1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include <algorithm> 92 using namespace llvm; 93 94 #define DEBUG_TYPE "scalar-evolution" 95 96 STATISTIC(NumArrayLenItCounts, 97 "Number of trip counts computed with array length"); 98 STATISTIC(NumTripCountsComputed, 99 "Number of loops with predictable loop counts"); 100 STATISTIC(NumTripCountsNotComputed, 101 "Number of loops without predictable loop counts"); 102 STATISTIC(NumBruteForceTripCountsComputed, 103 "Number of loops with trip counts computed by force"); 104 105 static cl::opt<unsigned> 106 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 107 cl::desc("Maximum number of iterations SCEV will " 108 "symbolically execute a constant " 109 "derived loop"), 110 cl::init(100)); 111 112 // FIXME: Enable this with XDEBUG when the test suite is clean. 113 static cl::opt<bool> 114 VerifySCEV("verify-scev", 115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 116 117 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 118 "Scalar Evolution Analysis", false, true) 119 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 120 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 122 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 123 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 124 "Scalar Evolution Analysis", false, true) 125 char ScalarEvolution::ID = 0; 126 127 //===----------------------------------------------------------------------===// 128 // SCEV class definitions 129 //===----------------------------------------------------------------------===// 130 131 //===----------------------------------------------------------------------===// 132 // Implementation of the SCEV class. 133 // 134 135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 136 void SCEV::dump() const { 137 print(dbgs()); 138 dbgs() << '\n'; 139 } 140 #endif 141 142 void SCEV::print(raw_ostream &OS) const { 143 switch (static_cast<SCEVTypes>(getSCEVType())) { 144 case scConstant: 145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 146 return; 147 case scTruncate: { 148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 149 const SCEV *Op = Trunc->getOperand(); 150 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 151 << *Trunc->getType() << ")"; 152 return; 153 } 154 case scZeroExtend: { 155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 156 const SCEV *Op = ZExt->getOperand(); 157 OS << "(zext " << *Op->getType() << " " << *Op << " to " 158 << *ZExt->getType() << ")"; 159 return; 160 } 161 case scSignExtend: { 162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 163 const SCEV *Op = SExt->getOperand(); 164 OS << "(sext " << *Op->getType() << " " << *Op << " to " 165 << *SExt->getType() << ")"; 166 return; 167 } 168 case scAddRecExpr: { 169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 170 OS << "{" << *AR->getOperand(0); 171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 172 OS << ",+," << *AR->getOperand(i); 173 OS << "}<"; 174 if (AR->getNoWrapFlags(FlagNUW)) 175 OS << "nuw><"; 176 if (AR->getNoWrapFlags(FlagNSW)) 177 OS << "nsw><"; 178 if (AR->getNoWrapFlags(FlagNW) && 179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 180 OS << "nw><"; 181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 182 OS << ">"; 183 return; 184 } 185 case scAddExpr: 186 case scMulExpr: 187 case scUMaxExpr: 188 case scSMaxExpr: { 189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 190 const char *OpStr = nullptr; 191 switch (NAry->getSCEVType()) { 192 case scAddExpr: OpStr = " + "; break; 193 case scMulExpr: OpStr = " * "; break; 194 case scUMaxExpr: OpStr = " umax "; break; 195 case scSMaxExpr: OpStr = " smax "; break; 196 } 197 OS << "("; 198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 199 I != E; ++I) { 200 OS << **I; 201 if (std::next(I) != E) 202 OS << OpStr; 203 } 204 OS << ")"; 205 switch (NAry->getSCEVType()) { 206 case scAddExpr: 207 case scMulExpr: 208 if (NAry->getNoWrapFlags(FlagNUW)) 209 OS << "<nuw>"; 210 if (NAry->getNoWrapFlags(FlagNSW)) 211 OS << "<nsw>"; 212 } 213 return; 214 } 215 case scUDivExpr: { 216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 218 return; 219 } 220 case scUnknown: { 221 const SCEVUnknown *U = cast<SCEVUnknown>(this); 222 Type *AllocTy; 223 if (U->isSizeOf(AllocTy)) { 224 OS << "sizeof(" << *AllocTy << ")"; 225 return; 226 } 227 if (U->isAlignOf(AllocTy)) { 228 OS << "alignof(" << *AllocTy << ")"; 229 return; 230 } 231 232 Type *CTy; 233 Constant *FieldNo; 234 if (U->isOffsetOf(CTy, FieldNo)) { 235 OS << "offsetof(" << *CTy << ", "; 236 FieldNo->printAsOperand(OS, false); 237 OS << ")"; 238 return; 239 } 240 241 // Otherwise just print it normally. 242 U->getValue()->printAsOperand(OS, false); 243 return; 244 } 245 case scCouldNotCompute: 246 OS << "***COULDNOTCOMPUTE***"; 247 return; 248 } 249 llvm_unreachable("Unknown SCEV kind!"); 250 } 251 252 Type *SCEV::getType() const { 253 switch (static_cast<SCEVTypes>(getSCEVType())) { 254 case scConstant: 255 return cast<SCEVConstant>(this)->getType(); 256 case scTruncate: 257 case scZeroExtend: 258 case scSignExtend: 259 return cast<SCEVCastExpr>(this)->getType(); 260 case scAddRecExpr: 261 case scMulExpr: 262 case scUMaxExpr: 263 case scSMaxExpr: 264 return cast<SCEVNAryExpr>(this)->getType(); 265 case scAddExpr: 266 return cast<SCEVAddExpr>(this)->getType(); 267 case scUDivExpr: 268 return cast<SCEVUDivExpr>(this)->getType(); 269 case scUnknown: 270 return cast<SCEVUnknown>(this)->getType(); 271 case scCouldNotCompute: 272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 273 } 274 llvm_unreachable("Unknown SCEV kind!"); 275 } 276 277 bool SCEV::isZero() const { 278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 279 return SC->getValue()->isZero(); 280 return false; 281 } 282 283 bool SCEV::isOne() const { 284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 285 return SC->getValue()->isOne(); 286 return false; 287 } 288 289 bool SCEV::isAllOnesValue() const { 290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 291 return SC->getValue()->isAllOnesValue(); 292 return false; 293 } 294 295 /// isNonConstantNegative - Return true if the specified scev is negated, but 296 /// not a constant. 297 bool SCEV::isNonConstantNegative() const { 298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 299 if (!Mul) return false; 300 301 // If there is a constant factor, it will be first. 302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 303 if (!SC) return false; 304 305 // Return true if the value is negative, this matches things like (-42 * V). 306 return SC->getValue()->getValue().isNegative(); 307 } 308 309 SCEVCouldNotCompute::SCEVCouldNotCompute() : 310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 311 312 bool SCEVCouldNotCompute::classof(const SCEV *S) { 313 return S->getSCEVType() == scCouldNotCompute; 314 } 315 316 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 317 FoldingSetNodeID ID; 318 ID.AddInteger(scConstant); 319 ID.AddPointer(V); 320 void *IP = nullptr; 321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 323 UniqueSCEVs.InsertNode(S, IP); 324 return S; 325 } 326 327 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 328 return getConstant(ConstantInt::get(getContext(), Val)); 329 } 330 331 const SCEV * 332 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 334 return getConstant(ConstantInt::get(ITy, V, isSigned)); 335 } 336 337 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 338 unsigned SCEVTy, const SCEV *op, Type *ty) 339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 340 341 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 342 const SCEV *op, Type *ty) 343 : SCEVCastExpr(ID, scTruncate, op, ty) { 344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 345 (Ty->isIntegerTy() || Ty->isPointerTy()) && 346 "Cannot truncate non-integer value!"); 347 } 348 349 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 350 const SCEV *op, Type *ty) 351 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 353 (Ty->isIntegerTy() || Ty->isPointerTy()) && 354 "Cannot zero extend non-integer value!"); 355 } 356 357 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 358 const SCEV *op, Type *ty) 359 : SCEVCastExpr(ID, scSignExtend, op, ty) { 360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 361 (Ty->isIntegerTy() || Ty->isPointerTy()) && 362 "Cannot sign extend non-integer value!"); 363 } 364 365 void SCEVUnknown::deleted() { 366 // Clear this SCEVUnknown from various maps. 367 SE->forgetMemoizedResults(this); 368 369 // Remove this SCEVUnknown from the uniquing map. 370 SE->UniqueSCEVs.RemoveNode(this); 371 372 // Release the value. 373 setValPtr(nullptr); 374 } 375 376 void SCEVUnknown::allUsesReplacedWith(Value *New) { 377 // Clear this SCEVUnknown from various maps. 378 SE->forgetMemoizedResults(this); 379 380 // Remove this SCEVUnknown from the uniquing map. 381 SE->UniqueSCEVs.RemoveNode(this); 382 383 // Update this SCEVUnknown to point to the new value. This is needed 384 // because there may still be outstanding SCEVs which still point to 385 // this SCEVUnknown. 386 setValPtr(New); 387 } 388 389 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 391 if (VCE->getOpcode() == Instruction::PtrToInt) 392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 393 if (CE->getOpcode() == Instruction::GetElementPtr && 394 CE->getOperand(0)->isNullValue() && 395 CE->getNumOperands() == 2) 396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 397 if (CI->isOne()) { 398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 399 ->getElementType(); 400 return true; 401 } 402 403 return false; 404 } 405 406 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 408 if (VCE->getOpcode() == Instruction::PtrToInt) 409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 410 if (CE->getOpcode() == Instruction::GetElementPtr && 411 CE->getOperand(0)->isNullValue()) { 412 Type *Ty = 413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 414 if (StructType *STy = dyn_cast<StructType>(Ty)) 415 if (!STy->isPacked() && 416 CE->getNumOperands() == 3 && 417 CE->getOperand(1)->isNullValue()) { 418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 419 if (CI->isOne() && 420 STy->getNumElements() == 2 && 421 STy->getElementType(0)->isIntegerTy(1)) { 422 AllocTy = STy->getElementType(1); 423 return true; 424 } 425 } 426 } 427 428 return false; 429 } 430 431 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 433 if (VCE->getOpcode() == Instruction::PtrToInt) 434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 435 if (CE->getOpcode() == Instruction::GetElementPtr && 436 CE->getNumOperands() == 3 && 437 CE->getOperand(0)->isNullValue() && 438 CE->getOperand(1)->isNullValue()) { 439 Type *Ty = 440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 441 // Ignore vector types here so that ScalarEvolutionExpander doesn't 442 // emit getelementptrs that index into vectors. 443 if (Ty->isStructTy() || Ty->isArrayTy()) { 444 CTy = Ty; 445 FieldNo = CE->getOperand(2); 446 return true; 447 } 448 } 449 450 return false; 451 } 452 453 //===----------------------------------------------------------------------===// 454 // SCEV Utilities 455 //===----------------------------------------------------------------------===// 456 457 namespace { 458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 459 /// than the complexity of the RHS. This comparator is used to canonicalize 460 /// expressions. 461 class SCEVComplexityCompare { 462 const LoopInfo *const LI; 463 public: 464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 465 466 // Return true or false if LHS is less than, or at least RHS, respectively. 467 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 468 return compare(LHS, RHS) < 0; 469 } 470 471 // Return negative, zero, or positive, if LHS is less than, equal to, or 472 // greater than RHS, respectively. A three-way result allows recursive 473 // comparisons to be more efficient. 474 int compare(const SCEV *LHS, const SCEV *RHS) const { 475 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 476 if (LHS == RHS) 477 return 0; 478 479 // Primarily, sort the SCEVs by their getSCEVType(). 480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 481 if (LType != RType) 482 return (int)LType - (int)RType; 483 484 // Aside from the getSCEVType() ordering, the particular ordering 485 // isn't very important except that it's beneficial to be consistent, 486 // so that (a + b) and (b + a) don't end up as different expressions. 487 switch (static_cast<SCEVTypes>(LType)) { 488 case scUnknown: { 489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 491 492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 493 // not as complete as it could be. 494 const Value *LV = LU->getValue(), *RV = RU->getValue(); 495 496 // Order pointer values after integer values. This helps SCEVExpander 497 // form GEPs. 498 bool LIsPointer = LV->getType()->isPointerTy(), 499 RIsPointer = RV->getType()->isPointerTy(); 500 if (LIsPointer != RIsPointer) 501 return (int)LIsPointer - (int)RIsPointer; 502 503 // Compare getValueID values. 504 unsigned LID = LV->getValueID(), 505 RID = RV->getValueID(); 506 if (LID != RID) 507 return (int)LID - (int)RID; 508 509 // Sort arguments by their position. 510 if (const Argument *LA = dyn_cast<Argument>(LV)) { 511 const Argument *RA = cast<Argument>(RV); 512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 513 return (int)LArgNo - (int)RArgNo; 514 } 515 516 // For instructions, compare their loop depth, and their operand 517 // count. This is pretty loose. 518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 519 const Instruction *RInst = cast<Instruction>(RV); 520 521 // Compare loop depths. 522 const BasicBlock *LParent = LInst->getParent(), 523 *RParent = RInst->getParent(); 524 if (LParent != RParent) { 525 unsigned LDepth = LI->getLoopDepth(LParent), 526 RDepth = LI->getLoopDepth(RParent); 527 if (LDepth != RDepth) 528 return (int)LDepth - (int)RDepth; 529 } 530 531 // Compare the number of operands. 532 unsigned LNumOps = LInst->getNumOperands(), 533 RNumOps = RInst->getNumOperands(); 534 return (int)LNumOps - (int)RNumOps; 535 } 536 537 return 0; 538 } 539 540 case scConstant: { 541 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 542 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 543 544 // Compare constant values. 545 const APInt &LA = LC->getValue()->getValue(); 546 const APInt &RA = RC->getValue()->getValue(); 547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 548 if (LBitWidth != RBitWidth) 549 return (int)LBitWidth - (int)RBitWidth; 550 return LA.ult(RA) ? -1 : 1; 551 } 552 553 case scAddRecExpr: { 554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 556 557 // Compare addrec loop depths. 558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 559 if (LLoop != RLoop) { 560 unsigned LDepth = LLoop->getLoopDepth(), 561 RDepth = RLoop->getLoopDepth(); 562 if (LDepth != RDepth) 563 return (int)LDepth - (int)RDepth; 564 } 565 566 // Addrec complexity grows with operand count. 567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 568 if (LNumOps != RNumOps) 569 return (int)LNumOps - (int)RNumOps; 570 571 // Lexicographically compare. 572 for (unsigned i = 0; i != LNumOps; ++i) { 573 long X = compare(LA->getOperand(i), RA->getOperand(i)); 574 if (X != 0) 575 return X; 576 } 577 578 return 0; 579 } 580 581 case scAddExpr: 582 case scMulExpr: 583 case scSMaxExpr: 584 case scUMaxExpr: { 585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 587 588 // Lexicographically compare n-ary expressions. 589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 590 if (LNumOps != RNumOps) 591 return (int)LNumOps - (int)RNumOps; 592 593 for (unsigned i = 0; i != LNumOps; ++i) { 594 if (i >= RNumOps) 595 return 1; 596 long X = compare(LC->getOperand(i), RC->getOperand(i)); 597 if (X != 0) 598 return X; 599 } 600 return (int)LNumOps - (int)RNumOps; 601 } 602 603 case scUDivExpr: { 604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 606 607 // Lexicographically compare udiv expressions. 608 long X = compare(LC->getLHS(), RC->getLHS()); 609 if (X != 0) 610 return X; 611 return compare(LC->getRHS(), RC->getRHS()); 612 } 613 614 case scTruncate: 615 case scZeroExtend: 616 case scSignExtend: { 617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 619 620 // Compare cast expressions by operand. 621 return compare(LC->getOperand(), RC->getOperand()); 622 } 623 624 case scCouldNotCompute: 625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 626 } 627 llvm_unreachable("Unknown SCEV kind!"); 628 } 629 }; 630 } 631 632 /// GroupByComplexity - Given a list of SCEV objects, order them by their 633 /// complexity, and group objects of the same complexity together by value. 634 /// When this routine is finished, we know that any duplicates in the vector are 635 /// consecutive and that complexity is monotonically increasing. 636 /// 637 /// Note that we go take special precautions to ensure that we get deterministic 638 /// results from this routine. In other words, we don't want the results of 639 /// this to depend on where the addresses of various SCEV objects happened to 640 /// land in memory. 641 /// 642 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 643 LoopInfo *LI) { 644 if (Ops.size() < 2) return; // Noop 645 if (Ops.size() == 2) { 646 // This is the common case, which also happens to be trivially simple. 647 // Special case it. 648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 649 if (SCEVComplexityCompare(LI)(RHS, LHS)) 650 std::swap(LHS, RHS); 651 return; 652 } 653 654 // Do the rough sort by complexity. 655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 656 657 // Now that we are sorted by complexity, group elements of the same 658 // complexity. Note that this is, at worst, N^2, but the vector is likely to 659 // be extremely short in practice. Note that we take this approach because we 660 // do not want to depend on the addresses of the objects we are grouping. 661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 662 const SCEV *S = Ops[i]; 663 unsigned Complexity = S->getSCEVType(); 664 665 // If there are any objects of the same complexity and same value as this 666 // one, group them. 667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 668 if (Ops[j] == S) { // Found a duplicate. 669 // Move it to immediately after i'th element. 670 std::swap(Ops[i+1], Ops[j]); 671 ++i; // no need to rescan it. 672 if (i == e-2) return; // Done! 673 } 674 } 675 } 676 } 677 678 namespace { 679 struct FindSCEVSize { 680 int Size; 681 FindSCEVSize() : Size(0) {} 682 683 bool follow(const SCEV *S) { 684 ++Size; 685 // Keep looking at all operands of S. 686 return true; 687 } 688 bool isDone() const { 689 return false; 690 } 691 }; 692 } 693 694 // Returns the size of the SCEV S. 695 static inline int sizeOfSCEV(const SCEV *S) { 696 FindSCEVSize F; 697 SCEVTraversal<FindSCEVSize> ST(F); 698 ST.visitAll(S); 699 return F.Size; 700 } 701 702 namespace { 703 704 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 705 public: 706 // Computes the Quotient and Remainder of the division of Numerator by 707 // Denominator. 708 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 709 const SCEV *Denominator, const SCEV **Quotient, 710 const SCEV **Remainder) { 711 assert(Numerator && Denominator && "Uninitialized SCEV"); 712 713 SCEVDivision D(SE, Numerator, Denominator); 714 715 // Check for the trivial case here to avoid having to check for it in the 716 // rest of the code. 717 if (Numerator == Denominator) { 718 *Quotient = D.One; 719 *Remainder = D.Zero; 720 return; 721 } 722 723 if (Numerator->isZero()) { 724 *Quotient = D.Zero; 725 *Remainder = D.Zero; 726 return; 727 } 728 729 // A simple case when N/1. The quotient is N. 730 if (Denominator->isOne()) { 731 *Quotient = Numerator; 732 *Remainder = D.Zero; 733 return; 734 } 735 736 // Split the Denominator when it is a product. 737 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 738 const SCEV *Q, *R; 739 *Quotient = Numerator; 740 for (const SCEV *Op : T->operands()) { 741 divide(SE, *Quotient, Op, &Q, &R); 742 *Quotient = Q; 743 744 // Bail out when the Numerator is not divisible by one of the terms of 745 // the Denominator. 746 if (!R->isZero()) { 747 *Quotient = D.Zero; 748 *Remainder = Numerator; 749 return; 750 } 751 } 752 *Remainder = D.Zero; 753 return; 754 } 755 756 D.visit(Numerator); 757 *Quotient = D.Quotient; 758 *Remainder = D.Remainder; 759 } 760 761 // Except in the trivial case described above, we do not know how to divide 762 // Expr by Denominator for the following functions with empty implementation. 763 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 764 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 765 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 766 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 767 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 768 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 769 void visitUnknown(const SCEVUnknown *Numerator) {} 770 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 771 772 void visitConstant(const SCEVConstant *Numerator) { 773 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 774 APInt NumeratorVal = Numerator->getValue()->getValue(); 775 APInt DenominatorVal = D->getValue()->getValue(); 776 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 777 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 778 779 if (NumeratorBW > DenominatorBW) 780 DenominatorVal = DenominatorVal.sext(NumeratorBW); 781 else if (NumeratorBW < DenominatorBW) 782 NumeratorVal = NumeratorVal.sext(DenominatorBW); 783 784 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 785 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 786 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 787 Quotient = SE.getConstant(QuotientVal); 788 Remainder = SE.getConstant(RemainderVal); 789 return; 790 } 791 } 792 793 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 794 const SCEV *StartQ, *StartR, *StepQ, *StepR; 795 assert(Numerator->isAffine() && "Numerator should be affine"); 796 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 797 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 798 // Bail out if the types do not match. 799 Type *Ty = Denominator->getType(); 800 if (Ty != StartQ->getType() || Ty != StartR->getType() || 801 Ty != StepQ->getType() || Ty != StepR->getType()) { 802 Quotient = Zero; 803 Remainder = Numerator; 804 return; 805 } 806 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 807 Numerator->getNoWrapFlags()); 808 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 809 Numerator->getNoWrapFlags()); 810 } 811 812 void visitAddExpr(const SCEVAddExpr *Numerator) { 813 SmallVector<const SCEV *, 2> Qs, Rs; 814 Type *Ty = Denominator->getType(); 815 816 for (const SCEV *Op : Numerator->operands()) { 817 const SCEV *Q, *R; 818 divide(SE, Op, Denominator, &Q, &R); 819 820 // Bail out if types do not match. 821 if (Ty != Q->getType() || Ty != R->getType()) { 822 Quotient = Zero; 823 Remainder = Numerator; 824 return; 825 } 826 827 Qs.push_back(Q); 828 Rs.push_back(R); 829 } 830 831 if (Qs.size() == 1) { 832 Quotient = Qs[0]; 833 Remainder = Rs[0]; 834 return; 835 } 836 837 Quotient = SE.getAddExpr(Qs); 838 Remainder = SE.getAddExpr(Rs); 839 } 840 841 void visitMulExpr(const SCEVMulExpr *Numerator) { 842 SmallVector<const SCEV *, 2> Qs; 843 Type *Ty = Denominator->getType(); 844 845 bool FoundDenominatorTerm = false; 846 for (const SCEV *Op : Numerator->operands()) { 847 // Bail out if types do not match. 848 if (Ty != Op->getType()) { 849 Quotient = Zero; 850 Remainder = Numerator; 851 return; 852 } 853 854 if (FoundDenominatorTerm) { 855 Qs.push_back(Op); 856 continue; 857 } 858 859 // Check whether Denominator divides one of the product operands. 860 const SCEV *Q, *R; 861 divide(SE, Op, Denominator, &Q, &R); 862 if (!R->isZero()) { 863 Qs.push_back(Op); 864 continue; 865 } 866 867 // Bail out if types do not match. 868 if (Ty != Q->getType()) { 869 Quotient = Zero; 870 Remainder = Numerator; 871 return; 872 } 873 874 FoundDenominatorTerm = true; 875 Qs.push_back(Q); 876 } 877 878 if (FoundDenominatorTerm) { 879 Remainder = Zero; 880 if (Qs.size() == 1) 881 Quotient = Qs[0]; 882 else 883 Quotient = SE.getMulExpr(Qs); 884 return; 885 } 886 887 if (!isa<SCEVUnknown>(Denominator)) { 888 Quotient = Zero; 889 Remainder = Numerator; 890 return; 891 } 892 893 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 894 ValueToValueMap RewriteMap; 895 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 896 cast<SCEVConstant>(Zero)->getValue(); 897 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 898 899 if (Remainder->isZero()) { 900 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 901 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 902 cast<SCEVConstant>(One)->getValue(); 903 Quotient = 904 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 905 return; 906 } 907 908 // Quotient is (Numerator - Remainder) divided by Denominator. 909 const SCEV *Q, *R; 910 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 911 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) { 912 // This SCEV does not seem to simplify: fail the division here. 913 Quotient = Zero; 914 Remainder = Numerator; 915 return; 916 } 917 divide(SE, Diff, Denominator, &Q, &R); 918 assert(R == Zero && 919 "(Numerator - Remainder) should evenly divide Denominator"); 920 Quotient = Q; 921 } 922 923 private: 924 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 925 const SCEV *Denominator) 926 : SE(S), Denominator(Denominator) { 927 Zero = SE.getConstant(Denominator->getType(), 0); 928 One = SE.getConstant(Denominator->getType(), 1); 929 930 // By default, we don't know how to divide Expr by Denominator. 931 // Providing the default here simplifies the rest of the code. 932 Quotient = Zero; 933 Remainder = Numerator; 934 } 935 936 ScalarEvolution &SE; 937 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 938 }; 939 940 } 941 942 //===----------------------------------------------------------------------===// 943 // Simple SCEV method implementations 944 //===----------------------------------------------------------------------===// 945 946 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 947 /// Assume, K > 0. 948 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 949 ScalarEvolution &SE, 950 Type *ResultTy) { 951 // Handle the simplest case efficiently. 952 if (K == 1) 953 return SE.getTruncateOrZeroExtend(It, ResultTy); 954 955 // We are using the following formula for BC(It, K): 956 // 957 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 958 // 959 // Suppose, W is the bitwidth of the return value. We must be prepared for 960 // overflow. Hence, we must assure that the result of our computation is 961 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 962 // safe in modular arithmetic. 963 // 964 // However, this code doesn't use exactly that formula; the formula it uses 965 // is something like the following, where T is the number of factors of 2 in 966 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 967 // exponentiation: 968 // 969 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 970 // 971 // This formula is trivially equivalent to the previous formula. However, 972 // this formula can be implemented much more efficiently. The trick is that 973 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 974 // arithmetic. To do exact division in modular arithmetic, all we have 975 // to do is multiply by the inverse. Therefore, this step can be done at 976 // width W. 977 // 978 // The next issue is how to safely do the division by 2^T. The way this 979 // is done is by doing the multiplication step at a width of at least W + T 980 // bits. This way, the bottom W+T bits of the product are accurate. Then, 981 // when we perform the division by 2^T (which is equivalent to a right shift 982 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 983 // truncated out after the division by 2^T. 984 // 985 // In comparison to just directly using the first formula, this technique 986 // is much more efficient; using the first formula requires W * K bits, 987 // but this formula less than W + K bits. Also, the first formula requires 988 // a division step, whereas this formula only requires multiplies and shifts. 989 // 990 // It doesn't matter whether the subtraction step is done in the calculation 991 // width or the input iteration count's width; if the subtraction overflows, 992 // the result must be zero anyway. We prefer here to do it in the width of 993 // the induction variable because it helps a lot for certain cases; CodeGen 994 // isn't smart enough to ignore the overflow, which leads to much less 995 // efficient code if the width of the subtraction is wider than the native 996 // register width. 997 // 998 // (It's possible to not widen at all by pulling out factors of 2 before 999 // the multiplication; for example, K=2 can be calculated as 1000 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1001 // extra arithmetic, so it's not an obvious win, and it gets 1002 // much more complicated for K > 3.) 1003 1004 // Protection from insane SCEVs; this bound is conservative, 1005 // but it probably doesn't matter. 1006 if (K > 1000) 1007 return SE.getCouldNotCompute(); 1008 1009 unsigned W = SE.getTypeSizeInBits(ResultTy); 1010 1011 // Calculate K! / 2^T and T; we divide out the factors of two before 1012 // multiplying for calculating K! / 2^T to avoid overflow. 1013 // Other overflow doesn't matter because we only care about the bottom 1014 // W bits of the result. 1015 APInt OddFactorial(W, 1); 1016 unsigned T = 1; 1017 for (unsigned i = 3; i <= K; ++i) { 1018 APInt Mult(W, i); 1019 unsigned TwoFactors = Mult.countTrailingZeros(); 1020 T += TwoFactors; 1021 Mult = Mult.lshr(TwoFactors); 1022 OddFactorial *= Mult; 1023 } 1024 1025 // We need at least W + T bits for the multiplication step 1026 unsigned CalculationBits = W + T; 1027 1028 // Calculate 2^T, at width T+W. 1029 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1030 1031 // Calculate the multiplicative inverse of K! / 2^T; 1032 // this multiplication factor will perform the exact division by 1033 // K! / 2^T. 1034 APInt Mod = APInt::getSignedMinValue(W+1); 1035 APInt MultiplyFactor = OddFactorial.zext(W+1); 1036 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1037 MultiplyFactor = MultiplyFactor.trunc(W); 1038 1039 // Calculate the product, at width T+W 1040 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1041 CalculationBits); 1042 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1043 for (unsigned i = 1; i != K; ++i) { 1044 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1045 Dividend = SE.getMulExpr(Dividend, 1046 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1047 } 1048 1049 // Divide by 2^T 1050 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1051 1052 // Truncate the result, and divide by K! / 2^T. 1053 1054 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1055 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1056 } 1057 1058 /// evaluateAtIteration - Return the value of this chain of recurrences at 1059 /// the specified iteration number. We can evaluate this recurrence by 1060 /// multiplying each element in the chain by the binomial coefficient 1061 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1062 /// 1063 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1064 /// 1065 /// where BC(It, k) stands for binomial coefficient. 1066 /// 1067 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1068 ScalarEvolution &SE) const { 1069 const SCEV *Result = getStart(); 1070 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1071 // The computation is correct in the face of overflow provided that the 1072 // multiplication is performed _after_ the evaluation of the binomial 1073 // coefficient. 1074 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1075 if (isa<SCEVCouldNotCompute>(Coeff)) 1076 return Coeff; 1077 1078 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1079 } 1080 return Result; 1081 } 1082 1083 //===----------------------------------------------------------------------===// 1084 // SCEV Expression folder implementations 1085 //===----------------------------------------------------------------------===// 1086 1087 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1088 Type *Ty) { 1089 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1090 "This is not a truncating conversion!"); 1091 assert(isSCEVable(Ty) && 1092 "This is not a conversion to a SCEVable type!"); 1093 Ty = getEffectiveSCEVType(Ty); 1094 1095 FoldingSetNodeID ID; 1096 ID.AddInteger(scTruncate); 1097 ID.AddPointer(Op); 1098 ID.AddPointer(Ty); 1099 void *IP = nullptr; 1100 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1101 1102 // Fold if the operand is constant. 1103 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1104 return getConstant( 1105 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1106 1107 // trunc(trunc(x)) --> trunc(x) 1108 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1109 return getTruncateExpr(ST->getOperand(), Ty); 1110 1111 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1112 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1113 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1114 1115 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1116 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1117 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1118 1119 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1120 // eliminate all the truncates, or we replace other casts with truncates. 1121 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1122 SmallVector<const SCEV *, 4> Operands; 1123 bool hasTrunc = false; 1124 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1125 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1126 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1127 hasTrunc = isa<SCEVTruncateExpr>(S); 1128 Operands.push_back(S); 1129 } 1130 if (!hasTrunc) 1131 return getAddExpr(Operands); 1132 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1133 } 1134 1135 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1136 // eliminate all the truncates, or we replace other casts with truncates. 1137 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1138 SmallVector<const SCEV *, 4> Operands; 1139 bool hasTrunc = false; 1140 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1141 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1142 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1143 hasTrunc = isa<SCEVTruncateExpr>(S); 1144 Operands.push_back(S); 1145 } 1146 if (!hasTrunc) 1147 return getMulExpr(Operands); 1148 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1149 } 1150 1151 // If the input value is a chrec scev, truncate the chrec's operands. 1152 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1153 SmallVector<const SCEV *, 4> Operands; 1154 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1155 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 1156 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1157 } 1158 1159 // The cast wasn't folded; create an explicit cast node. We can reuse 1160 // the existing insert position since if we get here, we won't have 1161 // made any changes which would invalidate it. 1162 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1163 Op, Ty); 1164 UniqueSCEVs.InsertNode(S, IP); 1165 return S; 1166 } 1167 1168 // Get the limit of a recurrence such that incrementing by Step cannot cause 1169 // signed overflow as long as the value of the recurrence within the 1170 // loop does not exceed this limit before incrementing. 1171 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1172 ICmpInst::Predicate *Pred, 1173 ScalarEvolution *SE) { 1174 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1175 if (SE->isKnownPositive(Step)) { 1176 *Pred = ICmpInst::ICMP_SLT; 1177 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1178 SE->getSignedRange(Step).getSignedMax()); 1179 } 1180 if (SE->isKnownNegative(Step)) { 1181 *Pred = ICmpInst::ICMP_SGT; 1182 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1183 SE->getSignedRange(Step).getSignedMin()); 1184 } 1185 return nullptr; 1186 } 1187 1188 // Get the limit of a recurrence such that incrementing by Step cannot cause 1189 // unsigned overflow as long as the value of the recurrence within the loop does 1190 // not exceed this limit before incrementing. 1191 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1192 ICmpInst::Predicate *Pred, 1193 ScalarEvolution *SE) { 1194 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1195 *Pred = ICmpInst::ICMP_ULT; 1196 1197 return SE->getConstant(APInt::getMinValue(BitWidth) - 1198 SE->getUnsignedRange(Step).getUnsignedMax()); 1199 } 1200 1201 namespace { 1202 1203 struct ExtendOpTraitsBase { 1204 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1205 }; 1206 1207 // Used to make code generic over signed and unsigned overflow. 1208 template <typename ExtendOp> struct ExtendOpTraits { 1209 // Members present: 1210 // 1211 // static const SCEV::NoWrapFlags WrapType; 1212 // 1213 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1214 // 1215 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1216 // ICmpInst::Predicate *Pred, 1217 // ScalarEvolution *SE); 1218 }; 1219 1220 template <> 1221 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1222 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1223 1224 static const GetExtendExprTy GetExtendExpr; 1225 1226 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1227 ICmpInst::Predicate *Pred, 1228 ScalarEvolution *SE) { 1229 return getSignedOverflowLimitForStep(Step, Pred, SE); 1230 } 1231 }; 1232 1233 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1234 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1235 1236 template <> 1237 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1238 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1239 1240 static const GetExtendExprTy GetExtendExpr; 1241 1242 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1243 ICmpInst::Predicate *Pred, 1244 ScalarEvolution *SE) { 1245 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1246 } 1247 }; 1248 1249 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1250 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1251 } 1252 1253 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1254 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1255 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1256 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1257 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1258 // expression "Step + sext/zext(PreIncAR)" is congruent with 1259 // "sext/zext(PostIncAR)" 1260 template <typename ExtendOpTy> 1261 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1262 ScalarEvolution *SE) { 1263 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1264 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1265 1266 const Loop *L = AR->getLoop(); 1267 const SCEV *Start = AR->getStart(); 1268 const SCEV *Step = AR->getStepRecurrence(*SE); 1269 1270 // Check for a simple looking step prior to loop entry. 