code 3920 // 3921 3922 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 3923 /// normal unsigned value. Returns 0 if the trip count is unknown or not 3924 /// constant. Will also return 0 if the maximum trip count is very large (>= 3925 /// 2^32). 3926 /// 3927 /// This "trip count" assumes that control exits via ExitingBlock. More 3928 /// precisely, it is the number of times that control may reach ExitingBlock 3929 /// before taking the branch. For loops with multiple exits, it may not be the 3930 /// number times that the loop header executes because the loop may exit 3931 /// prematurely via another branch. 3932 unsigned ScalarEvolution:: 3933 getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) { 3934 const SCEVConstant *ExitCount = 3935 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 3936 if (!ExitCount) 3937 return 0; 3938 3939 ConstantInt *ExitConst = ExitCount->getValue(); 3940 3941 // Guard against huge trip counts. 3942 if (ExitConst->getValue().getActiveBits() > 32) 3943 return 0; 3944 3945 // In case of integer overflow, this returns 0, which is correct. 3946 return ((unsigned)ExitConst->getZExtValue()) + 1; 3947 } 3948 3949 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 3950 /// trip count of this loop as a normal unsigned value, if possible. This 3951 /// means that the actual trip count is always a multiple of the returned 3952 /// value (don't forget the trip count could very well be zero as well!). 3953 /// 3954 /// Returns 1 if the trip count is unknown or not guaranteed to be the 3955 /// multiple of a constant (which is also the case if the trip count is simply 3956 /// constant, use getSmallConstantTripCount for that case), Will also return 1 3957 /// if the trip count is very large (>= 2^32). 3958 /// 3959 /// As explained in the comments for getSmallConstantTripCount, this assumes 3960 /// that control exits the loop via ExitingBlock. 3961 unsigned ScalarEvolution:: 3962 getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) { 3963 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 3964 if (ExitCount == getCouldNotCompute()) 3965 return 1; 3966 3967 // Get the trip count from the BE count by adding 1. 3968 const SCEV *TCMul = getAddExpr(ExitCount, 3969 getConstant(ExitCount->getType(), 1)); 3970 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 3971 // to factor simple cases. 3972 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 3973 TCMul = Mul->getOperand(0); 3974 3975 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 3976 if (!MulC) 3977 return 1; 3978 3979 ConstantInt *Result = MulC->getValue(); 3980 3981 // Guard against huge trip counts. 3982 if (!Result || Result->getValue().getActiveBits() > 32) 3983 return 1; 3984 3985 return (unsigned)Result->getZExtValue(); 3986 } 3987 3988 // getExitCount - Get the expression for the number of loop iterations for which 3989 // this loop is guaranteed not to exit via ExitintBlock. Otherwise return 3990 // SCEVCouldNotCompute. 3991 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 3992 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 3993 } 3994 3995 /// getBackedgeTakenCount - If the specified loop has a predictable 3996 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3997 /// object. The backedge-taken count is the number of times the loop header 3998 /// will be branched to from within the loop. This is one less than the 3999 /// trip count of the loop, since it doesn't count the first iteration, 4000 /// when the header is branched to from outside the loop. 4001 /// 4002 /// Note that it is not valid to call this method on a loop without a 4003 /// loop-invariant backedge-taken count (see 4004 /// hasLoopInvariantBackedgeTakenCount). 4005 /// 4006 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4007 return getBackedgeTakenInfo(L).getExact(this); 4008 } 4009 4010 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4011 /// return the least SCEV value that is known never to be less than the 4012 /// actual backedge taken count. 4013 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4014 return getBackedgeTakenInfo(L).getMax(this); 4015 } 4016 4017 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4018 /// onto the given Worklist. 4019 static void 4020 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4021 BasicBlock *Header = L->getHeader(); 4022 4023 // Push all Loop-header PHIs onto the Worklist stack. 4024 for (BasicBlock::iterator I = Header->begin(); 4025 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4026 Worklist.push_back(PN); 4027 } 4028 4029 const ScalarEvolution::BackedgeTakenInfo & 4030 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4031 // Initially insert an invalid entry for this loop. If the insertion 4032 // succeeds, proceed to actually compute a backedge-taken count and 4033 // update the value. The temporary CouldNotCompute value tells SCEV 4034 // code elsewhere that it shouldn't attempt to request a new 4035 // backedge-taken count, which could result in infinite recursion. 4036 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4037 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4038 if (!Pair.second) 4039 return Pair.first->second; 4040 4041 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4042 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4043 // must be cleared in this scope. 4044 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4045 4046 if (Result.getExact(this) != getCouldNotCompute()) { 4047 assert(isLoopInvariant(Result.getExact(this), L) && 4048 isLoopInvariant(Result.getMax(this), L) && 4049 "Computed backedge-taken count isn't loop invariant for loop!"); 4050 ++NumTripCountsComputed; 4051 } 4052 else if (Result.getMax(this) == getCouldNotCompute() && 4053 isa<PHINode>(L->getHeader()->begin())) { 4054 // Only count loops that have phi nodes as not being computable. 4055 ++NumTripCountsNotComputed; 4056 } 4057 4058 // Now that we know more about the trip count for this loop, forget any 4059 // existing SCEV values for PHI nodes in this loop since they are only 4060 // conservative estimates made without the benefit of trip count 4061 // information. This is similar to the code in forgetLoop, except that 4062 // it handles SCEVUnknown PHI nodes specially. 4063 if (Result.hasAnyInfo()) { 4064 SmallVector<Instruction *, 16> Worklist; 4065 PushLoopPHIs(L, Worklist); 4066 4067 SmallPtrSet<Instruction *, 8> Visited; 4068 while (!Worklist.empty()) { 4069 Instruction *I = Worklist.pop_back_val(); 4070 if (!Visited.insert(I)) continue; 4071 4072 ValueExprMapType::iterator It = 4073 ValueExprMap.find_as(static_cast<Value *>(I)); 4074 if (It != ValueExprMap.end()) { 4075 const SCEV *Old = It->second; 4076 4077 // SCEVUnknown for a PHI either means that it has an unrecognized 4078 // structure, or it's a PHI that's in the progress of being computed 4079 // by createNodeForPHI. In the former case, additional loop trip 4080 // count information isn't going to change anything. In the later 4081 // case, createNodeForPHI will perform the necessary updates on its 4082 // own when it gets to that point. 4083 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4084 forgetMemoizedResults(Old); 4085 ValueExprMap.erase(It); 4086 } 4087 if (PHINode *PN = dyn_cast<PHINode>(I)) 4088 ConstantEvolutionLoopExitValue.erase(PN); 4089 } 4090 4091 PushDefUseChildren(I, Worklist); 4092 } 4093 } 4094 4095 // Re-lookup the insert position, since the call to 4096 // ComputeBackedgeTakenCount above could result in a 4097 // recusive call to getBackedgeTakenInfo (on a different 4098 // loop), which would invalidate the iterator computed 4099 // earlier. 4100 return BackedgeTakenCounts.find(L)->second = Result; 4101 } 4102 4103 /// forgetLoop - This method should be called by the client when it has 4104 /// changed a loop in a way that may effect ScalarEvolution's ability to 4105 /// compute a trip count, or if the loop is deleted. 4106 void ScalarEvolution::forgetLoop(const Loop *L) { 4107 // Drop any stored trip count value. 4108 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4109 BackedgeTakenCounts.find(L); 4110 if (BTCPos != BackedgeTakenCounts.end()) { 4111 BTCPos->second.clear(); 4112 BackedgeTakenCounts.erase(BTCPos); 4113 } 4114 4115 // Drop information about expressions based on loop-header PHIs. 4116 SmallVector<Instruction *, 16> Worklist; 4117 PushLoopPHIs(L, Worklist); 4118 4119 SmallPtrSet<Instruction *, 8> Visited; 4120 while (!Worklist.empty()) { 4121 Instruction *I = Worklist.pop_back_val(); 4122 if (!Visited.insert(I)) continue; 4123 4124 ValueExprMapType::iterator It = 4125 ValueExprMap.find_as(static_cast<Value *>(I)); 4126 if (It != ValueExprMap.end()) { 4127 forgetMemoizedResults(It->second); 4128 ValueExprMap.erase(It); 4129 if (PHINode *PN = dyn_cast<PHINode>(I)) 4130 ConstantEvolutionLoopExitValue.erase(PN); 4131 } 4132 4133 PushDefUseChildren(I, Worklist); 4134 } 4135 4136 // Forget all contained loops too, to avoid dangling entries in the 4137 // ValuesAtScopes map. 4138 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4139 forgetLoop(*I); 4140 } 4141 4142 /// forgetValue - This method should be called by the client when it has 4143 /// changed a value in a way that may effect its value, or which may 4144 /// disconnect it from a def-use chain linking it to a loop. 4145 void ScalarEvolution::forgetValue(Value *V) { 4146 Instruction *I = dyn_cast<Instruction>(V); 4147 if (!I) return; 4148 4149 // Drop information about expressions based on loop-header PHIs. 4150 SmallVector<Instruction *, 16> Worklist; 4151 Worklist.push_back(I); 4152 4153 SmallPtrSet<Instruction *, 8> Visited; 4154 while (!Worklist.empty()) { 4155 I = Worklist.pop_back_val(); 4156 if (!Visited.insert(I)) continue; 4157 4158 ValueExprMapType::iterator It = 4159 ValueExprMap.find_as(static_cast<Value *>(I)); 4160 if (It != ValueExprMap.end()) { 4161 forgetMemoizedResults(It->second); 4162 ValueExprMap.erase(It); 4163 if (PHINode *PN = dyn_cast<PHINode>(I)) 4164 ConstantEvolutionLoopExitValue.erase(PN); 4165 } 4166 4167 PushDefUseChildren(I, Worklist); 4168 } 4169 } 4170 4171 /// getExact - Get the exact loop backedge taken count considering all loop 4172 /// exits. A computable result can only be return for loops with a single exit. 4173 /// Returning the minimum taken count among all exits is incorrect because one 4174 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4175 /// the limit of each loop test is never skipped. This is a valid assumption as 4176 /// long as the loop exits via that test. For precise results, it is the 4177 /// caller's responsibility to specify the relevant loop exit using 4178 /// getExact(ExitingBlock, SE). 4179 const SCEV * 4180 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4181 // If any exits were not computable, the loop is not computable. 4182 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4183 4184 // We need exactly one computable exit. 4185 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4186 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4187 4188 const SCEV *BECount = 0; 4189 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4190 ENT != 0; ENT = ENT->getNextExit()) { 4191 4192 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4193 4194 if (!BECount) 4195 BECount = ENT->ExactNotTaken; 4196 else if (BECount != ENT->ExactNotTaken) 4197 return SE->getCouldNotCompute(); 4198 } 4199 assert(BECount && "Invalid not taken count for loop exit"); 4200 return BECount; 4201 } 4202 4203 /// getExact - Get the exact not taken count for this loop exit. 4204 const SCEV * 4205 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4206 ScalarEvolution *SE) const { 4207 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4208 ENT != 0; ENT = ENT->getNextExit()) { 4209 4210 if (ENT->ExitingBlock == ExitingBlock) 4211 return ENT->ExactNotTaken; 4212 } 4213 return SE->getCouldNotCompute(); 4214 } 4215 4216 /// getMax - Get the max backedge taken count for the loop. 4217 const SCEV * 4218 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4219 return Max ? Max : SE->getCouldNotCompute(); 4220 } 4221 4222 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4223 /// computable exit into a persistent ExitNotTakenInfo array. 4224 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4225 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4226 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4227 4228 if (!Complete) 4229 ExitNotTaken.setIncomplete(); 4230 4231 unsigned NumExits = ExitCounts.size(); 4232 if (NumExits == 0) return; 4233 4234 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4235 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4236 if (NumExits == 1) return; 4237 4238 // Handle the rare case of multiple computable exits. 4239 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4240 4241 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4242 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4243 PrevENT->setNextExit(ENT); 4244 ENT->ExitingBlock = ExitCounts[i].first; 4245 ENT->ExactNotTaken = ExitCounts[i].second; 4246 } 4247 } 4248 4249 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4250 void ScalarEvolution::BackedgeTakenInfo::clear() { 4251 ExitNotTaken.ExitingBlock = 0; 4252 ExitNotTaken.ExactNotTaken = 0; 4253 delete[] ExitNotTaken.getNextExit(); 4254 } 4255 4256 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4257 /// of the specified loop will execute. 4258 ScalarEvolution::BackedgeTakenInfo 4259 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4260 SmallVector<BasicBlock *, 8> ExitingBlocks; 4261 L->getExitingBlocks(ExitingBlocks); 4262 4263 // Examine all exits and pick the most conservative values. 