1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SmallPtrSet.h" 64 #include "llvm/ADT/Statistic.h" 65 #include "llvm/Analysis/ConstantFolding.h" 66 #include "llvm/Analysis/InstructionSimplify.h" 67 #include "llvm/Analysis/LoopInfo.h" 68 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/GetElementPtrTypeIterator.h" 76 #include "llvm/IR/GlobalAlias.h" 77 #include "llvm/IR/GlobalVariable.h" 78 #include "llvm/IR/InstIterator.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetLibraryInfo.h" 88 #include <algorithm> 89 using namespace llvm; 90 91 #define DEBUG_TYPE "scalar-evolution" 92 93 STATISTIC(NumArrayLenItCounts, 94 "Number of trip counts computed with array length"); 95 STATISTIC(NumTripCountsComputed, 96 "Number of loops with predictable loop counts"); 97 STATISTIC(NumTripCountsNotComputed, 98 "Number of loops without predictable loop counts"); 99 STATISTIC(NumBruteForceTripCountsComputed, 100 "Number of loops with trip counts computed by force"); 101 102 static cl::opt<unsigned> 103 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 104 cl::desc("Maximum number of iterations SCEV will " 105 "symbolically execute a constant " 106 "derived loop"), 107 cl::init(100)); 108 109 // FIXME: Enable this with XDEBUG when the test suite is clean. 110 static cl::opt<bool> 111 VerifySCEV("verify-scev", 112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 113 114 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 115 "Scalar Evolution Analysis", false, true) 116 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 117 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 118 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 119 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 120 "Scalar Evolution Analysis", false, true) 121 char ScalarEvolution::ID = 0; 122 123 //===----------------------------------------------------------------------===// 124 // SCEV class definitions 125 //===----------------------------------------------------------------------===// 126 127 //===----------------------------------------------------------------------===// 128 // Implementation of the SCEV class. 129 // 130 131 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 132 void SCEV::dump() const { 133 print(dbgs()); 134 dbgs() << '\n'; 135 } 136 #endif 137 138 void SCEV::print(raw_ostream &OS) const { 139 switch (static_cast<SCEVTypes>(getSCEVType())) { 140 case scConstant: 141 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 142 return; 143 case scTruncate: { 144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 145 const SCEV *Op = Trunc->getOperand(); 146 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 147 << *Trunc->getType() << ")"; 148 return; 149 } 150 case scZeroExtend: { 151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 152 const SCEV *Op = ZExt->getOperand(); 153 OS << "(zext " << *Op->getType() << " " << *Op << " to " 154 << *ZExt->getType() << ")"; 155 return; 156 } 157 case scSignExtend: { 158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 159 const SCEV *Op = SExt->getOperand(); 160 OS << "(sext " << *Op->getType() << " " << *Op << " to " 161 << *SExt->getType() << ")"; 162 return; 163 } 164 case scAddRecExpr: { 165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 166 OS << "{" << *AR->getOperand(0); 167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 168 OS << ",+," << *AR->getOperand(i); 169 OS << "}<"; 170 if (AR->getNoWrapFlags(FlagNUW)) 171 OS << "nuw><"; 172 if (AR->getNoWrapFlags(FlagNSW)) 173 OS << "nsw><"; 174 if (AR->getNoWrapFlags(FlagNW) && 175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 176 OS << "nw><"; 177 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 178 OS << ">"; 179 return; 180 } 181 case scAddExpr: 182 case scMulExpr: 183 case scUMaxExpr: 184 case scSMaxExpr: { 185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 186 const char *OpStr = nullptr; 187 switch (NAry->getSCEVType()) { 188 case scAddExpr: OpStr = " + "; break; 189 case scMulExpr: OpStr = " * "; break; 190 case scUMaxExpr: OpStr = " umax "; break; 191 case scSMaxExpr: OpStr = " smax "; break; 192 } 193 OS << "("; 194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 195 I != E; ++I) { 196 OS << **I; 197 if (std::next(I) != E) 198 OS << OpStr; 199 } 200 OS << ")"; 201 switch (NAry->getSCEVType()) { 202 case scAddExpr: 203 case scMulExpr: 204 if (NAry->getNoWrapFlags(FlagNUW)) 205 OS << "<nuw>"; 206 if (NAry->getNoWrapFlags(FlagNSW)) 207 OS << "<nsw>"; 208 } 209 return; 210 } 211 case scUDivExpr: { 212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 214 return; 215 } 216 case scUnknown: { 217 const SCEVUnknown *U = cast<SCEVUnknown>(this); 218 Type *AllocTy; 219 if (U->isSizeOf(AllocTy)) { 220 OS << "sizeof(" << *AllocTy << ")"; 221 return; 222 } 223 if (U->isAlignOf(AllocTy)) { 224 OS << "alignof(" << *AllocTy << ")"; 225 return; 226 } 227 228 Type *CTy; 229 Constant *FieldNo; 230 if (U->isOffsetOf(CTy, FieldNo)) { 231 OS << "offsetof(" << *CTy << ", "; 232 FieldNo->printAsOperand(OS, false); 233 OS << ")"; 234 return; 235 } 236 237 // Otherwise just print it normally. 238 U->getValue()->printAsOperand(OS, false); 239 return; 240 } 241 case scCouldNotCompute: 242 OS << "***COULDNOTCOMPUTE***"; 243 return; 244 } 245 llvm_unreachable("Unknown SCEV kind!"); 246 } 247 248 Type *SCEV::getType() const { 249 switch (static_cast<SCEVTypes>(getSCEVType())) { 250 case scConstant: 251 return cast<SCEVConstant>(this)->getType(); 252 case scTruncate: 253 case scZeroExtend: 254 case scSignExtend: 255 return cast<SCEVCastExpr>(this)->getType(); 256 case scAddRecExpr: 257 case scMulExpr: 258 case scUMaxExpr: 259 case scSMaxExpr: 260 return cast<SCEVNAryExpr>(this)->getType(); 261 case scAddExpr: 262 return cast<SCEVAddExpr>(this)->getType(); 263 case scUDivExpr: 264 return cast<SCEVUDivExpr>(this)->getType(); 265 case scUnknown: 266 return cast<SCEVUnknown>(this)->getType(); 267 case scCouldNotCompute: 268 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 269 } 270 llvm_unreachable("Unknown SCEV kind!"); 271 } 272 273 bool SCEV::isZero() const { 274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 275 return SC->getValue()->isZero(); 276 return false; 277 } 278 279 bool SCEV::isOne() const { 280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 281 return SC->getValue()->isOne(); 282 return false; 283 } 284 285 bool SCEV::isAllOnesValue() const { 286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 287 return SC->getValue()->isAllOnesValue(); 288 return false; 289 } 290 291 /// isNonConstantNegative - Return true if the specified scev is negated, but 292 /// not a constant. 293 bool SCEV::isNonConstantNegative() const { 294 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 295 if (!Mul) return false; 296 297 // If there is a constant factor, it will be first. 298 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 299 if (!SC) return false; 300 301 // Return true if the value is negative, this matches things like (-42 * V). 302 return SC->getValue()->getValue().isNegative(); 303 } 304 305 SCEVCouldNotCompute::SCEVCouldNotCompute() : 306 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 307 308 bool SCEVCouldNotCompute::classof(const SCEV *S) { 309 return S->getSCEVType() == scCouldNotCompute; 310 } 311 312 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 313 FoldingSetNodeID ID; 314 ID.AddInteger(scConstant); 315 ID.AddPointer(V); 316 void *IP = nullptr; 317 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 318 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 319 UniqueSCEVs.InsertNode(S, IP); 320 return S; 321 } 322 323 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 324 return getConstant(ConstantInt::get(getContext(), Val)); 325 } 326 327 const SCEV * 328 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 329 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 330 return getConstant(ConstantInt::get(ITy, V, isSigned)); 331 } 332 333 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 334 unsigned SCEVTy, const SCEV *op, Type *ty) 335 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 336 337 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 338 const SCEV *op, Type *ty) 339 : SCEVCastExpr(ID, scTruncate, op, ty) { 340 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 341 (Ty->isIntegerTy() || Ty->isPointerTy()) && 342 "Cannot truncate non-integer value!"); 343 } 344 345 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 346 const SCEV *op, Type *ty) 347 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 348 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 349 (Ty->isIntegerTy() || Ty->isPointerTy()) && 350 "Cannot zero extend non-integer value!"); 351 } 352 353 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 354 const SCEV *op, Type *ty) 355 : SCEVCastExpr(ID, scSignExtend, op, ty) { 356 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 357 (Ty->isIntegerTy() || Ty->isPointerTy()) && 358 "Cannot sign extend non-integer value!"); 359 } 360 361 void SCEVUnknown::deleted() { 362 // Clear this SCEVUnknown from various maps. 363 SE->forgetMemoizedResults(this); 364 365 // Remove this SCEVUnknown from the uniquing map. 366 SE->UniqueSCEVs.RemoveNode(this); 367 368 // Release the value. 369 setValPtr(nullptr); 370 } 371 372 void SCEVUnknown::allUsesReplacedWith(Value *New) { 373 // Clear this SCEVUnknown from various maps. 374 SE->forgetMemoizedResults(this); 375 376 // Remove this SCEVUnknown from the uniquing map. 377 SE->UniqueSCEVs.RemoveNode(this); 378 379 // Update this SCEVUnknown to point to the new value. This is needed 380 // because there may still be outstanding SCEVs which still point to 381 // this SCEVUnknown. 382 setValPtr(New); 383 } 384 385 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 386 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 387 if (VCE->getOpcode() == Instruction::PtrToInt) 388 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 389 if (CE->getOpcode() == Instruction::GetElementPtr && 390 CE->getOperand(0)->isNullValue() && 391 CE->getNumOperands() == 2) 392 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 393 if (CI->isOne()) { 394 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 395 ->getElementType(); 396 return true; 397 } 398 399 return false; 400 } 401 402 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 403 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 404 if (VCE->getOpcode() == Instruction::PtrToInt) 405 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 406 if (CE->getOpcode() == Instruction::GetElementPtr && 407 CE->getOperand(0)->isNullValue()) { 408 Type *Ty = 409 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 410 if (StructType *STy = dyn_cast<StructType>(Ty)) 411 if (!STy->isPacked() && 412 CE->getNumOperands() == 3 && 413 CE->getOperand(1)->isNullValue()) { 414 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 415 if (CI->isOne() && 416 STy->getNumElements() == 2 && 417 STy->getElementType(0)->isIntegerTy(1)) { 418 AllocTy = STy->getElementType(1); 419 return true; 420 } 421 } 422 } 423 424 return false; 425 } 426 427 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 428 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 429 if (VCE->getOpcode() == Instruction::PtrToInt) 430 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 431 if (CE->getOpcode() == Instruction::GetElementPtr && 432 CE->getNumOperands() == 3 && 433 CE->getOperand(0)->isNullValue() && 434 CE->getOperand(1)->isNullValue()) { 435 Type *Ty = 436 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 437 // Ignore vector types here so that ScalarEvolutionExpander doesn't 438 // emit getelementptrs that index into vectors. 439 if (Ty->isStructTy() || Ty->isArrayTy()) { 440 CTy = Ty; 441 FieldNo = CE->getOperand(2); 442 return true; 443 } 444 } 445 446 return false; 447 } 448 449 //===----------------------------------------------------------------------===// 450 // SCEV Utilities 451 //===----------------------------------------------------------------------===// 452 453 namespace { 454 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 455 /// than the complexity of the RHS. This comparator is used to canonicalize 456 /// expressions. 457 class SCEVComplexityCompare { 458 const LoopInfo *const LI; 459 public: 460 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 461 462 // Return true or false if LHS is less than, or at least RHS, respectively. 463 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 464 return compare(LHS, RHS) < 0; 465 } 466 467 // Return negative, zero, or positive, if LHS is less than, equal to, or 468 // greater than RHS, respectively. A three-way result allows recursive 469 // comparisons to be more efficient. 470 int compare(const SCEV *LHS, const SCEV *RHS) const { 471 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 472 if (LHS == RHS) 473 return 0; 474 475 // Primarily, sort the SCEVs by their getSCEVType(). 476 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 477 if (LType != RType) 478 return (int)LType - (int)RType; 479 480 // Aside from the getSCEVType() ordering, the particular ordering 481 // isn't very important except that it's beneficial to be consistent, 482 // so that (a + b) and (b + a) don't end up as different expressions. 483 switch (static_cast<SCEVTypes>(LType)) { 484 case scUnknown: { 485 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 486 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 487 488 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 489 // not as complete as it could be. 490 const Value *LV = LU->getValue(), *RV = RU->getValue(); 491 492 // Order pointer values after integer values. This helps SCEVExpander 493 // form GEPs. 494 bool LIsPointer = LV->getType()->isPointerTy(), 495 RIsPointer = RV->getType()->isPointerTy(); 496 if (LIsPointer != RIsPointer) 497 return (int)LIsPointer - (int)RIsPointer; 498 499 // Compare getValueID values. 500 unsigned LID = LV->getValueID(), 501 RID = RV->getValueID(); 502 if (LID != RID) 503 return (int)LID - (int)RID; 504 505 // Sort arguments by their position. 506 if (const Argument *LA = dyn_cast<Argument>(LV)) { 507 const Argument *RA = cast<Argument>(RV); 508 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 509 return (int)LArgNo - (int)RArgNo; 510 } 511 512 // For instructions, compare their loop depth, and their operand 513 // count. This is pretty loose. 514 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 515 const Instruction *RInst = cast<Instruction>(RV); 516 517 // Compare loop depths. 518 const BasicBlock *LParent = LInst->getParent(), 519 *RParent = RInst->getParent(); 520 if (LParent != RParent) { 521 unsigned LDepth = LI->getLoopDepth(LParent), 522 RDepth = LI->getLoopDepth(RParent); 523 if (LDepth != RDepth) 524 return (int)LDepth - (int)RDepth; 525 } 526 527 // Compare the number of operands. 528 unsigned LNumOps = LInst->getNumOperands(), 529 RNumOps = RInst->getNumOperands(); 530 return (int)LNumOps - (int)RNumOps; 531 } 532 533 return 0; 534 } 535 536 case scConstant: { 537 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 538 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 539 540 // Compare constant values. 541 const APInt &LA = LC->getValue()->getValue(); 542 const APInt &RA = RC->getValue()->getValue(); 543 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 544 if (LBitWidth != RBitWidth) 545 return (int)LBitWidth - (int)RBitWidth; 546 return LA.ult(RA) ? -1 : 1; 547 } 548 549 case scAddRecExpr: { 550 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 551 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 552 553 // Compare addrec loop depths. 554 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 555 if (LLoop != RLoop) { 556 unsigned LDepth = LLoop->getLoopDepth(), 557 RDepth = RLoop->getLoopDepth(); 558 if (LDepth != RDepth) 559 return (int)LDepth - (int)RDepth; 560 } 561 562 // Addrec complexity grows with operand count. 563 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 564 if (LNumOps != RNumOps) 565 return (int)LNumOps - (int)RNumOps; 566 567 // Lexicographically compare. 568 for (unsigned i = 0; i != LNumOps; ++i) { 569 long X = compare(LA->getOperand(i), RA->getOperand(i)); 570 if (X != 0) 571 return X; 572 } 573 574 return 0; 575 } 576 577 case scAddExpr: 578 case scMulExpr: 579 case scSMaxExpr: 580 case scUMaxExpr: { 581 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 582 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 583 584 // Lexicographically compare n-ary expressions. 585 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 586 if (LNumOps != RNumOps) 587 return (int)LNumOps - (int)RNumOps; 588 589 for (unsigned i = 0; i != LNumOps; ++i) { 590 if (i >= RNumOps) 591 return 1; 592 long X = compare(LC->getOperand(i), RC->getOperand(i)); 593 if (X != 0) 594 return X; 595 } 596 return (int)LNumOps - (int)RNumOps; 597 } 598 599 case scUDivExpr: { 600 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 601 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 602 603 // Lexicographically compare udiv expressions. 604 long X = compare(LC->getLHS(), RC->getLHS()); 605 if (X != 0) 606 return X; 607 return compare(LC->getRHS(), RC->getRHS()); 608 } 609 610 case scTruncate: 611 case scZeroExtend: 612 case scSignExtend: { 613 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 614 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 615 616 // Compare cast expressions by operand. 617 return compare(LC->getOperand(), RC->getOperand()); 618 } 619 620 case scCouldNotCompute: 621 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 622 } 623 llvm_unreachable("Unknown SCEV kind!"); 624 } 625 }; 626 } 627 628 /// GroupByComplexity - Given a list of SCEV objects, order them by their 629 /// complexity, and group objects of the same complexity together by value. 630 /// When this routine is finished, we know that any duplicates in the vector are 631 /// consecutive and that complexity is monotonically increasing. 632 /// 633 /// Note that we go take special precautions to ensure that we get deterministic 634 /// results from this routine. In other words, we don't want the results of 635 /// this to depend on where the addresses of various SCEV objects happened to 636 /// land in memory. 637 /// 638 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 639 LoopInfo *LI) { 640 if (Ops.size() < 2) return; // Noop 641 if (Ops.size() == 2) { 642 // This is the common case, which also happens to be trivially simple. 643 // Special case it. 644 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 645 if (SCEVComplexityCompare(LI)(RHS, LHS)) 646 std::swap(LHS, RHS); 647 return; 648 } 649 650 // Do the rough sort by complexity. 651 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 652 653 // Now that we are sorted by complexity, group elements of the same 654 // complexity. Note that this is, at worst, N^2, but the vector is likely to 655 // be extremely short in practice. Note that we take this approach because we 656 // do not want to depend on the addresses of the objects we are grouping. 657 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 658 const SCEV *S = Ops[i]; 659 unsigned Complexity = S->getSCEVType(); 660 661 // If there are any objects of the same complexity and same value as this 662 // one, group them. 663 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 664 if (Ops[j] == S) { // Found a duplicate. 665 // Move it to immediately after i'th element. 666 std::swap(Ops[i+1], Ops[j]); 667 ++i; // no need to rescan it. 668 if (i == e-2) return; // Done! 669 } 670 } 671 } 672 } 673 674 675 676 //===----------------------------------------------------------------------===// 677 // Simple SCEV method implementations 678 //===----------------------------------------------------------------------===// 679 680 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 681 /// Assume, K > 0. 682 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 683 ScalarEvolution &SE, 684 Type *ResultTy) { 685 // Handle the simplest case efficiently. 686 if (K == 1) 687 return SE.getTruncateOrZeroExtend(It, ResultTy); 688 689 // We are using the following formula for BC(It, K): 690 // 691 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 692 // 693 // Suppose, W is the bitwidth of the return value. We must be prepared for 694 // overflow. Hence, we must assure that the result of our computation is 695 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 696 // safe in modular arithmetic. 697 // 698 // However, this code doesn't use exactly that formula; the formula it uses 699 // is something like the following, where T is the number of factors of 2 in 700 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 701 // exponentiation: 702 // 703 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 704 // 705 // This formula is trivially equivalent to the previous formula. However, 706 // this formula can be implemented much more efficiently. The trick is that 707 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 708 // arithmetic. To do exact division in modular arithmetic, all we have 709 // to do is multiply by the inverse. Therefore, this step can be done at 710 // width W. 711 // 712 // The next issue is how to safely do the division by 2^T. The way this 713 // is done is by doing the multiplication step at a width of at least W + T 714 // bits. This way, the bottom W+T bits of the product are accurate. Then, 715 // when we perform the division by 2^T (which is equivalent to a right shift 716 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 717 // truncated out after the division by 2^T. 718 // 719 // In comparison to just directly using the first formula, this technique 720 // is much more efficient; using the first formula requires W * K bits, 721 // but this formula less than W + K bits. Also, the first formula requires 722 // a division step, whereas this formula only requires multiplies and shifts. 723 // 724 // It doesn't matter whether the subtraction step is done in the calculation 725 // width or the input iteration count's width; if the subtraction overflows, 726 // the result must be zero anyway. We prefer here to do it in the width of 727 // the induction variable because it helps a lot for certain cases; CodeGen 728 // isn't smart enough to ignore the overflow, which leads to much less 729 // efficient code if the width of the subtraction is wider than the native 730 // register width. 731 // 732 // (It's possible to not widen at all by pulling out factors of 2 before 733 // the multiplication; for example, K=2 can be calculated as 734 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 735 // extra arithmetic, so it's not an obvious win, and it gets 736 // much more complicated for K > 3.) 737 738 // Protection from insane SCEVs; this bound is conservative, 739 // but it probably doesn't matter. 740 if (K > 1000) 741 return SE.getCouldNotCompute(); 742 743 unsigned W = SE.getTypeSizeInBits(ResultTy); 744 745 // Calculate K! / 2^T and T; we divide out the factors of two before 746 // multiplying for calculating K! / 2^T to avoid overflow. 747 // Other overflow doesn't matter because we only care about the bottom 748 // W bits of the result. 749 APInt OddFactorial(W, 1); 750 unsigned T = 1; 751 for (unsigned i = 3; i <= K; ++i) { 752 APInt Mult(W, i); 753 unsigned TwoFactors = Mult.countTrailingZeros(); 754 T += TwoFactors; 755 Mult = Mult.lshr(TwoFactors); 756 OddFactorial *= Mult; 757 } 758 759 // We need at least W + T bits for the multiplication step 760 unsigned CalculationBits = W + T; 761 762 // Calculate 2^T, at width T+W. 763 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 764 765 // Calculate the multiplicative inverse of K! / 2^T; 766 // this multiplication factor will perform the exact division by 767 // K! / 2^T. 768 APInt Mod = APInt::getSignedMinValue(W+1); 769 APInt MultiplyFactor = OddFactorial.zext(W+1); 770 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 771 MultiplyFactor = MultiplyFactor.trunc(W); 772 773 // Calculate the product, at width T+W 774 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 775 CalculationBits); 776 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 777 for (unsigned i = 1; i != K; ++i) { 778 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 779 Dividend = SE.getMulExpr(Dividend, 780 SE.getTruncateOrZeroExtend(S, CalculationTy)); 781 } 782 783 // Divide by 2^T 784 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 785 786 // Truncate the result, and divide by K! / 2^T. 787 788 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 789 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 790 } 791 792 /// evaluateAtIteration - Return the value of this chain of recurrences at 793 /// the specified iteration number. We can evaluate this recurrence by 794 /// multiplying each element in the chain by the binomial coefficient 795 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 796 /// 797 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 798 /// 799 /// where BC(It, k) stands for binomial coefficient. 800 /// 801 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 802 ScalarEvolution &SE) const { 803 const SCEV *Result = getStart(); 804 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 805 // The computation is correct in the face of overflow provided that the 806 // multiplication is performed _after_ the evaluation of the binomial 807 // coefficient. 808 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 809 if (isa<SCEVCouldNotCompute>(Coeff)) 810 return Coeff; 811 812 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 813 } 814 return Result; 815 } 816 817 //===----------------------------------------------------------------------===// 818 // SCEV Expression folder implementations 819 //===----------------------------------------------------------------------===// 820 821 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 822 Type *Ty) { 823 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 824 "This is not a truncating conversion!"); 825 assert(isSCEVable(Ty) && 826 "This is not a conversion to a SCEVable type!"); 827 Ty = getEffectiveSCEVType(Ty); 828 829 FoldingSetNodeID ID; 830 ID.AddInteger(scTruncate); 831 ID.AddPointer(Op); 832 ID.AddPointer(Ty); 833 void *IP = nullptr; 834 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 835 836 // Fold if the operand is constant. 837 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 838 return getConstant( 839 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 840 841 // trunc(trunc(x)) --> trunc(x) 842 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 843 return getTruncateExpr(ST->getOperand(), Ty); 844 845 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 846 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 847 return getTruncateOrSignExtend(SS->getOperand(), Ty); 848 849 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 850 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 851 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 852 853 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 854 // eliminate all the truncates. 855 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 856 SmallVector<const SCEV *, 4> Operands; 857 bool hasTrunc = false; 858 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 859 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 860 hasTrunc = isa<SCEVTruncateExpr>(S); 861 Operands.push_back(S); 862 } 863 if (!hasTrunc) 864 return getAddExpr(Operands); 865 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 866 } 867 868 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 869 // eliminate all the truncates. 870 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 871 SmallVector<const SCEV *, 4> Operands; 872 bool hasTrunc = false; 873 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 874 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 875 hasTrunc = isa<SCEVTruncateExpr>(S); 876 Operands.push_back(S); 877 } 878 if (!hasTrunc) 879 return getMulExpr(Operands); 880 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 881 } 882 883 // If the input value is a chrec scev, truncate the chrec's operands. 884 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 885 SmallVector<const SCEV *, 4> Operands; 886 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 887 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 888 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 889 } 890 891 // The cast wasn't folded; create an explicit cast node. We can reuse 892 // the existing insert position since if we get here, we won't have 893 // made any changes which would invalidate it. 894 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 895 Op, Ty); 896 UniqueSCEVs.InsertNode(S, IP); 897 return S; 898 } 899 900 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 901 Type *Ty) { 902 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 903 "This is not an extending conversion!"); 904 assert(isSCEVable(Ty) && 905 "This is not a conversion to a SCEVable type!"); 906 Ty = getEffectiveSCEVType(Ty); 907 908 // Fold if the operand is constant. 909 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 910 return getConstant( 911 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 912 913 // zext(zext(x)) --> zext(x) 914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 915 return getZeroExtendExpr(SZ->getOperand(), Ty); 916 917 // Before doing any expensive analysis, check to see if we've already 918 // computed a SCEV for this Op and Ty. 919 FoldingSetNodeID ID; 920 ID.AddInteger(scZeroExtend); 921 ID.AddPointer(Op); 922 ID.AddPointer(Ty); 923 void *IP = nullptr; 924 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 925 926 // zext(trunc(x)) --> zext(x) or x or trunc(x) 927 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 928 // It's possible the bits taken off by the truncate were all zero bits. If 929 // so, we should be able to simplify this further. 930 const SCEV *X = ST->getOperand(); 931 ConstantRange CR = getUnsignedRange(X); 932 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 933 unsigned NewBits = getTypeSizeInBits(Ty); 934 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 935 CR.zextOrTrunc(NewBits))) 936 return getTruncateOrZeroExtend(X, Ty); 937 } 938 939 // If the input value is a chrec scev, and we can prove that the value 940 // did not overflow the old, smaller, value, we can zero extend all of the 941 // operands (often constants). This allows analysis of something like 942 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 943 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 944 if (AR->isAffine()) { 945 const SCEV *Start = AR->getStart(); 946 const SCEV *Step = AR->getStepRecurrence(*this); 947 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 948 const Loop *L = AR->getLoop(); 949 950 // If we have special knowledge that this addrec won't overflow, 951 // we don't need to do any further analysis. 952 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 953 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 954 getZeroExtendExpr(Step, Ty), 955 L, AR->getNoWrapFlags()); 956 957 // Check whether the backedge-taken count is SCEVCouldNotCompute. 958 // Note that this serves two purposes: It filters out loops that are 959 // simply not analyzable, and it covers the case where this code is 960 // being called from within backedge-taken count analysis, such that 961 // attempting to ask for the backedge-taken count would likely result 962 // in infinite recursion. In the later case, the analysis code will 963 // cope with a conservative value, and it will take care to purge 964 // that value once it has finished. 965 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 966 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 967 // Manually compute the final value for AR, checking for 968 // overflow. 969 970 // Check whether the backedge-taken count can be losslessly casted to 971 // the addrec's type. The count is always unsigned. 972 const SCEV *CastedMaxBECount = 973 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 974 const SCEV *RecastedMaxBECount = 975 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 976 if (MaxBECount == RecastedMaxBECount) { 977 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 978 // Check whether Start+Step*MaxBECount has no unsigned overflow. 979 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 980 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 981 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 982 const SCEV *WideMaxBECount = 983 getZeroExtendExpr(CastedMaxBECount, WideTy); 984 const SCEV *OperandExtendedAdd = 985 getAddExpr(WideStart, 986 getMulExpr(WideMaxBECount, 987 getZeroExtendExpr(Step, WideTy))); 988 if (ZAdd == OperandExtendedAdd) { 989 // Cache knowledge of AR NUW, which is propagated to this AddRec. 990 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 991 // Return the expression with the addrec on the outside. 992 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 993 getZeroExtendExpr(Step, Ty), 994 L, AR->getNoWrapFlags()); 995 } 996 // Similar to above, only this time treat the step value as signed. 997 // This covers loops that count down. 998 OperandExtendedAdd = 999 getAddExpr(WideStart, 1000 getMulExpr(WideMaxBECount, 1001 getSignExtendExpr(Step, WideTy))); 1002 if (ZAdd == OperandExtendedAdd) { 1003 // Cache knowledge of AR NW, which is propagated to this AddRec. 1004 // Negative step causes unsigned wrap, but it still can't self-wrap. 1005 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1006 // Return the expression with the addrec on the outside. 1007 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1008 getSignExtendExpr(Step, Ty), 1009 L, AR->getNoWrapFlags()); 1010 } 1011 } 1012 1013 // If the backedge is guarded by a comparison with the pre-inc value 1014 // the addrec is safe. Also, if the entry is guarded by a comparison 1015 // with the start value and the backedge is guarded by a comparison 1016 // with the post-inc value, the addrec is safe. 1017 if (isKnownPositive(Step)) { 1018 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1019 getUnsignedRange(Step).getUnsignedMax()); 1020 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1021 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1022 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1023 AR->getPostIncExpr(*this), N))) { 1024 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1025 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1026 // Return the expression with the addrec on the outside. 1027 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1028 getZeroExtendExpr(Step, Ty), 1029 L, AR->getNoWrapFlags()); 1030 } 1031 } else if (isKnownNegative(Step)) { 1032 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1033 getSignedRange(Step).getSignedMin()); 1034 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1035 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1036 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1037 AR->getPostIncExpr(*this), N))) { 1038 // Cache knowledge of AR NW, which is propagated to this AddRec. 1039 // Negative step causes unsigned wrap, but it still can't self-wrap. 1040 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1041 // Return the expression with the addrec on the outside. 1042 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1043 getSignExtendExpr(Step, Ty), 1044 L, AR->getNoWrapFlags()); 1045 } 1046 } 1047 } 1048 } 1049 1050 // The cast wasn't folded; create an explicit cast node. 1051 // Recompute the insert position, as it may have been invalidated. 1052 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1053 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1054 Op, Ty); 1055 UniqueSCEVs.InsertNode(S, IP); 1056 return S; 1057 } 1058 1059 // Get the limit of a recurrence such that incrementing by Step cannot cause 1060 // signed overflow as long as the value of the recurrence within the loop does 1061 // not exceed this limit before incrementing. 