1271 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1272 if (!SA) 1273 return nullptr; 1274 1275 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1276 // subtraction is expensive. For this purpose, perform a quick and dirty 1277 // difference, by checking for Step in the operand list. 1278 SmallVector<const SCEV *, 4> DiffOps; 1279 for (const SCEV *Op : SA->operands()) 1280 if (Op != Step) 1281 DiffOps.push_back(Op); 1282 1283 if (DiffOps.size() == SA->getNumOperands()) 1284 return nullptr; 1285 1286 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1287 // `Step`: 1288 1289 // 1. NSW/NUW flags on the step increment. 1290 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1291 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1292 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1293 1294 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1295 // "S+X does not sign/unsign-overflow". 1296 // 1297 1298 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1299 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1300 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1301 return PreStart; 1302 1303 // 2. Direct overflow check on the step operation's expression. 1304 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1305 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1306 const SCEV *OperandExtendedStart = 1307 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1308 (SE->*GetExtendExpr)(Step, WideTy)); 1309 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1310 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1311 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1312 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1313 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1314 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1315 } 1316 return PreStart; 1317 } 1318 1319 // 3. Loop precondition. 1320 ICmpInst::Predicate Pred; 1321 const SCEV *OverflowLimit = 1322 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1323 1324 if (OverflowLimit && 1325 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1326 return PreStart; 1327 } 1328 return nullptr; 1329 } 1330 1331 // Get the normalized zero or sign extended expression for this AddRec's Start. 1332 template <typename ExtendOpTy> 1333 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1334 ScalarEvolution *SE) { 1335 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1336 1337 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1338 if (!PreStart) 1339 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1340 1341 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1342 (SE->*GetExtendExpr)(PreStart, Ty)); 1343 } 1344 1345 // Try to prove away overflow by looking at "nearby" add recurrences. A 1346 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1347 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1348 // 1349 // Formally: 1350 // 1351 // {S,+,X} == {S-T,+,X} + T 1352 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1353 // 1354 // If ({S-T,+,X} + T) does not overflow ... (1) 1355 // 1356 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1357 // 1358 // If {S-T,+,X} does not overflow ... (2) 1359 // 1360 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1361 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1362 // 1363 // If (S-T)+T does not overflow ... (3) 1364 // 1365 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1366 // == {Ext(S),+,Ext(X)} == LHS 1367 // 1368 // Thus, if (1), (2) and (3) are true for some T, then 1369 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1370 // 1371 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1372 // does not overflow" restricted to the 0th iteration. Therefore we only need 1373 // to check for (1) and (2). 1374 // 1375 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1376 // is `Delta` (defined below). 1377 // 1378 template <typename ExtendOpTy> 1379 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1380 const SCEV *Step, 1381 const Loop *L) { 1382 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1383 1384 // We restrict `Start` to a constant to prevent SCEV from spending too much 1385 // time here. It is correct (but more expensive) to continue with a 1386 // non-constant `Start` and do a general SCEV subtraction to compute 1387 // `PreStart` below. 1388 // 1389 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1390 if (!StartC) 1391 return false; 1392 1393 APInt StartAI = StartC->getValue()->getValue(); 1394 1395 for (unsigned Delta : {-2, -1, 1, 2}) { 1396 const SCEV *PreStart = getConstant(StartAI - Delta); 1397 1398 // Give up if we don't already have the add recurrence we need because 1399 // actually constructing an add recurrence is relatively expensive. 1400 const SCEVAddRecExpr *PreAR = [&]() { 1401 FoldingSetNodeID ID; 1402 ID.AddInteger(scAddRecExpr); 1403 ID.AddPointer(PreStart); 1404 ID.AddPointer(Step); 1405 ID.AddPointer(L); 1406 void *IP = nullptr; 1407 return static_cast<SCEVAddRecExpr *>( 1408 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1409 }(); 1410 1411 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1412 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1413 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1414 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1415 DeltaS, &Pred, this); 1416 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1417 return true; 1418 } 1419 } 1420 1421 return false; 1422 } 1423 1424 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1425 Type *Ty) { 1426 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1427 "This is not an extending conversion!"); 1428 assert(isSCEVable(Ty) && 1429 "This is not a conversion to a SCEVable type!"); 1430 Ty = getEffectiveSCEVType(Ty); 1431 1432 // Fold if the operand is constant. 1433 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1434 return getConstant( 1435 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1436 1437 // zext(zext(x)) --> zext(x) 1438 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1439 return getZeroExtendExpr(SZ->getOperand(), Ty); 1440 1441 // Before doing any expensive analysis, check to see if we've already 1442 // computed a SCEV for this Op and Ty. 1443 FoldingSetNodeID ID; 1444 ID.AddInteger(scZeroExtend); 1445 ID.AddPointer(Op); 1446 ID.AddPointer(Ty); 1447 void *IP = nullptr; 1448 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1449 1450 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1451 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1452 // It's possible the bits taken off by the truncate were all zero bits. If 1453 // so, we should be able to simplify this further. 1454 const SCEV *X = ST->getOperand(); 1455 ConstantRange CR = getUnsignedRange(X); 1456 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1457 unsigned NewBits = getTypeSizeInBits(Ty); 1458 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1459 CR.zextOrTrunc(NewBits))) 1460 return getTruncateOrZeroExtend(X, Ty); 1461 } 1462 1463 // If the input value is a chrec scev, and we can prove that the value 1464 // did not overflow the old, smaller, value, we can zero extend all of the 1465 // operands (often constants). This allows analysis of something like 1466 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1467 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1468 if (AR->isAffine()) { 1469 const SCEV *Start = AR->getStart(); 1470 const SCEV *Step = AR->getStepRecurrence(*this); 1471 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1472 const Loop *L = AR->getLoop(); 1473 1474 // If we have special knowledge that this addrec won't overflow, 1475 // we don't need to do any further analysis. 1476 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1477 return getAddRecExpr( 1478 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1479 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1480 1481 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1482 // Note that this serves two purposes: It filters out loops that are 1483 // simply not analyzable, and it covers the case where this code is 1484 // being called from within backedge-taken count analysis, such that 1485 // attempting to ask for the backedge-taken count would likely result 1486 // in infinite recursion. In the later case, the analysis code will 1487 // cope with a conservative value, and it will take care to purge 1488 // that value once it has finished. 1489 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1490 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1491 // Manually compute the final value for AR, checking for 1492 // overflow. 1493 1494 // Check whether the backedge-taken count can be losslessly casted to 1495 // the addrec's type. The count is always unsigned. 1496 const SCEV *CastedMaxBECount = 1497 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1498 const SCEV *RecastedMaxBECount = 1499 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1500 if (MaxBECount == RecastedMaxBECount) { 1501 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1502 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1503 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1504 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1505 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1506 const SCEV *WideMaxBECount = 1507 getZeroExtendExpr(CastedMaxBECount, WideTy); 1508 const SCEV *OperandExtendedAdd = 1509 getAddExpr(WideStart, 1510 getMulExpr(WideMaxBECount, 1511 getZeroExtendExpr(Step, WideTy))); 1512 if (ZAdd == OperandExtendedAdd) { 1513 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1514 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1515 // Return the expression with the addrec on the outside. 1516 return getAddRecExpr( 1517 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1518 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1519 } 1520 // Similar to above, only this time treat the step value as signed. 1521 // This covers loops that count down. 1522 OperandExtendedAdd = 1523 getAddExpr(WideStart, 1524 getMulExpr(WideMaxBECount, 1525 getSignExtendExpr(Step, WideTy))); 1526 if (ZAdd == OperandExtendedAdd) { 1527 // Cache knowledge of AR NW, which is propagated to this AddRec. 1528 // Negative step causes unsigned wrap, but it still can't self-wrap. 1529 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1530 // Return the expression with the addrec on the outside. 1531 return getAddRecExpr( 1532 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1533 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1534 } 1535 } 1536 1537 // If the backedge is guarded by a comparison with the pre-inc value 1538 // the addrec is safe. Also, if the entry is guarded by a comparison 1539 // with the start value and the backedge is guarded by a comparison 1540 // with the post-inc value, the addrec is safe. 1541 if (isKnownPositive(Step)) { 1542 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1543 getUnsignedRange(Step).getUnsignedMax()); 1544 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1545 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1546 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1547 AR->getPostIncExpr(*this), N))) { 1548 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1549 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1550 // Return the expression with the addrec on the outside. 1551 return getAddRecExpr( 1552 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1553 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1554 } 1555 } else if (isKnownNegative(Step)) { 1556 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1557 getSignedRange(Step).getSignedMin()); 1558 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1559 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1560 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1561 AR->getPostIncExpr(*this), N))) { 1562 // Cache knowledge of AR NW, which is propagated to this AddRec. 1563 // Negative step causes unsigned wrap, but it still can't self-wrap. 1564 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1565 // Return the expression with the addrec on the outside. 1566 return getAddRecExpr( 1567 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1568 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1569 } 1570 } 1571 } 1572 1573 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1574 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1575 return getAddRecExpr( 1576 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1577 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1578 } 1579 } 1580 1581 // The cast wasn't folded; create an explicit cast node. 1582 // Recompute the insert position, as it may have been invalidated. 1583 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1584 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1585 Op, Ty); 1586 UniqueSCEVs.InsertNode(S, IP); 1587 return S; 1588 } 1589 1590 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1591 Type *Ty) { 1592 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1593 "This is not an extending conversion!"); 1594 assert(isSCEVable(Ty) && 1595 "This is not a conversion to a SCEVable type!"); 1596 Ty = getEffectiveSCEVType(Ty); 1597 1598 // Fold if the operand is constant. 1599 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1600 return getConstant( 1601 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1602 1603 // sext(sext(x)) --> sext(x) 1604 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1605 return getSignExtendExpr(SS->getOperand(), Ty); 1606 1607 // sext(zext(x)) --> zext(x) 1608 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1609 return getZeroExtendExpr(SZ->getOperand(), Ty); 1610 1611 // Before doing any expensive analysis, check to see if we've already 1612 // computed a SCEV for this Op and Ty. 1613 FoldingSetNodeID ID; 1614 ID.AddInteger(scSignExtend); 1615 ID.AddPointer(Op); 1616 ID.AddPointer(Ty); 1617 void *IP = nullptr; 1618 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1619 1620 // If the input value is provably positive, build a zext instead. 1621 if (isKnownNonNegative(Op)) 1622 return getZeroExtendExpr(Op, Ty); 1623 1624 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1625 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1626 // It's possible the bits taken off by the truncate were all sign bits. If 1627 // so, we should be able to simplify this further. 1628 const SCEV *X = ST->getOperand(); 1629 ConstantRange CR = getSignedRange(X); 1630 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1631 unsigned NewBits = getTypeSizeInBits(Ty); 1632 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1633 CR.sextOrTrunc(NewBits))) 1634 return getTruncateOrSignExtend(X, Ty); 1635 } 1636 1637 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1638 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 1639 if (SA->getNumOperands() == 2) { 1640 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1641 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1642 if (SMul && SC1) { 1643 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1644 const APInt &C1 = SC1->getValue()->getValue(); 1645 const APInt &C2 = SC2->getValue()->getValue(); 1646 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1647 C2.ugt(C1) && C2.isPowerOf2()) 1648 return getAddExpr(getSignExtendExpr(SC1, Ty), 1649 getSignExtendExpr(SMul, Ty)); 1650 } 1651 } 1652 } 1653 } 1654 // If the input value is a chrec scev, and we can prove that the value 1655 // did not overflow the old, smaller, value, we can sign extend all of the 1656 // operands (often constants). This allows analysis of something like 1657 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1658 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1659 if (AR->isAffine()) { 1660 const SCEV *Start = AR->getStart(); 1661 const SCEV *Step = AR->getStepRecurrence(*this); 1662 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1663 const Loop *L = AR->getLoop(); 1664 1665 // If we have special knowledge that this addrec won't overflow, 1666 // we don't need to do any further analysis. 1667 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1668 return getAddRecExpr( 1669 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1670 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1671 1672 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1673 // Note that this serves two purposes: It filters out loops that are 1674 // simply not analyzable, and it covers the case where this code is 1675 // being called from within backedge-taken count analysis, such that 1676 // attempting to ask for the backedge-taken count would likely result 1677 // in infinite recursion. In the later case, the analysis code will 1678 // cope with a conservative value, and it will take care to purge 1679 // that value once it has finished. 1680 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1681 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1682 // Manually compute the final value for AR, checking for 1683 // overflow. 1684 1685 // Check whether the backedge-taken count can be losslessly casted to 1686 // the addrec's type. The count is always unsigned. 1687 const SCEV *CastedMaxBECount = 1688 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1689 const SCEV *RecastedMaxBECount = 1690 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1691 if (MaxBECount == RecastedMaxBECount) { 1692 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1693 // Check whether Start+Step*MaxBECount has no signed overflow. 1694 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1695 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1696 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1697 const SCEV *WideMaxBECount = 1698 getZeroExtendExpr(CastedMaxBECount, WideTy); 1699 const SCEV *OperandExtendedAdd = 1700 getAddExpr(WideStart, 1701 getMulExpr(WideMaxBECount, 1702 getSignExtendExpr(Step, WideTy))); 1703 if (SAdd == OperandExtendedAdd) { 1704 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1705 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1706 // Return the expression with the addrec on the outside. 1707 return getAddRecExpr( 1708 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1709 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1710 } 1711 // Similar to above, only this time treat the step value as unsigned. 1712 // This covers loops that count up with an unsigned step. 1713 OperandExtendedAdd = 1714 getAddExpr(WideStart, 1715 getMulExpr(WideMaxBECount, 1716 getZeroExtendExpr(Step, WideTy))); 1717 if (SAdd == OperandExtendedAdd) { 1718 // If AR wraps around then 1719 // 1720 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1721 // => SAdd != OperandExtendedAdd 1722 // 1723 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1724 // (SAdd == OperandExtendedAdd => AR is NW) 1725 1726 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1727 1728 // Return the expression with the addrec on the outside. 1729 return getAddRecExpr( 1730 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1731 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1732 } 1733 } 1734 1735 // If the backedge is guarded by a comparison with the pre-inc value 1736 // the addrec is safe. Also, if the entry is guarded by a comparison 1737 // with the start value and the backedge is guarded by a comparison 1738 // with the post-inc value, the addrec is safe. 1739 ICmpInst::Predicate Pred; 1740 const SCEV *OverflowLimit = 1741 getSignedOverflowLimitForStep(Step, &Pred, this); 1742 if (OverflowLimit && 1743 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1744 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1745 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1746 OverflowLimit)))) { 1747 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1748 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1749 return getAddRecExpr( 1750 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1751 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1752 } 1753 } 1754 // If Start and Step are constants, check if we can apply this 1755 // transformation: 1756 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1757 auto SC1 = dyn_cast<SCEVConstant>(Start); 1758 auto SC2 = dyn_cast<SCEVConstant>(Step); 1759 if (SC1 && SC2) { 1760 const APInt &C1 = SC1->getValue()->getValue(); 1761 const APInt &C2 = SC2->getValue()->getValue(); 1762 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1763 C2.isPowerOf2()) { 1764 Start = getSignExtendExpr(Start, Ty); 1765 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step, 1766 L, AR->getNoWrapFlags()); 1767 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1768 } 1769 } 1770 1771 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1772 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1773 return getAddRecExpr( 1774 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1775 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1776 } 1777 } 1778 1779 // The cast wasn't folded; create an explicit cast node. 1780 // Recompute the insert position, as it may have been invalidated. 1781 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1782 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1783 Op, Ty); 1784 UniqueSCEVs.InsertNode(S, IP); 1785 return S; 1786 } 1787 1788 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1789 /// unspecified bits out to the given type. 1790 /// 1791 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1792 Type *Ty) { 1793 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1794 "This is not an extending conversion!"); 1795 assert(isSCEVable(Ty) && 1796 "This is not a conversion to a SCEVable type!"); 1797 Ty = getEffectiveSCEVType(Ty); 1798 1799 // Sign-extend negative constants. 1800 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1801 if (SC->getValue()->getValue().isNegative()) 1802 return getSignExtendExpr(Op, Ty); 1803 1804 // Peel off a truncate cast. 1805 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1806 const SCEV *NewOp = T->getOperand(); 1807 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1808 return getAnyExtendExpr(NewOp, Ty); 1809 return getTruncateOrNoop(NewOp, Ty); 1810 } 1811 1812 // Next try a zext cast. If the cast is folded, use it. 1813 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1814 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1815 return ZExt; 1816 1817 // Next try a sext cast. If the cast is folded, use it. 1818 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1819 if (!isa<SCEVSignExtendExpr>(SExt)) 1820 return SExt; 1821 1822 // Force the cast to be folded into the operands of an addrec. 1823 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1824 SmallVector<const SCEV *, 4> Ops; 1825 for (const SCEV *Op : AR->operands()) 1826 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1827 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1828 } 1829 1830 // If the expression is obviously signed, use the sext cast value. 1831 if (isa<SCEVSMaxExpr>(Op)) 1832 return SExt; 1833 1834 // Absent any other information, use the zext cast value. 1835 return ZExt; 1836 } 1837 1838 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1839 /// a list of operands to be added under the given scale, update the given 1840 /// map. This is a helper function for getAddRecExpr. As an example of 1841 /// what it does, given a sequence of operands that would form an add 1842 /// expression like this: 1843 /// 1844 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1845 /// 1846 /// where A and B are constants, update the map with these values: 1847 /// 1848 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1849 /// 1850 /// and add 13 + A*B*29 to AccumulatedConstant. 1851 /// This will allow getAddRecExpr to produce this: 1852 /// 1853 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1854 /// 1855 /// This form often exposes folding opportunities that are hidden in 1856 /// the original operand list. 1857 /// 1858 /// Return true iff it appears that any interesting folding opportunities 1859 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1860 /// the common case where no interesting opportunities are present, and 1861 /// is also used as a check to avoid infinite recursion. 1862 /// 1863 static bool 1864 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1865 SmallVectorImpl<const SCEV *> &NewOps, 1866 APInt &AccumulatedConstant, 1867 const SCEV *const *Ops, size_t NumOperands, 1868 const APInt &Scale, 1869 ScalarEvolution &SE) { 1870 bool Interesting = false; 1871 1872 // Iterate over the add operands. They are sorted, with constants first. 1873 unsigned i = 0; 1874 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1875 ++i; 1876 // Pull a buried constant out to the outside. 1877 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1878 Interesting = true; 1879 AccumulatedConstant += Scale * C->getValue()->getValue(); 1880 } 1881 1882 // Next comes everything else. We're especially interested in multiplies 1883 // here, but they're in the middle, so just visit the rest with one loop. 1884 for (; i != NumOperands; ++i) { 1885 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1886 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1887 APInt NewScale = 1888 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1889 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1890 // A multiplication of a constant with another add; recurse. 1891 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1892 Interesting |= 1893 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1894 Add->op_begin(), Add->getNumOperands(), 1895 NewScale, SE); 1896 } else { 1897 // A multiplication of a constant with some other value. Update 1898 // the map. 1899 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1900 const SCEV *Key = SE.getMulExpr(MulOps); 1901 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1902 M.insert(std::make_pair(Key, NewScale)); 1903 if (Pair.second) { 1904 NewOps.push_back(Pair.first->first); 1905 } else { 1906 Pair.first->second += NewScale; 1907 // The map already had an entry for this value, which may indicate 1908 // a folding opportunity. 1909 Interesting = true; 1910 } 1911 } 1912 } else { 1913 // An ordinary operand. Update the map. 1914 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1915 M.insert(std::make_pair(Ops[i], Scale)); 1916 if (Pair.second) { 1917 NewOps.push_back(Pair.first->first); 1918 } else { 1919 Pair.first->second += Scale; 1920 // The map already had an entry for this value, which may indicate 1921 // a folding opportunity. 1922 Interesting = true; 1923 } 1924 } 1925 } 1926 1927 return Interesting; 1928 } 1929 1930 namespace { 1931 struct APIntCompare { 1932 bool operator()(const APInt &LHS, const APInt &RHS) const { 1933 return LHS.ult(RHS); 1934 } 1935 }; 1936 } 1937 1938 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1939 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1940 // can't-overflow flags for the operation if possible. 1941 static SCEV::NoWrapFlags 1942 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1943 const SmallVectorImpl<const SCEV *> &Ops, 1944 SCEV::NoWrapFlags OldFlags) { 1945 using namespace std::placeholders; 1946 1947 bool CanAnalyze = 1948 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1949 (void)CanAnalyze; 1950 assert(CanAnalyze && "don't call from other places!"); 1951 1952 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1953 SCEV::NoWrapFlags SignOrUnsignWrap = 1954 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); 1955 1956 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1957 auto IsKnownNonNegative = 1958 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1959 1960 if (SignOrUnsignWrap == SCEV::FlagNSW && 1961 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1962 return ScalarEvolution::setFlags(OldFlags, 1963 (SCEV::NoWrapFlags)SignOrUnsignMask); 1964 1965 return OldFlags; 1966 } 1967 1968 /// getAddExpr - Get a canonical add expression, or something simpler if 1969 /// possible. 1970 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1971 SCEV::NoWrapFlags Flags) { 1972 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1973 "only nuw or nsw allowed"); 1974 assert(!Ops.empty() && "Cannot get empty add!"); 1975 if (Ops.size() == 1) return Ops[0]; 1976 #ifndef NDEBUG 1977 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1978 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1979 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1980 "SCEVAddExpr operand types don't match!"); 1981 #endif 1982 1983 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 1984 1985 // Sort by complexity, this groups all similar expression types together. 1986 GroupByComplexity(Ops, LI); 1987 1988 // If there are any constants, fold them together. 1989 unsigned Idx = 0; 1990 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1991 ++Idx; 1992 assert(Idx < Ops.size()); 1993 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1994 // We found two constants, fold them together! 1995 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1996 RHSC->getValue()->getValue()); 1997 if (Ops.size() == 2) return Ops[0]; 1998 Ops.erase(Ops.begin()+1); // Erase the folded element 1999 LHSC = cast<SCEVConstant>(Ops[0]); 2000 } 2001 2002 // If we are left with a constant zero being added, strip it off. 2003 if (LHSC->getValue()->isZero()) { 2004 Ops.erase(Ops.begin()); 2005 --Idx; 2006 } 2007 2008 if (Ops.size() == 1) return Ops[0]; 2009 } 2010 2011 // Okay, check to see if the same value occurs in the operand list more than 2012 // once. If so, merge them together into an multiply expression. Since we 2013 // sorted the list, these values are required to be adjacent. 2014 Type *Ty = Ops[0]->getType(); 2015 bool FoundMatch = false; 2016 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2017 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2018 // Scan ahead to count how many equal operands there are. 2019 unsigned Count = 2; 2020 while (i+Count != e && Ops[i+Count] == Ops[i]) 2021 ++Count; 2022 // Merge the values into a multiply. 2023 const SCEV *Scale = getConstant(Ty, Count); 2024 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2025 if (Ops.size() == Count) 2026 return Mul; 2027 Ops[i] = Mul; 2028 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2029 --i; e -= Count - 1; 2030 FoundMatch = true; 2031 } 2032 if (FoundMatch) 2033 return getAddExpr(Ops, Flags); 2034 2035 // Check for truncates. If all the operands are truncated from the same 2036 // type, see if factoring out the truncate would permit the result to be 2037 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2038 // if the contents of the resulting outer trunc fold to something simple. 2039 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2040 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2041 Type *DstType = Trunc->getType(); 2042 Type *SrcType = Trunc->getOperand()->getType(); 2043 SmallVector<const SCEV *, 8> LargeOps; 2044 bool Ok = true; 2045 // Check all the operands to see if they can be represented in the 2046 // source type of the truncate. 2047 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2048 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2049 if (T->getOperand()->getType() != SrcType) { 2050 Ok = false; 2051 break; 2052 } 2053 LargeOps.push_back(T->getOperand()); 2054 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2055 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2056 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2057 SmallVector<const SCEV *, 8> LargeMulOps; 2058 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2059 if (const SCEVTruncateExpr *T = 2060 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2061 if (T->getOperand()->getType() != SrcType) { 2062 Ok = false; 2063 break; 2064 } 2065 LargeMulOps.push_back(T->getOperand()); 2066 } else if (const SCEVConstant *C = 2067 dyn_cast<SCEVConstant>(M->getOperand(j))) { 2068 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2069 } else { 2070 Ok = false; 2071 break; 2072 } 2073 } 2074 if (Ok) 2075 LargeOps.push_back(getMulExpr(LargeMulOps)); 2076 } else { 2077 Ok = false; 2078 break; 2079 } 2080 } 2081 if (Ok) { 2082 // Evaluate the expression in the larger type. 2083 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2084 // If it folds to something simple, use it. Otherwise, don't. 2085 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2086 return getTruncateExpr(Fold, DstType); 2087 } 2088 } 2089 2090 // Skip past any other cast SCEVs. 2091 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2092 ++Idx; 2093 2094 // If there are add operands they would be next. 2095 if (Idx < Ops.size()) { 2096 bool DeletedAdd = false; 2097 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2098 // If we have an add, expand the add operands onto the end of the operands 2099 // list. 2100 Ops.erase(Ops.begin()+Idx); 2101 Ops.append(Add->op_begin(), Add->op_end()); 2102 DeletedAdd = true; 2103 } 2104 2105 // If we deleted at least one add, we added operands to the end of the list, 2106 // and they are not necessarily sorted. Recurse to resort and resimplify 2107 // any operands we just acquired. 2108 if (DeletedAdd) 2109 return getAddExpr(Ops); 2110 } 2111 2112 // Skip over the add expression until we get to a multiply. 2113 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2114 ++Idx; 2115 2116 // Check to see if there are any folding opportunities present with 2117 // operands multiplied by constant values. 2118 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2119 uint64_t BitWidth = getTypeSizeInBits(Ty); 2120 DenseMap<const SCEV *, APInt> M; 2121 SmallVector<const SCEV *, 8> NewOps; 2122 APInt AccumulatedConstant(BitWidth, 0); 2123 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2124 Ops.data(), Ops.size(), 2125 APInt(BitWidth, 1), *this)) { 2126 // Some interesting folding opportunity is present, so its worthwhile to 2127 // re-generate the operands list. Group the operands by constant scale, 2128 // to avoid multiplying by the same constant scale multiple times. 2129 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2130 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2131 E = NewOps.end(); I != E; ++I) 2132 MulOpLists[M.find(*I)->second].push_back(*I); 2133 // Re-generate the operands list. 2134 Ops.clear(); 2135 if (AccumulatedConstant != 0) 2136 Ops.push_back(getConstant(AccumulatedConstant)); 2137 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2138 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2139 if (I->first != 0) 2140 Ops.push_back(getMulExpr(getConstant(I->first), 2141 getAddExpr(I->second))); 2142 if (Ops.empty()) 2143 return getConstant(Ty, 0); 2144 if (Ops.size() == 1) 2145 return Ops[0]; 2146 return getAddExpr(Ops); 2147 } 2148 } 2149 2150 // If we are adding something to a multiply expression, make sure the 2151 // something is not already an operand of the multiply. If so, merge it into 2152 // the multiply. 2153 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2154 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2155 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2156 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2157 if (isa<SCEVConstant>(MulOpSCEV)) 2158 continue; 2159 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2160 if (MulOpSCEV == Ops[AddOp]) { 2161 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2162 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2163 if (Mul->getNumOperands() != 2) { 2164 // If the multiply has more than two operands, we must get the 2165 // Y*Z term. 2166 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2167 Mul->op_begin()+MulOp); 2168 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2169 InnerMul = getMulExpr(MulOps); 2170 } 2171 const SCEV *One = getConstant(Ty, 1); 2172 const SCEV *AddOne = getAddExpr(One, InnerMul); 2173 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2174 if (Ops.size() == 2) return OuterMul; 2175 if (AddOp < Idx) { 2176 Ops.erase(Ops.begin()+AddOp); 2177 Ops.erase(Ops.begin()+Idx-1); 2178 } else { 2179 Ops.erase(Ops.begin()+Idx); 2180 Ops.erase(Ops.begin()+AddOp-1); 2181 } 2182 Ops.push_back(OuterMul); 2183 return getAddExpr(Ops); 2184 } 2185 2186 // Check this multiply against other multiplies being added together. 2187 for (unsigned OtherMulIdx = Idx+1; 2188 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2189 ++OtherMulIdx) { 2190 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2191 // If MulOp occurs in OtherMul, we can fold the two multiplies 2192 // together. 2193 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2194 OMulOp != e; ++OMulOp) 2195 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2196 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2197 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2198 if (Mul->getNumOperands() != 2) { 2199 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2200 Mul->op_begin()+MulOp); 2201 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2202 InnerMul1 = getMulExpr(MulOps); 2203 } 2204 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2205 if (OtherMul->getNumOperands() != 2) { 2206 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2207 OtherMul->op_begin()+OMulOp); 2208 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2209 InnerMul2 = getMulExpr(MulOps); 2210 } 2211 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2212 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2213 if (Ops.size() == 2) return OuterMul; 2214 Ops.erase(Ops.begin()+Idx); 2215 Ops.erase(Ops.begin()+OtherMulIdx-1); 2216 Ops.push_back(OuterMul); 2217 return getAddExpr(Ops); 2218 } 2219 } 2220 } 2221 } 2222 2223 // If there are any add recurrences in the operands list, see if any other 2224 // added values are loop invariant. If so, we can fold them into the 2225 // recurrence. 2226 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2227 ++Idx; 2228 2229 // Scan over all recurrences, trying to fold loop invariants into them. 2230 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2231 // Scan all of the other operands to this add and add them to the vector if 2232 // they are loop invariant w.r.t. the recurrence. 