4264 const SCEV *MaxBECount = getCouldNotCompute(); 4265 bool CouldComputeBECount = true; 4266 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4267 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4268 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4269 if (EL.Exact == getCouldNotCompute()) 4270 // We couldn't compute an exact value for this exit, so 4271 // we won't be able to compute an exact value for the loop. 4272 CouldComputeBECount = false; 4273 else 4274 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4275 4276 if (MaxBECount == getCouldNotCompute()) 4277 MaxBECount = EL.Max; 4278 else if (EL.Max != getCouldNotCompute()) { 4279 // We cannot take the "min" MaxBECount, because non-unit stride loops may 4280 // skip some loop tests. Taking the max over the exits is sufficiently 4281 // conservative. TODO: We could do better taking into consideration 4282 // that (1) the loop has unit stride (2) the last loop test is 4283 // less-than/greater-than (3) any loop test is less-than/greater-than AND 4284 // falls-through some constant times less then the other tests. 4285 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max); 4286 } 4287 } 4288 4289 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4290 } 4291 4292 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4293 /// loop will execute if it exits via the specified block. 4294 ScalarEvolution::ExitLimit 4295 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4296 4297 // Okay, we've chosen an exiting block. See what condition causes us to 4298 // exit at this block. 4299 // 4300 // FIXME: we should be able to handle switch instructions (with a single exit) 4301 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 4302 if (ExitBr == 0) return getCouldNotCompute(); 4303 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 4304 4305 // At this point, we know we have a conditional branch that determines whether 4306 // the loop is exited. However, we don't know if the branch is executed each 4307 // time through the loop. If not, then the execution count of the branch will 4308 // not be equal to the trip count of the loop. 4309 // 4310 // Currently we check for this by checking to see if the Exit branch goes to 4311 // the loop header. If so, we know it will always execute the same number of 4312 // times as the loop. We also handle the case where the exit block *is* the 4313 // loop header. This is common for un-rotated loops. 4314 // 4315 // If both of those tests fail, walk up the unique predecessor chain to the 4316 // header, stopping if there is an edge that doesn't exit the loop. If the 4317 // header is reached, the execution count of the branch will be equal to the 4318 // trip count of the loop. 4319 // 4320 // More extensive analysis could be done to handle more cases here. 4321 // 4322 if (ExitBr->getSuccessor(0) != L->getHeader() && 4323 ExitBr->getSuccessor(1) != L->getHeader() && 4324 ExitBr->getParent() != L->getHeader()) { 4325 // The simple checks failed, try climbing the unique predecessor chain 4326 // up to the header. 4327 bool Ok = false; 4328 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 4329 BasicBlock *Pred = BB->getUniquePredecessor(); 4330 if (!Pred) 4331 return getCouldNotCompute(); 4332 TerminatorInst *PredTerm = Pred->getTerminator(); 4333 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4334 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4335 if (PredSucc == BB) 4336 continue; 4337 // If the predecessor has a successor that isn't BB and isn't 4338 // outside the loop, assume the worst. 4339 if (L->contains(PredSucc)) 4340 return getCouldNotCompute(); 4341 } 4342 if (Pred == L->getHeader()) { 4343 Ok = true; 4344 break; 4345 } 4346 BB = Pred; 4347 } 4348 if (!Ok) 4349 return getCouldNotCompute(); 4350 } 4351 4352 // Proceed to the next level to examine the exit condition expression. 4353 return ComputeExitLimitFromCond(L, ExitBr->getCondition(), 4354 ExitBr->getSuccessor(0), 4355 ExitBr->getSuccessor(1)); 4356 } 4357 4358 /// ComputeExitLimitFromCond - Compute the number of times the 4359 /// backedge of the specified loop will execute if its exit condition 4360 /// were a conditional branch of ExitCond, TBB, and FBB. 4361 ScalarEvolution::ExitLimit 4362 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4363 Value *ExitCond, 4364 BasicBlock *TBB, 4365 BasicBlock *FBB) { 4366 // Check if the controlling expression for this loop is an And or Or. 4367 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4368 if (BO->getOpcode() == Instruction::And) { 4369 // Recurse on the operands of the and. 4370 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4371 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4372 const SCEV *BECount = getCouldNotCompute(); 4373 const SCEV *MaxBECount = getCouldNotCompute(); 4374 if (L->contains(TBB)) { 4375 // Both conditions must be true for the loop to continue executing. 4376 // Choose the less conservative count. 4377 if (EL0.Exact == getCouldNotCompute() || 4378 EL1.Exact == getCouldNotCompute()) 4379 BECount = getCouldNotCompute(); 4380 else 4381 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4382 if (EL0.Max == getCouldNotCompute()) 4383 MaxBECount = EL1.Max; 4384 else if (EL1.Max == getCouldNotCompute()) 4385 MaxBECount = EL0.Max; 4386 else 4387 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4388 } else { 4389 // Both conditions must be true at the same time for the loop to exit. 4390 // For now, be conservative. 4391 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4392 if (EL0.Max == EL1.Max) 4393 MaxBECount = EL0.Max; 4394 if (EL0.Exact == EL1.Exact) 4395 BECount = EL0.Exact; 4396 } 4397 4398 return ExitLimit(BECount, MaxBECount); 4399 } 4400 if (BO->getOpcode() == Instruction::Or) { 4401 // Recurse on the operands of the or. 4402 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB); 4403 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB); 4404 const SCEV *BECount = getCouldNotCompute(); 4405 const SCEV *MaxBECount = getCouldNotCompute(); 4406 if (L->contains(FBB)) { 4407 // Both conditions must be false for the loop to continue executing. 4408 // Choose the less conservative count. 4409 if (EL0.Exact == getCouldNotCompute() || 4410 EL1.Exact == getCouldNotCompute()) 4411 BECount = getCouldNotCompute(); 4412 else 4413 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4414 if (EL0.Max == getCouldNotCompute()) 4415 MaxBECount = EL1.Max; 4416 else if (EL1.Max == getCouldNotCompute()) 4417 MaxBECount = EL0.Max; 4418 else 4419 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4420 } else { 4421 // Both conditions must be false at the same time for the loop to exit. 4422 // For now, be conservative. 4423 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4424 if (EL0.Max == EL1.Max) 4425 MaxBECount = EL0.Max; 4426 if (EL0.Exact == EL1.Exact) 4427 BECount = EL0.Exact; 4428 } 4429 4430 return ExitLimit(BECount, MaxBECount); 4431 } 4432 } 4433 4434 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4435 // Proceed to the next level to examine the icmp. 4436 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4437 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB); 4438 4439 // Check for a constant condition. These are normally stripped out by 4440 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4441 // preserve the CFG and is temporarily leaving constant conditions 4442 // in place. 4443 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4444 if (L->contains(FBB) == !CI->getZExtValue()) 4445 // The backedge is always taken. 4446 return getCouldNotCompute(); 4447 else 4448 // The backedge is never taken. 4449 return getConstant(CI->getType(), 0); 4450 } 4451 4452 // If it's not an integer or pointer comparison then compute it the hard way. 4453 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4454 } 4455 4456 /// ComputeExitLimitFromICmp - Compute the number of times the 4457 /// backedge of the specified loop will execute if its exit condition 4458 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4459 ScalarEvolution::ExitLimit 4460 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4461 ICmpInst *ExitCond, 4462 BasicBlock *TBB, 4463 BasicBlock *FBB) { 4464 4465 // If the condition was exit on true, convert the condition to exit on false 4466 ICmpInst::Predicate Cond; 4467 if (!L->contains(FBB)) 4468 Cond = ExitCond->getPredicate(); 4469 else 4470 Cond = ExitCond->getInversePredicate(); 4471 4472 // Handle common loops like: for (X = "string"; *X; ++X) 4473 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4474 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4475 ExitLimit ItCnt = 4476 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4477 if (ItCnt.hasAnyInfo()) 4478 return ItCnt; 4479 } 4480 4481 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4482 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4483 4484 // Try to evaluate any dependencies out of the loop. 4485 LHS = getSCEVAtScope(LHS, L); 4486 RHS = getSCEVAtScope(RHS, L); 4487 4488 // At this point, we would like to compute how many iterations of the 4489 // loop the predicate will return true for these inputs. 4490 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4491 // If there is a loop-invariant, force it into the RHS. 4492 std::swap(LHS, RHS); 4493 Cond = ICmpInst::getSwappedPredicate(Cond); 4494 } 4495 4496 // Simplify the operands before analyzing them. 4497 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4498 4499 // If we have a comparison of a chrec against a constant, try to use value 4500 // ranges to answer this query. 4501 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4502 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4503 if (AddRec->getLoop() == L) { 4504 // Form the constant range. 4505 ConstantRange CompRange( 4506 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4507 4508 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4509 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4510 } 4511 4512 switch (Cond) { 4513 case ICmpInst::ICMP_NE: { // while (X != Y) 4514 // Convert to: while (X-Y != 0) 4515 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L); 4516 if (EL.hasAnyInfo()) return EL; 4517 break; 4518 } 4519 case ICmpInst::ICMP_EQ: { // while (X == Y) 4520 // Convert to: while (X-Y == 0) 4521 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4522 if (EL.hasAnyInfo()) return EL; 4523 break; 4524 } 4525 case ICmpInst::ICMP_SLT: { 4526 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true); 4527 if (EL.hasAnyInfo()) return EL; 4528 break; 4529 } 4530 case ICmpInst::ICMP_SGT: { 4531 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4532 getNotSCEV(RHS), L, true); 4533 if (EL.hasAnyInfo()) return EL; 4534 break; 4535 } 4536 case ICmpInst::ICMP_ULT: { 4537 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false); 4538 if (EL.hasAnyInfo()) return EL; 4539 break; 4540 } 4541 case ICmpInst::ICMP_UGT: { 4542 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS), 4543 getNotSCEV(RHS), L, false); 4544 if (EL.hasAnyInfo()) return EL; 4545 break; 4546 } 4547 default: 4548 #if 0 4549 dbgs() << "ComputeBackedgeTakenCount "; 4550 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4551 dbgs() << "[unsigned] "; 4552 dbgs() << *LHS << " " 4553 << Instruction::getOpcodeName(Instruction::ICmp) 4554 << " " << *RHS << "\n"; 4555 #endif 4556 break; 4557 } 4558 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4559 } 4560 4561 static ConstantInt * 4562 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4563 ScalarEvolution &SE) { 4564 const SCEV *InVal = SE.getConstant(C); 4565 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4566 assert(isa<SCEVConstant>(Val) && 4567 "Evaluation of SCEV at constant didn't fold correctly?"); 4568 return cast<SCEVConstant>(Val)->getValue(); 4569 } 4570 4571 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4572 /// 'icmp op load X, cst', try to see if we can compute the backedge 4573 /// execution count. 4574 ScalarEvolution::ExitLimit 4575 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4576 LoadInst *LI, 4577 Constant *RHS, 4578 const Loop *L, 4579 ICmpInst::Predicate predicate) { 4580 4581 if (LI->isVolatile()) return getCouldNotCompute(); 4582 4583 // Check to see if the loaded pointer is a getelementptr of a global. 4584 // TODO: Use SCEV instead of manually grubbing with GEPs. 4585 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4586 if (!GEP) return getCouldNotCompute(); 4587 4588 // Make sure that it is really a constant global we are gepping, with an 4589 // initializer, and make sure the first IDX is really 0. 4590 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4591 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4592 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4593 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4594 return getCouldNotCompute(); 4595 4596 // Okay, we allow one non-constant index into the GEP instruction. 4597 Value *VarIdx = 0; 4598 std::vector<Constant*> Indexes; 4599 unsigned VarIdxNum = 0; 4600 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4601 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4602 Indexes.push_back(CI); 4603 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4604 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4605 VarIdx = GEP->getOperand(i); 4606 VarIdxNum = i-2; 4607 Indexes.push_back(0); 4608 } 4609 4610 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 4611 if (!VarIdx) 4612 return getCouldNotCompute(); 4613 4614 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4615 // Check to see if X is a loop variant variable value now. 4616 const SCEV *Idx = getSCEV(VarIdx); 4617 Idx = getSCEVAtScope(Idx, L); 4618 4619 // We can only recognize very limited forms of loop index expressions, in 4620 // particular, only affine AddRec's like {C1,+,C2}. 4621 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4622 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4623 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4624 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4625 return getCouldNotCompute(); 4626 4627 unsigned MaxSteps = MaxBruteForceIterations; 4628 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4629 ConstantInt *ItCst = ConstantInt::get( 4630 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4631 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4632 4633 // Form the GEP offset. 4634 Indexes[VarIdxNum] = Val; 4635 4636 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 4637 Indexes); 4638 if (Result == 0) break; // Cannot compute! 