xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 39f00cc1d459f02d3a1c115b40d7560f93b22908)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle.  These classes are reference counted, managed by the const SCEV*
18 // class.  We only create one SCEV of a particular shape, so pointer-comparisons
19 // for equality are legal.
20 //
21 // One important aspect of the SCEV objects is that they are never cyclic, even
22 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
24 // recurrence) then we represent it directly as a recurrence node, otherwise we
25 // represent it as a SCEVUnknown node.
26 //
27 // In addition to being able to represent expressions of various types, we also
28 // have folders that are used to build the *canonical* representation for a
29 // particular expression.  These folders are capable of using a variety of
30 // rewrite rules to simplify the expressions.
31 //
32 // Once the folders are defined, we can implement the more interesting
33 // higher-level code, such as the code that recognizes PHI nodes of various
34 // types, computes the execution count of a loop, etc.
35 //
36 // TODO: We should use these routines and value representations to implement
37 // dependence analysis!
38 //
39 //===----------------------------------------------------------------------===//
40 //
41 // There are several good references for the techniques used in this analysis.
42 //
43 //  Chains of recurrences -- a method to expedite the evaluation
44 //  of closed-form functions
45 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46 //
47 //  On computational properties of chains of recurrences
48 //  Eugene V. Zima
49 //
50 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51 //  Robert A. van Engelen
52 //
53 //  Efficient Symbolic Analysis for Optimizing Compilers
54 //  Robert A. van Engelen
55 //
56 //  Using the chains of recurrences algebra for data dependence testing and
57 //  induction variable substitution
58 //  MS Thesis, Johnie Birch
59 //
60 //===----------------------------------------------------------------------===//
61 
62 #define DEBUG_TYPE "scalar-evolution"
63 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
64 #include "llvm/Constants.h"
65 #include "llvm/DerivedTypes.h"
66 #include "llvm/GlobalVariable.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/Analysis/ConstantFolding.h"
69 #include "llvm/Analysis/Dominators.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/ValueTracking.h"
72 #include "llvm/Assembly/Writer.h"
73 #include "llvm/Target/TargetData.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/ConstantRange.h"
77 #include "llvm/Support/GetElementPtrTypeIterator.h"
78 #include "llvm/Support/InstIterator.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/ADT/Statistic.h"
82 #include "llvm/ADT/STLExtras.h"
83 #include <algorithm>
84 using namespace llvm;
85 
86 STATISTIC(NumArrayLenItCounts,
87           "Number of trip counts computed with array length");
88 STATISTIC(NumTripCountsComputed,
89           "Number of loops with predictable loop counts");
90 STATISTIC(NumTripCountsNotComputed,
91           "Number of loops without predictable loop counts");
92 STATISTIC(NumBruteForceTripCountsComputed,
93           "Number of loops with trip counts computed by force");
94 
95 static cl::opt<unsigned>
96 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
97                         cl::desc("Maximum number of iterations SCEV will "
98                                  "symbolically execute a constant "
99                                  "derived loop"),
100                         cl::init(100));
101 
102 static RegisterPass<ScalarEvolution>
103 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
104 char ScalarEvolution::ID = 0;
105 
106 //===----------------------------------------------------------------------===//
107 //                           SCEV class definitions
108 //===----------------------------------------------------------------------===//
109 
110 //===----------------------------------------------------------------------===//
111 // Implementation of the SCEV class.
112 //
113 
114 SCEV::~SCEV() {}
115 
116 void SCEV::dump() const {
117   print(errs());
118   errs() << '\n';
119 }
120 
121 void SCEV::print(std::ostream &o) const {
122   raw_os_ostream OS(o);
123   print(OS);
124 }
125 
126 bool SCEV::isZero() const {
127   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
128     return SC->getValue()->isZero();
129   return false;
130 }
131 
132 bool SCEV::isOne() const {
133   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
134     return SC->getValue()->isOne();
135   return false;
136 }
137 
138 bool SCEV::isAllOnesValue() const {
139   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
140     return SC->getValue()->isAllOnesValue();
141   return false;
142 }
143 
144 SCEVCouldNotCompute::SCEVCouldNotCompute() :
145   SCEV(scCouldNotCompute) {}
146 
147 void SCEVCouldNotCompute::Profile(FoldingSetNodeID &ID) const {
148   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
149 }
150 
151 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
152   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
153   return false;
154 }
155 
156 const Type *SCEVCouldNotCompute::getType() const {
157   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
158   return 0;
159 }
160 
161 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
162   assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
163   return false;
164 }
165 
166 const SCEV *
167 SCEVCouldNotCompute::replaceSymbolicValuesWithConcrete(
168                                                     const SCEV *Sym,
169                                                     const SCEV *Conc,
170                                                     ScalarEvolution &SE) const {
171   return this;
172 }
173 
174 void SCEVCouldNotCompute::print(raw_ostream &OS) const {
175   OS << "***COULDNOTCOMPUTE***";
176 }
177 
178 bool SCEVCouldNotCompute::classof(const SCEV *S) {
179   return S->getSCEVType() == scCouldNotCompute;
180 }
181 
182 const SCEV* ScalarEvolution::getConstant(ConstantInt *V) {
183   FoldingSetNodeID ID;
184   ID.AddInteger(scConstant);
185   ID.AddPointer(V);
186   void *IP = 0;
187   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
188   SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
189   new (S) SCEVConstant(V);
190   UniqueSCEVs.InsertNode(S, IP);
191   return S;
192 }
193 
194 const SCEV* ScalarEvolution::getConstant(const APInt& Val) {
195   return getConstant(ConstantInt::get(Val));
196 }
197 
198 const SCEV*
199 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
200   return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
201 }
202 
203 void SCEVConstant::Profile(FoldingSetNodeID &ID) const {
204   ID.AddInteger(scConstant);
205   ID.AddPointer(V);
206 }
207 
208 const Type *SCEVConstant::getType() const { return V->getType(); }
209 
210 void SCEVConstant::print(raw_ostream &OS) const {
211   WriteAsOperand(OS, V, false);
212 }
213 
214 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
215                            const SCEV* op, const Type *ty)
216   : SCEV(SCEVTy), Op(op), Ty(ty) {}
217 
218 void SCEVCastExpr::Profile(FoldingSetNodeID &ID) const {
219   ID.AddInteger(getSCEVType());
220   ID.AddPointer(Op);
221   ID.AddPointer(Ty);
222 }
223 
224 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
225   return Op->dominates(BB, DT);
226 }
227 
228 SCEVTruncateExpr::SCEVTruncateExpr(const SCEV* op, const Type *ty)
229   : SCEVCastExpr(scTruncate, op, ty) {
230   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
231          (Ty->isInteger() || isa<PointerType>(Ty)) &&
232          "Cannot truncate non-integer value!");
233 }
234 
235 void SCEVTruncateExpr::print(raw_ostream &OS) const {
236   OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
237 }
238 
239 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEV* op, const Type *ty)
240   : SCEVCastExpr(scZeroExtend, op, ty) {
241   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
242          (Ty->isInteger() || isa<PointerType>(Ty)) &&
243          "Cannot zero extend non-integer value!");
244 }
245 
246 void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
247   OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
248 }
249 
250 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEV* op, const Type *ty)
251   : SCEVCastExpr(scSignExtend, op, ty) {
252   assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
253          (Ty->isInteger() || isa<PointerType>(Ty)) &&
254          "Cannot sign extend non-integer value!");
255 }
256 
257 void SCEVSignExtendExpr::print(raw_ostream &OS) const {
258   OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
259 }
260 
261 void SCEVCommutativeExpr::print(raw_ostream &OS) const {
262   assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
263   const char *OpStr = getOperationStr();
264   OS << "(" << *Operands[0];
265   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
266     OS << OpStr << *Operands[i];
267   OS << ")";
268 }
269 
270 const SCEV *
271 SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete(
272                                                     const SCEV *Sym,
273                                                     const SCEV *Conc,
274                                                     ScalarEvolution &SE) const {
275   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
276     const SCEV* H =
277       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
278     if (H != getOperand(i)) {
279       SmallVector<const SCEV*, 8> NewOps;
280       NewOps.reserve(getNumOperands());
281       for (unsigned j = 0; j != i; ++j)
282         NewOps.push_back(getOperand(j));
283       NewOps.push_back(H);
284       for (++i; i != e; ++i)
285         NewOps.push_back(getOperand(i)->
286                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
287 
288       if (isa<SCEVAddExpr>(this))
289         return SE.getAddExpr(NewOps);
290       else if (isa<SCEVMulExpr>(this))
291         return SE.getMulExpr(NewOps);
292       else if (isa<SCEVSMaxExpr>(this))
293         return SE.getSMaxExpr(NewOps);
294       else if (isa<SCEVUMaxExpr>(this))
295         return SE.getUMaxExpr(NewOps);
296       else
297         assert(0 && "Unknown commutative expr!");
298     }
299   }
300   return this;
301 }
302 
303 void SCEVNAryExpr::Profile(FoldingSetNodeID &ID) const {
304   ID.AddInteger(getSCEVType());
305   ID.AddInteger(Operands.size());
306   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
307     ID.AddPointer(Operands[i]);
308 }
309 
310 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
311   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
312     if (!getOperand(i)->dominates(BB, DT))
313       return false;
314   }
315   return true;
316 }
317 
318 void SCEVUDivExpr::Profile(FoldingSetNodeID &ID) const {
319   ID.AddInteger(scUDivExpr);
320   ID.AddPointer(LHS);
321   ID.AddPointer(RHS);
322 }
323 
324 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
325   return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
326 }
327 
328 void SCEVUDivExpr::print(raw_ostream &OS) const {
329   OS << "(" << *LHS << " /u " << *RHS << ")";
330 }
331 
332 const Type *SCEVUDivExpr::getType() const {
333   // In most cases the types of LHS and RHS will be the same, but in some
334   // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
335   // depend on the type for correctness, but handling types carefully can
336   // avoid extra casts in the SCEVExpander. The LHS is more likely to be
337   // a pointer type than the RHS, so use the RHS' type here.
338   return RHS->getType();
339 }
340 
341 void SCEVAddRecExpr::Profile(FoldingSetNodeID &ID) const {
342   ID.AddInteger(scAddRecExpr);
343   ID.AddInteger(Operands.size());
344   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
345     ID.AddPointer(Operands[i]);
346   ID.AddPointer(L);
347 }
348 
349 const SCEV *
350 SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV *Sym,
351                                                   const SCEV *Conc,
352                                                   ScalarEvolution &SE) const {
353   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
354     const SCEV* H =
355       getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
356     if (H != getOperand(i)) {
357       SmallVector<const SCEV*, 8> NewOps;
358       NewOps.reserve(getNumOperands());
359       for (unsigned j = 0; j != i; ++j)
360         NewOps.push_back(getOperand(j));
361       NewOps.push_back(H);
362       for (++i; i != e; ++i)
363         NewOps.push_back(getOperand(i)->
364                          replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
365 
366       return SE.getAddRecExpr(NewOps, L);
367     }
368   }
369   return this;
370 }
371 
372 
373 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
374   // Add recurrences are never invariant in the function-body (null loop).
375   if (!QueryLoop)
376     return false;
377 
378   // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
379   if (QueryLoop->contains(L->getHeader()))
380     return false;
381 
382   // This recurrence is variant w.r.t. QueryLoop if any of its operands
383   // are variant.
384   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
385     if (!getOperand(i)->isLoopInvariant(QueryLoop))
386       return false;
387 
388   // Otherwise it's loop-invariant.
389   return true;
390 }
391 
392 void SCEVAddRecExpr::print(raw_ostream &OS) const {
393   OS << "{" << *Operands[0];
394   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
395     OS << ",+," << *Operands[i];
396   OS << "}<" << L->getHeader()->getName() + ">";
397 }
398 
399 void SCEVUnknown::Profile(FoldingSetNodeID &ID) const {
400   ID.AddInteger(scUnknown);
401   ID.AddPointer(V);
402 }
403 
404 bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
405   // All non-instruction values are loop invariant.  All instructions are loop
406   // invariant if they are not contained in the specified loop.
407   // Instructions are never considered invariant in the function body
408   // (null loop) because they are defined within the "loop".
409   if (Instruction *I = dyn_cast<Instruction>(V))
410     return L && !L->contains(I->getParent());
411   return true;
412 }
413 
414 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
415   if (Instruction *I = dyn_cast<Instruction>(getValue()))
416     return DT->dominates(I->getParent(), BB);
417   return true;
418 }
419 
420 const Type *SCEVUnknown::getType() const {
421   return V->getType();
422 }
423 
424 void SCEVUnknown::print(raw_ostream &OS) const {
425   WriteAsOperand(OS, V, false);
426 }
427 
428 //===----------------------------------------------------------------------===//
429 //                               SCEV Utilities
430 //===----------------------------------------------------------------------===//
431 
432 namespace {
433   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
434   /// than the complexity of the RHS.  This comparator is used to canonicalize
435   /// expressions.
436   class VISIBILITY_HIDDEN SCEVComplexityCompare {
437     LoopInfo *LI;
438   public:
439     explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
440 
441     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
442       // Primarily, sort the SCEVs by their getSCEVType().
443       if (LHS->getSCEVType() != RHS->getSCEVType())
444         return LHS->getSCEVType() < RHS->getSCEVType();
445 
446       // Aside from the getSCEVType() ordering, the particular ordering
447       // isn't very important except that it's beneficial to be consistent,
448       // so that (a + b) and (b + a) don't end up as different expressions.
449 
450       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
451       // not as complete as it could be.
452       if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
453         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
454 
455         // Order pointer values after integer values. This helps SCEVExpander
456         // form GEPs.
457         if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
458           return false;
459         if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
460           return true;
461 
462         // Compare getValueID values.
463         if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
464           return LU->getValue()->getValueID() < RU->getValue()->getValueID();
465 
466         // Sort arguments by their position.
467         if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
468           const Argument *RA = cast<Argument>(RU->getValue());
469           return LA->getArgNo() < RA->getArgNo();
470         }
471 
472         // For instructions, compare their loop depth, and their opcode.
473         // This is pretty loose.
474         if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
475           Instruction *RV = cast<Instruction>(RU->getValue());
476 
477           // Compare loop depths.
478           if (LI->getLoopDepth(LV->getParent()) !=
479               LI->getLoopDepth(RV->getParent()))
480             return LI->getLoopDepth(LV->getParent()) <
481                    LI->getLoopDepth(RV->getParent());
482 
483           // Compare opcodes.
484           if (LV->getOpcode() != RV->getOpcode())
485             return LV->getOpcode() < RV->getOpcode();
486 
487           // Compare the number of operands.
488           if (LV->getNumOperands() != RV->getNumOperands())
489             return LV->getNumOperands() < RV->getNumOperands();
490         }
491 
492         return false;
493       }
494 
495       // Compare constant values.
496       if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
497         const SCEVConstant *RC = cast<SCEVConstant>(RHS);
498         if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
499           return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
500         return LC->getValue()->getValue().ult(RC->getValue()->getValue());
501       }
502 
503       // Compare addrec loop depths.
504       if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
505         const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
506         if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
507           return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
508       }
509 
510       // Lexicographically compare n-ary expressions.
511       if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
512         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
513         for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
514           if (i >= RC->getNumOperands())
515             return false;
516           if (operator()(LC->getOperand(i), RC->getOperand(i)))
517             return true;
518           if (operator()(RC->getOperand(i), LC->getOperand(i)))
519             return false;
520         }
521         return LC->getNumOperands() < RC->getNumOperands();
522       }
523 
524       // Lexicographically compare udiv expressions.
525       if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
526         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
527         if (operator()(LC->getLHS(), RC->getLHS()))
528           return true;
529         if (operator()(RC->getLHS(), LC->getLHS()))
530           return false;
531         if (operator()(LC->getRHS(), RC->getRHS()))
532           return true;
533         if (operator()(RC->getRHS(), LC->getRHS()))
534           return false;
535         return false;
536       }
537 
538       // Compare cast expressions by operand.
539       if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
540         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
541         return operator()(LC->getOperand(), RC->getOperand());
542       }
543 
544       assert(0 && "Unknown SCEV kind!");
545       return false;
546     }
547   };
548 }
549 
550 /// GroupByComplexity - Given a list of SCEV objects, order them by their
551 /// complexity, and group objects of the same complexity together by value.
552 /// When this routine is finished, we know that any duplicates in the vector are
553 /// consecutive and that complexity is monotonically increasing.
554 ///
555 /// Note that we go take special precautions to ensure that we get determinstic
556 /// results from this routine.  In other words, we don't want the results of
557 /// this to depend on where the addresses of various SCEV objects happened to
558 /// land in memory.
559 ///
560 static void GroupByComplexity(SmallVectorImpl<const SCEV*> &Ops,
561                               LoopInfo *LI) {
562   if (Ops.size() < 2) return;  // Noop
563   if (Ops.size() == 2) {
564     // This is the common case, which also happens to be trivially simple.
565     // Special case it.
566     if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
567       std::swap(Ops[0], Ops[1]);
568     return;
569   }
570 
571   // Do the rough sort by complexity.
572   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
573 
574   // Now that we are sorted by complexity, group elements of the same
575   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
576   // be extremely short in practice.  Note that we take this approach because we
577   // do not want to depend on the addresses of the objects we are grouping.
578   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
579     const SCEV *S = Ops[i];
580     unsigned Complexity = S->getSCEVType();
581 
582     // If there are any objects of the same complexity and same value as this
583     // one, group them.
584     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
585       if (Ops[j] == S) { // Found a duplicate.
586         // Move it to immediately after i'th element.
587         std::swap(Ops[i+1], Ops[j]);
588         ++i;   // no need to rescan it.
589         if (i == e-2) return;  // Done!
590       }
591     }
592   }
593 }
594 
595 
596 
597 //===----------------------------------------------------------------------===//
598 //                      Simple SCEV method implementations
599 //===----------------------------------------------------------------------===//
600 
601 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
602 /// Assume, K > 0.
603 static const SCEV* BinomialCoefficient(const SCEV* It, unsigned K,
604                                       ScalarEvolution &SE,
605                                       const Type* ResultTy) {
606   // Handle the simplest case efficiently.
607   if (K == 1)
608     return SE.getTruncateOrZeroExtend(It, ResultTy);
609 
610   // We are using the following formula for BC(It, K):
611   //
612   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
613   //
614   // Suppose, W is the bitwidth of the return value.  We must be prepared for
615   // overflow.  Hence, we must assure that the result of our computation is
616   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
617   // safe in modular arithmetic.
618   //
619   // However, this code doesn't use exactly that formula; the formula it uses
620   // is something like the following, where T is the number of factors of 2 in
621   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
622   // exponentiation:
623   //
624   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
625   //
626   // This formula is trivially equivalent to the previous formula.  However,
627   // this formula can be implemented much more efficiently.  The trick is that
628   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
629   // arithmetic.  To do exact division in modular arithmetic, all we have
630   // to do is multiply by the inverse.  Therefore, this step can be done at
631   // width W.
632   //
633   // The next issue is how to safely do the division by 2^T.  The way this
634   // is done is by doing the multiplication step at a width of at least W + T
635   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
636   // when we perform the division by 2^T (which is equivalent to a right shift
637   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
638   // truncated out after the division by 2^T.
639   //
640   // In comparison to just directly using the first formula, this technique
641   // is much more efficient; using the first formula requires W * K bits,
642   // but this formula less than W + K bits. Also, the first formula requires
643   // a division step, whereas this formula only requires multiplies and shifts.