2233 SmallVector<const SCEV *, 8> LIOps; 2234 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2235 const Loop *AddRecLoop = AddRec->getLoop(); 2236 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2237 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2238 LIOps.push_back(Ops[i]); 2239 Ops.erase(Ops.begin()+i); 2240 --i; --e; 2241 } 2242 2243 // If we found some loop invariants, fold them into the recurrence. 2244 if (!LIOps.empty()) { 2245 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2246 LIOps.push_back(AddRec->getStart()); 2247 2248 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2249 AddRec->op_end()); 2250 AddRecOps[0] = getAddExpr(LIOps); 2251 2252 // Build the new addrec. Propagate the NUW and NSW flags if both the 2253 // outer add and the inner addrec are guaranteed to have no overflow. 2254 // Always propagate NW. 2255 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2256 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2257 2258 // If all of the other operands were loop invariant, we are done. 2259 if (Ops.size() == 1) return NewRec; 2260 2261 // Otherwise, add the folded AddRec by the non-invariant parts. 2262 for (unsigned i = 0;; ++i) 2263 if (Ops[i] == AddRec) { 2264 Ops[i] = NewRec; 2265 break; 2266 } 2267 return getAddExpr(Ops); 2268 } 2269 2270 // Okay, if there weren't any loop invariants to be folded, check to see if 2271 // there are multiple AddRec's with the same loop induction variable being 2272 // added together. If so, we can fold them. 2273 for (unsigned OtherIdx = Idx+1; 2274 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2275 ++OtherIdx) 2276 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2277 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2278 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2279 AddRec->op_end()); 2280 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2281 ++OtherIdx) 2282 if (const SCEVAddRecExpr *OtherAddRec = 2283 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2284 if (OtherAddRec->getLoop() == AddRecLoop) { 2285 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2286 i != e; ++i) { 2287 if (i >= AddRecOps.size()) { 2288 AddRecOps.append(OtherAddRec->op_begin()+i, 2289 OtherAddRec->op_end()); 2290 break; 2291 } 2292 AddRecOps[i] = getAddExpr(AddRecOps[i], 2293 OtherAddRec->getOperand(i)); 2294 } 2295 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2296 } 2297 // Step size has changed, so we cannot guarantee no self-wraparound. 2298 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2299 return getAddExpr(Ops); 2300 } 2301 2302 // Otherwise couldn't fold anything into this recurrence. Move onto the 2303 // next one. 2304 } 2305 2306 // Okay, it looks like we really DO need an add expr. Check to see if we 2307 // already have one, otherwise create a new one. 2308 FoldingSetNodeID ID; 2309 ID.AddInteger(scAddExpr); 2310 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2311 ID.AddPointer(Ops[i]); 2312 void *IP = nullptr; 2313 SCEVAddExpr *S = 2314 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2315 if (!S) { 2316 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2317 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2318 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2319 O, Ops.size()); 2320 UniqueSCEVs.InsertNode(S, IP); 2321 } 2322 S->setNoWrapFlags(Flags); 2323 return S; 2324 } 2325 2326 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2327 uint64_t k = i*j; 2328 if (j > 1 && k / j != i) Overflow = true; 2329 return k; 2330 } 2331 2332 /// Compute the result of "n choose k", the binomial coefficient. If an 2333 /// intermediate computation overflows, Overflow will be set and the return will 2334 /// be garbage. Overflow is not cleared on absence of overflow. 2335 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2336 // We use the multiplicative formula: 2337 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2338 // At each iteration, we take the n-th term of the numeral and divide by the 2339 // (k-n)th term of the denominator. This division will always produce an 2340 // integral result, and helps reduce the chance of overflow in the 2341 // intermediate computations. However, we can still overflow even when the 2342 // final result would fit. 2343 2344 if (n == 0 || n == k) return 1; 2345 if (k > n) return 0; 2346 2347 if (k > n/2) 2348 k = n-k; 2349 2350 uint64_t r = 1; 2351 for (uint64_t i = 1; i <= k; ++i) { 2352 r = umul_ov(r, n-(i-1), Overflow); 2353 r /= i; 2354 } 2355 return r; 2356 } 2357 2358 /// Determine if any of the operands in this SCEV are a constant or if 2359 /// any of the add or multiply expressions in this SCEV contain a constant. 2360 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2361 SmallVector<const SCEV *, 4> Ops; 2362 Ops.push_back(StartExpr); 2363 while (!Ops.empty()) { 2364 const SCEV *CurrentExpr = Ops.pop_back_val(); 2365 if (isa<SCEVConstant>(*CurrentExpr)) 2366 return true; 2367 2368 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2369 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2370 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2371 } 2372 } 2373 return false; 2374 } 2375 2376 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2377 /// possible. 2378 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2379 SCEV::NoWrapFlags Flags) { 2380 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2381 "only nuw or nsw allowed"); 2382 assert(!Ops.empty() && "Cannot get empty mul!"); 2383 if (Ops.size() == 1) return Ops[0]; 2384 #ifndef NDEBUG 2385 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2386 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2387 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2388 "SCEVMulExpr operand types don't match!"); 2389 #endif 2390 2391 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2392 2393 // Sort by complexity, this groups all similar expression types together. 2394 GroupByComplexity(Ops, LI); 2395 2396 // If there are any constants, fold them together. 2397 unsigned Idx = 0; 2398 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2399 2400 // C1*(C2+V) -> C1*C2 + C1*V 2401 if (Ops.size() == 2) 2402 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2403 // If any of Add's ops are Adds or Muls with a constant, 2404 // apply this transformation as well. 2405 if (Add->getNumOperands() == 2) 2406 if (containsConstantSomewhere(Add)) 2407 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2408 getMulExpr(LHSC, Add->getOperand(1))); 2409 2410 ++Idx; 2411 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2412 // We found two constants, fold them together! 2413 ConstantInt *Fold = ConstantInt::get(getContext(), 2414 LHSC->getValue()->getValue() * 2415 RHSC->getValue()->getValue()); 2416 Ops[0] = getConstant(Fold); 2417 Ops.erase(Ops.begin()+1); // Erase the folded element 2418 if (Ops.size() == 1) return Ops[0]; 2419 LHSC = cast<SCEVConstant>(Ops[0]); 2420 } 2421 2422 // If we are left with a constant one being multiplied, strip it off. 2423 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2424 Ops.erase(Ops.begin()); 2425 --Idx; 2426 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2427 // If we have a multiply of zero, it will always be zero. 2428 return Ops[0]; 2429 } else if (Ops[0]->isAllOnesValue()) { 2430 // If we have a mul by -1 of an add, try distributing the -1 among the 2431 // add operands. 2432 if (Ops.size() == 2) { 2433 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2434 SmallVector<const SCEV *, 4> NewOps; 2435 bool AnyFolded = false; 2436 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2437 E = Add->op_end(); I != E; ++I) { 2438 const SCEV *Mul = getMulExpr(Ops[0], *I); 2439 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2440 NewOps.push_back(Mul); 2441 } 2442 if (AnyFolded) 2443 return getAddExpr(NewOps); 2444 } 2445 else if (const SCEVAddRecExpr * 2446 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2447 // Negation preserves a recurrence's no self-wrap property. 2448 SmallVector<const SCEV *, 4> Operands; 2449 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2450 E = AddRec->op_end(); I != E; ++I) { 2451 Operands.push_back(getMulExpr(Ops[0], *I)); 2452 } 2453 return getAddRecExpr(Operands, AddRec->getLoop(), 2454 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2455 } 2456 } 2457 } 2458 2459 if (Ops.size() == 1) 2460 return Ops[0]; 2461 } 2462 2463 // Skip over the add expression until we get to a multiply. 2464 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2465 ++Idx; 2466 2467 // If there are mul operands inline them all into this expression. 2468 if (Idx < Ops.size()) { 2469 bool DeletedMul = false; 2470 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2471 // If we have an mul, expand the mul operands onto the end of the operands 2472 // list. 2473 Ops.erase(Ops.begin()+Idx); 2474 Ops.append(Mul->op_begin(), Mul->op_end()); 2475 DeletedMul = true; 2476 } 2477 2478 // If we deleted at least one mul, we added operands to the end of the list, 2479 // and they are not necessarily sorted. Recurse to resort and resimplify 2480 // any operands we just acquired. 2481 if (DeletedMul) 2482 return getMulExpr(Ops); 2483 } 2484 2485 // If there are any add recurrences in the operands list, see if any other 2486 // added values are loop invariant. If so, we can fold them into the 2487 // recurrence. 2488 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2489 ++Idx; 2490 2491 // Scan over all recurrences, trying to fold loop invariants into them. 2492 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2493 // Scan all of the other operands to this mul and add them to the vector if 2494 // they are loop invariant w.r.t. the recurrence. 2495 SmallVector<const SCEV *, 8> LIOps; 2496 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2497 const Loop *AddRecLoop = AddRec->getLoop(); 2498 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2499 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2500 LIOps.push_back(Ops[i]); 2501 Ops.erase(Ops.begin()+i); 2502 --i; --e; 2503 } 2504 2505 // If we found some loop invariants, fold them into the recurrence. 2506 if (!LIOps.empty()) { 2507 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2508 SmallVector<const SCEV *, 4> NewOps; 2509 NewOps.reserve(AddRec->getNumOperands()); 2510 const SCEV *Scale = getMulExpr(LIOps); 2511 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2512 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2513 2514 // Build the new addrec. Propagate the NUW and NSW flags if both the 2515 // outer mul and the inner addrec are guaranteed to have no overflow. 2516 // 2517 // No self-wrap cannot be guaranteed after changing the step size, but 2518 // will be inferred if either NUW or NSW is true. 2519 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2520 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2521 2522 // If all of the other operands were loop invariant, we are done. 2523 if (Ops.size() == 1) return NewRec; 2524 2525 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2526 for (unsigned i = 0;; ++i) 2527 if (Ops[i] == AddRec) { 2528 Ops[i] = NewRec; 2529 break; 2530 } 2531 return getMulExpr(Ops); 2532 } 2533 2534 // Okay, if there weren't any loop invariants to be folded, check to see if 2535 // there are multiple AddRec's with the same loop induction variable being 2536 // multiplied together. If so, we can fold them. 2537 2538 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2539 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2540 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2541 // ]]],+,...up to x=2n}. 2542 // Note that the arguments to choose() are always integers with values 2543 // known at compile time, never SCEV objects. 2544 // 2545 // The implementation avoids pointless extra computations when the two 2546 // addrec's are of different length (mathematically, it's equivalent to 2547 // an infinite stream of zeros on the right). 2548 bool OpsModified = false; 2549 for (unsigned OtherIdx = Idx+1; 2550 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2551 ++OtherIdx) { 2552 const SCEVAddRecExpr *OtherAddRec = 2553 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2554 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2555 continue; 2556 2557 bool Overflow = false; 2558 Type *Ty = AddRec->getType(); 2559 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2560 SmallVector<const SCEV*, 7> AddRecOps; 2561 for (int x = 0, xe = AddRec->getNumOperands() + 2562 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2563 const SCEV *Term = getConstant(Ty, 0); 2564 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2565 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2566 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2567 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2568 z < ze && !Overflow; ++z) { 2569 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2570 uint64_t Coeff; 2571 if (LargerThan64Bits) 2572 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2573 else 2574 Coeff = Coeff1*Coeff2; 2575 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2576 const SCEV *Term1 = AddRec->getOperand(y-z); 2577 const SCEV *Term2 = OtherAddRec->getOperand(z); 2578 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2579 } 2580 } 2581 AddRecOps.push_back(Term); 2582 } 2583 if (!Overflow) { 2584 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2585 SCEV::FlagAnyWrap); 2586 if (Ops.size() == 2) return NewAddRec; 2587 Ops[Idx] = NewAddRec; 2588 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2589 OpsModified = true; 2590 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2591 if (!AddRec) 2592 break; 2593 } 2594 } 2595 if (OpsModified) 2596 return getMulExpr(Ops); 2597 2598 // Otherwise couldn't fold anything into this recurrence. Move onto the 2599 // next one. 2600 } 2601 2602 // Okay, it looks like we really DO need an mul expr. Check to see if we 2603 // already have one, otherwise create a new one. 2604 FoldingSetNodeID ID; 2605 ID.AddInteger(scMulExpr); 2606 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2607 ID.AddPointer(Ops[i]); 2608 void *IP = nullptr; 2609 SCEVMulExpr *S = 2610 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2611 if (!S) { 2612 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2613 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2614 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2615 O, Ops.size()); 2616 UniqueSCEVs.InsertNode(S, IP); 2617 } 2618 S->setNoWrapFlags(Flags); 2619 return S; 2620 } 2621 2622 /// getUDivExpr - Get a canonical unsigned division expression, or something 2623 /// simpler if possible. 2624 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2625 const SCEV *RHS) { 2626 assert(getEffectiveSCEVType(LHS->getType()) == 2627 getEffectiveSCEVType(RHS->getType()) && 2628 "SCEVUDivExpr operand types don't match!"); 2629 2630 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2631 if (RHSC->getValue()->equalsInt(1)) 2632 return LHS; // X udiv 1 --> x 2633 // If the denominator is zero, the result of the udiv is undefined. Don't 2634 // try to analyze it, because the resolution chosen here may differ from 2635 // the resolution chosen in other parts of the compiler. 2636 if (!RHSC->getValue()->isZero()) { 2637 // Determine if the division can be folded into the operands of 2638 // its operands. 2639 // TODO: Generalize this to non-constants by using known-bits information. 2640 Type *Ty = LHS->getType(); 2641 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2642 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2643 // For non-power-of-two values, effectively round the value up to the 2644 // nearest power of two. 2645 if (!RHSC->getValue()->getValue().isPowerOf2()) 2646 ++MaxShiftAmt; 2647 IntegerType *ExtTy = 2648 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2649 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2650 if (const SCEVConstant *Step = 2651 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2652 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2653 const APInt &StepInt = Step->getValue()->getValue(); 2654 const APInt &DivInt = RHSC->getValue()->getValue(); 2655 if (!StepInt.urem(DivInt) && 2656 getZeroExtendExpr(AR, ExtTy) == 2657 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2658 getZeroExtendExpr(Step, ExtTy), 2659 AR->getLoop(), SCEV::FlagAnyWrap)) { 2660 SmallVector<const SCEV *, 4> Operands; 2661 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2662 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2663 return getAddRecExpr(Operands, AR->getLoop(), 2664 SCEV::FlagNW); 2665 } 2666 /// Get a canonical UDivExpr for a recurrence. 2667 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2668 // We can currently only fold X%N if X is constant. 2669 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2670 if (StartC && !DivInt.urem(StepInt) && 2671 getZeroExtendExpr(AR, ExtTy) == 2672 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2673 getZeroExtendExpr(Step, ExtTy), 2674 AR->getLoop(), SCEV::FlagAnyWrap)) { 2675 const APInt &StartInt = StartC->getValue()->getValue(); 2676 const APInt &StartRem = StartInt.urem(StepInt); 2677 if (StartRem != 0) 2678 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2679 AR->getLoop(), SCEV::FlagNW); 2680 } 2681 } 2682 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2683 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2684 SmallVector<const SCEV *, 4> Operands; 2685 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2686 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2687 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2688 // Find an operand that's safely divisible. 2689 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2690 const SCEV *Op = M->getOperand(i); 2691 const SCEV *Div = getUDivExpr(Op, RHSC); 2692 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2693 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2694 M->op_end()); 2695 Operands[i] = Div; 2696 return getMulExpr(Operands); 2697 } 2698 } 2699 } 2700 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2701 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2702 SmallVector<const SCEV *, 4> Operands; 2703 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2704 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2705 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2706 Operands.clear(); 2707 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2708 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2709 if (isa<SCEVUDivExpr>(Op) || 2710 getMulExpr(Op, RHS) != A->getOperand(i)) 2711 break; 2712 Operands.push_back(Op); 2713 } 2714 if (Operands.size() == A->getNumOperands()) 2715 return getAddExpr(Operands); 2716 } 2717 } 2718 2719 // Fold if both operands are constant. 2720 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2721 Constant *LHSCV = LHSC->getValue(); 2722 Constant *RHSCV = RHSC->getValue(); 2723 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2724 RHSCV))); 2725 } 2726 } 2727 } 2728 2729 FoldingSetNodeID ID; 2730 ID.AddInteger(scUDivExpr); 2731 ID.AddPointer(LHS); 2732 ID.AddPointer(RHS); 2733 void *IP = nullptr; 2734 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2735 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2736 LHS, RHS); 2737 UniqueSCEVs.InsertNode(S, IP); 2738 return S; 2739 } 2740 2741 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2742 APInt A = C1->getValue()->getValue().abs(); 2743 APInt B = C2->getValue()->getValue().abs(); 2744 uint32_t ABW = A.getBitWidth(); 2745 uint32_t BBW = B.getBitWidth(); 2746 2747 if (ABW > BBW) 2748 B = B.zext(ABW); 2749 else if (ABW < BBW) 2750 A = A.zext(BBW); 2751 2752 return APIntOps::GreatestCommonDivisor(A, B); 2753 } 2754 2755 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2756 /// something simpler if possible. There is no representation for an exact udiv 2757 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2758 /// We can't do this when it's not exact because the udiv may be clearing bits. 2759 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2760 const SCEV *RHS) { 2761 // TODO: we could try to find factors in all sorts of things, but for now we 2762 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2763 // end of this file for inspiration. 2764 2765 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2766 if (!Mul) 2767 return getUDivExpr(LHS, RHS); 2768 2769 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2770 // If the mulexpr multiplies by a constant, then that constant must be the 2771 // first element of the mulexpr. 2772 if (const SCEVConstant *LHSCst = 2773 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2774 if (LHSCst == RHSCst) { 2775 SmallVector<const SCEV *, 2> Operands; 2776 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2777 return getMulExpr(Operands); 2778 } 2779 2780 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2781 // that there's a factor provided by one of the other terms. We need to 2782 // check. 2783 APInt Factor = gcd(LHSCst, RHSCst); 2784 if (!Factor.isIntN(1)) { 2785 LHSCst = cast<SCEVConstant>( 2786 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2787 RHSCst = cast<SCEVConstant>( 2788 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2789 SmallVector<const SCEV *, 2> Operands; 2790 Operands.push_back(LHSCst); 2791 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2792 LHS = getMulExpr(Operands); 2793 RHS = RHSCst; 2794 Mul = dyn_cast<SCEVMulExpr>(LHS); 2795 if (!Mul) 2796 return getUDivExactExpr(LHS, RHS); 2797 } 2798 } 2799 } 2800 2801 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2802 if (Mul->getOperand(i) == RHS) { 2803 SmallVector<const SCEV *, 2> Operands; 2804 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2805 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2806 return getMulExpr(Operands); 2807 } 2808 } 2809 2810 return getUDivExpr(LHS, RHS); 2811 } 2812 2813 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2814 /// Simplify the expression as much as possible. 2815 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2816 const Loop *L, 2817 SCEV::NoWrapFlags Flags) { 2818 SmallVector<const SCEV *, 4> Operands; 2819 Operands.push_back(Start); 2820 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2821 if (StepChrec->getLoop() == L) { 2822 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2823 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2824 } 2825 2826 Operands.push_back(Step); 2827 return getAddRecExpr(Operands, L, Flags); 2828 } 2829 2830 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2831 /// Simplify the expression as much as possible. 2832 const SCEV * 2833 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2834 const Loop *L, SCEV::NoWrapFlags Flags) { 2835 if (Operands.size() == 1) return Operands[0]; 2836 #ifndef NDEBUG 2837 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2838 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2839 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2840 "SCEVAddRecExpr operand types don't match!"); 2841 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2842 assert(isLoopInvariant(Operands[i], L) && 2843 "SCEVAddRecExpr operand is not loop-invariant!"); 2844 #endif 2845 2846 if (Operands.back()->isZero()) { 2847 Operands.pop_back(); 2848 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2849 } 2850 2851 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2852 // use that information to infer NUW and NSW flags. However, computing a 2853 // BE count requires calling getAddRecExpr, so we may not yet have a 2854 // meaningful BE count at this point (and if we don't, we'd be stuck 2855 // with a SCEVCouldNotCompute as the cached BE count). 2856 2857 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2858 2859 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2860 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2861 const Loop *NestedLoop = NestedAR->getLoop(); 2862 if (L->contains(NestedLoop) ? 2863 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2864 (!NestedLoop->contains(L) && 2865 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2866 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2867 NestedAR->op_end()); 2868 Operands[0] = NestedAR->getStart(); 2869 // AddRecs require their operands be loop-invariant with respect to their 2870 // loops. Don't perform this transformation if it would break this 2871 // requirement. 2872 bool AllInvariant = true; 2873 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2874 if (!isLoopInvariant(Operands[i], L)) { 2875 AllInvariant = false; 2876 break; 2877 } 2878 if (AllInvariant) { 2879 // Create a recurrence for the outer loop with the same step size. 2880 // 2881 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2882 // inner recurrence has the same property. 2883 SCEV::NoWrapFlags OuterFlags = 2884 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2885 2886 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2887 AllInvariant = true; 2888 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2889 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2890 AllInvariant = false; 2891 break; 2892 } 2893 if (AllInvariant) { 2894 // Ok, both add recurrences are valid after the transformation. 2895 // 2896 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2897 // the outer recurrence has the same property. 2898 SCEV::NoWrapFlags InnerFlags = 2899 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2900 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2901 } 2902 } 2903 // Reset Operands to its original state. 2904 Operands[0] = NestedAR; 2905 } 2906 } 2907 2908 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2909 // already have one, otherwise create a new one. 2910 FoldingSetNodeID ID; 2911 ID.AddInteger(scAddRecExpr); 2912 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2913 ID.AddPointer(Operands[i]); 2914 ID.AddPointer(L); 2915 void *IP = nullptr; 2916 SCEVAddRecExpr *S = 2917 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2918 if (!S) { 2919 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2920 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2921 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2922 O, Operands.size(), L); 2923 UniqueSCEVs.InsertNode(S, IP); 2924 } 2925 S->setNoWrapFlags(Flags); 2926 return S; 2927 } 2928 2929 const SCEV * 2930 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2931 const SmallVectorImpl<const SCEV *> &IndexExprs, 2932 bool InBounds) { 2933 // getSCEV(Base)->getType() has the same address space as Base->getType() 2934 // because SCEV::getType() preserves the address space. 2935 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2936 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2937 // instruction to its SCEV, because the Instruction may be guarded by control 2938 // flow and the no-overflow bits may not be valid for the expression in any 2939 // context. 2940 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2941 2942 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 2943 // The address space is unimportant. The first thing we do on CurTy is getting 2944 // its element type. 2945 Type *CurTy = PointerType::getUnqual(PointeeType); 2946 for (const SCEV *IndexExpr : IndexExprs) { 2947 // Compute the (potentially symbolic) offset in bytes for this index. 2948 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2949 // For a struct, add the member offset. 2950 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2951 unsigned FieldNo = Index->getZExtValue(); 2952 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2953 2954 // Add the field offset to the running total offset. 2955 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2956 2957 // Update CurTy to the type of the field at Index. 2958 CurTy = STy->getTypeAtIndex(Index); 2959 } else { 2960 // Update CurTy to its element type. 2961 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2962 // For an array, add the element offset, explicitly scaled. 2963 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2964 // Getelementptr indices are signed. 2965 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2966 2967 // Multiply the index by the element size to compute the element offset. 2968 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2969 2970 // Add the element offset to the running total offset. 2971 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2972 } 2973 } 2974 2975 // Add the total offset from all the GEP indices to the base. 2976 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2977 } 2978 2979 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2980 const SCEV *RHS) { 2981 SmallVector<const SCEV *, 2> Ops; 2982 Ops.push_back(LHS); 2983 Ops.push_back(RHS); 2984 return getSMaxExpr(Ops); 2985 } 2986 2987 const SCEV * 2988 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2989 assert(!Ops.empty() && "Cannot get empty smax!"); 2990 if (Ops.size() == 1) return Ops[0]; 2991 #ifndef NDEBUG 2992 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2993 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2994 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2995 "SCEVSMaxExpr operand types don't match!"); 2996 #endif 2997 2998 // Sort by complexity, this groups all similar expression types together. 2999 GroupByComplexity(Ops, LI); 3000 3001 // If there are any constants, fold them together. 3002 unsigned Idx = 0; 3003 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3004 ++Idx; 3005 assert(Idx < Ops.size()); 3006 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3007 // We found two constants, fold them together! 3008 ConstantInt *Fold = ConstantInt::get(getContext(), 3009 APIntOps::smax(LHSC->getValue()->getValue(), 3010 RHSC->getValue()->getValue())); 3011 Ops[0] = getConstant(Fold); 3012 Ops.erase(Ops.begin()+1); // Erase the folded element 3013 if (Ops.size() == 1) return Ops[0]; 3014 LHSC = cast<SCEVConstant>(Ops[0]); 3015 } 3016 3017 // If we are left with a constant minimum-int, strip it off. 3018 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3019 Ops.erase(Ops.begin()); 3020 --Idx; 3021 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3022 // If we have an smax with a constant maximum-int, it will always be 3023 // maximum-int. 3024 return Ops[0]; 3025 } 3026 3027 if (Ops.size() == 1) return Ops[0]; 3028 } 3029 3030 // Find the first SMax 3031 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3032 ++Idx; 3033 3034 // Check to see if one of the operands is an SMax. If so, expand its operands 3035 // onto our operand list, and recurse to simplify. 3036 if (Idx < Ops.size()) { 3037 bool DeletedSMax = false; 3038 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3039 Ops.erase(Ops.begin()+Idx); 3040 Ops.append(SMax->op_begin(), SMax->op_end()); 3041 DeletedSMax = true; 3042 } 3043 3044 if (DeletedSMax) 3045 return getSMaxExpr(Ops); 3046 } 3047 3048 // Okay, check to see if the same value occurs in the operand list twice. If 3049 // so, delete one. Since we sorted the list, these values are required to 3050 // be adjacent. 3051 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3052 // X smax Y smax Y --> X smax Y 3053 // X smax Y --> X, if X is always greater than Y 3054 if (Ops[i] == Ops[i+1] || 3055 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3056 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3057 --i; --e; 3058 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3059 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3060 --i; --e; 3061 } 3062 3063 if (Ops.size() == 1) return Ops[0]; 3064 3065 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3066 3067 // Okay, it looks like we really DO need an smax expr. Check to see if we 3068 // already have one, otherwise create a new one. 3069 FoldingSetNodeID ID; 3070 ID.AddInteger(scSMaxExpr); 3071 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3072 ID.AddPointer(Ops[i]); 3073 void *IP = nullptr; 3074 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3075 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3076 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3077 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3078 O, Ops.size()); 3079 UniqueSCEVs.InsertNode(S, IP); 3080 return S; 3081 } 3082 3083 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3084 const SCEV *RHS) { 3085 SmallVector<const SCEV *, 2> Ops; 3086 Ops.push_back(LHS); 3087 Ops.push_back(RHS); 3088 return getUMaxExpr(Ops); 3089 } 3090 3091 const SCEV * 3092 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3093 assert(!Ops.empty() && "Cannot get empty umax!"); 3094 if (Ops.size() == 1) return Ops[0]; 3095 #ifndef NDEBUG 3096 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3097 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3098 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3099 "SCEVUMaxExpr operand types don't match!"); 3100 #endif 3101 3102 // Sort by complexity, this groups all similar expression types together. 3103 GroupByComplexity(Ops, LI); 3104 3105 // If there are any constants, fold them together. 3106 unsigned Idx = 0; 3107 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3108 ++Idx; 3109 assert(Idx < Ops.size()); 3110 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3111 // We found two constants, fold them together! 3112 ConstantInt *Fold = ConstantInt::get(getContext(), 3113 APIntOps::umax(LHSC->getValue()->getValue(), 3114 RHSC->getValue()->getValue())); 3115 Ops[0] = getConstant(Fold); 3116 Ops.erase(Ops.begin()+1); // Erase the folded element 3117 if (Ops.size() == 1) return Ops[0]; 3118 LHSC = cast<SCEVConstant>(Ops[0]); 3119 } 3120 3121 // If we are left with a constant minimum-int, strip it off. 3122 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3123 Ops.erase(Ops.begin()); 3124 --Idx; 3125 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3126 // If we have an umax with a constant maximum-int, it will always be 3127 // maximum-int. 3128 return Ops[0]; 3129 } 3130 3131 if (Ops.size() == 1) return Ops[0]; 3132 } 3133 3134 // Find the first UMax 3135 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3136 ++Idx; 3137 3138 // Check to see if one of the operands is a UMax. If so, expand its operands 3139 // onto our operand list, and recurse to simplify. 3140 if (Idx < Ops.size()) { 3141 bool DeletedUMax = false; 3142 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3143 Ops.erase(Ops.begin()+Idx); 3144 Ops.append(UMax->op_begin(), UMax->op_end()); 3145 DeletedUMax = true; 3146 } 3147 3148 if (DeletedUMax) 3149 return getUMaxExpr(Ops); 3150 } 3151 3152 // Okay, check to see if the same value occurs in the operand list twice. If 3153 // so, delete one. Since we sorted the list, these values are required to 3154 // be adjacent. 3155 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3156 // X umax Y umax Y --> X umax Y 3157 // X umax Y --> X, if X is always greater than Y 3158 if (Ops[i] == Ops[i+1] || 3159 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3160 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3161 --i; --e; 3162 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3163 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3164 --i; --e; 3165 } 3166 3167 if (Ops.size() == 1) return Ops[0]; 3168 3169 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3170 3171 // Okay, it looks like we really DO need a umax expr. Check to see if we 3172 // already have one, otherwise create a new one. 3173 FoldingSetNodeID ID; 3174 ID.AddInteger(scUMaxExpr); 3175 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3176 ID.AddPointer(Ops[i]); 3177 void *IP = nullptr; 3178 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3179 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3180 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3181 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3182 O, Ops.size()); 3183 UniqueSCEVs.InsertNode(S, IP); 3184 return S; 3185 } 3186 3187 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3188 const SCEV *RHS) { 3189 // ~smax(~x, ~y) == smin(x, y). 3190 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3191 } 3192 3193 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3194 const SCEV *RHS) { 3195 // ~umax(~x, ~y) == umin(x, y) 3196 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3197 } 3198 3199 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3200 // We can bypass creating a target-independent 3201 // constant expression and then folding it back into a ConstantInt. 3202 // This is just a compile-time optimization. 3203 return getConstant(IntTy, 3204 F->getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3205 } 3206 3207 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3208 StructType *STy, 3209 unsigned FieldNo) { 3210 // We can bypass creating a target-independent 3211 // constant expression and then folding it back into a ConstantInt. 3212 // This is just a compile-time optimization. 3213 return getConstant( 3214 IntTy, 3215 F->getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3216 FieldNo)); 3217 } 3218 3219 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3220 // Don't attempt to do anything other than create a SCEVUnknown object 3221 // here. createSCEV only calls getUnknown after checking for all other 3222 // interesting possibilities, and any other code that calls getUnknown 3223 // is doing so in order to hide a value from SCEV canonicalization. 3224 3225 FoldingSetNodeID ID; 3226 ID.AddInteger(scUnknown); 3227 ID.AddPointer(V); 3228 void *IP = nullptr; 3229 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3230 assert(cast<SCEVUnknown>(S)->getValue() == V && 3231 "Stale SCEVUnknown in uniquing map!"); 3232 return S; 3233 } 3234 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3235 FirstUnknown); 3236 FirstUnknown = cast<SCEVUnknown>(S); 3237 UniqueSCEVs.InsertNode(S, IP); 3238 return S; 3239 } 3240 3241 //===----------------------------------------------------------------------===// 3242 // Basic SCEV Analysis and PHI Idiom Recognition Code 3243 // 3244 3245 /// isSCEVable - Test if values of the given type are analyzable within 3246 /// the SCEV framework. This primarily includes integer types, and it 3247 /// can optionally include pointer types if the ScalarEvolution class 3248 /// has access to target-specific information. 3249 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3250 // Integers and pointers are always SCEVable. 