1062 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1063 ICmpInst::Predicate *Pred, 1064 ScalarEvolution *SE) { 1065 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1066 if (SE->isKnownPositive(Step)) { 1067 *Pred = ICmpInst::ICMP_SLT; 1068 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1069 SE->getSignedRange(Step).getSignedMax()); 1070 } 1071 if (SE->isKnownNegative(Step)) { 1072 *Pred = ICmpInst::ICMP_SGT; 1073 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1074 SE->getSignedRange(Step).getSignedMin()); 1075 } 1076 return nullptr; 1077 } 1078 1079 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1080 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1081 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1082 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1083 // result, the expression "Step + sext(PreIncAR)" is congruent with 1084 // "sext(PostIncAR)" 1085 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1086 Type *Ty, 1087 ScalarEvolution *SE) { 1088 const Loop *L = AR->getLoop(); 1089 const SCEV *Start = AR->getStart(); 1090 const SCEV *Step = AR->getStepRecurrence(*SE); 1091 1092 // Check for a simple looking step prior to loop entry. 1093 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1094 if (!SA) 1095 return nullptr; 1096 1097 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1098 // subtraction is expensive. For this purpose, perform a quick and dirty 1099 // difference, by checking for Step in the operand list. 1100 SmallVector<const SCEV *, 4> DiffOps; 1101 for (const SCEV *Op : SA->operands()) 1102 if (Op != Step) 1103 DiffOps.push_back(Op); 1104 1105 if (DiffOps.size() == SA->getNumOperands()) 1106 return nullptr; 1107 1108 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1109 // same three conditions that getSignExtendedExpr checks. 1110 1111 // 1. NSW flags on the step increment. 1112 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1113 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1114 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1115 1116 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1117 return PreStart; 1118 1119 // 2. Direct overflow check on the step operation's expression. 1120 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1121 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1122 const SCEV *OperandExtendedStart = 1123 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1124 SE->getSignExtendExpr(Step, WideTy)); 1125 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1126 // Cache knowledge of PreAR NSW. 1127 if (PreAR) 1128 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1129 // FIXME: this optimization needs a unit test 1130 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1131 return PreStart; 1132 } 1133 1134 // 3. Loop precondition. 1135 ICmpInst::Predicate Pred; 1136 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1137 1138 if (OverflowLimit && 1139 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1140 return PreStart; 1141 } 1142 return nullptr; 1143 } 1144 1145 // Get the normalized sign-extended expression for this AddRec's Start. 1146 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1147 Type *Ty, 1148 ScalarEvolution *SE) { 1149 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1150 if (!PreStart) 1151 return SE->getSignExtendExpr(AR->getStart(), Ty); 1152 1153 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1154 SE->getSignExtendExpr(PreStart, Ty)); 1155 } 1156 1157 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1158 Type *Ty) { 1159 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1160 "This is not an extending conversion!"); 1161 assert(isSCEVable(Ty) && 1162 "This is not a conversion to a SCEVable type!"); 1163 Ty = getEffectiveSCEVType(Ty); 1164 1165 // Fold if the operand is constant. 1166 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1167 return getConstant( 1168 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1169 1170 // sext(sext(x)) --> sext(x) 1171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1172 return getSignExtendExpr(SS->getOperand(), Ty); 1173 1174 // sext(zext(x)) --> zext(x) 1175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1176 return getZeroExtendExpr(SZ->getOperand(), Ty); 1177 1178 // Before doing any expensive analysis, check to see if we've already 1179 // computed a SCEV for this Op and Ty. 1180 FoldingSetNodeID ID; 1181 ID.AddInteger(scSignExtend); 1182 ID.AddPointer(Op); 1183 ID.AddPointer(Ty); 1184 void *IP = nullptr; 1185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1186 1187 // If the input value is provably positive, build a zext instead. 1188 if (isKnownNonNegative(Op)) 1189 return getZeroExtendExpr(Op, Ty); 1190 1191 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1193 // It's possible the bits taken off by the truncate were all sign bits. If 1194 // so, we should be able to simplify this further. 1195 const SCEV *X = ST->getOperand(); 1196 ConstantRange CR = getSignedRange(X); 1197 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1198 unsigned NewBits = getTypeSizeInBits(Ty); 1199 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1200 CR.sextOrTrunc(NewBits))) 1201 return getTruncateOrSignExtend(X, Ty); 1202 } 1203 1204 // If the input value is a chrec scev, and we can prove that the value 1205 // did not overflow the old, smaller, value, we can sign extend all of the 1206 // operands (often constants). This allows analysis of something like 1207 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1208 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1209 if (AR->isAffine()) { 1210 const SCEV *Start = AR->getStart(); 1211 const SCEV *Step = AR->getStepRecurrence(*this); 1212 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1213 const Loop *L = AR->getLoop(); 1214 1215 // If we have special knowledge that this addrec won't overflow, 1216 // we don't need to do any further analysis. 1217 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1218 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1219 getSignExtendExpr(Step, Ty), 1220 L, SCEV::FlagNSW); 1221 1222 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1223 // Note that this serves two purposes: It filters out loops that are 1224 // simply not analyzable, and it covers the case where this code is 1225 // being called from within backedge-taken count analysis, such that 1226 // attempting to ask for the backedge-taken count would likely result 1227 // in infinite recursion. In the later case, the analysis code will 1228 // cope with a conservative value, and it will take care to purge 1229 // that value once it has finished. 1230 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1231 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1232 // Manually compute the final value for AR, checking for 1233 // overflow. 1234 1235 // Check whether the backedge-taken count can be losslessly casted to 1236 // the addrec's type. The count is always unsigned. 1237 const SCEV *CastedMaxBECount = 1238 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1239 const SCEV *RecastedMaxBECount = 1240 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1241 if (MaxBECount == RecastedMaxBECount) { 1242 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1243 // Check whether Start+Step*MaxBECount has no signed overflow. 1244 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1245 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1246 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1247 const SCEV *WideMaxBECount = 1248 getZeroExtendExpr(CastedMaxBECount, WideTy); 1249 const SCEV *OperandExtendedAdd = 1250 getAddExpr(WideStart, 1251 getMulExpr(WideMaxBECount, 1252 getSignExtendExpr(Step, WideTy))); 1253 if (SAdd == OperandExtendedAdd) { 1254 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1255 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1256 // Return the expression with the addrec on the outside. 1257 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1258 getSignExtendExpr(Step, Ty), 1259 L, AR->getNoWrapFlags()); 1260 } 1261 // Similar to above, only this time treat the step value as unsigned. 1262 // This covers loops that count up with an unsigned step. 1263 OperandExtendedAdd = 1264 getAddExpr(WideStart, 1265 getMulExpr(WideMaxBECount, 1266 getZeroExtendExpr(Step, WideTy))); 1267 if (SAdd == OperandExtendedAdd) { 1268 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1269 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1270 // Return the expression with the addrec on the outside. 1271 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1272 getZeroExtendExpr(Step, Ty), 1273 L, AR->getNoWrapFlags()); 1274 } 1275 } 1276 1277 // If the backedge is guarded by a comparison with the pre-inc value 1278 // the addrec is safe. Also, if the entry is guarded by a comparison 1279 // with the start value and the backedge is guarded by a comparison 1280 // with the post-inc value, the addrec is safe. 1281 ICmpInst::Predicate Pred; 1282 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1283 if (OverflowLimit && 1284 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1285 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1286 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1287 OverflowLimit)))) { 1288 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1289 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1290 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1291 getSignExtendExpr(Step, Ty), 1292 L, AR->getNoWrapFlags()); 1293 } 1294 } 1295 } 1296 1297 // The cast wasn't folded; create an explicit cast node. 1298 // Recompute the insert position, as it may have been invalidated. 1299 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1300 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1301 Op, Ty); 1302 UniqueSCEVs.InsertNode(S, IP); 1303 return S; 1304 } 1305 1306 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1307 /// unspecified bits out to the given type. 1308 /// 1309 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1310 Type *Ty) { 1311 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1312 "This is not an extending conversion!"); 1313 assert(isSCEVable(Ty) && 1314 "This is not a conversion to a SCEVable type!"); 1315 Ty = getEffectiveSCEVType(Ty); 1316 1317 // Sign-extend negative constants. 1318 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1319 if (SC->getValue()->getValue().isNegative()) 1320 return getSignExtendExpr(Op, Ty); 1321 1322 // Peel off a truncate cast. 1323 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1324 const SCEV *NewOp = T->getOperand(); 1325 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1326 return getAnyExtendExpr(NewOp, Ty); 1327 return getTruncateOrNoop(NewOp, Ty); 1328 } 1329 1330 // Next try a zext cast. If the cast is folded, use it. 1331 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1332 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1333 return ZExt; 1334 1335 // Next try a sext cast. If the cast is folded, use it. 1336 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1337 if (!isa<SCEVSignExtendExpr>(SExt)) 1338 return SExt; 1339 1340 // Force the cast to be folded into the operands of an addrec. 1341 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1342 SmallVector<const SCEV *, 4> Ops; 1343 for (const SCEV *Op : AR->operands()) 1344 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1345 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1346 } 1347 1348 // If the expression is obviously signed, use the sext cast value. 1349 if (isa<SCEVSMaxExpr>(Op)) 1350 return SExt; 1351 1352 // Absent any other information, use the zext cast value. 1353 return ZExt; 1354 } 1355 1356 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1357 /// a list of operands to be added under the given scale, update the given 1358 /// map. This is a helper function for getAddRecExpr. As an example of 1359 /// what it does, given a sequence of operands that would form an add 1360 /// expression like this: 1361 /// 1362 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1363 /// 1364 /// where A and B are constants, update the map with these values: 1365 /// 1366 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1367 /// 1368 /// and add 13 + A*B*29 to AccumulatedConstant. 1369 /// This will allow getAddRecExpr to produce this: 1370 /// 1371 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1372 /// 1373 /// This form often exposes folding opportunities that are hidden in 1374 /// the original operand list. 1375 /// 1376 /// Return true iff it appears that any interesting folding opportunities 1377 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1378 /// the common case where no interesting opportunities are present, and 1379 /// is also used as a check to avoid infinite recursion. 1380 /// 1381 static bool 1382 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1383 SmallVectorImpl<const SCEV *> &NewOps, 1384 APInt &AccumulatedConstant, 1385 const SCEV *const *Ops, size_t NumOperands, 1386 const APInt &Scale, 1387 ScalarEvolution &SE) { 1388 bool Interesting = false; 1389 1390 // Iterate over the add operands. They are sorted, with constants first. 1391 unsigned i = 0; 1392 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1393 ++i; 1394 // Pull a buried constant out to the outside. 1395 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1396 Interesting = true; 1397 AccumulatedConstant += Scale * C->getValue()->getValue(); 1398 } 1399 1400 // Next comes everything else. We're especially interested in multiplies 1401 // here, but they're in the middle, so just visit the rest with one loop. 1402 for (; i != NumOperands; ++i) { 1403 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1404 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1405 APInt NewScale = 1406 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1407 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1408 // A multiplication of a constant with another add; recurse. 1409 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1410 Interesting |= 1411 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1412 Add->op_begin(), Add->getNumOperands(), 1413 NewScale, SE); 1414 } else { 1415 // A multiplication of a constant with some other value. Update 1416 // the map. 1417 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1418 const SCEV *Key = SE.getMulExpr(MulOps); 1419 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1420 M.insert(std::make_pair(Key, NewScale)); 1421 if (Pair.second) { 1422 NewOps.push_back(Pair.first->first); 1423 } else { 1424 Pair.first->second += NewScale; 1425 // The map already had an entry for this value, which may indicate 1426 // a folding opportunity. 1427 Interesting = true; 1428 } 1429 } 1430 } else { 1431 // An ordinary operand. Update the map. 1432 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1433 M.insert(std::make_pair(Ops[i], Scale)); 1434 if (Pair.second) { 1435 NewOps.push_back(Pair.first->first); 1436 } else { 1437 Pair.first->second += Scale; 1438 // The map already had an entry for this value, which may indicate 1439 // a folding opportunity. 1440 Interesting = true; 1441 } 1442 } 1443 } 1444 1445 return Interesting; 1446 } 1447 1448 namespace { 1449 struct APIntCompare { 1450 bool operator()(const APInt &LHS, const APInt &RHS) const { 1451 return LHS.ult(RHS); 1452 } 1453 }; 1454 } 1455 1456 /// getAddExpr - Get a canonical add expression, or something simpler if 1457 /// possible. 1458 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1459 SCEV::NoWrapFlags Flags) { 1460 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1461 "only nuw or nsw allowed"); 1462 assert(!Ops.empty() && "Cannot get empty add!"); 1463 if (Ops.size() == 1) return Ops[0]; 1464 #ifndef NDEBUG 1465 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1466 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1467 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1468 "SCEVAddExpr operand types don't match!"); 1469 #endif 1470 1471 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1472 // And vice-versa. 1473 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1474 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1475 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1476 bool All = true; 1477 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1478 E = Ops.end(); I != E; ++I) 1479 if (!isKnownNonNegative(*I)) { 1480 All = false; 1481 break; 1482 } 1483 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1484 } 1485 1486 // Sort by complexity, this groups all similar expression types together. 1487 GroupByComplexity(Ops, LI); 1488 1489 // If there are any constants, fold them together. 1490 unsigned Idx = 0; 1491 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1492 ++Idx; 1493 assert(Idx < Ops.size()); 1494 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1495 // We found two constants, fold them together! 1496 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1497 RHSC->getValue()->getValue()); 1498 if (Ops.size() == 2) return Ops[0]; 1499 Ops.erase(Ops.begin()+1); // Erase the folded element 1500 LHSC = cast<SCEVConstant>(Ops[0]); 1501 } 1502 1503 // If we are left with a constant zero being added, strip it off. 1504 if (LHSC->getValue()->isZero()) { 1505 Ops.erase(Ops.begin()); 1506 --Idx; 1507 } 1508 1509 if (Ops.size() == 1) return Ops[0]; 1510 } 1511 1512 // Okay, check to see if the same value occurs in the operand list more than 1513 // once. If so, merge them together into an multiply expression. Since we 1514 // sorted the list, these values are required to be adjacent. 1515 Type *Ty = Ops[0]->getType(); 1516 bool FoundMatch = false; 1517 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1518 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1519 // Scan ahead to count how many equal operands there are. 1520 unsigned Count = 2; 1521 while (i+Count != e && Ops[i+Count] == Ops[i]) 1522 ++Count; 1523 // Merge the values into a multiply. 1524 const SCEV *Scale = getConstant(Ty, Count); 1525 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1526 if (Ops.size() == Count) 1527 return Mul; 1528 Ops[i] = Mul; 1529 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1530 --i; e -= Count - 1; 1531 FoundMatch = true; 1532 } 1533 if (FoundMatch) 1534 return getAddExpr(Ops, Flags); 1535 1536 // Check for truncates. If all the operands are truncated from the same 1537 // type, see if factoring out the truncate would permit the result to be 1538 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1539 // if the contents of the resulting outer trunc fold to something simple. 1540 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1541 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1542 Type *DstType = Trunc->getType(); 1543 Type *SrcType = Trunc->getOperand()->getType(); 1544 SmallVector<const SCEV *, 8> LargeOps; 1545 bool Ok = true; 1546 // Check all the operands to see if they can be represented in the 1547 // source type of the truncate. 1548 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1549 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1550 if (T->getOperand()->getType() != SrcType) { 1551 Ok = false; 1552 break; 1553 } 1554 LargeOps.push_back(T->getOperand()); 1555 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1556 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1557 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1558 SmallVector<const SCEV *, 8> LargeMulOps; 1559 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1560 if (const SCEVTruncateExpr *T = 1561 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1562 if (T->getOperand()->getType() != SrcType) { 1563 Ok = false; 1564 break; 1565 } 1566 LargeMulOps.push_back(T->getOperand()); 1567 } else if (const SCEVConstant *C = 1568 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1569 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1570 } else { 1571 Ok = false; 1572 break; 1573 } 1574 } 1575 if (Ok) 1576 LargeOps.push_back(getMulExpr(LargeMulOps)); 1577 } else { 1578 Ok = false; 1579 break; 1580 } 1581 } 1582 if (Ok) { 1583 // Evaluate the expression in the larger type. 1584 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1585 // If it folds to something simple, use it. Otherwise, don't. 1586 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1587 return getTruncateExpr(Fold, DstType); 1588 } 1589 } 1590 1591 // Skip past any other cast SCEVs. 1592 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1593 ++Idx; 1594 1595 // If there are add operands they would be next. 1596 if (Idx < Ops.size()) { 1597 bool DeletedAdd = false; 1598 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1599 // If we have an add, expand the add operands onto the end of the operands 1600 // list. 1601 Ops.erase(Ops.begin()+Idx); 1602 Ops.append(Add->op_begin(), Add->op_end()); 1603 DeletedAdd = true; 1604 } 1605 1606 // If we deleted at least one add, we added operands to the end of the list, 1607 // and they are not necessarily sorted. Recurse to resort and resimplify 1608 // any operands we just acquired. 1609 if (DeletedAdd) 1610 return getAddExpr(Ops); 1611 } 1612 1613 // Skip over the add expression until we get to a multiply. 1614 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1615 ++Idx; 1616 1617 // Check to see if there are any folding opportunities present with 1618 // operands multiplied by constant values. 1619 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1620 uint64_t BitWidth = getTypeSizeInBits(Ty); 1621 DenseMap<const SCEV *, APInt> M; 1622 SmallVector<const SCEV *, 8> NewOps; 1623 APInt AccumulatedConstant(BitWidth, 0); 1624 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1625 Ops.data(), Ops.size(), 1626 APInt(BitWidth, 1), *this)) { 1627 // Some interesting folding opportunity is present, so its worthwhile to 1628 // re-generate the operands list. Group the operands by constant scale, 1629 // to avoid multiplying by the same constant scale multiple times. 1630 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1631 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 1632 E = NewOps.end(); I != E; ++I) 1633 MulOpLists[M.find(*I)->second].push_back(*I); 1634 // Re-generate the operands list. 1635 Ops.clear(); 1636 if (AccumulatedConstant != 0) 1637 Ops.push_back(getConstant(AccumulatedConstant)); 1638 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1639 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1640 if (I->first != 0) 1641 Ops.push_back(getMulExpr(getConstant(I->first), 1642 getAddExpr(I->second))); 1643 if (Ops.empty()) 1644 return getConstant(Ty, 0); 1645 if (Ops.size() == 1) 1646 return Ops[0]; 1647 return getAddExpr(Ops); 1648 } 1649 } 1650 1651 // If we are adding something to a multiply expression, make sure the 1652 // something is not already an operand of the multiply. If so, merge it into 1653 // the multiply. 1654 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1655 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1656 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1657 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1658 if (isa<SCEVConstant>(MulOpSCEV)) 1659 continue; 1660 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1661 if (MulOpSCEV == Ops[AddOp]) { 1662 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1663 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1664 if (Mul->getNumOperands() != 2) { 1665 // If the multiply has more than two operands, we must get the 1666 // Y*Z term. 1667 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1668 Mul->op_begin()+MulOp); 1669 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1670 InnerMul = getMulExpr(MulOps); 1671 } 1672 const SCEV *One = getConstant(Ty, 1); 1673 const SCEV *AddOne = getAddExpr(One, InnerMul); 1674 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1675 if (Ops.size() == 2) return OuterMul; 1676 if (AddOp < Idx) { 1677 Ops.erase(Ops.begin()+AddOp); 1678 Ops.erase(Ops.begin()+Idx-1); 1679 } else { 1680 Ops.erase(Ops.begin()+Idx); 1681 Ops.erase(Ops.begin()+AddOp-1); 1682 } 1683 Ops.push_back(OuterMul); 1684 return getAddExpr(Ops); 1685 } 1686 1687 // Check this multiply against other multiplies being added together. 1688 for (unsigned OtherMulIdx = Idx+1; 1689 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1690 ++OtherMulIdx) { 1691 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1692 // If MulOp occurs in OtherMul, we can fold the two multiplies 1693 // together. 1694 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1695 OMulOp != e; ++OMulOp) 1696 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1697 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1698 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1699 if (Mul->getNumOperands() != 2) { 1700 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1701 Mul->op_begin()+MulOp); 1702 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1703 InnerMul1 = getMulExpr(MulOps); 1704 } 1705 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1706 if (OtherMul->getNumOperands() != 2) { 1707 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1708 OtherMul->op_begin()+OMulOp); 1709 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1710 InnerMul2 = getMulExpr(MulOps); 1711 } 1712 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1713 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1714 if (Ops.size() == 2) return OuterMul; 1715 Ops.erase(Ops.begin()+Idx); 1716 Ops.erase(Ops.begin()+OtherMulIdx-1); 1717 Ops.push_back(OuterMul); 1718 return getAddExpr(Ops); 1719 } 1720 } 1721 } 1722 } 1723 1724 // If there are any add recurrences in the operands list, see if any other 1725 // added values are loop invariant. If so, we can fold them into the 1726 // recurrence. 1727 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1728 ++Idx; 1729 1730 // Scan over all recurrences, trying to fold loop invariants into them. 1731 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1732 // Scan all of the other operands to this add and add them to the vector if 1733 // they are loop invariant w.r.t. the recurrence. 1734 SmallVector<const SCEV *, 8> LIOps; 1735 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1736 const Loop *AddRecLoop = AddRec->getLoop(); 1737 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1738 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1739 LIOps.push_back(Ops[i]); 1740 Ops.erase(Ops.begin()+i); 1741 --i; --e; 1742 } 1743 1744 // If we found some loop invariants, fold them into the recurrence. 1745 if (!LIOps.empty()) { 1746 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1747 LIOps.push_back(AddRec->getStart()); 1748 1749 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1750 AddRec->op_end()); 1751 AddRecOps[0] = getAddExpr(LIOps); 1752 1753 // Build the new addrec. Propagate the NUW and NSW flags if both the 1754 // outer add and the inner addrec are guaranteed to have no overflow. 1755 // Always propagate NW. 1756 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1757 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1758 1759 // If all of the other operands were loop invariant, we are done. 1760 if (Ops.size() == 1) return NewRec; 1761 1762 // Otherwise, add the folded AddRec by the non-invariant parts. 1763 for (unsigned i = 0;; ++i) 1764 if (Ops[i] == AddRec) { 1765 Ops[i] = NewRec; 1766 break; 1767 } 1768 return getAddExpr(Ops); 1769 } 1770 1771 // Okay, if there weren't any loop invariants to be folded, check to see if 1772 // there are multiple AddRec's with the same loop induction variable being 1773 // added together. If so, we can fold them. 1774 for (unsigned OtherIdx = Idx+1; 1775 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1776 ++OtherIdx) 1777 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1778 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1779 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1780 AddRec->op_end()); 1781 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1782 ++OtherIdx) 1783 if (const SCEVAddRecExpr *OtherAddRec = 1784 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1785 if (OtherAddRec->getLoop() == AddRecLoop) { 1786 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1787 i != e; ++i) { 1788 if (i >= AddRecOps.size()) { 1789 AddRecOps.append(OtherAddRec->op_begin()+i, 1790 OtherAddRec->op_end()); 1791 break; 1792 } 1793 AddRecOps[i] = getAddExpr(AddRecOps[i], 1794 OtherAddRec->getOperand(i)); 1795 } 1796 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1797 } 1798 // Step size has changed, so we cannot guarantee no self-wraparound. 1799 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1800 return getAddExpr(Ops); 1801 } 1802 1803 // Otherwise couldn't fold anything into this recurrence. Move onto the 1804 // next one. 1805 } 1806 1807 // Okay, it looks like we really DO need an add expr. Check to see if we 1808 // already have one, otherwise create a new one. 1809 FoldingSetNodeID ID; 1810 ID.AddInteger(scAddExpr); 1811 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1812 ID.AddPointer(Ops[i]); 1813 void *IP = nullptr; 1814 SCEVAddExpr *S = 1815 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1816 if (!S) { 1817 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1818 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1819 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1820 O, Ops.size()); 1821 UniqueSCEVs.InsertNode(S, IP); 1822 } 1823 S->setNoWrapFlags(Flags); 1824 return S; 1825 } 1826 1827 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1828 uint64_t k = i*j; 1829 if (j > 1 && k / j != i) Overflow = true; 1830 return k; 1831 } 1832 1833 /// Compute the result of "n choose k", the binomial coefficient. If an 1834 /// intermediate computation overflows, Overflow will be set and the return will 1835 /// be garbage. Overflow is not cleared on absence of overflow. 1836 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1837 // We use the multiplicative formula: 1838 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1839 // At each iteration, we take the n-th term of the numeral and divide by the 1840 // (k-n)th term of the denominator. This division will always produce an 1841 // integral result, and helps reduce the chance of overflow in the 1842 // intermediate computations. However, we can still overflow even when the 1843 // final result would fit. 1844 1845 if (n == 0 || n == k) return 1; 1846 if (k > n) return 0; 1847 1848 if (k > n/2) 1849 k = n-k; 1850 1851 uint64_t r = 1; 1852 for (uint64_t i = 1; i <= k; ++i) { 1853 r = umul_ov(r, n-(i-1), Overflow); 1854 r /= i; 1855 } 1856 return r; 1857 } 1858 1859 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1860 /// possible. 1861 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1862 SCEV::NoWrapFlags Flags) { 1863 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1864 "only nuw or nsw allowed"); 1865 assert(!Ops.empty() && "Cannot get empty mul!"); 1866 if (Ops.size() == 1) return Ops[0]; 1867 #ifndef NDEBUG 1868 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1869 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1870 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1871 "SCEVMulExpr operand types don't match!"); 1872 #endif 1873 1874 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1875 // And vice-versa. 1876 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1877 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1878 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1879 bool All = true; 1880 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1881 E = Ops.end(); I != E; ++I) 1882 if (!isKnownNonNegative(*I)) { 1883 All = false; 1884 break; 1885 } 1886 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1887 } 1888 1889 // Sort by complexity, this groups all similar expression types together. 1890 GroupByComplexity(Ops, LI); 1891 1892 // If there are any constants, fold them together. 1893 unsigned Idx = 0; 1894 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1895 1896 // C1*(C2+V) -> C1*C2 + C1*V 1897 if (Ops.size() == 2) 1898 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1899 if (Add->getNumOperands() == 2 && 1900 isa<SCEVConstant>(Add->getOperand(0))) 1901 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1902 getMulExpr(LHSC, Add->getOperand(1))); 1903 1904 ++Idx; 1905 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1906 // We found two constants, fold them together! 1907 ConstantInt *Fold = ConstantInt::get(getContext(), 1908 LHSC->getValue()->getValue() * 1909 RHSC->getValue()->getValue()); 1910 Ops[0] = getConstant(Fold); 1911 Ops.erase(Ops.begin()+1); // Erase the folded element 1912 if (Ops.size() == 1) return Ops[0]; 1913 LHSC = cast<SCEVConstant>(Ops[0]); 1914 } 1915 1916 // If we are left with a constant one being multiplied, strip it off. 1917 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1918 Ops.erase(Ops.begin()); 1919 --Idx; 1920 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1921 // If we have a multiply of zero, it will always be zero. 1922 return Ops[0]; 1923 } else if (Ops[0]->isAllOnesValue()) { 1924 // If we have a mul by -1 of an add, try distributing the -1 among the 1925 // add operands. 1926 if (Ops.size() == 2) { 1927 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1928 SmallVector<const SCEV *, 4> NewOps; 1929 bool AnyFolded = false; 1930 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1931 E = Add->op_end(); I != E; ++I) { 1932 const SCEV *Mul = getMulExpr(Ops[0], *I); 1933 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1934 NewOps.push_back(Mul); 1935 } 1936 if (AnyFolded) 1937 return getAddExpr(NewOps); 1938 } 1939 else if (const SCEVAddRecExpr * 1940 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1941 // Negation preserves a recurrence's no self-wrap property. 1942 SmallVector<const SCEV *, 4> Operands; 1943 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1944 E = AddRec->op_end(); I != E; ++I) { 1945 Operands.push_back(getMulExpr(Ops[0], *I)); 1946 } 1947 return getAddRecExpr(Operands, AddRec->getLoop(), 1948 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1949 } 1950 } 1951 } 1952 1953 if (Ops.size() == 1) 1954 return Ops[0]; 1955 } 1956 1957 // Skip over the add expression until we get to a multiply. 1958 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1959 ++Idx; 1960 1961 // If there are mul operands inline them all into this expression. 1962 if (Idx < Ops.size()) { 1963 bool DeletedMul = false; 1964 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1965 // If we have an mul, expand the mul operands onto the end of the operands 1966 // list. 1967 Ops.erase(Ops.begin()+Idx); 1968 Ops.append(Mul->op_begin(), Mul->op_end()); 1969 DeletedMul = true; 1970 } 1971 1972 // If we deleted at least one mul, we added operands to the end of the list, 1973 // and they are not necessarily sorted. Recurse to resort and resimplify 1974 // any operands we just acquired. 1975 if (DeletedMul) 1976 return getMulExpr(Ops); 1977 } 1978 1979 // If there are any add recurrences in the operands list, see if any other 1980 // added values are loop invariant. If so, we can fold them into the 1981 // recurrence. 1982 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1983 ++Idx; 1984 1985 // Scan over all recurrences, trying to fold loop invariants into them. 1986 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1987 // Scan all of the other operands to this mul and add them to the vector if 1988 // they are loop invariant w.r.t. the recurrence. 1989 SmallVector<const SCEV *, 8> LIOps; 1990 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1991 const Loop *AddRecLoop = AddRec->getLoop(); 1992 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1993 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1994 LIOps.push_back(Ops[i]); 1995 Ops.erase(Ops.begin()+i); 1996 --i; --e; 1997 } 1998 1999 // If we found some loop invariants, fold them into the recurrence. 2000 if (!LIOps.empty()) { 2001 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2002 SmallVector<const SCEV *, 4> NewOps; 2003 NewOps.reserve(AddRec->getNumOperands()); 2004 const SCEV *Scale = getMulExpr(LIOps); 2005 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2006 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2007 2008 // Build the new addrec. Propagate the NUW and NSW flags if both the 2009 // outer mul and the inner addrec are guaranteed to have no overflow. 