644   //
645   // It doesn't matter whether the subtraction step is done in the calculation
646   // width or the input iteration count's width; if the subtraction overflows,
647   // the result must be zero anyway.  We prefer here to do it in the width of
648   // the induction variable because it helps a lot for certain cases; CodeGen
649   // isn't smart enough to ignore the overflow, which leads to much less
650   // efficient code if the width of the subtraction is wider than the native
651   // register width.
652   //
653   // (It's possible to not widen at all by pulling out factors of 2 before
654   // the multiplication; for example, K=2 can be calculated as
655   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
656   // extra arithmetic, so it's not an obvious win, and it gets
657   // much more complicated for K > 3.)
658 
659   // Protection from insane SCEVs; this bound is conservative,
660   // but it probably doesn't matter.
661   if (K > 1000)
662     return SE.getCouldNotCompute();
663 
664   unsigned W = SE.getTypeSizeInBits(ResultTy);
665 
666   // Calculate K! / 2^T and T; we divide out the factors of two before
667   // multiplying for calculating K! / 2^T to avoid overflow.
668   // Other overflow doesn't matter because we only care about the bottom
669   // W bits of the result.
670   APInt OddFactorial(W, 1);
671   unsigned T = 1;
672   for (unsigned i = 3; i <= K; ++i) {
673     APInt Mult(W, i);
674     unsigned TwoFactors = Mult.countTrailingZeros();
675     T += TwoFactors;
676     Mult = Mult.lshr(TwoFactors);
677     OddFactorial *= Mult;
678   }
679 
680   // We need at least W + T bits for the multiplication step
681   unsigned CalculationBits = W + T;
682 
683   // Calcuate 2^T, at width T+W.
684   APInt DivFactor = APInt(CalculationBits, 1).shl(T);
685 
686   // Calculate the multiplicative inverse of K! / 2^T;
687   // this multiplication factor will perform the exact division by
688   // K! / 2^T.
689   APInt Mod = APInt::getSignedMinValue(W+1);
690   APInt MultiplyFactor = OddFactorial.zext(W+1);
691   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
692   MultiplyFactor = MultiplyFactor.trunc(W);
693 
694   // Calculate the product, at width T+W
695   const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
696   const SCEV* Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
697   for (unsigned i = 1; i != K; ++i) {
698     const SCEV* S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
699     Dividend = SE.getMulExpr(Dividend,
700                              SE.getTruncateOrZeroExtend(S, CalculationTy));
701   }
702 
703   // Divide by 2^T
704   const SCEV* DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
705 
706   // Truncate the result, and divide by K! / 2^T.
707 
708   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
709                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
710 }
711 
712 /// evaluateAtIteration - Return the value of this chain of recurrences at
713 /// the specified iteration number.  We can evaluate this recurrence by
714 /// multiplying each element in the chain by the binomial coefficient
715 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
716 ///
717 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
718 ///
719 /// where BC(It, k) stands for binomial coefficient.
720 ///
721 const SCEV* SCEVAddRecExpr::evaluateAtIteration(const SCEV* It,
722                                                ScalarEvolution &SE) const {
723   const SCEV* Result = getStart();
724   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
725     // The computation is correct in the face of overflow provided that the
726     // multiplication is performed _after_ the evaluation of the binomial
727     // coefficient.
728     const SCEV* Coeff = BinomialCoefficient(It, i, SE, getType());
729     if (isa<SCEVCouldNotCompute>(Coeff))
730       return Coeff;
731 
732     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
733   }
734   return Result;
735 }
736 
737 //===----------------------------------------------------------------------===//
738 //                    SCEV Expression folder implementations
739 //===----------------------------------------------------------------------===//
740 
741 const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op,
742                                             const Type *Ty) {
743   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
744          "This is not a truncating conversion!");
745   assert(isSCEVable(Ty) &&
746          "This is not a conversion to a SCEVable type!");
747   Ty = getEffectiveSCEVType(Ty);
748 
749   // Fold if the operand is constant.
750   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
751     return getConstant(
752       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
753 
754   // trunc(trunc(x)) --> trunc(x)
755   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
756     return getTruncateExpr(ST->getOperand(), Ty);
757 
758   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
759   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
760     return getTruncateOrSignExtend(SS->getOperand(), Ty);
761 
762   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
763   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
764     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
765 
766   // If the input value is a chrec scev, truncate the chrec's operands.
767   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
768     SmallVector<const SCEV*, 4> Operands;
769     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
770       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
771     return getAddRecExpr(Operands, AddRec->getLoop());
772   }
773 
774   FoldingSetNodeID ID;
775   ID.AddInteger(scTruncate);
776   ID.AddPointer(Op);
777   ID.AddPointer(Ty);
778   void *IP = 0;
779   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
780   SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
781   new (S) SCEVTruncateExpr(Op, Ty);
782   UniqueSCEVs.InsertNode(S, IP);
783   return S;
784 }
785 
786 const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
787                                               const Type *Ty) {
788   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
789          "This is not an extending conversion!");
790   assert(isSCEVable(Ty) &&
791          "This is not a conversion to a SCEVable type!");
792   Ty = getEffectiveSCEVType(Ty);
793 
794   // Fold if the operand is constant.
795   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
796     const Type *IntTy = getEffectiveSCEVType(Ty);
797     Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
798     if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
799     return getConstant(cast<ConstantInt>(C));
800   }
801 
802   // zext(zext(x)) --> zext(x)
803   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
804     return getZeroExtendExpr(SZ->getOperand(), Ty);
805 
806   // If the input value is a chrec scev, and we can prove that the value
807   // did not overflow the old, smaller, value, we can zero extend all of the
808   // operands (often constants).  This allows analysis of something like
809   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
810   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
811     if (AR->isAffine()) {
812       // Check whether the backedge-taken count is SCEVCouldNotCompute.
813       // Note that this serves two purposes: It filters out loops that are
814       // simply not analyzable, and it covers the case where this code is
815       // being called from within backedge-taken count analysis, such that
816       // attempting to ask for the backedge-taken count would likely result
817       // in infinite recursion. In the later case, the analysis code will
818       // cope with a conservative value, and it will take care to purge
819       // that value once it has finished.
820       const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
821       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
822         // Manually compute the final value for AR, checking for
823         // overflow.
824         const SCEV* Start = AR->getStart();
825         const SCEV* Step = AR->getStepRecurrence(*this);
826 
827         // Check whether the backedge-taken count can be losslessly casted to
828         // the addrec's type. The count is always unsigned.
829         const SCEV* CastedMaxBECount =
830           getTruncateOrZeroExtend(MaxBECount, Start->getType());
831         const SCEV* RecastedMaxBECount =
832           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
833         if (MaxBECount == RecastedMaxBECount) {
834           const Type *WideTy =
835             IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
836           // Check whether Start+Step*MaxBECount has no unsigned overflow.
837           const SCEV* ZMul =
838             getMulExpr(CastedMaxBECount,
839                        getTruncateOrZeroExtend(Step, Start->getType()));
840           const SCEV* Add = getAddExpr(Start, ZMul);
841           const SCEV* OperandExtendedAdd =
842             getAddExpr(getZeroExtendExpr(Start, WideTy),
843                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
844                                   getZeroExtendExpr(Step, WideTy)));
845           if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
846             // Return the expression with the addrec on the outside.
847             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
848                                  getZeroExtendExpr(Step, Ty),
849                                  AR->getLoop());
850 
851           // Similar to above, only this time treat the step value as signed.
852           // This covers loops that count down.
853           const SCEV* SMul =
854             getMulExpr(CastedMaxBECount,
855                        getTruncateOrSignExtend(Step, Start->getType()));
856           Add = getAddExpr(Start, SMul);
857           OperandExtendedAdd =
858             getAddExpr(getZeroExtendExpr(Start, WideTy),
859                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
860                                   getSignExtendExpr(Step, WideTy)));
861           if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
862             // Return the expression with the addrec on the outside.
863             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
864                                  getSignExtendExpr(Step, Ty),
865                                  AR->getLoop());
866         }
867       }
868     }
869 
870   FoldingSetNodeID ID;
871   ID.AddInteger(scZeroExtend);
872   ID.AddPointer(Op);
873   ID.AddPointer(Ty);
874   void *IP = 0;
875   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
876   SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
877   new (S) SCEVZeroExtendExpr(Op, Ty);
878   UniqueSCEVs.InsertNode(S, IP);
879   return S;
880 }
881 
882 const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
883                                               const Type *Ty) {
884   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
885          "This is not an extending conversion!");
886   assert(isSCEVable(Ty) &&
887          "This is not a conversion to a SCEVable type!");
888   Ty = getEffectiveSCEVType(Ty);
889 
890   // Fold if the operand is constant.
891   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
892     const Type *IntTy = getEffectiveSCEVType(Ty);
893     Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
894     if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
895     return getConstant(cast<ConstantInt>(C));
896   }
897 
898   // sext(sext(x)) --> sext(x)
899   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
900     return getSignExtendExpr(SS->getOperand(), Ty);
901 
902   // If the input value is a chrec scev, and we can prove that the value
903   // did not overflow the old, smaller, value, we can sign extend all of the
904   // operands (often constants).  This allows analysis of something like
905   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
906   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
907     if (AR->isAffine()) {
908       // Check whether the backedge-taken count is SCEVCouldNotCompute.
909       // Note that this serves two purposes: It filters out loops that are
910       // simply not analyzable, and it covers the case where this code is
911       // being called from within backedge-taken count analysis, such that
912       // attempting to ask for the backedge-taken count would likely result
913       // in infinite recursion. In the later case, the analysis code will
914       // cope with a conservative value, and it will take care to purge
915       // that value once it has finished.
916       const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
917       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
918         // Manually compute the final value for AR, checking for
919         // overflow.
920         const SCEV* Start = AR->getStart();
921         const SCEV* Step = AR->getStepRecurrence(*this);
922 
923         // Check whether the backedge-taken count can be losslessly casted to
924         // the addrec's type. The count is always unsigned.
925         const SCEV* CastedMaxBECount =
926           getTruncateOrZeroExtend(MaxBECount, Start->getType());
927         const SCEV* RecastedMaxBECount =
928           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
929         if (MaxBECount == RecastedMaxBECount) {
930           const Type *WideTy =
931             IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
932           // Check whether Start+Step*MaxBECount has no signed overflow.
933           const SCEV* SMul =
934             getMulExpr(CastedMaxBECount,
935                        getTruncateOrSignExtend(Step, Start->getType()));
936           const SCEV* Add = getAddExpr(Start, SMul);
937           const SCEV* OperandExtendedAdd =
938             getAddExpr(getSignExtendExpr(Start, WideTy),
939                        getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
940                                   getSignExtendExpr(Step, WideTy)));
941           if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
942             // Return the expression with the addrec on the outside.
943             return getAddRecExpr(getSignExtendExpr(Start, Ty),
944                                  getSignExtendExpr(Step, Ty),
945                                  AR->getLoop());
946         }
947       }
948     }
949 
950   FoldingSetNodeID ID;
951   ID.AddInteger(scSignExtend);
952   ID.AddPointer(Op);
953   ID.AddPointer(Ty);
954   void *IP = 0;
955   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
956   SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
957   new (S) SCEVSignExtendExpr(Op, Ty);
958   UniqueSCEVs.InsertNode(S, IP);
959   return S;
960 }
961 
962 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
963 /// unspecified bits out to the given type.
964 ///
965 const SCEV* ScalarEvolution::getAnyExtendExpr(const SCEV* Op,
966                                              const Type *Ty) {
967   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
968          "This is not an extending conversion!");
969   assert(isSCEVable(Ty) &&
970          "This is not a conversion to a SCEVable type!");
971   Ty = getEffectiveSCEVType(Ty);
972 
973   // Sign-extend negative constants.
974   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
975     if (SC->getValue()->getValue().isNegative())
976       return getSignExtendExpr(Op, Ty);
977 
978   // Peel off a truncate cast.
979   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
980     const SCEV* NewOp = T->getOperand();
981     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
982       return getAnyExtendExpr(NewOp, Ty);
983     return getTruncateOrNoop(NewOp, Ty);
984   }
985 
986   // Next try a zext cast. If the cast is folded, use it.
987   const SCEV* ZExt = getZeroExtendExpr(Op, Ty);
988   if (!isa<SCEVZeroExtendExpr>(ZExt))
989     return ZExt;
990 
991   // Next try a sext cast. If the cast is folded, use it.
992   const SCEV* SExt = getSignExtendExpr(Op, Ty);
993   if (!isa<SCEVSignExtendExpr>(SExt))
994     return SExt;
995 
996   // If the expression is obviously signed, use the sext cast value.
997   if (isa<SCEVSMaxExpr>(Op))
998     return SExt;
999 
1000   // Absent any other information, use the zext cast value.
1001   return ZExt;
1002 }
1003 
1004 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1005 /// a list of operands to be added under the given scale, update the given
1006 /// map. This is a helper function for getAddRecExpr. As an example of
1007 /// what it does, given a sequence of operands that would form an add
1008 /// expression like this:
1009 ///
1010 ///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1011 ///
1012 /// where A and B are constants, update the map with these values:
1013 ///
1014 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1015 ///
1016 /// and add 13 + A*B*29 to AccumulatedConstant.
1017 /// This will allow getAddRecExpr to produce this:
1018 ///
1019 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1020 ///
1021 /// This form often exposes folding opportunities that are hidden in
1022 /// the original operand list.
1023 ///
1024 /// Return true iff it appears that any interesting folding opportunities
1025 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1026 /// the common case where no interesting opportunities are present, and
1027 /// is also used as a check to avoid infinite recursion.
1028 ///
1029 static bool
1030 CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M,
1031                              SmallVector<const SCEV*, 8> &NewOps,
1032                              APInt &AccumulatedConstant,
1033                              const SmallVectorImpl<const SCEV*> &Ops,
1034                              const APInt &Scale,
1035                              ScalarEvolution &SE) {
1036   bool Interesting = false;
1037 
1038   // Iterate over the add operands.
1039   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1040     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1041     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1042       APInt NewScale =
1043         Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1044       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1045         // A multiplication of a constant with another add; recurse.
1046         Interesting |=
1047           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1048                                        cast<SCEVAddExpr>(Mul->getOperand(1))
1049                                          ->getOperands(),
1050                                        NewScale, SE);
1051       } else {
1052         // A multiplication of a constant with some other value. Update
1053         // the map.
1054         SmallVector<const SCEV*, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1055         const SCEV* Key = SE.getMulExpr(MulOps);
1056         std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
1057           M.insert(std::make_pair(Key, NewScale));
1058         if (Pair.second) {
1059           NewOps.push_back(Pair.first->first);
1060         } else {
1061           Pair.first->second += NewScale;
1062           // The map already had an entry for this value, which may indicate
1063           // a folding opportunity.
1064           Interesting = true;
1065         }
1066       }
1067     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1068       // Pull a buried constant out to the outside.
1069       if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1070         Interesting = true;
1071       AccumulatedConstant += Scale * C->getValue()->getValue();
1072     } else {
1073       // An ordinary operand. Update the map.
1074       std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
1075         M.insert(std::make_pair(Ops[i], Scale));
1076       if (Pair.second) {
1077         NewOps.push_back(Pair.first->first);
1078       } else {
1079         Pair.first->second += Scale;
1080         // The map already had an entry for this value, which may indicate
1081         // a folding opportunity.
1082         Interesting = true;
1083       }
1084     }
1085   }
1086 
1087   return Interesting;
1088 }
1089 
1090 namespace {
1091   struct APIntCompare {
1092     bool operator()(const APInt &LHS, const APInt &RHS) const {
1093       return LHS.ult(RHS);
1094     }
1095   };
1096 }
1097 
1098 /// getAddExpr - Get a canonical add expression, or something simpler if
1099 /// possible.
1100 const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
1101   assert(!Ops.empty() && "Cannot get empty add!");
1102   if (Ops.size() == 1) return Ops[0];
1103 #ifndef NDEBUG
1104   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1105     assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1106            getEffectiveSCEVType(Ops[0]->getType()) &&
1107            "SCEVAddExpr operand types don't match!");
1108 #endif
1109 
1110   // Sort by complexity, this groups all similar expression types together.
1111   GroupByComplexity(Ops, LI);
1112 
1113   // If there are any constants, fold them together.
1114   unsigned Idx = 0;
1115   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1116     ++Idx;
1117     assert(Idx < Ops.size());
1118     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1119       // We found two constants, fold them together!
1120       Ops[0] = getConstant(LHSC->getValue()->getValue() +
1121                            RHSC->getValue()->getValue());
1122       if (Ops.size() == 2) return Ops[0];
1123       Ops.erase(Ops.begin()+1);  // Erase the folded element
1124       LHSC = cast<SCEVConstant>(Ops[0]);
1125     }
1126 
1127     // If we are left with a constant zero being added, strip it off.
1128     if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1129       Ops.erase(Ops.begin());
1130       --Idx;
1131     }
1132   }
1133 
1134   if (Ops.size() == 1) return Ops[0];
1135 
1136   // Okay, check to see if the same value occurs in the operand list twice.  If
1137   // so, merge them together into an multiply expression.  Since we sorted the
1138   // list, these values are required to be adjacent.
1139   const Type *Ty = Ops[0]->getType();
1140   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1141     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1142       // Found a match, merge the two values into a multiply, and add any
1143       // remaining values to the result.
1144       const SCEV* Two = getIntegerSCEV(2, Ty);
1145       const SCEV* Mul = getMulExpr(Ops[i], Two);
1146       if (Ops.size() == 2)
1147         return Mul;
1148       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1149       Ops.push_back(Mul);
1150       return getAddExpr(Ops);
1151     }
1152 
1153   // Check for truncates. If all the operands are truncated from the same
1154   // type, see if factoring out the truncate would permit the result to be
1155   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1156   // if the contents of the resulting outer trunc fold to something simple.
1157   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1158     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1159     const Type *DstType = Trunc->getType();
1160     const Type *SrcType = Trunc->getOperand()->getType();
1161     SmallVector<const SCEV*, 8> LargeOps;
1162     bool Ok = true;
1163     // Check all the operands to see if they can be represented in the
1164     // source type of the truncate.
1165     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1166       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1167         if (T->getOperand()->getType() != SrcType) {
1168           Ok = false;
1169           break;
1170         }
1171         LargeOps.push_back(T->getOperand());
1172       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1173         // This could be either sign or zero extension, but sign extension
1174         // is much more likely to be foldable here.
1175         LargeOps.push_back(getSignExtendExpr(C, SrcType));
1176       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1177         SmallVector<const SCEV*, 8> LargeMulOps;
1178         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1179           if (const SCEVTruncateExpr *T =
1180                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1181             if (T->getOperand()->getType() != SrcType) {
1182               Ok = false;
1183               break;
1184             }
1185             LargeMulOps.push_back(T->getOperand());
1186           } else if (const SCEVConstant *C =
1187                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
1188             // This could be either sign or zero extension, but sign extension
1189             // is much more likely to be foldable here.
1190             LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1191           } else {
1192             Ok = false;
1193             break;
1194           }
1195         }
1196         if (Ok)
1197           LargeOps.push_back(getMulExpr(LargeMulOps));
1198       } else {
1199         Ok = false;
1200         break;
1201       }
1202     }
1203     if (Ok) {
1204       // Evaluate the expression in the larger type.