3251 return Ty->isIntegerTy() || Ty->isPointerTy(); 3252 } 3253 3254 /// getTypeSizeInBits - Return the size in bits of the specified type, 3255 /// for which isSCEVable must return true. 3256 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3257 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3258 return F->getParent()->getDataLayout().getTypeSizeInBits(Ty); 3259 } 3260 3261 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3262 /// the given type and which represents how SCEV will treat the given 3263 /// type, for which isSCEVable must return true. For pointer types, 3264 /// this is the pointer-sized integer type. 3265 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3266 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3267 3268 if (Ty->isIntegerTy()) { 3269 return Ty; 3270 } 3271 3272 // The only other support type is pointer. 3273 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3274 return F->getParent()->getDataLayout().getIntPtrType(Ty); 3275 } 3276 3277 const SCEV *ScalarEvolution::getCouldNotCompute() { 3278 return &CouldNotCompute; 3279 } 3280 3281 namespace { 3282 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3283 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3284 // is set iff if find such SCEVUnknown. 3285 // 3286 struct FindInvalidSCEVUnknown { 3287 bool FindOne; 3288 FindInvalidSCEVUnknown() { FindOne = false; } 3289 bool follow(const SCEV *S) { 3290 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3291 case scConstant: 3292 return false; 3293 case scUnknown: 3294 if (!cast<SCEVUnknown>(S)->getValue()) 3295 FindOne = true; 3296 return false; 3297 default: 3298 return true; 3299 } 3300 } 3301 bool isDone() const { return FindOne; } 3302 }; 3303 } 3304 3305 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3306 FindInvalidSCEVUnknown F; 3307 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3308 ST.visitAll(S); 3309 3310 return !F.FindOne; 3311 } 3312 3313 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3314 /// expression and create a new one. 3315 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3316 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3317 3318 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3319 if (I != ValueExprMap.end()) { 3320 const SCEV *S = I->second; 3321 if (checkValidity(S)) 3322 return S; 3323 else 3324 ValueExprMap.erase(I); 3325 } 3326 const SCEV *S = createSCEV(V); 3327 3328 // The process of creating a SCEV for V may have caused other SCEVs 3329 // to have been created, so it's necessary to insert the new entry 3330 // from scratch, rather than trying to remember the insert position 3331 // above. 3332 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3333 return S; 3334 } 3335 3336 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3337 /// 3338 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 3339 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3340 return getConstant( 3341 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3342 3343 Type *Ty = V->getType(); 3344 Ty = getEffectiveSCEVType(Ty); 3345 return getMulExpr(V, 3346 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 3347 } 3348 3349 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3350 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3351 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3352 return getConstant( 3353 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3354 3355 Type *Ty = V->getType(); 3356 Ty = getEffectiveSCEVType(Ty); 3357 const SCEV *AllOnes = 3358 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3359 return getMinusSCEV(AllOnes, V); 3360 } 3361 3362 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3363 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3364 SCEV::NoWrapFlags Flags) { 3365 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 3366 3367 // Fast path: X - X --> 0. 3368 if (LHS == RHS) 3369 return getConstant(LHS->getType(), 0); 3370 3371 // X - Y --> X + -Y. 3372 // X -(nsw || nuw) Y --> X + -Y. 3373 return getAddExpr(LHS, getNegativeSCEV(RHS)); 3374 } 3375 3376 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3377 /// input value to the specified type. If the type must be extended, it is zero 3378 /// extended. 3379 const SCEV * 3380 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3381 Type *SrcTy = V->getType(); 3382 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3383 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3384 "Cannot truncate or zero extend with non-integer arguments!"); 3385 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3386 return V; // No conversion 3387 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3388 return getTruncateExpr(V, Ty); 3389 return getZeroExtendExpr(V, Ty); 3390 } 3391 3392 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3393 /// input value to the specified type. If the type must be extended, it is sign 3394 /// extended. 3395 const SCEV * 3396 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3397 Type *Ty) { 3398 Type *SrcTy = V->getType(); 3399 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3400 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3401 "Cannot truncate or zero extend with non-integer arguments!"); 3402 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3403 return V; // No conversion 3404 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3405 return getTruncateExpr(V, Ty); 3406 return getSignExtendExpr(V, Ty); 3407 } 3408 3409 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3410 /// input value to the specified type. If the type must be extended, it is zero 3411 /// extended. The conversion must not be narrowing. 3412 const SCEV * 3413 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3414 Type *SrcTy = V->getType(); 3415 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3416 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3417 "Cannot noop or zero extend with non-integer arguments!"); 3418 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3419 "getNoopOrZeroExtend cannot truncate!"); 3420 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3421 return V; // No conversion 3422 return getZeroExtendExpr(V, Ty); 3423 } 3424 3425 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3426 /// input value to the specified type. If the type must be extended, it is sign 3427 /// extended. The conversion must not be narrowing. 3428 const SCEV * 3429 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3430 Type *SrcTy = V->getType(); 3431 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3432 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3433 "Cannot noop or sign extend with non-integer arguments!"); 3434 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3435 "getNoopOrSignExtend cannot truncate!"); 3436 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3437 return V; // No conversion 3438 return getSignExtendExpr(V, Ty); 3439 } 3440 3441 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3442 /// the input value to the specified type. If the type must be extended, 3443 /// it is extended with unspecified bits. The conversion must not be 3444 /// narrowing. 3445 const SCEV * 3446 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3447 Type *SrcTy = V->getType(); 3448 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3449 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3450 "Cannot noop or any extend with non-integer arguments!"); 3451 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3452 "getNoopOrAnyExtend cannot truncate!"); 3453 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3454 return V; // No conversion 3455 return getAnyExtendExpr(V, Ty); 3456 } 3457 3458 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3459 /// input value to the specified type. The conversion must not be widening. 3460 const SCEV * 3461 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3462 Type *SrcTy = V->getType(); 3463 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3464 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3465 "Cannot truncate or noop with non-integer arguments!"); 3466 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3467 "getTruncateOrNoop cannot extend!"); 3468 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3469 return V; // No conversion 3470 return getTruncateExpr(V, Ty); 3471 } 3472 3473 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3474 /// the types using zero-extension, and then perform a umax operation 3475 /// with them. 3476 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3477 const SCEV *RHS) { 3478 const SCEV *PromotedLHS = LHS; 3479 const SCEV *PromotedRHS = RHS; 3480 3481 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3482 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3483 else 3484 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3485 3486 return getUMaxExpr(PromotedLHS, PromotedRHS); 3487 } 3488 3489 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3490 /// the types using zero-extension, and then perform a umin operation 3491 /// with them. 3492 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3493 const SCEV *RHS) { 3494 const SCEV *PromotedLHS = LHS; 3495 const SCEV *PromotedRHS = RHS; 3496 3497 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3498 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3499 else 3500 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3501 3502 return getUMinExpr(PromotedLHS, PromotedRHS); 3503 } 3504 3505 /// getPointerBase - Transitively follow the chain of pointer-type operands 3506 /// until reaching a SCEV that does not have a single pointer operand. This 3507 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3508 /// but corner cases do exist. 3509 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3510 // A pointer operand may evaluate to a nonpointer expression, such as null. 3511 if (!V->getType()->isPointerTy()) 3512 return V; 3513 3514 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3515 return getPointerBase(Cast->getOperand()); 3516 } 3517 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3518 const SCEV *PtrOp = nullptr; 3519 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3520 I != E; ++I) { 3521 if ((*I)->getType()->isPointerTy()) { 3522 // Cannot find the base of an expression with multiple pointer operands. 3523 if (PtrOp) 3524 return V; 3525 PtrOp = *I; 3526 } 3527 } 3528 if (!PtrOp) 3529 return V; 3530 return getPointerBase(PtrOp); 3531 } 3532 return V; 3533 } 3534 3535 /// PushDefUseChildren - Push users of the given Instruction 3536 /// onto the given Worklist. 3537 static void 3538 PushDefUseChildren(Instruction *I, 3539 SmallVectorImpl<Instruction *> &Worklist) { 3540 // Push the def-use children onto the Worklist stack. 3541 for (User *U : I->users()) 3542 Worklist.push_back(cast<Instruction>(U)); 3543 } 3544 3545 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3546 /// instructions that depend on the given instruction and removes them from 3547 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3548 /// resolution. 3549 void 3550 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3551 SmallVector<Instruction *, 16> Worklist; 3552 PushDefUseChildren(PN, Worklist); 3553 3554 SmallPtrSet<Instruction *, 8> Visited; 3555 Visited.insert(PN); 3556 while (!Worklist.empty()) { 3557 Instruction *I = Worklist.pop_back_val(); 3558 if (!Visited.insert(I).second) 3559 continue; 3560 3561 ValueExprMapType::iterator It = 3562 ValueExprMap.find_as(static_cast<Value *>(I)); 3563 if (It != ValueExprMap.end()) { 3564 const SCEV *Old = It->second; 3565 3566 // Short-circuit the def-use traversal if the symbolic name 3567 // ceases to appear in expressions. 3568 if (Old != SymName && !hasOperand(Old, SymName)) 3569 continue; 3570 3571 // SCEVUnknown for a PHI either means that it has an unrecognized 3572 // structure, it's a PHI that's in the progress of being computed 3573 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3574 // additional loop trip count information isn't going to change anything. 3575 // In the second case, createNodeForPHI will perform the necessary 3576 // updates on its own when it gets to that point. In the third, we do 3577 // want to forget the SCEVUnknown. 3578 if (!isa<PHINode>(I) || 3579 !isa<SCEVUnknown>(Old) || 3580 (I != PN && Old == SymName)) { 3581 forgetMemoizedResults(Old); 3582 ValueExprMap.erase(It); 3583 } 3584 } 3585 3586 PushDefUseChildren(I, Worklist); 3587 } 3588 } 3589 3590 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3591 /// a loop header, making it a potential recurrence, or it doesn't. 3592 /// 3593 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3594 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3595 if (L->getHeader() == PN->getParent()) { 3596 // The loop may have multiple entrances or multiple exits; we can analyze 3597 // this phi as an addrec if it has a unique entry value and a unique 3598 // backedge value. 3599 Value *BEValueV = nullptr, *StartValueV = nullptr; 3600 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3601 Value *V = PN->getIncomingValue(i); 3602 if (L->contains(PN->getIncomingBlock(i))) { 3603 if (!BEValueV) { 3604 BEValueV = V; 3605 } else if (BEValueV != V) { 3606 BEValueV = nullptr; 3607 break; 3608 } 3609 } else if (!StartValueV) { 3610 StartValueV = V; 3611 } else if (StartValueV != V) { 3612 StartValueV = nullptr; 3613 break; 3614 } 3615 } 3616 if (BEValueV && StartValueV) { 3617 // While we are analyzing this PHI node, handle its value symbolically. 3618 const SCEV *SymbolicName = getUnknown(PN); 3619 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3620 "PHI node already processed?"); 3621 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3622 3623 // Using this symbolic name for the PHI, analyze the value coming around 3624 // the back-edge. 3625 const SCEV *BEValue = getSCEV(BEValueV); 3626 3627 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3628 // has a special value for the first iteration of the loop. 3629 3630 // If the value coming around the backedge is an add with the symbolic 3631 // value we just inserted, then we found a simple induction variable! 3632 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3633 // If there is a single occurrence of the symbolic value, replace it 3634 // with a recurrence. 3635 unsigned FoundIndex = Add->getNumOperands(); 3636 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3637 if (Add->getOperand(i) == SymbolicName) 3638 if (FoundIndex == e) { 3639 FoundIndex = i; 3640 break; 3641 } 3642 3643 if (FoundIndex != Add->getNumOperands()) { 3644 // Create an add with everything but the specified operand. 3645 SmallVector<const SCEV *, 8> Ops; 3646 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3647 if (i != FoundIndex) 3648 Ops.push_back(Add->getOperand(i)); 3649 const SCEV *Accum = getAddExpr(Ops); 3650 3651 // This is not a valid addrec if the step amount is varying each 3652 // loop iteration, but is not itself an addrec in this loop. 3653 if (isLoopInvariant(Accum, L) || 3654 (isa<SCEVAddRecExpr>(Accum) && 3655 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3656 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3657 3658 // If the increment doesn't overflow, then neither the addrec nor 3659 // the post-increment will overflow. 3660 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3661 if (OBO->getOperand(0) == PN) { 3662 if (OBO->hasNoUnsignedWrap()) 3663 Flags = setFlags(Flags, SCEV::FlagNUW); 3664 if (OBO->hasNoSignedWrap()) 3665 Flags = setFlags(Flags, SCEV::FlagNSW); 3666 } 3667 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3668 // If the increment is an inbounds GEP, then we know the address 3669 // space cannot be wrapped around. We cannot make any guarantee 3670 // about signed or unsigned overflow because pointers are 3671 // unsigned but we may have a negative index from the base 3672 // pointer. We can guarantee that no unsigned wrap occurs if the 3673 // indices form a positive value. 3674 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3675 Flags = setFlags(Flags, SCEV::FlagNW); 3676 3677 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3678 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3679 Flags = setFlags(Flags, SCEV::FlagNUW); 3680 } 3681 3682 // We cannot transfer nuw and nsw flags from subtraction 3683 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3684 // for instance. 3685 } 3686 3687 const SCEV *StartVal = getSCEV(StartValueV); 3688 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3689 3690 // Since the no-wrap flags are on the increment, they apply to the 3691 // post-incremented value as well. 3692 if (isLoopInvariant(Accum, L)) 3693 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3694 Accum, L, Flags); 3695 3696 // Okay, for the entire analysis of this edge we assumed the PHI 3697 // to be symbolic. We now need to go back and purge all of the 3698 // entries for the scalars that use the symbolic expression. 3699 ForgetSymbolicName(PN, SymbolicName); 3700 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3701 return PHISCEV; 3702 } 3703 } 3704 } else if (const SCEVAddRecExpr *AddRec = 3705 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3706 // Otherwise, this could be a loop like this: 3707 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3708 // In this case, j = {1,+,1} and BEValue is j. 3709 // Because the other in-value of i (0) fits the evolution of BEValue 3710 // i really is an addrec evolution. 3711 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3712 const SCEV *StartVal = getSCEV(StartValueV); 3713 3714 // If StartVal = j.start - j.stride, we can use StartVal as the 3715 // initial step of the addrec evolution. 3716 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3717 AddRec->getOperand(1))) { 3718 // FIXME: For constant StartVal, we should be able to infer 3719 // no-wrap flags. 3720 const SCEV *PHISCEV = 3721 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3722 SCEV::FlagAnyWrap); 3723 3724 // Okay, for the entire analysis of this edge we assumed the PHI 3725 // to be symbolic. We now need to go back and purge all of the 3726 // entries for the scalars that use the symbolic expression. 3727 ForgetSymbolicName(PN, SymbolicName); 3728 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3729 return PHISCEV; 3730 } 3731 } 3732 } 3733 } 3734 } 3735 3736 // If the PHI has a single incoming value, follow that value, unless the 3737 // PHI's incoming blocks are in a different loop, in which case doing so 3738 // risks breaking LCSSA form. Instcombine would normally zap these, but 3739 // it doesn't have DominatorTree information, so it may miss cases. 3740 if (Value *V = 3741 SimplifyInstruction(PN, F->getParent()->getDataLayout(), TLI, DT, AC)) 3742 if (LI->replacementPreservesLCSSAForm(PN, V)) 3743 return getSCEV(V); 3744 3745 // If it's not a loop phi, we can't handle it yet. 3746 return getUnknown(PN); 3747 } 3748 3749 /// createNodeForGEP - Expand GEP instructions into add and multiply 3750 /// operations. This allows them to be analyzed by regular SCEV code. 3751 /// 3752 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3753 Value *Base = GEP->getOperand(0); 3754 // Don't attempt to analyze GEPs over unsized objects. 3755 if (!Base->getType()->getPointerElementType()->isSized()) 3756 return getUnknown(GEP); 3757 3758 SmallVector<const SCEV *, 4> IndexExprs; 3759 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 3760 IndexExprs.push_back(getSCEV(*Index)); 3761 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 3762 GEP->isInBounds()); 3763 } 3764 3765 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3766 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3767 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3768 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3769 uint32_t 3770 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3771 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3772 return C->getValue()->getValue().countTrailingZeros(); 3773 3774 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3775 return std::min(GetMinTrailingZeros(T->getOperand()), 3776 (uint32_t)getTypeSizeInBits(T->getType())); 3777 3778 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3779 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3780 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3781 getTypeSizeInBits(E->getType()) : OpRes; 3782 } 3783 3784 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3785 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3786 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3787 getTypeSizeInBits(E->getType()) : OpRes; 3788 } 3789 3790 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3791 // The result is the min of all operands results. 3792 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3793 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3794 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3795 return MinOpRes; 3796 } 3797 3798 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3799 // The result is the sum of all operands results. 3800 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3801 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3802 for (unsigned i = 1, e = M->getNumOperands(); 3803 SumOpRes != BitWidth && i != e; ++i) 3804 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3805 BitWidth); 3806 return SumOpRes; 3807 } 3808 3809 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3810 // The result is the min of all operands results. 3811 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3812 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3813 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3814 return MinOpRes; 3815 } 3816 3817 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3818 // The result is the min of all operands results. 3819 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3820 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3821 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3822 return MinOpRes; 3823 } 3824 3825 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3826 // The result is the min of all operands results. 3827 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3828 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3829 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3830 return MinOpRes; 3831 } 3832 3833 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3834 // For a SCEVUnknown, ask ValueTracking. 3835 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3836 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3837 computeKnownBits(U->getValue(), Zeros, Ones, 3838 F->getParent()->getDataLayout(), 0, AC, nullptr, DT); 3839 return Zeros.countTrailingOnes(); 3840 } 3841 3842 // SCEVUDivExpr 3843 return 0; 3844 } 3845 3846 /// GetRangeFromMetadata - Helper method to assign a range to V from 3847 /// metadata present in the IR. 3848 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 3849 if (Instruction *I = dyn_cast<Instruction>(V)) { 3850 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 3851 ConstantRange TotalRange( 3852 cast<IntegerType>(I->getType())->getBitWidth(), false); 3853 3854 unsigned NumRanges = MD->getNumOperands() / 2; 3855 assert(NumRanges >= 1); 3856 3857 for (unsigned i = 0; i < NumRanges; ++i) { 3858 ConstantInt *Lower = 3859 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 3860 ConstantInt *Upper = 3861 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 3862 ConstantRange Range(Lower->getValue(), Upper->getValue()); 3863 TotalRange = TotalRange.unionWith(Range); 3864 } 3865 3866 return TotalRange; 3867 } 3868 } 3869 3870 return None; 3871 } 3872 3873 /// getRange - Determine the range for a particular SCEV. If SignHint is 3874 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 3875 /// with a "cleaner" unsigned (resp. signed) representation. 3876 /// 3877 ConstantRange 3878 ScalarEvolution::getRange(const SCEV *S, 3879 ScalarEvolution::RangeSignHint SignHint) { 3880 DenseMap<const SCEV *, ConstantRange> &Cache = 3881 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 3882 : SignedRanges; 3883 3884 // See if we've computed this range already. 3885 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 3886 if (I != Cache.end()) 3887 return I->second; 3888 3889 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3890 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 3891 3892 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3893 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3894 3895 // If the value has known zeros, the maximum value will have those known zeros 3896 // as well. 3897 uint32_t TZ = GetMinTrailingZeros(S); 3898 if (TZ != 0) { 3899 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 3900 ConservativeResult = 3901 ConstantRange(APInt::getMinValue(BitWidth), 3902 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3903 else 3904 ConservativeResult = ConstantRange( 3905 APInt::getSignedMinValue(BitWidth), 3906 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3907 } 3908 3909 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3910 ConstantRange X = getRange(Add->getOperand(0), SignHint); 3911 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3912 X = X.add(getRange(Add->getOperand(i), SignHint)); 3913 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 3914 } 3915 3916 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3917 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 3918 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3919 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 3920 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 3921 } 3922 3923 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3924 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 3925 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3926 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 3927 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 3928 } 3929 3930 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3931 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 3932 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3933 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 3934 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 3935 } 3936 3937 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3938 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 3939 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 3940 return setRange(UDiv, SignHint, 3941 ConservativeResult.intersectWith(X.udiv(Y))); 3942 } 3943 3944 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3945 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 3946 return setRange(ZExt, SignHint, 3947 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3948 } 3949 3950 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3951 ConstantRange X = getRange(SExt->getOperand(), SignHint); 3952 return setRange(SExt, SignHint, 3953 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3954 } 3955 3956 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3957 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 3958 return setRange(Trunc, SignHint, 3959 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3960 } 3961 3962 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3963 // If there's no unsigned wrap, the value will never be less than its 3964 // initial value. 3965 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3966 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3967 if (!C->getValue()->isZero()) 3968 ConservativeResult = 3969 ConservativeResult.intersectWith( 3970 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3971 3972 // If there's no signed wrap, and all the operands have the same sign or 3973 // zero, the value won't ever change sign. 3974 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3975 bool AllNonNeg = true; 3976 bool AllNonPos = true; 3977 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3978 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3979 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3980 } 3981 if (AllNonNeg) 3982 ConservativeResult = ConservativeResult.intersectWith( 3983 ConstantRange(APInt(BitWidth, 0), 3984 APInt::getSignedMinValue(BitWidth))); 3985 else if (AllNonPos) 3986 ConservativeResult = ConservativeResult.intersectWith( 3987 ConstantRange(APInt::getSignedMinValue(BitWidth), 3988 APInt(BitWidth, 1))); 3989 } 3990 3991 // TODO: non-affine addrec 3992 if (AddRec->isAffine()) { 3993 Type *Ty = AddRec->getType(); 3994 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3995 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3996 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3997 3998 // Check for overflow. This must be done with ConstantRange arithmetic 3999 // because we could be called from within the ScalarEvolution overflow 4000 // checking code. 4001 4002 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4003 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4004 ConstantRange ZExtMaxBECountRange = 4005 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4006 4007 const SCEV *Start = AddRec->getStart(); 4008 const SCEV *Step = AddRec->getStepRecurrence(*this); 4009 ConstantRange StepSRange = getSignedRange(Step); 4010 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4011 4012 ConstantRange StartURange = getUnsignedRange(Start); 4013 ConstantRange EndURange = 4014 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4015 4016 // Check for unsigned overflow. 4017 ConstantRange ZExtStartURange = 4018 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4019 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4020 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4021 ZExtEndURange) { 4022 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4023 EndURange.getUnsignedMin()); 4024 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4025 EndURange.getUnsignedMax()); 4026 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4027 if (!IsFullRange) 4028 ConservativeResult = 4029 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4030 } 4031 4032 ConstantRange StartSRange = getSignedRange(Start); 4033 ConstantRange EndSRange = 4034 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4035 4036 // Check for signed overflow. This must be done with ConstantRange 4037 // arithmetic because we could be called from within the ScalarEvolution 4038 // overflow checking code. 4039 ConstantRange SExtStartSRange = 4040 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4041 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4042 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4043 SExtEndSRange) { 4044 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4045 EndSRange.getSignedMin()); 4046 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4047 EndSRange.getSignedMax()); 4048 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4049 if (!IsFullRange) 4050 ConservativeResult = 4051 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4052 } 4053 } 4054 } 4055 4056 return setRange(AddRec, SignHint, ConservativeResult); 4057 } 4058 4059 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4060 // Check if the IR explicitly contains !range metadata. 4061 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4062 if (MDRange.hasValue()) 4063 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4064 4065 // Split here to avoid paying the compile-time cost of calling both 4066 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4067 // if needed. 4068 const DataLayout &DL = F->getParent()->getDataLayout(); 4069 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4070 // For a SCEVUnknown, ask ValueTracking. 4071 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4072 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT); 4073 if (Ones != ~Zeros + 1) 4074 ConservativeResult = 4075 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4076 } else { 4077 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4078 "generalize as needed!"); 4079 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT); 4080 if (NS > 1) 4081 ConservativeResult = ConservativeResult.intersectWith( 4082 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4083 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4084 } 4085 4086 return setRange(U, SignHint, ConservativeResult); 4087 } 4088 4089 return setRange(S, SignHint, ConservativeResult); 4090 } 4091 4092 /// createSCEV - We know that there is no SCEV for the specified value. 4093 /// Analyze the expression. 4094 /// 4095 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4096 if (!isSCEVable(V->getType())) 4097 return getUnknown(V); 4098 4099 unsigned Opcode = Instruction::UserOp1; 4100 if (Instruction *I = dyn_cast<Instruction>(V)) { 4101 Opcode = I->getOpcode(); 4102 4103 // Don't attempt to analyze instructions in blocks that aren't 4104 // reachable. Such instructions don't matter, and they aren't required 4105 // to obey basic rules for definitions dominating uses which this 4106 // analysis depends on. 4107 if (!DT->isReachableFromEntry(I->getParent())) 4108 return getUnknown(V); 4109 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4110 Opcode = CE->getOpcode(); 4111 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4112 return getConstant(CI); 4113 else if (isa<ConstantPointerNull>(V)) 4114 return getConstant(V->getType(), 0); 4115 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4116 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4117 else 4118 return getUnknown(V); 4119 4120 Operator *U = cast<Operator>(V); 4121 switch (Opcode) { 4122 case Instruction::Add: { 4123 // The simple thing to do would be to just call getSCEV on both operands 4124 // and call getAddExpr with the result. However if we're looking at a 4125 // bunch of things all added together, this can be quite inefficient, 4126 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4127 // Instead, gather up all the operands and make a single getAddExpr call. 4128 // LLVM IR canonical form means we need only traverse the left operands. 4129 // 4130 // Don't apply this instruction's NSW or NUW flags to the new 4131 // expression. The instruction may be guarded by control flow that the 4132 // no-wrap behavior depends on. Non-control-equivalent instructions can be 4133 // mapped to the same SCEV expression, and it would be incorrect to transfer 4134 // NSW/NUW semantics to those operations. 4135 SmallVector<const SCEV *, 4> AddOps; 4136 AddOps.push_back(getSCEV(U->getOperand(1))); 4137 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 4138 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 4139 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 4140 break; 4141 U = cast<Operator>(Op); 4142 const SCEV *Op1 = getSCEV(U->getOperand(1)); 4143 if (Opcode == Instruction::Sub) 4144 AddOps.push_back(getNegativeSCEV(Op1)); 4145 else 4146 AddOps.push_back(Op1); 4147 } 4148 AddOps.push_back(getSCEV(U->getOperand(0))); 4149 return getAddExpr(AddOps); 4150 } 4151 case Instruction::Mul: { 4152 // Don't transfer NSW/NUW for the same reason as AddExpr. 4153 SmallVector<const SCEV *, 4> MulOps; 4154 MulOps.push_back(getSCEV(U->getOperand(1))); 4155 for (Value *Op = U->getOperand(0); 4156 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 4157 Op = U->getOperand(0)) { 4158 U = cast<Operator>(Op); 4159 MulOps.push_back(getSCEV(U->getOperand(1))); 4160 } 4161 MulOps.push_back(getSCEV(U->getOperand(0))); 4162 return getMulExpr(MulOps); 4163 } 4164 case Instruction::UDiv: 4165 return getUDivExpr(getSCEV(U->getOperand(0)), 4166 getSCEV(U->getOperand(1))); 4167 case Instruction::Sub: 4168 return getMinusSCEV(getSCEV(U->getOperand(0)), 4169 getSCEV(U->getOperand(1))); 4170 case Instruction::And: 4171 // For an expression like x&255 that merely masks off the high bits, 4172 // use zext(trunc(x)) as the SCEV expression. 4173 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4174 if (CI->isNullValue()) 4175 return getSCEV(U->getOperand(1)); 4176 if (CI->isAllOnesValue()) 4177 return getSCEV(U->getOperand(0)); 4178 const APInt &A = CI->getValue(); 4179 4180 // Instcombine's ShrinkDemandedConstant may strip bits out of 4181 // constants, obscuring what would otherwise be a low-bits mask. 4182 // Use computeKnownBits to compute what ShrinkDemandedConstant 4183 // knew about to reconstruct a low-bits mask value. 4184 unsigned LZ = A.countLeadingZeros(); 4185 unsigned TZ = A.countTrailingZeros(); 4186 unsigned BitWidth = A.getBitWidth(); 4187 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4188 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4189 F->getParent()->getDataLayout(), 0, AC, nullptr, DT); 4190 4191 APInt EffectiveMask = 4192 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4193 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4194 const SCEV *MulCount = getConstant( 4195 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4196 return getMulExpr( 4197 getZeroExtendExpr( 4198 getTruncateExpr( 4199 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4200 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4201 U->getType()), 4202 MulCount); 4203 } 4204 } 4205 break; 4206 4207 case Instruction::Or: 4208 // If the RHS of the Or is a constant, we may have something like: 4209 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4210 // optimizations will transparently handle this case. 4211 // 4212 // In order for this transformation to be safe, the LHS must be of the 4213 // form X*(2^n) and the Or constant must be less than 2^n. 4214 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4215 const SCEV *LHS = getSCEV(U->getOperand(0)); 4216 const APInt &CIVal = CI->getValue(); 4217 if (GetMinTrailingZeros(LHS) >= 4218 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4219 // Build a plain add SCEV. 4220 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4221 // If the LHS of the add was an addrec and it has no-wrap flags, 4222 // transfer the no-wrap flags, since an or won't introduce a wrap. 4223 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4224 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4225 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4226 OldAR->getNoWrapFlags()); 4227 } 4228 return S; 4229 } 4230 } 4231 break; 4232 case Instruction::Xor: 4233 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4234 // If the RHS of the xor is a signbit, then this is just an add. 4235 // Instcombine turns add of signbit into xor as a strength reduction step. 4236 if (CI->getValue().isSignBit()) 4237 return getAddExpr(getSCEV(U->getOperand(0)), 4238 getSCEV(U->getOperand(1))); 4239 4240 // If the RHS of xor is -1, then this is a not operation. 