2010 // 2011 // No self-wrap cannot be guaranteed after changing the step size, but 2012 // will be inferred if either NUW or NSW is true. 2013 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2014 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2015 2016 // If all of the other operands were loop invariant, we are done. 2017 if (Ops.size() == 1) return NewRec; 2018 2019 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2020 for (unsigned i = 0;; ++i) 2021 if (Ops[i] == AddRec) { 2022 Ops[i] = NewRec; 2023 break; 2024 } 2025 return getMulExpr(Ops); 2026 } 2027 2028 // Okay, if there weren't any loop invariants to be folded, check to see if 2029 // there are multiple AddRec's with the same loop induction variable being 2030 // multiplied together. If so, we can fold them. 2031 for (unsigned OtherIdx = Idx+1; 2032 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2033 ++OtherIdx) { 2034 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) 2035 continue; 2036 2037 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2038 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2039 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2040 // ]]],+,...up to x=2n}. 2041 // Note that the arguments to choose() are always integers with values 2042 // known at compile time, never SCEV objects. 2043 // 2044 // The implementation avoids pointless extra computations when the two 2045 // addrec's are of different length (mathematically, it's equivalent to 2046 // an infinite stream of zeros on the right). 2047 bool OpsModified = false; 2048 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2049 ++OtherIdx) { 2050 const SCEVAddRecExpr *OtherAddRec = 2051 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2052 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2053 continue; 2054 2055 bool Overflow = false; 2056 Type *Ty = AddRec->getType(); 2057 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2058 SmallVector<const SCEV*, 7> AddRecOps; 2059 for (int x = 0, xe = AddRec->getNumOperands() + 2060 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2061 const SCEV *Term = getConstant(Ty, 0); 2062 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2063 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2064 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2065 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2066 z < ze && !Overflow; ++z) { 2067 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2068 uint64_t Coeff; 2069 if (LargerThan64Bits) 2070 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2071 else 2072 Coeff = Coeff1*Coeff2; 2073 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2074 const SCEV *Term1 = AddRec->getOperand(y-z); 2075 const SCEV *Term2 = OtherAddRec->getOperand(z); 2076 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2077 } 2078 } 2079 AddRecOps.push_back(Term); 2080 } 2081 if (!Overflow) { 2082 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2083 SCEV::FlagAnyWrap); 2084 if (Ops.size() == 2) return NewAddRec; 2085 Ops[Idx] = NewAddRec; 2086 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2087 OpsModified = true; 2088 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2089 if (!AddRec) 2090 break; 2091 } 2092 } 2093 if (OpsModified) 2094 return getMulExpr(Ops); 2095 } 2096 2097 // Otherwise couldn't fold anything into this recurrence. Move onto the 2098 // next one. 2099 } 2100 2101 // Okay, it looks like we really DO need an mul expr. Check to see if we 2102 // already have one, otherwise create a new one. 2103 FoldingSetNodeID ID; 2104 ID.AddInteger(scMulExpr); 2105 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2106 ID.AddPointer(Ops[i]); 2107 void *IP = nullptr; 2108 SCEVMulExpr *S = 2109 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2110 if (!S) { 2111 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2112 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2113 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2114 O, Ops.size()); 2115 UniqueSCEVs.InsertNode(S, IP); 2116 } 2117 S->setNoWrapFlags(Flags); 2118 return S; 2119 } 2120 2121 /// getUDivExpr - Get a canonical unsigned division expression, or something 2122 /// simpler if possible. 2123 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2124 const SCEV *RHS) { 2125 assert(getEffectiveSCEVType(LHS->getType()) == 2126 getEffectiveSCEVType(RHS->getType()) && 2127 "SCEVUDivExpr operand types don't match!"); 2128 2129 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2130 if (RHSC->getValue()->equalsInt(1)) 2131 return LHS; // X udiv 1 --> x 2132 // If the denominator is zero, the result of the udiv is undefined. Don't 2133 // try to analyze it, because the resolution chosen here may differ from 2134 // the resolution chosen in other parts of the compiler. 2135 if (!RHSC->getValue()->isZero()) { 2136 // Determine if the division can be folded into the operands of 2137 // its operands. 2138 // TODO: Generalize this to non-constants by using known-bits information. 2139 Type *Ty = LHS->getType(); 2140 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2141 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2142 // For non-power-of-two values, effectively round the value up to the 2143 // nearest power of two. 2144 if (!RHSC->getValue()->getValue().isPowerOf2()) 2145 ++MaxShiftAmt; 2146 IntegerType *ExtTy = 2147 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2148 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2149 if (const SCEVConstant *Step = 2150 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2151 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2152 const APInt &StepInt = Step->getValue()->getValue(); 2153 const APInt &DivInt = RHSC->getValue()->getValue(); 2154 if (!StepInt.urem(DivInt) && 2155 getZeroExtendExpr(AR, ExtTy) == 2156 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2157 getZeroExtendExpr(Step, ExtTy), 2158 AR->getLoop(), SCEV::FlagAnyWrap)) { 2159 SmallVector<const SCEV *, 4> Operands; 2160 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2161 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2162 return getAddRecExpr(Operands, AR->getLoop(), 2163 SCEV::FlagNW); 2164 } 2165 /// Get a canonical UDivExpr for a recurrence. 2166 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2167 // We can currently only fold X%N if X is constant. 2168 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2169 if (StartC && !DivInt.urem(StepInt) && 2170 getZeroExtendExpr(AR, ExtTy) == 2171 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2172 getZeroExtendExpr(Step, ExtTy), 2173 AR->getLoop(), SCEV::FlagAnyWrap)) { 2174 const APInt &StartInt = StartC->getValue()->getValue(); 2175 const APInt &StartRem = StartInt.urem(StepInt); 2176 if (StartRem != 0) 2177 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2178 AR->getLoop(), SCEV::FlagNW); 2179 } 2180 } 2181 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2182 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2183 SmallVector<const SCEV *, 4> Operands; 2184 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2185 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2186 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2187 // Find an operand that's safely divisible. 2188 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2189 const SCEV *Op = M->getOperand(i); 2190 const SCEV *Div = getUDivExpr(Op, RHSC); 2191 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2192 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2193 M->op_end()); 2194 Operands[i] = Div; 2195 return getMulExpr(Operands); 2196 } 2197 } 2198 } 2199 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2200 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2201 SmallVector<const SCEV *, 4> Operands; 2202 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2203 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2204 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2205 Operands.clear(); 2206 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2207 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2208 if (isa<SCEVUDivExpr>(Op) || 2209 getMulExpr(Op, RHS) != A->getOperand(i)) 2210 break; 2211 Operands.push_back(Op); 2212 } 2213 if (Operands.size() == A->getNumOperands()) 2214 return getAddExpr(Operands); 2215 } 2216 } 2217 2218 // Fold if both operands are constant. 2219 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2220 Constant *LHSCV = LHSC->getValue(); 2221 Constant *RHSCV = RHSC->getValue(); 2222 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2223 RHSCV))); 2224 } 2225 } 2226 } 2227 2228 FoldingSetNodeID ID; 2229 ID.AddInteger(scUDivExpr); 2230 ID.AddPointer(LHS); 2231 ID.AddPointer(RHS); 2232 void *IP = nullptr; 2233 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2234 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2235 LHS, RHS); 2236 UniqueSCEVs.InsertNode(S, IP); 2237 return S; 2238 } 2239 2240 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2241 APInt A = C1->getValue()->getValue().abs(); 2242 APInt B = C2->getValue()->getValue().abs(); 2243 uint32_t ABW = A.getBitWidth(); 2244 uint32_t BBW = B.getBitWidth(); 2245 2246 if (ABW > BBW) 2247 B = B.zext(ABW); 2248 else if (ABW < BBW) 2249 A = A.zext(BBW); 2250 2251 return APIntOps::GreatestCommonDivisor(A, B); 2252 } 2253 2254 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2255 /// something simpler if possible. There is no representation for an exact udiv 2256 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2257 /// We can't do this when it's not exact because the udiv may be clearing bits. 2258 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2259 const SCEV *RHS) { 2260 // TODO: we could try to find factors in all sorts of things, but for now we 2261 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2262 // end of this file for inspiration. 2263 2264 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2265 if (!Mul) 2266 return getUDivExpr(LHS, RHS); 2267 2268 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2269 // If the mulexpr multiplies by a constant, then that constant must be the 2270 // first element of the mulexpr. 2271 if (const SCEVConstant *LHSCst = 2272 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2273 if (LHSCst == RHSCst) { 2274 SmallVector<const SCEV *, 2> Operands; 2275 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2276 return getMulExpr(Operands); 2277 } 2278 2279 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2280 // that there's a factor provided by one of the other terms. We need to 2281 // check. 2282 APInt Factor = gcd(LHSCst, RHSCst); 2283 if (!Factor.isIntN(1)) { 2284 LHSCst = cast<SCEVConstant>( 2285 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2286 RHSCst = cast<SCEVConstant>( 2287 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2288 SmallVector<const SCEV *, 2> Operands; 2289 Operands.push_back(LHSCst); 2290 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2291 LHS = getMulExpr(Operands); 2292 RHS = RHSCst; 2293 Mul = dyn_cast<SCEVMulExpr>(LHS); 2294 if (!Mul) 2295 return getUDivExactExpr(LHS, RHS); 2296 } 2297 } 2298 } 2299 2300 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2301 if (Mul->getOperand(i) == RHS) { 2302 SmallVector<const SCEV *, 2> Operands; 2303 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2304 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2305 return getMulExpr(Operands); 2306 } 2307 } 2308 2309 return getUDivExpr(LHS, RHS); 2310 } 2311 2312 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2313 /// Simplify the expression as much as possible. 2314 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2315 const Loop *L, 2316 SCEV::NoWrapFlags Flags) { 2317 SmallVector<const SCEV *, 4> Operands; 2318 Operands.push_back(Start); 2319 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2320 if (StepChrec->getLoop() == L) { 2321 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2322 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2323 } 2324 2325 Operands.push_back(Step); 2326 return getAddRecExpr(Operands, L, Flags); 2327 } 2328 2329 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2330 /// Simplify the expression as much as possible. 2331 const SCEV * 2332 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2333 const Loop *L, SCEV::NoWrapFlags Flags) { 2334 if (Operands.size() == 1) return Operands[0]; 2335 #ifndef NDEBUG 2336 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2337 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2338 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2339 "SCEVAddRecExpr operand types don't match!"); 2340 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2341 assert(isLoopInvariant(Operands[i], L) && 2342 "SCEVAddRecExpr operand is not loop-invariant!"); 2343 #endif 2344 2345 if (Operands.back()->isZero()) { 2346 Operands.pop_back(); 2347 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2348 } 2349 2350 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2351 // use that information to infer NUW and NSW flags. However, computing a 2352 // BE count requires calling getAddRecExpr, so we may not yet have a 2353 // meaningful BE count at this point (and if we don't, we'd be stuck 2354 // with a SCEVCouldNotCompute as the cached BE count). 2355 2356 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2357 // And vice-versa. 2358 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2359 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2360 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2361 bool All = true; 2362 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2363 E = Operands.end(); I != E; ++I) 2364 if (!isKnownNonNegative(*I)) { 2365 All = false; 2366 break; 2367 } 2368 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2369 } 2370 2371 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2372 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2373 const Loop *NestedLoop = NestedAR->getLoop(); 2374 if (L->contains(NestedLoop) ? 2375 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2376 (!NestedLoop->contains(L) && 2377 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2378 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2379 NestedAR->op_end()); 2380 Operands[0] = NestedAR->getStart(); 2381 // AddRecs require their operands be loop-invariant with respect to their 2382 // loops. Don't perform this transformation if it would break this 2383 // requirement. 2384 bool AllInvariant = true; 2385 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2386 if (!isLoopInvariant(Operands[i], L)) { 2387 AllInvariant = false; 2388 break; 2389 } 2390 if (AllInvariant) { 2391 // Create a recurrence for the outer loop with the same step size. 2392 // 2393 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2394 // inner recurrence has the same property. 2395 SCEV::NoWrapFlags OuterFlags = 2396 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2397 2398 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2399 AllInvariant = true; 2400 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2401 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2402 AllInvariant = false; 2403 break; 2404 } 2405 if (AllInvariant) { 2406 // Ok, both add recurrences are valid after the transformation. 2407 // 2408 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2409 // the outer recurrence has the same property. 2410 SCEV::NoWrapFlags InnerFlags = 2411 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2412 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2413 } 2414 } 2415 // Reset Operands to its original state. 2416 Operands[0] = NestedAR; 2417 } 2418 } 2419 2420 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2421 // already have one, otherwise create a new one. 2422 FoldingSetNodeID ID; 2423 ID.AddInteger(scAddRecExpr); 2424 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2425 ID.AddPointer(Operands[i]); 2426 ID.AddPointer(L); 2427 void *IP = nullptr; 2428 SCEVAddRecExpr *S = 2429 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2430 if (!S) { 2431 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2432 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2433 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2434 O, Operands.size(), L); 2435 UniqueSCEVs.InsertNode(S, IP); 2436 } 2437 S->setNoWrapFlags(Flags); 2438 return S; 2439 } 2440 2441 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2442 const SCEV *RHS) { 2443 SmallVector<const SCEV *, 2> Ops; 2444 Ops.push_back(LHS); 2445 Ops.push_back(RHS); 2446 return getSMaxExpr(Ops); 2447 } 2448 2449 const SCEV * 2450 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2451 assert(!Ops.empty() && "Cannot get empty smax!"); 2452 if (Ops.size() == 1) return Ops[0]; 2453 #ifndef NDEBUG 2454 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2455 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2456 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2457 "SCEVSMaxExpr operand types don't match!"); 2458 #endif 2459 2460 // Sort by complexity, this groups all similar expression types together. 2461 GroupByComplexity(Ops, LI); 2462 2463 // If there are any constants, fold them together. 2464 unsigned Idx = 0; 2465 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2466 ++Idx; 2467 assert(Idx < Ops.size()); 2468 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2469 // We found two constants, fold them together! 2470 ConstantInt *Fold = ConstantInt::get(getContext(), 2471 APIntOps::smax(LHSC->getValue()->getValue(), 2472 RHSC->getValue()->getValue())); 2473 Ops[0] = getConstant(Fold); 2474 Ops.erase(Ops.begin()+1); // Erase the folded element 2475 if (Ops.size() == 1) return Ops[0]; 2476 LHSC = cast<SCEVConstant>(Ops[0]); 2477 } 2478 2479 // If we are left with a constant minimum-int, strip it off. 2480 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2481 Ops.erase(Ops.begin()); 2482 --Idx; 2483 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2484 // If we have an smax with a constant maximum-int, it will always be 2485 // maximum-int. 2486 return Ops[0]; 2487 } 2488 2489 if (Ops.size() == 1) return Ops[0]; 2490 } 2491 2492 // Find the first SMax 2493 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2494 ++Idx; 2495 2496 // Check to see if one of the operands is an SMax. If so, expand its operands 2497 // onto our operand list, and recurse to simplify. 2498 if (Idx < Ops.size()) { 2499 bool DeletedSMax = false; 2500 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2501 Ops.erase(Ops.begin()+Idx); 2502 Ops.append(SMax->op_begin(), SMax->op_end()); 2503 DeletedSMax = true; 2504 } 2505 2506 if (DeletedSMax) 2507 return getSMaxExpr(Ops); 2508 } 2509 2510 // Okay, check to see if the same value occurs in the operand list twice. If 2511 // so, delete one. Since we sorted the list, these values are required to 2512 // be adjacent. 2513 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2514 // X smax Y smax Y --> X smax Y 2515 // X smax Y --> X, if X is always greater than Y 2516 if (Ops[i] == Ops[i+1] || 2517 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2518 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2519 --i; --e; 2520 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2521 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2522 --i; --e; 2523 } 2524 2525 if (Ops.size() == 1) return Ops[0]; 2526 2527 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2528 2529 // Okay, it looks like we really DO need an smax expr. Check to see if we 2530 // already have one, otherwise create a new one. 2531 FoldingSetNodeID ID; 2532 ID.AddInteger(scSMaxExpr); 2533 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2534 ID.AddPointer(Ops[i]); 2535 void *IP = nullptr; 2536 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2537 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2538 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2539 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2540 O, Ops.size()); 2541 UniqueSCEVs.InsertNode(S, IP); 2542 return S; 2543 } 2544 2545 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2546 const SCEV *RHS) { 2547 SmallVector<const SCEV *, 2> Ops; 2548 Ops.push_back(LHS); 2549 Ops.push_back(RHS); 2550 return getUMaxExpr(Ops); 2551 } 2552 2553 const SCEV * 2554 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2555 assert(!Ops.empty() && "Cannot get empty umax!"); 2556 if (Ops.size() == 1) return Ops[0]; 2557 #ifndef NDEBUG 2558 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2559 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2560 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2561 "SCEVUMaxExpr operand types don't match!"); 2562 #endif 2563 2564 // Sort by complexity, this groups all similar expression types together. 2565 GroupByComplexity(Ops, LI); 2566 2567 // If there are any constants, fold them together. 2568 unsigned Idx = 0; 2569 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2570 ++Idx; 2571 assert(Idx < Ops.size()); 2572 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2573 // We found two constants, fold them together! 2574 ConstantInt *Fold = ConstantInt::get(getContext(), 2575 APIntOps::umax(LHSC->getValue()->getValue(), 2576 RHSC->getValue()->getValue())); 2577 Ops[0] = getConstant(Fold); 2578 Ops.erase(Ops.begin()+1); // Erase the folded element 2579 if (Ops.size() == 1) return Ops[0]; 2580 LHSC = cast<SCEVConstant>(Ops[0]); 2581 } 2582 2583 // If we are left with a constant minimum-int, strip it off. 2584 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2585 Ops.erase(Ops.begin()); 2586 --Idx; 2587 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2588 // If we have an umax with a constant maximum-int, it will always be 2589 // maximum-int. 2590 return Ops[0]; 2591 } 2592 2593 if (Ops.size() == 1) return Ops[0]; 2594 } 2595 2596 // Find the first UMax 2597 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2598 ++Idx; 2599 2600 // Check to see if one of the operands is a UMax. If so, expand its operands 2601 // onto our operand list, and recurse to simplify. 2602 if (Idx < Ops.size()) { 2603 bool DeletedUMax = false; 2604 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2605 Ops.erase(Ops.begin()+Idx); 2606 Ops.append(UMax->op_begin(), UMax->op_end()); 2607 DeletedUMax = true; 2608 } 2609 2610 if (DeletedUMax) 2611 return getUMaxExpr(Ops); 2612 } 2613 2614 // Okay, check to see if the same value occurs in the operand list twice. If 2615 // so, delete one. Since we sorted the list, these values are required to 2616 // be adjacent. 2617 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2618 // X umax Y umax Y --> X umax Y 2619 // X umax Y --> X, if X is always greater than Y 2620 if (Ops[i] == Ops[i+1] || 2621 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2622 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2623 --i; --e; 2624 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2625 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2626 --i; --e; 2627 } 2628 2629 if (Ops.size() == 1) return Ops[0]; 2630 2631 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2632 2633 // Okay, it looks like we really DO need a umax expr. Check to see if we 2634 // already have one, otherwise create a new one. 2635 FoldingSetNodeID ID; 2636 ID.AddInteger(scUMaxExpr); 2637 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2638 ID.AddPointer(Ops[i]); 2639 void *IP = nullptr; 2640 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2641 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2642 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2643 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2644 O, Ops.size()); 2645 UniqueSCEVs.InsertNode(S, IP); 2646 return S; 2647 } 2648 2649 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2650 const SCEV *RHS) { 2651 // ~smax(~x, ~y) == smin(x, y). 2652 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2653 } 2654 2655 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2656 const SCEV *RHS) { 2657 // ~umax(~x, ~y) == umin(x, y) 2658 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2659 } 2660 2661 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 2662 // If we have DataLayout, we can bypass creating a target-independent 2663 // constant expression and then folding it back into a ConstantInt. 2664 // This is just a compile-time optimization. 2665 if (DL) 2666 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy)); 2667 2668 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2669 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2670 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 2671 C = Folded; 2672 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2673 assert(Ty == IntTy && "Effective SCEV type doesn't match"); 2674 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2675 } 2676 2677 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 2678 StructType *STy, 2679 unsigned FieldNo) { 2680 // If we have DataLayout, we can bypass creating a target-independent 2681 // constant expression and then folding it back into a ConstantInt. 2682 // This is just a compile-time optimization. 2683 if (DL) { 2684 return getConstant(IntTy, 2685 DL->getStructLayout(STy)->getElementOffset(FieldNo)); 2686 } 2687 2688 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2689 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2690 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 2691 C = Folded; 2692 2693 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2694 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2695 } 2696 2697 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2698 // Don't attempt to do anything other than create a SCEVUnknown object 2699 // here. createSCEV only calls getUnknown after checking for all other 2700 // interesting possibilities, and any other code that calls getUnknown 2701 // is doing so in order to hide a value from SCEV canonicalization. 2702 2703 FoldingSetNodeID ID; 2704 ID.AddInteger(scUnknown); 2705 ID.AddPointer(V); 2706 void *IP = nullptr; 2707 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2708 assert(cast<SCEVUnknown>(S)->getValue() == V && 2709 "Stale SCEVUnknown in uniquing map!"); 2710 return S; 2711 } 2712 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2713 FirstUnknown); 2714 FirstUnknown = cast<SCEVUnknown>(S); 2715 UniqueSCEVs.InsertNode(S, IP); 2716 return S; 2717 } 2718 2719 //===----------------------------------------------------------------------===// 2720 // Basic SCEV Analysis and PHI Idiom Recognition Code 2721 // 2722 2723 /// isSCEVable - Test if values of the given type are analyzable within 2724 /// the SCEV framework. This primarily includes integer types, and it 2725 /// can optionally include pointer types if the ScalarEvolution class 2726 /// has access to target-specific information. 2727 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2728 // Integers and pointers are always SCEVable. 2729 return Ty->isIntegerTy() || Ty->isPointerTy(); 2730 } 2731 2732 /// getTypeSizeInBits - Return the size in bits of the specified type, 2733 /// for which isSCEVable must return true. 2734 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2735 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2736 2737 // If we have a DataLayout, use it! 2738 if (DL) 2739 return DL->getTypeSizeInBits(Ty); 2740 2741 // Integer types have fixed sizes. 2742 if (Ty->isIntegerTy()) 2743 return Ty->getPrimitiveSizeInBits(); 2744 2745 // The only other support type is pointer. Without DataLayout, conservatively 2746 // assume pointers are 64-bit. 2747 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2748 return 64; 2749 } 2750 2751 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2752 /// the given type and which represents how SCEV will treat the given 2753 /// type, for which isSCEVable must return true. For pointer types, 2754 /// this is the pointer-sized integer type. 2755 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2756 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2757 2758 if (Ty->isIntegerTy()) { 2759 return Ty; 2760 } 2761 2762 // The only other support type is pointer. 2763 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2764 2765 if (DL) 2766 return DL->getIntPtrType(Ty); 2767 2768 // Without DataLayout, conservatively assume pointers are 64-bit. 2769 return Type::getInt64Ty(getContext()); 2770 } 2771 2772 const SCEV *ScalarEvolution::getCouldNotCompute() { 2773 return &CouldNotCompute; 2774 } 2775 2776 namespace { 2777 // Helper class working with SCEVTraversal to figure out if a SCEV contains 2778 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 2779 // is set iff if find such SCEVUnknown. 2780 // 2781 struct FindInvalidSCEVUnknown { 2782 bool FindOne; 2783 FindInvalidSCEVUnknown() { FindOne = false; } 2784 bool follow(const SCEV *S) { 2785 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 2786 case scConstant: 2787 return false; 2788 case scUnknown: 2789 if (!cast<SCEVUnknown>(S)->getValue()) 2790 FindOne = true; 2791 return false; 2792 default: 2793 return true; 2794 } 2795 } 2796 bool isDone() const { return FindOne; } 2797 }; 2798 } 2799 2800 bool ScalarEvolution::checkValidity(const SCEV *S) const { 2801 FindInvalidSCEVUnknown F; 2802 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 2803 ST.visitAll(S); 2804 2805 return !F.FindOne; 2806 } 2807 2808 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2809 /// expression and create a new one. 2810 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2811 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2812 2813 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 2814 if (I != ValueExprMap.end()) { 2815 const SCEV *S = I->second; 2816 if (checkValidity(S)) 2817 return S; 2818 else 2819 ValueExprMap.erase(I); 2820 } 2821 const SCEV *S = createSCEV(V); 2822 2823 // The process of creating a SCEV for V may have caused other SCEVs 2824 // to have been created, so it's necessary to insert the new entry 2825 // from scratch, rather than trying to remember the insert position 2826 // above. 2827 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2828 return S; 2829 } 2830 2831 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2832 /// 2833 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2834 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2835 return getConstant( 2836 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2837 2838 Type *Ty = V->getType(); 2839 Ty = getEffectiveSCEVType(Ty); 2840 return getMulExpr(V, 2841 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2842 } 2843 2844 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2845 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2846 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2847 return getConstant( 2848 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2849 2850 Type *Ty = V->getType(); 2851 Ty = getEffectiveSCEVType(Ty); 2852 const SCEV *AllOnes = 2853 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2854 return getMinusSCEV(AllOnes, V); 2855 } 2856 2857 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2858 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2859 SCEV::NoWrapFlags Flags) { 2860 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2861 2862 // Fast path: X - X --> 0. 2863 if (LHS == RHS) 2864 return getConstant(LHS->getType(), 0); 2865 2866 // X - Y --> X + -Y 2867 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2868 } 2869 2870 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2871 /// input value to the specified type. If the type must be extended, it is zero 2872 /// extended. 2873 const SCEV * 2874 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2875 Type *SrcTy = V->getType(); 2876 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2877 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2878 "Cannot truncate or zero extend with non-integer arguments!"); 2879 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2880 return V; // No conversion 2881 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2882 return getTruncateExpr(V, Ty); 2883 return getZeroExtendExpr(V, Ty); 2884 } 2885 2886 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2887 /// input value to the specified type. If the type must be extended, it is sign 2888 /// extended. 2889 const SCEV * 2890 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2891 Type *Ty) { 2892 Type *SrcTy = V->getType(); 2893 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2894 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2895 "Cannot truncate or zero extend with non-integer arguments!"); 2896 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2897 return V; // No conversion 2898 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2899 return getTruncateExpr(V, Ty); 2900 return getSignExtendExpr(V, Ty); 2901 } 2902 2903 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2904 /// input value to the specified type. If the type must be extended, it is zero 2905 /// extended. The conversion must not be narrowing. 2906 const SCEV * 2907 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2908 Type *SrcTy = V->getType(); 2909 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2910 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2911 "Cannot noop or zero extend with non-integer arguments!"); 2912 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2913 "getNoopOrZeroExtend cannot truncate!"); 2914 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2915 return V; // No conversion 2916 return getZeroExtendExpr(V, Ty); 2917 } 2918 2919 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2920 /// input value to the specified type. If the type must be extended, it is sign 2921 /// extended. The conversion must not be narrowing. 2922 const SCEV * 2923 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2924 Type *SrcTy = V->getType(); 2925 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2926 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2927 "Cannot noop or sign extend with non-integer arguments!"); 2928 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2929 "getNoopOrSignExtend cannot truncate!"); 2930 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2931 return V; // No conversion 2932 return getSignExtendExpr(V, Ty); 2933 } 2934 2935 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2936 /// the input value to the specified type. If the type must be extended, 2937 /// it is extended with unspecified bits. The conversion must not be 2938 /// narrowing. 2939 const SCEV * 2940 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2941 Type *SrcTy = V->getType(); 2942 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2943 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2944 "Cannot noop or any extend with non-integer arguments!"); 2945 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2946 "getNoopOrAnyExtend cannot truncate!"); 2947 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2948 return V; // No conversion 2949 return getAnyExtendExpr(V, Ty); 2950 } 2951 2952 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2953 /// input value to the specified type. The conversion must not be widening. 2954 const SCEV * 2955 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2956 Type *SrcTy = V->getType(); 2957 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2958 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2959 "Cannot truncate or noop with non-integer arguments!"); 2960 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2961 "getTruncateOrNoop cannot extend!"); 2962 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2963 return V; // No conversion 2964 return getTruncateExpr(V, Ty); 2965 } 2966 2967 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2968 /// the types using zero-extension, and then perform a umax operation 2969 /// with them. 2970 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2971 const SCEV *RHS) { 2972 const SCEV *PromotedLHS = LHS; 2973 const SCEV *PromotedRHS = RHS; 2974 2975 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2976 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2977 else 2978 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2979 2980 return getUMaxExpr(PromotedLHS, PromotedRHS); 2981 } 2982 2983 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2984 /// the types using zero-extension, and then perform a umin operation 2985 /// with them. 2986 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2987 const SCEV *RHS) { 2988 const SCEV *PromotedLHS = LHS; 2989 const SCEV *PromotedRHS = RHS; 2990 2991 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2992 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2993 else 2994 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2995 2996 return getUMinExpr(PromotedLHS, PromotedRHS); 2997 } 2998 2999 /// getPointerBase - Transitively follow the chain of pointer-type operands 3000 /// until reaching a SCEV that does not have a single pointer operand. This 3001 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3002 /// but corner cases do exist. 