4639 4640 // Evaluate the condition for this iteration. 4641 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4642 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4643 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4644 #if 0 4645 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4646 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4647 << "***\n"; 4648 #endif 4649 ++NumArrayLenItCounts; 4650 return getConstant(ItCst); // Found terminating iteration! 4651 } 4652 } 4653 return getCouldNotCompute(); 4654 } 4655 4656 4657 /// CanConstantFold - Return true if we can constant fold an instruction of the 4658 /// specified type, assuming that all operands were constants. 4659 static bool CanConstantFold(const Instruction *I) { 4660 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4661 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4662 isa<LoadInst>(I)) 4663 return true; 4664 4665 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4666 if (const Function *F = CI->getCalledFunction()) 4667 return canConstantFoldCallTo(F); 4668 return false; 4669 } 4670 4671 /// Determine whether this instruction can constant evolve within this loop 4672 /// assuming its operands can all constant evolve. 4673 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4674 // An instruction outside of the loop can't be derived from a loop PHI. 4675 if (!L->contains(I)) return false; 4676 4677 if (isa<PHINode>(I)) { 4678 if (L->getHeader() == I->getParent()) 4679 return true; 4680 else 4681 // We don't currently keep track of the control flow needed to evaluate 4682 // PHIs, so we cannot handle PHIs inside of loops. 4683 return false; 4684 } 4685 4686 // If we won't be able to constant fold this expression even if the operands 4687 // are constants, bail early. 4688 return CanConstantFold(I); 4689 } 4690 4691 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4692 /// recursing through each instruction operand until reaching a loop header phi. 4693 static PHINode * 4694 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4695 DenseMap<Instruction *, PHINode *> &PHIMap) { 4696 4697 // Otherwise, we can evaluate this instruction if all of its operands are 4698 // constant or derived from a PHI node themselves. 4699 PHINode *PHI = 0; 4700 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4701 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4702 4703 if (isa<Constant>(*OpI)) continue; 4704 4705 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4706 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0; 4707 4708 PHINode *P = dyn_cast<PHINode>(OpInst); 4709 if (!P) 4710 // If this operand is already visited, reuse the prior result. 4711 // We may have P != PHI if this is the deepest point at which the 4712 // inconsistent paths meet. 4713 P = PHIMap.lookup(OpInst); 4714 if (!P) { 4715 // Recurse and memoize the results, whether a phi is found or not. 4716 // This recursive call invalidates pointers into PHIMap. 4717 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4718 PHIMap[OpInst] = P; 4719 } 4720 if (P == 0) return 0; // Not evolving from PHI 4721 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs. 4722 PHI = P; 4723 } 4724 // This is a expression evolving from a constant PHI! 4725 return PHI; 4726 } 4727 4728 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4729 /// in the loop that V is derived from. We allow arbitrary operations along the 4730 /// way, but the operands of an operation must either be constants or a value 4731 /// derived from a constant PHI. If this expression does not fit with these 4732 /// constraints, return null. 4733 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4734 Instruction *I = dyn_cast<Instruction>(V); 4735 if (I == 0 || !canConstantEvolve(I, L)) return 0; 4736 4737 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4738 return PN; 4739 } 4740 4741 // Record non-constant instructions contained by the loop. 4742 DenseMap<Instruction *, PHINode *> PHIMap; 4743 return getConstantEvolvingPHIOperands(I, L, PHIMap); 4744 } 4745 4746 /// EvaluateExpression - Given an expression that passes the 4747 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4748 /// in the loop has the value PHIVal. If we can't fold this expression for some 4749 /// reason, return null. 4750 static Constant *EvaluateExpression(Value *V, const Loop *L, 4751 DenseMap<Instruction *, Constant *> &Vals, 4752 const TargetData *TD, 4753 const TargetLibraryInfo *TLI) { 4754 // Convenient constant check, but redundant for recursive calls. 4755 if (Constant *C = dyn_cast<Constant>(V)) return C; 4756 Instruction *I = dyn_cast<Instruction>(V); 4757 if (!I) return 0; 4758 4759 if (Constant *C = Vals.lookup(I)) return C; 4760 4761 // An instruction inside the loop depends on a value outside the loop that we 4762 // weren't given a mapping for, or a value such as a call inside the loop. 4763 if (!canConstantEvolve(I, L)) return 0; 4764 4765 // An unmapped PHI can be due to a branch or another loop inside this loop, 4766 // or due to this not being the initial iteration through a loop where we 4767 // couldn't compute the evolution of this particular PHI last time. 4768 if (isa<PHINode>(I)) return 0; 4769 4770 std::vector<Constant*> Operands(I->getNumOperands()); 4771 4772 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4773 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 4774 if (!Operand) { 4775 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 4776 if (!Operands[i]) return 0; 4777 continue; 4778 } 4779 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI); 4780 Vals[Operand] = C; 4781 if (!C) return 0; 4782 Operands[i] = C; 4783 } 4784 4785 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4786 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4787 Operands[1], TD, TLI); 4788 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4789 if (!LI->isVolatile()) 4790 return ConstantFoldLoadFromConstPtr(Operands[0], TD); 4791 } 4792 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD, 4793 TLI); 4794 } 4795 4796 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4797 /// in the header of its containing loop, we know the loop executes a 4798 /// constant number of times, and the PHI node is just a recurrence 4799 /// involving constants, fold it. 4800 Constant * 4801 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4802 const APInt &BEs, 4803 const Loop *L) { 4804 DenseMap<PHINode*, Constant*>::const_iterator I = 4805 ConstantEvolutionLoopExitValue.find(PN); 4806 if (I != ConstantEvolutionLoopExitValue.end()) 4807 return I->second; 4808 4809 if (BEs.ugt(MaxBruteForceIterations)) 4810 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4811 4812 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4813 4814 DenseMap<Instruction *, Constant *> CurrentIterVals; 4815 BasicBlock *Header = L->getHeader(); 4816 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4817 4818 // Since the loop is canonicalized, the PHI node must have two entries. One 4819 // entry must be a constant (coming in from outside of the loop), and the 4820 // second must be derived from the same PHI. 4821 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4822 PHINode *PHI = 0; 4823 for (BasicBlock::iterator I = Header->begin(); 4824 (PHI = dyn_cast<PHINode>(I)); ++I) { 4825 Constant *StartCST = 4826 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4827 if (StartCST == 0) continue; 4828 CurrentIterVals[PHI] = StartCST; 4829 } 4830 if (!CurrentIterVals.count(PN)) 4831 return RetVal = 0; 4832 4833 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4834 4835 // Execute the loop symbolically to determine the exit value. 4836 if (BEs.getActiveBits() >= 32) 4837 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4838 4839 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4840 unsigned IterationNum = 0; 4841 for (; ; ++IterationNum) { 4842 if (IterationNum == NumIterations) 4843 return RetVal = CurrentIterVals[PN]; // Got exit value! 4844 4845 // Compute the value of the PHIs for the next iteration. 4846 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 4847 DenseMap<Instruction *, Constant *> NextIterVals; 4848 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, 4849 TLI); 4850 if (NextPHI == 0) 4851 return 0; // Couldn't evaluate! 4852 NextIterVals[PN] = NextPHI; 4853 4854 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 4855 4856 // Also evaluate the other PHI nodes. However, we don't get to stop if we 4857 // cease to be able to evaluate one of them or if they stop evolving, 4858 // because that doesn't necessarily prevent us from computing PN. 4859 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 4860 for (DenseMap<Instruction *, Constant *>::const_iterator 4861 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4862 PHINode *PHI = dyn_cast<PHINode>(I->first); 4863 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 4864 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 4865 } 4866 // We use two distinct loops because EvaluateExpression may invalidate any 4867 // iterators into CurrentIterVals. 4868 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 4869 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 4870 PHINode *PHI = I->first; 4871 Constant *&NextPHI = NextIterVals[PHI]; 4872 if (!NextPHI) { // Not already computed. 4873 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 4874 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 4875 } 4876 if (NextPHI != I->second) 4877 StoppedEvolving = false; 4878 } 4879 4880 // If all entries in CurrentIterVals == NextIterVals then we can stop 4881 // iterating, the loop can't continue to change. 4882 if (StoppedEvolving) 4883 return RetVal = CurrentIterVals[PN]; 4884 4885 CurrentIterVals.swap(NextIterVals); 4886 } 4887 } 4888 4889 /// ComputeExitCountExhaustively - If the loop is known to execute a 4890 /// constant number of times (the condition evolves only from constants), 4891 /// try to evaluate a few iterations of the loop until we get the exit 4892 /// condition gets a value of ExitWhen (true or false). If we cannot 4893 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4894 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 4895 Value *Cond, 4896 bool ExitWhen) { 4897 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4898 if (PN == 0) return getCouldNotCompute(); 4899 4900 // If the loop is canonicalized, the PHI will have exactly two entries. 4901 // That's the only form we support here. 4902 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 4903 4904 DenseMap<Instruction *, Constant *> CurrentIterVals; 4905 BasicBlock *Header = L->getHeader(); 4906 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 4907 4908 // One entry must be a constant (coming in from outside of the loop), and the 4909 // second must be derived from the same PHI. 4910 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4911 PHINode *PHI = 0; 4912 for (BasicBlock::iterator I = Header->begin(); 4913 (PHI = dyn_cast<PHINode>(I)); ++I) { 4914 Constant *StartCST = 4915 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 4916 if (StartCST == 0) continue; 4917 CurrentIterVals[PHI] = StartCST; 4918 } 4919 if (!CurrentIterVals.count(PN)) 4920 return getCouldNotCompute(); 4921 4922 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4923 // the loop symbolically to determine when the condition gets a value of 4924 // "ExitWhen". 4925 4926 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4927 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 4928 ConstantInt *CondVal = 4929 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 4930 TD, TLI)); 4931 4932 // Couldn't symbolically evaluate. 4933 if (!CondVal) return getCouldNotCompute(); 4934 4935 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4936 ++NumBruteForceTripCountsComputed; 4937 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4938 } 4939 4940 // Update all the PHI nodes for the next iteration. 4941 DenseMap<Instruction *, Constant *> NextIterVals; 4942 4943 // Create a list of which PHIs we need to compute. We want to do this before 4944 // calling EvaluateExpression on them because that may invalidate iterators 4945 // into CurrentIterVals. 4946 SmallVector<PHINode *, 8> PHIsToCompute; 4947 for (DenseMap<Instruction *, Constant *>::const_iterator 4948 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 4949 PHINode *PHI = dyn_cast<PHINode>(I->first); 4950 if (!PHI || PHI->getParent() != Header) continue; 4951 PHIsToCompute.push_back(PHI); 4952 } 4953 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 4954 E = PHIsToCompute.end(); I != E; ++I) { 4955 PHINode *PHI = *I; 4956 Constant *&NextPHI = NextIterVals[PHI]; 4957 if (NextPHI) continue; // Already computed! 4958 4959 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 4960 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI); 4961 } 4962 CurrentIterVals.swap(NextIterVals); 4963 } 4964 4965 // Too many iterations were needed to evaluate. 4966 return getCouldNotCompute(); 4967 } 4968 4969 /// getSCEVAtScope - Return a SCEV expression for the specified value 4970 /// at the specified scope in the program. The L value specifies a loop 4971 /// nest to evaluate the expression at, where null is the top-level or a 4972 /// specified loop is immediately inside of the loop. 4973 /// 4974 /// This method can be used to compute the exit value for a variable defined 4975 /// in a loop by querying what the value will hold in the parent loop. 4976 /// 4977 /// In the case that a relevant loop exit value cannot be computed, the 4978 /// original value V is returned. 4979 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4980 // Check to see if we've folded this expression at this loop before. 4981 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4982 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4983 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4984 if (!Pair.second) 4985 return Pair.first->second ? Pair.first->second : V; 4986 4987 // Otherwise compute it. 4988 const SCEV *C = computeSCEVAtScope(V, L); 4989 ValuesAtScopes[V][L] = C; 4990 return C; 4991 } 4992 4993 /// This builds up a Constant using the ConstantExpr interface. That way, we 4994 /// will return Constants for objects which aren't represented by a 4995 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 4996 /// Returns NULL if the SCEV isn't representable as a Constant. 