4241 if (CI->isAllOnesValue()) 4242 return getNotSCEV(getSCEV(U->getOperand(0))); 4243 4244 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4245 // This is a variant of the check for xor with -1, and it handles 4246 // the case where instcombine has trimmed non-demanded bits out 4247 // of an xor with -1. 4248 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4249 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4250 if (BO->getOpcode() == Instruction::And && 4251 LCI->getValue() == CI->getValue()) 4252 if (const SCEVZeroExtendExpr *Z = 4253 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4254 Type *UTy = U->getType(); 4255 const SCEV *Z0 = Z->getOperand(); 4256 Type *Z0Ty = Z0->getType(); 4257 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4258 4259 // If C is a low-bits mask, the zero extend is serving to 4260 // mask off the high bits. Complement the operand and 4261 // re-apply the zext. 4262 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4263 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4264 4265 // If C is a single bit, it may be in the sign-bit position 4266 // before the zero-extend. In this case, represent the xor 4267 // using an add, which is equivalent, and re-apply the zext. 4268 APInt Trunc = CI->getValue().trunc(Z0TySize); 4269 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4270 Trunc.isSignBit()) 4271 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4272 UTy); 4273 } 4274 } 4275 break; 4276 4277 case Instruction::Shl: 4278 // Turn shift left of a constant amount into a multiply. 4279 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4280 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4281 4282 // If the shift count is not less than the bitwidth, the result of 4283 // the shift is undefined. Don't try to analyze it, because the 4284 // resolution chosen here may differ from the resolution chosen in 4285 // other parts of the compiler. 4286 if (SA->getValue().uge(BitWidth)) 4287 break; 4288 4289 Constant *X = ConstantInt::get(getContext(), 4290 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4291 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4292 } 4293 break; 4294 4295 case Instruction::LShr: 4296 // Turn logical shift right of a constant into a unsigned divide. 4297 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4298 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4299 4300 // If the shift count is not less than the bitwidth, the result of 4301 // the shift is undefined. Don't try to analyze it, because the 4302 // resolution chosen here may differ from the resolution chosen in 4303 // other parts of the compiler. 4304 if (SA->getValue().uge(BitWidth)) 4305 break; 4306 4307 Constant *X = ConstantInt::get(getContext(), 4308 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4309 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4310 } 4311 break; 4312 4313 case Instruction::AShr: 4314 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4315 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4316 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4317 if (L->getOpcode() == Instruction::Shl && 4318 L->getOperand(1) == U->getOperand(1)) { 4319 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4320 4321 // If the shift count is not less than the bitwidth, the result of 4322 // the shift is undefined. Don't try to analyze it, because the 4323 // resolution chosen here may differ from the resolution chosen in 4324 // other parts of the compiler. 4325 if (CI->getValue().uge(BitWidth)) 4326 break; 4327 4328 uint64_t Amt = BitWidth - CI->getZExtValue(); 4329 if (Amt == BitWidth) 4330 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4331 return 4332 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4333 IntegerType::get(getContext(), 4334 Amt)), 4335 U->getType()); 4336 } 4337 break; 4338 4339 case Instruction::Trunc: 4340 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4341 4342 case Instruction::ZExt: 4343 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4344 4345 case Instruction::SExt: 4346 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4347 4348 case Instruction::BitCast: 4349 // BitCasts are no-op casts so we just eliminate the cast. 4350 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4351 return getSCEV(U->getOperand(0)); 4352 break; 4353 4354 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4355 // lead to pointer expressions which cannot safely be expanded to GEPs, 4356 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4357 // simplifying integer expressions. 4358 4359 case Instruction::GetElementPtr: 4360 return createNodeForGEP(cast<GEPOperator>(U)); 4361 4362 case Instruction::PHI: 4363 return createNodeForPHI(cast<PHINode>(U)); 4364 4365 case Instruction::Select: 4366 // This could be a smax or umax that was lowered earlier. 4367 // Try to recover it. 4368 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 4369 Value *LHS = ICI->getOperand(0); 4370 Value *RHS = ICI->getOperand(1); 4371 switch (ICI->getPredicate()) { 4372 case ICmpInst::ICMP_SLT: 4373 case ICmpInst::ICMP_SLE: 4374 std::swap(LHS, RHS); 4375 // fall through 4376 case ICmpInst::ICMP_SGT: 4377 case ICmpInst::ICMP_SGE: 4378 // a >s b ? a+x : b+x -> smax(a, b)+x 4379 // a >s b ? b+x : a+x -> smin(a, b)+x 4380 if (getTypeSizeInBits(LHS->getType()) <= 4381 getTypeSizeInBits(U->getType())) { 4382 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType()); 4383 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType()); 4384 const SCEV *LA = getSCEV(U->getOperand(1)); 4385 const SCEV *RA = getSCEV(U->getOperand(2)); 4386 const SCEV *LDiff = getMinusSCEV(LA, LS); 4387 const SCEV *RDiff = getMinusSCEV(RA, RS); 4388 if (LDiff == RDiff) 4389 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4390 LDiff = getMinusSCEV(LA, RS); 4391 RDiff = getMinusSCEV(RA, LS); 4392 if (LDiff == RDiff) 4393 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4394 } 4395 break; 4396 case ICmpInst::ICMP_ULT: 4397 case ICmpInst::ICMP_ULE: 4398 std::swap(LHS, RHS); 4399 // fall through 4400 case ICmpInst::ICMP_UGT: 4401 case ICmpInst::ICMP_UGE: 4402 // a >u b ? a+x : b+x -> umax(a, b)+x 4403 // a >u b ? b+x : a+x -> umin(a, b)+x 4404 if (getTypeSizeInBits(LHS->getType()) <= 4405 getTypeSizeInBits(U->getType())) { 4406 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4407 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType()); 4408 const SCEV *LA = getSCEV(U->getOperand(1)); 4409 const SCEV *RA = getSCEV(U->getOperand(2)); 4410 const SCEV *LDiff = getMinusSCEV(LA, LS); 4411 const SCEV *RDiff = getMinusSCEV(RA, RS); 4412 if (LDiff == RDiff) 4413 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4414 LDiff = getMinusSCEV(LA, RS); 4415 RDiff = getMinusSCEV(RA, LS); 4416 if (LDiff == RDiff) 4417 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4418 } 4419 break; 4420 case ICmpInst::ICMP_NE: 4421 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4422 if (getTypeSizeInBits(LHS->getType()) <= 4423 getTypeSizeInBits(U->getType()) && 4424 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4425 const SCEV *One = getConstant(U->getType(), 1); 4426 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4427 const SCEV *LA = getSCEV(U->getOperand(1)); 4428 const SCEV *RA = getSCEV(U->getOperand(2)); 4429 const SCEV *LDiff = getMinusSCEV(LA, LS); 4430 const SCEV *RDiff = getMinusSCEV(RA, One); 4431 if (LDiff == RDiff) 4432 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4433 } 4434 break; 4435 case ICmpInst::ICMP_EQ: 4436 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4437 if (getTypeSizeInBits(LHS->getType()) <= 4438 getTypeSizeInBits(U->getType()) && 4439 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4440 const SCEV *One = getConstant(U->getType(), 1); 4441 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4442 const SCEV *LA = getSCEV(U->getOperand(1)); 4443 const SCEV *RA = getSCEV(U->getOperand(2)); 4444 const SCEV *LDiff = getMinusSCEV(LA, One); 4445 const SCEV *RDiff = getMinusSCEV(RA, LS); 4446 if (LDiff == RDiff) 4447 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4448 } 4449 break; 4450 default: 4451 break; 4452 } 4453 } 4454 4455 default: // We cannot analyze this expression. 4456 break; 4457 } 4458 4459 return getUnknown(V); 4460 } 4461 4462 4463 4464 //===----------------------------------------------------------------------===// 4465 // Iteration Count Computation Code 4466 // 4467 4468 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4469 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4470 return getSmallConstantTripCount(L, ExitingBB); 4471 4472 // No trip count information for multiple exits. 4473 return 0; 4474 } 4475 4476 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4477 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4478 /// constant. Will also return 0 if the maximum trip count is very large (>= 4479 /// 2^32). 4480 /// 4481 /// This "trip count" assumes that control exits via ExitingBlock. More 4482 /// precisely, it is the number of times that control may reach ExitingBlock 4483 /// before taking the branch. For loops with multiple exits, it may not be the 4484 /// number times that the loop header executes because the loop may exit 4485 /// prematurely via another branch. 4486 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4487 BasicBlock *ExitingBlock) { 4488 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4489 assert(L->isLoopExiting(ExitingBlock) && 4490 "Exiting block must actually branch out of the loop!"); 4491 const SCEVConstant *ExitCount = 4492 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4493 if (!ExitCount) 4494 return 0; 4495 4496 ConstantInt *ExitConst = ExitCount->getValue(); 4497 4498 // Guard against huge trip counts. 4499 if (ExitConst->getValue().getActiveBits() > 32) 4500 return 0; 4501 4502 // In case of integer overflow, this returns 0, which is correct. 4503 return ((unsigned)ExitConst->getZExtValue()) + 1; 4504 } 4505 4506 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4507 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4508 return getSmallConstantTripMultiple(L, ExitingBB); 4509 4510 // No trip multiple information for multiple exits. 4511 return 0; 4512 } 4513 4514 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4515 /// trip count of this loop as a normal unsigned value, if possible. This 4516 /// means that the actual trip count is always a multiple of the returned 4517 /// value (don't forget the trip count could very well be zero as well!). 4518 /// 4519 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4520 /// multiple of a constant (which is also the case if the trip count is simply 4521 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4522 /// if the trip count is very large (>= 2^32). 4523 /// 4524 /// As explained in the comments for getSmallConstantTripCount, this assumes 4525 /// that control exits the loop via ExitingBlock. 4526 unsigned 4527 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4528 BasicBlock *ExitingBlock) { 4529 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4530 assert(L->isLoopExiting(ExitingBlock) && 4531 "Exiting block must actually branch out of the loop!"); 4532 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4533 if (ExitCount == getCouldNotCompute()) 4534 return 1; 4535 4536 // Get the trip count from the BE count by adding 1. 4537 const SCEV *TCMul = getAddExpr(ExitCount, 4538 getConstant(ExitCount->getType(), 1)); 4539 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4540 // to factor simple cases. 4541 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4542 TCMul = Mul->getOperand(0); 4543 4544 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4545 if (!MulC) 4546 return 1; 4547 4548 ConstantInt *Result = MulC->getValue(); 4549 4550 // Guard against huge trip counts (this requires checking 4551 // for zero to handle the case where the trip count == -1 and the 4552 // addition wraps). 4553 if (!Result || Result->getValue().getActiveBits() > 32 || 4554 Result->getValue().getActiveBits() == 0) 4555 return 1; 4556 4557 return (unsigned)Result->getZExtValue(); 4558 } 4559 4560 // getExitCount - Get the expression for the number of loop iterations for which 4561 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4562 // SCEVCouldNotCompute. 4563 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4564 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4565 } 4566 4567 /// getBackedgeTakenCount - If the specified loop has a predictable 4568 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4569 /// object. The backedge-taken count is the number of times the loop header 4570 /// will be branched to from within the loop. This is one less than the 4571 /// trip count of the loop, since it doesn't count the first iteration, 4572 /// when the header is branched to from outside the loop. 4573 /// 4574 /// Note that it is not valid to call this method on a loop without a 4575 /// loop-invariant backedge-taken count (see 4576 /// hasLoopInvariantBackedgeTakenCount). 4577 /// 4578 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4579 return getBackedgeTakenInfo(L).getExact(this); 4580 } 4581 4582 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4583 /// return the least SCEV value that is known never to be less than the 4584 /// actual backedge taken count. 4585 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4586 return getBackedgeTakenInfo(L).getMax(this); 4587 } 4588 4589 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4590 /// onto the given Worklist. 4591 static void 4592 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4593 BasicBlock *Header = L->getHeader(); 4594 4595 // Push all Loop-header PHIs onto the Worklist stack. 4596 for (BasicBlock::iterator I = Header->begin(); 4597 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4598 Worklist.push_back(PN); 4599 } 4600 4601 const ScalarEvolution::BackedgeTakenInfo & 4602 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4603 // Initially insert an invalid entry for this loop. If the insertion 4604 // succeeds, proceed to actually compute a backedge-taken count and 4605 // update the value. The temporary CouldNotCompute value tells SCEV 4606 // code elsewhere that it shouldn't attempt to request a new 4607 // backedge-taken count, which could result in infinite recursion. 4608 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4609 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4610 if (!Pair.second) 4611 return Pair.first->second; 4612 4613 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4614 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4615 // must be cleared in this scope. 4616 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4617 4618 if (Result.getExact(this) != getCouldNotCompute()) { 4619 assert(isLoopInvariant(Result.getExact(this), L) && 4620 isLoopInvariant(Result.getMax(this), L) && 4621 "Computed backedge-taken count isn't loop invariant for loop!"); 4622 ++NumTripCountsComputed; 4623 } 4624 else if (Result.getMax(this) == getCouldNotCompute() && 4625 isa<PHINode>(L->getHeader()->begin())) { 4626 // Only count loops that have phi nodes as not being computable. 4627 ++NumTripCountsNotComputed; 4628 } 4629 4630 // Now that we know more about the trip count for this loop, forget any 4631 // existing SCEV values for PHI nodes in this loop since they are only 4632 // conservative estimates made without the benefit of trip count 4633 // information. This is similar to the code in forgetLoop, except that 4634 // it handles SCEVUnknown PHI nodes specially. 4635 if (Result.hasAnyInfo()) { 4636 SmallVector<Instruction *, 16> Worklist; 4637 PushLoopPHIs(L, Worklist); 4638 4639 SmallPtrSet<Instruction *, 8> Visited; 4640 while (!Worklist.empty()) { 4641 Instruction *I = Worklist.pop_back_val(); 4642 if (!Visited.insert(I).second) 4643 continue; 4644 4645 ValueExprMapType::iterator It = 4646 ValueExprMap.find_as(static_cast<Value *>(I)); 4647 if (It != ValueExprMap.end()) { 4648 const SCEV *Old = It->second; 4649 4650 // SCEVUnknown for a PHI either means that it has an unrecognized 4651 // structure, or it's a PHI that's in the progress of being computed 4652 // by createNodeForPHI. In the former case, additional loop trip 4653 // count information isn't going to change anything. In the later 4654 // case, createNodeForPHI will perform the necessary updates on its 4655 // own when it gets to that point. 4656 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4657 forgetMemoizedResults(Old); 4658 ValueExprMap.erase(It); 4659 } 4660 if (PHINode *PN = dyn_cast<PHINode>(I)) 4661 ConstantEvolutionLoopExitValue.erase(PN); 4662 } 4663 4664 PushDefUseChildren(I, Worklist); 4665 } 4666 } 4667 4668 // Re-lookup the insert position, since the call to 4669 // ComputeBackedgeTakenCount above could result in a 4670 // recusive call to getBackedgeTakenInfo (on a different 4671 // loop), which would invalidate the iterator computed 4672 // earlier. 4673 return BackedgeTakenCounts.find(L)->second = Result; 4674 } 4675 4676 /// forgetLoop - This method should be called by the client when it has 4677 /// changed a loop in a way that may effect ScalarEvolution's ability to 4678 /// compute a trip count, or if the loop is deleted. 4679 void ScalarEvolution::forgetLoop(const Loop *L) { 4680 // Drop any stored trip count value. 4681 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4682 BackedgeTakenCounts.find(L); 4683 if (BTCPos != BackedgeTakenCounts.end()) { 4684 BTCPos->second.clear(); 4685 BackedgeTakenCounts.erase(BTCPos); 4686 } 4687 4688 // Drop information about expressions based on loop-header PHIs. 4689 SmallVector<Instruction *, 16> Worklist; 4690 PushLoopPHIs(L, Worklist); 4691 4692 SmallPtrSet<Instruction *, 8> Visited; 4693 while (!Worklist.empty()) { 4694 Instruction *I = Worklist.pop_back_val(); 4695 if (!Visited.insert(I).second) 4696 continue; 4697 4698 ValueExprMapType::iterator It = 4699 ValueExprMap.find_as(static_cast<Value *>(I)); 4700 if (It != ValueExprMap.end()) { 4701 forgetMemoizedResults(It->second); 4702 ValueExprMap.erase(It); 4703 if (PHINode *PN = dyn_cast<PHINode>(I)) 4704 ConstantEvolutionLoopExitValue.erase(PN); 4705 } 4706 4707 PushDefUseChildren(I, Worklist); 4708 } 4709 4710 // Forget all contained loops too, to avoid dangling entries in the 4711 // ValuesAtScopes map. 4712 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4713 forgetLoop(*I); 4714 } 4715 4716 /// forgetValue - This method should be called by the client when it has 4717 /// changed a value in a way that may effect its value, or which may 4718 /// disconnect it from a def-use chain linking it to a loop. 4719 void ScalarEvolution::forgetValue(Value *V) { 4720 Instruction *I = dyn_cast<Instruction>(V); 4721 if (!I) return; 4722 4723 // Drop information about expressions based on loop-header PHIs. 4724 SmallVector<Instruction *, 16> Worklist; 4725 Worklist.push_back(I); 4726 4727 SmallPtrSet<Instruction *, 8> Visited; 4728 while (!Worklist.empty()) { 4729 I = Worklist.pop_back_val(); 4730 if (!Visited.insert(I).second) 4731 continue; 4732 4733 ValueExprMapType::iterator It = 4734 ValueExprMap.find_as(static_cast<Value *>(I)); 4735 if (It != ValueExprMap.end()) { 4736 forgetMemoizedResults(It->second); 4737 ValueExprMap.erase(It); 4738 if (PHINode *PN = dyn_cast<PHINode>(I)) 4739 ConstantEvolutionLoopExitValue.erase(PN); 4740 } 4741 4742 PushDefUseChildren(I, Worklist); 4743 } 4744 } 4745 4746 /// getExact - Get the exact loop backedge taken count considering all loop 4747 /// exits. A computable result can only be return for loops with a single exit. 4748 /// Returning the minimum taken count among all exits is incorrect because one 4749 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4750 /// the limit of each loop test is never skipped. This is a valid assumption as 4751 /// long as the loop exits via that test. For precise results, it is the 4752 /// caller's responsibility to specify the relevant loop exit using 4753 /// getExact(ExitingBlock, SE). 4754 const SCEV * 4755 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4756 // If any exits were not computable, the loop is not computable. 4757 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4758 4759 // We need exactly one computable exit. 4760 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4761 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4762 4763 const SCEV *BECount = nullptr; 4764 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4765 ENT != nullptr; ENT = ENT->getNextExit()) { 4766 4767 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4768 4769 if (!BECount) 4770 BECount = ENT->ExactNotTaken; 4771 else if (BECount != ENT->ExactNotTaken) 4772 return SE->getCouldNotCompute(); 4773 } 4774 assert(BECount && "Invalid not taken count for loop exit"); 4775 return BECount; 4776 } 4777 4778 /// getExact - Get the exact not taken count for this loop exit. 4779 const SCEV * 4780 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4781 ScalarEvolution *SE) const { 4782 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4783 ENT != nullptr; ENT = ENT->getNextExit()) { 4784 4785 if (ENT->ExitingBlock == ExitingBlock) 4786 return ENT->ExactNotTaken; 4787 } 4788 return SE->getCouldNotCompute(); 4789 } 4790 4791 /// getMax - Get the max backedge taken count for the loop. 4792 const SCEV * 4793 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4794 return Max ? Max : SE->getCouldNotCompute(); 4795 } 4796 4797 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4798 ScalarEvolution *SE) const { 4799 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4800 return true; 4801 4802 if (!ExitNotTaken.ExitingBlock) 4803 return false; 4804 4805 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4806 ENT != nullptr; ENT = ENT->getNextExit()) { 4807 4808 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4809 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4810 return true; 4811 } 4812 } 4813 return false; 4814 } 4815 4816 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4817 /// computable exit into a persistent ExitNotTakenInfo array. 4818 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4819 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4820 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4821 4822 if (!Complete) 4823 ExitNotTaken.setIncomplete(); 4824 4825 unsigned NumExits = ExitCounts.size(); 4826 if (NumExits == 0) return; 4827 4828 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4829 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4830 if (NumExits == 1) return; 4831 4832 // Handle the rare case of multiple computable exits. 4833 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4834 4835 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4836 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4837 PrevENT->setNextExit(ENT); 4838 ENT->ExitingBlock = ExitCounts[i].first; 4839 ENT->ExactNotTaken = ExitCounts[i].second; 4840 } 4841 } 4842 4843 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4844 void ScalarEvolution::BackedgeTakenInfo::clear() { 4845 ExitNotTaken.ExitingBlock = nullptr; 4846 ExitNotTaken.ExactNotTaken = nullptr; 4847 delete[] ExitNotTaken.getNextExit(); 4848 } 4849 4850 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4851 /// of the specified loop will execute. 4852 ScalarEvolution::BackedgeTakenInfo 4853 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4854 SmallVector<BasicBlock *, 8> ExitingBlocks; 4855 L->getExitingBlocks(ExitingBlocks); 4856 4857 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4858 bool CouldComputeBECount = true; 4859 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4860 const SCEV *MustExitMaxBECount = nullptr; 4861 const SCEV *MayExitMaxBECount = nullptr; 4862 4863 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 4864 // and compute maxBECount. 4865 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4866 BasicBlock *ExitBB = ExitingBlocks[i]; 4867 ExitLimit EL = ComputeExitLimit(L, ExitBB); 4868 4869 // 1. For each exit that can be computed, add an entry to ExitCounts. 4870 // CouldComputeBECount is true only if all exits can be computed. 4871 if (EL.Exact == getCouldNotCompute()) 4872 // We couldn't compute an exact value for this exit, so 4873 // we won't be able to compute an exact value for the loop. 4874 CouldComputeBECount = false; 4875 else 4876 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 4877 4878 // 2. Derive the loop's MaxBECount from each exit's max number of 4879 // non-exiting iterations. Partition the loop exits into two kinds: 4880 // LoopMustExits and LoopMayExits. 4881 // 4882 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 4883 // is a LoopMayExit. If any computable LoopMustExit is found, then 4884 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 4885 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 4886 // considered greater than any computable EL.Max. 4887 if (EL.Max != getCouldNotCompute() && Latch && 4888 DT->dominates(ExitBB, Latch)) { 4889 if (!MustExitMaxBECount) 4890 MustExitMaxBECount = EL.Max; 4891 else { 4892 MustExitMaxBECount = 4893 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 4894 } 4895 } else if (MayExitMaxBECount != getCouldNotCompute()) { 4896 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 4897 MayExitMaxBECount = EL.Max; 4898 else { 4899 MayExitMaxBECount = 4900 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 4901 } 4902 } 4903 } 4904 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 4905 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 4906 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4907 } 4908 4909 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4910 /// loop will execute if it exits via the specified block. 4911 ScalarEvolution::ExitLimit 4912 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4913 4914 // Okay, we've chosen an exiting block. See what condition causes us to 4915 // exit at this block and remember the exit block and whether all other targets 4916 // lead to the loop header. 4917 bool MustExecuteLoopHeader = true; 4918 BasicBlock *Exit = nullptr; 4919 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 4920 SI != SE; ++SI) 4921 if (!L->contains(*SI)) { 4922 if (Exit) // Multiple exit successors. 4923 return getCouldNotCompute(); 4924 Exit = *SI; 4925 } else if (*SI != L->getHeader()) { 4926 MustExecuteLoopHeader = false; 4927 } 4928 4929 // At this point, we know we have a conditional branch that determines whether 4930 // the loop is exited. However, we don't know if the branch is executed each 4931 // time through the loop. If not, then the execution count of the branch will 4932 // not be equal to the trip count of the loop. 4933 // 4934 // Currently we check for this by checking to see if the Exit branch goes to 4935 // the loop header. If so, we know it will always execute the same number of 4936 // times as the loop. We also handle the case where the exit block *is* the 4937 // loop header. This is common for un-rotated loops. 4938 // 4939 // If both of those tests fail, walk up the unique predecessor chain to the 4940 // header, stopping if there is an edge that doesn't exit the loop. If the 4941 // header is reached, the execution count of the branch will be equal to the 4942 // trip count of the loop. 4943 // 4944 // More extensive analysis could be done to handle more cases here. 4945 // 4946 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 4947 // The simple checks failed, try climbing the unique predecessor chain 4948 // up to the header. 4949 bool Ok = false; 4950 for (BasicBlock *BB = ExitingBlock; BB; ) { 4951 BasicBlock *Pred = BB->getUniquePredecessor(); 4952 if (!Pred) 4953 return getCouldNotCompute(); 4954 TerminatorInst *PredTerm = Pred->getTerminator(); 4955 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4956 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4957 if (PredSucc == BB) 4958 continue; 4959 // If the predecessor has a successor that isn't BB and isn't 4960 // outside the loop, assume the worst. 4961 if (L->contains(PredSucc)) 4962 return getCouldNotCompute(); 4963 } 4964 if (Pred == L->getHeader()) { 4965 Ok = true; 4966 break; 4967 } 4968 BB = Pred; 4969 } 4970 if (!Ok) 4971 return getCouldNotCompute(); 4972 } 4973 4974 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 4975 TerminatorInst *Term = ExitingBlock->getTerminator(); 4976 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 4977 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 4978 // Proceed to the next level to examine the exit condition expression. 4979 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 4980 BI->getSuccessor(1), 4981 /*ControlsExit=*/IsOnlyExit); 4982 } 4983 4984 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 4985 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 4986 /*ControlsExit=*/IsOnlyExit); 4987 4988 return getCouldNotCompute(); 4989 } 4990 4991 /// ComputeExitLimitFromCond - Compute the number of times the 4992 /// backedge of the specified loop will execute if its exit condition 4993 /// were a conditional branch of ExitCond, TBB, and FBB. 4994 /// 4995 /// @param ControlsExit is true if ExitCond directly controls the exit 4996 /// branch. In this case, we can assume that the loop exits only if the 4997 /// condition is true and can infer that failing to meet the condition prior to 4998 /// integer wraparound results in undefined behavior. 4999 ScalarEvolution::ExitLimit 5000 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 5001 Value *ExitCond, 5002 BasicBlock *TBB, 5003 BasicBlock *FBB, 5004 bool ControlsExit) { 5005 // Check if the controlling expression for this loop is an And or Or. 5006 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5007 if (BO->getOpcode() == Instruction::And) { 5008 // Recurse on the operands of the and. 5009 bool EitherMayExit = L->contains(TBB); 5010 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5011 ControlsExit && !EitherMayExit); 5012 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5013 ControlsExit && !EitherMayExit); 5014 const SCEV *BECount = getCouldNotCompute(); 5015 const SCEV *MaxBECount = getCouldNotCompute(); 5016 if (EitherMayExit) { 5017 // Both conditions must be true for the loop to continue executing. 5018 // Choose the less conservative count. 5019 if (EL0.Exact == getCouldNotCompute() || 5020 EL1.Exact == getCouldNotCompute()) 5021 BECount = getCouldNotCompute(); 5022 else 5023 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5024 if (EL0.Max == getCouldNotCompute()) 5025 MaxBECount = EL1.Max; 5026 else if (EL1.Max == getCouldNotCompute()) 5027 MaxBECount = EL0.Max; 5028 else 5029 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5030 } else { 5031 // Both conditions must be true at the same time for the loop to exit. 5032 // For now, be conservative. 5033 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5034 if (EL0.Max == EL1.Max) 5035 MaxBECount = EL0.Max; 5036 if (EL0.Exact == EL1.Exact) 5037 BECount = EL0.Exact; 5038 } 5039 5040 return ExitLimit(BECount, MaxBECount); 5041 } 5042 if (BO->getOpcode() == Instruction::Or) { 5043 // Recurse on the operands of the or. 5044 bool EitherMayExit = L->contains(FBB); 5045 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5046 ControlsExit && !EitherMayExit); 5047 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5048 ControlsExit && !EitherMayExit); 5049 const SCEV *BECount = getCouldNotCompute(); 5050 const SCEV *MaxBECount = getCouldNotCompute(); 5051 if (EitherMayExit) { 5052 // Both conditions must be false for the loop to continue executing. 5053 // Choose the less conservative count. 5054 if (EL0.Exact == getCouldNotCompute() || 5055 EL1.Exact == getCouldNotCompute()) 5056 BECount = getCouldNotCompute(); 5057 else 5058 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5059 if (EL0.Max == getCouldNotCompute()) 5060 MaxBECount = EL1.Max; 5061 else if (EL1.Max == getCouldNotCompute()) 5062 MaxBECount = EL0.Max; 5063 else 5064 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5065 } else { 5066 // Both conditions must be false at the same time for the loop to exit. 5067 // For now, be conservative. 5068 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5069 if (EL0.Max == EL1.Max) 5070 MaxBECount = EL0.Max; 5071 if (EL0.Exact == EL1.Exact) 5072 BECount = EL0.Exact; 5073 } 5074 5075 return ExitLimit(BECount, MaxBECount); 5076 } 5077 } 5078 5079 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5080 // Proceed to the next level to examine the icmp. 5081 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5082 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5083 5084 // Check for a constant condition. These are normally stripped out by 5085 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5086 // preserve the CFG and is temporarily leaving constant conditions 5087 // in place. 5088 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5089 if (L->contains(FBB) == !CI->getZExtValue()) 5090 // The backedge is always taken. 5091 return getCouldNotCompute(); 5092 else 5093 // The backedge is never taken. 5094 return getConstant(CI->getType(), 0); 5095 } 5096 5097 // If it's not an integer or pointer comparison then compute it the hard way. 5098 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5099 } 5100 5101 /// ComputeExitLimitFromICmp - Compute the number of times the 5102 /// backedge of the specified loop will execute if its exit condition 5103 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 5104 ScalarEvolution::ExitLimit 5105 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 5106 ICmpInst *ExitCond, 5107 BasicBlock *TBB, 5108 BasicBlock *FBB, 5109 bool ControlsExit) { 5110 5111 // If the condition was exit on true, convert the condition to exit on false 5112 ICmpInst::Predicate Cond; 5113 if (!L->contains(FBB)) 5114 Cond = ExitCond->getPredicate(); 5115 else 5116 Cond = ExitCond->getInversePredicate(); 5117 5118 // Handle common loops like: for (X = "string"; *X; ++X) 5119 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5120 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5121 ExitLimit ItCnt = 5122 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5123 if (ItCnt.hasAnyInfo()) 5124 return ItCnt; 5125 } 5126 5127 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5128 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5129 5130 // Try to evaluate any dependencies out of the loop. 5131 LHS = getSCEVAtScope(LHS, L); 5132 RHS = getSCEVAtScope(RHS, L); 5133 5134 // At this point, we would like to compute how many iterations of the 5135 // loop the predicate will return true for these inputs. 5136 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5137 // If there is a loop-invariant, force it into the RHS. 5138 std::swap(LHS, RHS); 5139 Cond = ICmpInst::getSwappedPredicate(Cond); 5140 } 5141 5142 // Simplify the operands before analyzing them. 5143 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5144 5145 // If we have a comparison of a chrec against a constant, try to use value 5146 // ranges to answer this query. 5147 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5148 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5149 if (AddRec->getLoop() == L) { 5150 // Form the constant range. 5151 ConstantRange CompRange( 5152 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5153 5154 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5155 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5156 } 5157 5158 switch (Cond) { 5159 case ICmpInst::ICMP_NE: { // while (X != Y) 5160 // Convert to: while (X-Y != 0) 5161 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5162 if (EL.hasAnyInfo()) return EL; 5163 break; 5164 } 5165 case ICmpInst::ICMP_EQ: { // while (X == Y) 5166 // Convert to: while (X-Y == 0) 5167 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5168 if (EL.hasAnyInfo()) return EL; 5169 break; 5170 } 5171 case ICmpInst::ICMP_SLT: 5172 case ICmpInst::ICMP_ULT: { // while (X < Y) 5173 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5174 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5175 if (EL.hasAnyInfo()) return EL; 5176 break; 5177 } 5178 case ICmpInst::ICMP_SGT: 5179 case ICmpInst::ICMP_UGT: { // while (X > Y) 5180 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5181 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5182 if (EL.hasAnyInfo()) return EL; 5183 break; 5184 } 5185 default: 5186 #if 0 5187 dbgs() << "ComputeBackedgeTakenCount "; 5188 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5189 dbgs() << "[unsigned] "; 5190 dbgs() << *LHS << " " 5191 << Instruction::getOpcodeName(Instruction::ICmp) 5192 << " " << *RHS << "\n"; 5193 #endif 5194 break; 5195 } 5196 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5197 } 5198 5199 ScalarEvolution::ExitLimit 5200 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 5201 SwitchInst *Switch, 5202 BasicBlock *ExitingBlock, 5203 bool ControlsExit) { 5204 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5205 5206 // Give up if the exit is the default dest of a switch. 5207 if (Switch->getDefaultDest() == ExitingBlock) 5208 return getCouldNotCompute(); 5209 5210 assert(L->contains(Switch->getDefaultDest()) && 5211 "Default case must not exit the loop!"); 5212 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5213 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5214 5215 // while (X != Y) --> while (X-Y != 0) 5216 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5217 if (EL.hasAnyInfo()) 5218 return EL; 5219 5220 return getCouldNotCompute(); 5221 } 5222 5223 static ConstantInt * 5224 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5225 ScalarEvolution &SE) { 5226 const SCEV *InVal = SE.getConstant(C); 5227 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5228 assert(isa<SCEVConstant>(Val) && 5229 "Evaluation of SCEV at constant didn't fold correctly?"); 5230 return cast<SCEVConstant>(Val)->getValue(); 5231 } 5232 5233 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 5234 /// 'icmp op load X, cst', try to see if we can compute the backedge 5235 /// execution count. 5236 ScalarEvolution::ExitLimit 5237 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 5238 LoadInst *LI, 5239 Constant *RHS, 5240 const Loop *L, 5241 ICmpInst::Predicate predicate) { 5242 5243 if (LI->isVolatile()) return getCouldNotCompute(); 5244 5245 // Check to see if the loaded pointer is a getelementptr of a global. 5246 // TODO: Use SCEV instead of manually grubbing with GEPs. 5247 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5248 if (!GEP) return getCouldNotCompute(); 5249 5250 // Make sure that it is really a constant global we are gepping, with an 5251 // initializer, and make sure the first IDX is really 0. 