1205       const SCEV* Fold = getAddExpr(LargeOps);
1206       // If it folds to something simple, use it. Otherwise, don't.
1207       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1208         return getTruncateExpr(Fold, DstType);
1209     }
1210   }
1211 
1212   // Skip past any other cast SCEVs.
1213   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1214     ++Idx;
1215 
1216   // If there are add operands they would be next.
1217   if (Idx < Ops.size()) {
1218     bool DeletedAdd = false;
1219     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1220       // If we have an add, expand the add operands onto the end of the operands
1221       // list.
1222       Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1223       Ops.erase(Ops.begin()+Idx);
1224       DeletedAdd = true;
1225     }
1226 
1227     // If we deleted at least one add, we added operands to the end of the list,
1228     // and they are not necessarily sorted.  Recurse to resort and resimplify
1229     // any operands we just aquired.
1230     if (DeletedAdd)
1231       return getAddExpr(Ops);
1232   }
1233 
1234   // Skip over the add expression until we get to a multiply.
1235   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1236     ++Idx;
1237 
1238   // Check to see if there are any folding opportunities present with
1239   // operands multiplied by constant values.
1240   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1241     uint64_t BitWidth = getTypeSizeInBits(Ty);
1242     DenseMap<const SCEV*, APInt> M;
1243     SmallVector<const SCEV*, 8> NewOps;
1244     APInt AccumulatedConstant(BitWidth, 0);
1245     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1246                                      Ops, APInt(BitWidth, 1), *this)) {
1247       // Some interesting folding opportunity is present, so its worthwhile to
1248       // re-generate the operands list. Group the operands by constant scale,
1249       // to avoid multiplying by the same constant scale multiple times.
1250       std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare> MulOpLists;
1251       for (SmallVector<const SCEV*, 8>::iterator I = NewOps.begin(),
1252            E = NewOps.end(); I != E; ++I)
1253         MulOpLists[M.find(*I)->second].push_back(*I);
1254       // Re-generate the operands list.
1255       Ops.clear();
1256       if (AccumulatedConstant != 0)
1257         Ops.push_back(getConstant(AccumulatedConstant));
1258       for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1259            I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1260         if (I->first != 0)
1261           Ops.push_back(getMulExpr(getConstant(I->first),
1262                                    getAddExpr(I->second)));
1263       if (Ops.empty())
1264         return getIntegerSCEV(0, Ty);
1265       if (Ops.size() == 1)
1266         return Ops[0];
1267       return getAddExpr(Ops);
1268     }
1269   }
1270 
1271   // If we are adding something to a multiply expression, make sure the
1272   // something is not already an operand of the multiply.  If so, merge it into
1273   // the multiply.
1274   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1275     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1276     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1277       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1278       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1279         if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1280           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1281           const SCEV* InnerMul = Mul->getOperand(MulOp == 0);
1282           if (Mul->getNumOperands() != 2) {
1283             // If the multiply has more than two operands, we must get the
1284             // Y*Z term.
1285             SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end());
1286             MulOps.erase(MulOps.begin()+MulOp);
1287             InnerMul = getMulExpr(MulOps);
1288           }
1289           const SCEV* One = getIntegerSCEV(1, Ty);
1290           const SCEV* AddOne = getAddExpr(InnerMul, One);
1291           const SCEV* OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1292           if (Ops.size() == 2) return OuterMul;
1293           if (AddOp < Idx) {
1294             Ops.erase(Ops.begin()+AddOp);
1295             Ops.erase(Ops.begin()+Idx-1);
1296           } else {
1297             Ops.erase(Ops.begin()+Idx);
1298             Ops.erase(Ops.begin()+AddOp-1);
1299           }
1300           Ops.push_back(OuterMul);
1301           return getAddExpr(Ops);
1302         }
1303 
1304       // Check this multiply against other multiplies being added together.
1305       for (unsigned OtherMulIdx = Idx+1;
1306            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1307            ++OtherMulIdx) {
1308         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1309         // If MulOp occurs in OtherMul, we can fold the two multiplies
1310         // together.
1311         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1312              OMulOp != e; ++OMulOp)
1313           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1314             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1315             const SCEV* InnerMul1 = Mul->getOperand(MulOp == 0);
1316             if (Mul->getNumOperands() != 2) {
1317               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1318                                                   Mul->op_end());
1319               MulOps.erase(MulOps.begin()+MulOp);
1320               InnerMul1 = getMulExpr(MulOps);
1321             }
1322             const SCEV* InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1323             if (OtherMul->getNumOperands() != 2) {
1324               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1325                                                   OtherMul->op_end());
1326               MulOps.erase(MulOps.begin()+OMulOp);
1327               InnerMul2 = getMulExpr(MulOps);
1328             }
1329             const SCEV* InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1330             const SCEV* OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1331             if (Ops.size() == 2) return OuterMul;
1332             Ops.erase(Ops.begin()+Idx);
1333             Ops.erase(Ops.begin()+OtherMulIdx-1);
1334             Ops.push_back(OuterMul);
1335             return getAddExpr(Ops);
1336           }
1337       }
1338     }
1339   }
1340 
1341   // If there are any add recurrences in the operands list, see if any other
1342   // added values are loop invariant.  If so, we can fold them into the
1343   // recurrence.
1344   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1345     ++Idx;
1346 
1347   // Scan over all recurrences, trying to fold loop invariants into them.
1348   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1349     // Scan all of the other operands to this add and add them to the vector if
1350     // they are loop invariant w.r.t. the recurrence.
1351     SmallVector<const SCEV*, 8> LIOps;
1352     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1353     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1354       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1355         LIOps.push_back(Ops[i]);
1356         Ops.erase(Ops.begin()+i);
1357         --i; --e;
1358       }
1359 
1360     // If we found some loop invariants, fold them into the recurrence.
1361     if (!LIOps.empty()) {
1362       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1363       LIOps.push_back(AddRec->getStart());
1364 
1365       SmallVector<const SCEV*, 4> AddRecOps(AddRec->op_begin(),
1366                                            AddRec->op_end());
1367       AddRecOps[0] = getAddExpr(LIOps);
1368 
1369       const SCEV* NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1370       // If all of the other operands were loop invariant, we are done.
1371       if (Ops.size() == 1) return NewRec;
1372 
1373       // Otherwise, add the folded AddRec by the non-liv parts.
1374       for (unsigned i = 0;; ++i)
1375         if (Ops[i] == AddRec) {
1376           Ops[i] = NewRec;
1377           break;
1378         }
1379       return getAddExpr(Ops);
1380     }
1381 
1382     // Okay, if there weren't any loop invariants to be folded, check to see if
1383     // there are multiple AddRec's with the same loop induction variable being
1384     // added together.  If so, we can fold them.
1385     for (unsigned OtherIdx = Idx+1;
1386          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1387       if (OtherIdx != Idx) {
1388         const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1389         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1390           // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1391           SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1392                                               AddRec->op_end());
1393           for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1394             if (i >= NewOps.size()) {
1395               NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1396                             OtherAddRec->op_end());
1397               break;
1398             }
1399             NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1400           }
1401           const SCEV* NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1402 
1403           if (Ops.size() == 2) return NewAddRec;
1404 
1405           Ops.erase(Ops.begin()+Idx);
1406           Ops.erase(Ops.begin()+OtherIdx-1);
1407           Ops.push_back(NewAddRec);
1408           return getAddExpr(Ops);
1409         }
1410       }
1411 
1412     // Otherwise couldn't fold anything into this recurrence.  Move onto the
1413     // next one.
1414   }
1415 
1416   // Okay, it looks like we really DO need an add expr.  Check to see if we
1417   // already have one, otherwise create a new one.
1418   FoldingSetNodeID ID;
1419   ID.AddInteger(scAddExpr);
1420   ID.AddInteger(Ops.size());
1421   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1422     ID.AddPointer(Ops[i]);
1423   void *IP = 0;
1424   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1425   SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
1426   new (S) SCEVAddExpr(Ops);
1427   UniqueSCEVs.InsertNode(S, IP);
1428   return S;
1429 }
1430 
1431 
1432 /// getMulExpr - Get a canonical multiply expression, or something simpler if
1433 /// possible.
1434 const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
1435   assert(!Ops.empty() && "Cannot get empty mul!");
1436 #ifndef NDEBUG
1437   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1438     assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1439            getEffectiveSCEVType(Ops[0]->getType()) &&
1440            "SCEVMulExpr operand types don't match!");
1441 #endif
1442 
1443   // Sort by complexity, this groups all similar expression types together.
1444   GroupByComplexity(Ops, LI);
1445 
1446   // If there are any constants, fold them together.
1447   unsigned Idx = 0;
1448   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1449 
1450     // C1*(C2+V) -> C1*C2 + C1*V
1451     if (Ops.size() == 2)
1452       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1453         if (Add->getNumOperands() == 2 &&
1454             isa<SCEVConstant>(Add->getOperand(0)))
1455           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1456                             getMulExpr(LHSC, Add->getOperand(1)));
1457 
1458 
1459     ++Idx;
1460     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1461       // We found two constants, fold them together!
1462       ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1463                                            RHSC->getValue()->getValue());
1464       Ops[0] = getConstant(Fold);
1465       Ops.erase(Ops.begin()+1);  // Erase the folded element
1466       if (Ops.size() == 1) return Ops[0];
1467       LHSC = cast<SCEVConstant>(Ops[0]);
1468     }
1469 
1470     // If we are left with a constant one being multiplied, strip it off.
1471     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1472       Ops.erase(Ops.begin());
1473       --Idx;
1474     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1475       // If we have a multiply of zero, it will always be zero.
1476       return Ops[0];
1477     }
1478   }
1479 
1480   // Skip over the add expression until we get to a multiply.
1481   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1482     ++Idx;
1483 
1484   if (Ops.size() == 1)
1485     return Ops[0];
1486 
1487   // If there are mul operands inline them all into this expression.
1488   if (Idx < Ops.size()) {
1489     bool DeletedMul = false;
1490     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1491       // If we have an mul, expand the mul operands onto the end of the operands
1492       // list.
1493       Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1494       Ops.erase(Ops.begin()+Idx);
1495       DeletedMul = true;
1496     }
1497 
1498     // If we deleted at least one mul, we added operands to the end of the list,
1499     // and they are not necessarily sorted.  Recurse to resort and resimplify
1500     // any operands we just aquired.
1501     if (DeletedMul)
1502       return getMulExpr(Ops);
1503   }
1504 
1505   // If there are any add recurrences in the operands list, see if any other
1506   // added values are loop invariant.  If so, we can fold them into the
1507   // recurrence.
1508   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1509     ++Idx;
1510 
1511   // Scan over all recurrences, trying to fold loop invariants into them.
1512   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1513     // Scan all of the other operands to this mul and add them to the vector if
1514     // they are loop invariant w.r.t. the recurrence.
1515     SmallVector<const SCEV*, 8> LIOps;
1516     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1517     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1518       if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1519         LIOps.push_back(Ops[i]);
1520         Ops.erase(Ops.begin()+i);
1521         --i; --e;
1522       }
1523 
1524     // If we found some loop invariants, fold them into the recurrence.
1525     if (!LIOps.empty()) {
1526       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1527       SmallVector<const SCEV*, 4> NewOps;
1528       NewOps.reserve(AddRec->getNumOperands());
1529       if (LIOps.size() == 1) {
1530         const SCEV *Scale = LIOps[0];
1531         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1532           NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1533       } else {
1534         for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1535           SmallVector<const SCEV*, 4> MulOps(LIOps.begin(), LIOps.end());
1536           MulOps.push_back(AddRec->getOperand(i));
1537           NewOps.push_back(getMulExpr(MulOps));
1538         }
1539       }
1540 
1541       const SCEV* NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1542 
1543       // If all of the other operands were loop invariant, we are done.
1544       if (Ops.size() == 1) return NewRec;
1545 
1546       // Otherwise, multiply the folded AddRec by the non-liv parts.
1547       for (unsigned i = 0;; ++i)
1548         if (Ops[i] == AddRec) {
1549           Ops[i] = NewRec;
1550           break;
1551         }
1552       return getMulExpr(Ops);
1553     }
1554 
1555     // Okay, if there weren't any loop invariants to be folded, check to see if
1556     // there are multiple AddRec's with the same loop induction variable being
1557     // multiplied together.  If so, we can fold them.
1558     for (unsigned OtherIdx = Idx+1;
1559          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1560       if (OtherIdx != Idx) {
1561         const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1562         if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1563           // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1564           const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1565           const SCEV* NewStart = getMulExpr(F->getStart(),
1566                                                  G->getStart());
1567           const SCEV* B = F->getStepRecurrence(*this);
1568           const SCEV* D = G->getStepRecurrence(*this);
1569           const SCEV* NewStep = getAddExpr(getMulExpr(F, D),
1570                                           getMulExpr(G, B),
1571                                           getMulExpr(B, D));
1572           const SCEV* NewAddRec = getAddRecExpr(NewStart, NewStep,
1573                                                F->getLoop());
1574           if (Ops.size() == 2) return NewAddRec;
1575 
1576           Ops.erase(Ops.begin()+Idx);
1577           Ops.erase(Ops.begin()+OtherIdx-1);
1578           Ops.push_back(NewAddRec);
1579           return getMulExpr(Ops);
1580         }
1581       }
1582 
1583     // Otherwise couldn't fold anything into this recurrence.  Move onto the
1584     // next one.
1585   }
1586 
1587   // Okay, it looks like we really DO need an mul expr.  Check to see if we
1588   // already have one, otherwise create a new one.
1589   FoldingSetNodeID ID;
1590   ID.AddInteger(scMulExpr);
1591   ID.AddInteger(Ops.size());
1592   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1593     ID.AddPointer(Ops[i]);
1594   void *IP = 0;
1595   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1596   SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
1597   new (S) SCEVMulExpr(Ops);
1598   UniqueSCEVs.InsertNode(S, IP);
1599   return S;
1600 }
1601 
1602 /// getUDivExpr - Get a canonical multiply expression, or something simpler if
1603 /// possible.
1604 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1605                                          const SCEV *RHS) {
1606   assert(getEffectiveSCEVType(LHS->getType()) ==
1607          getEffectiveSCEVType(RHS->getType()) &&
1608          "SCEVUDivExpr operand types don't match!");
1609 
1610   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1611     if (RHSC->getValue()->equalsInt(1))
1612       return LHS;                            // X udiv 1 --> x
1613     if (RHSC->isZero())
1614       return getIntegerSCEV(0, LHS->getType()); // value is undefined
1615 
1616     // Determine if the division can be folded into the operands of
1617     // its operands.
1618     // TODO: Generalize this to non-constants by using known-bits information.
1619     const Type *Ty = LHS->getType();
1620     unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1621     unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1622     // For non-power-of-two values, effectively round the value up to the
1623     // nearest power of two.
1624     if (!RHSC->getValue()->getValue().isPowerOf2())
1625       ++MaxShiftAmt;
1626     const IntegerType *ExtTy =
1627       IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1628     // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1629     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1630       if (const SCEVConstant *Step =
1631             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1632         if (!Step->getValue()->getValue()
1633               .urem(RHSC->getValue()->getValue()) &&
1634             getZeroExtendExpr(AR, ExtTy) ==
1635             getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1636                           getZeroExtendExpr(Step, ExtTy),
1637                           AR->getLoop())) {
1638           SmallVector<const SCEV*, 4> Operands;
1639           for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1640             Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1641           return getAddRecExpr(Operands, AR->getLoop());
1642         }
1643     // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1644     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1645       SmallVector<const SCEV*, 4> Operands;
1646       for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1647         Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1648       if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1649         // Find an operand that's safely divisible.
1650         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1651           const SCEV* Op = M->getOperand(i);
1652           const SCEV* Div = getUDivExpr(Op, RHSC);
1653           if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1654             const SmallVectorImpl<const SCEV*> &MOperands = M->getOperands();
1655             Operands = SmallVector<const SCEV*, 4>(MOperands.begin(),
1656                                                   MOperands.end());
1657             Operands[i] = Div;
1658             return getMulExpr(Operands);
1659           }
1660         }
1661     }
1662     // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1663     if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1664       SmallVector<const SCEV*, 4> Operands;
1665       for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1666         Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1667       if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1668         Operands.clear();
1669         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1670           const SCEV* Op = getUDivExpr(A->getOperand(i), RHS);
1671           if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1672             break;
1673           Operands.push_back(Op);
1674         }
1675         if (Operands.size() == A->getNumOperands())
1676           return getAddExpr(Operands);
1677       }
1678     }
1679 
1680     // Fold if both operands are constant.
1681     if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1682       Constant *LHSCV = LHSC->getValue();
1683       Constant *RHSCV = RHSC->getValue();
1684       return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1685                                                                  RHSCV)));
1686     }
1687   }
1688 
1689   FoldingSetNodeID ID;
1690   ID.AddInteger(scUDivExpr);
1691   ID.AddPointer(LHS);
1692   ID.AddPointer(RHS);
1693   void *IP = 0;
1694   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1695   SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
1696   new (S) SCEVUDivExpr(LHS, RHS);
1697   UniqueSCEVs.InsertNode(S, IP);
1698   return S;
1699 }
1700 
1701 
1702 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1703 /// Simplify the expression as much as possible.
1704 const SCEV* ScalarEvolution::getAddRecExpr(const SCEV* Start,
1705                                const SCEV* Step, const Loop *L) {
1706   SmallVector<const SCEV*, 4> Operands;
1707   Operands.push_back(Start);
1708   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1709     if (StepChrec->getLoop() == L) {
1710       Operands.insert(Operands.end(), StepChrec->op_begin(),
1711                       StepChrec->op_end());
1712       return getAddRecExpr(Operands, L);
1713     }
1714 
1715   Operands.push_back(Step);
1716   return getAddRecExpr(Operands, L);
1717 }
1718 
1719 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1720 /// Simplify the expression as much as possible.
1721 const SCEV *
1722 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
1723                                const Loop *L) {
1724   if (Operands.size() == 1) return Operands[0];
1725 #ifndef NDEBUG
1726   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1727     assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1728            getEffectiveSCEVType(Operands[0]->getType()) &&
1729            "SCEVAddRecExpr operand types don't match!");
1730 #endif
1731 
1732   if (Operands.back()->isZero()) {
1733     Operands.pop_back();
1734     return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1735   }
1736 
1737   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1738   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1739     const Loop* NestedLoop = NestedAR->getLoop();
1740     if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1741       SmallVector<const SCEV*, 4> NestedOperands(NestedAR->op_begin(),
1742                                                 NestedAR->op_end());
1743       Operands[0] = NestedAR->getStart();
1744       // AddRecs require their operands be loop-invariant with respect to their
1745       // loops. Don't perform this transformation if it would break this
1746       // requirement.
1747       bool AllInvariant = true;
1748       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1749         if (!Operands[i]->isLoopInvariant(L)) {
1750           AllInvariant = false;
1751           break;
1752         }
1753       if (AllInvariant) {
1754         NestedOperands[0] = getAddRecExpr(Operands, L);
1755         AllInvariant = true;
1756         for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1757           if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1758             AllInvariant = false;
1759             break;
1760           }
1761         if (AllInvariant)
1762           // Ok, both add recurrences are valid after the transformation.
1763           return getAddRecExpr(NestedOperands, NestedLoop);
1764       }
1765       // Reset Operands to its original state.