4997 static Constant *BuildConstantFromSCEV(const SCEV *V) { 4998 switch (V->getSCEVType()) { 4999 default: // TODO: smax, umax. 5000 case scCouldNotCompute: 5001 case scAddRecExpr: 5002 break; 5003 case scConstant: 5004 return cast<SCEVConstant>(V)->getValue(); 5005 case scUnknown: 5006 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5007 case scSignExtend: { 5008 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5009 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5010 return ConstantExpr::getSExt(CastOp, SS->getType()); 5011 break; 5012 } 5013 case scZeroExtend: { 5014 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5015 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5016 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5017 break; 5018 } 5019 case scTruncate: { 5020 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5021 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5022 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5023 break; 5024 } 5025 case scAddExpr: { 5026 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5027 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5028 if (C->getType()->isPointerTy()) 5029 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext())); 5030 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5031 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5032 if (!C2) return 0; 5033 5034 // First pointer! 5035 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5036 std::swap(C, C2); 5037 // The offsets have been converted to bytes. We can add bytes to an 5038 // i8* by GEP with the byte count in the first index. 5039 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext())); 5040 } 5041 5042 // Don't bother trying to sum two pointers. We probably can't 5043 // statically compute a load that results from it anyway. 5044 if (C2->getType()->isPointerTy()) 5045 return 0; 5046 5047 if (C->getType()->isPointerTy()) { 5048 if (cast<PointerType>(C->getType())->getElementType()->isStructTy()) 5049 C2 = ConstantExpr::getIntegerCast( 5050 C2, Type::getInt32Ty(C->getContext()), true); 5051 C = ConstantExpr::getGetElementPtr(C, C2); 5052 } else 5053 C = ConstantExpr::getAdd(C, C2); 5054 } 5055 return C; 5056 } 5057 break; 5058 } 5059 case scMulExpr: { 5060 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5061 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5062 // Don't bother with pointers at all. 5063 if (C->getType()->isPointerTy()) return 0; 5064 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5065 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5066 if (!C2 || C2->getType()->isPointerTy()) return 0; 5067 C = ConstantExpr::getMul(C, C2); 5068 } 5069 return C; 5070 } 5071 break; 5072 } 5073 case scUDivExpr: { 5074 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5075 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5076 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5077 if (LHS->getType() == RHS->getType()) 5078 return ConstantExpr::getUDiv(LHS, RHS); 5079 break; 5080 } 5081 } 5082 return 0; 5083 } 5084 5085 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5086 if (isa<SCEVConstant>(V)) return V; 5087 5088 // If this instruction is evolved from a constant-evolving PHI, compute the 5089 // exit value from the loop without using SCEVs. 5090 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5091 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5092 const Loop *LI = (*this->LI)[I->getParent()]; 5093 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5094 if (PHINode *PN = dyn_cast<PHINode>(I)) 5095 if (PN->getParent() == LI->getHeader()) { 5096 // Okay, there is no closed form solution for the PHI node. Check 5097 // to see if the loop that contains it has a known backedge-taken 5098 // count. If so, we may be able to force computation of the exit 5099 // value. 5100 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5101 if (const SCEVConstant *BTCC = 5102 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5103 // Okay, we know how many times the containing loop executes. If 5104 // this is a constant evolving PHI node, get the final value at 5105 // the specified iteration number. 5106 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5107 BTCC->getValue()->getValue(), 5108 LI); 5109 if (RV) return getSCEV(RV); 5110 } 5111 } 5112 5113 // Okay, this is an expression that we cannot symbolically evaluate 5114 // into a SCEV. Check to see if it's possible to symbolically evaluate 5115 // the arguments into constants, and if so, try to constant propagate the 5116 // result. This is particularly useful for computing loop exit values. 5117 if (CanConstantFold(I)) { 5118 SmallVector<Constant *, 4> Operands; 5119 bool MadeImprovement = false; 5120 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5121 Value *Op = I->getOperand(i); 5122 if (Constant *C = dyn_cast<Constant>(Op)) { 5123 Operands.push_back(C); 5124 continue; 5125 } 5126 5127 // If any of the operands is non-constant and if they are 5128 // non-integer and non-pointer, don't even try to analyze them 5129 // with scev techniques. 5130 if (!isSCEVable(Op->getType())) 5131 return V; 5132 5133 const SCEV *OrigV = getSCEV(Op); 5134 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5135 MadeImprovement |= OrigV != OpV; 5136 5137 Constant *C = BuildConstantFromSCEV(OpV); 5138 if (!C) return V; 5139 if (C->getType() != Op->getType()) 5140 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5141 Op->getType(), 5142 false), 5143 C, Op->getType()); 5144 Operands.push_back(C); 5145 } 5146 5147 // Check to see if getSCEVAtScope actually made an improvement. 5148 if (MadeImprovement) { 5149 Constant *C = 0; 5150 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5151 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5152 Operands[0], Operands[1], TD, 5153 TLI); 5154 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5155 if (!LI->isVolatile()) 5156 C = ConstantFoldLoadFromConstPtr(Operands[0], TD); 5157 } else 5158 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5159 Operands, TD, TLI); 5160 if (!C) return V; 5161 return getSCEV(C); 5162 } 5163 } 5164 } 5165 5166 // This is some other type of SCEVUnknown, just return it. 5167 return V; 5168 } 5169 5170 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5171 // Avoid performing the look-up in the common case where the specified 5172 // expression has no loop-variant portions. 5173 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5174 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5175 if (OpAtScope != Comm->getOperand(i)) { 5176 // Okay, at least one of these operands is loop variant but might be 5177 // foldable. Build a new instance of the folded commutative expression. 5178 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5179 Comm->op_begin()+i); 5180 NewOps.push_back(OpAtScope); 5181 5182 for (++i; i != e; ++i) { 5183 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5184 NewOps.push_back(OpAtScope); 5185 } 5186 if (isa<SCEVAddExpr>(Comm)) 5187 return getAddExpr(NewOps); 5188 if (isa<SCEVMulExpr>(Comm)) 5189 return getMulExpr(NewOps); 5190 if (isa<SCEVSMaxExpr>(Comm)) 5191 return getSMaxExpr(NewOps); 5192 if (isa<SCEVUMaxExpr>(Comm)) 5193 return getUMaxExpr(NewOps); 5194 llvm_unreachable("Unknown commutative SCEV type!"); 5195 } 5196 } 5197 // If we got here, all operands are loop invariant. 5198 return Comm; 5199 } 5200 5201 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5202 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5203 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5204 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5205 return Div; // must be loop invariant 5206 return getUDivExpr(LHS, RHS); 5207 } 5208 5209 // If this is a loop recurrence for a loop that does not contain L, then we 5210 // are dealing with the final value computed by the loop. 5211 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5212 // First, attempt to evaluate each operand. 5213 // Avoid performing the look-up in the common case where the specified 5214 // expression has no loop-variant portions. 5215 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5216 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5217 if (OpAtScope == AddRec->getOperand(i)) 5218 continue; 5219 5220 // Okay, at least one of these operands is loop variant but might be 5221 // foldable. Build a new instance of the folded commutative expression. 5222 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5223 AddRec->op_begin()+i); 5224 NewOps.push_back(OpAtScope); 5225 for (++i; i != e; ++i) 5226 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5227 5228 const SCEV *FoldedRec = 5229 getAddRecExpr(NewOps, AddRec->getLoop(), 5230 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5231 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5232 // The addrec may be folded to a nonrecurrence, for example, if the 5233 // induction variable is multiplied by zero after constant folding. Go 5234 // ahead and return the folded value. 5235 if (!AddRec) 5236 return FoldedRec; 5237 break; 5238 } 5239 5240 // If the scope is outside the addrec's loop, evaluate it by using the 5241 // loop exit value of the addrec. 5242 if (!AddRec->getLoop()->contains(L)) { 5243 // To evaluate this recurrence, we need to know how many times the AddRec 5244 // loop iterates. Compute this now. 5245 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5246 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5247 5248 // Then, evaluate the AddRec. 5249 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5250 } 5251 5252 return AddRec; 5253 } 5254 5255 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5256 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5257 if (Op == Cast->getOperand()) 5258 return Cast; // must be loop invariant 5259 return getZeroExtendExpr(Op, Cast->getType()); 5260 } 5261 5262 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5263 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5264 if (Op == Cast->getOperand()) 5265 return Cast; // must be loop invariant 5266 return getSignExtendExpr(Op, Cast->getType()); 5267 } 5268 5269 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5270 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5271 if (Op == Cast->getOperand()) 5272 return Cast; // must be loop invariant 5273 return getTruncateExpr(Op, Cast->getType()); 5274 } 5275 5276 llvm_unreachable("Unknown SCEV type!"); 5277 } 5278 5279 /// getSCEVAtScope - This is a convenience function which does 5280 /// getSCEVAtScope(getSCEV(V), L). 5281 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5282 return getSCEVAtScope(getSCEV(V), L); 5283 } 5284 5285 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5286 /// following equation: 5287 /// 5288 /// A * X = B (mod N) 5289 /// 5290 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5291 /// A and B isn't important. 5292 /// 5293 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5294 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5295 ScalarEvolution &SE) { 5296 uint32_t BW = A.getBitWidth(); 5297 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5298 assert(A != 0 && "A must be non-zero."); 5299 5300 // 1. D = gcd(A, N) 5301 // 5302 // The gcd of A and N may have only one prime factor: 2. The number of 5303 // trailing zeros in A is its multiplicity 5304 uint32_t Mult2 = A.countTrailingZeros(); 5305 // D = 2^Mult2 5306 5307 // 2. Check if B is divisible by D. 5308 // 5309 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5310 // is not less than multiplicity of this prime factor for D. 5311 if (B.countTrailingZeros() < Mult2) 5312 return SE.getCouldNotCompute(); 5313 5314 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5315 // modulo (N / D). 5316 // 5317 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5318 // bit width during computations. 5319 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5320 APInt Mod(BW + 1, 0); 5321 Mod.setBit(BW - Mult2); // Mod = N / D 5322 APInt I = AD.multiplicativeInverse(Mod); 5323 5324 // 4. Compute the minimum unsigned root of the equation: 5325 // I * (B / D) mod (N / D) 5326 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5327 5328 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5329 // bits. 5330 return SE.getConstant(Result.trunc(BW)); 5331 } 5332 5333 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5334 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5335 /// might be the same) or two SCEVCouldNotCompute objects. 5336 /// 5337 static std::pair<const SCEV *,const SCEV *> 5338 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5339 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5340 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5341 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5342 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5343 5344 // We currently can only solve this if the coefficients are constants. 5345 if (!LC || !MC || !NC) { 5346 const SCEV *CNC = SE.getCouldNotCompute(); 5347 return std::make_pair(CNC, CNC); 5348 } 5349 5350 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5351 const APInt &L = LC->getValue()->getValue(); 5352 const APInt &M = MC->getValue()->getValue(); 5353 const APInt &N = NC->getValue()->getValue(); 5354 APInt Two(BitWidth, 2); 5355 APInt Four(BitWidth, 4); 5356 5357 { 5358 using namespace APIntOps; 5359 const APInt& C = L; 5360 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5361 // The B coefficient is M-N/2 5362 APInt B(M); 5363 B -= sdiv(N,Two); 5364 5365 // The A coefficient is N/2 5366 APInt A(N.sdiv(Two)); 5367 5368 // Compute the B^2-4ac term. 5369 APInt SqrtTerm(B); 5370 SqrtTerm *= B; 5371 SqrtTerm -= Four * (A * C); 5372 5373 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5374 // integer value or else APInt::sqrt() will assert. 5375 APInt SqrtVal(SqrtTerm.sqrt()); 5376 5377 // Compute the two solutions for the quadratic formula. 