5252 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5253 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5254 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5255 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5256 return getCouldNotCompute(); 5257 5258 // Okay, we allow one non-constant index into the GEP instruction. 5259 Value *VarIdx = nullptr; 5260 std::vector<Constant*> Indexes; 5261 unsigned VarIdxNum = 0; 5262 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5263 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5264 Indexes.push_back(CI); 5265 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5266 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5267 VarIdx = GEP->getOperand(i); 5268 VarIdxNum = i-2; 5269 Indexes.push_back(nullptr); 5270 } 5271 5272 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5273 if (!VarIdx) 5274 return getCouldNotCompute(); 5275 5276 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5277 // Check to see if X is a loop variant variable value now. 5278 const SCEV *Idx = getSCEV(VarIdx); 5279 Idx = getSCEVAtScope(Idx, L); 5280 5281 // We can only recognize very limited forms of loop index expressions, in 5282 // particular, only affine AddRec's like {C1,+,C2}. 5283 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5284 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5285 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5286 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5287 return getCouldNotCompute(); 5288 5289 unsigned MaxSteps = MaxBruteForceIterations; 5290 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5291 ConstantInt *ItCst = ConstantInt::get( 5292 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5293 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5294 5295 // Form the GEP offset. 5296 Indexes[VarIdxNum] = Val; 5297 5298 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5299 Indexes); 5300 if (!Result) break; // Cannot compute! 5301 5302 // Evaluate the condition for this iteration. 5303 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5304 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5305 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5306 #if 0 5307 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5308 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5309 << "***\n"; 5310 #endif 5311 ++NumArrayLenItCounts; 5312 return getConstant(ItCst); // Found terminating iteration! 5313 } 5314 } 5315 return getCouldNotCompute(); 5316 } 5317 5318 5319 /// CanConstantFold - Return true if we can constant fold an instruction of the 5320 /// specified type, assuming that all operands were constants. 5321 static bool CanConstantFold(const Instruction *I) { 5322 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5323 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5324 isa<LoadInst>(I)) 5325 return true; 5326 5327 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5328 if (const Function *F = CI->getCalledFunction()) 5329 return canConstantFoldCallTo(F); 5330 return false; 5331 } 5332 5333 /// Determine whether this instruction can constant evolve within this loop 5334 /// assuming its operands can all constant evolve. 5335 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5336 // An instruction outside of the loop can't be derived from a loop PHI. 5337 if (!L->contains(I)) return false; 5338 5339 if (isa<PHINode>(I)) { 5340 // We don't currently keep track of the control flow needed to evaluate 5341 // PHIs, so we cannot handle PHIs inside of loops. 5342 return L->getHeader() == I->getParent(); 5343 } 5344 5345 // If we won't be able to constant fold this expression even if the operands 5346 // are constants, bail early. 5347 return CanConstantFold(I); 5348 } 5349 5350 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5351 /// recursing through each instruction operand until reaching a loop header phi. 5352 static PHINode * 5353 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5354 DenseMap<Instruction *, PHINode *> &PHIMap) { 5355 5356 // Otherwise, we can evaluate this instruction if all of its operands are 5357 // constant or derived from a PHI node themselves. 5358 PHINode *PHI = nullptr; 5359 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5360 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5361 5362 if (isa<Constant>(*OpI)) continue; 5363 5364 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5365 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5366 5367 PHINode *P = dyn_cast<PHINode>(OpInst); 5368 if (!P) 5369 // If this operand is already visited, reuse the prior result. 5370 // We may have P != PHI if this is the deepest point at which the 5371 // inconsistent paths meet. 5372 P = PHIMap.lookup(OpInst); 5373 if (!P) { 5374 // Recurse and memoize the results, whether a phi is found or not. 5375 // This recursive call invalidates pointers into PHIMap. 5376 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5377 PHIMap[OpInst] = P; 5378 } 5379 if (!P) 5380 return nullptr; // Not evolving from PHI 5381 if (PHI && PHI != P) 5382 return nullptr; // Evolving from multiple different PHIs. 5383 PHI = P; 5384 } 5385 // This is a expression evolving from a constant PHI! 5386 return PHI; 5387 } 5388 5389 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5390 /// in the loop that V is derived from. We allow arbitrary operations along the 5391 /// way, but the operands of an operation must either be constants or a value 5392 /// derived from a constant PHI. If this expression does not fit with these 5393 /// constraints, return null. 5394 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5395 Instruction *I = dyn_cast<Instruction>(V); 5396 if (!I || !canConstantEvolve(I, L)) return nullptr; 5397 5398 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5399 return PN; 5400 } 5401 5402 // Record non-constant instructions contained by the loop. 5403 DenseMap<Instruction *, PHINode *> PHIMap; 5404 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5405 } 5406 5407 /// EvaluateExpression - Given an expression that passes the 5408 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5409 /// in the loop has the value PHIVal. If we can't fold this expression for some 5410 /// reason, return null. 5411 static Constant *EvaluateExpression(Value *V, const Loop *L, 5412 DenseMap<Instruction *, Constant *> &Vals, 5413 const DataLayout &DL, 5414 const TargetLibraryInfo *TLI) { 5415 // Convenient constant check, but redundant for recursive calls. 5416 if (Constant *C = dyn_cast<Constant>(V)) return C; 5417 Instruction *I = dyn_cast<Instruction>(V); 5418 if (!I) return nullptr; 5419 5420 if (Constant *C = Vals.lookup(I)) return C; 5421 5422 // An instruction inside the loop depends on a value outside the loop that we 5423 // weren't given a mapping for, or a value such as a call inside the loop. 5424 if (!canConstantEvolve(I, L)) return nullptr; 5425 5426 // An unmapped PHI can be due to a branch or another loop inside this loop, 5427 // or due to this not being the initial iteration through a loop where we 5428 // couldn't compute the evolution of this particular PHI last time. 5429 if (isa<PHINode>(I)) return nullptr; 5430 5431 std::vector<Constant*> Operands(I->getNumOperands()); 5432 5433 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5434 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5435 if (!Operand) { 5436 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5437 if (!Operands[i]) return nullptr; 5438 continue; 5439 } 5440 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5441 Vals[Operand] = C; 5442 if (!C) return nullptr; 5443 Operands[i] = C; 5444 } 5445 5446 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5447 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5448 Operands[1], DL, TLI); 5449 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5450 if (!LI->isVolatile()) 5451 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5452 } 5453 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5454 TLI); 5455 } 5456 5457 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5458 /// in the header of its containing loop, we know the loop executes a 5459 /// constant number of times, and the PHI node is just a recurrence 5460 /// involving constants, fold it. 5461 Constant * 5462 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5463 const APInt &BEs, 5464 const Loop *L) { 5465 DenseMap<PHINode*, Constant*>::const_iterator I = 5466 ConstantEvolutionLoopExitValue.find(PN); 5467 if (I != ConstantEvolutionLoopExitValue.end()) 5468 return I->second; 5469 5470 if (BEs.ugt(MaxBruteForceIterations)) 5471 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5472 5473 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5474 5475 DenseMap<Instruction *, Constant *> CurrentIterVals; 5476 BasicBlock *Header = L->getHeader(); 5477 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5478 5479 // Since the loop is canonicalized, the PHI node must have two entries. One 5480 // entry must be a constant (coming in from outside of the loop), and the 5481 // second must be derived from the same PHI. 5482 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5483 PHINode *PHI = nullptr; 5484 for (BasicBlock::iterator I = Header->begin(); 5485 (PHI = dyn_cast<PHINode>(I)); ++I) { 5486 Constant *StartCST = 5487 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5488 if (!StartCST) continue; 5489 CurrentIterVals[PHI] = StartCST; 5490 } 5491 if (!CurrentIterVals.count(PN)) 5492 return RetVal = nullptr; 5493 5494 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5495 5496 // Execute the loop symbolically to determine the exit value. 5497 if (BEs.getActiveBits() >= 32) 5498 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5499 5500 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5501 unsigned IterationNum = 0; 5502 const DataLayout &DL = F->getParent()->getDataLayout(); 5503 for (; ; ++IterationNum) { 5504 if (IterationNum == NumIterations) 5505 return RetVal = CurrentIterVals[PN]; // Got exit value! 5506 5507 // Compute the value of the PHIs for the next iteration. 5508 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5509 DenseMap<Instruction *, Constant *> NextIterVals; 5510 Constant *NextPHI = 5511 EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5512 if (!NextPHI) 5513 return nullptr; // Couldn't evaluate! 5514 NextIterVals[PN] = NextPHI; 5515 5516 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5517 5518 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5519 // cease to be able to evaluate one of them or if they stop evolving, 5520 // because that doesn't necessarily prevent us from computing PN. 5521 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5522 for (DenseMap<Instruction *, Constant *>::const_iterator 5523 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5524 PHINode *PHI = dyn_cast<PHINode>(I->first); 5525 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5526 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5527 } 5528 // We use two distinct loops because EvaluateExpression may invalidate any 5529 // iterators into CurrentIterVals. 5530 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5531 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5532 PHINode *PHI = I->first; 5533 Constant *&NextPHI = NextIterVals[PHI]; 5534 if (!NextPHI) { // Not already computed. 5535 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5536 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5537 } 5538 if (NextPHI != I->second) 5539 StoppedEvolving = false; 5540 } 5541 5542 // If all entries in CurrentIterVals == NextIterVals then we can stop 5543 // iterating, the loop can't continue to change. 5544 if (StoppedEvolving) 5545 return RetVal = CurrentIterVals[PN]; 5546 5547 CurrentIterVals.swap(NextIterVals); 5548 } 5549 } 5550 5551 /// ComputeExitCountExhaustively - If the loop is known to execute a 5552 /// constant number of times (the condition evolves only from constants), 5553 /// try to evaluate a few iterations of the loop until we get the exit 5554 /// condition gets a value of ExitWhen (true or false). If we cannot 5555 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5556 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5557 Value *Cond, 5558 bool ExitWhen) { 5559 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5560 if (!PN) return getCouldNotCompute(); 5561 5562 // If the loop is canonicalized, the PHI will have exactly two entries. 5563 // That's the only form we support here. 5564 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5565 5566 DenseMap<Instruction *, Constant *> CurrentIterVals; 5567 BasicBlock *Header = L->getHeader(); 5568 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5569 5570 // One entry must be a constant (coming in from outside of the loop), and the 5571 // second must be derived from the same PHI. 5572 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5573 PHINode *PHI = nullptr; 5574 for (BasicBlock::iterator I = Header->begin(); 5575 (PHI = dyn_cast<PHINode>(I)); ++I) { 5576 Constant *StartCST = 5577 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5578 if (!StartCST) continue; 5579 CurrentIterVals[PHI] = StartCST; 5580 } 5581 if (!CurrentIterVals.count(PN)) 5582 return getCouldNotCompute(); 5583 5584 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5585 // the loop symbolically to determine when the condition gets a value of 5586 // "ExitWhen". 5587 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5588 const DataLayout &DL = F->getParent()->getDataLayout(); 5589 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5590 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>( 5591 EvaluateExpression(Cond, L, CurrentIterVals, DL, TLI)); 5592 5593 // Couldn't symbolically evaluate. 5594 if (!CondVal) return getCouldNotCompute(); 5595 5596 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5597 ++NumBruteForceTripCountsComputed; 5598 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5599 } 5600 5601 // Update all the PHI nodes for the next iteration. 5602 DenseMap<Instruction *, Constant *> NextIterVals; 5603 5604 // Create a list of which PHIs we need to compute. We want to do this before 5605 // calling EvaluateExpression on them because that may invalidate iterators 5606 // into CurrentIterVals. 5607 SmallVector<PHINode *, 8> PHIsToCompute; 5608 for (DenseMap<Instruction *, Constant *>::const_iterator 5609 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5610 PHINode *PHI = dyn_cast<PHINode>(I->first); 5611 if (!PHI || PHI->getParent() != Header) continue; 5612 PHIsToCompute.push_back(PHI); 5613 } 5614 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5615 E = PHIsToCompute.end(); I != E; ++I) { 5616 PHINode *PHI = *I; 5617 Constant *&NextPHI = NextIterVals[PHI]; 5618 if (NextPHI) continue; // Already computed! 5619 5620 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5621 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5622 } 5623 CurrentIterVals.swap(NextIterVals); 5624 } 5625 5626 // Too many iterations were needed to evaluate. 5627 return getCouldNotCompute(); 5628 } 5629 5630 /// getSCEVAtScope - Return a SCEV expression for the specified value 5631 /// at the specified scope in the program. The L value specifies a loop 5632 /// nest to evaluate the expression at, where null is the top-level or a 5633 /// specified loop is immediately inside of the loop. 5634 /// 5635 /// This method can be used to compute the exit value for a variable defined 5636 /// in a loop by querying what the value will hold in the parent loop. 5637 /// 5638 /// In the case that a relevant loop exit value cannot be computed, the 5639 /// original value V is returned. 5640 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5641 // Check to see if we've folded this expression at this loop before. 5642 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5643 for (unsigned u = 0; u < Values.size(); u++) { 5644 if (Values[u].first == L) 5645 return Values[u].second ? Values[u].second : V; 5646 } 5647 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5648 // Otherwise compute it. 5649 const SCEV *C = computeSCEVAtScope(V, L); 5650 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5651 for (unsigned u = Values2.size(); u > 0; u--) { 5652 if (Values2[u - 1].first == L) { 5653 Values2[u - 1].second = C; 5654 break; 5655 } 5656 } 5657 return C; 5658 } 5659 5660 /// This builds up a Constant using the ConstantExpr interface. That way, we 5661 /// will return Constants for objects which aren't represented by a 5662 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5663 /// Returns NULL if the SCEV isn't representable as a Constant. 5664 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5665 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5666 case scCouldNotCompute: 5667 case scAddRecExpr: 5668 break; 5669 case scConstant: 5670 return cast<SCEVConstant>(V)->getValue(); 5671 case scUnknown: 5672 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5673 case scSignExtend: { 5674 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5675 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5676 return ConstantExpr::getSExt(CastOp, SS->getType()); 5677 break; 5678 } 5679 case scZeroExtend: { 5680 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5681 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5682 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5683 break; 5684 } 5685 case scTruncate: { 5686 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5687 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5688 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5689 break; 5690 } 5691 case scAddExpr: { 5692 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5693 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5694 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5695 unsigned AS = PTy->getAddressSpace(); 5696 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5697 C = ConstantExpr::getBitCast(C, DestPtrTy); 5698 } 5699 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5700 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5701 if (!C2) return nullptr; 5702 5703 // First pointer! 5704 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5705 unsigned AS = C2->getType()->getPointerAddressSpace(); 5706 std::swap(C, C2); 5707 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5708 // The offsets have been converted to bytes. We can add bytes to an 5709 // i8* by GEP with the byte count in the first index. 5710 C = ConstantExpr::getBitCast(C, DestPtrTy); 5711 } 5712 5713 // Don't bother trying to sum two pointers. We probably can't 5714 // statically compute a load that results from it anyway. 5715 if (C2->getType()->isPointerTy()) 5716 return nullptr; 5717 5718 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5719 if (PTy->getElementType()->isStructTy()) 5720 C2 = ConstantExpr::getIntegerCast( 5721 C2, Type::getInt32Ty(C->getContext()), true); 5722 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 5723 } else 5724 C = ConstantExpr::getAdd(C, C2); 5725 } 5726 return C; 5727 } 5728 break; 5729 } 5730 case scMulExpr: { 5731 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5732 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5733 // Don't bother with pointers at all. 5734 if (C->getType()->isPointerTy()) return nullptr; 5735 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5736 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5737 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5738 C = ConstantExpr::getMul(C, C2); 5739 } 5740 return C; 5741 } 5742 break; 5743 } 5744 case scUDivExpr: { 5745 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5746 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5747 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5748 if (LHS->getType() == RHS->getType()) 5749 return ConstantExpr::getUDiv(LHS, RHS); 5750 break; 5751 } 5752 case scSMaxExpr: 5753 case scUMaxExpr: 5754 break; // TODO: smax, umax. 5755 } 5756 return nullptr; 5757 } 5758 5759 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5760 if (isa<SCEVConstant>(V)) return V; 5761 5762 // If this instruction is evolved from a constant-evolving PHI, compute the 5763 // exit value from the loop without using SCEVs. 5764 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5765 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5766 const Loop *LI = (*this->LI)[I->getParent()]; 5767 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5768 if (PHINode *PN = dyn_cast<PHINode>(I)) 5769 if (PN->getParent() == LI->getHeader()) { 5770 // Okay, there is no closed form solution for the PHI node. Check 5771 // to see if the loop that contains it has a known backedge-taken 5772 // count. If so, we may be able to force computation of the exit 5773 // value. 5774 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5775 if (const SCEVConstant *BTCC = 5776 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5777 // Okay, we know how many times the containing loop executes. If 5778 // this is a constant evolving PHI node, get the final value at 5779 // the specified iteration number. 5780 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5781 BTCC->getValue()->getValue(), 5782 LI); 5783 if (RV) return getSCEV(RV); 5784 } 5785 } 5786 5787 // Okay, this is an expression that we cannot symbolically evaluate 5788 // into a SCEV. Check to see if it's possible to symbolically evaluate 5789 // the arguments into constants, and if so, try to constant propagate the 5790 // result. This is particularly useful for computing loop exit values. 5791 if (CanConstantFold(I)) { 5792 SmallVector<Constant *, 4> Operands; 5793 bool MadeImprovement = false; 5794 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5795 Value *Op = I->getOperand(i); 5796 if (Constant *C = dyn_cast<Constant>(Op)) { 5797 Operands.push_back(C); 5798 continue; 5799 } 5800 5801 // If any of the operands is non-constant and if they are 5802 // non-integer and non-pointer, don't even try to analyze them 5803 // with scev techniques. 5804 if (!isSCEVable(Op->getType())) 5805 return V; 5806 5807 const SCEV *OrigV = getSCEV(Op); 5808 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5809 MadeImprovement |= OrigV != OpV; 5810 5811 Constant *C = BuildConstantFromSCEV(OpV); 5812 if (!C) return V; 5813 if (C->getType() != Op->getType()) 5814 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5815 Op->getType(), 5816 false), 5817 C, Op->getType()); 5818 Operands.push_back(C); 5819 } 5820 5821 // Check to see if getSCEVAtScope actually made an improvement. 5822 if (MadeImprovement) { 5823 Constant *C = nullptr; 5824 const DataLayout &DL = F->getParent()->getDataLayout(); 5825 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5826 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5827 Operands[1], DL, TLI); 5828 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5829 if (!LI->isVolatile()) 5830 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5831 } else 5832 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 5833 DL, TLI); 5834 if (!C) return V; 5835 return getSCEV(C); 5836 } 5837 } 5838 } 5839 5840 // This is some other type of SCEVUnknown, just return it. 5841 return V; 5842 } 5843 5844 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5845 // Avoid performing the look-up in the common case where the specified 5846 // expression has no loop-variant portions. 5847 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5848 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5849 if (OpAtScope != Comm->getOperand(i)) { 5850 // Okay, at least one of these operands is loop variant but might be 5851 // foldable. Build a new instance of the folded commutative expression. 5852 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5853 Comm->op_begin()+i); 5854 NewOps.push_back(OpAtScope); 5855 5856 for (++i; i != e; ++i) { 5857 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5858 NewOps.push_back(OpAtScope); 5859 } 5860 if (isa<SCEVAddExpr>(Comm)) 5861 return getAddExpr(NewOps); 5862 if (isa<SCEVMulExpr>(Comm)) 5863 return getMulExpr(NewOps); 5864 if (isa<SCEVSMaxExpr>(Comm)) 5865 return getSMaxExpr(NewOps); 5866 if (isa<SCEVUMaxExpr>(Comm)) 5867 return getUMaxExpr(NewOps); 5868 llvm_unreachable("Unknown commutative SCEV type!"); 5869 } 5870 } 5871 // If we got here, all operands are loop invariant. 5872 return Comm; 5873 } 5874 5875 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5876 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5877 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5878 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5879 return Div; // must be loop invariant 5880 return getUDivExpr(LHS, RHS); 5881 } 5882 5883 // If this is a loop recurrence for a loop that does not contain L, then we 5884 // are dealing with the final value computed by the loop. 5885 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5886 // First, attempt to evaluate each operand. 5887 // Avoid performing the look-up in the common case where the specified 5888 // expression has no loop-variant portions. 5889 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5890 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5891 if (OpAtScope == AddRec->getOperand(i)) 5892 continue; 5893 5894 // Okay, at least one of these operands is loop variant but might be 5895 // foldable. Build a new instance of the folded commutative expression. 5896 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5897 AddRec->op_begin()+i); 5898 NewOps.push_back(OpAtScope); 5899 for (++i; i != e; ++i) 5900 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5901 5902 const SCEV *FoldedRec = 5903 getAddRecExpr(NewOps, AddRec->getLoop(), 5904 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5905 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5906 // The addrec may be folded to a nonrecurrence, for example, if the 5907 // induction variable is multiplied by zero after constant folding. Go 5908 // ahead and return the folded value. 5909 if (!AddRec) 5910 return FoldedRec; 5911 break; 5912 } 5913 5914 // If the scope is outside the addrec's loop, evaluate it by using the 5915 // loop exit value of the addrec. 5916 if (!AddRec->getLoop()->contains(L)) { 5917 // To evaluate this recurrence, we need to know how many times the AddRec 5918 // loop iterates. Compute this now. 5919 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5920 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5921 5922 // Then, evaluate the AddRec. 5923 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5924 } 5925 5926 return AddRec; 5927 } 5928 5929 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5930 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5931 if (Op == Cast->getOperand()) 5932 return Cast; // must be loop invariant 5933 return getZeroExtendExpr(Op, Cast->getType()); 5934 } 5935 5936 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5937 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5938 if (Op == Cast->getOperand()) 5939 return Cast; // must be loop invariant 5940 return getSignExtendExpr(Op, Cast->getType()); 5941 } 5942 5943 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5944 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5945 if (Op == Cast->getOperand()) 5946 return Cast; // must be loop invariant 5947 return getTruncateExpr(Op, Cast->getType()); 5948 } 5949 5950 llvm_unreachable("Unknown SCEV type!"); 5951 } 5952 5953 /// getSCEVAtScope - This is a convenience function which does 5954 /// getSCEVAtScope(getSCEV(V), L). 5955 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5956 return getSCEVAtScope(getSCEV(V), L); 5957 } 5958 5959 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5960 /// following equation: 5961 /// 5962 /// A * X = B (mod N) 5963 /// 5964 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5965 /// A and B isn't important. 5966 /// 5967 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5968 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5969 ScalarEvolution &SE) { 5970 uint32_t BW = A.getBitWidth(); 5971 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5972 assert(A != 0 && "A must be non-zero."); 5973 5974 // 1. D = gcd(A, N) 5975 // 5976 // The gcd of A and N may have only one prime factor: 2. The number of 5977 // trailing zeros in A is its multiplicity 5978 uint32_t Mult2 = A.countTrailingZeros(); 5979 // D = 2^Mult2 5980 5981 // 2. Check if B is divisible by D. 5982 // 5983 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5984 // is not less than multiplicity of this prime factor for D. 5985 if (B.countTrailingZeros() < Mult2) 5986 return SE.getCouldNotCompute(); 5987 5988 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5989 // modulo (N / D). 5990 // 5991 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5992 // bit width during computations. 5993 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5994 APInt Mod(BW + 1, 0); 5995 Mod.setBit(BW - Mult2); // Mod = N / D 5996 APInt I = AD.multiplicativeInverse(Mod); 5997 5998 // 4. Compute the minimum unsigned root of the equation: 5999 // I * (B / D) mod (N / D) 6000 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6001 6002 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6003 // bits. 6004 return SE.getConstant(Result.trunc(BW)); 6005 } 6006 6007 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6008 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6009 /// might be the same) or two SCEVCouldNotCompute objects. 6010 /// 6011 static std::pair<const SCEV *,const SCEV *> 6012 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6013 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6014 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6015 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6016 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6017 6018 // We currently can only solve this if the coefficients are constants. 6019 if (!LC || !MC || !NC) { 6020 const SCEV *CNC = SE.getCouldNotCompute(); 6021 return std::make_pair(CNC, CNC); 6022 } 6023 6024 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6025 const APInt &L = LC->getValue()->getValue(); 6026 const APInt &M = MC->getValue()->getValue(); 6027 const APInt &N = NC->getValue()->getValue(); 6028 APInt Two(BitWidth, 2); 6029 APInt Four(BitWidth, 4); 6030 6031 { 6032 using namespace APIntOps; 6033 const APInt& C = L; 6034 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6035 // The B coefficient is M-N/2 6036 APInt B(M); 6037 B -= sdiv(N,Two); 6038 6039 // The A coefficient is N/2 6040 APInt A(N.sdiv(Two)); 6041 6042 // Compute the B^2-4ac term. 6043 APInt SqrtTerm(B); 6044 SqrtTerm *= B; 6045 SqrtTerm -= Four * (A * C); 6046 6047 if (SqrtTerm.isNegative()) { 6048 // The loop is provably infinite. 6049 const SCEV *CNC = SE.getCouldNotCompute(); 6050 return std::make_pair(CNC, CNC); 6051 } 6052 6053 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6054 // integer value or else APInt::sqrt() will assert. 6055 APInt SqrtVal(SqrtTerm.sqrt()); 6056 6057 // Compute the two solutions for the quadratic formula. 6058 // The divisions must be performed as signed divisions. 6059 APInt NegB(-B); 6060 APInt TwoA(A << 1); 6061 if (TwoA.isMinValue()) { 6062 const SCEV *CNC = SE.getCouldNotCompute(); 6063 return std::make_pair(CNC, CNC); 6064 } 6065 6066 LLVMContext &Context = SE.getContext(); 6067 6068 ConstantInt *Solution1 = 6069 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6070 ConstantInt *Solution2 = 6071 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6072 6073 return std::make_pair(SE.getConstant(Solution1), 6074 SE.getConstant(Solution2)); 6075 } // end APIntOps namespace 6076 } 6077 6078 /// HowFarToZero - Return the number of times a backedge comparing the specified 6079 /// value to zero will execute. If not computable, return CouldNotCompute. 6080 /// 6081 /// This is only used for loops with a "x != y" exit test. The exit condition is 6082 /// now expressed as a single expression, V = x-y. So the exit test is 6083 /// effectively V != 0. We know and take advantage of the fact that this 6084 /// expression only being used in a comparison by zero context. 6085 ScalarEvolution::ExitLimit 6086 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6087 // If the value is a constant 6088 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6089 // If the value is already zero, the branch will execute zero times. 6090 if (C->getValue()->isZero()) return C; 6091 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6092 } 6093 6094 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6095 if (!AddRec || AddRec->getLoop() != L) 6096 return getCouldNotCompute(); 6097 6098 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6099 // the quadratic equation to solve it. 6100 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6101 std::pair<const SCEV *,const SCEV *> Roots = 6102 SolveQuadraticEquation(AddRec, *this); 6103 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6104 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6105 if (R1 && R2) { 6106 #if 0 6107 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6108 << " sol#2: " << *R2 << "\n"; 6109 #endif 6110 // Pick the smallest positive root value. 6111 if (ConstantInt *CB = 6112 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6113 R1->getValue(), 6114 R2->getValue()))) { 6115 if (!CB->getZExtValue()) 6116 std::swap(R1, R2); // R1 is the minimum root now. 6117 6118 // We can only use this value if the chrec ends up with an exact zero 6119 // value at this index. When solving for "X*X != 5", for example, we 6120 // should not accept a root of 2. 6121 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6122 if (Val->isZero()) 6123 return R1; // We found a quadratic root! 6124 } 6125 } 6126 return getCouldNotCompute(); 6127 } 6128 6129 // Otherwise we can only handle this if it is affine. 6130 if (!AddRec->isAffine()) 6131 return getCouldNotCompute(); 6132 6133 // If this is an affine expression, the execution count of this branch is 6134 // the minimum unsigned root of the following equation: 6135 // 6136 // Start + Step*N = 0 (mod 2^BW) 6137 // 6138 // equivalent to: 6139 // 6140 // Step*N = -Start (mod 2^BW) 6141 // 6142 // where BW is the common bit width of Start and Step. 6143 6144 // Get the initial value for the loop. 6145 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6146 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6147 6148 // For now we handle only constant steps. 6149 // 6150 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6151 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6152 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6153 // We have not yet seen any such cases. 6154 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6155 if (!StepC || StepC->getValue()->equalsInt(0)) 6156 return getCouldNotCompute(); 6157 6158 // For positive steps (counting up until unsigned overflow): 6159 // N = -Start/Step (as unsigned) 6160 // For negative steps (counting down to zero): 6161 // N = Start/-Step 6162 // First compute the unsigned distance from zero in the direction of Step. 6163 bool CountDown = StepC->getValue()->getValue().isNegative(); 6164 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6165 6166 // Handle unitary steps, which cannot wraparound. 6167 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6168 // N = Distance (as unsigned) 6169 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6170 ConstantRange CR = getUnsignedRange(Start); 6171 const SCEV *MaxBECount; 6172 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6173 // When counting up, the worst starting value is 1, not 0. 6174 MaxBECount = CR.getUnsignedMax().isMinValue() 6175 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6176 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6177 else 6178 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6179 : -CR.getUnsignedMin()); 6180 return ExitLimit(Distance, MaxBECount); 6181 } 6182 6183 // As a special case, handle the instance where Step is a positive power of 6184 // two. In this case, determining whether Step divides Distance evenly can be 6185 // done by counting and comparing the number of trailing zeros of Step and 6186 // Distance. 6187 if (!CountDown) { 6188 const APInt &StepV = StepC->getValue()->getValue(); 6189 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6190 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6191 // case is not handled as this code is guarded by !CountDown. 6192 if (StepV.isPowerOf2() && 6193 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) 6194 return getUDivExactExpr(Distance, Step); 6195 } 6196 6197 // If the condition controls loop exit (the loop exits only if the expression 6198 // is true) and the addition is no-wrap we can use unsigned divide to 6199 // compute the backedge count. In this case, the step may not divide the 6200 // distance, but we don't care because if the condition is "missed" the loop 6201 // will have undefined behavior due to wrapping. 6202 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6203 const SCEV *Exact = 6204 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6205 return ExitLimit(Exact, Exact); 6206 } 6207 6208 // Then, try to solve the above equation provided that Start is constant. 6209 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6210 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6211 -StartC->getValue()->getValue(), 6212 *this); 6213 return getCouldNotCompute(); 6214 } 6215 6216 /// HowFarToNonZero - Return the number of times a backedge checking the 6217 /// specified value for nonzero will execute. If not computable, return 6218 /// CouldNotCompute 6219 ScalarEvolution::ExitLimit 6220 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6221 // Loops that look like: while (X == 0) are very strange indeed. We don't 6222 // handle them yet except for the trivial case. This could be expanded in the 6223 // future as needed. 6224 6225 // If the value is a constant, check to see if it is known to be non-zero 6226 // already. If so, the backedge will execute zero times. 6227 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6228 if (!C->getValue()->isNullValue()) 6229 return getConstant(C->getType(), 0); 6230 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6231 } 6232 6233 // We could implement others, but I really doubt anyone writes loops like 6234 // this, and if they did, they would already be constant folded. 