1766       Operands[0] = NestedAR;
1767     }
1768   }
1769 
1770   FoldingSetNodeID ID;
1771   ID.AddInteger(scAddRecExpr);
1772   ID.AddInteger(Operands.size());
1773   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1774     ID.AddPointer(Operands[i]);
1775   ID.AddPointer(L);
1776   void *IP = 0;
1777   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1778   SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
1779   new (S) SCEVAddRecExpr(Operands, L);
1780   UniqueSCEVs.InsertNode(S, IP);
1781   return S;
1782 }
1783 
1784 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1785                                          const SCEV *RHS) {
1786   SmallVector<const SCEV*, 2> Ops;
1787   Ops.push_back(LHS);
1788   Ops.push_back(RHS);
1789   return getSMaxExpr(Ops);
1790 }
1791 
1792 const SCEV*
1793 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
1794   assert(!Ops.empty() && "Cannot get empty smax!");
1795   if (Ops.size() == 1) return Ops[0];
1796 #ifndef NDEBUG
1797   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1798     assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1799            getEffectiveSCEVType(Ops[0]->getType()) &&
1800            "SCEVSMaxExpr operand types don't match!");
1801 #endif
1802 
1803   // Sort by complexity, this groups all similar expression types together.
1804   GroupByComplexity(Ops, LI);
1805 
1806   // If there are any constants, fold them together.
1807   unsigned Idx = 0;
1808   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1809     ++Idx;
1810     assert(Idx < Ops.size());
1811     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1812       // We found two constants, fold them together!
1813       ConstantInt *Fold = ConstantInt::get(
1814                               APIntOps::smax(LHSC->getValue()->getValue(),
1815                                              RHSC->getValue()->getValue()));
1816       Ops[0] = getConstant(Fold);
1817       Ops.erase(Ops.begin()+1);  // Erase the folded element
1818       if (Ops.size() == 1) return Ops[0];
1819       LHSC = cast<SCEVConstant>(Ops[0]);
1820     }
1821 
1822     // If we are left with a constant minimum-int, strip it off.
1823     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1824       Ops.erase(Ops.begin());
1825       --Idx;
1826     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1827       // If we have an smax with a constant maximum-int, it will always be
1828       // maximum-int.
1829       return Ops[0];
1830     }
1831   }
1832 
1833   if (Ops.size() == 1) return Ops[0];
1834 
1835   // Find the first SMax
1836   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1837     ++Idx;
1838 
1839   // Check to see if one of the operands is an SMax. If so, expand its operands
1840   // onto our operand list, and recurse to simplify.
1841   if (Idx < Ops.size()) {
1842     bool DeletedSMax = false;
1843     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1844       Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1845       Ops.erase(Ops.begin()+Idx);
1846       DeletedSMax = true;
1847     }
1848 
1849     if (DeletedSMax)
1850       return getSMaxExpr(Ops);
1851   }
1852 
1853   // Okay, check to see if the same value occurs in the operand list twice.  If
1854   // so, delete one.  Since we sorted the list, these values are required to
1855   // be adjacent.
1856   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1857     if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1858       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1859       --i; --e;
1860     }
1861 
1862   if (Ops.size() == 1) return Ops[0];
1863 
1864   assert(!Ops.empty() && "Reduced smax down to nothing!");
1865 
1866   // Okay, it looks like we really DO need an smax expr.  Check to see if we
1867   // already have one, otherwise create a new one.
1868   FoldingSetNodeID ID;
1869   ID.AddInteger(scSMaxExpr);
1870   ID.AddInteger(Ops.size());
1871   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1872     ID.AddPointer(Ops[i]);
1873   void *IP = 0;
1874   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1875   SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
1876   new (S) SCEVSMaxExpr(Ops);
1877   UniqueSCEVs.InsertNode(S, IP);
1878   return S;
1879 }
1880 
1881 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1882                                          const SCEV *RHS) {
1883   SmallVector<const SCEV*, 2> Ops;
1884   Ops.push_back(LHS);
1885   Ops.push_back(RHS);
1886   return getUMaxExpr(Ops);
1887 }
1888 
1889 const SCEV*
1890 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
1891   assert(!Ops.empty() && "Cannot get empty umax!");
1892   if (Ops.size() == 1) return Ops[0];
1893 #ifndef NDEBUG
1894   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1895     assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1896            getEffectiveSCEVType(Ops[0]->getType()) &&
1897            "SCEVUMaxExpr operand types don't match!");
1898 #endif
1899 
1900   // Sort by complexity, this groups all similar expression types together.
1901   GroupByComplexity(Ops, LI);
1902 
1903   // If there are any constants, fold them together.
1904   unsigned Idx = 0;
1905   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1906     ++Idx;
1907     assert(Idx < Ops.size());
1908     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1909       // We found two constants, fold them together!
1910       ConstantInt *Fold = ConstantInt::get(
1911                               APIntOps::umax(LHSC->getValue()->getValue(),
1912                                              RHSC->getValue()->getValue()));
1913       Ops[0] = getConstant(Fold);
1914       Ops.erase(Ops.begin()+1);  // Erase the folded element
1915       if (Ops.size() == 1) return Ops[0];
1916       LHSC = cast<SCEVConstant>(Ops[0]);
1917     }
1918 
1919     // If we are left with a constant minimum-int, strip it off.
1920     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1921       Ops.erase(Ops.begin());
1922       --Idx;
1923     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
1924       // If we have an umax with a constant maximum-int, it will always be
1925       // maximum-int.
1926       return Ops[0];
1927     }
1928   }
1929 
1930   if (Ops.size() == 1) return Ops[0];
1931 
1932   // Find the first UMax
1933   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1934     ++Idx;
1935 
1936   // Check to see if one of the operands is a UMax. If so, expand its operands
1937   // onto our operand list, and recurse to simplify.
1938   if (Idx < Ops.size()) {
1939     bool DeletedUMax = false;
1940     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1941       Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1942       Ops.erase(Ops.begin()+Idx);
1943       DeletedUMax = true;
1944     }
1945 
1946     if (DeletedUMax)
1947       return getUMaxExpr(Ops);
1948   }
1949 
1950   // Okay, check to see if the same value occurs in the operand list twice.  If
1951   // so, delete one.  Since we sorted the list, these values are required to
1952   // be adjacent.
1953   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1954     if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1955       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1956       --i; --e;
1957     }
1958 
1959   if (Ops.size() == 1) return Ops[0];
1960 
1961   assert(!Ops.empty() && "Reduced umax down to nothing!");
1962 
1963   // Okay, it looks like we really DO need a umax expr.  Check to see if we
1964   // already have one, otherwise create a new one.
1965   FoldingSetNodeID ID;
1966   ID.AddInteger(scUMaxExpr);
1967   ID.AddInteger(Ops.size());
1968   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1969     ID.AddPointer(Ops[i]);
1970   void *IP = 0;
1971   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1972   SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
1973   new (S) SCEVUMaxExpr(Ops);
1974   UniqueSCEVs.InsertNode(S, IP);
1975   return S;
1976 }
1977 
1978 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
1979                                          const SCEV *RHS) {
1980   // ~smax(~x, ~y) == smin(x, y).
1981   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1982 }
1983 
1984 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
1985                                          const SCEV *RHS) {
1986   // ~umax(~x, ~y) == umin(x, y)
1987   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1988 }
1989 
1990 const SCEV* ScalarEvolution::getUnknown(Value *V) {
1991   // Don't attempt to do anything other than create a SCEVUnknown object
1992   // here.  createSCEV only calls getUnknown after checking for all other
1993   // interesting possibilities, and any other code that calls getUnknown
1994   // is doing so in order to hide a value from SCEV canonicalization.
1995 
1996   FoldingSetNodeID ID;
1997   ID.AddInteger(scUnknown);
1998   ID.AddPointer(V);
1999   void *IP = 0;
2000   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2001   SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
2002   new (S) SCEVUnknown(V);
2003   UniqueSCEVs.InsertNode(S, IP);
2004   return S;
2005 }
2006 
2007 //===----------------------------------------------------------------------===//
2008 //            Basic SCEV Analysis and PHI Idiom Recognition Code
2009 //
2010 
2011 /// isSCEVable - Test if values of the given type are analyzable within
2012 /// the SCEV framework. This primarily includes integer types, and it
2013 /// can optionally include pointer types if the ScalarEvolution class
2014 /// has access to target-specific information.
2015 bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2016   // Integers are always SCEVable.
2017   if (Ty->isInteger())
2018     return true;
2019 
2020   // Pointers are SCEVable if TargetData information is available
2021   // to provide pointer size information.
2022   if (isa<PointerType>(Ty))
2023     return TD != NULL;
2024 
2025   // Otherwise it's not SCEVable.
2026   return false;
2027 }
2028 
2029 /// getTypeSizeInBits - Return the size in bits of the specified type,
2030 /// for which isSCEVable must return true.
2031 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2032   assert(isSCEVable(Ty) && "Type is not SCEVable!");
2033 
2034   // If we have a TargetData, use it!
2035   if (TD)
2036     return TD->getTypeSizeInBits(Ty);
2037 
2038   // Otherwise, we support only integer types.
2039   assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
2040   return Ty->getPrimitiveSizeInBits();
2041 }
2042 
2043 /// getEffectiveSCEVType - Return a type with the same bitwidth as
2044 /// the given type and which represents how SCEV will treat the given
2045 /// type, for which isSCEVable must return true. For pointer types,
2046 /// this is the pointer-sized integer type.
2047 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2048   assert(isSCEVable(Ty) && "Type is not SCEVable!");
2049 
2050   if (Ty->isInteger())
2051     return Ty;
2052 
2053   assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2054   return TD->getIntPtrType();
2055 }
2056 
2057 const SCEV* ScalarEvolution::getCouldNotCompute() {
2058   return &CouldNotCompute;
2059 }
2060 
2061 /// hasSCEV - Return true if the SCEV for this value has already been
2062 /// computed.
2063 bool ScalarEvolution::hasSCEV(Value *V) const {
2064   return Scalars.count(V);
2065 }
2066 
2067 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2068 /// expression and create a new one.
2069 const SCEV* ScalarEvolution::getSCEV(Value *V) {
2070   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2071 
2072   std::map<SCEVCallbackVH, const SCEV*>::iterator I = Scalars.find(V);
2073   if (I != Scalars.end()) return I->second;
2074   const SCEV* S = createSCEV(V);
2075   Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2076   return S;
2077 }
2078 
2079 /// getIntegerSCEV - Given a SCEVable type, create a constant for the
2080 /// specified signed integer value and return a SCEV for the constant.
2081 const SCEV* ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
2082   const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2083   return getConstant(ConstantInt::get(ITy, Val));
2084 }
2085 
2086 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2087 ///
2088 const SCEV* ScalarEvolution::getNegativeSCEV(const SCEV* V) {
2089   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2090     return getConstant(cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2091 
2092   const Type *Ty = V->getType();
2093   Ty = getEffectiveSCEVType(Ty);
2094   return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
2095 }
2096 
2097 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2098 const SCEV* ScalarEvolution::getNotSCEV(const SCEV* V) {
2099   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2100     return getConstant(cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2101 
2102   const Type *Ty = V->getType();
2103   Ty = getEffectiveSCEVType(Ty);
2104   const SCEV* AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
2105   return getMinusSCEV(AllOnes, V);
2106 }
2107 
2108 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2109 ///
2110 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2111                                           const SCEV *RHS) {
2112   // X - Y --> X + -Y
2113   return getAddExpr(LHS, getNegativeSCEV(RHS));
2114 }
2115 
2116 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2117 /// input value to the specified type.  If the type must be extended, it is zero
2118 /// extended.
2119 const SCEV*
2120 ScalarEvolution::getTruncateOrZeroExtend(const SCEV* V,
2121                                          const Type *Ty) {
2122   const Type *SrcTy = V->getType();
2123   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2124          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2125          "Cannot truncate or zero extend with non-integer arguments!");
2126   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2127     return V;  // No conversion
2128   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2129     return getTruncateExpr(V, Ty);
2130   return getZeroExtendExpr(V, Ty);
2131 }
2132 
2133 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2134 /// input value to the specified type.  If the type must be extended, it is sign
2135 /// extended.
2136 const SCEV*
2137 ScalarEvolution::getTruncateOrSignExtend(const SCEV* V,
2138                                          const Type *Ty) {
2139   const Type *SrcTy = V->getType();
2140   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2141          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2142          "Cannot truncate or zero extend with non-integer arguments!");
2143   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2144     return V;  // No conversion
2145   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2146     return getTruncateExpr(V, Ty);
2147   return getSignExtendExpr(V, Ty);
2148 }
2149 
2150 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2151 /// input value to the specified type.  If the type must be extended, it is zero
2152 /// extended.  The conversion must not be narrowing.
2153 const SCEV*
2154 ScalarEvolution::getNoopOrZeroExtend(const SCEV* V, const Type *Ty) {
2155   const Type *SrcTy = V->getType();
2156   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2157          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2158          "Cannot noop or zero extend with non-integer arguments!");
2159   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2160          "getNoopOrZeroExtend cannot truncate!");
2161   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2162     return V;  // No conversion
2163   return getZeroExtendExpr(V, Ty);
2164 }
2165 
2166 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2167 /// input value to the specified type.  If the type must be extended, it is sign
2168 /// extended.  The conversion must not be narrowing.
2169 const SCEV*
2170 ScalarEvolution::getNoopOrSignExtend(const SCEV* V, const Type *Ty) {
2171   const Type *SrcTy = V->getType();
2172   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2173          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2174          "Cannot noop or sign extend with non-integer arguments!");
2175   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2176          "getNoopOrSignExtend cannot truncate!");
2177   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2178     return V;  // No conversion
2179   return getSignExtendExpr(V, Ty);
2180 }
2181 
2182 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2183 /// the input value to the specified type. If the type must be extended,
2184 /// it is extended with unspecified bits. The conversion must not be
2185 /// narrowing.
2186 const SCEV*
2187 ScalarEvolution::getNoopOrAnyExtend(const SCEV* V, const Type *Ty) {
2188   const Type *SrcTy = V->getType();
2189   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2190          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2191          "Cannot noop or any extend with non-integer arguments!");
2192   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2193          "getNoopOrAnyExtend cannot truncate!");
2194   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2195     return V;  // No conversion
2196   return getAnyExtendExpr(V, Ty);
2197 }
2198 
2199 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2200 /// input value to the specified type.  The conversion must not be widening.
2201 const SCEV*
2202 ScalarEvolution::getTruncateOrNoop(const SCEV* V, const Type *Ty) {
2203   const Type *SrcTy = V->getType();
2204   assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2205          (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2206          "Cannot truncate or noop with non-integer arguments!");
2207   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2208          "getTruncateOrNoop cannot extend!");
2209   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2210     return V;  // No conversion
2211   return getTruncateExpr(V, Ty);
2212 }
2213 
2214 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2215 /// the types using zero-extension, and then perform a umax operation
2216 /// with them.
2217 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2218                                                         const SCEV *RHS) {
2219   const SCEV* PromotedLHS = LHS;
2220   const SCEV* PromotedRHS = RHS;
2221 
2222   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2223     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2224   else
2225     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2226 
2227   return getUMaxExpr(PromotedLHS, PromotedRHS);
2228 }
2229 
2230 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
2231 /// the types using zero-extension, and then perform a umin operation
2232 /// with them.
2233 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2234                                                         const SCEV *RHS) {
2235   const SCEV* PromotedLHS = LHS;
2236   const SCEV* PromotedRHS = RHS;
2237 
2238   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2239     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2240   else
2241     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2242 
2243   return getUMinExpr(PromotedLHS, PromotedRHS);
2244 }
2245 
2246 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2247 /// the specified instruction and replaces any references to the symbolic value
2248 /// SymName with the specified value.  This is used during PHI resolution.
2249 void
2250 ScalarEvolution::ReplaceSymbolicValueWithConcrete(Instruction *I,
2251                                                   const SCEV *SymName,
2252                                                   const SCEV *NewVal) {
2253   std::map<SCEVCallbackVH, const SCEV*>::iterator SI =
2254     Scalars.find(SCEVCallbackVH(I, this));
2255   if (SI == Scalars.end()) return;
2256 
2257   const SCEV* NV =
2258     SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
2259   if (NV == SI->second) return;  // No change.
2260 
2261   SI->second = NV;       // Update the scalars map!
2262 
2263   // Any instruction values that use this instruction might also need to be
2264   // updated!
2265   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2266        UI != E; ++UI)
2267     ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2268 }
2269 
2270 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2271 /// a loop header, making it a potential recurrence, or it doesn't.
2272 ///
2273 const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
2274   if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
2275     if (const Loop *L = LI->getLoopFor(PN->getParent()))
2276       if (L->getHeader() == PN->getParent()) {
2277         // If it lives in the loop header, it has two incoming values, one
2278         // from outside the loop, and one from inside.
2279         unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2280         unsigned BackEdge     = IncomingEdge^1;
2281 
2282         // While we are analyzing this PHI node, handle its value symbolically.
2283         const SCEV* SymbolicName = getUnknown(PN);
2284         assert(Scalars.find(PN) == Scalars.end() &&
2285                "PHI node already processed?");
2286         Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2287 
2288         // Using this symbolic name for the PHI, analyze the value coming around
2289         // the back-edge.
2290         const SCEV* BEValue = getSCEV(PN->getIncomingValue(BackEdge));
2291 
2292         // NOTE: If BEValue is loop invariant, we know that the PHI node just
2293         // has a special value for the first iteration of the loop.
2294 
2295         // If the value coming around the backedge is an add with the symbolic
2296         // value we just inserted, then we found a simple induction variable!
2297         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2298           // If there is a single occurrence of the symbolic value, replace it
2299           // with a recurrence.
2300           unsigned FoundIndex = Add->getNumOperands();
2301           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2302             if (Add->getOperand(i) == SymbolicName)
2303               if (FoundIndex == e) {
2304                 FoundIndex = i;
2305                 break;
2306               }
2307 
2308           if (FoundIndex != Add->getNumOperands()) {
2309             // Create an add with everything but the specified operand.
2310             SmallVector<const SCEV*, 8> Ops;
2311             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2312               if (i != FoundIndex)
2313                 Ops.push_back(Add->getOperand(i));
2314             const SCEV* Accum = getAddExpr(Ops);
2315 
2316             // This is not a valid addrec if the step amount is varying each
2317             // loop iteration, but is not itself an addrec in this loop.
2318             if (Accum->isLoopInvariant(L) ||
2319                 (isa<SCEVAddRecExpr>(Accum) &&
2320                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2321               const SCEV *StartVal =
2322                 getSCEV(PN->getIncomingValue(IncomingEdge));
2323               const SCEV *PHISCEV =
2324                 getAddRecExpr(StartVal, Accum, L);
2325 
2326               // Okay, for the entire analysis of this edge we assumed the PHI
2327               // to be symbolic.  We now need to go back and update all of the
2328               // entries for the scalars that use the PHI (except for the PHI
2329               // itself) to use the new analyzed value instead of the "symbolic"
2330               // value.
2331               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2332               return PHISCEV;
2333             }
2334           }
2335         } else if (const SCEVAddRecExpr *AddRec =
2336                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
2337           // Otherwise, this could be a loop like this:
2338           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2339           // In this case, j = {1,+,1}  and BEValue is j.
2340           // Because the other in-value of i (0) fits the evolution of BEValue
2341           // i really is an addrec evolution.