5378 // The divisions must be performed as signed divisions. 5379 APInt NegB(-B); 5380 APInt TwoA(A << 1); 5381 if (TwoA.isMinValue()) { 5382 const SCEV *CNC = SE.getCouldNotCompute(); 5383 return std::make_pair(CNC, CNC); 5384 } 5385 5386 LLVMContext &Context = SE.getContext(); 5387 5388 ConstantInt *Solution1 = 5389 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5390 ConstantInt *Solution2 = 5391 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5392 5393 return std::make_pair(SE.getConstant(Solution1), 5394 SE.getConstant(Solution2)); 5395 } // end APIntOps namespace 5396 } 5397 5398 /// HowFarToZero - Return the number of times a backedge comparing the specified 5399 /// value to zero will execute. If not computable, return CouldNotCompute. 5400 /// 5401 /// This is only used for loops with a "x != y" exit test. The exit condition is 5402 /// now expressed as a single expression, V = x-y. So the exit test is 5403 /// effectively V != 0. We know and take advantage of the fact that this 5404 /// expression only being used in a comparison by zero context. 5405 ScalarEvolution::ExitLimit 5406 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 5407 // If the value is a constant 5408 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5409 // If the value is already zero, the branch will execute zero times. 5410 if (C->getValue()->isZero()) return C; 5411 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5412 } 5413 5414 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5415 if (!AddRec || AddRec->getLoop() != L) 5416 return getCouldNotCompute(); 5417 5418 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5419 // the quadratic equation to solve it. 5420 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5421 std::pair<const SCEV *,const SCEV *> Roots = 5422 SolveQuadraticEquation(AddRec, *this); 5423 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5424 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5425 if (R1 && R2) { 5426 #if 0 5427 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5428 << " sol#2: " << *R2 << "\n"; 5429 #endif 5430 // Pick the smallest positive root value. 5431 if (ConstantInt *CB = 5432 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5433 R1->getValue(), 5434 R2->getValue()))) { 5435 if (CB->getZExtValue() == false) 5436 std::swap(R1, R2); // R1 is the minimum root now. 5437 5438 // We can only use this value if the chrec ends up with an exact zero 5439 // value at this index. When solving for "X*X != 5", for example, we 5440 // should not accept a root of 2. 5441 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5442 if (Val->isZero()) 5443 return R1; // We found a quadratic root! 5444 } 5445 } 5446 return getCouldNotCompute(); 5447 } 5448 5449 // Otherwise we can only handle this if it is affine. 5450 if (!AddRec->isAffine()) 5451 return getCouldNotCompute(); 5452 5453 // If this is an affine expression, the execution count of this branch is 5454 // the minimum unsigned root of the following equation: 5455 // 5456 // Start + Step*N = 0 (mod 2^BW) 5457 // 5458 // equivalent to: 5459 // 5460 // Step*N = -Start (mod 2^BW) 5461 // 5462 // where BW is the common bit width of Start and Step. 5463 5464 // Get the initial value for the loop. 5465 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5466 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5467 5468 // For now we handle only constant steps. 5469 // 5470 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5471 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5472 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5473 // We have not yet seen any such cases. 5474 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5475 if (StepC == 0 || StepC->getValue()->equalsInt(0)) 5476 return getCouldNotCompute(); 5477 5478 // For positive steps (counting up until unsigned overflow): 5479 // N = -Start/Step (as unsigned) 5480 // For negative steps (counting down to zero): 5481 // N = Start/-Step 5482 // First compute the unsigned distance from zero in the direction of Step. 5483 bool CountDown = StepC->getValue()->getValue().isNegative(); 5484 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5485 5486 // Handle unitary steps, which cannot wraparound. 5487 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5488 // N = Distance (as unsigned) 5489 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5490 ConstantRange CR = getUnsignedRange(Start); 5491 const SCEV *MaxBECount; 5492 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5493 // When counting up, the worst starting value is 1, not 0. 5494 MaxBECount = CR.getUnsignedMax().isMinValue() 5495 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5496 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5497 else 5498 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5499 : -CR.getUnsignedMin()); 5500 return ExitLimit(Distance, MaxBECount); 5501 } 5502 5503 // If the recurrence is known not to wraparound, unsigned divide computes the 5504 // back edge count. We know that the value will either become zero (and thus 5505 // the loop terminates), that the loop will terminate through some other exit 5506 // condition first, or that the loop has undefined behavior. This means 5507 // we can't "miss" the exit value, even with nonunit stride. 5508 // 5509 // FIXME: Prove that loops always exhibits *acceptable* undefined 5510 // behavior. Loops must exhibit defined behavior until a wrapped value is 5511 // actually used. So the trip count computed by udiv could be smaller than the 5512 // number of well-defined iterations. 5513 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) { 5514 // FIXME: We really want an "isexact" bit for udiv. 5515 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5516 } 5517 // Then, try to solve the above equation provided that Start is constant. 5518 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5519 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5520 -StartC->getValue()->getValue(), 5521 *this); 5522 return getCouldNotCompute(); 5523 } 5524 5525 /// HowFarToNonZero - Return the number of times a backedge checking the 5526 /// specified value for nonzero will execute. If not computable, return 5527 /// CouldNotCompute 5528 ScalarEvolution::ExitLimit 5529 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5530 // Loops that look like: while (X == 0) are very strange indeed. We don't 5531 // handle them yet except for the trivial case. This could be expanded in the 5532 // future as needed. 5533 5534 // If the value is a constant, check to see if it is known to be non-zero 5535 // already. If so, the backedge will execute zero times. 5536 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5537 if (!C->getValue()->isNullValue()) 5538 return getConstant(C->getType(), 0); 5539 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5540 } 5541 5542 // We could implement others, but I really doubt anyone writes loops like 5543 // this, and if they did, they would already be constant folded. 5544 return getCouldNotCompute(); 5545 } 5546 5547 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5548 /// (which may not be an immediate predecessor) which has exactly one 5549 /// successor from which BB is reachable, or null if no such block is 5550 /// found. 5551 /// 5552 std::pair<BasicBlock *, BasicBlock *> 5553 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5554 // If the block has a unique predecessor, then there is no path from the 5555 // predecessor to the block that does not go through the direct edge 5556 // from the predecessor to the block. 5557 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5558 return std::make_pair(Pred, BB); 5559 5560 // A loop's header is defined to be a block that dominates the loop. 5561 // If the header has a unique predecessor outside the loop, it must be 5562 // a block that has exactly one successor that can reach the loop. 5563 if (Loop *L = LI->getLoopFor(BB)) 5564 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5565 5566 return std::pair<BasicBlock *, BasicBlock *>(); 5567 } 5568 5569 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5570 /// testing whether two expressions are equal, however for the purposes of 5571 /// looking for a condition guarding a loop, it can be useful to be a little 5572 /// more general, since a front-end may have replicated the controlling 5573 /// expression. 5574 /// 5575 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5576 // Quick check to see if they are the same SCEV. 5577 if (A == B) return true; 5578 5579 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5580 // two different instructions with the same value. Check for this case. 5581 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5582 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5583 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5584 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5585 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5586 return true; 5587 5588 // Otherwise assume they may have a different value. 5589 return false; 5590 } 5591 5592 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5593 /// predicate Pred. Return true iff any changes were made. 5594 /// 5595 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5596 const SCEV *&LHS, const SCEV *&RHS, 5597 unsigned Depth) { 5598 bool Changed = false; 5599 5600 // If we hit the max recursion limit bail out. 5601 if (Depth >= 3) 5602 return false; 5603 5604 // Canonicalize a constant to the right side. 5605 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5606 // Check for both operands constant. 5607 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5608 if (ConstantExpr::getICmp(Pred, 5609 LHSC->getValue(), 5610 RHSC->getValue())->isNullValue()) 5611 goto trivially_false; 5612 else 5613 goto trivially_true; 5614 } 5615 // Otherwise swap the operands to put the constant on the right. 5616 std::swap(LHS, RHS); 5617 Pred = ICmpInst::getSwappedPredicate(Pred); 5618 Changed = true; 5619 } 5620 5621 // If we're comparing an addrec with a value which is loop-invariant in the 5622 // addrec's loop, put the addrec on the left. Also make a dominance check, 5623 // as both operands could be addrecs loop-invariant in each other's loop. 5624 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5625 const Loop *L = AR->getLoop(); 5626 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5627 std::swap(LHS, RHS); 5628 Pred = ICmpInst::getSwappedPredicate(Pred); 5629 Changed = true; 5630 } 5631 } 5632 5633 // If there's a constant operand, canonicalize comparisons with boundary 5634 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5635 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5636 const APInt &RA = RC->getValue()->getValue(); 5637 switch (Pred) { 5638 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5639 case ICmpInst::ICMP_EQ: 5640 case ICmpInst::ICMP_NE: 5641 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 5642 if (!RA) 5643 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 5644 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 5645 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 5646 ME->getOperand(0)->isAllOnesValue()) { 5647 RHS = AE->getOperand(1); 5648 LHS = ME->getOperand(1); 5649 Changed = true; 5650 } 5651 break; 5652 case ICmpInst::ICMP_UGE: 5653 if ((RA - 1).isMinValue()) { 5654 Pred = ICmpInst::ICMP_NE; 5655 RHS = getConstant(RA - 1); 5656 Changed = true; 5657 break; 5658 } 5659 if (RA.isMaxValue()) { 5660 Pred = ICmpInst::ICMP_EQ; 5661 Changed = true; 5662 break; 5663 } 5664 if (RA.isMinValue()) goto trivially_true; 5665 5666 Pred = ICmpInst::ICMP_UGT; 5667 RHS = getConstant(RA - 1); 5668 Changed = true; 5669 break; 5670 case ICmpInst::ICMP_ULE: 5671 if ((RA + 1).isMaxValue()) { 5672 Pred = ICmpInst::ICMP_NE; 5673 RHS = getConstant(RA + 1); 5674 Changed = true; 5675 break; 5676 } 5677 if (RA.isMinValue()) { 5678 Pred = ICmpInst::ICMP_EQ; 5679 Changed = true; 5680 break; 5681 } 5682 if (RA.isMaxValue()) goto trivially_true; 5683 5684 Pred = ICmpInst::ICMP_ULT; 5685 RHS = getConstant(RA + 1); 5686 Changed = true; 5687 break; 5688 case ICmpInst::ICMP_SGE: 5689 if ((RA - 1).isMinSignedValue()) { 5690 Pred = ICmpInst::ICMP_NE; 5691 RHS = getConstant(RA - 1); 5692 Changed = true; 5693 break; 5694 } 5695 if (RA.isMaxSignedValue()) { 5696 Pred = ICmpInst::ICMP_EQ; 5697 Changed = true; 5698 break; 5699 } 5700 if (RA.isMinSignedValue()) goto trivially_true; 5701 5702 Pred = ICmpInst::ICMP_SGT; 5703 RHS = getConstant(RA - 1); 5704 Changed = true; 5705 break; 5706 case ICmpInst::ICMP_SLE: 5707 if ((RA + 1).isMaxSignedValue()) { 5708 Pred = ICmpInst::ICMP_NE; 5709 RHS = getConstant(RA + 1); 5710 Changed = true; 5711 break; 5712 } 5713 if (RA.isMinSignedValue()) { 5714 Pred = ICmpInst::ICMP_EQ; 5715 Changed = true; 5716 break; 5717 } 5718 if (RA.isMaxSignedValue()) goto trivially_true; 5719 5720 Pred = ICmpInst::ICMP_SLT; 5721 RHS = getConstant(RA + 1); 5722 Changed = true; 5723 break; 5724 case ICmpInst::ICMP_UGT: 5725 if (RA.isMinValue()) { 5726 Pred = ICmpInst::ICMP_NE; 5727 Changed = true; 5728 break; 5729 } 5730 if ((RA + 1).isMaxValue()) { 5731 Pred = ICmpInst::ICMP_EQ; 5732 RHS = getConstant(RA + 1); 5733 Changed = true; 5734 break; 5735 } 5736 if (RA.isMaxValue()) goto trivially_false; 5737 break; 5738 case ICmpInst::ICMP_ULT: 5739 if (RA.isMaxValue()) { 5740 Pred = ICmpInst::ICMP_NE; 5741 Changed = true; 5742 break; 5743 } 5744 if ((RA - 1).isMinValue()) { 5745 Pred = ICmpInst::ICMP_EQ; 5746 RHS = getConstant(RA - 1); 5747 Changed = true; 5748 break; 5749 } 5750 if (RA.isMinValue()) goto trivially_false; 5751 break; 5752 case ICmpInst::ICMP_SGT: 5753 if (RA.isMinSignedValue()) { 5754 Pred = ICmpInst::ICMP_NE; 5755 Changed = true; 5756 break; 5757 } 5758 if ((RA + 1).isMaxSignedValue()) { 5759 Pred = ICmpInst::ICMP_EQ; 5760 RHS = getConstant(RA + 1); 5761 Changed = true; 5762 break; 5763 } 5764 if (RA.isMaxSignedValue()) goto trivially_false; 5765 break; 5766 case ICmpInst::ICMP_SLT: 5767 if (RA.isMaxSignedValue()) { 5768 Pred = ICmpInst::ICMP_NE; 5769 Changed = true; 5770 break; 5771 } 5772 if ((RA - 1).isMinSignedValue()) { 5773 Pred = ICmpInst::ICMP_EQ; 5774 RHS = getConstant(RA - 1); 5775 Changed = true; 5776 break; 5777 } 5778 if (RA.isMinSignedValue()) goto trivially_false; 5779 break; 5780 } 5781 } 5782 5783 // Check for obvious equality. 