6235 return getCouldNotCompute(); 6236 } 6237 6238 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6239 /// (which may not be an immediate predecessor) which has exactly one 6240 /// successor from which BB is reachable, or null if no such block is 6241 /// found. 6242 /// 6243 std::pair<BasicBlock *, BasicBlock *> 6244 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6245 // If the block has a unique predecessor, then there is no path from the 6246 // predecessor to the block that does not go through the direct edge 6247 // from the predecessor to the block. 6248 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6249 return std::make_pair(Pred, BB); 6250 6251 // A loop's header is defined to be a block that dominates the loop. 6252 // If the header has a unique predecessor outside the loop, it must be 6253 // a block that has exactly one successor that can reach the loop. 6254 if (Loop *L = LI->getLoopFor(BB)) 6255 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6256 6257 return std::pair<BasicBlock *, BasicBlock *>(); 6258 } 6259 6260 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6261 /// testing whether two expressions are equal, however for the purposes of 6262 /// looking for a condition guarding a loop, it can be useful to be a little 6263 /// more general, since a front-end may have replicated the controlling 6264 /// expression. 6265 /// 6266 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6267 // Quick check to see if they are the same SCEV. 6268 if (A == B) return true; 6269 6270 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6271 // two different instructions with the same value. Check for this case. 6272 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6273 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6274 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6275 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6276 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 6277 return true; 6278 6279 // Otherwise assume they may have a different value. 6280 return false; 6281 } 6282 6283 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6284 /// predicate Pred. Return true iff any changes were made. 6285 /// 6286 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6287 const SCEV *&LHS, const SCEV *&RHS, 6288 unsigned Depth) { 6289 bool Changed = false; 6290 6291 // If we hit the max recursion limit bail out. 6292 if (Depth >= 3) 6293 return false; 6294 6295 // Canonicalize a constant to the right side. 6296 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6297 // Check for both operands constant. 6298 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6299 if (ConstantExpr::getICmp(Pred, 6300 LHSC->getValue(), 6301 RHSC->getValue())->isNullValue()) 6302 goto trivially_false; 6303 else 6304 goto trivially_true; 6305 } 6306 // Otherwise swap the operands to put the constant on the right. 6307 std::swap(LHS, RHS); 6308 Pred = ICmpInst::getSwappedPredicate(Pred); 6309 Changed = true; 6310 } 6311 6312 // If we're comparing an addrec with a value which is loop-invariant in the 6313 // addrec's loop, put the addrec on the left. Also make a dominance check, 6314 // as both operands could be addrecs loop-invariant in each other's loop. 6315 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6316 const Loop *L = AR->getLoop(); 6317 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6318 std::swap(LHS, RHS); 6319 Pred = ICmpInst::getSwappedPredicate(Pred); 6320 Changed = true; 6321 } 6322 } 6323 6324 // If there's a constant operand, canonicalize comparisons with boundary 6325 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6326 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6327 const APInt &RA = RC->getValue()->getValue(); 6328 switch (Pred) { 6329 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6330 case ICmpInst::ICMP_EQ: 6331 case ICmpInst::ICMP_NE: 6332 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6333 if (!RA) 6334 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6335 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6336 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6337 ME->getOperand(0)->isAllOnesValue()) { 6338 RHS = AE->getOperand(1); 6339 LHS = ME->getOperand(1); 6340 Changed = true; 6341 } 6342 break; 6343 case ICmpInst::ICMP_UGE: 6344 if ((RA - 1).isMinValue()) { 6345 Pred = ICmpInst::ICMP_NE; 6346 RHS = getConstant(RA - 1); 6347 Changed = true; 6348 break; 6349 } 6350 if (RA.isMaxValue()) { 6351 Pred = ICmpInst::ICMP_EQ; 6352 Changed = true; 6353 break; 6354 } 6355 if (RA.isMinValue()) goto trivially_true; 6356 6357 Pred = ICmpInst::ICMP_UGT; 6358 RHS = getConstant(RA - 1); 6359 Changed = true; 6360 break; 6361 case ICmpInst::ICMP_ULE: 6362 if ((RA + 1).isMaxValue()) { 6363 Pred = ICmpInst::ICMP_NE; 6364 RHS = getConstant(RA + 1); 6365 Changed = true; 6366 break; 6367 } 6368 if (RA.isMinValue()) { 6369 Pred = ICmpInst::ICMP_EQ; 6370 Changed = true; 6371 break; 6372 } 6373 if (RA.isMaxValue()) goto trivially_true; 6374 6375 Pred = ICmpInst::ICMP_ULT; 6376 RHS = getConstant(RA + 1); 6377 Changed = true; 6378 break; 6379 case ICmpInst::ICMP_SGE: 6380 if ((RA - 1).isMinSignedValue()) { 6381 Pred = ICmpInst::ICMP_NE; 6382 RHS = getConstant(RA - 1); 6383 Changed = true; 6384 break; 6385 } 6386 if (RA.isMaxSignedValue()) { 6387 Pred = ICmpInst::ICMP_EQ; 6388 Changed = true; 6389 break; 6390 } 6391 if (RA.isMinSignedValue()) goto trivially_true; 6392 6393 Pred = ICmpInst::ICMP_SGT; 6394 RHS = getConstant(RA - 1); 6395 Changed = true; 6396 break; 6397 case ICmpInst::ICMP_SLE: 6398 if ((RA + 1).isMaxSignedValue()) { 6399 Pred = ICmpInst::ICMP_NE; 6400 RHS = getConstant(RA + 1); 6401 Changed = true; 6402 break; 6403 } 6404 if (RA.isMinSignedValue()) { 6405 Pred = ICmpInst::ICMP_EQ; 6406 Changed = true; 6407 break; 6408 } 6409 if (RA.isMaxSignedValue()) goto trivially_true; 6410 6411 Pred = ICmpInst::ICMP_SLT; 6412 RHS = getConstant(RA + 1); 6413 Changed = true; 6414 break; 6415 case ICmpInst::ICMP_UGT: 6416 if (RA.isMinValue()) { 6417 Pred = ICmpInst::ICMP_NE; 6418 Changed = true; 6419 break; 6420 } 6421 if ((RA + 1).isMaxValue()) { 6422 Pred = ICmpInst::ICMP_EQ; 6423 RHS = getConstant(RA + 1); 6424 Changed = true; 6425 break; 6426 } 6427 if (RA.isMaxValue()) goto trivially_false; 6428 break; 6429 case ICmpInst::ICMP_ULT: 6430 if (RA.isMaxValue()) { 6431 Pred = ICmpInst::ICMP_NE; 6432 Changed = true; 6433 break; 6434 } 6435 if ((RA - 1).isMinValue()) { 6436 Pred = ICmpInst::ICMP_EQ; 6437 RHS = getConstant(RA - 1); 6438 Changed = true; 6439 break; 6440 } 6441 if (RA.isMinValue()) goto trivially_false; 6442 break; 6443 case ICmpInst::ICMP_SGT: 6444 if (RA.isMinSignedValue()) { 6445 Pred = ICmpInst::ICMP_NE; 6446 Changed = true; 6447 break; 6448 } 6449 if ((RA + 1).isMaxSignedValue()) { 6450 Pred = ICmpInst::ICMP_EQ; 6451 RHS = getConstant(RA + 1); 6452 Changed = true; 6453 break; 6454 } 6455 if (RA.isMaxSignedValue()) goto trivially_false; 6456 break; 6457 case ICmpInst::ICMP_SLT: 6458 if (RA.isMaxSignedValue()) { 6459 Pred = ICmpInst::ICMP_NE; 6460 Changed = true; 6461 break; 6462 } 6463 if ((RA - 1).isMinSignedValue()) { 6464 Pred = ICmpInst::ICMP_EQ; 6465 RHS = getConstant(RA - 1); 6466 Changed = true; 6467 break; 6468 } 6469 if (RA.isMinSignedValue()) goto trivially_false; 6470 break; 6471 } 6472 } 6473 6474 // Check for obvious equality. 6475 if (HasSameValue(LHS, RHS)) { 6476 if (ICmpInst::isTrueWhenEqual(Pred)) 6477 goto trivially_true; 6478 if (ICmpInst::isFalseWhenEqual(Pred)) 6479 goto trivially_false; 6480 } 6481 6482 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6483 // adding or subtracting 1 from one of the operands. 6484 switch (Pred) { 6485 case ICmpInst::ICMP_SLE: 6486 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6487 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6488 SCEV::FlagNSW); 6489 Pred = ICmpInst::ICMP_SLT; 6490 Changed = true; 6491 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6492 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6493 SCEV::FlagNSW); 6494 Pred = ICmpInst::ICMP_SLT; 6495 Changed = true; 6496 } 6497 break; 6498 case ICmpInst::ICMP_SGE: 6499 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6500 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6501 SCEV::FlagNSW); 6502 Pred = ICmpInst::ICMP_SGT; 6503 Changed = true; 6504 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6505 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6506 SCEV::FlagNSW); 6507 Pred = ICmpInst::ICMP_SGT; 6508 Changed = true; 6509 } 6510 break; 6511 case ICmpInst::ICMP_ULE: 6512 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6513 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6514 SCEV::FlagNUW); 6515 Pred = ICmpInst::ICMP_ULT; 6516 Changed = true; 6517 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6518 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6519 SCEV::FlagNUW); 6520 Pred = ICmpInst::ICMP_ULT; 6521 Changed = true; 6522 } 6523 break; 6524 case ICmpInst::ICMP_UGE: 6525 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6526 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6527 SCEV::FlagNUW); 6528 Pred = ICmpInst::ICMP_UGT; 6529 Changed = true; 6530 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6531 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6532 SCEV::FlagNUW); 6533 Pred = ICmpInst::ICMP_UGT; 6534 Changed = true; 6535 } 6536 break; 6537 default: 6538 break; 6539 } 6540 6541 // TODO: More simplifications are possible here. 6542 6543 // Recursively simplify until we either hit a recursion limit or nothing 6544 // changes. 6545 if (Changed) 6546 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6547 6548 return Changed; 6549 6550 trivially_true: 6551 // Return 0 == 0. 6552 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6553 Pred = ICmpInst::ICMP_EQ; 6554 return true; 6555 6556 trivially_false: 6557 // Return 0 != 0. 6558 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6559 Pred = ICmpInst::ICMP_NE; 6560 return true; 6561 } 6562 6563 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6564 return getSignedRange(S).getSignedMax().isNegative(); 6565 } 6566 6567 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6568 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6569 } 6570 6571 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6572 return !getSignedRange(S).getSignedMin().isNegative(); 6573 } 6574 6575 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6576 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6577 } 6578 6579 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6580 return isKnownNegative(S) || isKnownPositive(S); 6581 } 6582 6583 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6584 const SCEV *LHS, const SCEV *RHS) { 6585 // Canonicalize the inputs first. 6586 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6587 6588 // If LHS or RHS is an addrec, check to see if the condition is true in 6589 // every iteration of the loop. 6590 // If LHS and RHS are both addrec, both conditions must be true in 6591 // every iteration of the loop. 6592 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6593 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6594 bool LeftGuarded = false; 6595 bool RightGuarded = false; 6596 if (LAR) { 6597 const Loop *L = LAR->getLoop(); 6598 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6599 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6600 if (!RAR) return true; 6601 LeftGuarded = true; 6602 } 6603 } 6604 if (RAR) { 6605 const Loop *L = RAR->getLoop(); 6606 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6607 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6608 if (!LAR) return true; 6609 RightGuarded = true; 6610 } 6611 } 6612 if (LeftGuarded && RightGuarded) 6613 return true; 6614 6615 // Otherwise see what can be done with known constant ranges. 6616 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6617 } 6618 6619 bool 6620 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6621 const SCEV *LHS, const SCEV *RHS) { 6622 if (HasSameValue(LHS, RHS)) 6623 return ICmpInst::isTrueWhenEqual(Pred); 6624 6625 // This code is split out from isKnownPredicate because it is called from 6626 // within isLoopEntryGuardedByCond. 6627 switch (Pred) { 6628 default: 6629 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6630 case ICmpInst::ICMP_SGT: 6631 std::swap(LHS, RHS); 6632 case ICmpInst::ICMP_SLT: { 6633 ConstantRange LHSRange = getSignedRange(LHS); 6634 ConstantRange RHSRange = getSignedRange(RHS); 6635 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6636 return true; 6637 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6638 return false; 6639 break; 6640 } 6641 case ICmpInst::ICMP_SGE: 6642 std::swap(LHS, RHS); 6643 case ICmpInst::ICMP_SLE: { 6644 ConstantRange LHSRange = getSignedRange(LHS); 6645 ConstantRange RHSRange = getSignedRange(RHS); 6646 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6647 return true; 6648 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6649 return false; 6650 break; 6651 } 6652 case ICmpInst::ICMP_UGT: 6653 std::swap(LHS, RHS); 6654 case ICmpInst::ICMP_ULT: { 6655 ConstantRange LHSRange = getUnsignedRange(LHS); 6656 ConstantRange RHSRange = getUnsignedRange(RHS); 6657 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6658 return true; 6659 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6660 return false; 6661 break; 6662 } 6663 case ICmpInst::ICMP_UGE: 6664 std::swap(LHS, RHS); 6665 case ICmpInst::ICMP_ULE: { 6666 ConstantRange LHSRange = getUnsignedRange(LHS); 6667 ConstantRange RHSRange = getUnsignedRange(RHS); 6668 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6669 return true; 6670 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6671 return false; 6672 break; 6673 } 6674 case ICmpInst::ICMP_NE: { 6675 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6676 return true; 6677 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6678 return true; 6679 6680 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6681 if (isKnownNonZero(Diff)) 6682 return true; 6683 break; 6684 } 6685 case ICmpInst::ICMP_EQ: 6686 // The check at the top of the function catches the case where 6687 // the values are known to be equal. 6688 break; 6689 } 6690 return false; 6691 } 6692 6693 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6694 /// protected by a conditional between LHS and RHS. This is used to 6695 /// to eliminate casts. 6696 bool 6697 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6698 ICmpInst::Predicate Pred, 6699 const SCEV *LHS, const SCEV *RHS) { 6700 // Interpret a null as meaning no loop, where there is obviously no guard 6701 // (interprocedural conditions notwithstanding). 6702 if (!L) return true; 6703 6704 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 6705 6706 BasicBlock *Latch = L->getLoopLatch(); 6707 if (!Latch) 6708 return false; 6709 6710 BranchInst *LoopContinuePredicate = 6711 dyn_cast<BranchInst>(Latch->getTerminator()); 6712 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 6713 isImpliedCond(Pred, LHS, RHS, 6714 LoopContinuePredicate->getCondition(), 6715 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 6716 return true; 6717 6718 // Check conditions due to any @llvm.assume intrinsics. 6719 for (auto &AssumeVH : AC->assumptions()) { 6720 if (!AssumeVH) 6721 continue; 6722 auto *CI = cast<CallInst>(AssumeVH); 6723 if (!DT->dominates(CI, Latch->getTerminator())) 6724 continue; 6725 6726 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 6727 return true; 6728 } 6729 6730 struct ClearWalkingBEDominatingCondsOnExit { 6731 ScalarEvolution &SE; 6732 6733 explicit ClearWalkingBEDominatingCondsOnExit(ScalarEvolution &SE) 6734 : SE(SE){}; 6735 6736 ~ClearWalkingBEDominatingCondsOnExit() { 6737 SE.WalkingBEDominatingConds = false; 6738 } 6739 }; 6740 6741 // We don't want more than one activation of the following loop on the stack 6742 // -- that can lead to O(n!) time complexity. 6743 if (WalkingBEDominatingConds) 6744 return false; 6745 6746 WalkingBEDominatingConds = true; 6747 ClearWalkingBEDominatingCondsOnExit ClearOnExit(*this); 6748 6749 // If the loop is not reachable from the entry block, we risk running into an 6750 // infinite loop as we walk up into the dom tree. These loops do not matter 6751 // anyway, so we just return a conservative answer when we see them. 6752 if (!DT->isReachableFromEntry(L->getHeader())) 6753 return false; 6754 6755 for (DomTreeNode *DTN = (*DT)[Latch], *HeaderDTN = (*DT)[L->getHeader()]; 6756 DTN != HeaderDTN; 6757 DTN = DTN->getIDom()) { 6758 6759 assert(DTN && "should reach the loop header before reaching the root!"); 6760 6761 BasicBlock *BB = DTN->getBlock(); 6762 BasicBlock *PBB = BB->getSinglePredecessor(); 6763 if (!PBB) 6764 continue; 6765 6766 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 6767 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 6768 continue; 6769 6770 Value *Condition = ContinuePredicate->getCondition(); 6771 6772 // If we have an edge `E` within the loop body that dominates the only 6773 // latch, the condition guarding `E` also guards the backedge. This 6774 // reasoning works only for loops with a single latch. 6775 6776 BasicBlockEdge DominatingEdge(PBB, BB); 6777 if (DominatingEdge.isSingleEdge()) { 6778 // We're constructively (and conservatively) enumerating edges within the 6779 // loop body that dominate the latch. The dominator tree better agree 6780 // with us on this: 6781 assert(DT->dominates(DominatingEdge, Latch) && "should be!"); 6782 6783 if (isImpliedCond(Pred, LHS, RHS, Condition, 6784 BB != ContinuePredicate->getSuccessor(0))) 6785 return true; 6786 } 6787 } 6788 6789 return false; 6790 } 6791 6792 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6793 /// by a conditional between LHS and RHS. This is used to help avoid max 6794 /// expressions in loop trip counts, and to eliminate casts. 6795 bool 6796 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6797 ICmpInst::Predicate Pred, 6798 const SCEV *LHS, const SCEV *RHS) { 6799 // Interpret a null as meaning no loop, where there is obviously no guard 6800 // (interprocedural conditions notwithstanding). 6801 if (!L) return false; 6802 6803 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 6804 6805 // Starting at the loop predecessor, climb up the predecessor chain, as long 6806 // as there are predecessors that can be found that have unique successors 6807 // leading to the original header. 6808 for (std::pair<BasicBlock *, BasicBlock *> 6809 Pair(L->getLoopPredecessor(), L->getHeader()); 6810 Pair.first; 6811 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6812 6813 BranchInst *LoopEntryPredicate = 6814 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6815 if (!LoopEntryPredicate || 6816 LoopEntryPredicate->isUnconditional()) 6817 continue; 6818 6819 if (isImpliedCond(Pred, LHS, RHS, 6820 LoopEntryPredicate->getCondition(), 6821 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6822 return true; 6823 } 6824 6825 // Check conditions due to any @llvm.assume intrinsics. 6826 for (auto &AssumeVH : AC->assumptions()) { 6827 if (!AssumeVH) 6828 continue; 6829 auto *CI = cast<CallInst>(AssumeVH); 6830 if (!DT->dominates(CI, L->getHeader())) 6831 continue; 6832 6833 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 6834 return true; 6835 } 6836 6837 return false; 6838 } 6839 6840 /// RAII wrapper to prevent recursive application of isImpliedCond. 6841 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6842 /// currently evaluating isImpliedCond. 6843 struct MarkPendingLoopPredicate { 6844 Value *Cond; 6845 DenseSet<Value*> &LoopPreds; 6846 bool Pending; 6847 6848 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6849 : Cond(C), LoopPreds(LP) { 6850 Pending = !LoopPreds.insert(Cond).second; 6851 } 6852 ~MarkPendingLoopPredicate() { 6853 if (!Pending) 6854 LoopPreds.erase(Cond); 6855 } 6856 }; 6857 6858 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6859 /// and RHS is true whenever the given Cond value evaluates to true. 6860 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6861 const SCEV *LHS, const SCEV *RHS, 6862 Value *FoundCondValue, 6863 bool Inverse) { 6864 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6865 if (Mark.Pending) 6866 return false; 6867 6868 // Recursively handle And and Or conditions. 6869 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6870 if (BO->getOpcode() == Instruction::And) { 6871 if (!Inverse) 6872 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6873 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6874 } else if (BO->getOpcode() == Instruction::Or) { 6875 if (Inverse) 6876 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6877 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6878 } 6879 } 6880 6881 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6882 if (!ICI) return false; 6883 6884 // Now that we found a conditional branch that dominates the loop or controls 6885 // the loop latch. Check to see if it is the comparison we are looking for. 6886 ICmpInst::Predicate FoundPred; 6887 if (Inverse) 6888 FoundPred = ICI->getInversePredicate(); 6889 else 6890 FoundPred = ICI->getPredicate(); 6891 6892 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6893 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6894 6895 // Balance the types. 6896 if (getTypeSizeInBits(LHS->getType()) < 6897 getTypeSizeInBits(FoundLHS->getType())) { 6898 if (CmpInst::isSigned(Pred)) { 6899 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 6900 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 6901 } else { 6902 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 6903 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 6904 } 6905 } else if (getTypeSizeInBits(LHS->getType()) > 6906 getTypeSizeInBits(FoundLHS->getType())) { 6907 if (CmpInst::isSigned(FoundPred)) { 6908 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6909 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6910 } else { 6911 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6912 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6913 } 6914 } 6915 6916 // Canonicalize the query to match the way instcombine will have 6917 // canonicalized the comparison. 6918 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6919 if (LHS == RHS) 6920 return CmpInst::isTrueWhenEqual(Pred); 6921 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6922 if (FoundLHS == FoundRHS) 6923 return CmpInst::isFalseWhenEqual(FoundPred); 6924 6925 // Check to see if we can make the LHS or RHS match. 6926 if (LHS == FoundRHS || RHS == FoundLHS) { 6927 if (isa<SCEVConstant>(RHS)) { 6928 std::swap(FoundLHS, FoundRHS); 6929 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6930 } else { 6931 std::swap(LHS, RHS); 6932 Pred = ICmpInst::getSwappedPredicate(Pred); 6933 } 6934 } 6935 6936 // Check whether the found predicate is the same as the desired predicate. 6937 if (FoundPred == Pred) 6938 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6939 6940 // Check whether swapping the found predicate makes it the same as the 6941 // desired predicate. 6942 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6943 if (isa<SCEVConstant>(RHS)) 6944 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6945 else 6946 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6947 RHS, LHS, FoundLHS, FoundRHS); 6948 } 6949 6950 // Check if we can make progress by sharpening ranges. 6951 if (FoundPred == ICmpInst::ICMP_NE && 6952 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 6953 6954 const SCEVConstant *C = nullptr; 6955 const SCEV *V = nullptr; 6956 6957 if (isa<SCEVConstant>(FoundLHS)) { 6958 C = cast<SCEVConstant>(FoundLHS); 6959 V = FoundRHS; 6960 } else { 6961 C = cast<SCEVConstant>(FoundRHS); 6962 V = FoundLHS; 6963 } 6964 6965 // The guarding predicate tells us that C != V. If the known range 6966 // of V is [C, t), we can sharpen the range to [C + 1, t). The 6967 // range we consider has to correspond to same signedness as the 6968 // predicate we're interested in folding. 6969 6970 APInt Min = ICmpInst::isSigned(Pred) ? 6971 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 6972 6973 if (Min == C->getValue()->getValue()) { 6974 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 6975 // This is true even if (Min + 1) wraps around -- in case of 6976 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 6977 6978 APInt SharperMin = Min + 1; 6979 6980 switch (Pred) { 6981 case ICmpInst::ICMP_SGE: 6982 case ICmpInst::ICMP_UGE: 6983 // We know V `Pred` SharperMin. If this implies LHS `Pred` 6984 // RHS, we're done. 6985 if (isImpliedCondOperands(Pred, LHS, RHS, V, 6986 getConstant(SharperMin))) 6987 return true; 6988 6989 case ICmpInst::ICMP_SGT: 6990 case ICmpInst::ICMP_UGT: 6991 // We know from the range information that (V `Pred` Min || 6992 // V == Min). We know from the guarding condition that !(V 6993 // == Min). This gives us 6994 // 6995 // V `Pred` Min || V == Min && !(V == Min) 6996 // => V `Pred` Min 6997 // 6998 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 6999 7000 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7001 return true; 7002 7003 default: 7004 // No change 7005 break; 7006 } 7007 } 7008 } 7009 7010 // Check whether the actual condition is beyond sufficient. 7011 if (FoundPred == ICmpInst::ICMP_EQ) 7012 if (ICmpInst::isTrueWhenEqual(Pred)) 7013 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7014 return true; 7015 if (Pred == ICmpInst::ICMP_NE) 7016 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7017 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7018 return true; 7019 7020 // Otherwise assume the worst. 7021 return false; 7022 } 7023 7024 /// isImpliedCondOperands - Test whether the condition described by Pred, 7025 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7026 /// and FoundRHS is true. 7027 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7028 const SCEV *LHS, const SCEV *RHS, 7029 const SCEV *FoundLHS, 7030 const SCEV *FoundRHS) { 7031 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7032 return true; 7033 7034 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7035 FoundLHS, FoundRHS) || 7036 // ~x < ~y --> x > y 7037 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7038 getNotSCEV(FoundRHS), 7039 getNotSCEV(FoundLHS)); 7040 } 7041 7042 7043 /// If Expr computes ~A, return A else return nullptr 7044 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7045 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7046 if (!Add || Add->getNumOperands() != 2) return nullptr; 7047 7048 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0)); 7049 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue())) 7050 return nullptr; 7051 7052 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7053 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr; 7054 7055 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0)); 7056 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue())) 7057 return nullptr; 7058 7059 return AddRHS->getOperand(1); 7060 } 7061 7062 7063 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7064 template<typename MaxExprType> 7065 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7066 const SCEV *Candidate) { 7067 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7068 if (!MaxExpr) return false; 7069 7070 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7071 return It != MaxExpr->op_end(); 7072 } 7073 7074 7075 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7076 template<typename MaxExprType> 7077 static bool IsMinConsistingOf(ScalarEvolution &SE, 7078 const SCEV *MaybeMinExpr, 7079 const SCEV *Candidate) { 7080 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7081 if (!MaybeMaxExpr) 7082 return false; 7083 7084 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7085 } 7086 7087 7088 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7089 /// expression? 7090 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7091 ICmpInst::Predicate Pred, 7092 const SCEV *LHS, const SCEV *RHS) { 7093 switch (Pred) { 7094 default: 7095 return false; 7096 7097 case ICmpInst::ICMP_SGE: 7098 std::swap(LHS, RHS); 7099 // fall through 7100 case ICmpInst::ICMP_SLE: 7101 return 7102 // min(A, ...) <= A 7103 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7104 // A <= max(A, ...) 7105 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7106 7107 case ICmpInst::ICMP_UGE: 7108 std::swap(LHS, RHS); 7109 // fall through 7110 case ICmpInst::ICMP_ULE: 7111 return 7112 // min(A, ...) <= A 7113 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7114 // A <= max(A, ...) 7115 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7116 } 7117 7118 llvm_unreachable("covered switch fell through?!"); 7119 } 7120 7121 /// isImpliedCondOperandsHelper - Test whether the condition described by 7122 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7123 /// FoundLHS, and FoundRHS is true. 7124 bool 7125 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7126 const SCEV *LHS, const SCEV *RHS, 7127 const SCEV *FoundLHS, 7128 const SCEV *FoundRHS) { 7129 auto IsKnownPredicateFull = 7130 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7131 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7132 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS); 7133 }; 7134 7135 switch (Pred) { 7136 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7137 case ICmpInst::ICMP_EQ: 7138 case ICmpInst::ICMP_NE: 7139 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7140 return true; 7141 break; 7142 case ICmpInst::ICMP_SLT: 7143 case ICmpInst::ICMP_SLE: 7144 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7145 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7146 return true; 7147 break; 7148 case ICmpInst::ICMP_SGT: 7149 case ICmpInst::ICMP_SGE: 7150 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7151 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7152 return true; 7153 break; 7154 case ICmpInst::ICMP_ULT: 7155 case ICmpInst::ICMP_ULE: 7156 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7157 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7158 return true; 7159 break; 7160 case ICmpInst::ICMP_UGT: 7161 case ICmpInst::ICMP_UGE: 7162 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7163 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7164 return true; 7165 break; 7166 } 7167 7168 return false; 7169 } 7170 7171 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7172 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7173 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7174 const SCEV *LHS, 7175 const SCEV *RHS, 7176 const SCEV *FoundLHS, 7177 const SCEV *FoundRHS) { 7178 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7179 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7180 // reduce the compile time impact of this optimization. 7181 return false; 7182 7183 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7184 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7185 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7186 return false; 7187 7188 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7189 7190 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7191 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7192 ConstantRange FoundLHSRange = 7193 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7194 7195 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7196 // for `LHS`: 7197 APInt Addend = 7198 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7199 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7200 7201 // We can also compute the range of values for `LHS` that satisfy the 7202 // consequent, "`LHS` `Pred` `RHS`": 7203 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7204 ConstantRange SatisfyingLHSRange = 7205 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7206 7207 // The antecedent implies the consequent if every value of `LHS` that 7208 // satisfies the antecedent also satisfies the consequent. 7209 return SatisfyingLHSRange.contains(LHSRange); 7210 } 7211 7212 // Verify if an linear IV with positive stride can overflow when in a 7213 // less-than comparison, knowing the invariant term of the comparison, the 7214 // stride and the knowledge of NSW/NUW flags on the recurrence. 7215 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7216 bool IsSigned, bool NoWrap) { 7217 if (NoWrap) return false; 7218 7219 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7220 const SCEV *One = getConstant(Stride->getType(), 1); 7221 7222 if (IsSigned) { 7223 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7224 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7225 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7226 .getSignedMax(); 7227 7228 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7229 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7230 } 7231 7232 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7233 APInt MaxValue = APInt::getMaxValue(BitWidth); 7234 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7235 .getUnsignedMax(); 7236 7237 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7238 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7239 } 7240 7241 // Verify if an linear IV with negative stride can overflow when in a 7242 // greater-than comparison, knowing the invariant term of the comparison, 7243 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7244 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7245 bool IsSigned, bool NoWrap) { 7246 if (NoWrap) return false; 7247 7248 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7249 const SCEV *One = getConstant(Stride->getType(), 1); 7250 7251 if (IsSigned) { 7252 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7253 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7254 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7255 .getSignedMax(); 7256 7257 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7258 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7259 } 7260 7261 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7262 APInt MinValue = APInt::getMinValue(BitWidth); 7263 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7264 .getUnsignedMax(); 7265 7266 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7267 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7268 } 7269 7270 // Compute the backedge taken count knowing the interval difference, the 7271 // stride and presence of the equality in the comparison. 7272 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7273 bool Equality) { 7274 const SCEV *One = getConstant(Step->getType(), 1); 7275 Delta = Equality ? getAddExpr(Delta, Step) 7276 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7277 return getUDivExpr(Delta, Step); 7278 } 7279 7280 /// HowManyLessThans - Return the number of times a backedge containing the 7281 /// specified less-than comparison will execute. If not computable, return 7282 /// CouldNotCompute. 7283 /// 7284 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7285 /// the branch (loops exits only if condition is true). In this case, we can use 7286 /// NoWrapFlags to skip overflow checks. 7287 ScalarEvolution::ExitLimit 7288 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7289 const Loop *L, bool IsSigned, 7290 bool ControlsExit) { 7291 // We handle only IV < Invariant 7292 if (!isLoopInvariant(RHS, L)) 7293 return getCouldNotCompute(); 7294 7295 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7296 7297 // Avoid weird loops 7298 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7299 return getCouldNotCompute(); 7300 7301 bool NoWrap = ControlsExit && 7302 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7303 7304 const SCEV *Stride = IV->getStepRecurrence(*this); 7305 7306 // Avoid negative or zero stride values 7307 if (!isKnownPositive(Stride)) 7308 return getCouldNotCompute(); 7309 7310 // Avoid proven overflow cases: this will ensure that the backedge taken count 7311 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7312 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7313 // behaviors like the case of C language. 7314 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7315 return getCouldNotCompute(); 7316 7317 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 7318 : ICmpInst::ICMP_ULT; 7319 const SCEV *Start = IV->getStart(); 7320 const SCEV *End = RHS; 7321 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 7322 const SCEV *Diff = getMinusSCEV(RHS, Start); 7323 // If we have NoWrap set, then we can assume that the increment won't 7324 // overflow, in which case if RHS - Start is a constant, we don't need to 7325 // do a max operation since we can just figure it out statically 7326 if (NoWrap && isa<SCEVConstant>(Diff)) { 7327 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7328 if (D.isNegative()) 7329 End = Start; 7330 } else 7331 End = IsSigned ? getSMaxExpr(RHS, Start) 7332 : getUMaxExpr(RHS, Start); 7333 } 7334 7335 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 7336 7337 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 7338 : getUnsignedRange(Start).getUnsignedMin(); 7339 7340 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7341 : getUnsignedRange(Stride).getUnsignedMin(); 7342 7343 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7344 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 7345 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 7346 7347 // Although End can be a MAX expression we estimate MaxEnd considering only 7348 // the case End = RHS. This is safe because in the other case (End - Start) 7349 // is zero, leading to a zero maximum backedge taken count. 7350 APInt MaxEnd = 7351 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 7352 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 7353 7354 const SCEV *MaxBECount; 7355 if (isa<SCEVConstant>(BECount)) 7356 MaxBECount = BECount; 7357 else 7358 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 7359 getConstant(MinStride), false); 7360 7361 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7362 MaxBECount = BECount; 7363 7364 return ExitLimit(BECount, MaxBECount); 7365 } 7366 7367 ScalarEvolution::ExitLimit 7368 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 7369 const Loop *L, bool IsSigned, 7370 bool ControlsExit) { 7371 // We handle only IV > Invariant 7372 if (!isLoopInvariant(RHS, L)) 7373 return getCouldNotCompute(); 7374 7375 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7376 7377 // Avoid weird loops 7378 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7379 return getCouldNotCompute(); 7380 7381 bool NoWrap = ControlsExit && 7382 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7383 7384 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 7385 7386 // Avoid negative or zero stride values 7387 if (!isKnownPositive(Stride)) 7388 return getCouldNotCompute(); 7389 7390 // Avoid proven overflow cases: this will ensure that the backedge taken count 7391 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7392 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7393 // behaviors like the case of C language. 