3003 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3004 // A pointer operand may evaluate to a nonpointer expression, such as null. 3005 if (!V->getType()->isPointerTy()) 3006 return V; 3007 3008 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3009 return getPointerBase(Cast->getOperand()); 3010 } 3011 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3012 const SCEV *PtrOp = nullptr; 3013 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3014 I != E; ++I) { 3015 if ((*I)->getType()->isPointerTy()) { 3016 // Cannot find the base of an expression with multiple pointer operands. 3017 if (PtrOp) 3018 return V; 3019 PtrOp = *I; 3020 } 3021 } 3022 if (!PtrOp) 3023 return V; 3024 return getPointerBase(PtrOp); 3025 } 3026 return V; 3027 } 3028 3029 /// PushDefUseChildren - Push users of the given Instruction 3030 /// onto the given Worklist. 3031 static void 3032 PushDefUseChildren(Instruction *I, 3033 SmallVectorImpl<Instruction *> &Worklist) { 3034 // Push the def-use children onto the Worklist stack. 3035 for (User *U : I->users()) 3036 Worklist.push_back(cast<Instruction>(U)); 3037 } 3038 3039 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3040 /// instructions that depend on the given instruction and removes them from 3041 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3042 /// resolution. 3043 void 3044 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3045 SmallVector<Instruction *, 16> Worklist; 3046 PushDefUseChildren(PN, Worklist); 3047 3048 SmallPtrSet<Instruction *, 8> Visited; 3049 Visited.insert(PN); 3050 while (!Worklist.empty()) { 3051 Instruction *I = Worklist.pop_back_val(); 3052 if (!Visited.insert(I)) continue; 3053 3054 ValueExprMapType::iterator It = 3055 ValueExprMap.find_as(static_cast<Value *>(I)); 3056 if (It != ValueExprMap.end()) { 3057 const SCEV *Old = It->second; 3058 3059 // Short-circuit the def-use traversal if the symbolic name 3060 // ceases to appear in expressions. 3061 if (Old != SymName && !hasOperand(Old, SymName)) 3062 continue; 3063 3064 // SCEVUnknown for a PHI either means that it has an unrecognized 3065 // structure, it's a PHI that's in the progress of being computed 3066 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3067 // additional loop trip count information isn't going to change anything. 3068 // In the second case, createNodeForPHI will perform the necessary 3069 // updates on its own when it gets to that point. In the third, we do 3070 // want to forget the SCEVUnknown. 3071 if (!isa<PHINode>(I) || 3072 !isa<SCEVUnknown>(Old) || 3073 (I != PN && Old == SymName)) { 3074 forgetMemoizedResults(Old); 3075 ValueExprMap.erase(It); 3076 } 3077 } 3078 3079 PushDefUseChildren(I, Worklist); 3080 } 3081 } 3082 3083 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3084 /// a loop header, making it a potential recurrence, or it doesn't. 3085 /// 3086 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3087 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3088 if (L->getHeader() == PN->getParent()) { 3089 // The loop may have multiple entrances or multiple exits; we can analyze 3090 // this phi as an addrec if it has a unique entry value and a unique 3091 // backedge value. 3092 Value *BEValueV = nullptr, *StartValueV = nullptr; 3093 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3094 Value *V = PN->getIncomingValue(i); 3095 if (L->contains(PN->getIncomingBlock(i))) { 3096 if (!BEValueV) { 3097 BEValueV = V; 3098 } else if (BEValueV != V) { 3099 BEValueV = nullptr; 3100 break; 3101 } 3102 } else if (!StartValueV) { 3103 StartValueV = V; 3104 } else if (StartValueV != V) { 3105 StartValueV = nullptr; 3106 break; 3107 } 3108 } 3109 if (BEValueV && StartValueV) { 3110 // While we are analyzing this PHI node, handle its value symbolically. 3111 const SCEV *SymbolicName = getUnknown(PN); 3112 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3113 "PHI node already processed?"); 3114 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3115 3116 // Using this symbolic name for the PHI, analyze the value coming around 3117 // the back-edge. 3118 const SCEV *BEValue = getSCEV(BEValueV); 3119 3120 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3121 // has a special value for the first iteration of the loop. 3122 3123 // If the value coming around the backedge is an add with the symbolic 3124 // value we just inserted, then we found a simple induction variable! 3125 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3126 // If there is a single occurrence of the symbolic value, replace it 3127 // with a recurrence. 3128 unsigned FoundIndex = Add->getNumOperands(); 3129 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3130 if (Add->getOperand(i) == SymbolicName) 3131 if (FoundIndex == e) { 3132 FoundIndex = i; 3133 break; 3134 } 3135 3136 if (FoundIndex != Add->getNumOperands()) { 3137 // Create an add with everything but the specified operand. 3138 SmallVector<const SCEV *, 8> Ops; 3139 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3140 if (i != FoundIndex) 3141 Ops.push_back(Add->getOperand(i)); 3142 const SCEV *Accum = getAddExpr(Ops); 3143 3144 // This is not a valid addrec if the step amount is varying each 3145 // loop iteration, but is not itself an addrec in this loop. 3146 if (isLoopInvariant(Accum, L) || 3147 (isa<SCEVAddRecExpr>(Accum) && 3148 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3149 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3150 3151 // If the increment doesn't overflow, then neither the addrec nor 3152 // the post-increment will overflow. 3153 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3154 if (OBO->hasNoUnsignedWrap()) 3155 Flags = setFlags(Flags, SCEV::FlagNUW); 3156 if (OBO->hasNoSignedWrap()) 3157 Flags = setFlags(Flags, SCEV::FlagNSW); 3158 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3159 // If the increment is an inbounds GEP, then we know the address 3160 // space cannot be wrapped around. We cannot make any guarantee 3161 // about signed or unsigned overflow because pointers are 3162 // unsigned but we may have a negative index from the base 3163 // pointer. We can guarantee that no unsigned wrap occurs if the 3164 // indices form a positive value. 3165 if (GEP->isInBounds()) { 3166 Flags = setFlags(Flags, SCEV::FlagNW); 3167 3168 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3169 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3170 Flags = setFlags(Flags, SCEV::FlagNUW); 3171 } 3172 } else if (const SubOperator *OBO = 3173 dyn_cast<SubOperator>(BEValueV)) { 3174 if (OBO->hasNoUnsignedWrap()) 3175 Flags = setFlags(Flags, SCEV::FlagNUW); 3176 if (OBO->hasNoSignedWrap()) 3177 Flags = setFlags(Flags, SCEV::FlagNSW); 3178 } 3179 3180 const SCEV *StartVal = getSCEV(StartValueV); 3181 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3182 3183 // Since the no-wrap flags are on the increment, they apply to the 3184 // post-incremented value as well. 3185 if (isLoopInvariant(Accum, L)) 3186 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3187 Accum, L, Flags); 3188 3189 // Okay, for the entire analysis of this edge we assumed the PHI 3190 // to be symbolic. We now need to go back and purge all of the 3191 // entries for the scalars that use the symbolic expression. 3192 ForgetSymbolicName(PN, SymbolicName); 3193 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3194 return PHISCEV; 3195 } 3196 } 3197 } else if (const SCEVAddRecExpr *AddRec = 3198 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3199 // Otherwise, this could be a loop like this: 3200 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3201 // In this case, j = {1,+,1} and BEValue is j. 3202 // Because the other in-value of i (0) fits the evolution of BEValue 3203 // i really is an addrec evolution. 3204 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3205 const SCEV *StartVal = getSCEV(StartValueV); 3206 3207 // If StartVal = j.start - j.stride, we can use StartVal as the 3208 // initial step of the addrec evolution. 3209 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3210 AddRec->getOperand(1))) { 3211 // FIXME: For constant StartVal, we should be able to infer 3212 // no-wrap flags. 3213 const SCEV *PHISCEV = 3214 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3215 SCEV::FlagAnyWrap); 3216 3217 // Okay, for the entire analysis of this edge we assumed the PHI 3218 // to be symbolic. We now need to go back and purge all of the 3219 // entries for the scalars that use the symbolic expression. 3220 ForgetSymbolicName(PN, SymbolicName); 3221 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3222 return PHISCEV; 3223 } 3224 } 3225 } 3226 } 3227 } 3228 3229 // If the PHI has a single incoming value, follow that value, unless the 3230 // PHI's incoming blocks are in a different loop, in which case doing so 3231 // risks breaking LCSSA form. Instcombine would normally zap these, but 3232 // it doesn't have DominatorTree information, so it may miss cases. 3233 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT)) 3234 if (LI->replacementPreservesLCSSAForm(PN, V)) 3235 return getSCEV(V); 3236 3237 // If it's not a loop phi, we can't handle it yet. 3238 return getUnknown(PN); 3239 } 3240 3241 /// createNodeForGEP - Expand GEP instructions into add and multiply 3242 /// operations. This allows them to be analyzed by regular SCEV code. 3243 /// 3244 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3245 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3246 Value *Base = GEP->getOperand(0); 3247 // Don't attempt to analyze GEPs over unsized objects. 3248 if (!Base->getType()->getPointerElementType()->isSized()) 3249 return getUnknown(GEP); 3250 3251 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3252 // Add expression, because the Instruction may be guarded by control flow 3253 // and the no-overflow bits may not be valid for the expression in any 3254 // context. 3255 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3256 3257 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3258 gep_type_iterator GTI = gep_type_begin(GEP); 3259 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()), 3260 E = GEP->op_end(); 3261 I != E; ++I) { 3262 Value *Index = *I; 3263 // Compute the (potentially symbolic) offset in bytes for this index. 3264 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3265 // For a struct, add the member offset. 3266 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3267 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3268 3269 // Add the field offset to the running total offset. 3270 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3271 } else { 3272 // For an array, add the element offset, explicitly scaled. 3273 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI); 3274 const SCEV *IndexS = getSCEV(Index); 3275 // Getelementptr indices are signed. 3276 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3277 3278 // Multiply the index by the element size to compute the element offset. 3279 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap); 3280 3281 // Add the element offset to the running total offset. 3282 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3283 } 3284 } 3285 3286 // Get the SCEV for the GEP base. 3287 const SCEV *BaseS = getSCEV(Base); 3288 3289 // Add the total offset from all the GEP indices to the base. 3290 return getAddExpr(BaseS, TotalOffset, Wrap); 3291 } 3292 3293 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3294 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3295 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3296 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3297 uint32_t 3298 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3299 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3300 return C->getValue()->getValue().countTrailingZeros(); 3301 3302 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3303 return std::min(GetMinTrailingZeros(T->getOperand()), 3304 (uint32_t)getTypeSizeInBits(T->getType())); 3305 3306 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3307 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3308 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3309 getTypeSizeInBits(E->getType()) : OpRes; 3310 } 3311 3312 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3313 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3314 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3315 getTypeSizeInBits(E->getType()) : OpRes; 3316 } 3317 3318 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3319 // The result is the min of all operands results. 3320 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3321 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3322 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3323 return MinOpRes; 3324 } 3325 3326 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3327 // The result is the sum of all operands results. 3328 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3329 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3330 for (unsigned i = 1, e = M->getNumOperands(); 3331 SumOpRes != BitWidth && i != e; ++i) 3332 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3333 BitWidth); 3334 return SumOpRes; 3335 } 3336 3337 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3338 // The result is the min of all operands results. 3339 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3340 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3341 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3342 return MinOpRes; 3343 } 3344 3345 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3346 // The result is the min of all operands results. 3347 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3348 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3349 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3350 return MinOpRes; 3351 } 3352 3353 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3354 // The result is the min of all operands results. 3355 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3356 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3357 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3358 return MinOpRes; 3359 } 3360 3361 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3362 // For a SCEVUnknown, ask ValueTracking. 3363 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3364 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3365 ComputeMaskedBits(U->getValue(), Zeros, Ones); 3366 return Zeros.countTrailingOnes(); 3367 } 3368 3369 // SCEVUDivExpr 3370 return 0; 3371 } 3372 3373 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3374 /// 3375 ConstantRange 3376 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3377 // See if we've computed this range already. 3378 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3379 if (I != UnsignedRanges.end()) 3380 return I->second; 3381 3382 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3383 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3384 3385 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3386 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3387 3388 // If the value has known zeros, the maximum unsigned value will have those 3389 // known zeros as well. 3390 uint32_t TZ = GetMinTrailingZeros(S); 3391 if (TZ != 0) 3392 ConservativeResult = 3393 ConstantRange(APInt::getMinValue(BitWidth), 3394 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3395 3396 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3397 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3398 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3399 X = X.add(getUnsignedRange(Add->getOperand(i))); 3400 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3401 } 3402 3403 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3404 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3405 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3406 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3407 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3408 } 3409 3410 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3411 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3412 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3413 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3414 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3415 } 3416 3417 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3418 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3419 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3420 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3421 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3422 } 3423 3424 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3425 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3426 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3427 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3428 } 3429 3430 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3431 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3432 return setUnsignedRange(ZExt, 3433 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3434 } 3435 3436 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3437 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3438 return setUnsignedRange(SExt, 3439 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3440 } 3441 3442 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3443 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3444 return setUnsignedRange(Trunc, 3445 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3446 } 3447 3448 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3449 // If there's no unsigned wrap, the value will never be less than its 3450 // initial value. 3451 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3452 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3453 if (!C->getValue()->isZero()) 3454 ConservativeResult = 3455 ConservativeResult.intersectWith( 3456 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3457 3458 // TODO: non-affine addrec 3459 if (AddRec->isAffine()) { 3460 Type *Ty = AddRec->getType(); 3461 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3462 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3463 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3464 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3465 3466 const SCEV *Start = AddRec->getStart(); 3467 const SCEV *Step = AddRec->getStepRecurrence(*this); 3468 3469 ConstantRange StartRange = getUnsignedRange(Start); 3470 ConstantRange StepRange = getSignedRange(Step); 3471 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3472 ConstantRange EndRange = 3473 StartRange.add(MaxBECountRange.multiply(StepRange)); 3474 3475 // Check for overflow. This must be done with ConstantRange arithmetic 3476 // because we could be called from within the ScalarEvolution overflow 3477 // checking code. 3478 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3479 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3480 ConstantRange ExtMaxBECountRange = 3481 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3482 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3483 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3484 ExtEndRange) 3485 return setUnsignedRange(AddRec, ConservativeResult); 3486 3487 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3488 EndRange.getUnsignedMin()); 3489 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3490 EndRange.getUnsignedMax()); 3491 if (Min.isMinValue() && Max.isMaxValue()) 3492 return setUnsignedRange(AddRec, ConservativeResult); 3493 return setUnsignedRange(AddRec, 3494 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3495 } 3496 } 3497 3498 return setUnsignedRange(AddRec, ConservativeResult); 3499 } 3500 3501 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3502 // For a SCEVUnknown, ask ValueTracking. 3503 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3504 ComputeMaskedBits(U->getValue(), Zeros, Ones, DL); 3505 if (Ones == ~Zeros + 1) 3506 return setUnsignedRange(U, ConservativeResult); 3507 return setUnsignedRange(U, 3508 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3509 } 3510 3511 return setUnsignedRange(S, ConservativeResult); 3512 } 3513 3514 /// getSignedRange - Determine the signed range for a particular SCEV. 3515 /// 3516 ConstantRange 3517 ScalarEvolution::getSignedRange(const SCEV *S) { 3518 // See if we've computed this range already. 3519 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3520 if (I != SignedRanges.end()) 3521 return I->second; 3522 3523 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3524 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3525 3526 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3527 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3528 3529 // If the value has known zeros, the maximum signed value will have those 3530 // known zeros as well. 3531 uint32_t TZ = GetMinTrailingZeros(S); 3532 if (TZ != 0) 3533 ConservativeResult = 3534 ConstantRange(APInt::getSignedMinValue(BitWidth), 3535 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3536 3537 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3538 ConstantRange X = getSignedRange(Add->getOperand(0)); 3539 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3540 X = X.add(getSignedRange(Add->getOperand(i))); 3541 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3542 } 3543 3544 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3545 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3546 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3547 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3548 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3549 } 3550 3551 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3552 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3553 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3554 X = X.smax(getSignedRange(SMax->getOperand(i))); 3555 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3556 } 3557 3558 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3559 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3560 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3561 X = X.umax(getSignedRange(UMax->getOperand(i))); 3562 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3563 } 3564 3565 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3566 ConstantRange X = getSignedRange(UDiv->getLHS()); 3567 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3568 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3569 } 3570 3571 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3572 ConstantRange X = getSignedRange(ZExt->getOperand()); 3573 return setSignedRange(ZExt, 3574 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3575 } 3576 3577 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3578 ConstantRange X = getSignedRange(SExt->getOperand()); 3579 return setSignedRange(SExt, 3580 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3581 } 3582 3583 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3584 ConstantRange X = getSignedRange(Trunc->getOperand()); 3585 return setSignedRange(Trunc, 3586 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3587 } 3588 3589 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3590 // If there's no signed wrap, and all the operands have the same sign or 3591 // zero, the value won't ever change sign. 3592 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3593 bool AllNonNeg = true; 3594 bool AllNonPos = true; 3595 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3596 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3597 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3598 } 3599 if (AllNonNeg) 3600 ConservativeResult = ConservativeResult.intersectWith( 3601 ConstantRange(APInt(BitWidth, 0), 3602 APInt::getSignedMinValue(BitWidth))); 3603 else if (AllNonPos) 3604 ConservativeResult = ConservativeResult.intersectWith( 3605 ConstantRange(APInt::getSignedMinValue(BitWidth), 3606 APInt(BitWidth, 1))); 3607 } 3608 3609 // TODO: non-affine addrec 3610 if (AddRec->isAffine()) { 3611 Type *Ty = AddRec->getType(); 3612 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3613 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3614 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3615 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3616 3617 const SCEV *Start = AddRec->getStart(); 3618 const SCEV *Step = AddRec->getStepRecurrence(*this); 3619 3620 ConstantRange StartRange = getSignedRange(Start); 3621 ConstantRange StepRange = getSignedRange(Step); 3622 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3623 ConstantRange EndRange = 3624 StartRange.add(MaxBECountRange.multiply(StepRange)); 3625 3626 // Check for overflow. This must be done with ConstantRange arithmetic 3627 // because we could be called from within the ScalarEvolution overflow 3628 // checking code. 3629 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3630 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3631 ConstantRange ExtMaxBECountRange = 3632 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3633 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3634 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3635 ExtEndRange) 3636 return setSignedRange(AddRec, ConservativeResult); 3637 3638 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3639 EndRange.getSignedMin()); 3640 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3641 EndRange.getSignedMax()); 3642 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3643 return setSignedRange(AddRec, ConservativeResult); 3644 return setSignedRange(AddRec, 3645 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3646 } 3647 } 3648 3649 return setSignedRange(AddRec, ConservativeResult); 3650 } 3651 3652 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3653 // For a SCEVUnknown, ask ValueTracking. 3654 if (!U->getValue()->getType()->isIntegerTy() && !DL) 3655 return setSignedRange(U, ConservativeResult); 3656 unsigned NS = ComputeNumSignBits(U->getValue(), DL); 3657 if (NS <= 1) 3658 return setSignedRange(U, ConservativeResult); 3659 return setSignedRange(U, ConservativeResult.intersectWith( 3660 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3661 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3662 } 3663 3664 return setSignedRange(S, ConservativeResult); 3665 } 3666 3667 /// createSCEV - We know that there is no SCEV for the specified value. 3668 /// Analyze the expression. 3669 /// 3670 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3671 if (!isSCEVable(V->getType())) 3672 return getUnknown(V); 3673 3674 unsigned Opcode = Instruction::UserOp1; 3675 if (Instruction *I = dyn_cast<Instruction>(V)) { 3676 Opcode = I->getOpcode(); 3677 3678 // Don't attempt to analyze instructions in blocks that aren't 3679 // reachable. Such instructions don't matter, and they aren't required 3680 // to obey basic rules for definitions dominating uses which this 3681 // analysis depends on. 3682 if (!DT->isReachableFromEntry(I->getParent())) 3683 return getUnknown(V); 3684 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3685 Opcode = CE->getOpcode(); 3686 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3687 return getConstant(CI); 3688 else if (isa<ConstantPointerNull>(V)) 3689 return getConstant(V->getType(), 0); 3690 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3691 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3692 else 3693 return getUnknown(V); 3694 3695 Operator *U = cast<Operator>(V); 3696 switch (Opcode) { 3697 case Instruction::Add: { 3698 // The simple thing to do would be to just call getSCEV on both operands 3699 // and call getAddExpr with the result. However if we're looking at a 3700 // bunch of things all added together, this can be quite inefficient, 3701 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3702 // Instead, gather up all the operands and make a single getAddExpr call. 3703 // LLVM IR canonical form means we need only traverse the left operands. 3704 // 3705 // Don't apply this instruction's NSW or NUW flags to the new 3706 // expression. The instruction may be guarded by control flow that the 3707 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3708 // mapped to the same SCEV expression, and it would be incorrect to transfer 3709 // NSW/NUW semantics to those operations. 3710 SmallVector<const SCEV *, 4> AddOps; 3711 AddOps.push_back(getSCEV(U->getOperand(1))); 3712 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3713 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3714 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3715 break; 3716 U = cast<Operator>(Op); 3717 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3718 if (Opcode == Instruction::Sub) 3719 AddOps.push_back(getNegativeSCEV(Op1)); 3720 else 3721 AddOps.push_back(Op1); 3722 } 3723 AddOps.push_back(getSCEV(U->getOperand(0))); 3724 return getAddExpr(AddOps); 3725 } 3726 case Instruction::Mul: { 3727 // Don't transfer NSW/NUW for the same reason as AddExpr. 3728 SmallVector<const SCEV *, 4> MulOps; 3729 MulOps.push_back(getSCEV(U->getOperand(1))); 3730 for (Value *Op = U->getOperand(0); 3731 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3732 Op = U->getOperand(0)) { 3733 U = cast<Operator>(Op); 3734 MulOps.push_back(getSCEV(U->getOperand(1))); 3735 } 3736 MulOps.push_back(getSCEV(U->getOperand(0))); 3737 return getMulExpr(MulOps); 3738 } 3739 case Instruction::UDiv: 3740 return getUDivExpr(getSCEV(U->getOperand(0)), 3741 getSCEV(U->getOperand(1))); 3742 case Instruction::Sub: 3743 return getMinusSCEV(getSCEV(U->getOperand(0)), 3744 getSCEV(U->getOperand(1))); 3745 case Instruction::And: 3746 // For an expression like x&255 that merely masks off the high bits, 3747 // use zext(trunc(x)) as the SCEV expression. 3748 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3749 if (CI->isNullValue()) 3750 return getSCEV(U->getOperand(1)); 3751 if (CI->isAllOnesValue()) 3752 return getSCEV(U->getOperand(0)); 3753 const APInt &A = CI->getValue(); 3754 3755 // Instcombine's ShrinkDemandedConstant may strip bits out of 3756 // constants, obscuring what would otherwise be a low-bits mask. 3757 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3758 // knew about to reconstruct a low-bits mask value. 3759 unsigned LZ = A.countLeadingZeros(); 3760 unsigned TZ = A.countTrailingZeros(); 3761 unsigned BitWidth = A.getBitWidth(); 3762 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3763 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, DL); 3764 3765 APInt EffectiveMask = 3766 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 3767 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 3768 const SCEV *MulCount = getConstant( 3769 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 3770 return getMulExpr( 3771 getZeroExtendExpr( 3772 getTruncateExpr( 3773 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 3774 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 3775 U->getType()), 3776 MulCount); 3777 } 3778 } 3779 break; 3780 3781 case Instruction::Or: 3782 // If the RHS of the Or is a constant, we may have something like: 3783 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3784 // optimizations will transparently handle this case. 3785 // 3786 // In order for this transformation to be safe, the LHS must be of the 3787 // form X*(2^n) and the Or constant must be less than 2^n. 3788 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3789 const SCEV *LHS = getSCEV(U->getOperand(0)); 3790 const APInt &CIVal = CI->getValue(); 3791 if (GetMinTrailingZeros(LHS) >= 3792 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3793 // Build a plain add SCEV. 3794 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3795 // If the LHS of the add was an addrec and it has no-wrap flags, 3796 // transfer the no-wrap flags, since an or won't introduce a wrap. 3797 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3798 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3799 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3800 OldAR->getNoWrapFlags()); 3801 } 3802 return S; 3803 } 3804 } 3805 break; 3806 case Instruction::Xor: 3807 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3808 // If the RHS of the xor is a signbit, then this is just an add. 3809 // Instcombine turns add of signbit into xor as a strength reduction step. 3810 if (CI->getValue().isSignBit()) 3811 return getAddExpr(getSCEV(U->getOperand(0)), 3812 getSCEV(U->getOperand(1))); 3813 3814 // If the RHS of xor is -1, then this is a not operation. 3815 if (CI->isAllOnesValue()) 3816 return getNotSCEV(getSCEV(U->getOperand(0))); 3817 3818 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3819 // This is a variant of the check for xor with -1, and it handles 3820 // the case where instcombine has trimmed non-demanded bits out 3821 // of an xor with -1. 3822 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3823 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3824 if (BO->getOpcode() == Instruction::And && 3825 LCI->getValue() == CI->getValue()) 3826 if (const SCEVZeroExtendExpr *Z = 3827 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3828 Type *UTy = U->getType(); 3829 const SCEV *Z0 = Z->getOperand(); 3830 Type *Z0Ty = Z0->getType(); 3831 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3832 3833 // If C is a low-bits mask, the zero extend is serving to 3834 // mask off the high bits. Complement the operand and 3835 // re-apply the zext. 3836 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3837 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3838 3839 // If C is a single bit, it may be in the sign-bit position 3840 // before the zero-extend. In this case, represent the xor 3841 // using an add, which is equivalent, and re-apply the zext. 3842 APInt Trunc = CI->getValue().trunc(Z0TySize); 3843 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3844 Trunc.isSignBit()) 3845 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3846 UTy); 3847 } 3848 } 3849 break; 3850 3851 case Instruction::Shl: 3852 // Turn shift left of a constant amount into a multiply. 3853 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3854 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3855 3856 // If the shift count is not less than the bitwidth, the result of 3857 // the shift is undefined. Don't try to analyze it, because the 3858 // resolution chosen here may differ from the resolution chosen in 3859 // other parts of the compiler. 3860 if (SA->getValue().uge(BitWidth)) 3861 break; 3862 3863 Constant *X = ConstantInt::get(getContext(), 3864 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3865 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3866 } 3867 break; 3868 3869 case Instruction::LShr: 3870 // Turn logical shift right of a constant into a unsigned divide. 3871 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3872 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3873 3874 // If the shift count is not less than the bitwidth, the result of 3875 // the shift is undefined. Don't try to analyze it, because the 3876 // resolution chosen here may differ from the resolution chosen in 3877 // other parts of the compiler. 3878 if (SA->getValue().uge(BitWidth)) 3879 break; 3880 3881 Constant *X = ConstantInt::get(getContext(), 3882 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3883 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3884 } 3885 break; 3886 3887 case Instruction::AShr: 3888 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3889 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3890 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3891 if (L->getOpcode() == Instruction::Shl && 3892 L->getOperand(1) == U->getOperand(1)) { 3893 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3894 3895 // If the shift count is not less than the bitwidth, the result of 3896 // the shift is undefined. Don't try to analyze it, because the 3897 // resolution chosen here may differ from the resolution chosen in 3898 // other parts of the compiler. 3899 if (CI->getValue().uge(BitWidth)) 3900 break; 3901 3902 uint64_t Amt = BitWidth - CI->getZExtValue(); 3903 if (Amt == BitWidth) 3904 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3905 return 3906 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3907 IntegerType::get(getContext(), 3908 Amt)), 3909 U->getType()); 3910 } 3911 break; 3912 3913 case Instruction::Trunc: 3914 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3915 3916 case Instruction::ZExt: 3917 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3918 3919 case Instruction::SExt: 3920 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3921 3922 case Instruction::BitCast: 3923 // BitCasts are no-op casts so we just eliminate the cast. 3924 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3925 return getSCEV(U->getOperand(0)); 3926 break; 3927 3928 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3929 // lead to pointer expressions which cannot safely be expanded to GEPs, 3930 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3931 // simplifying integer expressions. 