5784 if (HasSameValue(LHS, RHS)) { 5785 if (ICmpInst::isTrueWhenEqual(Pred)) 5786 goto trivially_true; 5787 if (ICmpInst::isFalseWhenEqual(Pred)) 5788 goto trivially_false; 5789 } 5790 5791 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 5792 // adding or subtracting 1 from one of the operands. 5793 switch (Pred) { 5794 case ICmpInst::ICMP_SLE: 5795 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 5796 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5797 SCEV::FlagNSW); 5798 Pred = ICmpInst::ICMP_SLT; 5799 Changed = true; 5800 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 5801 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5802 SCEV::FlagNSW); 5803 Pred = ICmpInst::ICMP_SLT; 5804 Changed = true; 5805 } 5806 break; 5807 case ICmpInst::ICMP_SGE: 5808 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 5809 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5810 SCEV::FlagNSW); 5811 Pred = ICmpInst::ICMP_SGT; 5812 Changed = true; 5813 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 5814 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5815 SCEV::FlagNSW); 5816 Pred = ICmpInst::ICMP_SGT; 5817 Changed = true; 5818 } 5819 break; 5820 case ICmpInst::ICMP_ULE: 5821 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 5822 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 5823 SCEV::FlagNUW); 5824 Pred = ICmpInst::ICMP_ULT; 5825 Changed = true; 5826 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 5827 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 5828 SCEV::FlagNUW); 5829 Pred = ICmpInst::ICMP_ULT; 5830 Changed = true; 5831 } 5832 break; 5833 case ICmpInst::ICMP_UGE: 5834 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 5835 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 5836 SCEV::FlagNUW); 5837 Pred = ICmpInst::ICMP_UGT; 5838 Changed = true; 5839 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 5840 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 5841 SCEV::FlagNUW); 5842 Pred = ICmpInst::ICMP_UGT; 5843 Changed = true; 5844 } 5845 break; 5846 default: 5847 break; 5848 } 5849 5850 // TODO: More simplifications are possible here. 5851 5852 // Recursively simplify until we either hit a recursion limit or nothing 5853 // changes. 5854 if (Changed) 5855 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 5856 5857 return Changed; 5858 5859 trivially_true: 5860 // Return 0 == 0. 5861 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5862 Pred = ICmpInst::ICMP_EQ; 5863 return true; 5864 5865 trivially_false: 5866 // Return 0 != 0. 5867 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 5868 Pred = ICmpInst::ICMP_NE; 5869 return true; 5870 } 5871 5872 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 5873 return getSignedRange(S).getSignedMax().isNegative(); 5874 } 5875 5876 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 5877 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 5878 } 5879 5880 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 5881 return !getSignedRange(S).getSignedMin().isNegative(); 5882 } 5883 5884 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 5885 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 5886 } 5887 5888 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 5889 return isKnownNegative(S) || isKnownPositive(S); 5890 } 5891 5892 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 5893 const SCEV *LHS, const SCEV *RHS) { 5894 // Canonicalize the inputs first. 5895 (void)SimplifyICmpOperands(Pred, LHS, RHS); 5896 5897 // If LHS or RHS is an addrec, check to see if the condition is true in 5898 // every iteration of the loop. 5899 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 5900 if (isLoopEntryGuardedByCond( 5901 AR->getLoop(), Pred, AR->getStart(), RHS) && 5902 isLoopBackedgeGuardedByCond( 5903 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 5904 return true; 5905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 5906 if (isLoopEntryGuardedByCond( 5907 AR->getLoop(), Pred, LHS, AR->getStart()) && 5908 isLoopBackedgeGuardedByCond( 5909 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 5910 return true; 5911 5912 // Otherwise see what can be done with known constant ranges. 5913 return isKnownPredicateWithRanges(Pred, LHS, RHS); 5914 } 5915 5916 bool 5917 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 5918 const SCEV *LHS, const SCEV *RHS) { 5919 if (HasSameValue(LHS, RHS)) 5920 return ICmpInst::isTrueWhenEqual(Pred); 5921 5922 // This code is split out from isKnownPredicate because it is called from 5923 // within isLoopEntryGuardedByCond. 5924 switch (Pred) { 5925 default: 5926 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5927 case ICmpInst::ICMP_SGT: 5928 Pred = ICmpInst::ICMP_SLT; 5929 std::swap(LHS, RHS); 5930 case ICmpInst::ICMP_SLT: { 5931 ConstantRange LHSRange = getSignedRange(LHS); 5932 ConstantRange RHSRange = getSignedRange(RHS); 5933 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 5934 return true; 5935 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 5936 return false; 5937 break; 5938 } 5939 case ICmpInst::ICMP_SGE: 5940 Pred = ICmpInst::ICMP_SLE; 5941 std::swap(LHS, RHS); 5942 case ICmpInst::ICMP_SLE: { 5943 ConstantRange LHSRange = getSignedRange(LHS); 5944 ConstantRange RHSRange = getSignedRange(RHS); 5945 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 5946 return true; 5947 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 5948 return false; 5949 break; 5950 } 5951 case ICmpInst::ICMP_UGT: 5952 Pred = ICmpInst::ICMP_ULT; 5953 std::swap(LHS, RHS); 5954 case ICmpInst::ICMP_ULT: { 5955 ConstantRange LHSRange = getUnsignedRange(LHS); 5956 ConstantRange RHSRange = getUnsignedRange(RHS); 5957 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 5958 return true; 5959 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 5960 return false; 5961 break; 5962 } 5963 case ICmpInst::ICMP_UGE: 5964 Pred = ICmpInst::ICMP_ULE; 5965 std::swap(LHS, RHS); 5966 case ICmpInst::ICMP_ULE: { 5967 ConstantRange LHSRange = getUnsignedRange(LHS); 5968 ConstantRange RHSRange = getUnsignedRange(RHS); 5969 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 5970 return true; 5971 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 5972 return false; 5973 break; 5974 } 5975 case ICmpInst::ICMP_NE: { 5976 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 5977 return true; 5978 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 5979 return true; 5980 5981 const SCEV *Diff = getMinusSCEV(LHS, RHS); 5982 if (isKnownNonZero(Diff)) 5983 return true; 5984 break; 5985 } 5986 case ICmpInst::ICMP_EQ: 5987 // The check at the top of the function catches the case where 5988 // the values are known to be equal. 5989 break; 5990 } 5991 return false; 5992 } 5993 5994 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 5995 /// protected by a conditional between LHS and RHS. This is used to 5996 /// to eliminate casts. 5997 bool 5998 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 5999 ICmpInst::Predicate Pred, 6000 const SCEV *LHS, const SCEV *RHS) { 6001 // Interpret a null as meaning no loop, where there is obviously no guard 6002 // (interprocedural conditions notwithstanding). 6003 if (!L) return true; 6004 6005 BasicBlock *Latch = L->getLoopLatch(); 6006 if (!Latch) 6007 return false; 6008 6009 BranchInst *LoopContinuePredicate = 6010 dyn_cast<BranchInst>(Latch->getTerminator()); 6011 if (!LoopContinuePredicate || 6012 LoopContinuePredicate->isUnconditional()) 6013 return false; 6014 6015 return isImpliedCond(Pred, LHS, RHS, 6016 LoopContinuePredicate->getCondition(), 6017 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6018 } 6019 6020 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6021 /// by a conditional between LHS and RHS. This is used to help avoid max 6022 /// expressions in loop trip counts, and to eliminate casts. 6023 bool 6024 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6025 ICmpInst::Predicate Pred, 6026 const SCEV *LHS, const SCEV *RHS) { 6027 // Interpret a null as meaning no loop, where there is obviously no guard 6028 // (interprocedural conditions notwithstanding). 6029 if (!L) return false; 6030 6031 // Starting at the loop predecessor, climb up the predecessor chain, as long 6032 // as there are predecessors that can be found that have unique successors 6033 // leading to the original header. 6034 for (std::pair<BasicBlock *, BasicBlock *> 6035 Pair(L->getLoopPredecessor(), L->getHeader()); 6036 Pair.first; 6037 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6038 6039 BranchInst *LoopEntryPredicate = 6040 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6041 if (!LoopEntryPredicate || 6042 LoopEntryPredicate->isUnconditional()) 6043 continue; 6044 6045 if (isImpliedCond(Pred, LHS, RHS, 6046 LoopEntryPredicate->getCondition(), 6047 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6048 return true; 6049 } 6050 6051 return false; 6052 } 6053 6054 /// RAII wrapper to prevent recursive application of isImpliedCond. 6055 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6056 /// currently evaluating isImpliedCond. 6057 struct MarkPendingLoopPredicate { 6058 Value *Cond; 6059 DenseSet<Value*> &LoopPreds; 6060 bool Pending; 6061 6062 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6063 : Cond(C), LoopPreds(LP) { 6064 Pending = !LoopPreds.insert(Cond).second; 6065 } 6066 ~MarkPendingLoopPredicate() { 6067 if (!Pending) 6068 LoopPreds.erase(Cond); 6069 } 6070 }; 6071 6072 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6073 /// and RHS is true whenever the given Cond value evaluates to true. 6074 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6075 const SCEV *LHS, const SCEV *RHS, 6076 Value *FoundCondValue, 6077 bool Inverse) { 6078 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6079 if (Mark.Pending) 6080 return false; 6081 6082 // Recursively handle And and Or conditions. 6083 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6084 if (BO->getOpcode() == Instruction::And) { 6085 if (!Inverse) 6086 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6087 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6088 } else if (BO->getOpcode() == Instruction::Or) { 6089 if (Inverse) 6090 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6091 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6092 } 6093 } 6094 6095 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6096 if (!ICI) return false; 6097 6098 // Bail if the ICmp's operands' types are wider than the needed type 6099 // before attempting to call getSCEV on them. This avoids infinite 6100 // recursion, since the analysis of widening casts can require loop 6101 // exit condition information for overflow checking, which would 6102 // lead back here. 6103 if (getTypeSizeInBits(LHS->getType()) < 6104 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6105 return false; 6106 6107 // Now that we found a conditional branch that dominates the loop, check to 6108 // see if it is the comparison we are looking for. 6109 ICmpInst::Predicate FoundPred; 6110 if (Inverse) 6111 FoundPred = ICI->getInversePredicate(); 6112 else 6113 FoundPred = ICI->getPredicate(); 6114 6115 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6116 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6117 6118 // Balance the types. The case where FoundLHS' type is wider than 6119 // LHS' type is checked for above. 6120 if (getTypeSizeInBits(LHS->getType()) > 6121 getTypeSizeInBits(FoundLHS->getType())) { 6122 if (CmpInst::isSigned(Pred)) { 6123 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6124 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6125 } else { 6126 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6127 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6128 } 6129 } 6130 6131 // Canonicalize the query to match the way instcombine will have 6132 // canonicalized the comparison. 6133 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6134 if (LHS == RHS) 6135 return CmpInst::isTrueWhenEqual(Pred); 6136 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6137 if (FoundLHS == FoundRHS) 6138 return CmpInst::isFalseWhenEqual(Pred); 6139 6140 // Check to see if we can make the LHS or RHS match. 6141 if (LHS == FoundRHS || RHS == FoundLHS) { 6142 if (isa<SCEVConstant>(RHS)) { 6143 std::swap(FoundLHS, FoundRHS); 6144 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6145 } else { 6146 std::swap(LHS, RHS); 6147 Pred = ICmpInst::getSwappedPredicate(Pred); 6148 } 6149 } 6150 6151 // Check whether the found predicate is the same as the desired predicate. 6152 if (FoundPred == Pred) 6153 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6154 6155 // Check whether swapping the found predicate makes it the same as the 6156 // desired predicate. 6157 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6158 if (isa<SCEVConstant>(RHS)) 6159 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6160 else 6161 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6162 RHS, LHS, FoundLHS, FoundRHS); 6163 } 6164 6165 // Check whether the actual condition is beyond sufficient. 6166 if (FoundPred == ICmpInst::ICMP_EQ) 6167 if (ICmpInst::isTrueWhenEqual(Pred)) 6168 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6169 return true; 6170 if (Pred == ICmpInst::ICMP_NE) 6171 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6172 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6173 return true; 6174 6175 // Otherwise assume the worst. 