7394 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 7395 return getCouldNotCompute(); 7396 7397 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 7398 : ICmpInst::ICMP_UGT; 7399 7400 const SCEV *Start = IV->getStart(); 7401 const SCEV *End = RHS; 7402 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 7403 const SCEV *Diff = getMinusSCEV(RHS, Start); 7404 // If we have NoWrap set, then we can assume that the increment won't 7405 // overflow, in which case if RHS - Start is a constant, we don't need to 7406 // do a max operation since we can just figure it out statically 7407 if (NoWrap && isa<SCEVConstant>(Diff)) { 7408 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7409 if (!D.isNegative()) 7410 End = Start; 7411 } else 7412 End = IsSigned ? getSMinExpr(RHS, Start) 7413 : getUMinExpr(RHS, Start); 7414 } 7415 7416 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 7417 7418 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 7419 : getUnsignedRange(Start).getUnsignedMax(); 7420 7421 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7422 : getUnsignedRange(Stride).getUnsignedMin(); 7423 7424 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7425 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 7426 : APInt::getMinValue(BitWidth) + (MinStride - 1); 7427 7428 // Although End can be a MIN expression we estimate MinEnd considering only 7429 // the case End = RHS. This is safe because in the other case (Start - End) 7430 // is zero, leading to a zero maximum backedge taken count. 7431 APInt MinEnd = 7432 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 7433 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 7434 7435 7436 const SCEV *MaxBECount = getCouldNotCompute(); 7437 if (isa<SCEVConstant>(BECount)) 7438 MaxBECount = BECount; 7439 else 7440 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 7441 getConstant(MinStride), false); 7442 7443 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7444 MaxBECount = BECount; 7445 7446 return ExitLimit(BECount, MaxBECount); 7447 } 7448 7449 /// getNumIterationsInRange - Return the number of iterations of this loop that 7450 /// produce values in the specified constant range. Another way of looking at 7451 /// this is that it returns the first iteration number where the value is not in 7452 /// the condition, thus computing the exit count. If the iteration count can't 7453 /// be computed, an instance of SCEVCouldNotCompute is returned. 7454 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 7455 ScalarEvolution &SE) const { 7456 if (Range.isFullSet()) // Infinite loop. 7457 return SE.getCouldNotCompute(); 7458 7459 // If the start is a non-zero constant, shift the range to simplify things. 7460 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 7461 if (!SC->getValue()->isZero()) { 7462 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 7463 Operands[0] = SE.getConstant(SC->getType(), 0); 7464 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 7465 getNoWrapFlags(FlagNW)); 7466 if (const SCEVAddRecExpr *ShiftedAddRec = 7467 dyn_cast<SCEVAddRecExpr>(Shifted)) 7468 return ShiftedAddRec->getNumIterationsInRange( 7469 Range.subtract(SC->getValue()->getValue()), SE); 7470 // This is strange and shouldn't happen. 7471 return SE.getCouldNotCompute(); 7472 } 7473 7474 // The only time we can solve this is when we have all constant indices. 7475 // Otherwise, we cannot determine the overflow conditions. 7476 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 7477 if (!isa<SCEVConstant>(getOperand(i))) 7478 return SE.getCouldNotCompute(); 7479 7480 7481 // Okay at this point we know that all elements of the chrec are constants and 7482 // that the start element is zero. 7483 7484 // First check to see if the range contains zero. If not, the first 7485 // iteration exits. 7486 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 7487 if (!Range.contains(APInt(BitWidth, 0))) 7488 return SE.getConstant(getType(), 0); 7489 7490 if (isAffine()) { 7491 // If this is an affine expression then we have this situation: 7492 // Solve {0,+,A} in Range === Ax in Range 7493 7494 // We know that zero is in the range. If A is positive then we know that 7495 // the upper value of the range must be the first possible exit value. 7496 // If A is negative then the lower of the range is the last possible loop 7497 // value. Also note that we already checked for a full range. 7498 APInt One(BitWidth,1); 7499 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 7500 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 7501 7502 // The exit value should be (End+A)/A. 7503 APInt ExitVal = (End + A).udiv(A); 7504 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 7505 7506 // Evaluate at the exit value. If we really did fall out of the valid 7507 // range, then we computed our trip count, otherwise wrap around or other 7508 // things must have happened. 7509 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 7510 if (Range.contains(Val->getValue())) 7511 return SE.getCouldNotCompute(); // Something strange happened 7512 7513 // Ensure that the previous value is in the range. This is a sanity check. 7514 assert(Range.contains( 7515 EvaluateConstantChrecAtConstant(this, 7516 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 7517 "Linear scev computation is off in a bad way!"); 7518 return SE.getConstant(ExitValue); 7519 } else if (isQuadratic()) { 7520 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 7521 // quadratic equation to solve it. To do this, we must frame our problem in 7522 // terms of figuring out when zero is crossed, instead of when 7523 // Range.getUpper() is crossed. 7524 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 7525 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 7526 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 7527 // getNoWrapFlags(FlagNW) 7528 FlagAnyWrap); 7529 7530 // Next, solve the constructed addrec 7531 std::pair<const SCEV *,const SCEV *> Roots = 7532 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 7533 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 7534 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 7535 if (R1) { 7536 // Pick the smallest positive root value. 7537 if (ConstantInt *CB = 7538 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 7539 R1->getValue(), R2->getValue()))) { 7540 if (!CB->getZExtValue()) 7541 std::swap(R1, R2); // R1 is the minimum root now. 7542 7543 // Make sure the root is not off by one. The returned iteration should 7544 // not be in the range, but the previous one should be. When solving 7545 // for "X*X < 5", for example, we should not return a root of 2. 7546 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 7547 R1->getValue(), 7548 SE); 7549 if (Range.contains(R1Val->getValue())) { 7550 // The next iteration must be out of the range... 7551 ConstantInt *NextVal = 7552 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 7553 7554 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7555 if (!Range.contains(R1Val->getValue())) 7556 return SE.getConstant(NextVal); 7557 return SE.getCouldNotCompute(); // Something strange happened 7558 } 7559 7560 // If R1 was not in the range, then it is a good return value. Make 7561 // sure that R1-1 WAS in the range though, just in case. 7562 ConstantInt *NextVal = 7563 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 7564 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 7565 if (Range.contains(R1Val->getValue())) 7566 return R1; 7567 return SE.getCouldNotCompute(); // Something strange happened 7568 } 7569 } 7570 } 7571 7572 return SE.getCouldNotCompute(); 7573 } 7574 7575 namespace { 7576 struct FindUndefs { 7577 bool Found; 7578 FindUndefs() : Found(false) {} 7579 7580 bool follow(const SCEV *S) { 7581 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 7582 if (isa<UndefValue>(C->getValue())) 7583 Found = true; 7584 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 7585 if (isa<UndefValue>(C->getValue())) 7586 Found = true; 7587 } 7588 7589 // Keep looking if we haven't found it yet. 7590 return !Found; 7591 } 7592 bool isDone() const { 7593 // Stop recursion if we have found an undef. 7594 return Found; 7595 } 7596 }; 7597 } 7598 7599 // Return true when S contains at least an undef value. 7600 static inline bool 7601 containsUndefs(const SCEV *S) { 7602 FindUndefs F; 7603 SCEVTraversal<FindUndefs> ST(F); 7604 ST.visitAll(S); 7605 7606 return F.Found; 7607 } 7608 7609 namespace { 7610 // Collect all steps of SCEV expressions. 7611 struct SCEVCollectStrides { 7612 ScalarEvolution &SE; 7613 SmallVectorImpl<const SCEV *> &Strides; 7614 7615 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 7616 : SE(SE), Strides(S) {} 7617 7618 bool follow(const SCEV *S) { 7619 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 7620 Strides.push_back(AR->getStepRecurrence(SE)); 7621 return true; 7622 } 7623 bool isDone() const { return false; } 7624 }; 7625 7626 // Collect all SCEVUnknown and SCEVMulExpr expressions. 7627 struct SCEVCollectTerms { 7628 SmallVectorImpl<const SCEV *> &Terms; 7629 7630 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 7631 : Terms(T) {} 7632 7633 bool follow(const SCEV *S) { 7634 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 7635 if (!containsUndefs(S)) 7636 Terms.push_back(S); 7637 7638 // Stop recursion: once we collected a term, do not walk its operands. 7639 return false; 7640 } 7641 7642 // Keep looking. 7643 return true; 7644 } 7645 bool isDone() const { return false; } 7646 }; 7647 } 7648 7649 /// Find parametric terms in this SCEVAddRecExpr. 7650 void SCEVAddRecExpr::collectParametricTerms( 7651 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const { 7652 SmallVector<const SCEV *, 4> Strides; 7653 SCEVCollectStrides StrideCollector(SE, Strides); 7654 visitAll(this, StrideCollector); 7655 7656 DEBUG({ 7657 dbgs() << "Strides:\n"; 7658 for (const SCEV *S : Strides) 7659 dbgs() << *S << "\n"; 7660 }); 7661 7662 for (const SCEV *S : Strides) { 7663 SCEVCollectTerms TermCollector(Terms); 7664 visitAll(S, TermCollector); 7665 } 7666 7667 DEBUG({ 7668 dbgs() << "Terms:\n"; 7669 for (const SCEV *T : Terms) 7670 dbgs() << *T << "\n"; 7671 }); 7672 } 7673 7674 static bool findArrayDimensionsRec(ScalarEvolution &SE, 7675 SmallVectorImpl<const SCEV *> &Terms, 7676 SmallVectorImpl<const SCEV *> &Sizes) { 7677 int Last = Terms.size() - 1; 7678 const SCEV *Step = Terms[Last]; 7679 7680 // End of recursion. 7681 if (Last == 0) { 7682 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 7683 SmallVector<const SCEV *, 2> Qs; 7684 for (const SCEV *Op : M->operands()) 7685 if (!isa<SCEVConstant>(Op)) 7686 Qs.push_back(Op); 7687 7688 Step = SE.getMulExpr(Qs); 7689 } 7690 7691 Sizes.push_back(Step); 7692 return true; 7693 } 7694 7695 for (const SCEV *&Term : Terms) { 7696 // Normalize the terms before the next call to findArrayDimensionsRec. 7697 const SCEV *Q, *R; 7698 SCEVDivision::divide(SE, Term, Step, &Q, &R); 7699 7700 // Bail out when GCD does not evenly divide one of the terms. 7701 if (!R->isZero()) 7702 return false; 7703 7704 Term = Q; 7705 } 7706 7707 // Remove all SCEVConstants. 7708 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 7709 return isa<SCEVConstant>(E); 7710 }), 7711 Terms.end()); 7712 7713 if (Terms.size() > 0) 7714 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 7715 return false; 7716 7717 Sizes.push_back(Step); 7718 return true; 7719 } 7720 7721 namespace { 7722 struct FindParameter { 7723 bool FoundParameter; 7724 FindParameter() : FoundParameter(false) {} 7725 7726 bool follow(const SCEV *S) { 7727 if (isa<SCEVUnknown>(S)) { 7728 FoundParameter = true; 7729 // Stop recursion: we found a parameter. 7730 return false; 7731 } 7732 // Keep looking. 7733 return true; 7734 } 7735 bool isDone() const { 7736 // Stop recursion if we have found a parameter. 7737 return FoundParameter; 7738 } 7739 }; 7740 } 7741 7742 // Returns true when S contains at least a SCEVUnknown parameter. 7743 static inline bool 7744 containsParameters(const SCEV *S) { 7745 FindParameter F; 7746 SCEVTraversal<FindParameter> ST(F); 7747 ST.visitAll(S); 7748 7749 return F.FoundParameter; 7750 } 7751 7752 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 7753 static inline bool 7754 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 7755 for (const SCEV *T : Terms) 7756 if (containsParameters(T)) 7757 return true; 7758 return false; 7759 } 7760 7761 // Return the number of product terms in S. 7762 static inline int numberOfTerms(const SCEV *S) { 7763 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 7764 return Expr->getNumOperands(); 7765 return 1; 7766 } 7767 7768 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 7769 if (isa<SCEVConstant>(T)) 7770 return nullptr; 7771 7772 if (isa<SCEVUnknown>(T)) 7773 return T; 7774 7775 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 7776 SmallVector<const SCEV *, 2> Factors; 7777 for (const SCEV *Op : M->operands()) 7778 if (!isa<SCEVConstant>(Op)) 7779 Factors.push_back(Op); 7780 7781 return SE.getMulExpr(Factors); 7782 } 7783 7784 return T; 7785 } 7786 7787 /// Return the size of an element read or written by Inst. 7788 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 7789 Type *Ty; 7790 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 7791 Ty = Store->getValueOperand()->getType(); 7792 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 7793 Ty = Load->getType(); 7794 else 7795 return nullptr; 7796 7797 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 7798 return getSizeOfExpr(ETy, Ty); 7799 } 7800 7801 /// Second step of delinearization: compute the array dimensions Sizes from the 7802 /// set of Terms extracted from the memory access function of this SCEVAddRec. 7803 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 7804 SmallVectorImpl<const SCEV *> &Sizes, 7805 const SCEV *ElementSize) const { 7806 7807 if (Terms.size() < 1 || !ElementSize) 7808 return; 7809 7810 // Early return when Terms do not contain parameters: we do not delinearize 7811 // non parametric SCEVs. 7812 if (!containsParameters(Terms)) 7813 return; 7814 7815 DEBUG({ 7816 dbgs() << "Terms:\n"; 7817 for (const SCEV *T : Terms) 7818 dbgs() << *T << "\n"; 7819 }); 7820 7821 // Remove duplicates. 7822 std::sort(Terms.begin(), Terms.end()); 7823 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 7824 7825 // Put larger terms first. 7826 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 7827 return numberOfTerms(LHS) > numberOfTerms(RHS); 7828 }); 7829 7830 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7831 7832 // Divide all terms by the element size. 7833 for (const SCEV *&Term : Terms) { 7834 const SCEV *Q, *R; 7835 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 7836 Term = Q; 7837 } 7838 7839 SmallVector<const SCEV *, 4> NewTerms; 7840 7841 // Remove constant factors. 7842 for (const SCEV *T : Terms) 7843 if (const SCEV *NewT = removeConstantFactors(SE, T)) 7844 NewTerms.push_back(NewT); 7845 7846 DEBUG({ 7847 dbgs() << "Terms after sorting:\n"; 7848 for (const SCEV *T : NewTerms) 7849 dbgs() << *T << "\n"; 7850 }); 7851 7852 if (NewTerms.empty() || 7853 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 7854 Sizes.clear(); 7855 return; 7856 } 7857 7858 // The last element to be pushed into Sizes is the size of an element. 7859 Sizes.push_back(ElementSize); 7860 7861 DEBUG({ 7862 dbgs() << "Sizes:\n"; 7863 for (const SCEV *S : Sizes) 7864 dbgs() << *S << "\n"; 7865 }); 7866 } 7867 7868 /// Third step of delinearization: compute the access functions for the 7869 /// Subscripts based on the dimensions in Sizes. 7870 void SCEVAddRecExpr::computeAccessFunctions( 7871 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts, 7872 SmallVectorImpl<const SCEV *> &Sizes) const { 7873 7874 // Early exit in case this SCEV is not an affine multivariate function. 7875 if (Sizes.empty() || !this->isAffine()) 7876 return; 7877 7878 const SCEV *Res = this; 7879 int Last = Sizes.size() - 1; 7880 for (int i = Last; i >= 0; i--) { 7881 const SCEV *Q, *R; 7882 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R); 7883 7884 DEBUG({ 7885 dbgs() << "Res: " << *Res << "\n"; 7886 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 7887 dbgs() << "Res divided by Sizes[i]:\n"; 7888 dbgs() << "Quotient: " << *Q << "\n"; 7889 dbgs() << "Remainder: " << *R << "\n"; 7890 }); 7891 7892 Res = Q; 7893 7894 // Do not record the last subscript corresponding to the size of elements in 7895 // the array. 7896 if (i == Last) { 7897 7898 // Bail out if the remainder is too complex. 7899 if (isa<SCEVAddRecExpr>(R)) { 7900 Subscripts.clear(); 7901 Sizes.clear(); 7902 return; 7903 } 7904 7905 continue; 7906 } 7907 7908 // Record the access function for the current subscript. 7909 Subscripts.push_back(R); 7910 } 7911 7912 // Also push in last position the remainder of the last division: it will be 7913 // the access function of the innermost dimension. 7914 Subscripts.push_back(Res); 7915 7916 std::reverse(Subscripts.begin(), Subscripts.end()); 7917 7918 DEBUG({ 7919 dbgs() << "Subscripts:\n"; 7920 for (const SCEV *S : Subscripts) 7921 dbgs() << *S << "\n"; 7922 }); 7923 } 7924 7925 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 7926 /// sizes of an array access. Returns the remainder of the delinearization that 7927 /// is the offset start of the array. The SCEV->delinearize algorithm computes 7928 /// the multiples of SCEV coefficients: that is a pattern matching of sub 7929 /// expressions in the stride and base of a SCEV corresponding to the 7930 /// computation of a GCD (greatest common divisor) of base and stride. When 7931 /// SCEV->delinearize fails, it returns the SCEV unchanged. 7932 /// 7933 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 7934 /// 7935 /// void foo(long n, long m, long o, double A[n][m][o]) { 7936 /// 7937 /// for (long i = 0; i < n; i++) 7938 /// for (long j = 0; j < m; j++) 7939 /// for (long k = 0; k < o; k++) 7940 /// A[i][j][k] = 1.0; 7941 /// } 7942 /// 7943 /// the delinearization input is the following AddRec SCEV: 7944 /// 7945 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 7946 /// 7947 /// From this SCEV, we are able to say that the base offset of the access is %A 7948 /// because it appears as an offset that does not divide any of the strides in 7949 /// the loops: 7950 /// 7951 /// CHECK: Base offset: %A 7952 /// 7953 /// and then SCEV->delinearize determines the size of some of the dimensions of 7954 /// the array as these are the multiples by which the strides are happening: 7955 /// 7956 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 7957 /// 7958 /// Note that the outermost dimension remains of UnknownSize because there are 7959 /// no strides that would help identifying the size of the last dimension: when 7960 /// the array has been statically allocated, one could compute the size of that 7961 /// dimension by dividing the overall size of the array by the size of the known 7962 /// dimensions: %m * %o * 8. 7963 /// 7964 /// Finally delinearize provides the access functions for the array reference 7965 /// that does correspond to A[i][j][k] of the above C testcase: 7966 /// 7967 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 7968 /// 7969 /// The testcases are checking the output of a function pass: 7970 /// DelinearizationPass that walks through all loads and stores of a function 7971 /// asking for the SCEV of the memory access with respect to all enclosing 7972 /// loops, calling SCEV->delinearize on that and printing the results. 7973 7974 void SCEVAddRecExpr::delinearize(ScalarEvolution &SE, 7975 SmallVectorImpl<const SCEV *> &Subscripts, 7976 SmallVectorImpl<const SCEV *> &Sizes, 7977 const SCEV *ElementSize) const { 7978 // First step: collect parametric terms. 7979 SmallVector<const SCEV *, 4> Terms; 7980 collectParametricTerms(SE, Terms); 7981 7982 if (Terms.empty()) 7983 return; 7984 7985 // Second step: find subscript sizes. 7986 SE.findArrayDimensions(Terms, Sizes, ElementSize); 7987 7988 if (Sizes.empty()) 7989 return; 7990 7991 // Third step: compute the access functions for each subscript. 7992 computeAccessFunctions(SE, Subscripts, Sizes); 7993 7994 if (Subscripts.empty()) 7995 return; 7996 7997 DEBUG({ 7998 dbgs() << "succeeded to delinearize " << *this << "\n"; 7999 dbgs() << "ArrayDecl[UnknownSize]"; 8000 for (const SCEV *S : Sizes) 8001 dbgs() << "[" << *S << "]"; 8002 8003 dbgs() << "\nArrayRef"; 8004 for (const SCEV *S : Subscripts) 8005 dbgs() << "[" << *S << "]"; 8006 dbgs() << "\n"; 8007 }); 8008 } 8009 8010 //===----------------------------------------------------------------------===// 8011 // SCEVCallbackVH Class Implementation 8012 //===----------------------------------------------------------------------===// 8013 8014 void ScalarEvolution::SCEVCallbackVH::deleted() { 8015 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8016 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8017 SE->ConstantEvolutionLoopExitValue.erase(PN); 8018 SE->ValueExprMap.erase(getValPtr()); 8019 // this now dangles! 8020 } 8021 8022 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8023 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8024 8025 // Forget all the expressions associated with users of the old value, 8026 // so that future queries will recompute the expressions using the new 8027 // value. 8028 Value *Old = getValPtr(); 8029 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8030 SmallPtrSet<User *, 8> Visited; 8031 while (!Worklist.empty()) { 8032 User *U = Worklist.pop_back_val(); 8033 // Deleting the Old value will cause this to dangle. Postpone 8034 // that until everything else is done. 8035 if (U == Old) 8036 continue; 8037 if (!Visited.insert(U).second) 8038 continue; 8039 if (PHINode *PN = dyn_cast<PHINode>(U)) 8040 SE->ConstantEvolutionLoopExitValue.erase(PN); 8041 SE->ValueExprMap.erase(U); 8042 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8043 } 8044 // Delete the Old value. 8045 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8046 SE->ConstantEvolutionLoopExitValue.erase(PN); 8047 SE->ValueExprMap.erase(Old); 8048 // this now dangles! 8049 } 8050 8051 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8052 : CallbackVH(V), SE(se) {} 8053 8054 //===----------------------------------------------------------------------===// 8055 // ScalarEvolution Class Implementation 8056 //===----------------------------------------------------------------------===// 8057 8058 ScalarEvolution::ScalarEvolution() 8059 : FunctionPass(ID), WalkingBEDominatingConds(false), ValuesAtScopes(64), 8060 LoopDispositions(64), BlockDispositions(64), FirstUnknown(nullptr) { 8061 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 8062 } 8063 8064 bool ScalarEvolution::runOnFunction(Function &F) { 8065 this->F = &F; 8066 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8067 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8068 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 8069 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8070 return false; 8071 } 8072 8073 void ScalarEvolution::releaseMemory() { 8074 // Iterate through all the SCEVUnknown instances and call their 8075 // destructors, so that they release their references to their values. 8076 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 8077 U->~SCEVUnknown(); 8078 FirstUnknown = nullptr; 8079 8080 ValueExprMap.clear(); 8081 8082 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8083 // that a loop had multiple computable exits. 8084 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8085 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 8086 I != E; ++I) { 8087 I->second.clear(); 8088 } 8089 8090 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8091 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8092 8093 BackedgeTakenCounts.clear(); 8094 ConstantEvolutionLoopExitValue.clear(); 8095 ValuesAtScopes.clear(); 8096 LoopDispositions.clear(); 8097 BlockDispositions.clear(); 8098 UnsignedRanges.clear(); 8099 SignedRanges.clear(); 8100 UniqueSCEVs.clear(); 8101 SCEVAllocator.Reset(); 8102 } 8103 8104 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 8105 AU.setPreservesAll(); 8106 AU.addRequired<AssumptionCacheTracker>(); 8107 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 8108 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 8109 AU.addRequired<TargetLibraryInfoWrapperPass>(); 8110 } 8111 8112 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8113 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8114 } 8115 8116 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8117 const Loop *L) { 8118 // Print all inner loops first 8119 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8120 PrintLoopInfo(OS, SE, *I); 8121 8122 OS << "Loop "; 8123 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8124 OS << ": "; 8125 8126 SmallVector<BasicBlock *, 8> ExitBlocks; 8127 L->getExitBlocks(ExitBlocks); 8128 if (ExitBlocks.size() != 1) 8129 OS << "<multiple exits> "; 8130 8131 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8132 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8133 } else { 8134 OS << "Unpredictable backedge-taken count. "; 8135 } 8136 8137 OS << "\n" 8138 "Loop "; 8139 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8140 OS << ": "; 8141 8142 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8143 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8144 } else { 8145 OS << "Unpredictable max backedge-taken count. "; 8146 } 8147 8148 OS << "\n"; 8149 } 8150 8151 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 8152 // ScalarEvolution's implementation of the print method is to print 8153 // out SCEV values of all instructions that are interesting. Doing 8154 // this potentially causes it to create new SCEV objects though, 8155 // which technically conflicts with the const qualifier. This isn't 8156 // observable from outside the class though, so casting away the 8157 // const isn't dangerous. 8158 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8159 8160 OS << "Classifying expressions for: "; 8161 F->printAsOperand(OS, /*PrintType=*/false); 8162 OS << "\n"; 8163 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 8164 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 8165 OS << *I << '\n'; 8166 OS << " --> "; 8167 const SCEV *SV = SE.getSCEV(&*I); 8168 SV->print(OS); 8169 if (!isa<SCEVCouldNotCompute>(SV)) { 8170 OS << " U: "; 8171 SE.getUnsignedRange(SV).print(OS); 8172 OS << " S: "; 8173 SE.getSignedRange(SV).print(OS); 8174 } 8175 8176 const Loop *L = LI->getLoopFor((*I).getParent()); 8177 8178 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8179 if (AtUse != SV) { 8180 OS << " --> "; 8181 AtUse->print(OS); 8182 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8183 OS << " U: "; 8184 SE.getUnsignedRange(AtUse).print(OS); 8185 OS << " S: "; 8186 SE.getSignedRange(AtUse).print(OS); 8187 } 8188 } 8189 8190 if (L) { 8191 OS << "\t\t" "Exits: "; 8192 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8193 if (!SE.isLoopInvariant(ExitValue, L)) { 8194 OS << "<<Unknown>>"; 8195 } else { 8196 OS << *ExitValue; 8197 } 8198 } 8199 8200 OS << "\n"; 8201 } 8202 8203 OS << "Determining loop execution counts for: "; 8204 F->printAsOperand(OS, /*PrintType=*/false); 8205 OS << "\n"; 8206 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 8207 PrintLoopInfo(OS, &SE, *I); 8208 } 8209 8210 ScalarEvolution::LoopDisposition 8211 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8212 auto &Values = LoopDispositions[S]; 8213 for (auto &V : Values) { 8214 if (V.getPointer() == L) 8215 return V.getInt(); 8216 } 8217 Values.emplace_back(L, LoopVariant); 8218 LoopDisposition D = computeLoopDisposition(S, L); 8219 auto &Values2 = LoopDispositions[S]; 8220 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8221 if (V.getPointer() == L) { 8222 V.setInt(D); 8223 break; 8224 } 8225 } 8226 return D; 8227 } 8228 8229 ScalarEvolution::LoopDisposition 8230 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8231 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8232 case scConstant: 8233 return LoopInvariant; 8234 case scTruncate: 8235 case scZeroExtend: 8236 case scSignExtend: 8237 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8238 case scAddRecExpr: { 8239 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8240 8241 // If L is the addrec's loop, it's computable. 8242 if (AR->getLoop() == L) 8243 return LoopComputable; 8244 8245 // Add recurrences are never invariant in the function-body (null loop). 8246 if (!L) 8247 return LoopVariant; 8248 8249 // This recurrence is variant w.r.t. L if L contains AR's loop. 8250 if (L->contains(AR->getLoop())) 8251 return LoopVariant; 8252 8253 // This recurrence is invariant w.r.t. L if AR's loop contains L. 8254 if (AR->getLoop()->contains(L)) 8255 return LoopInvariant; 8256 8257 // This recurrence is variant w.r.t. L if any of its operands 8258 // are variant. 8259 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 8260 I != E; ++I) 8261 if (!isLoopInvariant(*I, L)) 8262 return LoopVariant; 8263 8264 // Otherwise it's loop-invariant. 8265 return LoopInvariant; 8266 } 8267 case scAddExpr: 8268 case scMulExpr: 8269 case scUMaxExpr: 8270 case scSMaxExpr: { 8271 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8272 bool HasVarying = false; 8273 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8274 I != E; ++I) { 8275 LoopDisposition D = getLoopDisposition(*I, L); 8276 if (D == LoopVariant) 8277 return LoopVariant; 8278 if (D == LoopComputable) 8279 HasVarying = true; 8280 } 8281 return HasVarying ? LoopComputable : LoopInvariant; 8282 } 8283 case scUDivExpr: { 8284 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8285 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 8286 if (LD == LoopVariant) 8287 return LoopVariant; 8288 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 8289 if (RD == LoopVariant) 8290 return LoopVariant; 8291 return (LD == LoopInvariant && RD == LoopInvariant) ? 8292 LoopInvariant : LoopComputable; 8293 } 8294 case scUnknown: 8295 // All non-instruction values are loop invariant. All instructions are loop 8296 // invariant if they are not contained in the specified loop. 8297 // Instructions are never considered invariant in the function body 8298 // (null loop) because they are defined within the "loop". 8299 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 8300 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 8301 return LoopInvariant; 8302 case scCouldNotCompute: 8303 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8304 } 8305 llvm_unreachable("Unknown SCEV kind!"); 8306 } 8307 8308 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 8309 return getLoopDisposition(S, L) == LoopInvariant; 8310 } 8311 8312 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 8313 return getLoopDisposition(S, L) == LoopComputable; 8314 } 8315 8316 ScalarEvolution::BlockDisposition 8317 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8318 auto &Values = BlockDispositions[S]; 8319 for (auto &V : Values) { 8320 if (V.getPointer() == BB) 8321 return V.getInt(); 8322 } 8323 Values.emplace_back(BB, DoesNotDominateBlock); 8324 BlockDisposition D = computeBlockDisposition(S, BB); 8325 auto &Values2 = BlockDispositions[S]; 8326 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8327 if (V.getPointer() == BB) { 8328 V.setInt(D); 8329 break; 8330 } 8331 } 8332 return D; 8333 } 8334 8335 ScalarEvolution::BlockDisposition 8336 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8337 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8338 case scConstant: 8339 return ProperlyDominatesBlock; 8340 case scTruncate: 8341 case scZeroExtend: 8342 case scSignExtend: 8343 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 8344 case scAddRecExpr: { 8345 // This uses a "dominates" query instead of "properly dominates" query 8346 // to test for proper dominance too, because the instruction which 8347 // produces the addrec's value is a PHI, and a PHI effectively properly 8348 // dominates its entire containing block. 8349 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8350 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 8351 return DoesNotDominateBlock; 8352 } 8353 // FALL THROUGH into SCEVNAryExpr handling. 8354 case scAddExpr: 8355 case scMulExpr: 8356 case scUMaxExpr: 8357 case scSMaxExpr: { 8358 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8359 bool Proper = true; 8360 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8361 I != E; ++I) { 8362 BlockDisposition D = getBlockDisposition(*I, BB); 8363 if (D == DoesNotDominateBlock) 8364 return DoesNotDominateBlock; 8365 if (D == DominatesBlock) 8366 Proper = false; 8367 } 8368 return Proper ? ProperlyDominatesBlock : DominatesBlock; 8369 } 8370 case scUDivExpr: { 8371 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8372 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 8373 BlockDisposition LD = getBlockDisposition(LHS, BB); 8374 if (LD == DoesNotDominateBlock) 8375 return DoesNotDominateBlock; 8376 BlockDisposition RD = getBlockDisposition(RHS, BB); 8377 if (RD == DoesNotDominateBlock) 8378 return DoesNotDominateBlock; 8379 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 8380 ProperlyDominatesBlock : DominatesBlock; 8381 } 8382 case scUnknown: 8383 if (Instruction *I = 8384 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 8385 if (I->getParent() == BB) 8386 return DominatesBlock; 8387 if (DT->properlyDominates(I->getParent(), BB)) 8388 return ProperlyDominatesBlock; 8389 return DoesNotDominateBlock; 8390 } 8391 return ProperlyDominatesBlock; 8392 case scCouldNotCompute: 8393 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8394 } 8395 llvm_unreachable("Unknown SCEV kind!"); 8396 } 8397 8398 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 8399 return getBlockDisposition(S, BB) >= DominatesBlock; 8400 } 8401 8402 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 8403 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 8404 } 8405 8406 namespace { 8407 // Search for a SCEV expression node within an expression tree. 8408 // Implements SCEVTraversal::Visitor. 8409 struct SCEVSearch { 8410 const SCEV *Node; 8411 bool IsFound; 8412 8413 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 8414 8415 bool follow(const SCEV *S) { 8416 IsFound |= (S == Node); 8417 return !IsFound; 8418 } 8419 bool isDone() const { return IsFound; } 8420 }; 8421 } 8422 8423 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 8424 SCEVSearch Search(Op); 8425 visitAll(S, Search); 8426 return Search.IsFound; 8427 } 8428 8429 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 8430 ValuesAtScopes.erase(S); 8431 LoopDispositions.erase(S); 8432 BlockDispositions.erase(S); 8433 UnsignedRanges.erase(S); 8434 SignedRanges.erase(S); 8435 8436 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8437 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 8438 BackedgeTakenInfo &BEInfo = I->second; 8439 if (BEInfo.hasOperand(S, this)) { 8440 BEInfo.clear(); 8441 BackedgeTakenCounts.erase(I++); 8442 } 8443 else 8444 ++I; 8445 } 8446 } 8447 8448 typedef DenseMap<const Loop *, std::string> VerifyMap; 8449 8450 /// replaceSubString - Replaces all occurrences of From in Str with To. 8451 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 8452 size_t Pos = 0; 8453 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 8454 Str.replace(Pos, From.size(), To.data(), To.size()); 8455 Pos += To.size(); 8456 } 8457 } 8458 8459 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 8460 static void 8461 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 8462 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 8463 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 8464 8465 std::string &S = Map[L]; 8466 if (S.empty()) { 8467 raw_string_ostream OS(S); 8468 SE.getBackedgeTakenCount(L)->print(OS); 8469 8470 // false and 0 are semantically equivalent. This can happen in dead loops. 8471 replaceSubString(OS.str(), "false", "0"); 8472 // Remove wrap flags, their use in SCEV is highly fragile. 8473 // FIXME: Remove this when SCEV gets smarter about them. 8474 replaceSubString(OS.str(), "<nw>", ""); 8475 replaceSubString(OS.str(), "<nsw>", ""); 8476 replaceSubString(OS.str(), "<nuw>", ""); 8477 } 8478 } 8479 } 8480 8481 void ScalarEvolution::verifyAnalysis() const { 8482 if (!VerifySCEV) 8483 return; 8484 8485 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8486 8487 // Gather stringified backedge taken counts for all loops using SCEV's caches. 8488 // FIXME: It would be much better to store actual values instead of strings, 8489 // but SCEV pointers will change if we drop the caches. 8490 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 8491 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8492 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 8493 8494 // Gather stringified backedge taken counts for all loops without using 8495 // SCEV's caches. 8496 SE.releaseMemory(); 8497 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8498 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 8499 8500 // Now compare whether they're the same with and without caches. This allows 8501 // verifying that no pass changed the cache. 8502 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 8503 "New loops suddenly appeared!"); 8504 8505 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 8506 OldE = BackedgeDumpsOld.end(), 8507 NewI = BackedgeDumpsNew.begin(); 8508 OldI != OldE; ++OldI, ++NewI) { 8509 assert(OldI->first == NewI->first && "Loop order changed!"); 8510 8511 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 8512 // changes. 8513 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 8514 // means that a pass is buggy or SCEV has to learn a new pattern but is 8515 // usually not harmful. 8516 if (OldI->second != NewI->second && 8517 OldI->second.find("undef") == std::string::npos && 8518 NewI->second.find("undef") == std::string::npos && 8519 OldI->second != "***COULDNOTCOMPUTE***" && 8520 NewI->second != "***COULDNOTCOMPUTE***") { 8521 dbgs() << "SCEVValidator: SCEV for loop '" 8522 << OldI->first->getHeader()->getName() 8523 << "' changed from '" << OldI->second 8524 << "' to '" << NewI->second << "'!\n"; 8525 std::abort(); 8526 } 8527 } 8528 8529 // TODO: Verify more things. 8530 } 8531