3932 3933 case Instruction::GetElementPtr: 3934 return createNodeForGEP(cast<GEPOperator>(U)); 3935 3936 case Instruction::PHI: 3937 return createNodeForPHI(cast<PHINode>(U)); 3938 3939 case Instruction::Select: 3940 // This could be a smax or umax that was lowered earlier. 3941 // Try to recover it. 3942 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3943 Value *LHS = ICI->getOperand(0); 3944 Value *RHS = ICI->getOperand(1); 3945 switch (ICI->getPredicate()) { 3946 case ICmpInst::ICMP_SLT: 3947 case ICmpInst::ICMP_SLE: 3948 std::swap(LHS, RHS); 3949 // fall through 3950 case ICmpInst::ICMP_SGT: 3951 case ICmpInst::ICMP_SGE: 3952 // a >s b ? a+x : b+x -> smax(a, b)+x 3953 // a >s b ? b+x : a+x -> smin(a, b)+x 3954 if (LHS->getType() == U->getType()) { 3955 const SCEV *LS = getSCEV(LHS); 3956 const SCEV *RS = getSCEV(RHS); 3957 const SCEV *LA = getSCEV(U->getOperand(1)); 3958 const SCEV *RA = getSCEV(U->getOperand(2)); 3959 const SCEV *LDiff = getMinusSCEV(LA, LS); 3960 const SCEV *RDiff = getMinusSCEV(RA, RS); 3961 if (LDiff == RDiff) 3962 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3963 LDiff = getMinusSCEV(LA, RS); 3964 RDiff = getMinusSCEV(RA, LS); 3965 if (LDiff == RDiff) 3966 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3967 } 3968 break; 3969 case ICmpInst::ICMP_ULT: 3970 case ICmpInst::ICMP_ULE: 3971 std::swap(LHS, RHS); 3972 // fall through 3973 case ICmpInst::ICMP_UGT: 3974 case ICmpInst::ICMP_UGE: 3975 // a >u b ? a+x : b+x -> umax(a, b)+x 3976 // a >u b ? b+x : a+x -> umin(a, b)+x 3977 if (LHS->getType() == U->getType()) { 3978 const SCEV *LS = getSCEV(LHS); 3979 const SCEV *RS = getSCEV(RHS); 3980 const SCEV *LA = getSCEV(U->getOperand(1)); 3981 const SCEV *RA = getSCEV(U->getOperand(2)); 3982 const SCEV *LDiff = getMinusSCEV(LA, LS); 3983 const SCEV *RDiff = getMinusSCEV(RA, RS); 3984 if (LDiff == RDiff) 3985 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3986 LDiff = getMinusSCEV(LA, RS); 3987 RDiff = getMinusSCEV(RA, LS); 3988 if (LDiff == RDiff) 3989 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3990 } 3991 break; 3992 case ICmpInst::ICMP_NE: 3993 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 3994 if (LHS->getType() == U->getType() && 3995 isa<ConstantInt>(RHS) && 3996 cast<ConstantInt>(RHS)->isZero()) { 3997 const SCEV *One = getConstant(LHS->getType(), 1); 3998 const SCEV *LS = getSCEV(LHS); 3999 const SCEV *LA = getSCEV(U->getOperand(1)); 4000 const SCEV *RA = getSCEV(U->getOperand(2)); 4001 const SCEV *LDiff = getMinusSCEV(LA, LS); 4002 const SCEV *RDiff = getMinusSCEV(RA, One); 4003 if (LDiff == RDiff) 4004 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4005 } 4006 break; 4007 case ICmpInst::ICMP_EQ: 4008 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4009 if (LHS->getType() == U->getType() && 4010 isa<ConstantInt>(RHS) && 4011 cast<ConstantInt>(RHS)->isZero()) { 4012 const SCEV *One = getConstant(LHS->getType(), 1); 4013 const SCEV *LS = getSCEV(LHS); 4014 const SCEV *LA = getSCEV(U->getOperand(1)); 4015 const SCEV *RA = getSCEV(U->getOperand(2)); 4016 const SCEV *LDiff = getMinusSCEV(LA, One); 4017 const SCEV *RDiff = getMinusSCEV(RA, LS); 4018 if (LDiff == RDiff) 4019 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4020 } 4021 break; 4022 default: 4023 break; 4024 } 4025 } 4026 4027 default: // We cannot analyze this expression. 4028 break; 4029 } 4030 4031 return getUnknown(V); 4032 } 4033 4034 4035 4036 //===----------------------------------------------------------------------===// 4037 // Iteration Count Computation Code 4038 // 4039 4040 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4041 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4042 /// constant. Will also return 0 if the maximum trip count is very large (>= 4043 /// 2^32). 4044 /// 4045 /// This "trip count" assumes that control exits via ExitingBlock. More 4046 /// precisely, it is the number of times that control may reach ExitingBlock 4047 /// before taking the branch. For loops with multiple exits, it may not be the 4048 /// number times that the loop header executes because the loop may exit 4049 /// prematurely via another branch. 4050 /// 4051 /// FIXME: We conservatively call getBackedgeTakenCount(L) instead of 4052 /// getExitCount(L, ExitingBlock) to compute a safe trip count considering all 4053 /// loop exits. getExitCount() may return an exact count for this branch 4054 /// assuming no-signed-wrap. The number of well-defined iterations may actually 4055 /// be higher than this trip count if this exit test is skipped and the loop 4056 /// exits via a different branch. Ideally, getExitCount() would know whether it 4057 /// depends on a NSW assumption, and we would only fall back to a conservative 4058 /// trip count in that case. 4059 unsigned ScalarEvolution:: 4060 getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) { 4061 const SCEVConstant *ExitCount = 4062 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L)); 4063 if (!ExitCount) 4064 return 0; 4065 4066 ConstantInt *ExitConst = ExitCount->getValue(); 4067 4068 // Guard against huge trip counts. 4069 if (ExitConst->getValue().getActiveBits() > 32) 4070 return 0; 4071 4072 // In case of integer overflow, this returns 0, which is correct. 4073 return ((unsigned)ExitConst->getZExtValue()) + 1; 4074 } 4075 4076 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4077 /// trip count of this loop as a normal unsigned value, if possible. This 4078 /// means that the actual trip count is always a multiple of the returned 4079 /// value (don't forget the trip count could very well be zero as well!). 4080 /// 4081 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4082 /// multiple of a constant (which is also the case if the trip count is simply 4083 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4084 /// if the trip count is very large (>= 2^32). 4085 /// 4086 /// As explained in the comments for getSmallConstantTripCount, this assumes 4087 /// that control exits the loop via ExitingBlock. 4088 unsigned ScalarEvolution:: 4089 getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) { 4090 const SCEV *ExitCount = getBackedgeTakenCount(L); 4091 if (ExitCount == getCouldNotCompute()) 4092 return 1; 4093 4094 // Get the trip count from the BE count by adding 1. 4095 const SCEV *TCMul = getAddExpr(ExitCount, 4096 getConstant(ExitCount->getType(), 1)); 4097 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4098 // to factor simple cases. 4099 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4100 TCMul = Mul->getOperand(0); 4101 4102 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4103 if (!MulC) 4104 return 1; 4105 4106 ConstantInt *Result = MulC->getValue(); 4107 4108 // Guard against huge trip counts (this requires checking 4109 // for zero to handle the case where the trip count == -1 and the 4110 // addition wraps). 4111 if (!Result || Result->getValue().getActiveBits() > 32 || 4112 Result->getValue().getActiveBits() == 0) 4113 return 1; 4114 4115 return (unsigned)Result->getZExtValue(); 4116 } 4117 4118 // getExitCount - Get the expression for the number of loop iterations for which 4119 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4120 // SCEVCouldNotCompute. 4121 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4122 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4123 } 4124 4125 /// getBackedgeTakenCount - If the specified loop has a predictable 4126 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4127 /// object. The backedge-taken count is the number of times the loop header 4128 /// will be branched to from within the loop. This is one less than the 4129 /// trip count of the loop, since it doesn't count the first iteration, 4130 /// when the header is branched to from outside the loop. 4131 /// 4132 /// Note that it is not valid to call this method on a loop without a 4133 /// loop-invariant backedge-taken count (see 4134 /// hasLoopInvariantBackedgeTakenCount). 4135 /// 4136 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4137 return getBackedgeTakenInfo(L).getExact(this); 4138 } 4139 4140 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4141 /// return the least SCEV value that is known never to be less than the 4142 /// actual backedge taken count. 4143 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4144 return getBackedgeTakenInfo(L).getMax(this); 4145 } 4146 4147 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4148 /// onto the given Worklist. 4149 static void 4150 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4151 BasicBlock *Header = L->getHeader(); 4152 4153 // Push all Loop-header PHIs onto the Worklist stack. 4154 for (BasicBlock::iterator I = Header->begin(); 4155 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4156 Worklist.push_back(PN); 4157 } 4158 4159 const ScalarEvolution::BackedgeTakenInfo & 4160 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4161 // Initially insert an invalid entry for this loop. If the insertion 4162 // succeeds, proceed to actually compute a backedge-taken count and 4163 // update the value. The temporary CouldNotCompute value tells SCEV 4164 // code elsewhere that it shouldn't attempt to request a new 4165 // backedge-taken count, which could result in infinite recursion. 4166 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4167 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4168 if (!Pair.second) 4169 return Pair.first->second; 4170 4171 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4172 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4173 // must be cleared in this scope. 4174 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4175 4176 if (Result.getExact(this) != getCouldNotCompute()) { 4177 assert(isLoopInvariant(Result.getExact(this), L) && 4178 isLoopInvariant(Result.getMax(this), L) && 4179 "Computed backedge-taken count isn't loop invariant for loop!"); 4180 ++NumTripCountsComputed; 4181 } 4182 else if (Result.getMax(this) == getCouldNotCompute() && 4183 isa<PHINode>(L->getHeader()->begin())) { 4184 // Only count loops that have phi nodes as not being computable. 4185 ++NumTripCountsNotComputed; 4186 } 4187 4188 // Now that we know more about the trip count for this loop, forget any 4189 // existing SCEV values for PHI nodes in this loop since they are only 4190 // conservative estimates made without the benefit of trip count 4191 // information. This is similar to the code in forgetLoop, except that 4192 // it handles SCEVUnknown PHI nodes specially. 4193 if (Result.hasAnyInfo()) { 4194 SmallVector<Instruction *, 16> Worklist; 4195 PushLoopPHIs(L, Worklist); 4196 4197 SmallPtrSet<Instruction *, 8> Visited; 4198 while (!Worklist.empty()) { 4199 Instruction *I = Worklist.pop_back_val(); 4200 if (!Visited.insert(I)) continue; 4201 4202 ValueExprMapType::iterator It = 4203 ValueExprMap.find_as(static_cast<Value *>(I)); 4204 if (It != ValueExprMap.end()) { 4205 const SCEV *Old = It->second; 4206 4207 // SCEVUnknown for a PHI either means that it has an unrecognized 4208 // structure, or it's a PHI that's in the progress of being computed 4209 // by createNodeForPHI. In the former case, additional loop trip 4210 // count information isn't going to change anything. In the later 4211 // case, createNodeForPHI will perform the necessary updates on its 4212 // own when it gets to that point. 4213 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4214 forgetMemoizedResults(Old); 4215 ValueExprMap.erase(It); 4216 } 4217 if (PHINode *PN = dyn_cast<PHINode>(I)) 4218 ConstantEvolutionLoopExitValue.erase(PN); 4219 } 4220 4221 PushDefUseChildren(I, Worklist); 4222 } 4223 } 4224 4225 // Re-lookup the insert position, since the call to 4226 // ComputeBackedgeTakenCount above could result in a 4227 // recusive call to getBackedgeTakenInfo (on a different 4228 // loop), which would invalidate the iterator computed 4229 // earlier. 4230 return BackedgeTakenCounts.find(L)->second = Result; 4231 } 4232 4233 /// forgetLoop - This method should be called by the client when it has 4234 /// changed a loop in a way that may effect ScalarEvolution's ability to 4235 /// compute a trip count, or if the loop is deleted. 4236 void ScalarEvolution::forgetLoop(const Loop *L) { 4237 // Drop any stored trip count value. 4238 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4239 BackedgeTakenCounts.find(L); 4240 if (BTCPos != BackedgeTakenCounts.end()) { 4241 BTCPos->second.clear(); 4242 BackedgeTakenCounts.erase(BTCPos); 4243 } 4244 4245 // Drop information about expressions based on loop-header PHIs. 4246 SmallVector<Instruction *, 16> Worklist; 4247 PushLoopPHIs(L, Worklist); 4248 4249 SmallPtrSet<Instruction *, 8> Visited; 4250 while (!Worklist.empty()) { 4251 Instruction *I = Worklist.pop_back_val(); 4252 if (!Visited.insert(I)) continue; 4253 4254 ValueExprMapType::iterator It = 4255 ValueExprMap.find_as(static_cast<Value *>(I)); 4256 if (It != ValueExprMap.end()) { 4257 forgetMemoizedResults(It->second); 4258 ValueExprMap.erase(It); 4259 if (PHINode *PN = dyn_cast<PHINode>(I)) 4260 ConstantEvolutionLoopExitValue.erase(PN); 4261 } 4262 4263 PushDefUseChildren(I, Worklist); 4264 } 4265 4266 // Forget all contained loops too, to avoid dangling entries in the 4267 // ValuesAtScopes map. 4268 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4269 forgetLoop(*I); 4270 } 4271 4272 /// forgetValue - This method should be called by the client when it has 4273 /// changed a value in a way that may effect its value, or which may 4274 /// disconnect it from a def-use chain linking it to a loop. 4275 void ScalarEvolution::forgetValue(Value *V) { 4276 Instruction *I = dyn_cast<Instruction>(V); 4277 if (!I) return; 4278 4279 // Drop information about expressions based on loop-header PHIs. 4280 SmallVector<Instruction *, 16> Worklist; 4281 Worklist.push_back(I); 4282 4283 SmallPtrSet<Instruction *, 8> Visited; 4284 while (!Worklist.empty()) { 4285 I = Worklist.pop_back_val(); 4286 if (!Visited.insert(I)) continue; 4287 4288 ValueExprMapType::iterator It = 4289 ValueExprMap.find_as(static_cast<Value *>(I)); 4290 if (It != ValueExprMap.end()) { 4291 forgetMemoizedResults(It->second); 4292 ValueExprMap.erase(It); 4293 if (PHINode *PN = dyn_cast<PHINode>(I)) 4294 ConstantEvolutionLoopExitValue.erase(PN); 4295 } 4296 4297 PushDefUseChildren(I, Worklist); 4298 } 4299 } 4300 4301 /// getExact - Get the exact loop backedge taken count considering all loop 4302 /// exits. A computable result can only be return for loops with a single exit. 4303 /// Returning the minimum taken count among all exits is incorrect because one 4304 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4305 /// the limit of each loop test is never skipped. This is a valid assumption as 4306 /// long as the loop exits via that test. For precise results, it is the 4307 /// caller's responsibility to specify the relevant loop exit using 4308 /// getExact(ExitingBlock, SE). 4309 const SCEV * 4310 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4311 // If any exits were not computable, the loop is not computable. 4312 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4313 4314 // We need exactly one computable exit. 4315 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4316 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4317 4318 const SCEV *BECount = nullptr; 4319 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4320 ENT != nullptr; ENT = ENT->getNextExit()) { 4321 4322 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4323 4324 if (!BECount) 4325 BECount = ENT->ExactNotTaken; 4326 else if (BECount != ENT->ExactNotTaken) 4327 return SE->getCouldNotCompute(); 4328 } 4329 assert(BECount && "Invalid not taken count for loop exit"); 4330 return BECount; 4331 } 4332 4333 /// getExact - Get the exact not taken count for this loop exit. 4334 const SCEV * 4335 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4336 ScalarEvolution *SE) const { 4337 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4338 ENT != nullptr; ENT = ENT->getNextExit()) { 4339 4340 if (ENT->ExitingBlock == ExitingBlock) 4341 return ENT->ExactNotTaken; 4342 } 4343 return SE->getCouldNotCompute(); 4344 } 4345 4346 /// getMax - Get the max backedge taken count for the loop. 4347 const SCEV * 4348 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4349 return Max ? Max : SE->getCouldNotCompute(); 4350 } 4351 4352 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4353 ScalarEvolution *SE) const { 4354 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4355 return true; 4356 4357 if (!ExitNotTaken.ExitingBlock) 4358 return false; 4359 4360 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4361 ENT != nullptr; ENT = ENT->getNextExit()) { 4362 4363 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4364 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4365 return true; 4366 } 4367 } 4368 return false; 4369 } 4370 4371 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4372 /// computable exit into a persistent ExitNotTakenInfo array. 4373 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4374 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4375 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4376 4377 if (!Complete) 4378 ExitNotTaken.setIncomplete(); 4379 4380 unsigned NumExits = ExitCounts.size(); 4381 if (NumExits == 0) return; 4382 4383 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4384 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4385 if (NumExits == 1) return; 4386 4387 // Handle the rare case of multiple computable exits. 4388 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4389 4390 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4391 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4392 PrevENT->setNextExit(ENT); 4393 ENT->ExitingBlock = ExitCounts[i].first; 4394 ENT->ExactNotTaken = ExitCounts[i].second; 4395 } 4396 } 4397 4398 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4399 void ScalarEvolution::BackedgeTakenInfo::clear() { 4400 ExitNotTaken.ExitingBlock = nullptr; 4401 ExitNotTaken.ExactNotTaken = nullptr; 4402 delete[] ExitNotTaken.getNextExit(); 4403 } 4404 4405 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4406 /// of the specified loop will execute. 4407 ScalarEvolution::BackedgeTakenInfo 4408 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4409 SmallVector<BasicBlock *, 8> ExitingBlocks; 4410 L->getExitingBlocks(ExitingBlocks); 4411 4412 // Examine all exits and pick the most conservative values. 4413 const SCEV *MaxBECount = getCouldNotCompute(); 4414 bool CouldComputeBECount = true; 4415 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4416 const SCEV *LatchMaxCount = nullptr; 4417 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4418 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4419 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]); 4420 if (EL.Exact == getCouldNotCompute()) 4421 // We couldn't compute an exact value for this exit, so 4422 // we won't be able to compute an exact value for the loop. 4423 CouldComputeBECount = false; 4424 else 4425 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact)); 4426 4427 if (MaxBECount == getCouldNotCompute()) 4428 MaxBECount = EL.Max; 4429 else if (EL.Max != getCouldNotCompute()) { 4430 // We cannot take the "min" MaxBECount, because non-unit stride loops may 4431 // skip some loop tests. Taking the max over the exits is sufficiently 4432 // conservative. TODO: We could do better taking into consideration 4433 // non-latch exits that dominate the latch. 4434 if (EL.MustExit && ExitingBlocks[i] == Latch) 4435 LatchMaxCount = EL.Max; 4436 else 4437 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max); 4438 } 4439 } 4440 // Be more precise in the easy case of a loop latch that must exit. 4441 if (LatchMaxCount) { 4442 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, LatchMaxCount); 4443 } 4444 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4445 } 4446 4447 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4448 /// loop will execute if it exits via the specified block. 4449 ScalarEvolution::ExitLimit 4450 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4451 4452 // Okay, we've chosen an exiting block. See what condition causes us to 4453 // exit at this block and remember the exit block and whether all other targets 4454 // lead to the loop header. 4455 bool MustExecuteLoopHeader = true; 4456 BasicBlock *Exit = nullptr; 4457 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 4458 SI != SE; ++SI) 4459 if (!L->contains(*SI)) { 4460 if (Exit) // Multiple exit successors. 4461 return getCouldNotCompute(); 4462 Exit = *SI; 4463 } else if (*SI != L->getHeader()) { 4464 MustExecuteLoopHeader = false; 4465 } 4466 4467 // At this point, we know we have a conditional branch that determines whether 4468 // the loop is exited. However, we don't know if the branch is executed each 4469 // time through the loop. If not, then the execution count of the branch will 4470 // not be equal to the trip count of the loop. 4471 // 4472 // Currently we check for this by checking to see if the Exit branch goes to 4473 // the loop header. If so, we know it will always execute the same number of 4474 // times as the loop. We also handle the case where the exit block *is* the 4475 // loop header. This is common for un-rotated loops. 4476 // 4477 // If both of those tests fail, walk up the unique predecessor chain to the 4478 // header, stopping if there is an edge that doesn't exit the loop. If the 4479 // header is reached, the execution count of the branch will be equal to the 4480 // trip count of the loop. 4481 // 4482 // More extensive analysis could be done to handle more cases here. 4483 // 4484 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 4485 // The simple checks failed, try climbing the unique predecessor chain 4486 // up to the header. 4487 bool Ok = false; 4488 for (BasicBlock *BB = ExitingBlock; BB; ) { 4489 BasicBlock *Pred = BB->getUniquePredecessor(); 4490 if (!Pred) 4491 return getCouldNotCompute(); 4492 TerminatorInst *PredTerm = Pred->getTerminator(); 4493 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4494 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4495 if (PredSucc == BB) 4496 continue; 4497 // If the predecessor has a successor that isn't BB and isn't 4498 // outside the loop, assume the worst. 4499 if (L->contains(PredSucc)) 4500 return getCouldNotCompute(); 4501 } 4502 if (Pred == L->getHeader()) { 4503 Ok = true; 4504 break; 4505 } 4506 BB = Pred; 4507 } 4508 if (!Ok) 4509 return getCouldNotCompute(); 4510 } 4511 4512 TerminatorInst *Term = ExitingBlock->getTerminator(); 4513 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 4514 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 4515 // Proceed to the next level to examine the exit condition expression. 4516 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 4517 BI->getSuccessor(1), 4518 /*IsSubExpr=*/false); 4519 } 4520 4521 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 4522 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 4523 /*IsSubExpr=*/false); 4524 4525 return getCouldNotCompute(); 4526 } 4527 4528 /// ComputeExitLimitFromCond - Compute the number of times the 4529 /// backedge of the specified loop will execute if its exit condition 4530 /// were a conditional branch of ExitCond, TBB, and FBB. 4531 /// 4532 /// @param IsSubExpr is true if ExitCond does not directly control the exit 4533 /// branch. In this case, we cannot assume that the loop only exits when the 4534 /// condition is true and cannot infer that failing to meet the condition prior 4535 /// to integer wraparound results in undefined behavior. 4536 ScalarEvolution::ExitLimit 4537 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4538 Value *ExitCond, 4539 BasicBlock *TBB, 4540 BasicBlock *FBB, 4541 bool IsSubExpr) { 4542 // Check if the controlling expression for this loop is an And or Or. 4543 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4544 if (BO->getOpcode() == Instruction::And) { 4545 // Recurse on the operands of the and. 4546 bool EitherMayExit = L->contains(TBB); 4547 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4548 IsSubExpr || EitherMayExit); 4549 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4550 IsSubExpr || EitherMayExit); 4551 const SCEV *BECount = getCouldNotCompute(); 4552 const SCEV *MaxBECount = getCouldNotCompute(); 4553 bool MustExit = false; 4554 if (EitherMayExit) { 4555 // Both conditions must be true for the loop to continue executing. 4556 // Choose the less conservative count. 4557 if (EL0.Exact == getCouldNotCompute() || 4558 EL1.Exact == getCouldNotCompute()) 4559 BECount = getCouldNotCompute(); 4560 else 4561 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4562 if (EL0.Max == getCouldNotCompute()) 4563 MaxBECount = EL1.Max; 4564 else if (EL1.Max == getCouldNotCompute()) 4565 MaxBECount = EL0.Max; 4566 else 4567 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4568 MustExit = EL0.MustExit || EL1.MustExit; 4569 } else { 4570 // Both conditions must be true at the same time for the loop to exit. 4571 // For now, be conservative. 4572 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4573 if (EL0.Max == EL1.Max) 4574 MaxBECount = EL0.Max; 4575 if (EL0.Exact == EL1.Exact) 4576 BECount = EL0.Exact; 4577 MustExit = EL0.MustExit && EL1.MustExit; 4578 } 4579 4580 return ExitLimit(BECount, MaxBECount, MustExit); 4581 } 4582 if (BO->getOpcode() == Instruction::Or) { 4583 // Recurse on the operands of the or. 4584 bool EitherMayExit = L->contains(FBB); 4585 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4586 IsSubExpr || EitherMayExit); 4587 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4588 IsSubExpr || EitherMayExit); 4589 const SCEV *BECount = getCouldNotCompute(); 4590 const SCEV *MaxBECount = getCouldNotCompute(); 4591 bool MustExit = false; 4592 if (EitherMayExit) { 4593 // Both conditions must be false for the loop to continue executing. 4594 // Choose the less conservative count. 4595 if (EL0.Exact == getCouldNotCompute() || 4596 EL1.Exact == getCouldNotCompute()) 4597 BECount = getCouldNotCompute(); 4598 else 4599 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4600 if (EL0.Max == getCouldNotCompute()) 4601 MaxBECount = EL1.Max; 4602 else if (EL1.Max == getCouldNotCompute()) 4603 MaxBECount = EL0.Max; 4604 else 4605 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4606 MustExit = EL0.MustExit || EL1.MustExit; 4607 } else { 4608 // Both conditions must be false at the same time for the loop to exit. 4609 // For now, be conservative. 4610 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4611 if (EL0.Max == EL1.Max) 4612 MaxBECount = EL0.Max; 4613 if (EL0.Exact == EL1.Exact) 4614 BECount = EL0.Exact; 4615 MustExit = EL0.MustExit && EL1.MustExit; 4616 } 4617 4618 return ExitLimit(BECount, MaxBECount, MustExit); 4619 } 4620 } 4621 4622 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4623 // Proceed to the next level to examine the icmp. 4624 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4625 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr); 4626 4627 // Check for a constant condition. These are normally stripped out by 4628 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4629 // preserve the CFG and is temporarily leaving constant conditions 4630 // in place. 4631 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4632 if (L->contains(FBB) == !CI->getZExtValue()) 4633 // The backedge is always taken. 4634 return getCouldNotCompute(); 4635 else 4636 // The backedge is never taken. 4637 return getConstant(CI->getType(), 0); 4638 } 4639 4640 // If it's not an integer or pointer comparison then compute it the hard way. 4641 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4642 } 4643 4644 /// ComputeExitLimitFromICmp - Compute the number of times the 4645 /// backedge of the specified loop will execute if its exit condition 4646 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4647 ScalarEvolution::ExitLimit 4648 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4649 ICmpInst *ExitCond, 4650 BasicBlock *TBB, 4651 BasicBlock *FBB, 4652 bool IsSubExpr) { 4653 4654 // If the condition was exit on true, convert the condition to exit on false 4655 ICmpInst::Predicate Cond; 4656 if (!L->contains(FBB)) 4657 Cond = ExitCond->getPredicate(); 4658 else 4659 Cond = ExitCond->getInversePredicate(); 4660 4661 // Handle common loops like: for (X = "string"; *X; ++X) 4662 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4663 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4664 ExitLimit ItCnt = 4665 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4666 if (ItCnt.hasAnyInfo()) 4667 return ItCnt; 4668 } 4669 4670 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4671 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4672 4673 // Try to evaluate any dependencies out of the loop. 4674 LHS = getSCEVAtScope(LHS, L); 4675 RHS = getSCEVAtScope(RHS, L); 4676 4677 // At this point, we would like to compute how many iterations of the 4678 // loop the predicate will return true for these inputs. 4679 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4680 // If there is a loop-invariant, force it into the RHS. 4681 std::swap(LHS, RHS); 4682 Cond = ICmpInst::getSwappedPredicate(Cond); 4683 } 4684 4685 // Simplify the operands before analyzing them. 4686 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4687 4688 // If we have a comparison of a chrec against a constant, try to use value 4689 // ranges to answer this query. 4690 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4691 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4692 if (AddRec->getLoop() == L) { 4693 // Form the constant range. 4694 ConstantRange CompRange( 4695 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4696 4697 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4698 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4699 } 4700 4701 switch (Cond) { 4702 case ICmpInst::ICMP_NE: { // while (X != Y) 4703 // Convert to: while (X-Y != 0) 4704 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4705 if (EL.hasAnyInfo()) return EL; 4706 break; 4707 } 4708 case ICmpInst::ICMP_EQ: { // while (X == Y) 4709 // Convert to: while (X-Y == 0) 4710 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4711 if (EL.hasAnyInfo()) return EL; 4712 break; 4713 } 4714 case ICmpInst::ICMP_SLT: 4715 case ICmpInst::ICMP_ULT: { // while (X < Y) 4716 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 4717 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr); 4718 if (EL.hasAnyInfo()) return EL; 4719 break; 4720 } 4721 case ICmpInst::ICMP_SGT: 4722 case ICmpInst::ICMP_UGT: { // while (X > Y) 4723 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 4724 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr); 4725 if (EL.hasAnyInfo()) return EL; 4726 break; 4727 } 4728 default: 4729 #if 0 4730 dbgs() << "ComputeBackedgeTakenCount "; 4731 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4732 dbgs() << "[unsigned] "; 4733 dbgs() << *LHS << " " 4734 << Instruction::getOpcodeName(Instruction::ICmp) 4735 << " " << *RHS << "\n"; 4736 #endif 4737 break; 4738 } 4739 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4740 } 4741 4742 ScalarEvolution::ExitLimit 4743 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 4744 SwitchInst *Switch, 4745 BasicBlock *ExitingBlock, 4746 bool IsSubExpr) { 4747 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 4748 4749 // Give up if the exit is the default dest of a switch. 4750 if (Switch->getDefaultDest() == ExitingBlock) 4751 return getCouldNotCompute(); 4752 4753 assert(L->contains(Switch->getDefaultDest()) && 4754 "Default case must not exit the loop!"); 4755 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 4756 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 4757 4758 // while (X != Y) --> while (X-Y != 0) 4759 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4760 if (EL.hasAnyInfo()) 4761 return EL; 4762 4763 return getCouldNotCompute(); 4764 } 4765 4766 static ConstantInt * 4767 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4768 ScalarEvolution &SE) { 4769 const SCEV *InVal = SE.getConstant(C); 4770 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4771 assert(isa<SCEVConstant>(Val) && 4772 "Evaluation of SCEV at constant didn't fold correctly?"); 4773 return cast<SCEVConstant>(Val)->getValue(); 4774 } 4775 4776 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4777 /// 'icmp op load X, cst', try to see if we can compute the backedge 4778 /// execution count. 4779 ScalarEvolution::ExitLimit 4780 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4781 LoadInst *LI, 4782 Constant *RHS, 4783 const Loop *L, 4784 ICmpInst::Predicate predicate) { 4785 4786 if (LI->isVolatile()) return getCouldNotCompute(); 4787 4788 // Check to see if the loaded pointer is a getelementptr of a global. 4789 // TODO: Use SCEV instead of manually grubbing with GEPs. 4790 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4791 if (!GEP) return getCouldNotCompute(); 4792 4793 // Make sure that it is really a constant global we are gepping, with an 4794 // initializer, and make sure the first IDX is really 0. 4795 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4796 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4797 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4798 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4799 return getCouldNotCompute(); 4800 4801 // Okay, we allow one non-constant index into the GEP instruction. 4802 Value *VarIdx = nullptr; 4803 std::vector<Constant*> Indexes; 4804 unsigned VarIdxNum = 0; 4805 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4806 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4807 Indexes.push_back(CI); 4808 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4809 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4810 VarIdx = GEP->getOperand(i); 4811 VarIdxNum = i-2; 4812 Indexes.push_back(nullptr); 4813 } 4814 4815 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 4816 if (!VarIdx) 4817 return getCouldNotCompute(); 4818 4819 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4820 // Check to see if X is a loop variant variable value now. 4821 const SCEV *Idx = getSCEV(VarIdx); 4822 Idx = getSCEVAtScope(Idx, L); 4823 4824 // We can only recognize very limited forms of loop index expressions, in 4825 // particular, only affine AddRec's like {C1,+,C2}. 4826 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4827 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4828 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4829 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4830 return getCouldNotCompute(); 4831 4832 unsigned MaxSteps = MaxBruteForceIterations; 4833 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4834 ConstantInt *ItCst = ConstantInt::get( 4835 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4836 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4837 4838 // Form the GEP offset. 4839 Indexes[VarIdxNum] = Val; 4840 4841 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 4842 Indexes); 4843 if (!Result) break; // Cannot compute! 4844 4845 // Evaluate the condition for this iteration. 4846 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4847 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4848 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4849 #if 0 4850 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4851 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4852 << "***\n"; 4853 #endif 4854 ++NumArrayLenItCounts; 4855 return getConstant(ItCst); // Found terminating iteration! 4856 } 4857 } 4858 return getCouldNotCompute(); 4859 } 4860 4861 4862 /// CanConstantFold - Return true if we can constant fold an instruction of the 4863 /// specified type, assuming that all operands were constants. 