2342           if (AddRec->getLoop() == L && AddRec->isAffine()) {
2343             const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2344 
2345             // If StartVal = j.start - j.stride, we can use StartVal as the
2346             // initial step of the addrec evolution.
2347             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2348                                             AddRec->getOperand(1))) {
2349               const SCEV* PHISCEV =
2350                  getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2351 
2352               // Okay, for the entire analysis of this edge we assumed the PHI
2353               // to be symbolic.  We now need to go back and update all of the
2354               // entries for the scalars that use the PHI (except for the PHI
2355               // itself) to use the new analyzed value instead of the "symbolic"
2356               // value.
2357               ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2358               return PHISCEV;
2359             }
2360           }
2361         }
2362 
2363         return SymbolicName;
2364       }
2365 
2366   // If it's not a loop phi, we can't handle it yet.
2367   return getUnknown(PN);
2368 }
2369 
2370 /// createNodeForGEP - Expand GEP instructions into add and multiply
2371 /// operations. This allows them to be analyzed by regular SCEV code.
2372 ///
2373 const SCEV* ScalarEvolution::createNodeForGEP(User *GEP) {
2374 
2375   const Type *IntPtrTy = TD->getIntPtrType();
2376   Value *Base = GEP->getOperand(0);
2377   // Don't attempt to analyze GEPs over unsized objects.
2378   if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2379     return getUnknown(GEP);
2380   const SCEV* TotalOffset = getIntegerSCEV(0, IntPtrTy);
2381   gep_type_iterator GTI = gep_type_begin(GEP);
2382   for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2383                                       E = GEP->op_end();
2384        I != E; ++I) {
2385     Value *Index = *I;
2386     // Compute the (potentially symbolic) offset in bytes for this index.
2387     if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2388       // For a struct, add the member offset.
2389       const StructLayout &SL = *TD->getStructLayout(STy);
2390       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2391       uint64_t Offset = SL.getElementOffset(FieldNo);
2392       TotalOffset = getAddExpr(TotalOffset,
2393                                   getIntegerSCEV(Offset, IntPtrTy));
2394     } else {
2395       // For an array, add the element offset, explicitly scaled.
2396       const SCEV* LocalOffset = getSCEV(Index);
2397       if (!isa<PointerType>(LocalOffset->getType()))
2398         // Getelementptr indicies are signed.
2399         LocalOffset = getTruncateOrSignExtend(LocalOffset,
2400                                               IntPtrTy);
2401       LocalOffset =
2402         getMulExpr(LocalOffset,
2403                    getIntegerSCEV(TD->getTypeAllocSize(*GTI),
2404                                   IntPtrTy));
2405       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2406     }
2407   }
2408   return getAddExpr(getSCEV(Base), TotalOffset);
2409 }
2410 
2411 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2412 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
2413 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2414 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2415 uint32_t
2416 ScalarEvolution::GetMinTrailingZeros(const SCEV* S) {
2417   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2418     return C->getValue()->getValue().countTrailingZeros();
2419 
2420   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2421     return std::min(GetMinTrailingZeros(T->getOperand()),
2422                     (uint32_t)getTypeSizeInBits(T->getType()));
2423 
2424   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2425     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2426     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2427              getTypeSizeInBits(E->getType()) : OpRes;
2428   }
2429 
2430   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2431     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2432     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2433              getTypeSizeInBits(E->getType()) : OpRes;
2434   }
2435 
2436   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2437     // The result is the min of all operands results.
2438     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2439     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2440       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2441     return MinOpRes;
2442   }
2443 
2444   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2445     // The result is the sum of all operands results.
2446     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2447     uint32_t BitWidth = getTypeSizeInBits(M->getType());
2448     for (unsigned i = 1, e = M->getNumOperands();
2449          SumOpRes != BitWidth && i != e; ++i)
2450       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2451                           BitWidth);
2452     return SumOpRes;
2453   }
2454 
2455   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2456     // The result is the min of all operands results.
2457     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2458     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2459       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2460     return MinOpRes;
2461   }
2462 
2463   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2464     // The result is the min of all operands results.
2465     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2466     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2467       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2468     return MinOpRes;
2469   }
2470 
2471   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2472     // The result is the min of all operands results.
2473     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2474     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2475       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2476     return MinOpRes;
2477   }
2478 
2479   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2480     // For a SCEVUnknown, ask ValueTracking.
2481     unsigned BitWidth = getTypeSizeInBits(U->getType());
2482     APInt Mask = APInt::getAllOnesValue(BitWidth);
2483     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2484     ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2485     return Zeros.countTrailingOnes();
2486   }
2487 
2488   // SCEVUDivExpr
2489   return 0;
2490 }
2491 
2492 uint32_t
2493 ScalarEvolution::GetMinLeadingZeros(const SCEV* S) {
2494   // TODO: Handle other SCEV expression types here.
2495 
2496   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2497     return C->getValue()->getValue().countLeadingZeros();
2498 
2499   if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) {
2500     // A zero-extension cast adds zero bits.
2501     return GetMinLeadingZeros(C->getOperand()) +
2502            (getTypeSizeInBits(C->getType()) -
2503             getTypeSizeInBits(C->getOperand()->getType()));
2504   }
2505 
2506   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2507     // For a SCEVUnknown, ask ValueTracking.
2508     unsigned BitWidth = getTypeSizeInBits(U->getType());
2509     APInt Mask = APInt::getAllOnesValue(BitWidth);
2510     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2511     ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2512     return Zeros.countLeadingOnes();
2513   }
2514 
2515   return 1;
2516 }
2517 
2518 uint32_t
2519 ScalarEvolution::GetMinSignBits(const SCEV* S) {
2520   // TODO: Handle other SCEV expression types here.
2521 
2522   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
2523     const APInt &A = C->getValue()->getValue();
2524     return A.isNegative() ? A.countLeadingOnes() :
2525                             A.countLeadingZeros();
2526   }
2527 
2528   if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) {
2529     // A sign-extension cast adds sign bits.
2530     return GetMinSignBits(C->getOperand()) +
2531            (getTypeSizeInBits(C->getType()) -
2532             getTypeSizeInBits(C->getOperand()->getType()));
2533   }
2534 
2535   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2536     unsigned BitWidth = getTypeSizeInBits(A->getType());
2537 
2538     // Special case decrementing a value (ADD X, -1):
2539     if (const SCEVConstant *CRHS = dyn_cast<SCEVConstant>(A->getOperand(0)))
2540       if (CRHS->isAllOnesValue()) {
2541         SmallVector<const SCEV *, 4> OtherOps(A->op_begin() + 1, A->op_end());
2542         const SCEV *OtherOpsAdd = getAddExpr(OtherOps);
2543         unsigned LZ = GetMinLeadingZeros(OtherOpsAdd);
2544 
2545         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2546         // sign bits set.
2547         if (LZ == BitWidth - 1)
2548           return BitWidth;
2549 
2550         // If we are subtracting one from a positive number, there is no carry
2551         // out of the result.
2552         if (LZ > 0)
2553           return GetMinSignBits(OtherOpsAdd);
2554       }
2555 
2556     // Add can have at most one carry bit.  Thus we know that the output
2557     // is, at worst, one more bit than the inputs.
2558     unsigned Min = BitWidth;
2559     for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2560       unsigned N = GetMinSignBits(A->getOperand(i));
2561       Min = std::min(Min, N) - 1;
2562       if (Min == 0) return 1;
2563     }
2564     return 1;
2565   }
2566 
2567   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2568     // For a SCEVUnknown, ask ValueTracking.
2569     return ComputeNumSignBits(U->getValue(), TD);
2570   }
2571 
2572   return 1;
2573 }
2574 
2575 /// createSCEV - We know that there is no SCEV for the specified value.
2576 /// Analyze the expression.
2577 ///
2578 const SCEV* ScalarEvolution::createSCEV(Value *V) {
2579   if (!isSCEVable(V->getType()))
2580     return getUnknown(V);
2581 
2582   unsigned Opcode = Instruction::UserOp1;
2583   if (Instruction *I = dyn_cast<Instruction>(V))
2584     Opcode = I->getOpcode();
2585   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2586     Opcode = CE->getOpcode();
2587   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2588     return getConstant(CI);
2589   else if (isa<ConstantPointerNull>(V))
2590     return getIntegerSCEV(0, V->getType());
2591   else if (isa<UndefValue>(V))
2592     return getIntegerSCEV(0, V->getType());
2593   else
2594     return getUnknown(V);
2595 
2596   User *U = cast<User>(V);
2597   switch (Opcode) {
2598   case Instruction::Add:
2599     return getAddExpr(getSCEV(U->getOperand(0)),
2600                       getSCEV(U->getOperand(1)));
2601   case Instruction::Mul:
2602     return getMulExpr(getSCEV(U->getOperand(0)),
2603                       getSCEV(U->getOperand(1)));
2604   case Instruction::UDiv:
2605     return getUDivExpr(getSCEV(U->getOperand(0)),
2606                        getSCEV(U->getOperand(1)));
2607   case Instruction::Sub:
2608     return getMinusSCEV(getSCEV(U->getOperand(0)),
2609                         getSCEV(U->getOperand(1)));
2610   case Instruction::And:
2611     // For an expression like x&255 that merely masks off the high bits,
2612     // use zext(trunc(x)) as the SCEV expression.
2613     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2614       if (CI->isNullValue())
2615         return getSCEV(U->getOperand(1));
2616       if (CI->isAllOnesValue())
2617         return getSCEV(U->getOperand(0));
2618       const APInt &A = CI->getValue();
2619 
2620       // Instcombine's ShrinkDemandedConstant may strip bits out of
2621       // constants, obscuring what would otherwise be a low-bits mask.
2622       // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2623       // knew about to reconstruct a low-bits mask value.
2624       unsigned LZ = A.countLeadingZeros();
2625       unsigned BitWidth = A.getBitWidth();
2626       APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2627       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2628       ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2629 
2630       APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2631 
2632       if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
2633         return
2634           getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2635                                             IntegerType::get(BitWidth - LZ)),
2636                             U->getType());
2637     }
2638     break;
2639 
2640   case Instruction::Or:
2641     // If the RHS of the Or is a constant, we may have something like:
2642     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2643     // optimizations will transparently handle this case.
2644     //
2645     // In order for this transformation to be safe, the LHS must be of the
2646     // form X*(2^n) and the Or constant must be less than 2^n.
2647     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2648       const SCEV* LHS = getSCEV(U->getOperand(0));
2649       const APInt &CIVal = CI->getValue();
2650       if (GetMinTrailingZeros(LHS) >=
2651           (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2652         return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2653     }
2654     break;
2655   case Instruction::Xor:
2656     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2657       // If the RHS of the xor is a signbit, then this is just an add.
2658       // Instcombine turns add of signbit into xor as a strength reduction step.
2659       if (CI->getValue().isSignBit())
2660         return getAddExpr(getSCEV(U->getOperand(0)),
2661                           getSCEV(U->getOperand(1)));
2662 
2663       // If the RHS of xor is -1, then this is a not operation.
2664       if (CI->isAllOnesValue())
2665         return getNotSCEV(getSCEV(U->getOperand(0)));
2666 
2667       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2668       // This is a variant of the check for xor with -1, and it handles
2669       // the case where instcombine has trimmed non-demanded bits out
2670       // of an xor with -1.
2671       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2672         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2673           if (BO->getOpcode() == Instruction::And &&
2674               LCI->getValue() == CI->getValue())
2675             if (const SCEVZeroExtendExpr *Z =
2676                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
2677               const Type *UTy = U->getType();
2678               const SCEV* Z0 = Z->getOperand();
2679               const Type *Z0Ty = Z0->getType();
2680               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2681 
2682               // If C is a low-bits mask, the zero extend is zerving to
2683               // mask off the high bits. Complement the operand and
2684               // re-apply the zext.
2685               if (APIntOps::isMask(Z0TySize, CI->getValue()))
2686                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2687 
2688               // If C is a single bit, it may be in the sign-bit position
2689               // before the zero-extend. In this case, represent the xor
2690               // using an add, which is equivalent, and re-apply the zext.
2691               APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2692               if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2693                   Trunc.isSignBit())
2694                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2695                                          UTy);
2696             }
2697     }
2698     break;
2699 
2700   case Instruction::Shl:
2701     // Turn shift left of a constant amount into a multiply.
2702     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2703       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2704       Constant *X = ConstantInt::get(
2705         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2706       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2707     }
2708     break;
2709 
2710   case Instruction::LShr:
2711     // Turn logical shift right of a constant into a unsigned divide.
2712     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2713       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2714       Constant *X = ConstantInt::get(
2715         APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2716       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2717     }
2718     break;
2719 
2720   case Instruction::AShr:
2721     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2722     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2723       if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2724         if (L->getOpcode() == Instruction::Shl &&
2725             L->getOperand(1) == U->getOperand(1)) {
2726           unsigned BitWidth = getTypeSizeInBits(U->getType());
2727           uint64_t Amt = BitWidth - CI->getZExtValue();
2728           if (Amt == BitWidth)
2729             return getSCEV(L->getOperand(0));       // shift by zero --> noop
2730           if (Amt > BitWidth)
2731             return getIntegerSCEV(0, U->getType()); // value is undefined
2732           return
2733             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2734                                                       IntegerType::get(Amt)),
2735                                  U->getType());
2736         }
2737     break;
2738 
2739   case Instruction::Trunc:
2740     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2741 
2742   case Instruction::ZExt:
2743     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2744 
2745   case Instruction::SExt:
2746     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2747 
2748   case Instruction::BitCast:
2749     // BitCasts are no-op casts so we just eliminate the cast.
2750     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2751       return getSCEV(U->getOperand(0));
2752     break;
2753 
2754   case Instruction::IntToPtr:
2755     if (!TD) break; // Without TD we can't analyze pointers.
2756     return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2757                                    TD->getIntPtrType());
2758 
2759   case Instruction::PtrToInt:
2760     if (!TD) break; // Without TD we can't analyze pointers.
2761     return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2762                                    U->getType());
2763 
2764   case Instruction::GetElementPtr:
2765     if (!TD) break; // Without TD we can't analyze pointers.
2766     return createNodeForGEP(U);
2767 
2768   case Instruction::PHI:
2769     return createNodeForPHI(cast<PHINode>(U));
2770 
2771   case Instruction::Select:
2772     // This could be a smax or umax that was lowered earlier.
2773     // Try to recover it.
2774     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2775       Value *LHS = ICI->getOperand(0);
2776       Value *RHS = ICI->getOperand(1);
2777       switch (ICI->getPredicate()) {
2778       case ICmpInst::ICMP_SLT:
2779       case ICmpInst::ICMP_SLE:
2780         std::swap(LHS, RHS);
2781         // fall through
2782       case ICmpInst::ICMP_SGT:
2783       case ICmpInst::ICMP_SGE:
2784         if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2785           return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2786         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2787           return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
2788         break;
2789       case ICmpInst::ICMP_ULT:
2790       case ICmpInst::ICMP_ULE:
2791         std::swap(LHS, RHS);
2792         // fall through
2793       case ICmpInst::ICMP_UGT:
2794       case ICmpInst::ICMP_UGE:
2795         if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2796           return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2797         else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2798           return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
2799         break;
2800       case ICmpInst::ICMP_NE:
2801         // n != 0 ? n : 1  ->  umax(n, 1)
2802         if (LHS == U->getOperand(1) &&
2803             isa<ConstantInt>(U->getOperand(2)) &&
2804             cast<ConstantInt>(U->getOperand(2))->isOne() &&
2805             isa<ConstantInt>(RHS) &&
2806             cast<ConstantInt>(RHS)->isZero())
2807           return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2808         break;
2809       case ICmpInst::ICMP_EQ:
2810         // n == 0 ? 1 : n  ->  umax(n, 1)
2811         if (LHS == U->getOperand(2) &&
2812             isa<ConstantInt>(U->getOperand(1)) &&
2813             cast<ConstantInt>(U->getOperand(1))->isOne() &&
2814             isa<ConstantInt>(RHS) &&
2815             cast<ConstantInt>(RHS)->isZero())
2816           return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
2817         break;
2818       default:
2819         break;
2820       }
2821     }
2822 
2823   default: // We cannot analyze this expression.
2824     break;
2825   }
2826 
2827   return getUnknown(V);
2828 }
2829 
2830 
2831 
2832 //===----------------------------------------------------------------------===//
2833 //                   Iteration Count Computation Code
2834 //
2835 
2836 /// getBackedgeTakenCount - If the specified loop has a predictable
2837 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2838 /// object. The backedge-taken count is the number of times the loop header
2839 /// will be branched to from within the loop. This is one less than the
2840 /// trip count of the loop, since it doesn't count the first iteration,
2841 /// when the header is branched to from outside the loop.
2842 ///
2843 /// Note that it is not valid to call this method on a loop without a
2844 /// loop-invariant backedge-taken count (see
2845 /// hasLoopInvariantBackedgeTakenCount).
2846 ///
2847 const SCEV* ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2848   return getBackedgeTakenInfo(L).Exact;
2849 }
2850 
2851 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2852 /// return the least SCEV value that is known never to be less than the
2853 /// actual backedge taken count.
2854 const SCEV* ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2855   return getBackedgeTakenInfo(L).Max;
2856 }
2857 
2858 const ScalarEvolution::BackedgeTakenInfo &
2859 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2860   // Initially insert a CouldNotCompute for this loop. If the insertion
2861   // succeeds, procede to actually compute a backedge-taken count and
2862   // update the value. The temporary CouldNotCompute value tells SCEV
2863   // code elsewhere that it shouldn't attempt to request a new
2864   // backedge-taken count, which could result in infinite recursion.
2865   std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2866     BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2867   if (Pair.second) {
2868     BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2869     if (ItCount.Exact != getCouldNotCompute()) {
2870       assert(ItCount.Exact->isLoopInvariant(L) &&
2871              ItCount.Max->isLoopInvariant(L) &&
2872              "Computed trip count isn't loop invariant for loop!");
2873       ++NumTripCountsComputed;
2874 
2875       // Update the value in the map.
2876       Pair.first->second = ItCount;
2877     } else {
2878       if (ItCount.Max != getCouldNotCompute())
2879         // Update the value in the map.
2880         Pair.first->second = ItCount;
2881       if (isa<PHINode>(L->getHeader()->begin()))
2882         // Only count loops that have phi nodes as not being computable.
2883         ++NumTripCountsNotComputed;
2884     }
2885 
2886     // Now that we know more about the trip count for this loop, forget any
2887     // existing SCEV values for PHI nodes in this loop since they are only
2888     // conservative estimates made without the benefit
2889     // of trip count information.
2890     if (ItCount.hasAnyInfo())
2891       forgetLoopPHIs(L);
2892   }
2893   return Pair.first->second;
2894 }
2895 
2896 /// forgetLoopBackedgeTakenCount - This method should be called by the
2897 /// client when it has changed a loop in a way that may effect
2898 /// ScalarEvolution's ability to compute a trip count, or if the loop
2899 /// is deleted.
2900 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2901   BackedgeTakenCounts.erase(L);
2902   forgetLoopPHIs(L);
2903 }
2904 
2905 /// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2906 /// PHI nodes in the given loop. This is used when the trip count of
2907 /// the loop may have changed.
2908 void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2909   BasicBlock *Header = L->getHeader();
2910 
2911   // Push all Loop-header PHIs onto the Worklist stack, except those
2912   // that are presently represented via a SCEVUnknown. SCEVUnknown for
2913   // a PHI either means that it has an unrecognized structure, or it's
2914   // a PHI that's in the progress of being computed by createNodeForPHI.