6176 return false; 6177 } 6178 6179 /// isImpliedCondOperands - Test whether the condition described by Pred, 6180 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6181 /// and FoundRHS is true. 6182 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6183 const SCEV *LHS, const SCEV *RHS, 6184 const SCEV *FoundLHS, 6185 const SCEV *FoundRHS) { 6186 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6187 FoundLHS, FoundRHS) || 6188 // ~x < ~y --> x > y 6189 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6190 getNotSCEV(FoundRHS), 6191 getNotSCEV(FoundLHS)); 6192 } 6193 6194 /// isImpliedCondOperandsHelper - Test whether the condition described by 6195 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6196 /// FoundLHS, and FoundRHS is true. 6197 bool 6198 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6199 const SCEV *LHS, const SCEV *RHS, 6200 const SCEV *FoundLHS, 6201 const SCEV *FoundRHS) { 6202 switch (Pred) { 6203 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6204 case ICmpInst::ICMP_EQ: 6205 case ICmpInst::ICMP_NE: 6206 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6207 return true; 6208 break; 6209 case ICmpInst::ICMP_SLT: 6210 case ICmpInst::ICMP_SLE: 6211 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6212 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6213 return true; 6214 break; 6215 case ICmpInst::ICMP_SGT: 6216 case ICmpInst::ICMP_SGE: 6217 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6218 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6219 return true; 6220 break; 6221 case ICmpInst::ICMP_ULT: 6222 case ICmpInst::ICMP_ULE: 6223 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6224 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6225 return true; 6226 break; 6227 case ICmpInst::ICMP_UGT: 6228 case ICmpInst::ICMP_UGE: 6229 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6230 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6231 return true; 6232 break; 6233 } 6234 6235 return false; 6236 } 6237 6238 /// getBECount - Subtract the end and start values and divide by the step, 6239 /// rounding up, to get the number of times the backedge is executed. Return 6240 /// CouldNotCompute if an intermediate computation overflows. 6241 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 6242 const SCEV *End, 6243 const SCEV *Step, 6244 bool NoWrap) { 6245 assert(!isKnownNegative(Step) && 6246 "This code doesn't handle negative strides yet!"); 6247 6248 Type *Ty = Start->getType(); 6249 6250 // When Start == End, we have an exact BECount == 0. Short-circuit this case 6251 // here because SCEV may not be able to determine that the unsigned division 6252 // after rounding is zero. 6253 if (Start == End) 6254 return getConstant(Ty, 0); 6255 6256 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1); 6257 const SCEV *Diff = getMinusSCEV(End, Start); 6258 const SCEV *RoundUp = getAddExpr(Step, NegOne); 6259 6260 // Add an adjustment to the difference between End and Start so that 6261 // the division will effectively round up. 6262 const SCEV *Add = getAddExpr(Diff, RoundUp); 6263 6264 if (!NoWrap) { 6265 // Check Add for unsigned overflow. 6266 // TODO: More sophisticated things could be done here. 6267 Type *WideTy = IntegerType::get(getContext(), 6268 getTypeSizeInBits(Ty) + 1); 6269 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 6270 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 6271 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 6272 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 6273 return getCouldNotCompute(); 6274 } 6275 6276 return getUDivExpr(Add, Step); 6277 } 6278 6279 /// HowManyLessThans - Return the number of times a backedge containing the 6280 /// specified less-than comparison will execute. If not computable, return 6281 /// CouldNotCompute. 6282 ScalarEvolution::ExitLimit 6283 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6284 const Loop *L, bool isSigned) { 6285 // Only handle: "ADDREC < LoopInvariant". 6286 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute(); 6287 6288 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 6289 if (!AddRec || AddRec->getLoop() != L) 6290 return getCouldNotCompute(); 6291 6292 // Check to see if we have a flag which makes analysis easy. 6293 bool NoWrap = isSigned ? 6294 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) : 6295 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW)); 6296 6297 if (AddRec->isAffine()) { 6298 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 6299 const SCEV *Step = AddRec->getStepRecurrence(*this); 6300 6301 if (Step->isZero()) 6302 return getCouldNotCompute(); 6303 if (Step->isOne()) { 6304 // With unit stride, the iteration never steps past the limit value. 6305 } else if (isKnownPositive(Step)) { 6306 // Test whether a positive iteration can step past the limit 6307 // value and past the maximum value for its type in a single step. 6308 // Note that it's not sufficient to check NoWrap here, because even 6309 // though the value after a wrap is undefined, it's not undefined 6310 // behavior, so if wrap does occur, the loop could either terminate or 6311 // loop infinitely, but in either case, the loop is guaranteed to 6312 // iterate at least until the iteration where the wrapping occurs. 6313 const SCEV *One = getConstant(Step->getType(), 1); 6314 if (isSigned) { 6315 APInt Max = APInt::getSignedMaxValue(BitWidth); 6316 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 6317 .slt(getSignedRange(RHS).getSignedMax())) 6318 return getCouldNotCompute(); 6319 } else { 6320 APInt Max = APInt::getMaxValue(BitWidth); 6321 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 6322 .ult(getUnsignedRange(RHS).getUnsignedMax())) 6323 return getCouldNotCompute(); 6324 } 6325 } else 6326 // TODO: Handle negative strides here and below. 6327 return getCouldNotCompute(); 6328 6329 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 6330 // m. So, we count the number of iterations in which {n,+,s} < m is true. 6331 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 6332 // treat m-n as signed nor unsigned due to overflow possibility. 6333 6334 // First, we get the value of the LHS in the first iteration: n 6335 const SCEV *Start = AddRec->getOperand(0); 6336 6337 // Determine the minimum constant start value. 6338 const SCEV *MinStart = getConstant(isSigned ? 6339 getSignedRange(Start).getSignedMin() : 6340 getUnsignedRange(Start).getUnsignedMin()); 6341 6342 // If we know that the condition is true in order to enter the loop, 6343 // then we know that it will run exactly (m-n)/s times. Otherwise, we 6344 // only know that it will execute (max(m,n)-n)/s times. In both cases, 6345 // the division must round up. 6346 const SCEV *End = RHS; 6347 if (!isLoopEntryGuardedByCond(L, 6348 isSigned ? ICmpInst::ICMP_SLT : 6349 ICmpInst::ICMP_ULT, 6350 getMinusSCEV(Start, Step), RHS)) 6351 End = isSigned ? getSMaxExpr(RHS, Start) 6352 : getUMaxExpr(RHS, Start); 6353 6354 // Determine the maximum constant end value. 6355 const SCEV *MaxEnd = getConstant(isSigned ? 6356 getSignedRange(End).getSignedMax() : 6357 getUnsignedRange(End).getUnsignedMax()); 6358 6359 // If MaxEnd is within a step of the maximum integer value in its type, 6360 // adjust it down to the minimum value which would produce the same effect. 6361 // This allows the subsequent ceiling division of (N+(step-1))/step to 6362 // compute the correct value. 6363 const SCEV *StepMinusOne = getMinusSCEV(Step, 6364 getConstant(Step->getType(), 1)); 6365 MaxEnd = isSigned ? 6366 getSMinExpr(MaxEnd, 6367 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 6368 StepMinusOne)) : 6369 getUMinExpr(MaxEnd, 6370 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 6371 StepMinusOne)); 6372 6373 // Finally, we subtract these two values and divide, rounding up, to get 6374 // the number of times the backedge is executed. 6375 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 6376 6377 // The maximum backedge count is similar, except using the minimum start 6378 // value and the maximum end value. 6379 // If we already have an exact constant BECount, use it instead. 6380 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount 6381 : getBECount(MinStart, MaxEnd, Step, NoWrap); 6382 6383 // If the stride is nonconstant, and NoWrap == true, then 6384 // getBECount(MinStart, MaxEnd) may not compute. This would result in an 6385 // exact BECount and invalid MaxBECount, which should be avoided to catch 6386 // more optimization opportunities. 6387 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6388 MaxBECount = BECount; 6389 6390 return ExitLimit(BECount, MaxBECount); 6391 } 6392 6393 return getCouldNotCompute(); 6394 } 6395 6396 /// getNumIterationsInRange - Return the number of iterations of this loop that 6397 /// produce values in the specified constant range. Another way of looking at 6398 /// this is that it returns the first iteration number where the value is not in 6399 /// the condition, thus computing the exit count. If the iteration count can't 6400 /// be computed, an instance of SCEVCouldNotCompute is returned. 6401 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6402 ScalarEvolution &SE) const { 6403 if (Range.isFullSet()) // Infinite loop. 6404 return SE.getCouldNotCompute(); 6405 6406 // If the start is a non-zero constant, shift the range to simplify things. 6407 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6408 if (!SC->getValue()->isZero()) { 6409 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6410 Operands[0] = SE.getConstant(SC->getType(), 0); 6411 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6412 getNoWrapFlags(FlagNW)); 6413 if (const SCEVAddRecExpr *ShiftedAddRec = 6414 dyn_cast<SCEVAddRecExpr>(Shifted)) 6415 return ShiftedAddRec->getNumIterationsInRange( 6416 Range.subtract(SC->getValue()->getValue()), SE); 6417 // This is strange and shouldn't happen. 6418 return SE.getCouldNotCompute(); 6419 } 6420 6421 // The only time we can solve this is when we have all constant indices. 6422 // Otherwise, we cannot determine the overflow conditions. 6423 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6424 if (!isa<SCEVConstant>(getOperand(i))) 6425 return SE.getCouldNotCompute(); 6426 6427 6428 // Okay at this point we know that all elements of the chrec are constants and 6429 // that the start element is zero. 6430 6431 // First check to see if the range contains zero. If not, the first 6432 // iteration exits. 6433 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6434 if (!Range.contains(APInt(BitWidth, 0))) 6435 return SE.getConstant(getType(), 0); 6436 6437 if (isAffine()) { 6438 // If this is an affine expression then we have this situation: 6439 // Solve {0,+,A} in Range === Ax in Range 6440 6441 // We know that zero is in the range. If A is positive then we know that 6442 // the upper value of the range must be the first possible exit value. 6443 // If A is negative then the lower of the range is the last possible loop 6444 // value. Also note that we already checked for a full range. 6445 APInt One(BitWidth,1); 6446 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6447 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6448 6449 // The exit value should be (End+A)/A. 6450 APInt ExitVal = (End + A).udiv(A); 6451 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6452 6453 // Evaluate at the exit value. If we really did fall out of the valid 6454 // range, then we computed our trip count, otherwise wrap around or other 6455 // things must have happened. 6456 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6457 if (Range.contains(Val->getValue())) 6458 return SE.getCouldNotCompute(); // Something strange happened 6459 6460 // Ensure that the previous value is in the range. This is a sanity check. 6461 assert(Range.contains( 6462 EvaluateConstantChrecAtConstant(this, 6463 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6464 "Linear scev computation is off in a bad way!"); 6465 return SE.getConstant(ExitValue); 6466 } else if (isQuadratic()) { 6467 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6468 // quadratic equation to solve it. To do this, we must frame our problem in 6469 // terms of figuring out when zero is crossed, instead of when 6470 // Range.getUpper() is crossed. 6471 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6472 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6473 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6474 // getNoWrapFlags(FlagNW) 6475 FlagAnyWrap); 6476 6477 // Next, solve the constructed addrec 6478 std::pair<const SCEV *,const SCEV *> Roots = 6479 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6480 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6481 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6482 if (R1) { 6483 // Pick the smallest positive root value. 6484 if (ConstantInt *CB = 6485 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6486 R1->getValue(), R2->getValue()))) { 6487 if (CB->getZExtValue() == false) 6488 std::swap(R1, R2); // R1 is the minimum root now. 6489 6490 // Make sure the root is not off by one. The returned iteration should 6491 // not be in the range, but the previous one should be. When solving 6492 // for "X*X < 5", for example, we should not return a root of 2. 6493 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6494 R1->getValue(), 6495 SE); 6496 if (Range.contains(R1Val->getValue())) { 6497 // The next iteration must be out of the range... 6498 ConstantInt *NextVal = 6499 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6500 6501 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6502 if (!Range.contains(R1Val->getValue())) 6503 return SE.getConstant(NextVal); 6504 return SE.getCouldNotCompute(); // Something strange happened 6505 } 6506 6507 // If R1 was not in the range, then it is a good return value. Make 6508 // sure that R1-1 WAS in the range though, just in case. 6509 ConstantInt *NextVal = 6510 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6511 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6512 if (Range.contains(R1Val->getValue())) 6513 return R1; 6514 return SE.getCouldNotCompute(); // Something strange happened 6515 } 6516 } 6517 } 6518 6519 return SE.getCouldNotCompute(); 6520 } 6521 6522 6523 6524 //===----------------------------------------------------------------------===// 6525 // SCEVCallbackVH Class Implementation 6526 //===----------------------------------------------------------------------===// 6527 6528 void ScalarEvolution::SCEVCallbackVH::deleted() { 6529 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6530 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 6531 SE->ConstantEvolutionLoopExitValue.erase(PN); 6532 SE->ValueExprMap.erase(getValPtr()); 6533 // this now dangles! 