4864 static bool CanConstantFold(const Instruction *I) { 4865 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4866 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4867 isa<LoadInst>(I)) 4868 return true; 4869 4870 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4871 if (const Function *F = CI->getCalledFunction()) 4872 return canConstantFoldCallTo(F); 4873 return false; 4874 } 4875 4876 /// Determine whether this instruction can constant evolve within this loop 4877 /// assuming its operands can all constant evolve. 4878 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4879 // An instruction outside of the loop can't be derived from a loop PHI. 4880 if (!L->contains(I)) return false; 4881 4882 if (isa<PHINode>(I)) { 4883 if (L->getHeader() == I->getParent()) 4884 return true; 4885 else 4886 // We don't currently keep track of the control flow needed to evaluate 4887 // PHIs, so we cannot handle PHIs inside of loops. 4888 return false; 4889 } 4890 4891 // If we won't be able to constant fold this expression even if the operands 4892 // are constants, bail early. 4893 return CanConstantFold(I); 4894 } 4895 4896 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4897 /// recursing through each instruction operand until reaching a loop header phi. 4898 static PHINode * 4899 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4900 DenseMap<Instruction *, PHINode *> &PHIMap) { 4901 4902 // Otherwise, we can evaluate this instruction if all of its operands are 4903 // constant or derived from a PHI node themselves. 4904 PHINode *PHI = nullptr; 4905 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4906 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4907 4908 if (isa<Constant>(*OpI)) continue; 4909 4910 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4911 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 4912 4913 PHINode *P = dyn_cast<PHINode>(OpInst); 4914 if (!P) 4915 // If this operand is already visited, reuse the prior result. 4916 // We may have P != PHI if this is the deepest point at which the 4917 // inconsistent paths meet. 4918 P = PHIMap.lookup(OpInst); 4919 if (!P) { 4920 // Recurse and memoize the results, whether a phi is found or not. 4921 // This recursive call invalidates pointers into PHIMap. 4922 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4923 PHIMap[OpInst] = P; 4924 } 4925 if (!P) 4926 return nullptr; // Not evolving from PHI 4927 if (PHI && PHI != P) 4928 return nullptr; // Evolving from multiple different PHIs. 4929 PHI = P; 4930 } 4931 // This is a expression evolving from a constant PHI! 4932 return PHI; 4933 } 4934 4935 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4936 /// in the loop that V is derived from. We allow arbitrary operations along the 4937 /// way, but the operands of an operation must either be constants or a value 4938 /// derived from a constant PHI. If this expression does not fit with these 4939 /// constraints, return null. 4940 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4941 Instruction *I = dyn_cast<Instruction>(V); 4942 if (!I || !canConstantEvolve(I, L)) return nullptr; 4943 4944 if (PHINode *PN = dyn_cast<PHINode>(I)) { 4945 return PN; 4946 } 4947 4948 // Record non-constant instructions contained by the loop. 4949 DenseMap<Instruction *, PHINode *> PHIMap; 4950 return getConstantEvolvingPHIOperands(I, L, PHIMap); 4951 } 4952 4953 /// EvaluateExpression - Given an expression that passes the 4954 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4955 /// in the loop has the value PHIVal. If we can't fold this expression for some 4956 /// reason, return null. 4957 static Constant *EvaluateExpression(Value *V, const Loop *L, 4958 DenseMap<Instruction *, Constant *> &Vals, 4959 const DataLayout *DL, 4960 const TargetLibraryInfo *TLI) { 4961 // Convenient constant check, but redundant for recursive calls. 4962 if (Constant *C = dyn_cast<Constant>(V)) return C; 4963 Instruction *I = dyn_cast<Instruction>(V); 4964 if (!I) return nullptr; 4965 4966 if (Constant *C = Vals.lookup(I)) return C; 4967 4968 // An instruction inside the loop depends on a value outside the loop that we 4969 // weren't given a mapping for, or a value such as a call inside the loop. 4970 if (!canConstantEvolve(I, L)) return nullptr; 4971 4972 // An unmapped PHI can be due to a branch or another loop inside this loop, 4973 // or due to this not being the initial iteration through a loop where we 4974 // couldn't compute the evolution of this particular PHI last time. 4975 if (isa<PHINode>(I)) return nullptr; 4976 4977 std::vector<Constant*> Operands(I->getNumOperands()); 4978 4979 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4980 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 4981 if (!Operand) { 4982 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 4983 if (!Operands[i]) return nullptr; 4984 continue; 4985 } 4986 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 4987 Vals[Operand] = C; 4988 if (!C) return nullptr; 4989 Operands[i] = C; 4990 } 4991 4992 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4993 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4994 Operands[1], DL, TLI); 4995 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4996 if (!LI->isVolatile()) 4997 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 4998 } 4999 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5000 TLI); 5001 } 5002 5003 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5004 /// in the header of its containing loop, we know the loop executes a 5005 /// constant number of times, and the PHI node is just a recurrence 5006 /// involving constants, fold it. 5007 Constant * 5008 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5009 const APInt &BEs, 5010 const Loop *L) { 5011 DenseMap<PHINode*, Constant*>::const_iterator I = 5012 ConstantEvolutionLoopExitValue.find(PN); 5013 if (I != ConstantEvolutionLoopExitValue.end()) 5014 return I->second; 5015 5016 if (BEs.ugt(MaxBruteForceIterations)) 5017 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5018 5019 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5020 5021 DenseMap<Instruction *, Constant *> CurrentIterVals; 5022 BasicBlock *Header = L->getHeader(); 5023 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5024 5025 // Since the loop is canonicalized, the PHI node must have two entries. One 5026 // entry must be a constant (coming in from outside of the loop), and the 5027 // second must be derived from the same PHI. 5028 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5029 PHINode *PHI = nullptr; 5030 for (BasicBlock::iterator I = Header->begin(); 5031 (PHI = dyn_cast<PHINode>(I)); ++I) { 5032 Constant *StartCST = 5033 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5034 if (!StartCST) continue; 5035 CurrentIterVals[PHI] = StartCST; 5036 } 5037 if (!CurrentIterVals.count(PN)) 5038 return RetVal = nullptr; 5039 5040 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5041 5042 // Execute the loop symbolically to determine the exit value. 5043 if (BEs.getActiveBits() >= 32) 5044 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5045 5046 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5047 unsigned IterationNum = 0; 5048 for (; ; ++IterationNum) { 5049 if (IterationNum == NumIterations) 5050 return RetVal = CurrentIterVals[PN]; // Got exit value! 5051 5052 // Compute the value of the PHIs for the next iteration. 5053 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5054 DenseMap<Instruction *, Constant *> NextIterVals; 5055 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, 5056 TLI); 5057 if (!NextPHI) 5058 return nullptr; // Couldn't evaluate! 5059 NextIterVals[PN] = NextPHI; 5060 5061 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5062 5063 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5064 // cease to be able to evaluate one of them or if they stop evolving, 5065 // because that doesn't necessarily prevent us from computing PN. 5066 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5067 for (DenseMap<Instruction *, Constant *>::const_iterator 5068 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5069 PHINode *PHI = dyn_cast<PHINode>(I->first); 5070 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5071 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5072 } 5073 // We use two distinct loops because EvaluateExpression may invalidate any 5074 // iterators into CurrentIterVals. 5075 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5076 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5077 PHINode *PHI = I->first; 5078 Constant *&NextPHI = NextIterVals[PHI]; 5079 if (!NextPHI) { // Not already computed. 5080 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5081 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5082 } 5083 if (NextPHI != I->second) 5084 StoppedEvolving = false; 5085 } 5086 5087 // If all entries in CurrentIterVals == NextIterVals then we can stop 5088 // iterating, the loop can't continue to change. 5089 if (StoppedEvolving) 5090 return RetVal = CurrentIterVals[PN]; 5091 5092 CurrentIterVals.swap(NextIterVals); 5093 } 5094 } 5095 5096 /// ComputeExitCountExhaustively - If the loop is known to execute a 5097 /// constant number of times (the condition evolves only from constants), 5098 /// try to evaluate a few iterations of the loop until we get the exit 5099 /// condition gets a value of ExitWhen (true or false). If we cannot 5100 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5101 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5102 Value *Cond, 5103 bool ExitWhen) { 5104 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5105 if (!PN) return getCouldNotCompute(); 5106 5107 // If the loop is canonicalized, the PHI will have exactly two entries. 5108 // That's the only form we support here. 5109 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5110 5111 DenseMap<Instruction *, Constant *> CurrentIterVals; 5112 BasicBlock *Header = L->getHeader(); 5113 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5114 5115 // One entry must be a constant (coming in from outside of the loop), and the 5116 // second must be derived from the same PHI. 5117 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5118 PHINode *PHI = nullptr; 5119 for (BasicBlock::iterator I = Header->begin(); 5120 (PHI = dyn_cast<PHINode>(I)); ++I) { 5121 Constant *StartCST = 5122 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5123 if (!StartCST) continue; 5124 CurrentIterVals[PHI] = StartCST; 5125 } 5126 if (!CurrentIterVals.count(PN)) 5127 return getCouldNotCompute(); 5128 5129 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5130 // the loop symbolically to determine when the condition gets a value of 5131 // "ExitWhen". 5132 5133 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5134 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5135 ConstantInt *CondVal = 5136 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 5137 DL, TLI)); 5138 5139 // Couldn't symbolically evaluate. 5140 if (!CondVal) return getCouldNotCompute(); 5141 5142 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5143 ++NumBruteForceTripCountsComputed; 5144 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5145 } 5146 5147 // Update all the PHI nodes for the next iteration. 5148 DenseMap<Instruction *, Constant *> NextIterVals; 5149 5150 // Create a list of which PHIs we need to compute. We want to do this before 5151 // calling EvaluateExpression on them because that may invalidate iterators 5152 // into CurrentIterVals. 5153 SmallVector<PHINode *, 8> PHIsToCompute; 5154 for (DenseMap<Instruction *, Constant *>::const_iterator 5155 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5156 PHINode *PHI = dyn_cast<PHINode>(I->first); 5157 if (!PHI || PHI->getParent() != Header) continue; 5158 PHIsToCompute.push_back(PHI); 5159 } 5160 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5161 E = PHIsToCompute.end(); I != E; ++I) { 5162 PHINode *PHI = *I; 5163 Constant *&NextPHI = NextIterVals[PHI]; 5164 if (NextPHI) continue; // Already computed! 5165 5166 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5167 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5168 } 5169 CurrentIterVals.swap(NextIterVals); 5170 } 5171 5172 // Too many iterations were needed to evaluate. 5173 return getCouldNotCompute(); 5174 } 5175 5176 /// getSCEVAtScope - Return a SCEV expression for the specified value 5177 /// at the specified scope in the program. The L value specifies a loop 5178 /// nest to evaluate the expression at, where null is the top-level or a 5179 /// specified loop is immediately inside of the loop. 5180 /// 5181 /// This method can be used to compute the exit value for a variable defined 5182 /// in a loop by querying what the value will hold in the parent loop. 5183 /// 5184 /// In the case that a relevant loop exit value cannot be computed, the 5185 /// original value V is returned. 5186 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5187 // Check to see if we've folded this expression at this loop before. 5188 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5189 for (unsigned u = 0; u < Values.size(); u++) { 5190 if (Values[u].first == L) 5191 return Values[u].second ? Values[u].second : V; 5192 } 5193 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5194 // Otherwise compute it. 5195 const SCEV *C = computeSCEVAtScope(V, L); 5196 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5197 for (unsigned u = Values2.size(); u > 0; u--) { 5198 if (Values2[u - 1].first == L) { 5199 Values2[u - 1].second = C; 5200 break; 5201 } 5202 } 5203 return C; 5204 } 5205 5206 /// This builds up a Constant using the ConstantExpr interface. That way, we 5207 /// will return Constants for objects which aren't represented by a 5208 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5209 /// Returns NULL if the SCEV isn't representable as a Constant. 5210 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5211 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5212 case scCouldNotCompute: 5213 case scAddRecExpr: 5214 break; 5215 case scConstant: 5216 return cast<SCEVConstant>(V)->getValue(); 5217 case scUnknown: 5218 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5219 case scSignExtend: { 5220 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5221 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5222 return ConstantExpr::getSExt(CastOp, SS->getType()); 5223 break; 5224 } 5225 case scZeroExtend: { 5226 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5227 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5228 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5229 break; 5230 } 5231 case scTruncate: { 5232 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5233 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5234 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5235 break; 5236 } 5237 case scAddExpr: { 5238 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5239 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5240 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5241 unsigned AS = PTy->getAddressSpace(); 5242 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5243 C = ConstantExpr::getBitCast(C, DestPtrTy); 5244 } 5245 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5246 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5247 if (!C2) return nullptr; 5248 5249 // First pointer! 5250 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5251 unsigned AS = C2->getType()->getPointerAddressSpace(); 5252 std::swap(C, C2); 5253 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5254 // The offsets have been converted to bytes. We can add bytes to an 5255 // i8* by GEP with the byte count in the first index. 5256 C = ConstantExpr::getBitCast(C, DestPtrTy); 5257 } 5258 5259 // Don't bother trying to sum two pointers. We probably can't 5260 // statically compute a load that results from it anyway. 5261 if (C2->getType()->isPointerTy()) 5262 return nullptr; 5263 5264 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5265 if (PTy->getElementType()->isStructTy()) 5266 C2 = ConstantExpr::getIntegerCast( 5267 C2, Type::getInt32Ty(C->getContext()), true); 5268 C = ConstantExpr::getGetElementPtr(C, C2); 5269 } else 5270 C = ConstantExpr::getAdd(C, C2); 5271 } 5272 return C; 5273 } 5274 break; 5275 } 5276 case scMulExpr: { 5277 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5278 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5279 // Don't bother with pointers at all. 5280 if (C->getType()->isPointerTy()) return nullptr; 5281 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5282 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5283 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5284 C = ConstantExpr::getMul(C, C2); 5285 } 5286 return C; 5287 } 5288 break; 5289 } 5290 case scUDivExpr: { 5291 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5292 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5293 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5294 if (LHS->getType() == RHS->getType()) 5295 return ConstantExpr::getUDiv(LHS, RHS); 5296 break; 5297 } 5298 case scSMaxExpr: 5299 case scUMaxExpr: 5300 break; // TODO: smax, umax. 5301 } 5302 return nullptr; 5303 } 5304 5305 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5306 if (isa<SCEVConstant>(V)) return V; 5307 5308 // If this instruction is evolved from a constant-evolving PHI, compute the 5309 // exit value from the loop without using SCEVs. 5310 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5311 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5312 const Loop *LI = (*this->LI)[I->getParent()]; 5313 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5314 if (PHINode *PN = dyn_cast<PHINode>(I)) 5315 if (PN->getParent() == LI->getHeader()) { 5316 // Okay, there is no closed form solution for the PHI node. Check 5317 // to see if the loop that contains it has a known backedge-taken 5318 // count. If so, we may be able to force computation of the exit 5319 // value. 5320 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5321 if (const SCEVConstant *BTCC = 5322 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5323 // Okay, we know how many times the containing loop executes. If 5324 // this is a constant evolving PHI node, get the final value at 5325 // the specified iteration number. 5326 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5327 BTCC->getValue()->getValue(), 5328 LI); 5329 if (RV) return getSCEV(RV); 5330 } 5331 } 5332 5333 // Okay, this is an expression that we cannot symbolically evaluate 5334 // into a SCEV. Check to see if it's possible to symbolically evaluate 5335 // the arguments into constants, and if so, try to constant propagate the 5336 // result. This is particularly useful for computing loop exit values. 5337 if (CanConstantFold(I)) { 5338 SmallVector<Constant *, 4> Operands; 5339 bool MadeImprovement = false; 5340 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5341 Value *Op = I->getOperand(i); 5342 if (Constant *C = dyn_cast<Constant>(Op)) { 5343 Operands.push_back(C); 5344 continue; 5345 } 5346 5347 // If any of the operands is non-constant and if they are 5348 // non-integer and non-pointer, don't even try to analyze them 5349 // with scev techniques. 5350 if (!isSCEVable(Op->getType())) 5351 return V; 5352 5353 const SCEV *OrigV = getSCEV(Op); 5354 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5355 MadeImprovement |= OrigV != OpV; 5356 5357 Constant *C = BuildConstantFromSCEV(OpV); 5358 if (!C) return V; 5359 if (C->getType() != Op->getType()) 5360 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5361 Op->getType(), 5362 false), 5363 C, Op->getType()); 5364 Operands.push_back(C); 5365 } 5366 5367 // Check to see if getSCEVAtScope actually made an improvement. 5368 if (MadeImprovement) { 5369 Constant *C = nullptr; 5370 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5371 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5372 Operands[0], Operands[1], DL, 5373 TLI); 5374 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5375 if (!LI->isVolatile()) 5376 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5377 } else 5378 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5379 Operands, DL, TLI); 5380 if (!C) return V; 5381 return getSCEV(C); 5382 } 5383 } 5384 } 5385 5386 // This is some other type of SCEVUnknown, just return it. 5387 return V; 5388 } 5389 5390 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5391 // Avoid performing the look-up in the common case where the specified 5392 // expression has no loop-variant portions. 5393 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5394 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5395 if (OpAtScope != Comm->getOperand(i)) { 5396 // Okay, at least one of these operands is loop variant but might be 5397 // foldable. Build a new instance of the folded commutative expression. 5398 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5399 Comm->op_begin()+i); 5400 NewOps.push_back(OpAtScope); 5401 5402 for (++i; i != e; ++i) { 5403 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5404 NewOps.push_back(OpAtScope); 5405 } 5406 if (isa<SCEVAddExpr>(Comm)) 5407 return getAddExpr(NewOps); 5408 if (isa<SCEVMulExpr>(Comm)) 5409 return getMulExpr(NewOps); 5410 if (isa<SCEVSMaxExpr>(Comm)) 5411 return getSMaxExpr(NewOps); 5412 if (isa<SCEVUMaxExpr>(Comm)) 5413 return getUMaxExpr(NewOps); 5414 llvm_unreachable("Unknown commutative SCEV type!"); 5415 } 5416 } 5417 // If we got here, all operands are loop invariant. 5418 return Comm; 5419 } 5420 5421 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5422 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5423 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5424 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5425 return Div; // must be loop invariant 5426 return getUDivExpr(LHS, RHS); 5427 } 5428 5429 // If this is a loop recurrence for a loop that does not contain L, then we 5430 // are dealing with the final value computed by the loop. 5431 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5432 // First, attempt to evaluate each operand. 5433 // Avoid performing the look-up in the common case where the specified 5434 // expression has no loop-variant portions. 5435 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5436 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5437 if (OpAtScope == AddRec->getOperand(i)) 5438 continue; 5439 5440 // Okay, at least one of these operands is loop variant but might be 5441 // foldable. Build a new instance of the folded commutative expression. 5442 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5443 AddRec->op_begin()+i); 5444 NewOps.push_back(OpAtScope); 5445 for (++i; i != e; ++i) 5446 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5447 5448 const SCEV *FoldedRec = 5449 getAddRecExpr(NewOps, AddRec->getLoop(), 5450 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5451 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5452 // The addrec may be folded to a nonrecurrence, for example, if the 5453 // induction variable is multiplied by zero after constant folding. Go 5454 // ahead and return the folded value. 5455 if (!AddRec) 5456 return FoldedRec; 5457 break; 5458 } 5459 5460 // If the scope is outside the addrec's loop, evaluate it by using the 5461 // loop exit value of the addrec. 5462 if (!AddRec->getLoop()->contains(L)) { 5463 // To evaluate this recurrence, we need to know how many times the AddRec 5464 // loop iterates. Compute this now. 5465 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5466 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5467 5468 // Then, evaluate the AddRec. 5469 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5470 } 5471 5472 return AddRec; 5473 } 5474 5475 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5476 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5477 if (Op == Cast->getOperand()) 5478 return Cast; // must be loop invariant 5479 return getZeroExtendExpr(Op, Cast->getType()); 5480 } 5481 5482 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5483 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5484 if (Op == Cast->getOperand()) 5485 return Cast; // must be loop invariant 5486 return getSignExtendExpr(Op, Cast->getType()); 5487 } 5488 5489 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5490 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5491 if (Op == Cast->getOperand()) 5492 return Cast; // must be loop invariant 5493 return getTruncateExpr(Op, Cast->getType()); 5494 } 5495 5496 llvm_unreachable("Unknown SCEV type!"); 5497 } 5498 5499 /// getSCEVAtScope - This is a convenience function which does 5500 /// getSCEVAtScope(getSCEV(V), L). 5501 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5502 return getSCEVAtScope(getSCEV(V), L); 5503 } 5504 5505 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5506 /// following equation: 5507 /// 5508 /// A * X = B (mod N) 5509 /// 5510 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5511 /// A and B isn't important. 5512 /// 5513 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5514 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5515 ScalarEvolution &SE) { 5516 uint32_t BW = A.getBitWidth(); 5517 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5518 assert(A != 0 && "A must be non-zero."); 5519 5520 // 1. D = gcd(A, N) 5521 // 5522 // The gcd of A and N may have only one prime factor: 2. The number of 5523 // trailing zeros in A is its multiplicity 5524 uint32_t Mult2 = A.countTrailingZeros(); 5525 // D = 2^Mult2 5526 5527 // 2. Check if B is divisible by D. 5528 // 5529 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5530 // is not less than multiplicity of this prime factor for D. 5531 if (B.countTrailingZeros() < Mult2) 5532 return SE.getCouldNotCompute(); 5533 5534 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5535 // modulo (N / D). 5536 // 5537 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5538 // bit width during computations. 5539 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5540 APInt Mod(BW + 1, 0); 5541 Mod.setBit(BW - Mult2); // Mod = N / D 5542 APInt I = AD.multiplicativeInverse(Mod); 5543 5544 // 4. Compute the minimum unsigned root of the equation: 5545 // I * (B / D) mod (N / D) 5546 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5547 5548 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5549 // bits. 5550 return SE.getConstant(Result.trunc(BW)); 5551 } 5552 5553 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5554 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5555 /// might be the same) or two SCEVCouldNotCompute objects. 5556 /// 5557 static std::pair<const SCEV *,const SCEV *> 5558 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5559 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5560 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5561 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5562 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5563 5564 // We currently can only solve this if the coefficients are constants. 5565 if (!LC || !MC || !NC) { 5566 const SCEV *CNC = SE.getCouldNotCompute(); 5567 return std::make_pair(CNC, CNC); 5568 } 5569 5570 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5571 const APInt &L = LC->getValue()->getValue(); 5572 const APInt &M = MC->getValue()->getValue(); 5573 const APInt &N = NC->getValue()->getValue(); 5574 APInt Two(BitWidth, 2); 5575 APInt Four(BitWidth, 4); 5576 5577 { 5578 using namespace APIntOps; 5579 const APInt& C = L; 5580 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5581 // The B coefficient is M-N/2 5582 APInt B(M); 5583 B -= sdiv(N,Two); 5584 5585 // The A coefficient is N/2 5586 APInt A(N.sdiv(Two)); 5587 5588 // Compute the B^2-4ac term. 5589 APInt SqrtTerm(B); 5590 SqrtTerm *= B; 5591 SqrtTerm -= Four * (A * C); 5592 5593 if (SqrtTerm.isNegative()) { 5594 // The loop is provably infinite. 5595 const SCEV *CNC = SE.getCouldNotCompute(); 5596 return std::make_pair(CNC, CNC); 5597 } 5598 5599 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5600 // integer value or else APInt::sqrt() will assert. 5601 APInt SqrtVal(SqrtTerm.sqrt()); 5602 5603 // Compute the two solutions for the quadratic formula. 5604 // The divisions must be performed as signed divisions. 5605 APInt NegB(-B); 5606 APInt TwoA(A << 1); 5607 if (TwoA.isMinValue()) { 5608 const SCEV *CNC = SE.getCouldNotCompute(); 5609 return std::make_pair(CNC, CNC); 5610 } 5611 5612 LLVMContext &Context = SE.getContext(); 5613 5614 ConstantInt *Solution1 = 5615 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5616 ConstantInt *Solution2 = 5617 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5618 5619 return std::make_pair(SE.getConstant(Solution1), 5620 SE.getConstant(Solution2)); 5621 } // end APIntOps namespace 5622 } 5623 5624 /// HowFarToZero - Return the number of times a backedge comparing the specified 5625 /// value to zero will execute. If not computable, return CouldNotCompute. 5626 /// 5627 /// This is only used for loops with a "x != y" exit test. The exit condition is 5628 /// now expressed as a single expression, V = x-y. So the exit test is 5629 /// effectively V != 0. We know and take advantage of the fact that this 5630 /// expression only being used in a comparison by zero context. 5631 ScalarEvolution::ExitLimit 5632 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) { 5633 // If the value is a constant 5634 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5635 // If the value is already zero, the branch will execute zero times. 5636 if (C->getValue()->isZero()) return C; 5637 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5638 } 5639 5640 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5641 if (!AddRec || AddRec->getLoop() != L) 5642 return getCouldNotCompute(); 5643 5644 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5645 // the quadratic equation to solve it. 5646 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5647 std::pair<const SCEV *,const SCEV *> Roots = 5648 SolveQuadraticEquation(AddRec, *this); 5649 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5650 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5651 if (R1 && R2) { 5652 #if 0 5653 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5654 << " sol#2: " << *R2 << "\n"; 5655 #endif 5656 // Pick the smallest positive root value. 5657 if (ConstantInt *CB = 5658 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5659 R1->getValue(), 5660 R2->getValue()))) { 5661 if (CB->getZExtValue() == false) 5662 std::swap(R1, R2); // R1 is the minimum root now. 5663 5664 // We can only use this value if the chrec ends up with an exact zero 5665 // value at this index. When solving for "X*X != 5", for example, we 5666 // should not accept a root of 2. 5667 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5668 if (Val->isZero()) 5669 return R1; // We found a quadratic root! 5670 } 5671 } 5672 return getCouldNotCompute(); 5673 } 5674 5675 // Otherwise we can only handle this if it is affine. 5676 if (!AddRec->isAffine()) 5677 return getCouldNotCompute(); 5678 5679 // If this is an affine expression, the execution count of this branch is 5680 // the minimum unsigned root of the following equation: 5681 // 5682 // Start + Step*N = 0 (mod 2^BW) 5683 // 5684 // equivalent to: 5685 // 5686 // Step*N = -Start (mod 2^BW) 5687 // 5688 // where BW is the common bit width of Start and Step. 5689 5690 // Get the initial value for the loop. 5691 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5692 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5693 5694 // For now we handle only constant steps. 5695 // 5696 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5697 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5698 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5699 // We have not yet seen any such cases. 5700 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5701 if (!StepC || StepC->getValue()->equalsInt(0)) 5702 return getCouldNotCompute(); 5703 5704 // For positive steps (counting up until unsigned overflow): 5705 // N = -Start/Step (as unsigned) 5706 // For negative steps (counting down to zero): 5707 // N = Start/-Step 5708 // First compute the unsigned distance from zero in the direction of Step. 5709 bool CountDown = StepC->getValue()->getValue().isNegative(); 5710 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5711 5712 // Handle unitary steps, which cannot wraparound. 5713 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5714 // N = Distance (as unsigned) 5715 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5716 ConstantRange CR = getUnsignedRange(Start); 5717 const SCEV *MaxBECount; 5718 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5719 // When counting up, the worst starting value is 1, not 0. 5720 MaxBECount = CR.getUnsignedMax().isMinValue() 5721 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5722 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5723 else 5724 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5725 : -CR.getUnsignedMin()); 5726 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true); 5727 } 5728 5729 // If the recurrence is known not to wraparound, unsigned divide computes the 5730 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know 5731 // that the value will either become zero (and thus the loop terminates), that 5732 // the loop will terminate through some other exit condition first, or that 5733 // the loop has undefined behavior. This means we can't "miss" the exit 5734 // value, even with nonunit stride, and exit later via the same branch. Note 5735 // that we can skip this exit if loop later exits via a different 5736 // branch. Hence MustExit=false. 5737 // 5738 // This is only valid for expressions that directly compute the loop exit. It 5739 // is invalid for subexpressions in which the loop may exit through this 5740 // branch even if this subexpression is false. In that case, the trip count 5741 // computed by this udiv could be smaller than the number of well-defined 5742 // iterations. 5743 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 5744 const SCEV *Exact = 5745 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5746 return ExitLimit(Exact, Exact, /*MustExit=*/false); 5747 } 5748 5749 // If Step is a power of two that evenly divides Start we know that the loop 5750 // will always terminate. Start may not be a constant so we just have the 5751 // number of trailing zeros available. This is safe even in presence of 5752 // overflow as the recurrence will overflow to exactly 0. 5753 const APInt &StepV = StepC->getValue()->getValue(); 5754 if (StepV.isPowerOf2() && 5755 GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros()) 5756 return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5757 5758 // Then, try to solve the above equation provided that Start is constant. 5759 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5760 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5761 -StartC->getValue()->getValue(), 5762 *this); 5763 return getCouldNotCompute(); 5764 } 5765 5766 /// HowFarToNonZero - Return the number of times a backedge checking the 5767 /// specified value for nonzero will execute. If not computable, return 5768 /// CouldNotCompute 5769 ScalarEvolution::ExitLimit 5770 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5771 // Loops that look like: while (X == 0) are very strange indeed. We don't 5772 // handle them yet except for the trivial case. This could be expanded in the 5773 // future as needed. 5774 5775 // If the value is a constant, check to see if it is known to be non-zero 5776 // already. If so, the backedge will execute zero times. 5777 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5778 if (!C->getValue()->isNullValue()) 5779 return getConstant(C->getType(), 0); 5780 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5781 } 5782 5783 // We could implement others, but I really doubt anyone writes loops like 5784 // this, and if they did, they would already be constant folded. 5785 return getCouldNotCompute(); 5786 } 5787 5788 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5789 /// (which may not be an immediate predecessor) which has exactly one 5790 /// successor from which BB is reachable, or null if no such block is 5791 /// found. 5792 /// 5793 std::pair<BasicBlock *, BasicBlock *> 5794 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5795 // If the block has a unique predecessor, then there is no path from the 5796 // predecessor to the block that does not go through the direct edge 5797 // from the predecessor to the block. 