2915   // In the former case, additional loop trip count information isn't
2916   // going to change anything. In the later case, createNodeForPHI will
2917   // perform the necessary updates on its own when it gets to that point.
2918   SmallVector<Instruction *, 16> Worklist;
2919   for (BasicBlock::iterator I = Header->begin();
2920        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2921     std::map<SCEVCallbackVH, const SCEV*>::iterator It =
2922       Scalars.find((Value*)I);
2923     if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2924       Worklist.push_back(PN);
2925   }
2926 
2927   while (!Worklist.empty()) {
2928     Instruction *I = Worklist.pop_back_val();
2929     if (Scalars.erase(I))
2930       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2931            UI != UE; ++UI)
2932         Worklist.push_back(cast<Instruction>(UI));
2933   }
2934 }
2935 
2936 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
2937 /// of the specified loop will execute.
2938 ScalarEvolution::BackedgeTakenInfo
2939 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2940   SmallVector<BasicBlock*, 8> ExitingBlocks;
2941   L->getExitingBlocks(ExitingBlocks);
2942 
2943   // Examine all exits and pick the most conservative values.
2944   const SCEV* BECount = getCouldNotCompute();
2945   const SCEV* MaxBECount = getCouldNotCompute();
2946   bool CouldNotComputeBECount = false;
2947   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
2948     BackedgeTakenInfo NewBTI =
2949       ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
2950 
2951     if (NewBTI.Exact == getCouldNotCompute()) {
2952       // We couldn't compute an exact value for this exit, so
2953       // we won't be able to compute an exact value for the loop.
2954       CouldNotComputeBECount = true;
2955       BECount = getCouldNotCompute();
2956     } else if (!CouldNotComputeBECount) {
2957       if (BECount == getCouldNotCompute())
2958         BECount = NewBTI.Exact;
2959       else
2960         BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
2961     }
2962     if (MaxBECount == getCouldNotCompute())
2963       MaxBECount = NewBTI.Max;
2964     else if (NewBTI.Max != getCouldNotCompute())
2965       MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
2966   }
2967 
2968   return BackedgeTakenInfo(BECount, MaxBECount);
2969 }
2970 
2971 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
2972 /// of the specified loop will execute if it exits via the specified block.
2973 ScalarEvolution::BackedgeTakenInfo
2974 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
2975                                                    BasicBlock *ExitingBlock) {
2976 
2977   // Okay, we've chosen an exiting block.  See what condition causes us to
2978   // exit at this block.
2979   //
2980   // FIXME: we should be able to handle switch instructions (with a single exit)
2981   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2982   if (ExitBr == 0) return getCouldNotCompute();
2983   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2984 
2985   // At this point, we know we have a conditional branch that determines whether
2986   // the loop is exited.  However, we don't know if the branch is executed each
2987   // time through the loop.  If not, then the execution count of the branch will
2988   // not be equal to the trip count of the loop.
2989   //
2990   // Currently we check for this by checking to see if the Exit branch goes to
2991   // the loop header.  If so, we know it will always execute the same number of
2992   // times as the loop.  We also handle the case where the exit block *is* the
2993   // loop header.  This is common for un-rotated loops.
2994   //
2995   // If both of those tests fail, walk up the unique predecessor chain to the
2996   // header, stopping if there is an edge that doesn't exit the loop. If the
2997   // header is reached, the execution count of the branch will be equal to the
2998   // trip count of the loop.
2999   //
3000   //  More extensive analysis could be done to handle more cases here.
3001   //
3002   if (ExitBr->getSuccessor(0) != L->getHeader() &&
3003       ExitBr->getSuccessor(1) != L->getHeader() &&
3004       ExitBr->getParent() != L->getHeader()) {
3005     // The simple checks failed, try climbing the unique predecessor chain
3006     // up to the header.
3007     bool Ok = false;
3008     for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3009       BasicBlock *Pred = BB->getUniquePredecessor();
3010       if (!Pred)
3011         return getCouldNotCompute();
3012       TerminatorInst *PredTerm = Pred->getTerminator();
3013       for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3014         BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3015         if (PredSucc == BB)
3016           continue;
3017         // If the predecessor has a successor that isn't BB and isn't
3018         // outside the loop, assume the worst.
3019         if (L->contains(PredSucc))
3020           return getCouldNotCompute();
3021       }
3022       if (Pred == L->getHeader()) {
3023         Ok = true;
3024         break;
3025       }
3026       BB = Pred;
3027     }
3028     if (!Ok)
3029       return getCouldNotCompute();
3030   }
3031 
3032   // Procede to the next level to examine the exit condition expression.
3033   return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3034                                                ExitBr->getSuccessor(0),
3035                                                ExitBr->getSuccessor(1));
3036 }
3037 
3038 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3039 /// backedge of the specified loop will execute if its exit condition
3040 /// were a conditional branch of ExitCond, TBB, and FBB.
3041 ScalarEvolution::BackedgeTakenInfo
3042 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3043                                                        Value *ExitCond,
3044                                                        BasicBlock *TBB,
3045                                                        BasicBlock *FBB) {
3046   // Check if the controlling expression for this loop is an And or Or.
3047   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3048     if (BO->getOpcode() == Instruction::And) {
3049       // Recurse on the operands of the and.
3050       BackedgeTakenInfo BTI0 =
3051         ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3052       BackedgeTakenInfo BTI1 =
3053         ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3054       const SCEV* BECount = getCouldNotCompute();
3055       const SCEV* MaxBECount = getCouldNotCompute();
3056       if (L->contains(TBB)) {
3057         // Both conditions must be true for the loop to continue executing.
3058         // Choose the less conservative count.
3059         if (BTI0.Exact == getCouldNotCompute() ||
3060             BTI1.Exact == getCouldNotCompute())
3061           BECount = getCouldNotCompute();
3062         else
3063           BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3064         if (BTI0.Max == getCouldNotCompute())
3065           MaxBECount = BTI1.Max;
3066         else if (BTI1.Max == getCouldNotCompute())
3067           MaxBECount = BTI0.Max;
3068         else
3069           MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3070       } else {
3071         // Both conditions must be true for the loop to exit.
3072         assert(L->contains(FBB) && "Loop block has no successor in loop!");
3073         if (BTI0.Exact != getCouldNotCompute() &&
3074             BTI1.Exact != getCouldNotCompute())
3075           BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3076         if (BTI0.Max != getCouldNotCompute() &&
3077             BTI1.Max != getCouldNotCompute())
3078           MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3079       }
3080 
3081       return BackedgeTakenInfo(BECount, MaxBECount);
3082     }
3083     if (BO->getOpcode() == Instruction::Or) {
3084       // Recurse on the operands of the or.
3085       BackedgeTakenInfo BTI0 =
3086         ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3087       BackedgeTakenInfo BTI1 =
3088         ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3089       const SCEV* BECount = getCouldNotCompute();
3090       const SCEV* MaxBECount = getCouldNotCompute();
3091       if (L->contains(FBB)) {
3092         // Both conditions must be false for the loop to continue executing.
3093         // Choose the less conservative count.
3094         if (BTI0.Exact == getCouldNotCompute() ||
3095             BTI1.Exact == getCouldNotCompute())
3096           BECount = getCouldNotCompute();
3097         else
3098           BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3099         if (BTI0.Max == getCouldNotCompute())
3100           MaxBECount = BTI1.Max;
3101         else if (BTI1.Max == getCouldNotCompute())
3102           MaxBECount = BTI0.Max;
3103         else
3104           MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3105       } else {
3106         // Both conditions must be false for the loop to exit.
3107         assert(L->contains(TBB) && "Loop block has no successor in loop!");
3108         if (BTI0.Exact != getCouldNotCompute() &&
3109             BTI1.Exact != getCouldNotCompute())
3110           BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3111         if (BTI0.Max != getCouldNotCompute() &&
3112             BTI1.Max != getCouldNotCompute())
3113           MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3114       }
3115 
3116       return BackedgeTakenInfo(BECount, MaxBECount);
3117     }
3118   }
3119 
3120   // With an icmp, it may be feasible to compute an exact backedge-taken count.
3121   // Procede to the next level to examine the icmp.
3122   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3123     return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3124 
3125   // If it's not an integer or pointer comparison then compute it the hard way.
3126   return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3127 }
3128 
3129 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3130 /// backedge of the specified loop will execute if its exit condition
3131 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3132 ScalarEvolution::BackedgeTakenInfo
3133 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3134                                                            ICmpInst *ExitCond,
3135                                                            BasicBlock *TBB,
3136                                                            BasicBlock *FBB) {
3137 
3138   // If the condition was exit on true, convert the condition to exit on false
3139   ICmpInst::Predicate Cond;
3140   if (!L->contains(FBB))
3141     Cond = ExitCond->getPredicate();
3142   else
3143     Cond = ExitCond->getInversePredicate();
3144 
3145   // Handle common loops like: for (X = "string"; *X; ++X)
3146   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3147     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3148       const SCEV* ItCnt =
3149         ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3150       if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3151         unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3152         return BackedgeTakenInfo(ItCnt,
3153                                  isa<SCEVConstant>(ItCnt) ? ItCnt :
3154                                    getConstant(APInt::getMaxValue(BitWidth)-1));
3155       }
3156     }
3157 
3158   const SCEV* LHS = getSCEV(ExitCond->getOperand(0));
3159   const SCEV* RHS = getSCEV(ExitCond->getOperand(1));
3160 
3161   // Try to evaluate any dependencies out of the loop.
3162   LHS = getSCEVAtScope(LHS, L);
3163   RHS = getSCEVAtScope(RHS, L);
3164 
3165   // At this point, we would like to compute how many iterations of the
3166   // loop the predicate will return true for these inputs.
3167   if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3168     // If there is a loop-invariant, force it into the RHS.
3169     std::swap(LHS, RHS);
3170     Cond = ICmpInst::getSwappedPredicate(Cond);
3171   }
3172 
3173   // If we have a comparison of a chrec against a constant, try to use value
3174   // ranges to answer this query.
3175   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3176     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3177       if (AddRec->getLoop() == L) {
3178         // Form the constant range.
3179         ConstantRange CompRange(
3180             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3181 
3182         const SCEV* Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3183         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3184       }
3185 
3186   switch (Cond) {
3187   case ICmpInst::ICMP_NE: {                     // while (X != Y)
3188     // Convert to: while (X-Y != 0)
3189     const SCEV* TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3190     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3191     break;
3192   }
3193   case ICmpInst::ICMP_EQ: {
3194     // Convert to: while (X-Y == 0)           // while (X == Y)
3195     const SCEV* TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3196     if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3197     break;
3198   }
3199   case ICmpInst::ICMP_SLT: {
3200     BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3201     if (BTI.hasAnyInfo()) return BTI;
3202     break;
3203   }
3204   case ICmpInst::ICMP_SGT: {
3205     BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3206                                              getNotSCEV(RHS), L, true);
3207     if (BTI.hasAnyInfo()) return BTI;
3208     break;
3209   }
3210   case ICmpInst::ICMP_ULT: {
3211     BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3212     if (BTI.hasAnyInfo()) return BTI;
3213     break;
3214   }
3215   case ICmpInst::ICMP_UGT: {
3216     BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3217                                              getNotSCEV(RHS), L, false);
3218     if (BTI.hasAnyInfo()) return BTI;
3219     break;
3220   }
3221   default:
3222 #if 0
3223     errs() << "ComputeBackedgeTakenCount ";
3224     if (ExitCond->getOperand(0)->getType()->isUnsigned())
3225       errs() << "[unsigned] ";
3226     errs() << *LHS << "   "
3227          << Instruction::getOpcodeName(Instruction::ICmp)
3228          << "   " << *RHS << "\n";
3229 #endif
3230     break;
3231   }
3232   return
3233     ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3234 }
3235 
3236 static ConstantInt *
3237 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3238                                 ScalarEvolution &SE) {
3239   const SCEV* InVal = SE.getConstant(C);
3240   const SCEV* Val = AddRec->evaluateAtIteration(InVal, SE);
3241   assert(isa<SCEVConstant>(Val) &&
3242          "Evaluation of SCEV at constant didn't fold correctly?");
3243   return cast<SCEVConstant>(Val)->getValue();
3244 }
3245 
3246 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
3247 /// and a GEP expression (missing the pointer index) indexing into it, return
3248 /// the addressed element of the initializer or null if the index expression is
3249 /// invalid.
3250 static Constant *
3251 GetAddressedElementFromGlobal(GlobalVariable *GV,
3252                               const std::vector<ConstantInt*> &Indices) {
3253   Constant *Init = GV->getInitializer();
3254   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3255     uint64_t Idx = Indices[i]->getZExtValue();
3256     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3257       assert(Idx < CS->getNumOperands() && "Bad struct index!");
3258       Init = cast<Constant>(CS->getOperand(Idx));
3259     } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3260       if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3261       Init = cast<Constant>(CA->getOperand(Idx));
3262     } else if (isa<ConstantAggregateZero>(Init)) {
3263       if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3264         assert(Idx < STy->getNumElements() && "Bad struct index!");
3265         Init = Constant::getNullValue(STy->getElementType(Idx));
3266       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3267         if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3268         Init = Constant::getNullValue(ATy->getElementType());
3269       } else {
3270         assert(0 && "Unknown constant aggregate type!");
3271       }
3272       return 0;
3273     } else {
3274       return 0; // Unknown initializer type
3275     }
3276   }
3277   return Init;
3278 }
3279 
3280 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3281 /// 'icmp op load X, cst', try to see if we can compute the backedge
3282 /// execution count.
3283 const SCEV *
3284 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3285                                                 LoadInst *LI,
3286                                                 Constant *RHS,
3287                                                 const Loop *L,
3288                                                 ICmpInst::Predicate predicate) {
3289   if (LI->isVolatile()) return getCouldNotCompute();
3290 
3291   // Check to see if the loaded pointer is a getelementptr of a global.
3292   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3293   if (!GEP) return getCouldNotCompute();
3294 
3295   // Make sure that it is really a constant global we are gepping, with an
3296   // initializer, and make sure the first IDX is really 0.
3297   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3298   if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3299       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3300       !cast<Constant>(GEP->getOperand(1))->isNullValue())
3301     return getCouldNotCompute();
3302 
3303   // Okay, we allow one non-constant index into the GEP instruction.
3304   Value *VarIdx = 0;
3305   std::vector<ConstantInt*> Indexes;
3306   unsigned VarIdxNum = 0;
3307   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3308     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3309       Indexes.push_back(CI);
3310     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3311       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
3312       VarIdx = GEP->getOperand(i);
3313       VarIdxNum = i-2;
3314       Indexes.push_back(0);
3315     }
3316 
3317   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3318   // Check to see if X is a loop variant variable value now.
3319   const SCEV* Idx = getSCEV(VarIdx);
3320   Idx = getSCEVAtScope(Idx, L);
3321 
3322   // We can only recognize very limited forms of loop index expressions, in
3323   // particular, only affine AddRec's like {C1,+,C2}.
3324   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3325   if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3326       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3327       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3328     return getCouldNotCompute();
3329 
3330   unsigned MaxSteps = MaxBruteForceIterations;
3331   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3332     ConstantInt *ItCst =
3333       ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum);
3334     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3335 
3336     // Form the GEP offset.
3337     Indexes[VarIdxNum] = Val;
3338 
3339     Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
3340     if (Result == 0) break;  // Cannot compute!
3341 
3342     // Evaluate the condition for this iteration.
3343     Result = ConstantExpr::getICmp(predicate, Result, RHS);
3344     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3345     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3346 #if 0
3347       errs() << "\n***\n*** Computed loop count " << *ItCst
3348              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3349              << "***\n";
3350 #endif
3351       ++NumArrayLenItCounts;
3352       return getConstant(ItCst);   // Found terminating iteration!
3353     }
3354   }
3355   return getCouldNotCompute();
3356 }
3357 
3358 
3359 /// CanConstantFold - Return true if we can constant fold an instruction of the
3360 /// specified type, assuming that all operands were constants.
3361 static bool CanConstantFold(const Instruction *I) {
3362   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3363       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3364     return true;
3365 
3366   if (const CallInst *CI = dyn_cast<CallInst>(I))
3367     if (const Function *F = CI->getCalledFunction())
3368       return canConstantFoldCallTo(F);
3369   return false;
3370 }
3371 
3372 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3373 /// in the loop that V is derived from.  We allow arbitrary operations along the
3374 /// way, but the operands of an operation must either be constants or a value
3375 /// derived from a constant PHI.  If this expression does not fit with these
3376 /// constraints, return null.
3377 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3378   // If this is not an instruction, or if this is an instruction outside of the
3379   // loop, it can't be derived from a loop PHI.
3380   Instruction *I = dyn_cast<Instruction>(V);
3381   if (I == 0 || !L->contains(I->getParent())) return 0;
3382 
3383   if (PHINode *PN = dyn_cast<PHINode>(I)) {
3384     if (L->getHeader() == I->getParent())
3385       return PN;
3386     else
3387       // We don't currently keep track of the control flow needed to evaluate
3388       // PHIs, so we cannot handle PHIs inside of loops.
3389       return 0;
3390   }
3391 
3392   // If we won't be able to constant fold this expression even if the operands
3393   // are constants, return early.
3394   if (!CanConstantFold(I)) return 0;
3395 
3396   // Otherwise, we can evaluate this instruction if all of its operands are
3397   // constant or derived from a PHI node themselves.
3398   PHINode *PHI = 0;
3399   for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3400     if (!(isa<Constant>(I->getOperand(Op)) ||
3401           isa<GlobalValue>(I->getOperand(Op)))) {
3402       PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3403       if (P == 0) return 0;  // Not evolving from PHI
3404       if (PHI == 0)
3405         PHI = P;
3406       else if (PHI != P)
3407         return 0;  // Evolving from multiple different PHIs.
3408     }
3409 
3410   // This is a expression evolving from a constant PHI!
3411   return PHI;
3412 }
3413 
3414 /// EvaluateExpression - Given an expression that passes the
3415 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3416 /// in the loop has the value PHIVal.  If we can't fold this expression for some
3417 /// reason, return null.
3418 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3419   if (isa<PHINode>(V)) return PHIVal;
3420   if (Constant *C = dyn_cast<Constant>(V)) return C;
3421   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3422   Instruction *I = cast<Instruction>(V);
3423   LLVMContext* Context = I->getParent()->getContext();
3424 
3425   std::vector<Constant*> Operands;
3426   Operands.resize(I->getNumOperands());
3427 
3428   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3429     Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3430     if (Operands[i] == 0) return 0;
3431   }
3432 
3433   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3434     return ConstantFoldCompareInstOperands(CI->getPredicate(),
3435                                            &Operands[0], Operands.size(),
3436                                            Context);
3437   else
3438     return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3439                                     &Operands[0], Operands.size(),
3440                                     Context);
3441 }
3442 
3443 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3444 /// in the header of its containing loop, we know the loop executes a
3445 /// constant number of times, and the PHI node is just a recurrence
3446 /// involving constants, fold it.
3447 Constant *
3448 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3449                                                    const APInt& BEs,
3450                                                    const Loop *L) {
3451   std::map<PHINode*, Constant*>::iterator I =
3452     ConstantEvolutionLoopExitValue.find(PN);
3453   if (I != ConstantEvolutionLoopExitValue.end())
3454     return I->second;
3455 
3456   if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3457     return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
3458 
3459   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3460 
3461   // Since the loop is canonicalized, the PHI node must have two entries.  One
3462   // entry must be a constant (coming in from outside of the loop), and the
3463   // second must be derived from the same PHI.