6534 } 6535 6536 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 6537 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 6538 6539 // Forget all the expressions associated with users of the old value, 6540 // so that future queries will recompute the expressions using the new 6541 // value. 6542 Value *Old = getValPtr(); 6543 SmallVector<User *, 16> Worklist; 6544 SmallPtrSet<User *, 8> Visited; 6545 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 6546 UI != UE; ++UI) 6547 Worklist.push_back(*UI); 6548 while (!Worklist.empty()) { 6549 User *U = Worklist.pop_back_val(); 6550 // Deleting the Old value will cause this to dangle. Postpone 6551 // that until everything else is done. 6552 if (U == Old) 6553 continue; 6554 if (!Visited.insert(U)) 6555 continue; 6556 if (PHINode *PN = dyn_cast<PHINode>(U)) 6557 SE->ConstantEvolutionLoopExitValue.erase(PN); 6558 SE->ValueExprMap.erase(U); 6559 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 6560 UI != UE; ++UI) 6561 Worklist.push_back(*UI); 6562 } 6563 // Delete the Old value. 6564 if (PHINode *PN = dyn_cast<PHINode>(Old)) 6565 SE->ConstantEvolutionLoopExitValue.erase(PN); 6566 SE->ValueExprMap.erase(Old); 6567 // this now dangles! 6568 } 6569 6570 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 6571 : CallbackVH(V), SE(se) {} 6572 6573 //===----------------------------------------------------------------------===// 6574 // ScalarEvolution Class Implementation 6575 //===----------------------------------------------------------------------===// 6576 6577 ScalarEvolution::ScalarEvolution() 6578 : FunctionPass(ID), FirstUnknown(0) { 6579 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 6580 } 6581 6582 bool ScalarEvolution::runOnFunction(Function &F) { 6583 this->F = &F; 6584 LI = &getAnalysis<LoopInfo>(); 6585 TD = getAnalysisIfAvailable<TargetData>(); 6586 TLI = &getAnalysis<TargetLibraryInfo>(); 6587 DT = &getAnalysis<DominatorTree>(); 6588 return false; 6589 } 6590 6591 void ScalarEvolution::releaseMemory() { 6592 // Iterate through all the SCEVUnknown instances and call their 6593 // destructors, so that they release their references to their values. 6594 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 6595 U->~SCEVUnknown(); 6596 FirstUnknown = 0; 6597 6598 ValueExprMap.clear(); 6599 6600 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 6601 // that a loop had multiple computable exits. 6602 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 6603 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 6604 I != E; ++I) { 6605 I->second.clear(); 6606 } 6607 6608 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 6609 6610 BackedgeTakenCounts.clear(); 6611 ConstantEvolutionLoopExitValue.clear(); 6612 ValuesAtScopes.clear(); 6613 LoopDispositions.clear(); 6614 BlockDispositions.clear(); 6615 UnsignedRanges.clear(); 6616 SignedRanges.clear(); 6617 UniqueSCEVs.clear(); 6618 SCEVAllocator.Reset(); 6619 } 6620 6621 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 6622 AU.setPreservesAll(); 6623 AU.addRequiredTransitive<LoopInfo>(); 6624 AU.addRequiredTransitive<DominatorTree>(); 6625 AU.addRequired<TargetLibraryInfo>(); 6626 } 6627 6628 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 6629 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 6630 } 6631 6632 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 6633 const Loop *L) { 6634 // Print all inner loops first 6635 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 6636 PrintLoopInfo(OS, SE, *I); 6637 6638 OS << "Loop "; 6639 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6640 OS << ": "; 6641 6642 SmallVector<BasicBlock *, 8> ExitBlocks; 6643 L->getExitBlocks(ExitBlocks); 6644 if (ExitBlocks.size() != 1) 6645 OS << "<multiple exits> "; 6646 6647 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 6648 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 6649 } else { 6650 OS << "Unpredictable backedge-taken count. "; 6651 } 6652 6653 OS << "\n" 6654 "Loop "; 6655 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 6656 OS << ": "; 6657 6658 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 6659 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 6660 } else { 6661 OS << "Unpredictable max backedge-taken count. "; 6662 } 6663 6664 OS << "\n"; 6665 } 6666 6667 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 6668 // ScalarEvolution's implementation of the print method is to print 6669 // out SCEV values of all instructions that are interesting. Doing 6670 // this potentially causes it to create new SCEV objects though, 6671 // which technically conflicts with the const qualifier. This isn't 6672 // observable from outside the class though, so casting away the 6673 // const isn't dangerous. 6674 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 6675 6676 OS << "Classifying expressions for: "; 6677 WriteAsOperand(OS, F, /*PrintType=*/false); 6678 OS << "\n"; 6679 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 6680 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 6681 OS << *I << '\n'; 6682 OS << " --> "; 6683 const SCEV *SV = SE.getSCEV(&*I); 6684 SV->print(OS); 6685 6686 const Loop *L = LI->getLoopFor((*I).getParent()); 6687 6688 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 6689 if (AtUse != SV) { 6690 OS << " --> "; 6691 AtUse->print(OS); 6692 } 6693 6694 if (L) { 6695 OS << "\t\t" "Exits: "; 6696 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 6697 if (!SE.isLoopInvariant(ExitValue, L)) { 6698 OS << "<<Unknown>>"; 6699 } else { 6700 OS << *ExitValue; 6701 } 6702 } 6703 6704 OS << "\n"; 6705 } 6706 6707 OS << "Determining loop execution counts for: "; 6708 WriteAsOperand(OS, F, /*PrintType=*/false); 6709 OS << "\n"; 6710 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 6711 PrintLoopInfo(OS, &SE, *I); 6712 } 6713 6714 ScalarEvolution::LoopDisposition 6715 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 6716 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S]; 6717 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair = 6718 Values.insert(std::make_pair(L, LoopVariant)); 6719 if (!Pair.second) 6720 return Pair.first->second; 6721 6722 LoopDisposition D = computeLoopDisposition(S, L); 6723 return LoopDispositions[S][L] = D; 6724 } 6725 6726 ScalarEvolution::LoopDisposition 6727 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 6728 switch (S->getSCEVType()) { 6729 case scConstant: 6730 return LoopInvariant; 6731 case scTruncate: 6732 case scZeroExtend: 6733 case scSignExtend: 6734 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 6735 case scAddRecExpr: { 6736 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6737 6738 // If L is the addrec's loop, it's computable. 6739 if (AR->getLoop() == L) 6740 return LoopComputable; 6741 6742 // Add recurrences are never invariant in the function-body (null loop). 6743 if (!L) 6744 return LoopVariant; 6745 6746 // This recurrence is variant w.r.t. L if L contains AR's loop. 6747 if (L->contains(AR->getLoop())) 6748 return LoopVariant; 6749 6750 // This recurrence is invariant w.r.t. L if AR's loop contains L. 6751 if (AR->getLoop()->contains(L)) 6752 return LoopInvariant; 6753 6754 // This recurrence is variant w.r.t. L if any of its operands 6755 // are variant. 6756 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 6757 I != E; ++I) 6758 if (!isLoopInvariant(*I, L)) 6759 return LoopVariant; 6760 6761 // Otherwise it's loop-invariant. 6762 return LoopInvariant; 6763 } 6764 case scAddExpr: 6765 case scMulExpr: 6766 case scUMaxExpr: 6767 case scSMaxExpr: { 6768 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6769 bool HasVarying = false; 6770 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6771 I != E; ++I) { 6772 LoopDisposition D = getLoopDisposition(*I, L); 6773 if (D == LoopVariant) 6774 return LoopVariant; 6775 if (D == LoopComputable) 6776 HasVarying = true; 6777 } 6778 return HasVarying ? LoopComputable : LoopInvariant; 6779 } 6780 case scUDivExpr: { 6781 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6782 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 6783 if (LD == LoopVariant) 6784 return LoopVariant; 6785 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 6786 if (RD == LoopVariant) 6787 return LoopVariant; 6788 return (LD == LoopInvariant && RD == LoopInvariant) ? 6789 LoopInvariant : LoopComputable; 6790 } 6791 case scUnknown: 6792 // All non-instruction values are loop invariant. All instructions are loop 6793 // invariant if they are not contained in the specified loop. 6794 // Instructions are never considered invariant in the function body 6795 // (null loop) because they are defined within the "loop". 6796 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 6797 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 6798 return LoopInvariant; 6799 case scCouldNotCompute: 6800 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6801 default: llvm_unreachable("Unknown SCEV kind!"); 6802 } 6803 } 6804 6805 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 6806 return getLoopDisposition(S, L) == LoopInvariant; 6807 } 6808 6809 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 6810 return getLoopDisposition(S, L) == LoopComputable; 6811 } 6812 6813 ScalarEvolution::BlockDisposition 6814 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6815 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S]; 6816 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool> 6817 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock)); 6818 if (!Pair.second) 6819 return Pair.first->second; 6820 6821 BlockDisposition D = computeBlockDisposition(S, BB); 6822 return BlockDispositions[S][BB] = D; 6823 } 6824 6825 ScalarEvolution::BlockDisposition 6826 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 6827 switch (S->getSCEVType()) { 6828 case scConstant: 6829 return ProperlyDominatesBlock; 6830 case scTruncate: 6831 case scZeroExtend: 6832 case scSignExtend: 6833 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 6834 case scAddRecExpr: { 6835 // This uses a "dominates" query instead of "properly dominates" query 6836 // to test for proper dominance too, because the instruction which 6837 // produces the addrec's value is a PHI, and a PHI effectively properly 6838 // dominates its entire containing block. 6839 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 6840 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 6841 return DoesNotDominateBlock; 6842 } 6843 // FALL THROUGH into SCEVNAryExpr handling. 6844 case scAddExpr: 6845 case scMulExpr: 6846 case scUMaxExpr: 6847 case scSMaxExpr: { 6848 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6849 bool Proper = true; 6850 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6851 I != E; ++I) { 6852 BlockDisposition D = getBlockDisposition(*I, BB); 6853 if (D == DoesNotDominateBlock) 6854 return DoesNotDominateBlock; 6855 if (D == DominatesBlock) 6856 Proper = false; 6857 } 6858 return Proper ? ProperlyDominatesBlock : DominatesBlock; 6859 } 6860 case scUDivExpr: { 6861 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6862 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6863 BlockDisposition LD = getBlockDisposition(LHS, BB); 6864 if (LD == DoesNotDominateBlock) 6865 return DoesNotDominateBlock; 6866 BlockDisposition RD = getBlockDisposition(RHS, BB); 6867 if (RD == DoesNotDominateBlock) 6868 return DoesNotDominateBlock; 6869 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 6870 ProperlyDominatesBlock : DominatesBlock; 6871 } 6872 case scUnknown: 6873 if (Instruction *I = 6874 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 6875 if (I->getParent() == BB) 6876 return DominatesBlock; 6877 if (DT->properlyDominates(I->getParent(), BB)) 6878 return ProperlyDominatesBlock; 6879 return DoesNotDominateBlock; 6880 } 6881 return ProperlyDominatesBlock; 6882 case scCouldNotCompute: 6883 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6884 default: 6885 llvm_unreachable("Unknown SCEV kind!"); 6886 } 6887 } 6888 6889 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 6890 return getBlockDisposition(S, BB) >= DominatesBlock; 6891 } 6892 6893 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 6894 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 6895 } 6896 6897 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 6898 SmallVector<const SCEV *, 8> Worklist; 6899 Worklist.push_back(S); 6900 do { 6901 S = Worklist.pop_back_val(); 6902 6903 switch (S->getSCEVType()) { 6904 case scConstant: 6905 break; 6906 case scTruncate: 6907 case scZeroExtend: 6908 case scSignExtend: { 6909 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S); 6910 const SCEV *CastOp = Cast->getOperand(); 6911 if (Op == CastOp) 6912 return true; 6913 Worklist.push_back(CastOp); 6914 break; 6915 } 6916 case scAddRecExpr: 6917 case scAddExpr: 6918 case scMulExpr: 6919 case scUMaxExpr: 6920 case scSMaxExpr: { 6921 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 6922 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 6923 I != E; ++I) { 6924 const SCEV *NAryOp = *I; 6925 if (NAryOp == Op) 6926 return true; 6927 Worklist.push_back(NAryOp); 6928 } 6929 break; 6930 } 6931 case scUDivExpr: { 6932 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 6933 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 6934 if (LHS == Op || RHS == Op) 6935 return true; 6936 Worklist.push_back(LHS); 6937 Worklist.push_back(RHS); 6938 break; 6939 } 6940 case scUnknown: 6941 break; 6942 case scCouldNotCompute: 6943 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 6944 default: 6945 llvm_unreachable("Unknown SCEV kind!"); 6946 } 6947 } while (!Worklist.empty()); 6948 6949 return false; 6950 } 6951 6952 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 6953 ValuesAtScopes.erase(S); 6954 LoopDispositions.erase(S); 6955 BlockDispositions.erase(S); 6956 UnsignedRanges.erase(S); 6957 SignedRanges.erase(S); 6958 } 6959