5798 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5799 return std::make_pair(Pred, BB); 5800 5801 // A loop's header is defined to be a block that dominates the loop. 5802 // If the header has a unique predecessor outside the loop, it must be 5803 // a block that has exactly one successor that can reach the loop. 5804 if (Loop *L = LI->getLoopFor(BB)) 5805 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5806 5807 return std::pair<BasicBlock *, BasicBlock *>(); 5808 } 5809 5810 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5811 /// testing whether two expressions are equal, however for the purposes of 5812 /// looking for a condition guarding a loop, it can be useful to be a little 5813 /// more general, since a front-end may have replicated the controlling 5814 /// expression. 5815 /// 5816 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5817 // Quick check to see if they are the same SCEV. 5818 if (A == B) return true; 5819 5820 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5821 // two different instructions with the same value. Check for this case. 5822 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5823 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5824 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5825 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5826 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5827 return true; 5828 5829 // Otherwise assume they may have a different value. 5830 return false; 5831 } 5832 5833 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5834 /// predicate Pred. Return true iff any changes were made. 5835 /// 5836 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5837 const SCEV *&LHS, const SCEV *&RHS, 5838 unsigned Depth) { 5839 bool Changed = false; 5840 5841 // If we hit the max recursion limit bail out. 5842 if (Depth >= 3) 5843 return false; 5844 5845 // Canonicalize a constant to the right side. 5846 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5847 // Check for both operands constant. 5848 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5849 if (ConstantExpr::getICmp(Pred, 5850 LHSC->getValue(), 5851 RHSC->getValue())->isNullValue()) 5852 goto trivially_false; 5853 else 5854 goto trivially_true; 5855 } 5856 // Otherwise swap the operands to put the constant on the right. 5857 std::swap(LHS, RHS); 5858 Pred = ICmpInst::getSwappedPredicate(Pred); 5859 Changed = true; 5860 } 5861 5862 // If we're comparing an addrec with a value which is loop-invariant in the 5863 // addrec's loop, put the addrec on the left. Also make a dominance check, 5864 // as both operands could be addrecs loop-invariant in each other's loop. 5865 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5866 const Loop *L = AR->getLoop(); 5867 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5868 std::swap(LHS, RHS); 5869 Pred = ICmpInst::getSwappedPredicate(Pred); 5870 Changed = true; 5871 } 5872 } 5873 5874 // If there's a constant operand, canonicalize comparisons with boundary 5875 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5876 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5877 const APInt &RA = RC->getValue()->getValue(); 5878 switch (Pred) { 5879 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5880 case ICmpInst::ICMP_EQ: 5881 case ICmpInst::ICMP_NE: 5882 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 5883 if (!RA) 5884 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 5885 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 5886 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 5887 ME->getOperand(0)->isAllOnesValue()) { 5888 RHS = AE->getOperand(1); 5889 LHS = ME->getOperand(1); 5890 Changed = true; 5891 } 5892 break; 5893 case ICmpInst::ICMP_UGE: 5894 if ((RA - 1).isMinValue()) { 5895 Pred = ICmpInst::ICMP_NE; 5896 RHS = getConstant(RA - 1); 5897 Changed = true; 5898 break; 5899 } 5900 if (RA.isMaxValue()) { 5901 Pred = ICmpInst::ICMP_EQ; 5902 Changed = true; 5903 break; 5904 } 5905 if (RA.isMinValue()) goto trivially_true; 5906 5907 Pred = ICmpInst::ICMP_UGT; 5908 RHS = getConstant(RA - 1); 5909 Changed = true; 5910 break; 5911 case ICmpInst::ICMP_ULE: 5912 if ((RA + 1).isMaxValue()) { 5913 Pred = ICmpInst::ICMP_NE; 5914 RHS = getConstant(RA + 1); 5915 Changed = true; 5916 break; 5917 } 5918 if (RA.isMinValue()) { 5919 Pred = ICmpInst::ICMP_EQ; 5920 Changed = true; 5921 break; 5922 } 5923 if (RA.isMaxValue()) goto trivially_true; 5924 5925 Pred = ICmpInst::ICMP_ULT; 5926 RHS = getConstant(RA + 1); 5927 Changed = true; 5928 break; 5929 case ICmpInst::ICMP_SGE: 5930 if ((RA - 1).isMinSignedValue()) { 5931 Pred = ICmpInst::ICMP_NE; 5932 RHS = getConstant(RA - 1); 5933 Changed = true; 5934 break; 5935 } 5936 if (RA.isMaxSignedValue()) { 5937 Pred = ICmpInst::ICMP_EQ; 5938 Changed = true; 5939 break; 5940 } 5941 if (RA.isMinSignedValue()) goto trivially_true; 5942 5943 Pred = ICmpInst::ICMP_SGT; 5944 RHS = getConstant(RA - 1); 5945 Changed = true; 5946 break; 5947 case ICmpInst::ICMP_SLE: 5948 if ((RA + 1).isMaxSignedValue()) { 5949 Pred = ICmpInst::ICMP_NE; 5950 RHS = getConstant(RA + 1); 5951 Changed = true; 5952 break; 5953 } 5954 if (RA.isMinSignedValue()) { 5955 Pred = ICmpInst::ICMP_EQ; 5956 Changed = true; 5957 break; 5958 } 5959 if (RA.isMaxSignedValue()) goto trivially_true; 5960 5961 Pred = ICmpInst::ICMP_SLT; 5962 RHS = getConstant(RA + 1); 5963 Changed = true; 5964 break; 5965 case ICmpInst::ICMP_UGT: 5966 if (RA.isMinValue()) { 5967 Pred = ICmpInst::ICMP_NE; 5968 Changed = true; 5969 break; 5970 } 5971 if ((RA + 1).isMaxValue()) { 5972 Pred = ICmpInst::ICMP_EQ; 5973 RHS = getConstant(RA + 1); 5974 Changed = true; 5975 break; 5976 } 5977 if (RA.isMaxValue()) goto trivially_false; 5978 break; 5979 case ICmpInst::ICMP_ULT: 5980 if (RA.isMaxValue()) { 5981 Pred = ICmpInst::ICMP_NE; 5982 Changed = true; 5983 break; 5984 } 5985 if ((RA - 1).isMinValue()) { 5986 Pred = ICmpInst::ICMP_EQ; 5987 RHS = getConstant(RA - 1); 5988 Changed = true; 5989 break; 5990 } 5991 if (RA.isMinValue()) goto trivially_false; 5992 break; 5993 case ICmpInst::ICMP_SGT: 5994 if (RA.isMinSignedValue()) { 5995 Pred = ICmpInst::ICMP_NE; 5996 Changed = true; 5997 break; 5998 } 5999 if ((RA + 1).isMaxSignedValue()) { 6000 Pred = ICmpInst::ICMP_EQ; 6001 RHS = getConstant(RA + 1); 6002 Changed = true; 6003 break; 6004 } 6005 if (RA.isMaxSignedValue()) goto trivially_false; 6006 break; 6007 case ICmpInst::ICMP_SLT: 6008 if (RA.isMaxSignedValue()) { 6009 Pred = ICmpInst::ICMP_NE; 6010 Changed = true; 6011 break; 6012 } 6013 if ((RA - 1).isMinSignedValue()) { 6014 Pred = ICmpInst::ICMP_EQ; 6015 RHS = getConstant(RA - 1); 6016 Changed = true; 6017 break; 6018 } 6019 if (RA.isMinSignedValue()) goto trivially_false; 6020 break; 6021 } 6022 } 6023 6024 // Check for obvious equality. 6025 if (HasSameValue(LHS, RHS)) { 6026 if (ICmpInst::isTrueWhenEqual(Pred)) 6027 goto trivially_true; 6028 if (ICmpInst::isFalseWhenEqual(Pred)) 6029 goto trivially_false; 6030 } 6031 6032 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6033 // adding or subtracting 1 from one of the operands. 6034 switch (Pred) { 6035 case ICmpInst::ICMP_SLE: 6036 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6037 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6038 SCEV::FlagNSW); 6039 Pred = ICmpInst::ICMP_SLT; 6040 Changed = true; 6041 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6042 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6043 SCEV::FlagNSW); 6044 Pred = ICmpInst::ICMP_SLT; 6045 Changed = true; 6046 } 6047 break; 6048 case ICmpInst::ICMP_SGE: 6049 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6050 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6051 SCEV::FlagNSW); 6052 Pred = ICmpInst::ICMP_SGT; 6053 Changed = true; 6054 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6055 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6056 SCEV::FlagNSW); 6057 Pred = ICmpInst::ICMP_SGT; 6058 Changed = true; 6059 } 6060 break; 6061 case ICmpInst::ICMP_ULE: 6062 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6063 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6064 SCEV::FlagNUW); 6065 Pred = ICmpInst::ICMP_ULT; 6066 Changed = true; 6067 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6068 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6069 SCEV::FlagNUW); 6070 Pred = ICmpInst::ICMP_ULT; 6071 Changed = true; 6072 } 6073 break; 6074 case ICmpInst::ICMP_UGE: 6075 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6076 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6077 SCEV::FlagNUW); 6078 Pred = ICmpInst::ICMP_UGT; 6079 Changed = true; 6080 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6081 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6082 SCEV::FlagNUW); 6083 Pred = ICmpInst::ICMP_UGT; 6084 Changed = true; 6085 } 6086 break; 6087 default: 6088 break; 6089 } 6090 6091 // TODO: More simplifications are possible here. 6092 6093 // Recursively simplify until we either hit a recursion limit or nothing 6094 // changes. 6095 if (Changed) 6096 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6097 6098 return Changed; 6099 6100 trivially_true: 6101 // Return 0 == 0. 6102 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6103 Pred = ICmpInst::ICMP_EQ; 6104 return true; 6105 6106 trivially_false: 6107 // Return 0 != 0. 6108 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6109 Pred = ICmpInst::ICMP_NE; 6110 return true; 6111 } 6112 6113 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6114 return getSignedRange(S).getSignedMax().isNegative(); 6115 } 6116 6117 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6118 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6119 } 6120 6121 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6122 return !getSignedRange(S).getSignedMin().isNegative(); 6123 } 6124 6125 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6126 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6127 } 6128 6129 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6130 return isKnownNegative(S) || isKnownPositive(S); 6131 } 6132 6133 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6134 const SCEV *LHS, const SCEV *RHS) { 6135 // Canonicalize the inputs first. 6136 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6137 6138 // If LHS or RHS is an addrec, check to see if the condition is true in 6139 // every iteration of the loop. 6140 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 6141 if (isLoopEntryGuardedByCond( 6142 AR->getLoop(), Pred, AR->getStart(), RHS) && 6143 isLoopBackedgeGuardedByCond( 6144 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS)) 6145 return true; 6146 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) 6147 if (isLoopEntryGuardedByCond( 6148 AR->getLoop(), Pred, LHS, AR->getStart()) && 6149 isLoopBackedgeGuardedByCond( 6150 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this))) 6151 return true; 6152 6153 // Otherwise see what can be done with known constant ranges. 6154 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6155 } 6156 6157 bool 6158 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6159 const SCEV *LHS, const SCEV *RHS) { 6160 if (HasSameValue(LHS, RHS)) 6161 return ICmpInst::isTrueWhenEqual(Pred); 6162 6163 // This code is split out from isKnownPredicate because it is called from 6164 // within isLoopEntryGuardedByCond. 6165 switch (Pred) { 6166 default: 6167 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6168 case ICmpInst::ICMP_SGT: 6169 std::swap(LHS, RHS); 6170 case ICmpInst::ICMP_SLT: { 6171 ConstantRange LHSRange = getSignedRange(LHS); 6172 ConstantRange RHSRange = getSignedRange(RHS); 6173 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6174 return true; 6175 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6176 return false; 6177 break; 6178 } 6179 case ICmpInst::ICMP_SGE: 6180 std::swap(LHS, RHS); 6181 case ICmpInst::ICMP_SLE: { 6182 ConstantRange LHSRange = getSignedRange(LHS); 6183 ConstantRange RHSRange = getSignedRange(RHS); 6184 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6185 return true; 6186 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6187 return false; 6188 break; 6189 } 6190 case ICmpInst::ICMP_UGT: 6191 std::swap(LHS, RHS); 6192 case ICmpInst::ICMP_ULT: { 6193 ConstantRange LHSRange = getUnsignedRange(LHS); 6194 ConstantRange RHSRange = getUnsignedRange(RHS); 6195 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6196 return true; 6197 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6198 return false; 6199 break; 6200 } 6201 case ICmpInst::ICMP_UGE: 6202 std::swap(LHS, RHS); 6203 case ICmpInst::ICMP_ULE: { 6204 ConstantRange LHSRange = getUnsignedRange(LHS); 6205 ConstantRange RHSRange = getUnsignedRange(RHS); 6206 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6207 return true; 6208 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6209 return false; 6210 break; 6211 } 6212 case ICmpInst::ICMP_NE: { 6213 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6214 return true; 6215 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6216 return true; 6217 6218 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6219 if (isKnownNonZero(Diff)) 6220 return true; 6221 break; 6222 } 6223 case ICmpInst::ICMP_EQ: 6224 // The check at the top of the function catches the case where 6225 // the values are known to be equal. 6226 break; 6227 } 6228 return false; 6229 } 6230 6231 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6232 /// protected by a conditional between LHS and RHS. This is used to 6233 /// to eliminate casts. 6234 bool 6235 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6236 ICmpInst::Predicate Pred, 6237 const SCEV *LHS, const SCEV *RHS) { 6238 // Interpret a null as meaning no loop, where there is obviously no guard 6239 // (interprocedural conditions notwithstanding). 6240 if (!L) return true; 6241 6242 BasicBlock *Latch = L->getLoopLatch(); 6243 if (!Latch) 6244 return false; 6245 6246 BranchInst *LoopContinuePredicate = 6247 dyn_cast<BranchInst>(Latch->getTerminator()); 6248 if (!LoopContinuePredicate || 6249 LoopContinuePredicate->isUnconditional()) 6250 return false; 6251 6252 return isImpliedCond(Pred, LHS, RHS, 6253 LoopContinuePredicate->getCondition(), 6254 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6255 } 6256 6257 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6258 /// by a conditional between LHS and RHS. This is used to help avoid max 6259 /// expressions in loop trip counts, and to eliminate casts. 6260 bool 6261 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6262 ICmpInst::Predicate Pred, 6263 const SCEV *LHS, const SCEV *RHS) { 6264 // Interpret a null as meaning no loop, where there is obviously no guard 6265 // (interprocedural conditions notwithstanding). 6266 if (!L) return false; 6267 6268 // Starting at the loop predecessor, climb up the predecessor chain, as long 6269 // as there are predecessors that can be found that have unique successors 6270 // leading to the original header. 6271 for (std::pair<BasicBlock *, BasicBlock *> 6272 Pair(L->getLoopPredecessor(), L->getHeader()); 6273 Pair.first; 6274 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6275 6276 BranchInst *LoopEntryPredicate = 6277 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6278 if (!LoopEntryPredicate || 6279 LoopEntryPredicate->isUnconditional()) 6280 continue; 6281 6282 if (isImpliedCond(Pred, LHS, RHS, 6283 LoopEntryPredicate->getCondition(), 6284 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6285 return true; 6286 } 6287 6288 return false; 6289 } 6290 6291 /// RAII wrapper to prevent recursive application of isImpliedCond. 6292 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6293 /// currently evaluating isImpliedCond. 6294 struct MarkPendingLoopPredicate { 6295 Value *Cond; 6296 DenseSet<Value*> &LoopPreds; 6297 bool Pending; 6298 6299 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6300 : Cond(C), LoopPreds(LP) { 6301 Pending = !LoopPreds.insert(Cond).second; 6302 } 6303 ~MarkPendingLoopPredicate() { 6304 if (!Pending) 6305 LoopPreds.erase(Cond); 6306 } 6307 }; 6308 6309 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6310 /// and RHS is true whenever the given Cond value evaluates to true. 6311 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6312 const SCEV *LHS, const SCEV *RHS, 6313 Value *FoundCondValue, 6314 bool Inverse) { 6315 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6316 if (Mark.Pending) 6317 return false; 6318 6319 // Recursively handle And and Or conditions. 6320 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6321 if (BO->getOpcode() == Instruction::And) { 6322 if (!Inverse) 6323 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6324 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6325 } else if (BO->getOpcode() == Instruction::Or) { 6326 if (Inverse) 6327 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6328 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6329 } 6330 } 6331 6332 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6333 if (!ICI) return false; 6334 6335 // Bail if the ICmp's operands' types are wider than the needed type 6336 // before attempting to call getSCEV on them. This avoids infinite 6337 // recursion, since the analysis of widening casts can require loop 6338 // exit condition information for overflow checking, which would 6339 // lead back here. 6340 if (getTypeSizeInBits(LHS->getType()) < 6341 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6342 return false; 6343 6344 // Now that we found a conditional branch that dominates the loop or controls 6345 // the loop latch. Check to see if it is the comparison we are looking for. 6346 ICmpInst::Predicate FoundPred; 6347 if (Inverse) 6348 FoundPred = ICI->getInversePredicate(); 6349 else 6350 FoundPred = ICI->getPredicate(); 6351 6352 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6353 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6354 6355 // Balance the types. The case where FoundLHS' type is wider than 6356 // LHS' type is checked for above. 6357 if (getTypeSizeInBits(LHS->getType()) > 6358 getTypeSizeInBits(FoundLHS->getType())) { 6359 if (CmpInst::isSigned(FoundPred)) { 6360 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6361 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6362 } else { 6363 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6364 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6365 } 6366 } 6367 6368 // Canonicalize the query to match the way instcombine will have 6369 // canonicalized the comparison. 6370 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6371 if (LHS == RHS) 6372 return CmpInst::isTrueWhenEqual(Pred); 6373 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6374 if (FoundLHS == FoundRHS) 6375 return CmpInst::isFalseWhenEqual(FoundPred); 6376 6377 // Check to see if we can make the LHS or RHS match. 6378 if (LHS == FoundRHS || RHS == FoundLHS) { 6379 if (isa<SCEVConstant>(RHS)) { 6380 std::swap(FoundLHS, FoundRHS); 6381 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6382 } else { 6383 std::swap(LHS, RHS); 6384 Pred = ICmpInst::getSwappedPredicate(Pred); 6385 } 6386 } 6387 6388 // Check whether the found predicate is the same as the desired predicate. 6389 if (FoundPred == Pred) 6390 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6391 6392 // Check whether swapping the found predicate makes it the same as the 6393 // desired predicate. 6394 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6395 if (isa<SCEVConstant>(RHS)) 6396 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6397 else 6398 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6399 RHS, LHS, FoundLHS, FoundRHS); 6400 } 6401 6402 // Check whether the actual condition is beyond sufficient. 6403 if (FoundPred == ICmpInst::ICMP_EQ) 6404 if (ICmpInst::isTrueWhenEqual(Pred)) 6405 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6406 return true; 6407 if (Pred == ICmpInst::ICMP_NE) 6408 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6409 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6410 return true; 6411 6412 // Otherwise assume the worst. 6413 return false; 6414 } 6415 6416 /// isImpliedCondOperands - Test whether the condition described by Pred, 6417 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6418 /// and FoundRHS is true. 6419 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6420 const SCEV *LHS, const SCEV *RHS, 6421 const SCEV *FoundLHS, 6422 const SCEV *FoundRHS) { 6423 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6424 FoundLHS, FoundRHS) || 6425 // ~x < ~y --> x > y 6426 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6427 getNotSCEV(FoundRHS), 6428 getNotSCEV(FoundLHS)); 6429 } 6430 6431 /// isImpliedCondOperandsHelper - Test whether the condition described by 6432 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6433 /// FoundLHS, and FoundRHS is true. 6434 bool 6435 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6436 const SCEV *LHS, const SCEV *RHS, 6437 const SCEV *FoundLHS, 6438 const SCEV *FoundRHS) { 6439 switch (Pred) { 6440 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6441 case ICmpInst::ICMP_EQ: 6442 case ICmpInst::ICMP_NE: 6443 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6444 return true; 6445 break; 6446 case ICmpInst::ICMP_SLT: 6447 case ICmpInst::ICMP_SLE: 6448 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6449 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6450 return true; 6451 break; 6452 case ICmpInst::ICMP_SGT: 6453 case ICmpInst::ICMP_SGE: 6454 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6455 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6456 return true; 6457 break; 6458 case ICmpInst::ICMP_ULT: 6459 case ICmpInst::ICMP_ULE: 6460 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6461 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6462 return true; 6463 break; 6464 case ICmpInst::ICMP_UGT: 6465 case ICmpInst::ICMP_UGE: 6466 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6467 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6468 return true; 6469 break; 6470 } 6471 6472 return false; 6473 } 6474 6475 // Verify if an linear IV with positive stride can overflow when in a 6476 // less-than comparison, knowing the invariant term of the comparison, the 6477 // stride and the knowledge of NSW/NUW flags on the recurrence. 6478 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 6479 bool IsSigned, bool NoWrap) { 6480 if (NoWrap) return false; 6481 6482 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6483 const SCEV *One = getConstant(Stride->getType(), 1); 6484 6485 if (IsSigned) { 6486 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 6487 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 6488 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 6489 .getSignedMax(); 6490 6491 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 6492 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 6493 } 6494 6495 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 6496 APInt MaxValue = APInt::getMaxValue(BitWidth); 6497 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 6498 .getUnsignedMax(); 6499 6500 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 6501 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 6502 } 6503 6504 // Verify if an linear IV with negative stride can overflow when in a 6505 // greater-than comparison, knowing the invariant term of the comparison, 6506 // the stride and the knowledge of NSW/NUW flags on the recurrence. 6507 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 6508 bool IsSigned, bool NoWrap) { 6509 if (NoWrap) return false; 6510 6511 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6512 const SCEV *One = getConstant(Stride->getType(), 1); 6513 6514 if (IsSigned) { 6515 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 6516 APInt MinValue = APInt::getSignedMinValue(BitWidth); 6517 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 6518 .getSignedMax(); 6519 6520 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 6521 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 6522 } 6523 6524 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 6525 APInt MinValue = APInt::getMinValue(BitWidth); 6526 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 6527 .getUnsignedMax(); 6528 6529 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 6530 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 6531 } 6532 6533 // Compute the backedge taken count knowing the interval difference, the 6534 // stride and presence of the equality in the comparison. 6535 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 6536 bool Equality) { 6537 const SCEV *One = getConstant(Step->getType(), 1); 6538 Delta = Equality ? getAddExpr(Delta, Step) 6539 : getAddExpr(Delta, getMinusSCEV(Step, One)); 6540 return getUDivExpr(Delta, Step); 6541 } 6542 6543 /// HowManyLessThans - Return the number of times a backedge containing the 6544 /// specified less-than comparison will execute. If not computable, return 6545 /// CouldNotCompute. 6546 /// 6547 /// @param IsSubExpr is true when the LHS < RHS condition does not directly 6548 /// control the branch. In this case, we can only compute an iteration count for 6549 /// a subexpression that cannot overflow before evaluating true. 6550 ScalarEvolution::ExitLimit 6551 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6552 const Loop *L, bool IsSigned, 6553 bool IsSubExpr) { 6554 // We handle only IV < Invariant 6555 if (!isLoopInvariant(RHS, L)) 6556 return getCouldNotCompute(); 6557 6558 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 6559 6560 // Avoid weird loops 6561 if (!IV || IV->getLoop() != L || !IV->isAffine()) 6562 return getCouldNotCompute(); 6563 6564 bool NoWrap = !IsSubExpr && 6565 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 6566 6567 const SCEV *Stride = IV->getStepRecurrence(*this); 6568 6569 // Avoid negative or zero stride values 6570 if (!isKnownPositive(Stride)) 6571 return getCouldNotCompute(); 6572 6573 // Avoid proven overflow cases: this will ensure that the backedge taken count 6574 // will not generate any unsigned overflow. Relaxed no-overflow conditions 6575 // exploit NoWrapFlags, allowing to optimize in presence of undefined 6576 // behaviors like the case of C language. 6577 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 6578 return getCouldNotCompute(); 6579 6580 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 6581 : ICmpInst::ICMP_ULT; 6582 const SCEV *Start = IV->getStart(); 6583 const SCEV *End = RHS; 6584 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 6585 End = IsSigned ? getSMaxExpr(RHS, Start) 6586 : getUMaxExpr(RHS, Start); 6587 6588 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 6589 6590 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 6591 : getUnsignedRange(Start).getUnsignedMin(); 6592 6593 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 6594 : getUnsignedRange(Stride).getUnsignedMin(); 6595 6596 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 6597 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 6598 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 6599 6600 // Although End can be a MAX expression we estimate MaxEnd considering only 6601 // the case End = RHS. This is safe because in the other case (End - Start) 6602 // is zero, leading to a zero maximum backedge taken count. 6603 APInt MaxEnd = 6604 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 6605 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 6606 6607 const SCEV *MaxBECount; 6608 if (isa<SCEVConstant>(BECount)) 6609 MaxBECount = BECount; 6610 else 6611 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 6612 getConstant(MinStride), false); 6613 6614 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6615 MaxBECount = BECount; 6616 6617 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); 6618 } 6619 6620 ScalarEvolution::ExitLimit 6621 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 6622 const Loop *L, bool IsSigned, 6623 bool IsSubExpr) { 6624 // We handle only IV > Invariant 6625 if (!isLoopInvariant(RHS, L)) 6626 return getCouldNotCompute(); 6627 6628 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 6629 6630 // Avoid weird loops 6631 if (!IV || IV->getLoop() != L || !IV->isAffine()) 6632 return getCouldNotCompute(); 6633 6634 bool NoWrap = !IsSubExpr && 6635 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 6636 6637 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 6638 6639 // Avoid negative or zero stride values 6640 if (!isKnownPositive(Stride)) 6641 return getCouldNotCompute(); 6642 6643 // Avoid proven overflow cases: this will ensure that the backedge taken count 6644 // will not generate any unsigned overflow. Relaxed no-overflow conditions 6645 // exploit NoWrapFlags, allowing to optimize in presence of undefined 6646 // behaviors like the case of C language. 6647 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 6648 return getCouldNotCompute(); 6649 6650 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 6651 : ICmpInst::ICMP_UGT; 6652 6653 const SCEV *Start = IV->getStart(); 6654 const SCEV *End = RHS; 6655 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 6656 End = IsSigned ? getSMinExpr(RHS, Start) 6657 : getUMinExpr(RHS, Start); 6658 6659 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 6660 6661 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 6662 : getUnsignedRange(Start).getUnsignedMax(); 6663 6664 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 6665 : getUnsignedRange(Stride).getUnsignedMin(); 6666 6667 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 6668 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 6669 : APInt::getMinValue(BitWidth) + (MinStride - 1); 6670 6671 // Although End can be a MIN expression we estimate MinEnd considering only 6672 // the case End = RHS. This is safe because in the other case (Start - End) 6673 // is zero, leading to a zero maximum backedge taken count. 6674 APInt MinEnd = 6675 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 6676 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 6677 6678 6679 const SCEV *MaxBECount = getCouldNotCompute(); 6680 if (isa<SCEVConstant>(BECount)) 6681 MaxBECount = BECount; 6682 else 6683 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 6684 getConstant(MinStride), false); 6685 6686 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6687 MaxBECount = BECount; 6688 6689 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); 6690 } 6691 6692 /// getNumIterationsInRange - Return the number of iterations of this loop that 6693 /// produce values in the specified constant range. Another way of looking at 6694 /// this is that it returns the first iteration number where the value is not in 6695 /// the condition, thus computing the exit count. If the iteration count can't 6696 /// be computed, an instance of SCEVCouldNotCompute is returned. 6697 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6698 ScalarEvolution &SE) const { 6699 if (Range.isFullSet()) // Infinite loop. 6700 return SE.getCouldNotCompute(); 6701 6702 // If the start is a non-zero constant, shift the range to simplify things. 6703 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6704 if (!SC->getValue()->isZero()) { 6705 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6706 Operands[0] = SE.getConstant(SC->getType(), 0); 6707 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6708 getNoWrapFlags(FlagNW)); 6709 if (const SCEVAddRecExpr *ShiftedAddRec = 6710 dyn_cast<SCEVAddRecExpr>(Shifted)) 6711 return ShiftedAddRec->getNumIterationsInRange( 6712 Range.subtract(SC->getValue()->getValue()), SE); 6713 // This is strange and shouldn't happen. 6714 return SE.getCouldNotCompute(); 6715 } 6716 6717 // The only time we can solve this is when we have all constant indices. 6718 // Otherwise, we cannot determine the overflow conditions. 6719 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6720 if (!isa<SCEVConstant>(getOperand(i))) 6721 return SE.getCouldNotCompute(); 6722 6723 6724 // Okay at this point we know that all elements of the chrec are constants and 6725 // that the start element is zero. 6726 6727 // First check to see if the range contains zero. If not, the first 6728 // iteration exits. 6729 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6730 if (!Range.contains(APInt(BitWidth, 0))) 6731 return SE.getConstant(getType(), 0); 6732 6733 if (isAffine()) { 6734 // If this is an affine expression then we have this situation: 6735 // Solve {0,+,A} in Range === Ax in Range 6736 6737 // We know that zero is in the range. If A is positive then we know that 6738 // the upper value of the range must be the first possible exit value. 6739 // If A is negative then the lower of the range is the last possible loop 6740 // value. Also note that we already checked for a full range. 6741 APInt One(BitWidth,1); 6742 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6743 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6744 6745 // The exit value should be (End+A)/A. 6746 APInt ExitVal = (End + A).udiv(A); 6747 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6748 6749 // Evaluate at the exit value. If we really did fall out of the valid 6750 // range, then we computed our trip count, otherwise wrap around or other 6751 // things must have happened. 6752 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6753 if (Range.contains(Val->getValue())) 6754 return SE.getCouldNotCompute(); // Something strange happened 6755 6756 // Ensure that the previous value is in the range. This is a sanity check. 6757 assert(Range.contains( 6758 EvaluateConstantChrecAtConstant(this, 6759 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6760 "Linear scev computation is off in a bad way!"); 6761 return SE.getConstant(ExitValue); 6762 } else if (isQuadratic()) { 6763 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6764 // quadratic equation to solve it. To do this, we must frame our problem in 6765 // terms of figuring out when zero is crossed, instead of when 6766 // Range.getUpper() is crossed. 6767 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6768 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6769 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6770 // getNoWrapFlags(FlagNW) 6771 FlagAnyWrap); 6772 6773 // Next, solve the constructed addrec 6774 std::pair<const SCEV *,const SCEV *> Roots = 6775 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6776 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6777 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6778 if (R1) { 6779 // Pick the smallest positive root value. 6780 if (ConstantInt *CB = 6781 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6782 R1->getValue(), R2->getValue()))) { 6783 if (CB->getZExtValue() == false) 6784 std::swap(R1, R2); // R1 is the minimum root now. 6785 6786 // Make sure the root is not off by one. The returned iteration should 6787 // not be in the range, but the previous one should be. When solving 6788 // for "X*X < 5", for example, we should not return a root of 2. 6789 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6790 R1->getValue(), 6791 SE); 6792 if (Range.contains(R1Val->getValue())) { 6793 // The next iteration must be out of the range... 6794 ConstantInt *NextVal = 6795 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6796 6797 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6798 if (!Range.contains(R1Val->getValue())) 6799 return SE.getConstant(NextVal); 6800 return SE.getCouldNotCompute(); // Something strange happened 6801 } 6802 6803 // If R1 was not in the range, then it is a good return value. Make 6804 // sure that R1-1 WAS in the range though, just in case. 6805 ConstantInt *NextVal = 6806 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6807 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6808 if (Range.contains(R1Val->getValue())) 6809 return R1; 6810 return SE.getCouldNotCompute(); // Something strange happened 6811 } 6812 } 6813 } 6814 6815 return SE.getCouldNotCompute(); 6816 } 6817 6818 namespace { 6819 struct FindUndefs { 6820 bool Found; 6821 FindUndefs() : Found(false) {} 6822 6823 bool follow(const SCEV *S) { 6824 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 6825 if (isa<UndefValue>(C->getValue())) 6826 Found = true; 6827 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6828 if (isa<UndefValue>(C->getValue())) 6829 Found = true; 6830 } 6831 6832 // Keep looking if we haven't found it yet. 6833 return !Found; 6834 } 6835 bool isDone() const { 6836 // Stop recursion if we have found an undef. 