3464   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3465   Constant *StartCST =
3466     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3467   if (StartCST == 0)
3468     return RetVal = 0;  // Must be a constant.
3469 
3470   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3471   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3472   if (PN2 != PN)
3473     return RetVal = 0;  // Not derived from same PHI.
3474 
3475   // Execute the loop symbolically to determine the exit value.
3476   if (BEs.getActiveBits() >= 32)
3477     return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3478 
3479   unsigned NumIterations = BEs.getZExtValue(); // must be in range
3480   unsigned IterationNum = 0;
3481   for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3482     if (IterationNum == NumIterations)
3483       return RetVal = PHIVal;  // Got exit value!
3484 
3485     // Compute the value of the PHI node for the next iteration.
3486     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3487     if (NextPHI == PHIVal)
3488       return RetVal = NextPHI;  // Stopped evolving!
3489     if (NextPHI == 0)
3490       return 0;        // Couldn't evaluate!
3491     PHIVal = NextPHI;
3492   }
3493 }
3494 
3495 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
3496 /// constant number of times (the condition evolves only from constants),
3497 /// try to evaluate a few iterations of the loop until we get the exit
3498 /// condition gets a value of ExitWhen (true or false).  If we cannot
3499 /// evaluate the trip count of the loop, return getCouldNotCompute().
3500 const SCEV *
3501 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3502                                                        Value *Cond,
3503                                                        bool ExitWhen) {
3504   PHINode *PN = getConstantEvolvingPHI(Cond, L);
3505   if (PN == 0) return getCouldNotCompute();
3506 
3507   // Since the loop is canonicalized, the PHI node must have two entries.  One
3508   // entry must be a constant (coming in from outside of the loop), and the
3509   // second must be derived from the same PHI.
3510   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3511   Constant *StartCST =
3512     dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3513   if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
3514 
3515   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3516   PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3517   if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
3518 
3519   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
3520   // the loop symbolically to determine when the condition gets a value of
3521   // "ExitWhen".
3522   unsigned IterationNum = 0;
3523   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
3524   for (Constant *PHIVal = StartCST;
3525        IterationNum != MaxIterations; ++IterationNum) {
3526     ConstantInt *CondVal =
3527       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3528 
3529     // Couldn't symbolically evaluate.
3530     if (!CondVal) return getCouldNotCompute();
3531 
3532     if (CondVal->getValue() == uint64_t(ExitWhen)) {
3533       ++NumBruteForceTripCountsComputed;
3534       return getConstant(Type::Int32Ty, IterationNum);
3535     }
3536 
3537     // Compute the value of the PHI node for the next iteration.
3538     Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3539     if (NextPHI == 0 || NextPHI == PHIVal)
3540       return getCouldNotCompute();// Couldn't evaluate or not making progress...
3541     PHIVal = NextPHI;
3542   }
3543 
3544   // Too many iterations were needed to evaluate.
3545   return getCouldNotCompute();
3546 }
3547 
3548 /// getSCEVAtScope - Return a SCEV expression handle for the specified value
3549 /// at the specified scope in the program.  The L value specifies a loop
3550 /// nest to evaluate the expression at, where null is the top-level or a
3551 /// specified loop is immediately inside of the loop.
3552 ///
3553 /// This method can be used to compute the exit value for a variable defined
3554 /// in a loop by querying what the value will hold in the parent loop.
3555 ///
3556 /// In the case that a relevant loop exit value cannot be computed, the
3557 /// original value V is returned.
3558 const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3559   // FIXME: this should be turned into a virtual method on SCEV!
3560 
3561   if (isa<SCEVConstant>(V)) return V;
3562 
3563   // If this instruction is evolved from a constant-evolving PHI, compute the
3564   // exit value from the loop without using SCEVs.
3565   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3566     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3567       const Loop *LI = (*this->LI)[I->getParent()];
3568       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
3569         if (PHINode *PN = dyn_cast<PHINode>(I))
3570           if (PN->getParent() == LI->getHeader()) {
3571             // Okay, there is no closed form solution for the PHI node.  Check
3572             // to see if the loop that contains it has a known backedge-taken
3573             // count.  If so, we may be able to force computation of the exit
3574             // value.
3575             const SCEV* BackedgeTakenCount = getBackedgeTakenCount(LI);
3576             if (const SCEVConstant *BTCC =
3577                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3578               // Okay, we know how many times the containing loop executes.  If
3579               // this is a constant evolving PHI node, get the final value at
3580               // the specified iteration number.
3581               Constant *RV = getConstantEvolutionLoopExitValue(PN,
3582                                                    BTCC->getValue()->getValue(),
3583                                                                LI);
3584               if (RV) return getSCEV(RV);
3585             }
3586           }
3587 
3588       // Okay, this is an expression that we cannot symbolically evaluate
3589       // into a SCEV.  Check to see if it's possible to symbolically evaluate
3590       // the arguments into constants, and if so, try to constant propagate the
3591       // result.  This is particularly useful for computing loop exit values.
3592       if (CanConstantFold(I)) {
3593         // Check to see if we've folded this instruction at this loop before.
3594         std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3595         std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3596           Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3597         if (!Pair.second)
3598           return Pair.first->second ? &*getSCEV(Pair.first->second) : V;
3599 
3600         std::vector<Constant*> Operands;
3601         Operands.reserve(I->getNumOperands());
3602         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3603           Value *Op = I->getOperand(i);
3604           if (Constant *C = dyn_cast<Constant>(Op)) {
3605             Operands.push_back(C);
3606           } else {
3607             // If any of the operands is non-constant and if they are
3608             // non-integer and non-pointer, don't even try to analyze them
3609             // with scev techniques.
3610             if (!isSCEVable(Op->getType()))
3611               return V;
3612 
3613             const SCEV* OpV = getSCEVAtScope(getSCEV(Op), L);
3614             if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
3615               Constant *C = SC->getValue();
3616               if (C->getType() != Op->getType())
3617                 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3618                                                                   Op->getType(),
3619                                                                   false),
3620                                           C, Op->getType());
3621               Operands.push_back(C);
3622             } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
3623               if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3624                 if (C->getType() != Op->getType())
3625                   C =
3626                     ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3627                                                                   Op->getType(),
3628                                                                   false),
3629                                           C, Op->getType());
3630                 Operands.push_back(C);
3631               } else
3632                 return V;
3633             } else {
3634               return V;
3635             }
3636           }
3637         }
3638 
3639         Constant *C;
3640         if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3641           C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3642                                               &Operands[0], Operands.size(),
3643                                               Context);
3644         else
3645           C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3646                                        &Operands[0], Operands.size(), Context);
3647         Pair.first->second = C;
3648         return getSCEV(C);
3649       }
3650     }
3651 
3652     // This is some other type of SCEVUnknown, just return it.
3653     return V;
3654   }
3655 
3656   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
3657     // Avoid performing the look-up in the common case where the specified
3658     // expression has no loop-variant portions.
3659     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3660       const SCEV* OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3661       if (OpAtScope != Comm->getOperand(i)) {
3662         // Okay, at least one of these operands is loop variant but might be
3663         // foldable.  Build a new instance of the folded commutative expression.
3664         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
3665                                             Comm->op_begin()+i);
3666         NewOps.push_back(OpAtScope);
3667 
3668         for (++i; i != e; ++i) {
3669           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3670           NewOps.push_back(OpAtScope);
3671         }
3672         if (isa<SCEVAddExpr>(Comm))
3673           return getAddExpr(NewOps);
3674         if (isa<SCEVMulExpr>(Comm))
3675           return getMulExpr(NewOps);
3676         if (isa<SCEVSMaxExpr>(Comm))
3677           return getSMaxExpr(NewOps);
3678         if (isa<SCEVUMaxExpr>(Comm))
3679           return getUMaxExpr(NewOps);
3680         assert(0 && "Unknown commutative SCEV type!");
3681       }
3682     }
3683     // If we got here, all operands are loop invariant.
3684     return Comm;
3685   }
3686 
3687   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
3688     const SCEV* LHS = getSCEVAtScope(Div->getLHS(), L);
3689     const SCEV* RHS = getSCEVAtScope(Div->getRHS(), L);
3690     if (LHS == Div->getLHS() && RHS == Div->getRHS())
3691       return Div;   // must be loop invariant
3692     return getUDivExpr(LHS, RHS);
3693   }
3694 
3695   // If this is a loop recurrence for a loop that does not contain L, then we
3696   // are dealing with the final value computed by the loop.
3697   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
3698     if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3699       // To evaluate this recurrence, we need to know how many times the AddRec
3700       // loop iterates.  Compute this now.
3701       const SCEV* BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3702       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
3703 
3704       // Then, evaluate the AddRec.
3705       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3706     }
3707     return AddRec;
3708   }
3709 
3710   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3711     const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
3712     if (Op == Cast->getOperand())
3713       return Cast;  // must be loop invariant
3714     return getZeroExtendExpr(Op, Cast->getType());
3715   }
3716 
3717   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3718     const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
3719     if (Op == Cast->getOperand())
3720       return Cast;  // must be loop invariant
3721     return getSignExtendExpr(Op, Cast->getType());
3722   }
3723 
3724   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3725     const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
3726     if (Op == Cast->getOperand())
3727       return Cast;  // must be loop invariant
3728     return getTruncateExpr(Op, Cast->getType());
3729   }
3730 
3731   assert(0 && "Unknown SCEV type!");
3732   return 0;
3733 }
3734 
3735 /// getSCEVAtScope - This is a convenience function which does
3736 /// getSCEVAtScope(getSCEV(V), L).
3737 const SCEV* ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3738   return getSCEVAtScope(getSCEV(V), L);
3739 }
3740 
3741 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3742 /// following equation:
3743 ///
3744 ///     A * X = B (mod N)
3745 ///
3746 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3747 /// A and B isn't important.
3748 ///
3749 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3750 static const SCEV* SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3751                                                ScalarEvolution &SE) {
3752   uint32_t BW = A.getBitWidth();
3753   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3754   assert(A != 0 && "A must be non-zero.");
3755 
3756   // 1. D = gcd(A, N)
3757   //
3758   // The gcd of A and N may have only one prime factor: 2. The number of
3759   // trailing zeros in A is its multiplicity
3760   uint32_t Mult2 = A.countTrailingZeros();
3761   // D = 2^Mult2
3762 
3763   // 2. Check if B is divisible by D.
3764   //
3765   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3766   // is not less than multiplicity of this prime factor for D.
3767   if (B.countTrailingZeros() < Mult2)
3768     return SE.getCouldNotCompute();
3769 
3770   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3771   // modulo (N / D).
3772   //
3773   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3774   // bit width during computations.
3775   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3776   APInt Mod(BW + 1, 0);
3777   Mod.set(BW - Mult2);  // Mod = N / D
3778   APInt I = AD.multiplicativeInverse(Mod);
3779 
3780   // 4. Compute the minimum unsigned root of the equation:
3781   // I * (B / D) mod (N / D)
3782   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3783 
3784   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3785   // bits.
3786   return SE.getConstant(Result.trunc(BW));
3787 }
3788 
3789 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3790 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
3791 /// might be the same) or two SCEVCouldNotCompute objects.
3792 ///
3793 static std::pair<const SCEV*,const SCEV*>
3794 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
3795   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
3796   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3797   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3798   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
3799 
3800   // We currently can only solve this if the coefficients are constants.
3801   if (!LC || !MC || !NC) {
3802     const SCEV *CNC = SE.getCouldNotCompute();
3803     return std::make_pair(CNC, CNC);
3804   }
3805 
3806   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3807   const APInt &L = LC->getValue()->getValue();
3808   const APInt &M = MC->getValue()->getValue();
3809   const APInt &N = NC->getValue()->getValue();
3810   APInt Two(BitWidth, 2);
3811   APInt Four(BitWidth, 4);
3812 
3813   {
3814     using namespace APIntOps;
3815     const APInt& C = L;
3816     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3817     // The B coefficient is M-N/2
3818     APInt B(M);
3819     B -= sdiv(N,Two);
3820 
3821     // The A coefficient is N/2
3822     APInt A(N.sdiv(Two));
3823 
3824     // Compute the B^2-4ac term.
3825     APInt SqrtTerm(B);
3826     SqrtTerm *= B;
3827     SqrtTerm -= Four * (A * C);
3828 
3829     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3830     // integer value or else APInt::sqrt() will assert.
3831     APInt SqrtVal(SqrtTerm.sqrt());
3832 
3833     // Compute the two solutions for the quadratic formula.
3834     // The divisions must be performed as signed divisions.
3835     APInt NegB(-B);
3836     APInt TwoA( A << 1 );
3837     if (TwoA.isMinValue()) {
3838       const SCEV *CNC = SE.getCouldNotCompute();
3839       return std::make_pair(CNC, CNC);
3840     }
3841 
3842     ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3843     ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3844 
3845     return std::make_pair(SE.getConstant(Solution1),
3846                           SE.getConstant(Solution2));
3847     } // end APIntOps namespace
3848 }
3849 
3850 /// HowFarToZero - Return the number of times a backedge comparing the specified
3851 /// value to zero will execute.  If not computable, return CouldNotCompute.
3852 const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
3853   // If the value is a constant
3854   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3855     // If the value is already zero, the branch will execute zero times.
3856     if (C->getValue()->isZero()) return C;
3857     return getCouldNotCompute();  // Otherwise it will loop infinitely.
3858   }
3859 
3860   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
3861   if (!AddRec || AddRec->getLoop() != L)
3862     return getCouldNotCompute();
3863 
3864   if (AddRec->isAffine()) {
3865     // If this is an affine expression, the execution count of this branch is
3866     // the minimum unsigned root of the following equation:
3867     //
3868     //     Start + Step*N = 0 (mod 2^BW)
3869     //
3870     // equivalent to:
3871     //
3872     //             Step*N = -Start (mod 2^BW)
3873     //
3874     // where BW is the common bit width of Start and Step.
3875 
3876     // Get the initial value for the loop.
3877     const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
3878                                        L->getParentLoop());
3879     const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
3880                                       L->getParentLoop());
3881 
3882     if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
3883       // For now we handle only constant steps.
3884 
3885       // First, handle unitary steps.
3886       if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
3887         return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
3888       if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
3889         return Start;                           //    N = Start (as unsigned)
3890 
3891       // Then, try to solve the above equation provided that Start is constant.
3892       if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
3893         return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
3894                                             -StartC->getValue()->getValue(),
3895                                             *this);
3896     }
3897   } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3898     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3899     // the quadratic equation to solve it.
3900     std::pair<const SCEV*,const SCEV*> Roots = SolveQuadraticEquation(AddRec,
3901                                                                     *this);
3902     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3903     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3904     if (R1) {
3905 #if 0
3906       errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3907              << "  sol#2: " << *R2 << "\n";
3908 #endif
3909       // Pick the smallest positive root value.
3910       if (ConstantInt *CB =
3911           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3912                                    R1->getValue(), R2->getValue()))) {
3913         if (CB->getZExtValue() == false)
3914           std::swap(R1, R2);   // R1 is the minimum root now.
3915 
3916         // We can only use this value if the chrec ends up with an exact zero
3917         // value at this index.  When solving for "X*X != 5", for example, we
3918         // should not accept a root of 2.
3919         const SCEV* Val = AddRec->evaluateAtIteration(R1, *this);
3920         if (Val->isZero())
3921           return R1;  // We found a quadratic root!
3922       }
3923     }
3924   }
3925 
3926   return getCouldNotCompute();
3927 }
3928 
3929 /// HowFarToNonZero - Return the number of times a backedge checking the
3930 /// specified value for nonzero will execute.  If not computable, return
3931 /// CouldNotCompute
3932 const SCEV* ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
3933   // Loops that look like: while (X == 0) are very strange indeed.  We don't
3934   // handle them yet except for the trivial case.  This could be expanded in the
3935   // future as needed.
3936 
3937   // If the value is a constant, check to see if it is known to be non-zero
3938   // already.  If so, the backedge will execute zero times.
3939   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3940     if (!C->getValue()->isNullValue())
3941       return getIntegerSCEV(0, C->getType());
3942     return getCouldNotCompute();  // Otherwise it will loop infinitely.
3943   }
3944 
3945   // We could implement others, but I really doubt anyone writes loops like
3946   // this, and if they did, they would already be constant folded.
3947   return getCouldNotCompute();
3948 }
3949 
3950 /// getLoopPredecessor - If the given loop's header has exactly one unique
3951 /// predecessor outside the loop, return it. Otherwise return null.
3952 ///
3953 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3954   BasicBlock *Header = L->getHeader();
3955   BasicBlock *Pred = 0;
3956   for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3957        PI != E; ++PI)
3958     if (!L->contains(*PI)) {
3959       if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3960       Pred = *PI;
3961     }
3962   return Pred;
3963 }
3964 
3965 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3966 /// (which may not be an immediate predecessor) which has exactly one
3967 /// successor from which BB is reachable, or null if no such block is
3968 /// found.
3969 ///
3970 BasicBlock *
3971 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3972   // If the block has a unique predecessor, then there is no path from the
3973   // predecessor to the block that does not go through the direct edge
3974   // from the predecessor to the block.
3975   if (BasicBlock *Pred = BB->getSinglePredecessor())
3976     return Pred;
3977 
3978   // A loop's header is defined to be a block that dominates the loop.
3979   // If the header has a unique predecessor outside the loop, it must be
3980   // a block that has exactly one successor that can reach the loop.
3981   if (Loop *L = LI->getLoopFor(BB))
3982     return getLoopPredecessor(L);
3983 
3984   return 0;
3985 }
3986 
3987 /// HasSameValue - SCEV structural equivalence is usually sufficient for
3988 /// testing whether two expressions are equal, however for the purposes of
3989 /// looking for a condition guarding a loop, it can be useful to be a little
3990 /// more general, since a front-end may have replicated the controlling
3991 /// expression.
3992 ///
3993 static bool HasSameValue(const SCEV* A, const SCEV* B) {
3994   // Quick check to see if they are the same SCEV.
3995   if (A == B) return true;
3996 
3997   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
3998   // two different instructions with the same value. Check for this case.
3999   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4000     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4001       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4002         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4003           if (AI->isIdenticalTo(BI))
4004             return true;
4005 
4006   // Otherwise assume they may have a different value.
4007   return false;
4008 }
4009 
4010 /// isLoopGuardedByCond - Test whether entry to the loop is protected by
4011 /// a conditional between LHS and RHS.  This is used to help avoid max
4012 /// expressions in loop trip counts.
4013 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4014                                           ICmpInst::Predicate Pred,
4015                                           const SCEV *LHS, const SCEV *RHS) {
4016   // Interpret a null as meaning no loop, where there is obviously no guard
4017   // (interprocedural conditions notwithstanding).
4018   if (!L) return false;
4019 
4020   BasicBlock *Predecessor = getLoopPredecessor(L);
4021   BasicBlock *PredecessorDest = L->getHeader();
4022 
4023   // Starting at the loop predecessor, climb up the predecessor chain, as long
4024   // as there are predecessors that can be found that have unique successors
4025   // leading to the original header.
4026   for (; Predecessor;
4027        PredecessorDest = Predecessor,
4028        Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
4029 
4030     BranchInst *LoopEntryPredicate =
4031       dyn_cast<BranchInst>(Predecessor->getTerminator());
4032     if (!LoopEntryPredicate ||
4033         LoopEntryPredicate->isUnconditional())
4034       continue;
4035 
4036     if (isNecessaryCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4037                         LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
4038       return true;
4039   }
4040 
4041   return false;
4042 }
4043 
4044 /// isNecessaryCond - Test whether the given CondValue value is a condition
4045 /// which is at least as strict as the one described by Pred, LHS, and RHS.
4046 bool ScalarEvolution::isNecessaryCond(Value *CondValue,
4047                                       ICmpInst::Predicate Pred,
4048                                       const SCEV *LHS, const SCEV *RHS,
4049                                       bool Inverse) {
4050   // Recursivly handle And and Or conditions.
4051   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4052     if (BO->getOpcode() == Instruction::And) {
4053       if (!Inverse)
4054         return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4055                isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4056     } else if (BO->getOpcode() == Instruction::Or) {
4057       if (Inverse)
4058         return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4059                isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4060     }
4061   }
4062 
4063   ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4064   if (!ICI) return false;
4065 
4066   // Now that we found a conditional branch that dominates the loop, check to
4067   // see if it is the comparison we are looking for.
4068   Value *PreCondLHS = ICI->getOperand(0);
4069   Value *PreCondRHS = ICI->getOperand(1);
4070   ICmpInst::Predicate Cond;
4071   if (Inverse)
4072     Cond = ICI->getInversePredicate();
4073   else
4074     Cond = ICI->getPredicate();
4075 
4076   if (Cond == Pred)
4077     ; // An exact match.
4078   else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
4079     ; // The actual condition is beyond sufficient.
4080   else
4081     // Check a few special cases.
4082     switch (Cond) {
4083     case ICmpInst::ICMP_UGT:
4084       if (Pred == ICmpInst::ICMP_ULT) {
4085         std::swap(PreCondLHS, PreCondRHS);
4086         Cond = ICmpInst::ICMP_ULT;
4087         break;
4088       }
4089       return false;
4090     case ICmpInst::ICMP_SGT:
4091       if (Pred == ICmpInst::ICMP_SLT) {
4092         std::swap(PreCondLHS, PreCondRHS);
4093         Cond = ICmpInst::ICMP_SLT;
4094         break;
4095       }
4096       return false;
4097     case ICmpInst::ICMP_NE:
4098       // Expressions like (x >u 0) are often canonicalized to (x != 0),
4099       // so check for this case by checking if the NE is comparing against
4100       // a minimum or maximum constant.
4101       if (!ICmpInst::isTrueWhenEqual(Pred))
4102         if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
4103           const APInt &A = CI->getValue();
4104           switch (Pred) {
4105           case ICmpInst::ICMP_SLT:
4106             if (A.isMaxSignedValue()) break;
4107             return false;
4108           case ICmpInst::ICMP_SGT:
4109             if (A.isMinSignedValue()) break;
4110             return false;
4111           case ICmpInst::ICMP_ULT:
4112             if (A.isMaxValue()) break;
4113             return false;
4114           case ICmpInst::ICMP_UGT:
4115             if (A.isMinValue()) break;
4116             return false;
4117           default:
4118             return false;
4119           }
4120           Cond = ICmpInst::ICMP_NE;
4121           // NE is symmetric but the original comparison may not be. Swap
4122           // the operands if necessary so that they match below.
4123           if (isa<SCEVConstant>(LHS))
4124             std::swap(PreCondLHS, PreCondRHS);
4125           break;
4126         }
4127       return false;
4128     default:
4129       // We weren't able to reconcile the condition.
4130       return false;
4131     }
4132 
4133   if (!PreCondLHS->getType()->isInteger()) return false;
4134 
4135   const SCEV *PreCondLHSSCEV = getSCEV(PreCondLHS);
4136   const SCEV *PreCondRHSSCEV = getSCEV(PreCondRHS);
4137   return (HasSameValue(LHS, PreCondLHSSCEV) &&
4138           HasSameValue(RHS, PreCondRHSSCEV)) ||
4139          (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
4140           HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)));
4141 }
4142 
4143 /// getBECount - Subtract the end and start values and divide by the step,
4144 /// rounding up, to get the number of times the backedge is executed. Return
4145 /// CouldNotCompute if an intermediate computation overflows.
4146 const SCEV* ScalarEvolution::getBECount(const SCEV* Start,
4147                                        const SCEV* End,
4148                                        const SCEV* Step) {
4149   const Type *Ty = Start->getType();
4150   const SCEV* NegOne = getIntegerSCEV(-1, Ty);
4151   const SCEV* Diff = getMinusSCEV(End, Start);
4152   const SCEV* RoundUp = getAddExpr(Step, NegOne);
4153 
4154   // Add an adjustment to the difference between End and Start so that
4155   // the division will effectively round up.
4156   const SCEV* Add = getAddExpr(Diff, RoundUp);
4157 
4158   // Check Add for unsigned overflow.
4159   // TODO: More sophisticated things could be done here.
4160   const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1);
4161   const SCEV* OperandExtendedAdd =
4162     getAddExpr(getZeroExtendExpr(Diff, WideTy),
4163                getZeroExtendExpr(RoundUp, WideTy));
4164   if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4165     return getCouldNotCompute();
4166 
4167   return getUDivExpr(Add, Step);
4168 }
4169 
4170 /// HowManyLessThans - Return the number of times a backedge containing the
4171 /// specified less-than comparison will execute.  If not computable, return
4172 /// CouldNotCompute.
4173 ScalarEvolution::BackedgeTakenInfo
4174 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4175                                   const Loop *L, bool isSigned) {
4176   // Only handle:  "ADDREC < LoopInvariant".
4177   if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
4178 
4179   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
4180   if (!AddRec || AddRec->getLoop() != L)
4181     return getCouldNotCompute();
4182 
4183   if (AddRec->isAffine()) {
4184     // FORNOW: We only support unit strides.
4185     unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4186     const SCEV* Step = AddRec->getStepRecurrence(*this);
4187 
4188     // TODO: handle non-constant strides.
4189     const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4190     if (!CStep || CStep->isZero())
4191       return getCouldNotCompute();
4192     if (CStep->isOne()) {
4193       // With unit stride, the iteration never steps past the limit value.
4194     } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4195       if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4196         // Test whether a positive iteration iteration can step past the limit
4197         // value and past the maximum value for its type in a single step.
4198         if (isSigned) {
4199           APInt Max = APInt::getSignedMaxValue(BitWidth);
4200           if ((Max - CStep->getValue()->getValue())
4201                 .slt(CLimit->getValue()->getValue()))
4202             return getCouldNotCompute();
4203         } else {
4204           APInt Max = APInt::getMaxValue(BitWidth);
4205           if ((Max - CStep->getValue()->getValue())
4206                 .ult(CLimit->getValue()->getValue()))
4207             return getCouldNotCompute();
4208         }
4209       } else
4210         // TODO: handle non-constant limit values below.
4211         return getCouldNotCompute();
4212     } else
4213       // TODO: handle negative strides below.
4214       return getCouldNotCompute();
4215 
4216     // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4217     // m.  So, we count the number of iterations in which {n,+,s} < m is true.
4218     // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4219     // treat m-n as signed nor unsigned due to overflow possibility.
4220 
4221     // First, we get the value of the LHS in the first iteration: n
4222     const SCEV* Start = AddRec->getOperand(0);
4223 
4224     // Determine the minimum constant start value.
4225     const SCEV *MinStart = isa<SCEVConstant>(Start) ? Start :
4226       getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
4227                              APInt::getMinValue(BitWidth));
4228 
4229     // If we know that the condition is true in order to enter the loop,
4230     // then we know that it will run exactly (m-n)/s times. Otherwise, we
4231     // only know that it will execute (max(m,n)-n)/s times. In both cases,
4232     // the division must round up.
4233     const SCEV* End = RHS;
4234     if (!isLoopGuardedByCond(L,
4235                              isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
4236                              getMinusSCEV(Start, Step), RHS))
4237       End = isSigned ? getSMaxExpr(RHS, Start)
4238                      : getUMaxExpr(RHS, Start);
4239 
4240     // Determine the maximum constant end value.
4241     const SCEV* MaxEnd =
4242       isa<SCEVConstant>(End) ? End :
4243       getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
4244                                .ashr(GetMinSignBits(End) - 1) :
4245                              APInt::getMaxValue(BitWidth)
4246                                .lshr(GetMinLeadingZeros(End)));
4247 
4248     // Finally, we subtract these two values and divide, rounding up, to get
4249     // the number of times the backedge is executed.
4250     const SCEV* BECount = getBECount(Start, End, Step);
4251 
4252     // The maximum backedge count is similar, except using the minimum start
4253     // value and the maximum end value.
4254     const SCEV* MaxBECount = getBECount(MinStart, MaxEnd, Step);
4255 
4256     return BackedgeTakenInfo(BECount, MaxBECount);
4257   }
4258 
4259   return getCouldNotCompute();
4260 }
4261 
4262 /// getNumIterationsInRange - Return the number of iterations of this loop that
4263 /// produce values in the specified constant range.  Another way of looking at
4264 /// this is that it returns the first iteration number where the value is not in
4265 /// the condition, thus computing the exit count. If the iteration count can't
4266 /// be computed, an instance of SCEVCouldNotCompute is returned.
4267 const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4268                                                     ScalarEvolution &SE) const {
4269   if (Range.isFullSet())  // Infinite loop.
4270     return SE.getCouldNotCompute();
4271 
4272   // If the start is a non-zero constant, shift the range to simplify things.
4273   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4274     if (!SC->getValue()->isZero()) {
4275       SmallVector<const SCEV*, 4> Operands(op_begin(), op_end());
4276       Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4277       const SCEV* Shifted = SE.getAddRecExpr(Operands, getLoop());
4278       if (const SCEVAddRecExpr *ShiftedAddRec =
4279             dyn_cast<SCEVAddRecExpr>(Shifted))
4280         return ShiftedAddRec->getNumIterationsInRange(
4281                            Range.subtract(SC->getValue()->getValue()), SE);
4282       // This is strange and shouldn't happen.
4283       return SE.getCouldNotCompute();
4284     }
4285 
4286   // The only time we can solve this is when we have all constant indices.
4287   // Otherwise, we cannot determine the overflow conditions.
4288   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4289     if (!isa<SCEVConstant>(getOperand(i)))
4290       return SE.getCouldNotCompute();
4291 
4292 
4293   // Okay at this point we know that all elements of the chrec are constants and
4294   // that the start element is zero.
4295 
4296   // First check to see if the range contains zero.  If not, the first
4297   // iteration exits.
4298   unsigned BitWidth = SE.getTypeSizeInBits(getType());
4299   if (!Range.contains(APInt(BitWidth, 0)))
4300     return SE.getIntegerSCEV(0, getType());
4301 
4302   if (isAffine()) {
4303     // If this is an affine expression then we have this situation:
4304     //   Solve {0,+,A} in Range  ===  Ax in Range
4305 
4306     // We know that zero is in the range.  If A is positive then we know that
4307     // the upper value of the range must be the first possible exit value.
4308     // If A is negative then the lower of the range is the last possible loop
4309     // value.  Also note that we already checked for a full range.
4310     APInt One(BitWidth,1);
4311     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4312     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4313 
4314     // The exit value should be (End+A)/A.
4315     APInt ExitVal = (End + A).udiv(A);
4316     ConstantInt *ExitValue = ConstantInt::get(ExitVal);
4317 
4318     // Evaluate at the exit value.  If we really did fall out of the valid
4319     // range, then we computed our trip count, otherwise wrap around or other
4320     // things must have happened.
4321     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
4322     if (Range.contains(Val->getValue()))
4323       return SE.getCouldNotCompute();  // Something strange happened
4324 
4325     // Ensure that the previous value is in the range.  This is a sanity check.
4326     assert(Range.contains(
4327            EvaluateConstantChrecAtConstant(this,
4328            ConstantInt::get(ExitVal - One), SE)->getValue()) &&
4329            "Linear scev computation is off in a bad way!");
4330     return SE.getConstant(ExitValue);
4331   } else if (isQuadratic()) {
4332     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4333     // quadratic equation to solve it.  To do this, we must frame our problem in
4334     // terms of figuring out when zero is crossed, instead of when
4335     // Range.getUpper() is crossed.
4336     SmallVector<const SCEV*, 4> NewOps(op_begin(), op_end());
4337     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
4338     const SCEV* NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
4339 
4340     // Next, solve the constructed addrec
4341     std::pair<const SCEV*,const SCEV*> Roots =
4342       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
4343     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4344     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4345     if (R1) {
4346       // Pick the smallest positive root value.
4347       if (ConstantInt *CB =
4348           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4349                                    R1->getValue(), R2->getValue()))) {
4350         if (CB->getZExtValue() == false)
4351           std::swap(R1, R2);   // R1 is the minimum root now.
4352 
4353         // Make sure the root is not off by one.  The returned iteration should
4354         // not be in the range, but the previous one should be.  When solving
4355         // for "X*X < 5", for example, we should not return a root of 2.
4356         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
4357                                                              R1->getValue(),
4358                                                              SE);
4359         if (Range.contains(R1Val->getValue())) {
4360           // The next iteration must be out of the range...
4361           ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
4362 
4363           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4364           if (!Range.contains(R1Val->getValue()))
4365             return SE.getConstant(NextVal);
4366           return SE.getCouldNotCompute();  // Something strange happened
4367         }
4368 
4369         // If R1 was not in the range, then it is a good return value.  Make
4370         // sure that R1-1 WAS in the range though, just in case.
4371         ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
4372         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4373         if (Range.contains(R1Val->getValue()))
4374           return R1;
4375         return SE.getCouldNotCompute();  // Something strange happened
4376       }
4377     }
4378   }
4379 
4380   return SE.getCouldNotCompute();
4381 }
4382 
4383 
4384 
4385 //===----------------------------------------------------------------------===//
4386 //                   SCEVCallbackVH Class Implementation
4387 //===----------------------------------------------------------------------===//
4388 
4389 void ScalarEvolution::SCEVCallbackVH::deleted() {
4390   assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4391   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4392     SE->ConstantEvolutionLoopExitValue.erase(PN);
4393   if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4394     SE->ValuesAtScopes.erase(I);
4395   SE->Scalars.erase(getValPtr());
4396   // this now dangles!
4397 }
4398 
4399 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
4400   assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4401 
4402   // Forget all the expressions associated with users of the old value,
4403   // so that future queries will recompute the expressions using the new
4404   // value.
4405   SmallVector<User *, 16> Worklist;
4406   Value *Old = getValPtr();
4407   bool DeleteOld = false;
4408   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4409        UI != UE; ++UI)
4410     Worklist.push_back(*UI);
4411   while (!Worklist.empty()) {
4412     User *U = Worklist.pop_back_val();
4413     // Deleting the Old value will cause this to dangle. Postpone
4414     // that until everything else is done.
4415     if (U == Old) {
4416       DeleteOld = true;
4417       continue;
4418     }
4419     if (PHINode *PN = dyn_cast<PHINode>(U))
4420       SE->ConstantEvolutionLoopExitValue.erase(PN);
4421     if (Instruction *I = dyn_cast<Instruction>(U))
4422       SE->ValuesAtScopes.erase(I);
4423     if (SE->Scalars.erase(U))
4424       for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4425            UI != UE; ++UI)
4426         Worklist.push_back(*UI);
4427   }
4428   if (DeleteOld) {
4429     if (PHINode *PN = dyn_cast<PHINode>(Old))
4430       SE->ConstantEvolutionLoopExitValue.erase(PN);
4431     if (Instruction *I = dyn_cast<Instruction>(Old))
4432       SE->ValuesAtScopes.erase(I);
4433     SE->Scalars.erase(Old);
4434     // this now dangles!
4435   }
4436   // this may dangle!
4437 }
4438 
4439 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
4440   : CallbackVH(V), SE(se) {}
4441 
4442 //===----------------------------------------------------------------------===//
4443 //                   ScalarEvolution Class Implementation
4444 //===----------------------------------------------------------------------===//
4445 
4446 ScalarEvolution::ScalarEvolution()
4447   : FunctionPass(&ID) {
4448 }
4449 
4450 bool ScalarEvolution::runOnFunction(Function &F) {
4451   this->F = &F;
4452   LI = &getAnalysis<LoopInfo>();
4453   TD = getAnalysisIfAvailable<TargetData>();
4454   return false;
4455 }
4456 
4457 void ScalarEvolution::releaseMemory() {
4458   Scalars.clear();
4459   BackedgeTakenCounts.clear();
4460   ConstantEvolutionLoopExitValue.clear();
4461   ValuesAtScopes.clear();
4462   UniqueSCEVs.clear();
4463   SCEVAllocator.Reset();
4464 }
4465 
4466 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4467   AU.setPreservesAll();
4468   AU.addRequiredTransitive<LoopInfo>();
4469 }
4470 
4471 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
4472   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
4473 }
4474 
4475 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
4476                           const Loop *L) {
4477   // Print all inner loops first
4478   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4479     PrintLoopInfo(OS, SE, *I);
4480 
4481   OS << "Loop " << L->getHeader()->getName() << ": ";
4482 
4483   SmallVector<BasicBlock*, 8> ExitBlocks;
4484   L->getExitBlocks(ExitBlocks);
4485   if (ExitBlocks.size() != 1)
4486     OS << "<multiple exits> ";
4487 
4488   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
4489     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
4490   } else {
4491     OS << "Unpredictable backedge-taken count. ";
4492   }
4493 
4494   OS << "\n";
4495   OS << "Loop " << L->getHeader()->getName() << ": ";
4496 
4497   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
4498     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
4499   } else {
4500     OS << "Unpredictable max backedge-taken count. ";
4501   }
4502 
4503   OS << "\n";
4504 }
4505 
4506 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
4507   // ScalarEvolution's implementaiton of the print method is to print
4508   // out SCEV values of all instructions that are interesting. Doing
4509   // this potentially causes it to create new SCEV objects though,
4510   // which technically conflicts with the const qualifier. This isn't
4511   // observable from outside the class though (the hasSCEV function
4512   // notwithstanding), so casting away the const isn't dangerous.
4513   ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
4514 
4515   OS << "Classifying expressions for: " << F->getName() << "\n";
4516   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
4517     if (isSCEVable(I->getType())) {
4518       OS << *I;
4519       OS << "  -->  ";
4520       const SCEV* SV = SE.getSCEV(&*I);
4521       SV->print(OS);
4522 
4523       const Loop *L = LI->getLoopFor((*I).getParent());
4524 
4525       const SCEV* AtUse = SE.getSCEVAtScope(SV, L);
4526       if (AtUse != SV) {
4527         OS << "  -->  ";
4528         AtUse->print(OS);
4529       }
4530 
4531       if (L) {
4532         OS << "\t\t" "Exits: ";
4533         const SCEV* ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
4534         if (!ExitValue->isLoopInvariant(L)) {
4535           OS << "<<Unknown>>";
4536         } else {
4537           OS << *ExitValue;
4538         }
4539       }
4540 
4541       OS << "\n";
4542     }
4543 
4544   OS << "Determining loop execution counts for: " << F->getName() << "\n";
4545   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
4546     PrintLoopInfo(OS, &SE, *I);
4547 }
4548 
4549 void ScalarEvolution::print(std::ostream &o, const Module *M) const {
4550   raw_os_ostream OS(o);
4551   print(OS, M);
4552 }
4553