6837 return Found; 6838 } 6839 }; 6840 } 6841 6842 // Return true when S contains at least an undef value. 6843 static inline bool 6844 containsUndefs(const SCEV *S) { 6845 FindUndefs F; 6846 SCEVTraversal<FindUndefs> ST(F); 6847 ST.visitAll(S); 6848 6849 return F.Found; 6850 } 6851 6852 namespace { 6853 // Collect all steps of SCEV expressions. 6854 struct SCEVCollectStrides { 6855 ScalarEvolution &SE; 6856 SmallVectorImpl<const SCEV *> &Strides; 6857 6858 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 6859 : SE(SE), Strides(S) {} 6860 6861 bool follow(const SCEV *S) { 6862 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 6863 Strides.push_back(AR->getStepRecurrence(SE)); 6864 return true; 6865 } 6866 bool isDone() const { return false; } 6867 }; 6868 6869 // Collect all SCEVUnknown and SCEVMulExpr expressions. 6870 struct SCEVCollectTerms { 6871 SmallVectorImpl<const SCEV *> &Terms; 6872 6873 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 6874 : Terms(T) {} 6875 6876 bool follow(const SCEV *S) { 6877 if (isa<SCEVUnknown>(S) || isa<SCEVConstant>(S) || isa<SCEVMulExpr>(S)) { 6878 if (!containsUndefs(S)) 6879 Terms.push_back(S); 6880 6881 // Stop recursion: once we collected a term, do not walk its operands. 6882 return false; 6883 } 6884 6885 // Keep looking. 6886 return true; 6887 } 6888 bool isDone() const { return false; } 6889 }; 6890 } 6891 6892 /// Find parametric terms in this SCEVAddRecExpr. 6893 void SCEVAddRecExpr::collectParametricTerms( 6894 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const { 6895 SmallVector<const SCEV *, 4> Strides; 6896 SCEVCollectStrides StrideCollector(SE, Strides); 6897 visitAll(this, StrideCollector); 6898 6899 DEBUG({ 6900 dbgs() << "Strides:\n"; 6901 for (const SCEV *S : Strides) 6902 dbgs() << *S << "\n"; 6903 }); 6904 6905 for (const SCEV *S : Strides) { 6906 SCEVCollectTerms TermCollector(Terms); 6907 visitAll(S, TermCollector); 6908 } 6909 6910 DEBUG({ 6911 dbgs() << "Terms:\n"; 6912 for (const SCEV *T : Terms) 6913 dbgs() << *T << "\n"; 6914 }); 6915 } 6916 6917 static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) { 6918 APInt A = C1->getValue()->getValue(); 6919 APInt B = C2->getValue()->getValue(); 6920 uint32_t ABW = A.getBitWidth(); 6921 uint32_t BBW = B.getBitWidth(); 6922 6923 if (ABW > BBW) 6924 B = B.sext(ABW); 6925 else if (ABW < BBW) 6926 A = A.sext(BBW); 6927 6928 return APIntOps::srem(A, B); 6929 } 6930 6931 static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) { 6932 APInt A = C1->getValue()->getValue(); 6933 APInt B = C2->getValue()->getValue(); 6934 uint32_t ABW = A.getBitWidth(); 6935 uint32_t BBW = B.getBitWidth(); 6936 6937 if (ABW > BBW) 6938 B = B.sext(ABW); 6939 else if (ABW < BBW) 6940 A = A.sext(BBW); 6941 6942 return APIntOps::sdiv(A, B); 6943 } 6944 6945 namespace { 6946 struct FindSCEVSize { 6947 int Size; 6948 FindSCEVSize() : Size(0) {} 6949 6950 bool follow(const SCEV *S) { 6951 ++Size; 6952 // Keep looking at all operands of S. 6953 return true; 6954 } 6955 bool isDone() const { 6956 return false; 6957 } 6958 }; 6959 } 6960 6961 // Returns the size of the SCEV S. 6962 static inline int sizeOfSCEV(const SCEV *S) { 6963 FindSCEVSize F; 6964 SCEVTraversal<FindSCEVSize> ST(F); 6965 ST.visitAll(S); 6966 return F.Size; 6967 } 6968 6969 namespace { 6970 6971 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 6972 public: 6973 // Computes the Quotient and Remainder of the division of Numerator by 6974 // Denominator. 6975 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 6976 const SCEV *Denominator, const SCEV **Quotient, 6977 const SCEV **Remainder) { 6978 assert(Numerator && Denominator && "Uninitialized SCEV"); 6979 6980 SCEVDivision D(SE, Numerator, Denominator); 6981 6982 // Check for the trivial case here to avoid having to check for it in the 6983 // rest of the code. 6984 if (Numerator == Denominator) { 6985 *Quotient = D.One; 6986 *Remainder = D.Zero; 6987 return; 6988 } 6989 6990 if (Numerator == D.Zero) { 6991 *Quotient = D.Zero; 6992 *Remainder = D.Zero; 6993 return; 6994 } 6995 6996 // Split the Denominator when it is a product. 6997 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 6998 const SCEV *Q, *R; 6999 *Quotient = Numerator; 7000 for (const SCEV *Op : T->operands()) { 7001 divide(SE, *Quotient, Op, &Q, &R); 7002 *Quotient = Q; 7003 7004 // Bail out when the Numerator is not divisible by one of the terms of 7005 // the Denominator. 7006 if (R != D.Zero) { 7007 *Quotient = D.Zero; 7008 *Remainder = Numerator; 7009 return; 7010 } 7011 } 7012 *Remainder = D.Zero; 7013 return; 7014 } 7015 7016 D.visit(Numerator); 7017 *Quotient = D.Quotient; 7018 *Remainder = D.Remainder; 7019 } 7020 7021 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator) 7022 : SE(S), Denominator(Denominator) { 7023 Zero = SE.getConstant(Denominator->getType(), 0); 7024 One = SE.getConstant(Denominator->getType(), 1); 7025 7026 // By default, we don't know how to divide Expr by Denominator. 7027 // Providing the default here simplifies the rest of the code. 7028 Quotient = Zero; 7029 Remainder = Numerator; 7030 } 7031 7032 // Except in the trivial case described above, we do not know how to divide 7033 // Expr by Denominator for the following functions with empty implementation. 7034 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 7035 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 7036 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 7037 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 7038 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 7039 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 7040 void visitUnknown(const SCEVUnknown *Numerator) {} 7041 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 7042 7043 void visitConstant(const SCEVConstant *Numerator) { 7044 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 7045 Quotient = SE.getConstant(sdiv(Numerator, D)); 7046 Remainder = SE.getConstant(srem(Numerator, D)); 7047 return; 7048 } 7049 } 7050 7051 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 7052 const SCEV *StartQ, *StartR, *StepQ, *StepR; 7053 assert(Numerator->isAffine() && "Numerator should be affine"); 7054 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 7055 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 7056 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 7057 Numerator->getNoWrapFlags()); 7058 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 7059 Numerator->getNoWrapFlags()); 7060 } 7061 7062 void visitAddExpr(const SCEVAddExpr *Numerator) { 7063 SmallVector<const SCEV *, 2> Qs, Rs; 7064 for (const SCEV *Op : Numerator->operands()) { 7065 const SCEV *Q, *R; 7066 divide(SE, Op, Denominator, &Q, &R); 7067 Qs.push_back(Q); 7068 Rs.push_back(R); 7069 } 7070 7071 if (Qs.size() == 1) { 7072 Quotient = Qs[0]; 7073 Remainder = Rs[0]; 7074 return; 7075 } 7076 7077 Quotient = SE.getAddExpr(Qs); 7078 Remainder = SE.getAddExpr(Rs); 7079 } 7080 7081 void visitMulExpr(const SCEVMulExpr *Numerator) { 7082 SmallVector<const SCEV *, 2> Qs; 7083 7084 bool FoundDenominatorTerm = false; 7085 for (const SCEV *Op : Numerator->operands()) { 7086 if (FoundDenominatorTerm) { 7087 Qs.push_back(Op); 7088 continue; 7089 } 7090 7091 // Check whether Denominator divides one of the product operands. 7092 const SCEV *Q, *R; 7093 divide(SE, Op, Denominator, &Q, &R); 7094 if (R != Zero) { 7095 Qs.push_back(Op); 7096 continue; 7097 } 7098 FoundDenominatorTerm = true; 7099 Qs.push_back(Q); 7100 } 7101 7102 if (FoundDenominatorTerm) { 7103 Remainder = Zero; 7104 if (Qs.size() == 1) 7105 Quotient = Qs[0]; 7106 else 7107 Quotient = SE.getMulExpr(Qs); 7108 return; 7109 } 7110 7111 if (!isa<SCEVUnknown>(Denominator)) { 7112 Quotient = Zero; 7113 Remainder = Numerator; 7114 return; 7115 } 7116 7117 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 7118 ValueToValueMap RewriteMap; 7119 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 7120 cast<SCEVConstant>(Zero)->getValue(); 7121 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 7122 7123 // Quotient is (Numerator - Remainder) divided by Denominator. 7124 const SCEV *Q, *R; 7125 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 7126 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) { 7127 // This SCEV does not seem to simplify: fail the division here. 7128 Quotient = Zero; 7129 Remainder = Numerator; 7130 return; 7131 } 7132 divide(SE, Diff, Denominator, &Q, &R); 7133 assert(R == Zero && 7134 "(Numerator - Remainder) should evenly divide Denominator"); 7135 Quotient = Q; 7136 } 7137 7138 private: 7139 ScalarEvolution &SE; 7140 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 7141 }; 7142 } 7143 7144 // Find the Greatest Common Divisor of A and B. 7145 static const SCEV * 7146 findGCD(ScalarEvolution &SE, const SCEV *A, const SCEV *B) { 7147 7148 if (const SCEVConstant *CA = dyn_cast<SCEVConstant>(A)) 7149 if (const SCEVConstant *CB = dyn_cast<SCEVConstant>(B)) 7150 return SE.getConstant(gcd(CA, CB)); 7151 7152 const SCEV *One = SE.getConstant(A->getType(), 1); 7153 if (isa<SCEVConstant>(A) && isa<SCEVUnknown>(B)) 7154 return One; 7155 if (isa<SCEVUnknown>(A) && isa<SCEVConstant>(B)) 7156 return One; 7157 7158 const SCEV *Q, *R; 7159 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(A)) { 7160 SmallVector<const SCEV *, 2> Qs; 7161 for (const SCEV *Op : M->operands()) 7162 Qs.push_back(findGCD(SE, Op, B)); 7163 return SE.getMulExpr(Qs); 7164 } 7165 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(B)) { 7166 SmallVector<const SCEV *, 2> Qs; 7167 for (const SCEV *Op : M->operands()) 7168 Qs.push_back(findGCD(SE, A, Op)); 7169 return SE.getMulExpr(Qs); 7170 } 7171 7172 const SCEV *Zero = SE.getConstant(A->getType(), 0); 7173 SCEVDivision::divide(SE, A, B, &Q, &R); 7174 if (R == Zero) 7175 return B; 7176 7177 SCEVDivision::divide(SE, B, A, &Q, &R); 7178 if (R == Zero) 7179 return A; 7180 7181 return One; 7182 } 7183 7184 // Find the Greatest Common Divisor of all the SCEVs in Terms. 7185 static const SCEV * 7186 findGCD(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) { 7187 assert(Terms.size() > 0 && "Terms vector is empty"); 7188 7189 const SCEV *GCD = Terms[0]; 7190 for (const SCEV *T : Terms) 7191 GCD = findGCD(SE, GCD, T); 7192 7193 return GCD; 7194 } 7195 7196 static void findArrayDimensionsRec(ScalarEvolution &SE, 7197 SmallVectorImpl<const SCEV *> &Terms, 7198 SmallVectorImpl<const SCEV *> &Sizes, 7199 const SCEV *Zero, const SCEV *One) { 7200 // The GCD of all Terms is the dimension of the innermost dimension. 7201 const SCEV *GCD = findGCD(SE, Terms); 7202 7203 // End of recursion. 7204 if (Terms.size() == 1) { 7205 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(GCD)) { 7206 SmallVector<const SCEV *, 2> Qs; 7207 for (const SCEV *Op : M->operands()) 7208 if (!isa<SCEVConstant>(Op)) 7209 Qs.push_back(Op); 7210 7211 GCD = SE.getMulExpr(Qs); 7212 } 7213 7214 Sizes.push_back(GCD); 7215 return; 7216 } 7217 7218 for (unsigned I = 0; I < Terms.size(); ++I) { 7219 // Normalize the terms before the next call to findArrayDimensionsRec. 7220 const SCEV *Q, *R; 7221 SCEVDivision::divide(SE, Terms[I], GCD, &Q, &R); 7222 assert(R == Zero && "GCD does not evenly divide one of the terms"); 7223 Terms[I] = Q; 7224 } 7225 7226 // Remove all SCEVConstants. 7227 for (unsigned I = 0; I < Terms.size();) 7228 if (isa<SCEVConstant>(Terms[I])) 7229 Terms.erase(Terms.begin() + I); 7230 else 7231 ++I; 7232 7233 if (Terms.size() > 0) 7234 findArrayDimensionsRec(SE, Terms, Sizes, Zero, One); 7235 Sizes.push_back(GCD); 7236 } 7237 7238 namespace { 7239 struct FindParameter { 7240 bool FoundParameter; 7241 FindParameter() : FoundParameter(false) {} 7242 7243 bool follow(const SCEV *S) { 7244 if (isa<SCEVUnknown>(S)) { 7245 FoundParameter = true; 7246 // Stop recursion: we found a parameter. 7247 return false; 7248 } 7249 // Keep looking. 7250 return true; 7251 } 7252 bool isDone() const { 7253 // Stop recursion if we have found a parameter. 7254 return FoundParameter; 7255 } 7256 }; 7257 } 7258 7259 // Returns true when S contains at least a SCEVUnknown parameter. 7260 static inline bool 7261 containsParameters(const SCEV *S) { 7262 FindParameter F; 7263 SCEVTraversal<FindParameter> ST(F); 7264 ST.visitAll(S); 7265 7266 return F.FoundParameter; 7267 } 7268 7269 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 7270 static inline bool 7271 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 7272 for (const SCEV *T : Terms) 7273 if (containsParameters(T)) 7274 return true; 7275 return false; 7276 } 7277 7278 // Return the number of product terms in S. 7279 static inline int numberOfTerms(const SCEV *S) { 7280 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 7281 return Expr->getNumOperands(); 7282 return 1; 7283 } 7284 7285 /// Second step of delinearization: compute the array dimensions Sizes from the 7286 /// set of Terms extracted from the memory access function of this SCEVAddRec. 7287 void SCEVAddRecExpr::findArrayDimensions( 7288 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms, 7289 SmallVectorImpl<const SCEV *> &Sizes) const { 7290 7291 if (Terms.size() < 2) 7292 return; 7293 7294 // Early return when Terms do not contain parameters: we do not delinearize 7295 // non parametric SCEVs. 7296 if (!containsParameters(Terms)) 7297 return; 7298 7299 DEBUG({ 7300 dbgs() << "Terms:\n"; 7301 for (const SCEV *T : Terms) 7302 dbgs() << *T << "\n"; 7303 }); 7304 7305 // Remove duplicates. 7306 std::sort(Terms.begin(), Terms.end()); 7307 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 7308 7309 // Put larger terms first. 7310 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 7311 return numberOfTerms(LHS) > numberOfTerms(RHS); 7312 }); 7313 7314 DEBUG({ 7315 dbgs() << "Terms after sorting:\n"; 7316 for (const SCEV *T : Terms) 7317 dbgs() << *T << "\n"; 7318 }); 7319 7320 const SCEV *Zero = SE.getConstant(this->getType(), 0); 7321 const SCEV *One = SE.getConstant(this->getType(), 1); 7322 findArrayDimensionsRec(SE, Terms, Sizes, Zero, One); 7323 7324 DEBUG({ 7325 dbgs() << "Sizes:\n"; 7326 for (const SCEV *S : Sizes) 7327 dbgs() << *S << "\n"; 7328 }); 7329 } 7330 7331 /// Third step of delinearization: compute the access functions for the 7332 /// Subscripts based on the dimensions in Sizes. 7333 const SCEV *SCEVAddRecExpr::computeAccessFunctions( 7334 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts, 7335 SmallVectorImpl<const SCEV *> &Sizes) const { 7336 // Early exit in case this SCEV is not an affine multivariate function. 7337 const SCEV *Zero = SE.getConstant(this->getType(), 0); 7338 if (!this->isAffine()) 7339 return Zero; 7340 7341 const SCEV *Res = this, *Remainder = Zero; 7342 int Last = Sizes.size() - 1; 7343 for (int i = Last; i >= 0; i--) { 7344 const SCEV *Q, *R; 7345 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R); 7346 7347 DEBUG({ 7348 dbgs() << "Res: " << *Res << "\n"; 7349 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 7350 dbgs() << "Res divided by Sizes[i]:\n"; 7351 dbgs() << "Quotient: " << *Q << "\n"; 7352 dbgs() << "Remainder: " << *R << "\n"; 7353 }); 7354 7355 Res = Q; 7356 7357 if (i == Last) { 7358 // Do not record the last subscript corresponding to the size of elements 7359 // in the array. 7360 Remainder = R; 7361 continue; 7362 } 7363 7364 // Record the access function for the current subscript. 7365 Subscripts.push_back(R); 7366 } 7367 7368 // Also push in last position the remainder of the last division: it will be 7369 // the access function of the innermost dimension. 7370 Subscripts.push_back(Res); 7371 7372 std::reverse(Subscripts.begin(), Subscripts.end()); 7373 7374 DEBUG({ 7375 dbgs() << "Subscripts:\n"; 7376 for (const SCEV *S : Subscripts) 7377 dbgs() << *S << "\n"; 7378 }); 7379 return Remainder; 7380 } 7381 7382 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 7383 /// sizes of an array access. Returns the remainder of the delinearization that 7384 /// is the offset start of the array. The SCEV->delinearize algorithm computes 7385 /// the multiples of SCEV coefficients: that is a pattern matching of sub 7386 /// expressions in the stride and base of a SCEV corresponding to the 7387 /// computation of a GCD (greatest common divisor) of base and stride. When 7388 /// SCEV->delinearize fails, it returns the SCEV unchanged. 7389 /// 7390 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 7391 /// 7392 /// void foo(long n, long m, long o, double A[n][m][o]) { 7393 /// 7394 /// for (long i = 0; i < n; i++) 7395 /// for (long j = 0; j < m; j++) 7396 /// for (long k = 0; k < o; k++) 7397 /// A[i][j][k] = 1.0; 7398 /// } 7399 /// 7400 /// the delinearization input is the following AddRec SCEV: 7401 /// 7402 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 7403 /// 7404 /// From this SCEV, we are able to say that the base offset of the access is %A 7405 /// because it appears as an offset that does not divide any of the strides in 7406 /// the loops: 7407 /// 7408 /// CHECK: Base offset: %A 7409 /// 7410 /// and then SCEV->delinearize determines the size of some of the dimensions of 7411 /// the array as these are the multiples by which the strides are happening: 7412 /// 7413 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 7414 /// 7415 /// Note that the outermost dimension remains of UnknownSize because there are 7416 /// no strides that would help identifying the size of the last dimension: when 7417 /// the array has been statically allocated, one could compute the size of that 7418 /// dimension by dividing the overall size of the array by the size of the known 7419 /// dimensions: %m * %o * 8. 7420 /// 7421 /// Finally delinearize provides the access functions for the array reference 7422 /// that does correspond to A[i][j][k] of the above C testcase: 7423 /// 7424 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 7425 /// 7426 /// The testcases are checking the output of a function pass: 7427 /// DelinearizationPass that walks through all loads and stores of a function 7428 /// asking for the SCEV of the memory access with respect to all enclosing 7429 /// loops, calling SCEV->delinearize on that and printing the results. 7430 7431 const SCEV * 7432 SCEVAddRecExpr::delinearize(ScalarEvolution &SE, 7433 SmallVectorImpl<const SCEV *> &Subscripts, 7434 SmallVectorImpl<const SCEV *> &Sizes) const { 7435 // First step: collect parametric terms. 7436 SmallVector<const SCEV *, 4> Terms; 7437 collectParametricTerms(SE, Terms); 7438 7439 // Second step: find subscript sizes. 7440 findArrayDimensions(SE, Terms, Sizes); 7441 7442 // Third step: compute the access functions for each subscript. 7443 const SCEV *Remainder = computeAccessFunctions(SE, Subscripts, Sizes); 7444 7445 DEBUG({ 7446 dbgs() << "succeeded to delinearize " << *this << "\n"; 7447 dbgs() << "ArrayDecl[UnknownSize]"; 7448 for (const SCEV *S : Sizes) 7449 dbgs() << "[" << *S << "]"; 7450 7451 dbgs() << "ArrayRef"; 7452 for (const SCEV *S : Sizes) 7453 dbgs() << "[" << *S << "]"; 7454 dbgs() << "\n"; 7455 }); 7456 7457 return Remainder; 7458 } 7459 7460 //===----------------------------------------------------------------------===// 7461 // SCEVCallbackVH Class Implementation 7462 //===----------------------------------------------------------------------===// 7463 7464 void ScalarEvolution::SCEVCallbackVH::deleted() { 7465 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7466 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 7467 SE->ConstantEvolutionLoopExitValue.erase(PN); 7468 SE->ValueExprMap.erase(getValPtr()); 7469 // this now dangles! 7470 } 7471 7472 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 7473 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7474 7475 // Forget all the expressions associated with users of the old value, 7476 // so that future queries will recompute the expressions using the new 7477 // value. 7478 Value *Old = getValPtr(); 7479 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 7480 SmallPtrSet<User *, 8> Visited; 7481 while (!Worklist.empty()) { 7482 User *U = Worklist.pop_back_val(); 7483 // Deleting the Old value will cause this to dangle. Postpone 7484 // that until everything else is done. 7485 if (U == Old) 7486 continue; 7487 if (!Visited.insert(U)) 7488 continue; 7489 if (PHINode *PN = dyn_cast<PHINode>(U)) 7490 SE->ConstantEvolutionLoopExitValue.erase(PN); 7491 SE->ValueExprMap.erase(U); 7492 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 7493 } 7494 // Delete the Old value. 7495 if (PHINode *PN = dyn_cast<PHINode>(Old)) 7496 SE->ConstantEvolutionLoopExitValue.erase(PN); 7497 SE->ValueExprMap.erase(Old); 7498 // this now dangles! 7499 } 7500 7501 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 7502 : CallbackVH(V), SE(se) {} 7503 7504 //===----------------------------------------------------------------------===// 7505 // ScalarEvolution Class Implementation 7506 //===----------------------------------------------------------------------===// 7507 7508 ScalarEvolution::ScalarEvolution() 7509 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), 7510 BlockDispositions(64), FirstUnknown(nullptr) { 7511 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 7512 } 7513 7514 bool ScalarEvolution::runOnFunction(Function &F) { 7515 this->F = &F; 7516 LI = &getAnalysis<LoopInfo>(); 7517 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 7518 DL = DLP ? &DLP->getDataLayout() : nullptr; 7519 TLI = &getAnalysis<TargetLibraryInfo>(); 7520 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7521 return false; 7522 } 7523 7524 void ScalarEvolution::releaseMemory() { 7525 // Iterate through all the SCEVUnknown instances and call their 7526 // destructors, so that they release their references to their values. 7527 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 7528 U->~SCEVUnknown(); 7529 FirstUnknown = nullptr; 7530 7531 ValueExprMap.clear(); 7532 7533 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 7534 // that a loop had multiple computable exits. 7535 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7536 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 7537 I != E; ++I) { 7538 I->second.clear(); 7539 } 7540 7541 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 7542 7543 BackedgeTakenCounts.clear(); 7544 ConstantEvolutionLoopExitValue.clear(); 7545 ValuesAtScopes.clear(); 7546 LoopDispositions.clear(); 7547 BlockDispositions.clear(); 7548 UnsignedRanges.clear(); 7549 SignedRanges.clear(); 7550 UniqueSCEVs.clear(); 7551 SCEVAllocator.Reset(); 7552 } 7553 7554 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 7555 AU.setPreservesAll(); 7556 AU.addRequiredTransitive<LoopInfo>(); 7557 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 7558 AU.addRequired<TargetLibraryInfo>(); 7559 } 7560 7561 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 7562 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 7563 } 7564 7565 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 7566 const Loop *L) { 7567 // Print all inner loops first 7568 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 7569 PrintLoopInfo(OS, SE, *I); 7570 7571 OS << "Loop "; 7572 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 7573 OS << ": "; 7574 7575 SmallVector<BasicBlock *, 8> ExitBlocks; 7576 L->getExitBlocks(ExitBlocks); 7577 if (ExitBlocks.size() != 1) 7578 OS << "<multiple exits> "; 7579 7580 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 7581 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 7582 } else { 7583 OS << "Unpredictable backedge-taken count. "; 7584 } 7585 7586 OS << "\n" 7587 "Loop "; 7588 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 7589 OS << ": "; 7590 7591 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 7592 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 7593 } else { 7594 OS << "Unpredictable max backedge-taken count. "; 7595 } 7596 7597 OS << "\n"; 7598 } 7599 7600 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 7601 // ScalarEvolution's implementation of the print method is to print 7602 // out SCEV values of all instructions that are interesting. Doing 7603 // this potentially causes it to create new SCEV objects though, 7604 // which technically conflicts with the const qualifier. This isn't 7605 // observable from outside the class though, so casting away the 7606 // const isn't dangerous. 7607 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7608 7609 OS << "Classifying expressions for: "; 7610 F->printAsOperand(OS, /*PrintType=*/false); 7611 OS << "\n"; 7612 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 7613 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 7614 OS << *I << '\n'; 7615 OS << " --> "; 7616 const SCEV *SV = SE.getSCEV(&*I); 7617 SV->print(OS); 7618 7619 const Loop *L = LI->getLoopFor((*I).getParent()); 7620 7621 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 7622 if (AtUse != SV) { 7623 OS << " --> "; 7624 AtUse->print(OS); 7625 } 7626 7627 if (L) { 7628 OS << "\t\t" "Exits: "; 7629 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 7630 if (!SE.isLoopInvariant(ExitValue, L)) { 7631 OS << "<<Unknown>>"; 7632 } else { 7633 OS << *ExitValue; 7634 } 7635 } 7636 7637 OS << "\n"; 7638 } 7639 7640 OS << "Determining loop execution counts for: "; 7641 F->printAsOperand(OS, /*PrintType=*/false); 7642 OS << "\n"; 7643 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 7644 PrintLoopInfo(OS, &SE, *I); 7645 } 7646 7647 ScalarEvolution::LoopDisposition 7648 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 7649 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S]; 7650 for (unsigned u = 0; u < Values.size(); u++) { 7651 if (Values[u].first == L) 7652 return Values[u].second; 7653 } 7654 Values.push_back(std::make_pair(L, LoopVariant)); 7655 LoopDisposition D = computeLoopDisposition(S, L); 7656 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S]; 7657 for (unsigned u = Values2.size(); u > 0; u--) { 7658 if (Values2[u - 1].first == L) { 7659 Values2[u - 1].second = D; 7660 break; 7661 } 7662 } 7663 return D; 7664 } 7665 7666 ScalarEvolution::LoopDisposition 7667 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 7668 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 7669 case scConstant: 7670 return LoopInvariant; 7671 case scTruncate: 7672 case scZeroExtend: 7673 case scSignExtend: 7674 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 7675 case scAddRecExpr: { 7676 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 7677 7678 // If L is the addrec's loop, it's computable. 7679 if (AR->getLoop() == L) 7680 return LoopComputable; 7681 7682 // Add recurrences are never invariant in the function-body (null loop). 7683 if (!L) 7684 return LoopVariant; 7685 7686 // This recurrence is variant w.r.t. L if L contains AR's loop. 7687 if (L->contains(AR->getLoop())) 7688 return LoopVariant; 7689 7690 // This recurrence is invariant w.r.t. L if AR's loop contains L. 7691 if (AR->getLoop()->contains(L)) 7692 return LoopInvariant; 7693 7694 // This recurrence is variant w.r.t. L if any of its operands 7695 // are variant. 7696 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 7697 I != E; ++I) 7698 if (!isLoopInvariant(*I, L)) 7699 return LoopVariant; 7700 7701 // Otherwise it's loop-invariant. 7702 return LoopInvariant; 7703 } 7704 case scAddExpr: 7705 case scMulExpr: 7706 case scUMaxExpr: 7707 case scSMaxExpr: { 7708 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 7709 bool HasVarying = false; 7710 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 7711 I != E; ++I) { 7712 LoopDisposition D = getLoopDisposition(*I, L); 7713 if (D == LoopVariant) 7714 return LoopVariant; 7715 if (D == LoopComputable) 7716 HasVarying = true; 7717 } 7718 return HasVarying ? LoopComputable : LoopInvariant; 7719 } 7720 case scUDivExpr: { 7721 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 7722 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 7723 if (LD == LoopVariant) 7724 return LoopVariant; 7725 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 7726 if (RD == LoopVariant) 7727 return LoopVariant; 7728 return (LD == LoopInvariant && RD == LoopInvariant) ? 7729 LoopInvariant : LoopComputable; 7730 } 7731 case scUnknown: 7732 // All non-instruction values are loop invariant. All instructions are loop 7733 // invariant if they are not contained in the specified loop. 7734 // Instructions are never considered invariant in the function body 7735 // (null loop) because they are defined within the "loop". 7736 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 7737 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 7738 return LoopInvariant; 7739 case scCouldNotCompute: 7740 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7741 } 7742 llvm_unreachable("Unknown SCEV kind!"); 7743 } 7744 7745 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 7746 return getLoopDisposition(S, L) == LoopInvariant; 7747 } 7748 7749 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 7750 return getLoopDisposition(S, L) == LoopComputable; 7751 } 7752 7753 ScalarEvolution::BlockDisposition 7754 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 7755 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S]; 7756 for (unsigned u = 0; u < Values.size(); u++) { 7757 if (Values[u].first == BB) 7758 return Values[u].second; 7759 } 7760 Values.push_back(std::make_pair(BB, DoesNotDominateBlock)); 7761 BlockDisposition D = computeBlockDisposition(S, BB); 7762 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S]; 7763 for (unsigned u = Values2.size(); u > 0; u--) { 7764 if (Values2[u - 1].first == BB) { 7765 Values2[u - 1].second = D; 7766 break; 7767 } 7768 } 7769 return D; 7770 } 7771 7772 ScalarEvolution::BlockDisposition 7773 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 7774 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 7775 case scConstant: 7776 return ProperlyDominatesBlock; 7777 case scTruncate: 7778 case scZeroExtend: 7779 case scSignExtend: 7780 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 7781 case scAddRecExpr: { 7782 // This uses a "dominates" query instead of "properly dominates" query 7783 // to test for proper dominance too, because the instruction which 7784 // produces the addrec's value is a PHI, and a PHI effectively properly 7785 // dominates its entire containing block. 7786 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 7787 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 7788 return DoesNotDominateBlock; 7789 } 7790 // FALL THROUGH into SCEVNAryExpr handling. 7791 case scAddExpr: 7792 case scMulExpr: 7793 case scUMaxExpr: 7794 case scSMaxExpr: { 7795 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 7796 bool Proper = true; 7797 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 7798 I != E; ++I) { 7799 BlockDisposition D = getBlockDisposition(*I, BB); 7800 if (D == DoesNotDominateBlock) 7801 return DoesNotDominateBlock; 7802 if (D == DominatesBlock) 7803 Proper = false; 7804 } 7805 return Proper ? ProperlyDominatesBlock : DominatesBlock; 7806 } 7807 case scUDivExpr: { 7808 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 7809 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 7810 BlockDisposition LD = getBlockDisposition(LHS, BB); 7811 if (LD == DoesNotDominateBlock) 7812 return DoesNotDominateBlock; 7813 BlockDisposition RD = getBlockDisposition(RHS, BB); 7814 if (RD == DoesNotDominateBlock) 7815 return DoesNotDominateBlock; 7816 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 7817 ProperlyDominatesBlock : DominatesBlock; 7818 } 7819 case scUnknown: 7820 if (Instruction *I = 7821 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 7822 if (I->getParent() == BB) 7823 return DominatesBlock; 7824 if (DT->properlyDominates(I->getParent(), BB)) 7825 return ProperlyDominatesBlock; 7826 return DoesNotDominateBlock; 7827 } 7828 return ProperlyDominatesBlock; 7829 case scCouldNotCompute: 7830 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7831 } 7832 llvm_unreachable("Unknown SCEV kind!"); 7833 } 7834 7835 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 7836 return getBlockDisposition(S, BB) >= DominatesBlock; 7837 } 7838 7839 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 7840 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 7841 } 7842 7843 namespace { 7844 // Search for a SCEV expression node within an expression tree. 7845 // Implements SCEVTraversal::Visitor. 7846 struct SCEVSearch { 7847 const SCEV *Node; 7848 bool IsFound; 7849 7850 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 7851 7852 bool follow(const SCEV *S) { 7853 IsFound |= (S == Node); 7854 return !IsFound; 7855 } 7856 bool isDone() const { return IsFound; } 7857 }; 7858 } 7859 7860 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 7861 SCEVSearch Search(Op); 7862 visitAll(S, Search); 7863 return Search.IsFound; 7864 } 7865 7866 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 7867 ValuesAtScopes.erase(S); 7868 LoopDispositions.erase(S); 7869 BlockDispositions.erase(S); 7870 UnsignedRanges.erase(S); 7871 SignedRanges.erase(S); 7872 7873 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7874 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 7875 BackedgeTakenInfo &BEInfo = I->second; 7876 if (BEInfo.hasOperand(S, this)) { 7877 BEInfo.clear(); 7878 BackedgeTakenCounts.erase(I++); 7879 } 7880 else 7881 ++I; 7882 } 7883 } 7884 7885 typedef DenseMap<const Loop *, std::string> VerifyMap; 7886 7887 /// replaceSubString - Replaces all occurrences of From in Str with To. 7888 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 7889 size_t Pos = 0; 7890 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 7891 Str.replace(Pos, From.size(), To.data(), To.size()); 7892 Pos += To.size(); 7893 } 7894 } 7895 7896 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 7897 static void 7898 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 7899 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 7900 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 7901 7902 std::string &S = Map[L]; 7903 if (S.empty()) { 7904 raw_string_ostream OS(S); 7905 SE.getBackedgeTakenCount(L)->print(OS); 7906 7907 // false and 0 are semantically equivalent. This can happen in dead loops. 7908 replaceSubString(OS.str(), "false", "0"); 7909 // Remove wrap flags, their use in SCEV is highly fragile. 7910 // FIXME: Remove this when SCEV gets smarter about them. 7911 replaceSubString(OS.str(), "<nw>", ""); 7912 replaceSubString(OS.str(), "<nsw>", ""); 7913 replaceSubString(OS.str(), "<nuw>", ""); 7914 } 7915 } 7916 } 7917 7918 void ScalarEvolution::verifyAnalysis() const { 7919 if (!VerifySCEV) 7920 return; 7921 7922 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7923 7924 // Gather stringified backedge taken counts for all loops using SCEV's caches. 7925 // FIXME: It would be much better to store actual values instead of strings, 7926 // but SCEV pointers will change if we drop the caches. 7927 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 7928 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 7929 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 7930 7931 // Gather stringified backedge taken counts for all loops without using 7932 // SCEV's caches. 7933 SE.releaseMemory(); 7934 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 7935 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 7936 7937 // Now compare whether they're the same with and without caches. This allows 7938 // verifying that no pass changed the cache. 7939 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 7940 "New loops suddenly appeared!"); 7941 7942 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 7943 OldE = BackedgeDumpsOld.end(), 7944 NewI = BackedgeDumpsNew.begin(); 7945 OldI != OldE; ++OldI, ++NewI) { 7946 assert(OldI->first == NewI->first && "Loop order changed!"); 7947 7948 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 7949 // changes. 7950 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 7951 // means that a pass is buggy or SCEV has to learn a new pattern but is 7952 // usually not harmful. 7953 if (OldI->second != NewI->second && 7954 OldI->second.find("undef") == std::string::npos && 7955 NewI->second.find("undef") == std::string::npos && 7956 OldI->second != "***COULDNOTCOMPUTE***" && 7957 NewI->second != "***COULDNOTCOMPUTE***") { 7958 dbgs() << "SCEVValidator: SCEV for loop '" 7959 << OldI->first->getHeader()->getName() 7960 << "' changed from '" << OldI->second 7961 << "' to '" << NewI->second << "'!\n"; 7962 std::abort(); 7963 } 7964 } 7965 7966 // TODO: Verify more things. 7967 } 7968